1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * BPF JIT compiler 4 * 5 * Copyright (C) 2011-2013 Eric Dumazet (eric.dumazet@gmail.com) 6 * Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 7 */ 8 #include <linux/netdevice.h> 9 #include <linux/filter.h> 10 #include <linux/if_vlan.h> 11 #include <linux/bitfield.h> 12 #include <linux/bpf.h> 13 #include <linux/memory.h> 14 #include <linux/sort.h> 15 #include <asm/extable.h> 16 #include <asm/ftrace.h> 17 #include <asm/set_memory.h> 18 #include <asm/nospec-branch.h> 19 #include <asm/text-patching.h> 20 #include <asm/unwind.h> 21 #include <asm/cfi.h> 22 23 static bool all_callee_regs_used[4] = {true, true, true, true}; 24 25 static u8 *emit_code(u8 *ptr, u32 bytes, unsigned int len) 26 { 27 if (len == 1) 28 *ptr = bytes; 29 else if (len == 2) 30 *(u16 *)ptr = bytes; 31 else { 32 *(u32 *)ptr = bytes; 33 barrier(); 34 } 35 return ptr + len; 36 } 37 38 #define EMIT(bytes, len) \ 39 do { prog = emit_code(prog, bytes, len); } while (0) 40 41 #define EMIT1(b1) EMIT(b1, 1) 42 #define EMIT2(b1, b2) EMIT((b1) + ((b2) << 8), 2) 43 #define EMIT3(b1, b2, b3) EMIT((b1) + ((b2) << 8) + ((b3) << 16), 3) 44 #define EMIT4(b1, b2, b3, b4) EMIT((b1) + ((b2) << 8) + ((b3) << 16) + ((b4) << 24), 4) 45 #define EMIT5(b1, b2, b3, b4, b5) \ 46 do { EMIT1(b1); EMIT4(b2, b3, b4, b5); } while (0) 47 48 #define EMIT1_off32(b1, off) \ 49 do { EMIT1(b1); EMIT(off, 4); } while (0) 50 #define EMIT2_off32(b1, b2, off) \ 51 do { EMIT2(b1, b2); EMIT(off, 4); } while (0) 52 #define EMIT3_off32(b1, b2, b3, off) \ 53 do { EMIT3(b1, b2, b3); EMIT(off, 4); } while (0) 54 #define EMIT4_off32(b1, b2, b3, b4, off) \ 55 do { EMIT4(b1, b2, b3, b4); EMIT(off, 4); } while (0) 56 57 #ifdef CONFIG_X86_KERNEL_IBT 58 #define EMIT_ENDBR() EMIT(gen_endbr(), 4) 59 #define EMIT_ENDBR_POISON() EMIT(gen_endbr_poison(), 4) 60 #else 61 #define EMIT_ENDBR() 62 #define EMIT_ENDBR_POISON() 63 #endif 64 65 static bool is_imm8(int value) 66 { 67 return value <= 127 && value >= -128; 68 } 69 70 /* 71 * Let us limit the positive offset to be <= 123. 72 * This is to ensure eventual jit convergence For the following patterns: 73 * ... 74 * pass4, final_proglen=4391: 75 * ... 76 * 20e: 48 85 ff test rdi,rdi 77 * 211: 74 7d je 0x290 78 * 213: 48 8b 77 00 mov rsi,QWORD PTR [rdi+0x0] 79 * ... 80 * 289: 48 85 ff test rdi,rdi 81 * 28c: 74 17 je 0x2a5 82 * 28e: e9 7f ff ff ff jmp 0x212 83 * 293: bf 03 00 00 00 mov edi,0x3 84 * Note that insn at 0x211 is 2-byte cond jump insn for offset 0x7d (-125) 85 * and insn at 0x28e is 5-byte jmp insn with offset -129. 86 * 87 * pass5, final_proglen=4392: 88 * ... 89 * 20e: 48 85 ff test rdi,rdi 90 * 211: 0f 84 80 00 00 00 je 0x297 91 * 217: 48 8b 77 00 mov rsi,QWORD PTR [rdi+0x0] 92 * ... 93 * 28d: 48 85 ff test rdi,rdi 94 * 290: 74 1a je 0x2ac 95 * 292: eb 84 jmp 0x218 96 * 294: bf 03 00 00 00 mov edi,0x3 97 * Note that insn at 0x211 is 6-byte cond jump insn now since its offset 98 * becomes 0x80 based on previous round (0x293 - 0x213 = 0x80). 99 * At the same time, insn at 0x292 is a 2-byte insn since its offset is 100 * -124. 101 * 102 * pass6 will repeat the same code as in pass4 and this will prevent 103 * eventual convergence. 104 * 105 * To fix this issue, we need to break je (2->6 bytes) <-> jmp (5->2 bytes) 106 * cycle in the above. In the above example je offset <= 0x7c should work. 107 * 108 * For other cases, je <-> je needs offset <= 0x7b to avoid no convergence 109 * issue. For jmp <-> je and jmp <-> jmp cases, jmp offset <= 0x7c should 110 * avoid no convergence issue. 111 * 112 * Overall, let us limit the positive offset for 8bit cond/uncond jmp insn 113 * to maximum 123 (0x7b). This way, the jit pass can eventually converge. 114 */ 115 static bool is_imm8_jmp_offset(int value) 116 { 117 return value <= 123 && value >= -128; 118 } 119 120 static bool is_simm32(s64 value) 121 { 122 return value == (s64)(s32)value; 123 } 124 125 static bool is_uimm32(u64 value) 126 { 127 return value == (u64)(u32)value; 128 } 129 130 /* mov dst, src */ 131 #define EMIT_mov(DST, SRC) \ 132 do { \ 133 if (DST != SRC) \ 134 EMIT3(add_2mod(0x48, DST, SRC), 0x89, add_2reg(0xC0, DST, SRC)); \ 135 } while (0) 136 137 static int bpf_size_to_x86_bytes(int bpf_size) 138 { 139 if (bpf_size == BPF_W) 140 return 4; 141 else if (bpf_size == BPF_H) 142 return 2; 143 else if (bpf_size == BPF_B) 144 return 1; 145 else if (bpf_size == BPF_DW) 146 return 4; /* imm32 */ 147 else 148 return 0; 149 } 150 151 /* 152 * List of x86 cond jumps opcodes (. + s8) 153 * Add 0x10 (and an extra 0x0f) to generate far jumps (. + s32) 154 */ 155 #define X86_JB 0x72 156 #define X86_JAE 0x73 157 #define X86_JE 0x74 158 #define X86_JNE 0x75 159 #define X86_JBE 0x76 160 #define X86_JA 0x77 161 #define X86_JL 0x7C 162 #define X86_JGE 0x7D 163 #define X86_JLE 0x7E 164 #define X86_JG 0x7F 165 166 /* Pick a register outside of BPF range for JIT internal work */ 167 #define AUX_REG (MAX_BPF_JIT_REG + 1) 168 #define X86_REG_R9 (MAX_BPF_JIT_REG + 2) 169 #define X86_REG_R12 (MAX_BPF_JIT_REG + 3) 170 171 /* 172 * The following table maps BPF registers to x86-64 registers. 173 * 174 * x86-64 register R12 is unused, since if used as base address 175 * register in load/store instructions, it always needs an 176 * extra byte of encoding and is callee saved. 177 * 178 * x86-64 register R9 is not used by BPF programs, but can be used by BPF 179 * trampoline. x86-64 register R10 is used for blinding (if enabled). 180 */ 181 static const int reg2hex[] = { 182 [BPF_REG_0] = 0, /* RAX */ 183 [BPF_REG_1] = 7, /* RDI */ 184 [BPF_REG_2] = 6, /* RSI */ 185 [BPF_REG_3] = 2, /* RDX */ 186 [BPF_REG_4] = 1, /* RCX */ 187 [BPF_REG_5] = 0, /* R8 */ 188 [BPF_REG_6] = 3, /* RBX callee saved */ 189 [BPF_REG_7] = 5, /* R13 callee saved */ 190 [BPF_REG_8] = 6, /* R14 callee saved */ 191 [BPF_REG_9] = 7, /* R15 callee saved */ 192 [BPF_REG_FP] = 5, /* RBP readonly */ 193 [BPF_REG_AX] = 2, /* R10 temp register */ 194 [AUX_REG] = 3, /* R11 temp register */ 195 [X86_REG_R9] = 1, /* R9 register, 6th function argument */ 196 [X86_REG_R12] = 4, /* R12 callee saved */ 197 }; 198 199 static const int reg2pt_regs[] = { 200 [BPF_REG_0] = offsetof(struct pt_regs, ax), 201 [BPF_REG_1] = offsetof(struct pt_regs, di), 202 [BPF_REG_2] = offsetof(struct pt_regs, si), 203 [BPF_REG_3] = offsetof(struct pt_regs, dx), 204 [BPF_REG_4] = offsetof(struct pt_regs, cx), 205 [BPF_REG_5] = offsetof(struct pt_regs, r8), 206 [BPF_REG_6] = offsetof(struct pt_regs, bx), 207 [BPF_REG_7] = offsetof(struct pt_regs, r13), 208 [BPF_REG_8] = offsetof(struct pt_regs, r14), 209 [BPF_REG_9] = offsetof(struct pt_regs, r15), 210 }; 211 212 /* 213 * is_ereg() == true if BPF register 'reg' maps to x86-64 r8..r15 214 * which need extra byte of encoding. 215 * rax,rcx,...,rbp have simpler encoding 216 */ 217 static bool is_ereg(u32 reg) 218 { 219 return (1 << reg) & (BIT(BPF_REG_5) | 220 BIT(AUX_REG) | 221 BIT(BPF_REG_7) | 222 BIT(BPF_REG_8) | 223 BIT(BPF_REG_9) | 224 BIT(X86_REG_R9) | 225 BIT(X86_REG_R12) | 226 BIT(BPF_REG_AX)); 227 } 228 229 /* 230 * is_ereg_8l() == true if BPF register 'reg' is mapped to access x86-64 231 * lower 8-bit registers dil,sil,bpl,spl,r8b..r15b, which need extra byte 232 * of encoding. al,cl,dl,bl have simpler encoding. 233 */ 234 static bool is_ereg_8l(u32 reg) 235 { 236 return is_ereg(reg) || 237 (1 << reg) & (BIT(BPF_REG_1) | 238 BIT(BPF_REG_2) | 239 BIT(BPF_REG_FP)); 240 } 241 242 static bool is_axreg(u32 reg) 243 { 244 return reg == BPF_REG_0; 245 } 246 247 /* Add modifiers if 'reg' maps to x86-64 registers R8..R15 */ 248 static u8 add_1mod(u8 byte, u32 reg) 249 { 250 if (is_ereg(reg)) 251 byte |= 1; 252 return byte; 253 } 254 255 static u8 add_2mod(u8 byte, u32 r1, u32 r2) 256 { 257 if (is_ereg(r1)) 258 byte |= 1; 259 if (is_ereg(r2)) 260 byte |= 4; 261 return byte; 262 } 263 264 static u8 add_3mod(u8 byte, u32 r1, u32 r2, u32 index) 265 { 266 if (is_ereg(r1)) 267 byte |= 1; 268 if (is_ereg(index)) 269 byte |= 2; 270 if (is_ereg(r2)) 271 byte |= 4; 272 return byte; 273 } 274 275 /* Encode 'dst_reg' register into x86-64 opcode 'byte' */ 276 static u8 add_1reg(u8 byte, u32 dst_reg) 277 { 278 return byte + reg2hex[dst_reg]; 279 } 280 281 /* Encode 'dst_reg' and 'src_reg' registers into x86-64 opcode 'byte' */ 282 static u8 add_2reg(u8 byte, u32 dst_reg, u32 src_reg) 283 { 284 return byte + reg2hex[dst_reg] + (reg2hex[src_reg] << 3); 285 } 286 287 /* Some 1-byte opcodes for binary ALU operations */ 288 static u8 simple_alu_opcodes[] = { 289 [BPF_ADD] = 0x01, 290 [BPF_SUB] = 0x29, 291 [BPF_AND] = 0x21, 292 [BPF_OR] = 0x09, 293 [BPF_XOR] = 0x31, 294 [BPF_LSH] = 0xE0, 295 [BPF_RSH] = 0xE8, 296 [BPF_ARSH] = 0xF8, 297 }; 298 299 static void jit_fill_hole(void *area, unsigned int size) 300 { 301 /* Fill whole space with INT3 instructions */ 302 memset(area, 0xcc, size); 303 } 304 305 int bpf_arch_text_invalidate(void *dst, size_t len) 306 { 307 return IS_ERR_OR_NULL(text_poke_set(dst, 0xcc, len)); 308 } 309 310 struct jit_context { 311 int cleanup_addr; /* Epilogue code offset */ 312 313 /* 314 * Program specific offsets of labels in the code; these rely on the 315 * JIT doing at least 2 passes, recording the position on the first 316 * pass, only to generate the correct offset on the second pass. 317 */ 318 int tail_call_direct_label; 319 int tail_call_indirect_label; 320 }; 321 322 /* Maximum number of bytes emitted while JITing one eBPF insn */ 323 #define BPF_MAX_INSN_SIZE 128 324 #define BPF_INSN_SAFETY 64 325 326 /* Number of bytes emit_patch() needs to generate instructions */ 327 #define X86_PATCH_SIZE 5 328 /* Number of bytes that will be skipped on tailcall */ 329 #define X86_TAIL_CALL_OFFSET (12 + ENDBR_INSN_SIZE) 330 331 static void push_r9(u8 **pprog) 332 { 333 u8 *prog = *pprog; 334 335 EMIT2(0x41, 0x51); /* push r9 */ 336 *pprog = prog; 337 } 338 339 static void pop_r9(u8 **pprog) 340 { 341 u8 *prog = *pprog; 342 343 EMIT2(0x41, 0x59); /* pop r9 */ 344 *pprog = prog; 345 } 346 347 static void push_r12(u8 **pprog) 348 { 349 u8 *prog = *pprog; 350 351 EMIT2(0x41, 0x54); /* push r12 */ 352 *pprog = prog; 353 } 354 355 static void push_callee_regs(u8 **pprog, bool *callee_regs_used) 356 { 357 u8 *prog = *pprog; 358 359 if (callee_regs_used[0]) 360 EMIT1(0x53); /* push rbx */ 361 if (callee_regs_used[1]) 362 EMIT2(0x41, 0x55); /* push r13 */ 363 if (callee_regs_used[2]) 364 EMIT2(0x41, 0x56); /* push r14 */ 365 if (callee_regs_used[3]) 366 EMIT2(0x41, 0x57); /* push r15 */ 367 *pprog = prog; 368 } 369 370 static void pop_r12(u8 **pprog) 371 { 372 u8 *prog = *pprog; 373 374 EMIT2(0x41, 0x5C); /* pop r12 */ 375 *pprog = prog; 376 } 377 378 static void pop_callee_regs(u8 **pprog, bool *callee_regs_used) 379 { 380 u8 *prog = *pprog; 381 382 if (callee_regs_used[3]) 383 EMIT2(0x41, 0x5F); /* pop r15 */ 384 if (callee_regs_used[2]) 385 EMIT2(0x41, 0x5E); /* pop r14 */ 386 if (callee_regs_used[1]) 387 EMIT2(0x41, 0x5D); /* pop r13 */ 388 if (callee_regs_used[0]) 389 EMIT1(0x5B); /* pop rbx */ 390 *pprog = prog; 391 } 392 393 static void emit_nops(u8 **pprog, int len) 394 { 395 u8 *prog = *pprog; 396 int i, noplen; 397 398 while (len > 0) { 399 noplen = len; 400 401 if (noplen > ASM_NOP_MAX) 402 noplen = ASM_NOP_MAX; 403 404 for (i = 0; i < noplen; i++) 405 EMIT1(x86_nops[noplen][i]); 406 len -= noplen; 407 } 408 409 *pprog = prog; 410 } 411 412 /* 413 * Emit the various CFI preambles, see asm/cfi.h and the comments about FineIBT 414 * in arch/x86/kernel/alternative.c 415 */ 416 static int emit_call(u8 **prog, void *func, void *ip); 417 418 static void emit_fineibt(u8 **pprog, u8 *ip, u32 hash, int arity) 419 { 420 u8 *prog = *pprog; 421 422 EMIT_ENDBR(); 423 EMIT3_off32(0x41, 0x81, 0xea, hash); /* subl $hash, %r10d */ 424 if (cfi_bhi) { 425 emit_call(&prog, __bhi_args[arity], ip + 11); 426 } else { 427 EMIT2(0x75, 0xf9); /* jne.d8 .-7 */ 428 EMIT3(0x0f, 0x1f, 0x00); /* nop3 */ 429 } 430 EMIT_ENDBR_POISON(); 431 432 *pprog = prog; 433 } 434 435 static void emit_kcfi(u8 **pprog, u32 hash) 436 { 437 u8 *prog = *pprog; 438 439 EMIT1_off32(0xb8, hash); /* movl $hash, %eax */ 440 #ifdef CONFIG_CALL_PADDING 441 EMIT1(0x90); 442 EMIT1(0x90); 443 EMIT1(0x90); 444 EMIT1(0x90); 445 EMIT1(0x90); 446 EMIT1(0x90); 447 EMIT1(0x90); 448 EMIT1(0x90); 449 EMIT1(0x90); 450 EMIT1(0x90); 451 EMIT1(0x90); 452 #endif 453 EMIT_ENDBR(); 454 455 *pprog = prog; 456 } 457 458 static void emit_cfi(u8 **pprog, u8 *ip, u32 hash, int arity) 459 { 460 u8 *prog = *pprog; 461 462 switch (cfi_mode) { 463 case CFI_FINEIBT: 464 emit_fineibt(&prog, ip, hash, arity); 465 break; 466 467 case CFI_KCFI: 468 emit_kcfi(&prog, hash); 469 break; 470 471 default: 472 EMIT_ENDBR(); 473 break; 474 } 475 476 *pprog = prog; 477 } 478 479 static void emit_prologue_tail_call(u8 **pprog, bool is_subprog) 480 { 481 u8 *prog = *pprog; 482 483 if (!is_subprog) { 484 /* cmp rax, MAX_TAIL_CALL_CNT */ 485 EMIT4(0x48, 0x83, 0xF8, MAX_TAIL_CALL_CNT); 486 EMIT2(X86_JA, 6); /* ja 6 */ 487 /* rax is tail_call_cnt if <= MAX_TAIL_CALL_CNT. 488 * case1: entry of main prog. 489 * case2: tail callee of main prog. 490 */ 491 EMIT1(0x50); /* push rax */ 492 /* Make rax as tail_call_cnt_ptr. */ 493 EMIT3(0x48, 0x89, 0xE0); /* mov rax, rsp */ 494 EMIT2(0xEB, 1); /* jmp 1 */ 495 /* rax is tail_call_cnt_ptr if > MAX_TAIL_CALL_CNT. 496 * case: tail callee of subprog. 497 */ 498 EMIT1(0x50); /* push rax */ 499 /* push tail_call_cnt_ptr */ 500 EMIT1(0x50); /* push rax */ 501 } else { /* is_subprog */ 502 /* rax is tail_call_cnt_ptr. */ 503 EMIT1(0x50); /* push rax */ 504 EMIT1(0x50); /* push rax */ 505 } 506 507 *pprog = prog; 508 } 509 510 /* 511 * Emit x86-64 prologue code for BPF program. 512 * bpf_tail_call helper will skip the first X86_TAIL_CALL_OFFSET bytes 513 * while jumping to another program 514 */ 515 static void emit_prologue(u8 **pprog, u8 *ip, u32 stack_depth, bool ebpf_from_cbpf, 516 bool tail_call_reachable, bool is_subprog, 517 bool is_exception_cb) 518 { 519 u8 *prog = *pprog; 520 521 if (is_subprog) { 522 emit_cfi(&prog, ip, cfi_bpf_subprog_hash, 5); 523 } else { 524 emit_cfi(&prog, ip, cfi_bpf_hash, 1); 525 } 526 /* BPF trampoline can be made to work without these nops, 527 * but let's waste 5 bytes for now and optimize later 528 */ 529 emit_nops(&prog, X86_PATCH_SIZE); 530 if (!ebpf_from_cbpf) { 531 if (tail_call_reachable && !is_subprog) 532 /* When it's the entry of the whole tailcall context, 533 * zeroing rax means initialising tail_call_cnt. 534 */ 535 EMIT3(0x48, 0x31, 0xC0); /* xor rax, rax */ 536 else 537 /* Keep the same instruction layout. */ 538 emit_nops(&prog, 3); /* nop3 */ 539 } 540 /* Exception callback receives FP as third parameter */ 541 if (is_exception_cb) { 542 EMIT3(0x48, 0x89, 0xF4); /* mov rsp, rsi */ 543 EMIT3(0x48, 0x89, 0xD5); /* mov rbp, rdx */ 544 /* The main frame must have exception_boundary as true, so we 545 * first restore those callee-saved regs from stack, before 546 * reusing the stack frame. 547 */ 548 pop_callee_regs(&prog, all_callee_regs_used); 549 pop_r12(&prog); 550 /* Reset the stack frame. */ 551 EMIT3(0x48, 0x89, 0xEC); /* mov rsp, rbp */ 552 } else { 553 EMIT1(0x55); /* push rbp */ 554 EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */ 555 } 556 557 /* X86_TAIL_CALL_OFFSET is here */ 558 EMIT_ENDBR(); 559 560 /* sub rsp, rounded_stack_depth */ 561 if (stack_depth) 562 EMIT3_off32(0x48, 0x81, 0xEC, round_up(stack_depth, 8)); 563 if (tail_call_reachable) 564 emit_prologue_tail_call(&prog, is_subprog); 565 *pprog = prog; 566 } 567 568 static int emit_patch(u8 **pprog, void *func, void *ip, u8 opcode) 569 { 570 u8 *prog = *pprog; 571 s64 offset; 572 573 offset = func - (ip + X86_PATCH_SIZE); 574 if (!is_simm32(offset)) { 575 pr_err("Target call %p is out of range\n", func); 576 return -ERANGE; 577 } 578 EMIT1_off32(opcode, offset); 579 *pprog = prog; 580 return 0; 581 } 582 583 static int emit_call(u8 **pprog, void *func, void *ip) 584 { 585 return emit_patch(pprog, func, ip, 0xE8); 586 } 587 588 static int emit_rsb_call(u8 **pprog, void *func, void *ip) 589 { 590 OPTIMIZER_HIDE_VAR(func); 591 ip += x86_call_depth_emit_accounting(pprog, func, ip); 592 return emit_patch(pprog, func, ip, 0xE8); 593 } 594 595 static int emit_jump(u8 **pprog, void *func, void *ip) 596 { 597 return emit_patch(pprog, func, ip, 0xE9); 598 } 599 600 static int __bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t, 601 void *old_addr, void *new_addr) 602 { 603 const u8 *nop_insn = x86_nops[5]; 604 u8 old_insn[X86_PATCH_SIZE]; 605 u8 new_insn[X86_PATCH_SIZE]; 606 u8 *prog; 607 int ret; 608 609 memcpy(old_insn, nop_insn, X86_PATCH_SIZE); 610 if (old_addr) { 611 prog = old_insn; 612 ret = t == BPF_MOD_CALL ? 613 emit_call(&prog, old_addr, ip) : 614 emit_jump(&prog, old_addr, ip); 615 if (ret) 616 return ret; 617 } 618 619 memcpy(new_insn, nop_insn, X86_PATCH_SIZE); 620 if (new_addr) { 621 prog = new_insn; 622 ret = t == BPF_MOD_CALL ? 623 emit_call(&prog, new_addr, ip) : 624 emit_jump(&prog, new_addr, ip); 625 if (ret) 626 return ret; 627 } 628 629 ret = -EBUSY; 630 mutex_lock(&text_mutex); 631 if (memcmp(ip, old_insn, X86_PATCH_SIZE)) 632 goto out; 633 ret = 1; 634 if (memcmp(ip, new_insn, X86_PATCH_SIZE)) { 635 smp_text_poke_single(ip, new_insn, X86_PATCH_SIZE, NULL); 636 ret = 0; 637 } 638 out: 639 mutex_unlock(&text_mutex); 640 return ret; 641 } 642 643 int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t, 644 void *old_addr, void *new_addr) 645 { 646 if (!is_kernel_text((long)ip) && 647 !is_bpf_text_address((long)ip)) 648 /* BPF poking in modules is not supported */ 649 return -EINVAL; 650 651 /* 652 * See emit_prologue(), for IBT builds the trampoline hook is preceded 653 * with an ENDBR instruction. 654 */ 655 if (is_endbr(ip)) 656 ip += ENDBR_INSN_SIZE; 657 658 return __bpf_arch_text_poke(ip, t, old_addr, new_addr); 659 } 660 661 #define EMIT_LFENCE() EMIT3(0x0F, 0xAE, 0xE8) 662 663 static void emit_indirect_jump(u8 **pprog, int reg, u8 *ip) 664 { 665 u8 *prog = *pprog; 666 667 if (cpu_feature_enabled(X86_FEATURE_INDIRECT_THUNK_ITS)) { 668 OPTIMIZER_HIDE_VAR(reg); 669 emit_jump(&prog, its_static_thunk(reg), ip); 670 } else if (cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE)) { 671 EMIT_LFENCE(); 672 EMIT2(0xFF, 0xE0 + reg); 673 } else if (cpu_feature_enabled(X86_FEATURE_RETPOLINE)) { 674 OPTIMIZER_HIDE_VAR(reg); 675 if (cpu_feature_enabled(X86_FEATURE_CALL_DEPTH)) 676 emit_jump(&prog, &__x86_indirect_jump_thunk_array[reg], ip); 677 else 678 emit_jump(&prog, &__x86_indirect_thunk_array[reg], ip); 679 } else { 680 EMIT2(0xFF, 0xE0 + reg); /* jmp *%\reg */ 681 if (IS_ENABLED(CONFIG_MITIGATION_RETPOLINE) || IS_ENABLED(CONFIG_MITIGATION_SLS)) 682 EMIT1(0xCC); /* int3 */ 683 } 684 685 *pprog = prog; 686 } 687 688 static void emit_return(u8 **pprog, u8 *ip) 689 { 690 u8 *prog = *pprog; 691 692 if (cpu_wants_rethunk()) { 693 emit_jump(&prog, x86_return_thunk, ip); 694 } else { 695 EMIT1(0xC3); /* ret */ 696 if (IS_ENABLED(CONFIG_MITIGATION_SLS)) 697 EMIT1(0xCC); /* int3 */ 698 } 699 700 *pprog = prog; 701 } 702 703 #define BPF_TAIL_CALL_CNT_PTR_STACK_OFF(stack) (-16 - round_up(stack, 8)) 704 705 /* 706 * Generate the following code: 707 * 708 * ... bpf_tail_call(void *ctx, struct bpf_array *array, u64 index) ... 709 * if (index >= array->map.max_entries) 710 * goto out; 711 * if ((*tcc_ptr)++ >= MAX_TAIL_CALL_CNT) 712 * goto out; 713 * prog = array->ptrs[index]; 714 * if (prog == NULL) 715 * goto out; 716 * goto *(prog->bpf_func + prologue_size); 717 * out: 718 */ 719 static void emit_bpf_tail_call_indirect(struct bpf_prog *bpf_prog, 720 u8 **pprog, bool *callee_regs_used, 721 u32 stack_depth, u8 *ip, 722 struct jit_context *ctx) 723 { 724 int tcc_ptr_off = BPF_TAIL_CALL_CNT_PTR_STACK_OFF(stack_depth); 725 u8 *prog = *pprog, *start = *pprog; 726 int offset; 727 728 /* 729 * rdi - pointer to ctx 730 * rsi - pointer to bpf_array 731 * rdx - index in bpf_array 732 */ 733 734 /* 735 * if (index >= array->map.max_entries) 736 * goto out; 737 */ 738 EMIT2(0x89, 0xD2); /* mov edx, edx */ 739 EMIT3(0x39, 0x56, /* cmp dword ptr [rsi + 16], edx */ 740 offsetof(struct bpf_array, map.max_entries)); 741 742 offset = ctx->tail_call_indirect_label - (prog + 2 - start); 743 EMIT2(X86_JBE, offset); /* jbe out */ 744 745 /* 746 * if ((*tcc_ptr)++ >= MAX_TAIL_CALL_CNT) 747 * goto out; 748 */ 749 EMIT3_off32(0x48, 0x8B, 0x85, tcc_ptr_off); /* mov rax, qword ptr [rbp - tcc_ptr_off] */ 750 EMIT4(0x48, 0x83, 0x38, MAX_TAIL_CALL_CNT); /* cmp qword ptr [rax], MAX_TAIL_CALL_CNT */ 751 752 offset = ctx->tail_call_indirect_label - (prog + 2 - start); 753 EMIT2(X86_JAE, offset); /* jae out */ 754 755 /* prog = array->ptrs[index]; */ 756 EMIT4_off32(0x48, 0x8B, 0x8C, 0xD6, /* mov rcx, [rsi + rdx * 8 + offsetof(...)] */ 757 offsetof(struct bpf_array, ptrs)); 758 759 /* 760 * if (prog == NULL) 761 * goto out; 762 */ 763 EMIT3(0x48, 0x85, 0xC9); /* test rcx,rcx */ 764 765 offset = ctx->tail_call_indirect_label - (prog + 2 - start); 766 EMIT2(X86_JE, offset); /* je out */ 767 768 /* Inc tail_call_cnt if the slot is populated. */ 769 EMIT4(0x48, 0x83, 0x00, 0x01); /* add qword ptr [rax], 1 */ 770 771 if (bpf_prog->aux->exception_boundary) { 772 pop_callee_regs(&prog, all_callee_regs_used); 773 pop_r12(&prog); 774 } else { 775 pop_callee_regs(&prog, callee_regs_used); 776 if (bpf_arena_get_kern_vm_start(bpf_prog->aux->arena)) 777 pop_r12(&prog); 778 } 779 780 /* Pop tail_call_cnt_ptr. */ 781 EMIT1(0x58); /* pop rax */ 782 /* Pop tail_call_cnt, if it's main prog. 783 * Pop tail_call_cnt_ptr, if it's subprog. 784 */ 785 EMIT1(0x58); /* pop rax */ 786 if (stack_depth) 787 EMIT3_off32(0x48, 0x81, 0xC4, /* add rsp, sd */ 788 round_up(stack_depth, 8)); 789 790 /* goto *(prog->bpf_func + X86_TAIL_CALL_OFFSET); */ 791 EMIT4(0x48, 0x8B, 0x49, /* mov rcx, qword ptr [rcx + 32] */ 792 offsetof(struct bpf_prog, bpf_func)); 793 EMIT4(0x48, 0x83, 0xC1, /* add rcx, X86_TAIL_CALL_OFFSET */ 794 X86_TAIL_CALL_OFFSET); 795 /* 796 * Now we're ready to jump into next BPF program 797 * rdi == ctx (1st arg) 798 * rcx == prog->bpf_func + X86_TAIL_CALL_OFFSET 799 */ 800 emit_indirect_jump(&prog, 1 /* rcx */, ip + (prog - start)); 801 802 /* out: */ 803 ctx->tail_call_indirect_label = prog - start; 804 *pprog = prog; 805 } 806 807 static void emit_bpf_tail_call_direct(struct bpf_prog *bpf_prog, 808 struct bpf_jit_poke_descriptor *poke, 809 u8 **pprog, u8 *ip, 810 bool *callee_regs_used, u32 stack_depth, 811 struct jit_context *ctx) 812 { 813 int tcc_ptr_off = BPF_TAIL_CALL_CNT_PTR_STACK_OFF(stack_depth); 814 u8 *prog = *pprog, *start = *pprog; 815 int offset; 816 817 /* 818 * if ((*tcc_ptr)++ >= MAX_TAIL_CALL_CNT) 819 * goto out; 820 */ 821 EMIT3_off32(0x48, 0x8B, 0x85, tcc_ptr_off); /* mov rax, qword ptr [rbp - tcc_ptr_off] */ 822 EMIT4(0x48, 0x83, 0x38, MAX_TAIL_CALL_CNT); /* cmp qword ptr [rax], MAX_TAIL_CALL_CNT */ 823 824 offset = ctx->tail_call_direct_label - (prog + 2 - start); 825 EMIT2(X86_JAE, offset); /* jae out */ 826 827 poke->tailcall_bypass = ip + (prog - start); 828 poke->adj_off = X86_TAIL_CALL_OFFSET; 829 poke->tailcall_target = ip + ctx->tail_call_direct_label - X86_PATCH_SIZE; 830 poke->bypass_addr = (u8 *)poke->tailcall_target + X86_PATCH_SIZE; 831 832 emit_jump(&prog, (u8 *)poke->tailcall_target + X86_PATCH_SIZE, 833 poke->tailcall_bypass); 834 835 /* Inc tail_call_cnt if the slot is populated. */ 836 EMIT4(0x48, 0x83, 0x00, 0x01); /* add qword ptr [rax], 1 */ 837 838 if (bpf_prog->aux->exception_boundary) { 839 pop_callee_regs(&prog, all_callee_regs_used); 840 pop_r12(&prog); 841 } else { 842 pop_callee_regs(&prog, callee_regs_used); 843 if (bpf_arena_get_kern_vm_start(bpf_prog->aux->arena)) 844 pop_r12(&prog); 845 } 846 847 /* Pop tail_call_cnt_ptr. */ 848 EMIT1(0x58); /* pop rax */ 849 /* Pop tail_call_cnt, if it's main prog. 850 * Pop tail_call_cnt_ptr, if it's subprog. 851 */ 852 EMIT1(0x58); /* pop rax */ 853 if (stack_depth) 854 EMIT3_off32(0x48, 0x81, 0xC4, round_up(stack_depth, 8)); 855 856 emit_nops(&prog, X86_PATCH_SIZE); 857 858 /* out: */ 859 ctx->tail_call_direct_label = prog - start; 860 861 *pprog = prog; 862 } 863 864 static void bpf_tail_call_direct_fixup(struct bpf_prog *prog) 865 { 866 struct bpf_jit_poke_descriptor *poke; 867 struct bpf_array *array; 868 struct bpf_prog *target; 869 int i, ret; 870 871 for (i = 0; i < prog->aux->size_poke_tab; i++) { 872 poke = &prog->aux->poke_tab[i]; 873 if (poke->aux && poke->aux != prog->aux) 874 continue; 875 876 WARN_ON_ONCE(READ_ONCE(poke->tailcall_target_stable)); 877 878 if (poke->reason != BPF_POKE_REASON_TAIL_CALL) 879 continue; 880 881 array = container_of(poke->tail_call.map, struct bpf_array, map); 882 mutex_lock(&array->aux->poke_mutex); 883 target = array->ptrs[poke->tail_call.key]; 884 if (target) { 885 ret = __bpf_arch_text_poke(poke->tailcall_target, 886 BPF_MOD_JUMP, NULL, 887 (u8 *)target->bpf_func + 888 poke->adj_off); 889 BUG_ON(ret < 0); 890 ret = __bpf_arch_text_poke(poke->tailcall_bypass, 891 BPF_MOD_JUMP, 892 (u8 *)poke->tailcall_target + 893 X86_PATCH_SIZE, NULL); 894 BUG_ON(ret < 0); 895 } 896 WRITE_ONCE(poke->tailcall_target_stable, true); 897 mutex_unlock(&array->aux->poke_mutex); 898 } 899 } 900 901 static void emit_mov_imm32(u8 **pprog, bool sign_propagate, 902 u32 dst_reg, const u32 imm32) 903 { 904 u8 *prog = *pprog; 905 u8 b1, b2, b3; 906 907 /* 908 * Optimization: if imm32 is positive, use 'mov %eax, imm32' 909 * (which zero-extends imm32) to save 2 bytes. 910 */ 911 if (sign_propagate && (s32)imm32 < 0) { 912 /* 'mov %rax, imm32' sign extends imm32 */ 913 b1 = add_1mod(0x48, dst_reg); 914 b2 = 0xC7; 915 b3 = 0xC0; 916 EMIT3_off32(b1, b2, add_1reg(b3, dst_reg), imm32); 917 goto done; 918 } 919 920 /* 921 * Optimization: if imm32 is zero, use 'xor %eax, %eax' 922 * to save 3 bytes. 923 */ 924 if (imm32 == 0) { 925 if (is_ereg(dst_reg)) 926 EMIT1(add_2mod(0x40, dst_reg, dst_reg)); 927 b2 = 0x31; /* xor */ 928 b3 = 0xC0; 929 EMIT2(b2, add_2reg(b3, dst_reg, dst_reg)); 930 goto done; 931 } 932 933 /* mov %eax, imm32 */ 934 if (is_ereg(dst_reg)) 935 EMIT1(add_1mod(0x40, dst_reg)); 936 EMIT1_off32(add_1reg(0xB8, dst_reg), imm32); 937 done: 938 *pprog = prog; 939 } 940 941 static void emit_mov_imm64(u8 **pprog, u32 dst_reg, 942 const u32 imm32_hi, const u32 imm32_lo) 943 { 944 u64 imm64 = ((u64)imm32_hi << 32) | (u32)imm32_lo; 945 u8 *prog = *pprog; 946 947 if (is_uimm32(imm64)) { 948 /* 949 * For emitting plain u32, where sign bit must not be 950 * propagated LLVM tends to load imm64 over mov32 951 * directly, so save couple of bytes by just doing 952 * 'mov %eax, imm32' instead. 953 */ 954 emit_mov_imm32(&prog, false, dst_reg, imm32_lo); 955 } else if (is_simm32(imm64)) { 956 emit_mov_imm32(&prog, true, dst_reg, imm32_lo); 957 } else { 958 /* movabsq rax, imm64 */ 959 EMIT2(add_1mod(0x48, dst_reg), add_1reg(0xB8, dst_reg)); 960 EMIT(imm32_lo, 4); 961 EMIT(imm32_hi, 4); 962 } 963 964 *pprog = prog; 965 } 966 967 static void emit_mov_reg(u8 **pprog, bool is64, u32 dst_reg, u32 src_reg) 968 { 969 u8 *prog = *pprog; 970 971 if (is64) { 972 /* mov dst, src */ 973 EMIT_mov(dst_reg, src_reg); 974 } else { 975 /* mov32 dst, src */ 976 if (is_ereg(dst_reg) || is_ereg(src_reg)) 977 EMIT1(add_2mod(0x40, dst_reg, src_reg)); 978 EMIT2(0x89, add_2reg(0xC0, dst_reg, src_reg)); 979 } 980 981 *pprog = prog; 982 } 983 984 static void emit_movsx_reg(u8 **pprog, int num_bits, bool is64, u32 dst_reg, 985 u32 src_reg) 986 { 987 u8 *prog = *pprog; 988 989 if (is64) { 990 /* movs[b,w,l]q dst, src */ 991 if (num_bits == 8) 992 EMIT4(add_2mod(0x48, src_reg, dst_reg), 0x0f, 0xbe, 993 add_2reg(0xC0, src_reg, dst_reg)); 994 else if (num_bits == 16) 995 EMIT4(add_2mod(0x48, src_reg, dst_reg), 0x0f, 0xbf, 996 add_2reg(0xC0, src_reg, dst_reg)); 997 else if (num_bits == 32) 998 EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x63, 999 add_2reg(0xC0, src_reg, dst_reg)); 1000 } else { 1001 /* movs[b,w]l dst, src */ 1002 if (num_bits == 8) { 1003 EMIT4(add_2mod(0x40, src_reg, dst_reg), 0x0f, 0xbe, 1004 add_2reg(0xC0, src_reg, dst_reg)); 1005 } else if (num_bits == 16) { 1006 if (is_ereg(dst_reg) || is_ereg(src_reg)) 1007 EMIT1(add_2mod(0x40, src_reg, dst_reg)); 1008 EMIT3(add_2mod(0x0f, src_reg, dst_reg), 0xbf, 1009 add_2reg(0xC0, src_reg, dst_reg)); 1010 } 1011 } 1012 1013 *pprog = prog; 1014 } 1015 1016 /* Emit the suffix (ModR/M etc) for addressing *(ptr_reg + off) and val_reg */ 1017 static void emit_insn_suffix(u8 **pprog, u32 ptr_reg, u32 val_reg, int off) 1018 { 1019 u8 *prog = *pprog; 1020 1021 if (is_imm8(off)) { 1022 /* 1-byte signed displacement. 1023 * 1024 * If off == 0 we could skip this and save one extra byte, but 1025 * special case of x86 R13 which always needs an offset is not 1026 * worth the hassle 1027 */ 1028 EMIT2(add_2reg(0x40, ptr_reg, val_reg), off); 1029 } else { 1030 /* 4-byte signed displacement */ 1031 EMIT1_off32(add_2reg(0x80, ptr_reg, val_reg), off); 1032 } 1033 *pprog = prog; 1034 } 1035 1036 static void emit_insn_suffix_SIB(u8 **pprog, u32 ptr_reg, u32 val_reg, u32 index_reg, int off) 1037 { 1038 u8 *prog = *pprog; 1039 1040 if (is_imm8(off)) { 1041 EMIT3(add_2reg(0x44, BPF_REG_0, val_reg), add_2reg(0, ptr_reg, index_reg) /* SIB */, off); 1042 } else { 1043 EMIT2_off32(add_2reg(0x84, BPF_REG_0, val_reg), add_2reg(0, ptr_reg, index_reg) /* SIB */, off); 1044 } 1045 *pprog = prog; 1046 } 1047 1048 /* 1049 * Emit a REX byte if it will be necessary to address these registers 1050 */ 1051 static void maybe_emit_mod(u8 **pprog, u32 dst_reg, u32 src_reg, bool is64) 1052 { 1053 u8 *prog = *pprog; 1054 1055 if (is64) 1056 EMIT1(add_2mod(0x48, dst_reg, src_reg)); 1057 else if (is_ereg(dst_reg) || is_ereg(src_reg)) 1058 EMIT1(add_2mod(0x40, dst_reg, src_reg)); 1059 *pprog = prog; 1060 } 1061 1062 /* 1063 * Similar version of maybe_emit_mod() for a single register 1064 */ 1065 static void maybe_emit_1mod(u8 **pprog, u32 reg, bool is64) 1066 { 1067 u8 *prog = *pprog; 1068 1069 if (is64) 1070 EMIT1(add_1mod(0x48, reg)); 1071 else if (is_ereg(reg)) 1072 EMIT1(add_1mod(0x40, reg)); 1073 *pprog = prog; 1074 } 1075 1076 /* LDX: dst_reg = *(u8*)(src_reg + off) */ 1077 static void emit_ldx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off) 1078 { 1079 u8 *prog = *pprog; 1080 1081 switch (size) { 1082 case BPF_B: 1083 /* Emit 'movzx rax, byte ptr [rax + off]' */ 1084 EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB6); 1085 break; 1086 case BPF_H: 1087 /* Emit 'movzx rax, word ptr [rax + off]' */ 1088 EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB7); 1089 break; 1090 case BPF_W: 1091 /* Emit 'mov eax, dword ptr [rax+0x14]' */ 1092 if (is_ereg(dst_reg) || is_ereg(src_reg)) 1093 EMIT2(add_2mod(0x40, src_reg, dst_reg), 0x8B); 1094 else 1095 EMIT1(0x8B); 1096 break; 1097 case BPF_DW: 1098 /* Emit 'mov rax, qword ptr [rax+0x14]' */ 1099 EMIT2(add_2mod(0x48, src_reg, dst_reg), 0x8B); 1100 break; 1101 } 1102 emit_insn_suffix(&prog, src_reg, dst_reg, off); 1103 *pprog = prog; 1104 } 1105 1106 /* LDSX: dst_reg = *(s8*)(src_reg + off) */ 1107 static void emit_ldsx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off) 1108 { 1109 u8 *prog = *pprog; 1110 1111 switch (size) { 1112 case BPF_B: 1113 /* Emit 'movsx rax, byte ptr [rax + off]' */ 1114 EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xBE); 1115 break; 1116 case BPF_H: 1117 /* Emit 'movsx rax, word ptr [rax + off]' */ 1118 EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xBF); 1119 break; 1120 case BPF_W: 1121 /* Emit 'movsx rax, dword ptr [rax+0x14]' */ 1122 EMIT2(add_2mod(0x48, src_reg, dst_reg), 0x63); 1123 break; 1124 } 1125 emit_insn_suffix(&prog, src_reg, dst_reg, off); 1126 *pprog = prog; 1127 } 1128 1129 static void emit_ldx_index(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, u32 index_reg, int off) 1130 { 1131 u8 *prog = *pprog; 1132 1133 switch (size) { 1134 case BPF_B: 1135 /* movzx rax, byte ptr [rax + r12 + off] */ 1136 EMIT3(add_3mod(0x40, src_reg, dst_reg, index_reg), 0x0F, 0xB6); 1137 break; 1138 case BPF_H: 1139 /* movzx rax, word ptr [rax + r12 + off] */ 1140 EMIT3(add_3mod(0x40, src_reg, dst_reg, index_reg), 0x0F, 0xB7); 1141 break; 1142 case BPF_W: 1143 /* mov eax, dword ptr [rax + r12 + off] */ 1144 EMIT2(add_3mod(0x40, src_reg, dst_reg, index_reg), 0x8B); 1145 break; 1146 case BPF_DW: 1147 /* mov rax, qword ptr [rax + r12 + off] */ 1148 EMIT2(add_3mod(0x48, src_reg, dst_reg, index_reg), 0x8B); 1149 break; 1150 } 1151 emit_insn_suffix_SIB(&prog, src_reg, dst_reg, index_reg, off); 1152 *pprog = prog; 1153 } 1154 1155 static void emit_ldx_r12(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off) 1156 { 1157 emit_ldx_index(pprog, size, dst_reg, src_reg, X86_REG_R12, off); 1158 } 1159 1160 /* STX: *(u8*)(dst_reg + off) = src_reg */ 1161 static void emit_stx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off) 1162 { 1163 u8 *prog = *pprog; 1164 1165 switch (size) { 1166 case BPF_B: 1167 /* Emit 'mov byte ptr [rax + off], al' */ 1168 if (is_ereg(dst_reg) || is_ereg_8l(src_reg)) 1169 /* Add extra byte for eregs or SIL,DIL,BPL in src_reg */ 1170 EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x88); 1171 else 1172 EMIT1(0x88); 1173 break; 1174 case BPF_H: 1175 if (is_ereg(dst_reg) || is_ereg(src_reg)) 1176 EMIT3(0x66, add_2mod(0x40, dst_reg, src_reg), 0x89); 1177 else 1178 EMIT2(0x66, 0x89); 1179 break; 1180 case BPF_W: 1181 if (is_ereg(dst_reg) || is_ereg(src_reg)) 1182 EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x89); 1183 else 1184 EMIT1(0x89); 1185 break; 1186 case BPF_DW: 1187 EMIT2(add_2mod(0x48, dst_reg, src_reg), 0x89); 1188 break; 1189 } 1190 emit_insn_suffix(&prog, dst_reg, src_reg, off); 1191 *pprog = prog; 1192 } 1193 1194 /* STX: *(u8*)(dst_reg + index_reg + off) = src_reg */ 1195 static void emit_stx_index(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, u32 index_reg, int off) 1196 { 1197 u8 *prog = *pprog; 1198 1199 switch (size) { 1200 case BPF_B: 1201 /* mov byte ptr [rax + r12 + off], al */ 1202 EMIT2(add_3mod(0x40, dst_reg, src_reg, index_reg), 0x88); 1203 break; 1204 case BPF_H: 1205 /* mov word ptr [rax + r12 + off], ax */ 1206 EMIT3(0x66, add_3mod(0x40, dst_reg, src_reg, index_reg), 0x89); 1207 break; 1208 case BPF_W: 1209 /* mov dword ptr [rax + r12 + 1], eax */ 1210 EMIT2(add_3mod(0x40, dst_reg, src_reg, index_reg), 0x89); 1211 break; 1212 case BPF_DW: 1213 /* mov qword ptr [rax + r12 + 1], rax */ 1214 EMIT2(add_3mod(0x48, dst_reg, src_reg, index_reg), 0x89); 1215 break; 1216 } 1217 emit_insn_suffix_SIB(&prog, dst_reg, src_reg, index_reg, off); 1218 *pprog = prog; 1219 } 1220 1221 static void emit_stx_r12(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off) 1222 { 1223 emit_stx_index(pprog, size, dst_reg, src_reg, X86_REG_R12, off); 1224 } 1225 1226 /* ST: *(u8*)(dst_reg + index_reg + off) = imm32 */ 1227 static void emit_st_index(u8 **pprog, u32 size, u32 dst_reg, u32 index_reg, int off, int imm) 1228 { 1229 u8 *prog = *pprog; 1230 1231 switch (size) { 1232 case BPF_B: 1233 /* mov byte ptr [rax + r12 + off], imm8 */ 1234 EMIT2(add_3mod(0x40, dst_reg, 0, index_reg), 0xC6); 1235 break; 1236 case BPF_H: 1237 /* mov word ptr [rax + r12 + off], imm16 */ 1238 EMIT3(0x66, add_3mod(0x40, dst_reg, 0, index_reg), 0xC7); 1239 break; 1240 case BPF_W: 1241 /* mov dword ptr [rax + r12 + 1], imm32 */ 1242 EMIT2(add_3mod(0x40, dst_reg, 0, index_reg), 0xC7); 1243 break; 1244 case BPF_DW: 1245 /* mov qword ptr [rax + r12 + 1], imm32 */ 1246 EMIT2(add_3mod(0x48, dst_reg, 0, index_reg), 0xC7); 1247 break; 1248 } 1249 emit_insn_suffix_SIB(&prog, dst_reg, 0, index_reg, off); 1250 EMIT(imm, bpf_size_to_x86_bytes(size)); 1251 *pprog = prog; 1252 } 1253 1254 static void emit_st_r12(u8 **pprog, u32 size, u32 dst_reg, int off, int imm) 1255 { 1256 emit_st_index(pprog, size, dst_reg, X86_REG_R12, off, imm); 1257 } 1258 1259 static int emit_atomic_rmw(u8 **pprog, u32 atomic_op, 1260 u32 dst_reg, u32 src_reg, s16 off, u8 bpf_size) 1261 { 1262 u8 *prog = *pprog; 1263 1264 EMIT1(0xF0); /* lock prefix */ 1265 1266 maybe_emit_mod(&prog, dst_reg, src_reg, bpf_size == BPF_DW); 1267 1268 /* emit opcode */ 1269 switch (atomic_op) { 1270 case BPF_ADD: 1271 case BPF_AND: 1272 case BPF_OR: 1273 case BPF_XOR: 1274 /* lock *(u32/u64*)(dst_reg + off) <op>= src_reg */ 1275 EMIT1(simple_alu_opcodes[atomic_op]); 1276 break; 1277 case BPF_ADD | BPF_FETCH: 1278 /* src_reg = atomic_fetch_add(dst_reg + off, src_reg); */ 1279 EMIT2(0x0F, 0xC1); 1280 break; 1281 case BPF_XCHG: 1282 /* src_reg = atomic_xchg(dst_reg + off, src_reg); */ 1283 EMIT1(0x87); 1284 break; 1285 case BPF_CMPXCHG: 1286 /* r0 = atomic_cmpxchg(dst_reg + off, r0, src_reg); */ 1287 EMIT2(0x0F, 0xB1); 1288 break; 1289 default: 1290 pr_err("bpf_jit: unknown atomic opcode %02x\n", atomic_op); 1291 return -EFAULT; 1292 } 1293 1294 emit_insn_suffix(&prog, dst_reg, src_reg, off); 1295 1296 *pprog = prog; 1297 return 0; 1298 } 1299 1300 static int emit_atomic_rmw_index(u8 **pprog, u32 atomic_op, u32 size, 1301 u32 dst_reg, u32 src_reg, u32 index_reg, 1302 int off) 1303 { 1304 u8 *prog = *pprog; 1305 1306 EMIT1(0xF0); /* lock prefix */ 1307 switch (size) { 1308 case BPF_W: 1309 EMIT1(add_3mod(0x40, dst_reg, src_reg, index_reg)); 1310 break; 1311 case BPF_DW: 1312 EMIT1(add_3mod(0x48, dst_reg, src_reg, index_reg)); 1313 break; 1314 default: 1315 pr_err("bpf_jit: 1- and 2-byte RMW atomics are not supported\n"); 1316 return -EFAULT; 1317 } 1318 1319 /* emit opcode */ 1320 switch (atomic_op) { 1321 case BPF_ADD: 1322 case BPF_AND: 1323 case BPF_OR: 1324 case BPF_XOR: 1325 /* lock *(u32/u64*)(dst_reg + idx_reg + off) <op>= src_reg */ 1326 EMIT1(simple_alu_opcodes[atomic_op]); 1327 break; 1328 case BPF_ADD | BPF_FETCH: 1329 /* src_reg = atomic_fetch_add(dst_reg + idx_reg + off, src_reg); */ 1330 EMIT2(0x0F, 0xC1); 1331 break; 1332 case BPF_XCHG: 1333 /* src_reg = atomic_xchg(dst_reg + idx_reg + off, src_reg); */ 1334 EMIT1(0x87); 1335 break; 1336 case BPF_CMPXCHG: 1337 /* r0 = atomic_cmpxchg(dst_reg + idx_reg + off, r0, src_reg); */ 1338 EMIT2(0x0F, 0xB1); 1339 break; 1340 default: 1341 pr_err("bpf_jit: unknown atomic opcode %02x\n", atomic_op); 1342 return -EFAULT; 1343 } 1344 emit_insn_suffix_SIB(&prog, dst_reg, src_reg, index_reg, off); 1345 *pprog = prog; 1346 return 0; 1347 } 1348 1349 static int emit_atomic_ld_st(u8 **pprog, u32 atomic_op, u32 dst_reg, 1350 u32 src_reg, s16 off, u8 bpf_size) 1351 { 1352 switch (atomic_op) { 1353 case BPF_LOAD_ACQ: 1354 /* dst_reg = smp_load_acquire(src_reg + off16) */ 1355 emit_ldx(pprog, bpf_size, dst_reg, src_reg, off); 1356 break; 1357 case BPF_STORE_REL: 1358 /* smp_store_release(dst_reg + off16, src_reg) */ 1359 emit_stx(pprog, bpf_size, dst_reg, src_reg, off); 1360 break; 1361 default: 1362 pr_err("bpf_jit: unknown atomic load/store opcode %02x\n", 1363 atomic_op); 1364 return -EFAULT; 1365 } 1366 1367 return 0; 1368 } 1369 1370 static int emit_atomic_ld_st_index(u8 **pprog, u32 atomic_op, u32 size, 1371 u32 dst_reg, u32 src_reg, u32 index_reg, 1372 int off) 1373 { 1374 switch (atomic_op) { 1375 case BPF_LOAD_ACQ: 1376 /* dst_reg = smp_load_acquire(src_reg + idx_reg + off16) */ 1377 emit_ldx_index(pprog, size, dst_reg, src_reg, index_reg, off); 1378 break; 1379 case BPF_STORE_REL: 1380 /* smp_store_release(dst_reg + idx_reg + off16, src_reg) */ 1381 emit_stx_index(pprog, size, dst_reg, src_reg, index_reg, off); 1382 break; 1383 default: 1384 pr_err("bpf_jit: unknown atomic load/store opcode %02x\n", 1385 atomic_op); 1386 return -EFAULT; 1387 } 1388 1389 return 0; 1390 } 1391 1392 /* 1393 * Metadata encoding for exception handling in JITed code. 1394 * 1395 * Format of `fixup` and `data` fields in `struct exception_table_entry`: 1396 * 1397 * Bit layout of `fixup` (32-bit): 1398 * 1399 * +-----------+--------+-----------+---------+----------+ 1400 * | 31 | 30-24 | 23-16 | 15-8 | 7-0 | 1401 * | | | | | | 1402 * | ARENA_ACC | Unused | ARENA_REG | DST_REG | INSN_LEN | 1403 * +-----------+--------+-----------+---------+----------+ 1404 * 1405 * - INSN_LEN (8 bits): Length of faulting insn (max x86 insn = 15 bytes (fits in 8 bits)). 1406 * - DST_REG (8 bits): Offset of dst_reg from reg2pt_regs[] (max offset = 112 (fits in 8 bits)). 1407 * This is set to DONT_CLEAR if the insn is a store. 1408 * - ARENA_REG (8 bits): Offset of the register that is used to calculate the 1409 * address for load/store when accessing the arena region. 1410 * - ARENA_ACCESS (1 bit): This bit is set when the faulting instruction accessed the arena region. 1411 * 1412 * Bit layout of `data` (32-bit): 1413 * 1414 * +--------------+--------+--------------+ 1415 * | 31-16 | 15-8 | 7-0 | 1416 * | | | | 1417 * | ARENA_OFFSET | Unused | EX_TYPE_BPF | 1418 * +--------------+--------+--------------+ 1419 * 1420 * - ARENA_OFFSET (16 bits): Offset used to calculate the address for load/store when 1421 * accessing the arena region. 1422 */ 1423 1424 #define DONT_CLEAR 1 1425 #define FIXUP_INSN_LEN_MASK GENMASK(7, 0) 1426 #define FIXUP_REG_MASK GENMASK(15, 8) 1427 #define FIXUP_ARENA_REG_MASK GENMASK(23, 16) 1428 #define FIXUP_ARENA_ACCESS BIT(31) 1429 #define DATA_ARENA_OFFSET_MASK GENMASK(31, 16) 1430 1431 bool ex_handler_bpf(const struct exception_table_entry *x, struct pt_regs *regs) 1432 { 1433 u32 reg = FIELD_GET(FIXUP_REG_MASK, x->fixup); 1434 u32 insn_len = FIELD_GET(FIXUP_INSN_LEN_MASK, x->fixup); 1435 bool is_arena = !!(x->fixup & FIXUP_ARENA_ACCESS); 1436 bool is_write = (reg == DONT_CLEAR); 1437 unsigned long addr; 1438 s16 off; 1439 u32 arena_reg; 1440 1441 if (is_arena) { 1442 arena_reg = FIELD_GET(FIXUP_ARENA_REG_MASK, x->fixup); 1443 off = FIELD_GET(DATA_ARENA_OFFSET_MASK, x->data); 1444 addr = *(unsigned long *)((void *)regs + arena_reg) + off; 1445 bpf_prog_report_arena_violation(is_write, addr, regs->ip); 1446 } 1447 1448 /* jump over faulting load and clear dest register */ 1449 if (reg != DONT_CLEAR) 1450 *(unsigned long *)((void *)regs + reg) = 0; 1451 regs->ip += insn_len; 1452 1453 return true; 1454 } 1455 1456 static void detect_reg_usage(struct bpf_insn *insn, int insn_cnt, 1457 bool *regs_used) 1458 { 1459 int i; 1460 1461 for (i = 1; i <= insn_cnt; i++, insn++) { 1462 if (insn->dst_reg == BPF_REG_6 || insn->src_reg == BPF_REG_6) 1463 regs_used[0] = true; 1464 if (insn->dst_reg == BPF_REG_7 || insn->src_reg == BPF_REG_7) 1465 regs_used[1] = true; 1466 if (insn->dst_reg == BPF_REG_8 || insn->src_reg == BPF_REG_8) 1467 regs_used[2] = true; 1468 if (insn->dst_reg == BPF_REG_9 || insn->src_reg == BPF_REG_9) 1469 regs_used[3] = true; 1470 } 1471 } 1472 1473 /* emit the 3-byte VEX prefix 1474 * 1475 * r: same as rex.r, extra bit for ModRM reg field 1476 * x: same as rex.x, extra bit for SIB index field 1477 * b: same as rex.b, extra bit for ModRM r/m, or SIB base 1478 * m: opcode map select, encoding escape bytes e.g. 0x0f38 1479 * w: same as rex.w (32 bit or 64 bit) or opcode specific 1480 * src_reg2: additional source reg (encoded as BPF reg) 1481 * l: vector length (128 bit or 256 bit) or reserved 1482 * pp: opcode prefix (none, 0x66, 0xf2 or 0xf3) 1483 */ 1484 static void emit_3vex(u8 **pprog, bool r, bool x, bool b, u8 m, 1485 bool w, u8 src_reg2, bool l, u8 pp) 1486 { 1487 u8 *prog = *pprog; 1488 const u8 b0 = 0xc4; /* first byte of 3-byte VEX prefix */ 1489 u8 b1, b2; 1490 u8 vvvv = reg2hex[src_reg2]; 1491 1492 /* reg2hex gives only the lower 3 bit of vvvv */ 1493 if (is_ereg(src_reg2)) 1494 vvvv |= 1 << 3; 1495 1496 /* 1497 * 2nd byte of 3-byte VEX prefix 1498 * ~ means bit inverted encoding 1499 * 1500 * 7 0 1501 * +---+---+---+---+---+---+---+---+ 1502 * |~R |~X |~B | m | 1503 * +---+---+---+---+---+---+---+---+ 1504 */ 1505 b1 = (!r << 7) | (!x << 6) | (!b << 5) | (m & 0x1f); 1506 /* 1507 * 3rd byte of 3-byte VEX prefix 1508 * 1509 * 7 0 1510 * +---+---+---+---+---+---+---+---+ 1511 * | W | ~vvvv | L | pp | 1512 * +---+---+---+---+---+---+---+---+ 1513 */ 1514 b2 = (w << 7) | ((~vvvv & 0xf) << 3) | (l << 2) | (pp & 3); 1515 1516 EMIT3(b0, b1, b2); 1517 *pprog = prog; 1518 } 1519 1520 /* emit BMI2 shift instruction */ 1521 static void emit_shiftx(u8 **pprog, u32 dst_reg, u8 src_reg, bool is64, u8 op) 1522 { 1523 u8 *prog = *pprog; 1524 bool r = is_ereg(dst_reg); 1525 u8 m = 2; /* escape code 0f38 */ 1526 1527 emit_3vex(&prog, r, false, r, m, is64, src_reg, false, op); 1528 EMIT2(0xf7, add_2reg(0xC0, dst_reg, dst_reg)); 1529 *pprog = prog; 1530 } 1531 1532 static void emit_priv_frame_ptr(u8 **pprog, void __percpu *priv_frame_ptr) 1533 { 1534 u8 *prog = *pprog; 1535 1536 /* movabs r9, priv_frame_ptr */ 1537 emit_mov_imm64(&prog, X86_REG_R9, (__force long) priv_frame_ptr >> 32, 1538 (u32) (__force long) priv_frame_ptr); 1539 1540 #ifdef CONFIG_SMP 1541 /* add <r9>, gs:[<off>] */ 1542 EMIT2(0x65, 0x4c); 1543 EMIT3(0x03, 0x0c, 0x25); 1544 EMIT((u32)(unsigned long)&this_cpu_off, 4); 1545 #endif 1546 1547 *pprog = prog; 1548 } 1549 1550 #define INSN_SZ_DIFF (((addrs[i] - addrs[i - 1]) - (prog - temp))) 1551 1552 #define __LOAD_TCC_PTR(off) \ 1553 EMIT3_off32(0x48, 0x8B, 0x85, off) 1554 /* mov rax, qword ptr [rbp - rounded_stack_depth - 16] */ 1555 #define LOAD_TAIL_CALL_CNT_PTR(stack) \ 1556 __LOAD_TCC_PTR(BPF_TAIL_CALL_CNT_PTR_STACK_OFF(stack)) 1557 1558 /* Memory size/value to protect private stack overflow/underflow */ 1559 #define PRIV_STACK_GUARD_SZ 8 1560 #define PRIV_STACK_GUARD_VAL 0xEB9F12345678eb9fULL 1561 1562 static int emit_spectre_bhb_barrier(u8 **pprog, u8 *ip, 1563 struct bpf_prog *bpf_prog) 1564 { 1565 u8 *prog = *pprog; 1566 u8 *func; 1567 1568 if (cpu_feature_enabled(X86_FEATURE_CLEAR_BHB_LOOP)) { 1569 /* The clearing sequence clobbers eax and ecx. */ 1570 EMIT1(0x50); /* push rax */ 1571 EMIT1(0x51); /* push rcx */ 1572 ip += 2; 1573 1574 func = (u8 *)clear_bhb_loop; 1575 ip += x86_call_depth_emit_accounting(&prog, func, ip); 1576 1577 if (emit_call(&prog, func, ip)) 1578 return -EINVAL; 1579 EMIT1(0x59); /* pop rcx */ 1580 EMIT1(0x58); /* pop rax */ 1581 } 1582 /* Insert IBHF instruction */ 1583 if ((cpu_feature_enabled(X86_FEATURE_CLEAR_BHB_LOOP) && 1584 cpu_feature_enabled(X86_FEATURE_HYPERVISOR)) || 1585 cpu_feature_enabled(X86_FEATURE_CLEAR_BHB_HW)) { 1586 /* 1587 * Add an Indirect Branch History Fence (IBHF). IBHF acts as a 1588 * fence preventing branch history from before the fence from 1589 * affecting indirect branches after the fence. This is 1590 * specifically used in cBPF jitted code to prevent Intra-mode 1591 * BHI attacks. The IBHF instruction is designed to be a NOP on 1592 * hardware that doesn't need or support it. The REP and REX.W 1593 * prefixes are required by the microcode, and they also ensure 1594 * that the NOP is unlikely to be used in existing code. 1595 * 1596 * IBHF is not a valid instruction in 32-bit mode. 1597 */ 1598 EMIT5(0xF3, 0x48, 0x0F, 0x1E, 0xF8); /* ibhf */ 1599 } 1600 *pprog = prog; 1601 return 0; 1602 } 1603 1604 static int do_jit(struct bpf_prog *bpf_prog, int *addrs, u8 *image, u8 *rw_image, 1605 int oldproglen, struct jit_context *ctx, bool jmp_padding) 1606 { 1607 bool tail_call_reachable = bpf_prog->aux->tail_call_reachable; 1608 struct bpf_insn *insn = bpf_prog->insnsi; 1609 bool callee_regs_used[4] = {}; 1610 int insn_cnt = bpf_prog->len; 1611 bool seen_exit = false; 1612 u8 temp[BPF_MAX_INSN_SIZE + BPF_INSN_SAFETY]; 1613 void __percpu *priv_frame_ptr = NULL; 1614 u64 arena_vm_start, user_vm_start; 1615 void __percpu *priv_stack_ptr; 1616 int i, excnt = 0; 1617 int ilen, proglen = 0; 1618 u8 *prog = temp; 1619 u32 stack_depth; 1620 int err; 1621 1622 stack_depth = bpf_prog->aux->stack_depth; 1623 priv_stack_ptr = bpf_prog->aux->priv_stack_ptr; 1624 if (priv_stack_ptr) { 1625 priv_frame_ptr = priv_stack_ptr + PRIV_STACK_GUARD_SZ + round_up(stack_depth, 8); 1626 stack_depth = 0; 1627 } 1628 1629 arena_vm_start = bpf_arena_get_kern_vm_start(bpf_prog->aux->arena); 1630 user_vm_start = bpf_arena_get_user_vm_start(bpf_prog->aux->arena); 1631 1632 detect_reg_usage(insn, insn_cnt, callee_regs_used); 1633 1634 emit_prologue(&prog, image, stack_depth, 1635 bpf_prog_was_classic(bpf_prog), tail_call_reachable, 1636 bpf_is_subprog(bpf_prog), bpf_prog->aux->exception_cb); 1637 /* Exception callback will clobber callee regs for its own use, and 1638 * restore the original callee regs from main prog's stack frame. 1639 */ 1640 if (bpf_prog->aux->exception_boundary) { 1641 /* We also need to save r12, which is not mapped to any BPF 1642 * register, as we throw after entry into the kernel, which may 1643 * overwrite r12. 1644 */ 1645 push_r12(&prog); 1646 push_callee_regs(&prog, all_callee_regs_used); 1647 } else { 1648 if (arena_vm_start) 1649 push_r12(&prog); 1650 push_callee_regs(&prog, callee_regs_used); 1651 } 1652 if (arena_vm_start) 1653 emit_mov_imm64(&prog, X86_REG_R12, 1654 arena_vm_start >> 32, (u32) arena_vm_start); 1655 1656 if (priv_frame_ptr) 1657 emit_priv_frame_ptr(&prog, priv_frame_ptr); 1658 1659 ilen = prog - temp; 1660 if (rw_image) 1661 memcpy(rw_image + proglen, temp, ilen); 1662 proglen += ilen; 1663 addrs[0] = proglen; 1664 prog = temp; 1665 1666 for (i = 1; i <= insn_cnt; i++, insn++) { 1667 const s32 imm32 = insn->imm; 1668 u32 dst_reg = insn->dst_reg; 1669 u32 src_reg = insn->src_reg; 1670 u8 b2 = 0, b3 = 0; 1671 u8 *start_of_ldx; 1672 s64 jmp_offset; 1673 s16 insn_off; 1674 u8 jmp_cond; 1675 u8 *func; 1676 int nops; 1677 1678 if (priv_frame_ptr) { 1679 if (src_reg == BPF_REG_FP) 1680 src_reg = X86_REG_R9; 1681 1682 if (dst_reg == BPF_REG_FP) 1683 dst_reg = X86_REG_R9; 1684 } 1685 1686 switch (insn->code) { 1687 /* ALU */ 1688 case BPF_ALU | BPF_ADD | BPF_X: 1689 case BPF_ALU | BPF_SUB | BPF_X: 1690 case BPF_ALU | BPF_AND | BPF_X: 1691 case BPF_ALU | BPF_OR | BPF_X: 1692 case BPF_ALU | BPF_XOR | BPF_X: 1693 case BPF_ALU64 | BPF_ADD | BPF_X: 1694 case BPF_ALU64 | BPF_SUB | BPF_X: 1695 case BPF_ALU64 | BPF_AND | BPF_X: 1696 case BPF_ALU64 | BPF_OR | BPF_X: 1697 case BPF_ALU64 | BPF_XOR | BPF_X: 1698 maybe_emit_mod(&prog, dst_reg, src_reg, 1699 BPF_CLASS(insn->code) == BPF_ALU64); 1700 b2 = simple_alu_opcodes[BPF_OP(insn->code)]; 1701 EMIT2(b2, add_2reg(0xC0, dst_reg, src_reg)); 1702 break; 1703 1704 case BPF_ALU64 | BPF_MOV | BPF_X: 1705 if (insn_is_cast_user(insn)) { 1706 if (dst_reg != src_reg) 1707 /* 32-bit mov */ 1708 emit_mov_reg(&prog, false, dst_reg, src_reg); 1709 /* shl dst_reg, 32 */ 1710 maybe_emit_1mod(&prog, dst_reg, true); 1711 EMIT3(0xC1, add_1reg(0xE0, dst_reg), 32); 1712 1713 /* or dst_reg, user_vm_start */ 1714 maybe_emit_1mod(&prog, dst_reg, true); 1715 if (is_axreg(dst_reg)) 1716 EMIT1_off32(0x0D, user_vm_start >> 32); 1717 else 1718 EMIT2_off32(0x81, add_1reg(0xC8, dst_reg), user_vm_start >> 32); 1719 1720 /* rol dst_reg, 32 */ 1721 maybe_emit_1mod(&prog, dst_reg, true); 1722 EMIT3(0xC1, add_1reg(0xC0, dst_reg), 32); 1723 1724 /* xor r11, r11 */ 1725 EMIT3(0x4D, 0x31, 0xDB); 1726 1727 /* test dst_reg32, dst_reg32; check if lower 32-bit are zero */ 1728 maybe_emit_mod(&prog, dst_reg, dst_reg, false); 1729 EMIT2(0x85, add_2reg(0xC0, dst_reg, dst_reg)); 1730 1731 /* cmove r11, dst_reg; if so, set dst_reg to zero */ 1732 /* WARNING: Intel swapped src/dst register encoding in CMOVcc !!! */ 1733 maybe_emit_mod(&prog, AUX_REG, dst_reg, true); 1734 EMIT3(0x0F, 0x44, add_2reg(0xC0, AUX_REG, dst_reg)); 1735 break; 1736 } else if (insn_is_mov_percpu_addr(insn)) { 1737 /* mov <dst>, <src> (if necessary) */ 1738 EMIT_mov(dst_reg, src_reg); 1739 #ifdef CONFIG_SMP 1740 /* add <dst>, gs:[<off>] */ 1741 EMIT2(0x65, add_1mod(0x48, dst_reg)); 1742 EMIT3(0x03, add_2reg(0x04, 0, dst_reg), 0x25); 1743 EMIT((u32)(unsigned long)&this_cpu_off, 4); 1744 #endif 1745 break; 1746 } 1747 fallthrough; 1748 case BPF_ALU | BPF_MOV | BPF_X: 1749 if (insn->off == 0) 1750 emit_mov_reg(&prog, 1751 BPF_CLASS(insn->code) == BPF_ALU64, 1752 dst_reg, src_reg); 1753 else 1754 emit_movsx_reg(&prog, insn->off, 1755 BPF_CLASS(insn->code) == BPF_ALU64, 1756 dst_reg, src_reg); 1757 break; 1758 1759 /* neg dst */ 1760 case BPF_ALU | BPF_NEG: 1761 case BPF_ALU64 | BPF_NEG: 1762 maybe_emit_1mod(&prog, dst_reg, 1763 BPF_CLASS(insn->code) == BPF_ALU64); 1764 EMIT2(0xF7, add_1reg(0xD8, dst_reg)); 1765 break; 1766 1767 case BPF_ALU | BPF_ADD | BPF_K: 1768 case BPF_ALU | BPF_SUB | BPF_K: 1769 case BPF_ALU | BPF_AND | BPF_K: 1770 case BPF_ALU | BPF_OR | BPF_K: 1771 case BPF_ALU | BPF_XOR | BPF_K: 1772 case BPF_ALU64 | BPF_ADD | BPF_K: 1773 case BPF_ALU64 | BPF_SUB | BPF_K: 1774 case BPF_ALU64 | BPF_AND | BPF_K: 1775 case BPF_ALU64 | BPF_OR | BPF_K: 1776 case BPF_ALU64 | BPF_XOR | BPF_K: 1777 maybe_emit_1mod(&prog, dst_reg, 1778 BPF_CLASS(insn->code) == BPF_ALU64); 1779 1780 /* 1781 * b3 holds 'normal' opcode, b2 short form only valid 1782 * in case dst is eax/rax. 1783 */ 1784 switch (BPF_OP(insn->code)) { 1785 case BPF_ADD: 1786 b3 = 0xC0; 1787 b2 = 0x05; 1788 break; 1789 case BPF_SUB: 1790 b3 = 0xE8; 1791 b2 = 0x2D; 1792 break; 1793 case BPF_AND: 1794 b3 = 0xE0; 1795 b2 = 0x25; 1796 break; 1797 case BPF_OR: 1798 b3 = 0xC8; 1799 b2 = 0x0D; 1800 break; 1801 case BPF_XOR: 1802 b3 = 0xF0; 1803 b2 = 0x35; 1804 break; 1805 } 1806 1807 if (is_imm8(imm32)) 1808 EMIT3(0x83, add_1reg(b3, dst_reg), imm32); 1809 else if (is_axreg(dst_reg)) 1810 EMIT1_off32(b2, imm32); 1811 else 1812 EMIT2_off32(0x81, add_1reg(b3, dst_reg), imm32); 1813 break; 1814 1815 case BPF_ALU64 | BPF_MOV | BPF_K: 1816 case BPF_ALU | BPF_MOV | BPF_K: 1817 emit_mov_imm32(&prog, BPF_CLASS(insn->code) == BPF_ALU64, 1818 dst_reg, imm32); 1819 break; 1820 1821 case BPF_LD | BPF_IMM | BPF_DW: 1822 emit_mov_imm64(&prog, dst_reg, insn[1].imm, insn[0].imm); 1823 insn++; 1824 i++; 1825 break; 1826 1827 /* dst %= src, dst /= src, dst %= imm32, dst /= imm32 */ 1828 case BPF_ALU | BPF_MOD | BPF_X: 1829 case BPF_ALU | BPF_DIV | BPF_X: 1830 case BPF_ALU | BPF_MOD | BPF_K: 1831 case BPF_ALU | BPF_DIV | BPF_K: 1832 case BPF_ALU64 | BPF_MOD | BPF_X: 1833 case BPF_ALU64 | BPF_DIV | BPF_X: 1834 case BPF_ALU64 | BPF_MOD | BPF_K: 1835 case BPF_ALU64 | BPF_DIV | BPF_K: { 1836 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 1837 1838 if (dst_reg != BPF_REG_0) 1839 EMIT1(0x50); /* push rax */ 1840 if (dst_reg != BPF_REG_3) 1841 EMIT1(0x52); /* push rdx */ 1842 1843 if (BPF_SRC(insn->code) == BPF_X) { 1844 if (src_reg == BPF_REG_0 || 1845 src_reg == BPF_REG_3) { 1846 /* mov r11, src_reg */ 1847 EMIT_mov(AUX_REG, src_reg); 1848 src_reg = AUX_REG; 1849 } 1850 } else { 1851 /* mov r11, imm32 */ 1852 EMIT3_off32(0x49, 0xC7, 0xC3, imm32); 1853 src_reg = AUX_REG; 1854 } 1855 1856 if (dst_reg != BPF_REG_0) 1857 /* mov rax, dst_reg */ 1858 emit_mov_reg(&prog, is64, BPF_REG_0, dst_reg); 1859 1860 if (insn->off == 0) { 1861 /* 1862 * xor edx, edx 1863 * equivalent to 'xor rdx, rdx', but one byte less 1864 */ 1865 EMIT2(0x31, 0xd2); 1866 1867 /* div src_reg */ 1868 maybe_emit_1mod(&prog, src_reg, is64); 1869 EMIT2(0xF7, add_1reg(0xF0, src_reg)); 1870 } else { 1871 if (BPF_CLASS(insn->code) == BPF_ALU) 1872 EMIT1(0x99); /* cdq */ 1873 else 1874 EMIT2(0x48, 0x99); /* cqo */ 1875 1876 /* idiv src_reg */ 1877 maybe_emit_1mod(&prog, src_reg, is64); 1878 EMIT2(0xF7, add_1reg(0xF8, src_reg)); 1879 } 1880 1881 if (BPF_OP(insn->code) == BPF_MOD && 1882 dst_reg != BPF_REG_3) 1883 /* mov dst_reg, rdx */ 1884 emit_mov_reg(&prog, is64, dst_reg, BPF_REG_3); 1885 else if (BPF_OP(insn->code) == BPF_DIV && 1886 dst_reg != BPF_REG_0) 1887 /* mov dst_reg, rax */ 1888 emit_mov_reg(&prog, is64, dst_reg, BPF_REG_0); 1889 1890 if (dst_reg != BPF_REG_3) 1891 EMIT1(0x5A); /* pop rdx */ 1892 if (dst_reg != BPF_REG_0) 1893 EMIT1(0x58); /* pop rax */ 1894 break; 1895 } 1896 1897 case BPF_ALU | BPF_MUL | BPF_K: 1898 case BPF_ALU64 | BPF_MUL | BPF_K: 1899 maybe_emit_mod(&prog, dst_reg, dst_reg, 1900 BPF_CLASS(insn->code) == BPF_ALU64); 1901 1902 if (is_imm8(imm32)) 1903 /* imul dst_reg, dst_reg, imm8 */ 1904 EMIT3(0x6B, add_2reg(0xC0, dst_reg, dst_reg), 1905 imm32); 1906 else 1907 /* imul dst_reg, dst_reg, imm32 */ 1908 EMIT2_off32(0x69, 1909 add_2reg(0xC0, dst_reg, dst_reg), 1910 imm32); 1911 break; 1912 1913 case BPF_ALU | BPF_MUL | BPF_X: 1914 case BPF_ALU64 | BPF_MUL | BPF_X: 1915 maybe_emit_mod(&prog, src_reg, dst_reg, 1916 BPF_CLASS(insn->code) == BPF_ALU64); 1917 1918 /* imul dst_reg, src_reg */ 1919 EMIT3(0x0F, 0xAF, add_2reg(0xC0, src_reg, dst_reg)); 1920 break; 1921 1922 /* Shifts */ 1923 case BPF_ALU | BPF_LSH | BPF_K: 1924 case BPF_ALU | BPF_RSH | BPF_K: 1925 case BPF_ALU | BPF_ARSH | BPF_K: 1926 case BPF_ALU64 | BPF_LSH | BPF_K: 1927 case BPF_ALU64 | BPF_RSH | BPF_K: 1928 case BPF_ALU64 | BPF_ARSH | BPF_K: 1929 maybe_emit_1mod(&prog, dst_reg, 1930 BPF_CLASS(insn->code) == BPF_ALU64); 1931 1932 b3 = simple_alu_opcodes[BPF_OP(insn->code)]; 1933 if (imm32 == 1) 1934 EMIT2(0xD1, add_1reg(b3, dst_reg)); 1935 else 1936 EMIT3(0xC1, add_1reg(b3, dst_reg), imm32); 1937 break; 1938 1939 case BPF_ALU | BPF_LSH | BPF_X: 1940 case BPF_ALU | BPF_RSH | BPF_X: 1941 case BPF_ALU | BPF_ARSH | BPF_X: 1942 case BPF_ALU64 | BPF_LSH | BPF_X: 1943 case BPF_ALU64 | BPF_RSH | BPF_X: 1944 case BPF_ALU64 | BPF_ARSH | BPF_X: 1945 /* BMI2 shifts aren't better when shift count is already in rcx */ 1946 if (boot_cpu_has(X86_FEATURE_BMI2) && src_reg != BPF_REG_4) { 1947 /* shrx/sarx/shlx dst_reg, dst_reg, src_reg */ 1948 bool w = (BPF_CLASS(insn->code) == BPF_ALU64); 1949 u8 op; 1950 1951 switch (BPF_OP(insn->code)) { 1952 case BPF_LSH: 1953 op = 1; /* prefix 0x66 */ 1954 break; 1955 case BPF_RSH: 1956 op = 3; /* prefix 0xf2 */ 1957 break; 1958 case BPF_ARSH: 1959 op = 2; /* prefix 0xf3 */ 1960 break; 1961 } 1962 1963 emit_shiftx(&prog, dst_reg, src_reg, w, op); 1964 1965 break; 1966 } 1967 1968 if (src_reg != BPF_REG_4) { /* common case */ 1969 /* Check for bad case when dst_reg == rcx */ 1970 if (dst_reg == BPF_REG_4) { 1971 /* mov r11, dst_reg */ 1972 EMIT_mov(AUX_REG, dst_reg); 1973 dst_reg = AUX_REG; 1974 } else { 1975 EMIT1(0x51); /* push rcx */ 1976 } 1977 /* mov rcx, src_reg */ 1978 EMIT_mov(BPF_REG_4, src_reg); 1979 } 1980 1981 /* shl %rax, %cl | shr %rax, %cl | sar %rax, %cl */ 1982 maybe_emit_1mod(&prog, dst_reg, 1983 BPF_CLASS(insn->code) == BPF_ALU64); 1984 1985 b3 = simple_alu_opcodes[BPF_OP(insn->code)]; 1986 EMIT2(0xD3, add_1reg(b3, dst_reg)); 1987 1988 if (src_reg != BPF_REG_4) { 1989 if (insn->dst_reg == BPF_REG_4) 1990 /* mov dst_reg, r11 */ 1991 EMIT_mov(insn->dst_reg, AUX_REG); 1992 else 1993 EMIT1(0x59); /* pop rcx */ 1994 } 1995 1996 break; 1997 1998 case BPF_ALU | BPF_END | BPF_FROM_BE: 1999 case BPF_ALU64 | BPF_END | BPF_FROM_LE: 2000 switch (imm32) { 2001 case 16: 2002 /* Emit 'ror %ax, 8' to swap lower 2 bytes */ 2003 EMIT1(0x66); 2004 if (is_ereg(dst_reg)) 2005 EMIT1(0x41); 2006 EMIT3(0xC1, add_1reg(0xC8, dst_reg), 8); 2007 2008 /* Emit 'movzwl eax, ax' */ 2009 if (is_ereg(dst_reg)) 2010 EMIT3(0x45, 0x0F, 0xB7); 2011 else 2012 EMIT2(0x0F, 0xB7); 2013 EMIT1(add_2reg(0xC0, dst_reg, dst_reg)); 2014 break; 2015 case 32: 2016 /* Emit 'bswap eax' to swap lower 4 bytes */ 2017 if (is_ereg(dst_reg)) 2018 EMIT2(0x41, 0x0F); 2019 else 2020 EMIT1(0x0F); 2021 EMIT1(add_1reg(0xC8, dst_reg)); 2022 break; 2023 case 64: 2024 /* Emit 'bswap rax' to swap 8 bytes */ 2025 EMIT3(add_1mod(0x48, dst_reg), 0x0F, 2026 add_1reg(0xC8, dst_reg)); 2027 break; 2028 } 2029 break; 2030 2031 case BPF_ALU | BPF_END | BPF_FROM_LE: 2032 switch (imm32) { 2033 case 16: 2034 /* 2035 * Emit 'movzwl eax, ax' to zero extend 16-bit 2036 * into 64 bit 2037 */ 2038 if (is_ereg(dst_reg)) 2039 EMIT3(0x45, 0x0F, 0xB7); 2040 else 2041 EMIT2(0x0F, 0xB7); 2042 EMIT1(add_2reg(0xC0, dst_reg, dst_reg)); 2043 break; 2044 case 32: 2045 /* Emit 'mov eax, eax' to clear upper 32-bits */ 2046 if (is_ereg(dst_reg)) 2047 EMIT1(0x45); 2048 EMIT2(0x89, add_2reg(0xC0, dst_reg, dst_reg)); 2049 break; 2050 case 64: 2051 /* nop */ 2052 break; 2053 } 2054 break; 2055 2056 /* speculation barrier */ 2057 case BPF_ST | BPF_NOSPEC: 2058 EMIT_LFENCE(); 2059 break; 2060 2061 /* ST: *(u8*)(dst_reg + off) = imm */ 2062 case BPF_ST | BPF_MEM | BPF_B: 2063 if (is_ereg(dst_reg)) 2064 EMIT2(0x41, 0xC6); 2065 else 2066 EMIT1(0xC6); 2067 goto st; 2068 case BPF_ST | BPF_MEM | BPF_H: 2069 if (is_ereg(dst_reg)) 2070 EMIT3(0x66, 0x41, 0xC7); 2071 else 2072 EMIT2(0x66, 0xC7); 2073 goto st; 2074 case BPF_ST | BPF_MEM | BPF_W: 2075 if (is_ereg(dst_reg)) 2076 EMIT2(0x41, 0xC7); 2077 else 2078 EMIT1(0xC7); 2079 goto st; 2080 case BPF_ST | BPF_MEM | BPF_DW: 2081 EMIT2(add_1mod(0x48, dst_reg), 0xC7); 2082 2083 st: if (is_imm8(insn->off)) 2084 EMIT2(add_1reg(0x40, dst_reg), insn->off); 2085 else 2086 EMIT1_off32(add_1reg(0x80, dst_reg), insn->off); 2087 2088 EMIT(imm32, bpf_size_to_x86_bytes(BPF_SIZE(insn->code))); 2089 break; 2090 2091 /* STX: *(u8*)(dst_reg + off) = src_reg */ 2092 case BPF_STX | BPF_MEM | BPF_B: 2093 case BPF_STX | BPF_MEM | BPF_H: 2094 case BPF_STX | BPF_MEM | BPF_W: 2095 case BPF_STX | BPF_MEM | BPF_DW: 2096 emit_stx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off); 2097 break; 2098 2099 case BPF_ST | BPF_PROBE_MEM32 | BPF_B: 2100 case BPF_ST | BPF_PROBE_MEM32 | BPF_H: 2101 case BPF_ST | BPF_PROBE_MEM32 | BPF_W: 2102 case BPF_ST | BPF_PROBE_MEM32 | BPF_DW: 2103 start_of_ldx = prog; 2104 emit_st_r12(&prog, BPF_SIZE(insn->code), dst_reg, insn->off, insn->imm); 2105 goto populate_extable; 2106 2107 /* LDX: dst_reg = *(u8*)(src_reg + r12 + off) */ 2108 case BPF_LDX | BPF_PROBE_MEM32 | BPF_B: 2109 case BPF_LDX | BPF_PROBE_MEM32 | BPF_H: 2110 case BPF_LDX | BPF_PROBE_MEM32 | BPF_W: 2111 case BPF_LDX | BPF_PROBE_MEM32 | BPF_DW: 2112 case BPF_STX | BPF_PROBE_MEM32 | BPF_B: 2113 case BPF_STX | BPF_PROBE_MEM32 | BPF_H: 2114 case BPF_STX | BPF_PROBE_MEM32 | BPF_W: 2115 case BPF_STX | BPF_PROBE_MEM32 | BPF_DW: 2116 start_of_ldx = prog; 2117 if (BPF_CLASS(insn->code) == BPF_LDX) 2118 emit_ldx_r12(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off); 2119 else 2120 emit_stx_r12(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off); 2121 populate_extable: 2122 { 2123 struct exception_table_entry *ex; 2124 u8 *_insn = image + proglen + (start_of_ldx - temp); 2125 u32 arena_reg, fixup_reg; 2126 s64 delta; 2127 2128 if (!bpf_prog->aux->extable) 2129 break; 2130 2131 if (excnt >= bpf_prog->aux->num_exentries) { 2132 pr_err("mem32 extable bug\n"); 2133 return -EFAULT; 2134 } 2135 ex = &bpf_prog->aux->extable[excnt++]; 2136 2137 delta = _insn - (u8 *)&ex->insn; 2138 /* switch ex to rw buffer for writes */ 2139 ex = (void *)rw_image + ((void *)ex - (void *)image); 2140 2141 ex->insn = delta; 2142 2143 ex->data = EX_TYPE_BPF; 2144 2145 /* 2146 * src_reg/dst_reg holds the address in the arena region with upper 2147 * 32-bits being zero because of a preceding addr_space_cast(r<n>, 2148 * 0x0, 0x1) instruction. This address is adjusted with the addition 2149 * of arena_vm_start (see the implementation of BPF_PROBE_MEM32 and 2150 * BPF_PROBE_ATOMIC) before being used for the memory access. Pass 2151 * the reg holding the unmodified 32-bit address to 2152 * ex_handler_bpf(). 2153 */ 2154 if (BPF_CLASS(insn->code) == BPF_LDX) { 2155 arena_reg = reg2pt_regs[src_reg]; 2156 fixup_reg = reg2pt_regs[dst_reg]; 2157 } else { 2158 arena_reg = reg2pt_regs[dst_reg]; 2159 fixup_reg = DONT_CLEAR; 2160 } 2161 2162 ex->fixup = FIELD_PREP(FIXUP_INSN_LEN_MASK, prog - start_of_ldx) | 2163 FIELD_PREP(FIXUP_ARENA_REG_MASK, arena_reg) | 2164 FIELD_PREP(FIXUP_REG_MASK, fixup_reg); 2165 ex->fixup |= FIXUP_ARENA_ACCESS; 2166 2167 ex->data |= FIELD_PREP(DATA_ARENA_OFFSET_MASK, insn->off); 2168 } 2169 break; 2170 2171 /* LDX: dst_reg = *(u8*)(src_reg + off) */ 2172 case BPF_LDX | BPF_MEM | BPF_B: 2173 case BPF_LDX | BPF_PROBE_MEM | BPF_B: 2174 case BPF_LDX | BPF_MEM | BPF_H: 2175 case BPF_LDX | BPF_PROBE_MEM | BPF_H: 2176 case BPF_LDX | BPF_MEM | BPF_W: 2177 case BPF_LDX | BPF_PROBE_MEM | BPF_W: 2178 case BPF_LDX | BPF_MEM | BPF_DW: 2179 case BPF_LDX | BPF_PROBE_MEM | BPF_DW: 2180 /* LDXS: dst_reg = *(s8*)(src_reg + off) */ 2181 case BPF_LDX | BPF_MEMSX | BPF_B: 2182 case BPF_LDX | BPF_MEMSX | BPF_H: 2183 case BPF_LDX | BPF_MEMSX | BPF_W: 2184 case BPF_LDX | BPF_PROBE_MEMSX | BPF_B: 2185 case BPF_LDX | BPF_PROBE_MEMSX | BPF_H: 2186 case BPF_LDX | BPF_PROBE_MEMSX | BPF_W: 2187 insn_off = insn->off; 2188 2189 if (BPF_MODE(insn->code) == BPF_PROBE_MEM || 2190 BPF_MODE(insn->code) == BPF_PROBE_MEMSX) { 2191 /* Conservatively check that src_reg + insn->off is a kernel address: 2192 * src_reg + insn->off > TASK_SIZE_MAX + PAGE_SIZE 2193 * and 2194 * src_reg + insn->off < VSYSCALL_ADDR 2195 */ 2196 2197 u64 limit = TASK_SIZE_MAX + PAGE_SIZE - VSYSCALL_ADDR; 2198 u8 *end_of_jmp; 2199 2200 /* movabsq r10, VSYSCALL_ADDR */ 2201 emit_mov_imm64(&prog, BPF_REG_AX, (long)VSYSCALL_ADDR >> 32, 2202 (u32)(long)VSYSCALL_ADDR); 2203 2204 /* mov src_reg, r11 */ 2205 EMIT_mov(AUX_REG, src_reg); 2206 2207 if (insn->off) { 2208 /* add r11, insn->off */ 2209 maybe_emit_1mod(&prog, AUX_REG, true); 2210 EMIT2_off32(0x81, add_1reg(0xC0, AUX_REG), insn->off); 2211 } 2212 2213 /* sub r11, r10 */ 2214 maybe_emit_mod(&prog, AUX_REG, BPF_REG_AX, true); 2215 EMIT2(0x29, add_2reg(0xC0, AUX_REG, BPF_REG_AX)); 2216 2217 /* movabsq r10, limit */ 2218 emit_mov_imm64(&prog, BPF_REG_AX, (long)limit >> 32, 2219 (u32)(long)limit); 2220 2221 /* cmp r10, r11 */ 2222 maybe_emit_mod(&prog, AUX_REG, BPF_REG_AX, true); 2223 EMIT2(0x39, add_2reg(0xC0, AUX_REG, BPF_REG_AX)); 2224 2225 /* if unsigned '>', goto load */ 2226 EMIT2(X86_JA, 0); 2227 end_of_jmp = prog; 2228 2229 /* xor dst_reg, dst_reg */ 2230 emit_mov_imm32(&prog, false, dst_reg, 0); 2231 /* jmp byte_after_ldx */ 2232 EMIT2(0xEB, 0); 2233 2234 /* populate jmp_offset for JAE above to jump to start_of_ldx */ 2235 start_of_ldx = prog; 2236 end_of_jmp[-1] = start_of_ldx - end_of_jmp; 2237 } 2238 if (BPF_MODE(insn->code) == BPF_PROBE_MEMSX || 2239 BPF_MODE(insn->code) == BPF_MEMSX) 2240 emit_ldsx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn_off); 2241 else 2242 emit_ldx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn_off); 2243 if (BPF_MODE(insn->code) == BPF_PROBE_MEM || 2244 BPF_MODE(insn->code) == BPF_PROBE_MEMSX) { 2245 struct exception_table_entry *ex; 2246 u8 *_insn = image + proglen + (start_of_ldx - temp); 2247 s64 delta; 2248 2249 /* populate jmp_offset for JMP above */ 2250 start_of_ldx[-1] = prog - start_of_ldx; 2251 2252 if (!bpf_prog->aux->extable) 2253 break; 2254 2255 if (excnt >= bpf_prog->aux->num_exentries) { 2256 pr_err("ex gen bug\n"); 2257 return -EFAULT; 2258 } 2259 ex = &bpf_prog->aux->extable[excnt++]; 2260 2261 delta = _insn - (u8 *)&ex->insn; 2262 if (!is_simm32(delta)) { 2263 pr_err("extable->insn doesn't fit into 32-bit\n"); 2264 return -EFAULT; 2265 } 2266 /* switch ex to rw buffer for writes */ 2267 ex = (void *)rw_image + ((void *)ex - (void *)image); 2268 2269 ex->insn = delta; 2270 2271 ex->data = EX_TYPE_BPF; 2272 2273 if (dst_reg > BPF_REG_9) { 2274 pr_err("verifier error\n"); 2275 return -EFAULT; 2276 } 2277 /* 2278 * Compute size of x86 insn and its target dest x86 register. 2279 * ex_handler_bpf() will use lower 8 bits to adjust 2280 * pt_regs->ip to jump over this x86 instruction 2281 * and upper bits to figure out which pt_regs to zero out. 2282 * End result: x86 insn "mov rbx, qword ptr [rax+0x14]" 2283 * of 4 bytes will be ignored and rbx will be zero inited. 2284 */ 2285 ex->fixup = FIELD_PREP(FIXUP_INSN_LEN_MASK, prog - start_of_ldx) | 2286 FIELD_PREP(FIXUP_REG_MASK, reg2pt_regs[dst_reg]); 2287 } 2288 break; 2289 2290 case BPF_STX | BPF_ATOMIC | BPF_B: 2291 case BPF_STX | BPF_ATOMIC | BPF_H: 2292 if (!bpf_atomic_is_load_store(insn)) { 2293 pr_err("bpf_jit: 1- and 2-byte RMW atomics are not supported\n"); 2294 return -EFAULT; 2295 } 2296 fallthrough; 2297 case BPF_STX | BPF_ATOMIC | BPF_W: 2298 case BPF_STX | BPF_ATOMIC | BPF_DW: 2299 if (insn->imm == (BPF_AND | BPF_FETCH) || 2300 insn->imm == (BPF_OR | BPF_FETCH) || 2301 insn->imm == (BPF_XOR | BPF_FETCH)) { 2302 bool is64 = BPF_SIZE(insn->code) == BPF_DW; 2303 u32 real_src_reg = src_reg; 2304 u32 real_dst_reg = dst_reg; 2305 u8 *branch_target; 2306 2307 /* 2308 * Can't be implemented with a single x86 insn. 2309 * Need to do a CMPXCHG loop. 2310 */ 2311 2312 /* Will need RAX as a CMPXCHG operand so save R0 */ 2313 emit_mov_reg(&prog, true, BPF_REG_AX, BPF_REG_0); 2314 if (src_reg == BPF_REG_0) 2315 real_src_reg = BPF_REG_AX; 2316 if (dst_reg == BPF_REG_0) 2317 real_dst_reg = BPF_REG_AX; 2318 2319 branch_target = prog; 2320 /* Load old value */ 2321 emit_ldx(&prog, BPF_SIZE(insn->code), 2322 BPF_REG_0, real_dst_reg, insn->off); 2323 /* 2324 * Perform the (commutative) operation locally, 2325 * put the result in the AUX_REG. 2326 */ 2327 emit_mov_reg(&prog, is64, AUX_REG, BPF_REG_0); 2328 maybe_emit_mod(&prog, AUX_REG, real_src_reg, is64); 2329 EMIT2(simple_alu_opcodes[BPF_OP(insn->imm)], 2330 add_2reg(0xC0, AUX_REG, real_src_reg)); 2331 /* Attempt to swap in new value */ 2332 err = emit_atomic_rmw(&prog, BPF_CMPXCHG, 2333 real_dst_reg, AUX_REG, 2334 insn->off, 2335 BPF_SIZE(insn->code)); 2336 if (WARN_ON(err)) 2337 return err; 2338 /* 2339 * ZF tells us whether we won the race. If it's 2340 * cleared we need to try again. 2341 */ 2342 EMIT2(X86_JNE, -(prog - branch_target) - 2); 2343 /* Return the pre-modification value */ 2344 emit_mov_reg(&prog, is64, real_src_reg, BPF_REG_0); 2345 /* Restore R0 after clobbering RAX */ 2346 emit_mov_reg(&prog, true, BPF_REG_0, BPF_REG_AX); 2347 break; 2348 } 2349 2350 if (bpf_atomic_is_load_store(insn)) 2351 err = emit_atomic_ld_st(&prog, insn->imm, dst_reg, src_reg, 2352 insn->off, BPF_SIZE(insn->code)); 2353 else 2354 err = emit_atomic_rmw(&prog, insn->imm, dst_reg, src_reg, 2355 insn->off, BPF_SIZE(insn->code)); 2356 if (err) 2357 return err; 2358 break; 2359 2360 case BPF_STX | BPF_PROBE_ATOMIC | BPF_B: 2361 case BPF_STX | BPF_PROBE_ATOMIC | BPF_H: 2362 if (!bpf_atomic_is_load_store(insn)) { 2363 pr_err("bpf_jit: 1- and 2-byte RMW atomics are not supported\n"); 2364 return -EFAULT; 2365 } 2366 fallthrough; 2367 case BPF_STX | BPF_PROBE_ATOMIC | BPF_W: 2368 case BPF_STX | BPF_PROBE_ATOMIC | BPF_DW: 2369 start_of_ldx = prog; 2370 2371 if (bpf_atomic_is_load_store(insn)) 2372 err = emit_atomic_ld_st_index(&prog, insn->imm, 2373 BPF_SIZE(insn->code), dst_reg, 2374 src_reg, X86_REG_R12, insn->off); 2375 else 2376 err = emit_atomic_rmw_index(&prog, insn->imm, BPF_SIZE(insn->code), 2377 dst_reg, src_reg, X86_REG_R12, 2378 insn->off); 2379 if (err) 2380 return err; 2381 goto populate_extable; 2382 2383 /* call */ 2384 case BPF_JMP | BPF_CALL: { 2385 u8 *ip = image + addrs[i - 1]; 2386 2387 func = (u8 *) __bpf_call_base + imm32; 2388 if (src_reg == BPF_PSEUDO_CALL && tail_call_reachable) { 2389 LOAD_TAIL_CALL_CNT_PTR(stack_depth); 2390 ip += 7; 2391 } 2392 if (!imm32) 2393 return -EINVAL; 2394 if (priv_frame_ptr) { 2395 push_r9(&prog); 2396 ip += 2; 2397 } 2398 ip += x86_call_depth_emit_accounting(&prog, func, ip); 2399 if (emit_call(&prog, func, ip)) 2400 return -EINVAL; 2401 if (priv_frame_ptr) 2402 pop_r9(&prog); 2403 break; 2404 } 2405 2406 case BPF_JMP | BPF_TAIL_CALL: 2407 if (imm32) 2408 emit_bpf_tail_call_direct(bpf_prog, 2409 &bpf_prog->aux->poke_tab[imm32 - 1], 2410 &prog, image + addrs[i - 1], 2411 callee_regs_used, 2412 stack_depth, 2413 ctx); 2414 else 2415 emit_bpf_tail_call_indirect(bpf_prog, 2416 &prog, 2417 callee_regs_used, 2418 stack_depth, 2419 image + addrs[i - 1], 2420 ctx); 2421 break; 2422 2423 /* cond jump */ 2424 case BPF_JMP | BPF_JEQ | BPF_X: 2425 case BPF_JMP | BPF_JNE | BPF_X: 2426 case BPF_JMP | BPF_JGT | BPF_X: 2427 case BPF_JMP | BPF_JLT | BPF_X: 2428 case BPF_JMP | BPF_JGE | BPF_X: 2429 case BPF_JMP | BPF_JLE | BPF_X: 2430 case BPF_JMP | BPF_JSGT | BPF_X: 2431 case BPF_JMP | BPF_JSLT | BPF_X: 2432 case BPF_JMP | BPF_JSGE | BPF_X: 2433 case BPF_JMP | BPF_JSLE | BPF_X: 2434 case BPF_JMP32 | BPF_JEQ | BPF_X: 2435 case BPF_JMP32 | BPF_JNE | BPF_X: 2436 case BPF_JMP32 | BPF_JGT | BPF_X: 2437 case BPF_JMP32 | BPF_JLT | BPF_X: 2438 case BPF_JMP32 | BPF_JGE | BPF_X: 2439 case BPF_JMP32 | BPF_JLE | BPF_X: 2440 case BPF_JMP32 | BPF_JSGT | BPF_X: 2441 case BPF_JMP32 | BPF_JSLT | BPF_X: 2442 case BPF_JMP32 | BPF_JSGE | BPF_X: 2443 case BPF_JMP32 | BPF_JSLE | BPF_X: 2444 /* cmp dst_reg, src_reg */ 2445 maybe_emit_mod(&prog, dst_reg, src_reg, 2446 BPF_CLASS(insn->code) == BPF_JMP); 2447 EMIT2(0x39, add_2reg(0xC0, dst_reg, src_reg)); 2448 goto emit_cond_jmp; 2449 2450 case BPF_JMP | BPF_JSET | BPF_X: 2451 case BPF_JMP32 | BPF_JSET | BPF_X: 2452 /* test dst_reg, src_reg */ 2453 maybe_emit_mod(&prog, dst_reg, src_reg, 2454 BPF_CLASS(insn->code) == BPF_JMP); 2455 EMIT2(0x85, add_2reg(0xC0, dst_reg, src_reg)); 2456 goto emit_cond_jmp; 2457 2458 case BPF_JMP | BPF_JSET | BPF_K: 2459 case BPF_JMP32 | BPF_JSET | BPF_K: 2460 /* test dst_reg, imm32 */ 2461 maybe_emit_1mod(&prog, dst_reg, 2462 BPF_CLASS(insn->code) == BPF_JMP); 2463 EMIT2_off32(0xF7, add_1reg(0xC0, dst_reg), imm32); 2464 goto emit_cond_jmp; 2465 2466 case BPF_JMP | BPF_JEQ | BPF_K: 2467 case BPF_JMP | BPF_JNE | BPF_K: 2468 case BPF_JMP | BPF_JGT | BPF_K: 2469 case BPF_JMP | BPF_JLT | BPF_K: 2470 case BPF_JMP | BPF_JGE | BPF_K: 2471 case BPF_JMP | BPF_JLE | BPF_K: 2472 case BPF_JMP | BPF_JSGT | BPF_K: 2473 case BPF_JMP | BPF_JSLT | BPF_K: 2474 case BPF_JMP | BPF_JSGE | BPF_K: 2475 case BPF_JMP | BPF_JSLE | BPF_K: 2476 case BPF_JMP32 | BPF_JEQ | BPF_K: 2477 case BPF_JMP32 | BPF_JNE | BPF_K: 2478 case BPF_JMP32 | BPF_JGT | BPF_K: 2479 case BPF_JMP32 | BPF_JLT | BPF_K: 2480 case BPF_JMP32 | BPF_JGE | BPF_K: 2481 case BPF_JMP32 | BPF_JLE | BPF_K: 2482 case BPF_JMP32 | BPF_JSGT | BPF_K: 2483 case BPF_JMP32 | BPF_JSLT | BPF_K: 2484 case BPF_JMP32 | BPF_JSGE | BPF_K: 2485 case BPF_JMP32 | BPF_JSLE | BPF_K: 2486 /* test dst_reg, dst_reg to save one extra byte */ 2487 if (imm32 == 0) { 2488 maybe_emit_mod(&prog, dst_reg, dst_reg, 2489 BPF_CLASS(insn->code) == BPF_JMP); 2490 EMIT2(0x85, add_2reg(0xC0, dst_reg, dst_reg)); 2491 goto emit_cond_jmp; 2492 } 2493 2494 /* cmp dst_reg, imm8/32 */ 2495 maybe_emit_1mod(&prog, dst_reg, 2496 BPF_CLASS(insn->code) == BPF_JMP); 2497 2498 if (is_imm8(imm32)) 2499 EMIT3(0x83, add_1reg(0xF8, dst_reg), imm32); 2500 else 2501 EMIT2_off32(0x81, add_1reg(0xF8, dst_reg), imm32); 2502 2503 emit_cond_jmp: /* Convert BPF opcode to x86 */ 2504 switch (BPF_OP(insn->code)) { 2505 case BPF_JEQ: 2506 jmp_cond = X86_JE; 2507 break; 2508 case BPF_JSET: 2509 case BPF_JNE: 2510 jmp_cond = X86_JNE; 2511 break; 2512 case BPF_JGT: 2513 /* GT is unsigned '>', JA in x86 */ 2514 jmp_cond = X86_JA; 2515 break; 2516 case BPF_JLT: 2517 /* LT is unsigned '<', JB in x86 */ 2518 jmp_cond = X86_JB; 2519 break; 2520 case BPF_JGE: 2521 /* GE is unsigned '>=', JAE in x86 */ 2522 jmp_cond = X86_JAE; 2523 break; 2524 case BPF_JLE: 2525 /* LE is unsigned '<=', JBE in x86 */ 2526 jmp_cond = X86_JBE; 2527 break; 2528 case BPF_JSGT: 2529 /* Signed '>', GT in x86 */ 2530 jmp_cond = X86_JG; 2531 break; 2532 case BPF_JSLT: 2533 /* Signed '<', LT in x86 */ 2534 jmp_cond = X86_JL; 2535 break; 2536 case BPF_JSGE: 2537 /* Signed '>=', GE in x86 */ 2538 jmp_cond = X86_JGE; 2539 break; 2540 case BPF_JSLE: 2541 /* Signed '<=', LE in x86 */ 2542 jmp_cond = X86_JLE; 2543 break; 2544 default: /* to silence GCC warning */ 2545 return -EFAULT; 2546 } 2547 jmp_offset = addrs[i + insn->off] - addrs[i]; 2548 if (is_imm8_jmp_offset(jmp_offset)) { 2549 if (jmp_padding) { 2550 /* To keep the jmp_offset valid, the extra bytes are 2551 * padded before the jump insn, so we subtract the 2552 * 2 bytes of jmp_cond insn from INSN_SZ_DIFF. 2553 * 2554 * If the previous pass already emits an imm8 2555 * jmp_cond, then this BPF insn won't shrink, so 2556 * "nops" is 0. 2557 * 2558 * On the other hand, if the previous pass emits an 2559 * imm32 jmp_cond, the extra 4 bytes(*) is padded to 2560 * keep the image from shrinking further. 2561 * 2562 * (*) imm32 jmp_cond is 6 bytes, and imm8 jmp_cond 2563 * is 2 bytes, so the size difference is 4 bytes. 2564 */ 2565 nops = INSN_SZ_DIFF - 2; 2566 if (nops != 0 && nops != 4) { 2567 pr_err("unexpected jmp_cond padding: %d bytes\n", 2568 nops); 2569 return -EFAULT; 2570 } 2571 emit_nops(&prog, nops); 2572 } 2573 EMIT2(jmp_cond, jmp_offset); 2574 } else if (is_simm32(jmp_offset)) { 2575 EMIT2_off32(0x0F, jmp_cond + 0x10, jmp_offset); 2576 } else { 2577 pr_err("cond_jmp gen bug %llx\n", jmp_offset); 2578 return -EFAULT; 2579 } 2580 2581 break; 2582 2583 case BPF_JMP | BPF_JA: 2584 case BPF_JMP32 | BPF_JA: 2585 if (BPF_CLASS(insn->code) == BPF_JMP) { 2586 if (insn->off == -1) 2587 /* -1 jmp instructions will always jump 2588 * backwards two bytes. Explicitly handling 2589 * this case avoids wasting too many passes 2590 * when there are long sequences of replaced 2591 * dead code. 2592 */ 2593 jmp_offset = -2; 2594 else 2595 jmp_offset = addrs[i + insn->off] - addrs[i]; 2596 } else { 2597 if (insn->imm == -1) 2598 jmp_offset = -2; 2599 else 2600 jmp_offset = addrs[i + insn->imm] - addrs[i]; 2601 } 2602 2603 if (!jmp_offset) { 2604 /* 2605 * If jmp_padding is enabled, the extra nops will 2606 * be inserted. Otherwise, optimize out nop jumps. 2607 */ 2608 if (jmp_padding) { 2609 /* There are 3 possible conditions. 2610 * (1) This BPF_JA is already optimized out in 2611 * the previous run, so there is no need 2612 * to pad any extra byte (0 byte). 2613 * (2) The previous pass emits an imm8 jmp, 2614 * so we pad 2 bytes to match the previous 2615 * insn size. 2616 * (3) Similarly, the previous pass emits an 2617 * imm32 jmp, and 5 bytes is padded. 2618 */ 2619 nops = INSN_SZ_DIFF; 2620 if (nops != 0 && nops != 2 && nops != 5) { 2621 pr_err("unexpected nop jump padding: %d bytes\n", 2622 nops); 2623 return -EFAULT; 2624 } 2625 emit_nops(&prog, nops); 2626 } 2627 break; 2628 } 2629 emit_jmp: 2630 if (is_imm8_jmp_offset(jmp_offset)) { 2631 if (jmp_padding) { 2632 /* To avoid breaking jmp_offset, the extra bytes 2633 * are padded before the actual jmp insn, so 2634 * 2 bytes is subtracted from INSN_SZ_DIFF. 2635 * 2636 * If the previous pass already emits an imm8 2637 * jmp, there is nothing to pad (0 byte). 2638 * 2639 * If it emits an imm32 jmp (5 bytes) previously 2640 * and now an imm8 jmp (2 bytes), then we pad 2641 * (5 - 2 = 3) bytes to stop the image from 2642 * shrinking further. 2643 */ 2644 nops = INSN_SZ_DIFF - 2; 2645 if (nops != 0 && nops != 3) { 2646 pr_err("unexpected jump padding: %d bytes\n", 2647 nops); 2648 return -EFAULT; 2649 } 2650 emit_nops(&prog, INSN_SZ_DIFF - 2); 2651 } 2652 EMIT2(0xEB, jmp_offset); 2653 } else if (is_simm32(jmp_offset)) { 2654 EMIT1_off32(0xE9, jmp_offset); 2655 } else { 2656 pr_err("jmp gen bug %llx\n", jmp_offset); 2657 return -EFAULT; 2658 } 2659 break; 2660 2661 case BPF_JMP | BPF_EXIT: 2662 if (seen_exit) { 2663 jmp_offset = ctx->cleanup_addr - addrs[i]; 2664 goto emit_jmp; 2665 } 2666 seen_exit = true; 2667 /* Update cleanup_addr */ 2668 ctx->cleanup_addr = proglen; 2669 if (bpf_prog_was_classic(bpf_prog) && 2670 !capable(CAP_SYS_ADMIN)) { 2671 u8 *ip = image + addrs[i - 1]; 2672 2673 if (emit_spectre_bhb_barrier(&prog, ip, bpf_prog)) 2674 return -EINVAL; 2675 } 2676 if (bpf_prog->aux->exception_boundary) { 2677 pop_callee_regs(&prog, all_callee_regs_used); 2678 pop_r12(&prog); 2679 } else { 2680 pop_callee_regs(&prog, callee_regs_used); 2681 if (arena_vm_start) 2682 pop_r12(&prog); 2683 } 2684 EMIT1(0xC9); /* leave */ 2685 emit_return(&prog, image + addrs[i - 1] + (prog - temp)); 2686 break; 2687 2688 default: 2689 /* 2690 * By design x86-64 JIT should support all BPF instructions. 2691 * This error will be seen if new instruction was added 2692 * to the interpreter, but not to the JIT, or if there is 2693 * junk in bpf_prog. 2694 */ 2695 pr_err("bpf_jit: unknown opcode %02x\n", insn->code); 2696 return -EINVAL; 2697 } 2698 2699 ilen = prog - temp; 2700 if (ilen > BPF_MAX_INSN_SIZE) { 2701 pr_err("bpf_jit: fatal insn size error\n"); 2702 return -EFAULT; 2703 } 2704 2705 if (image) { 2706 /* 2707 * When populating the image, assert that: 2708 * 2709 * i) We do not write beyond the allocated space, and 2710 * ii) addrs[i] did not change from the prior run, in order 2711 * to validate assumptions made for computing branch 2712 * displacements. 2713 */ 2714 if (unlikely(proglen + ilen > oldproglen || 2715 proglen + ilen != addrs[i])) { 2716 pr_err("bpf_jit: fatal error\n"); 2717 return -EFAULT; 2718 } 2719 memcpy(rw_image + proglen, temp, ilen); 2720 } 2721 proglen += ilen; 2722 addrs[i] = proglen; 2723 prog = temp; 2724 } 2725 2726 if (image && excnt != bpf_prog->aux->num_exentries) { 2727 pr_err("extable is not populated\n"); 2728 return -EFAULT; 2729 } 2730 return proglen; 2731 } 2732 2733 static void clean_stack_garbage(const struct btf_func_model *m, 2734 u8 **pprog, int nr_stack_slots, 2735 int stack_size) 2736 { 2737 int arg_size, off; 2738 u8 *prog; 2739 2740 /* Generally speaking, the compiler will pass the arguments 2741 * on-stack with "push" instruction, which will take 8-byte 2742 * on the stack. In this case, there won't be garbage values 2743 * while we copy the arguments from origin stack frame to current 2744 * in BPF_DW. 2745 * 2746 * However, sometimes the compiler will only allocate 4-byte on 2747 * the stack for the arguments. For now, this case will only 2748 * happen if there is only one argument on-stack and its size 2749 * not more than 4 byte. In this case, there will be garbage 2750 * values on the upper 4-byte where we store the argument on 2751 * current stack frame. 2752 * 2753 * arguments on origin stack: 2754 * 2755 * stack_arg_1(4-byte) xxx(4-byte) 2756 * 2757 * what we copy: 2758 * 2759 * stack_arg_1(8-byte): stack_arg_1(origin) xxx 2760 * 2761 * and the xxx is the garbage values which we should clean here. 2762 */ 2763 if (nr_stack_slots != 1) 2764 return; 2765 2766 /* the size of the last argument */ 2767 arg_size = m->arg_size[m->nr_args - 1]; 2768 if (arg_size <= 4) { 2769 off = -(stack_size - 4); 2770 prog = *pprog; 2771 /* mov DWORD PTR [rbp + off], 0 */ 2772 if (!is_imm8(off)) 2773 EMIT2_off32(0xC7, 0x85, off); 2774 else 2775 EMIT3(0xC7, 0x45, off); 2776 EMIT(0, 4); 2777 *pprog = prog; 2778 } 2779 } 2780 2781 /* get the count of the regs that are used to pass arguments */ 2782 static int get_nr_used_regs(const struct btf_func_model *m) 2783 { 2784 int i, arg_regs, nr_used_regs = 0; 2785 2786 for (i = 0; i < min_t(int, m->nr_args, MAX_BPF_FUNC_ARGS); i++) { 2787 arg_regs = (m->arg_size[i] + 7) / 8; 2788 if (nr_used_regs + arg_regs <= 6) 2789 nr_used_regs += arg_regs; 2790 2791 if (nr_used_regs >= 6) 2792 break; 2793 } 2794 2795 return nr_used_regs; 2796 } 2797 2798 static void save_args(const struct btf_func_model *m, u8 **prog, 2799 int stack_size, bool for_call_origin) 2800 { 2801 int arg_regs, first_off = 0, nr_regs = 0, nr_stack_slots = 0; 2802 int i, j; 2803 2804 /* Store function arguments to stack. 2805 * For a function that accepts two pointers the sequence will be: 2806 * mov QWORD PTR [rbp-0x10],rdi 2807 * mov QWORD PTR [rbp-0x8],rsi 2808 */ 2809 for (i = 0; i < min_t(int, m->nr_args, MAX_BPF_FUNC_ARGS); i++) { 2810 arg_regs = (m->arg_size[i] + 7) / 8; 2811 2812 /* According to the research of Yonghong, struct members 2813 * should be all in register or all on the stack. 2814 * Meanwhile, the compiler will pass the argument on regs 2815 * if the remaining regs can hold the argument. 2816 * 2817 * Disorder of the args can happen. For example: 2818 * 2819 * struct foo_struct { 2820 * long a; 2821 * int b; 2822 * }; 2823 * int foo(char, char, char, char, char, struct foo_struct, 2824 * char); 2825 * 2826 * the arg1-5,arg7 will be passed by regs, and arg6 will 2827 * by stack. 2828 */ 2829 if (nr_regs + arg_regs > 6) { 2830 /* copy function arguments from origin stack frame 2831 * into current stack frame. 2832 * 2833 * The starting address of the arguments on-stack 2834 * is: 2835 * rbp + 8(push rbp) + 2836 * 8(return addr of origin call) + 2837 * 8(return addr of the caller) 2838 * which means: rbp + 24 2839 */ 2840 for (j = 0; j < arg_regs; j++) { 2841 emit_ldx(prog, BPF_DW, BPF_REG_0, BPF_REG_FP, 2842 nr_stack_slots * 8 + 0x18); 2843 emit_stx(prog, BPF_DW, BPF_REG_FP, BPF_REG_0, 2844 -stack_size); 2845 2846 if (!nr_stack_slots) 2847 first_off = stack_size; 2848 stack_size -= 8; 2849 nr_stack_slots++; 2850 } 2851 } else { 2852 /* Only copy the arguments on-stack to current 2853 * 'stack_size' and ignore the regs, used to 2854 * prepare the arguments on-stack for origin call. 2855 */ 2856 if (for_call_origin) { 2857 nr_regs += arg_regs; 2858 continue; 2859 } 2860 2861 /* copy the arguments from regs into stack */ 2862 for (j = 0; j < arg_regs; j++) { 2863 emit_stx(prog, BPF_DW, BPF_REG_FP, 2864 nr_regs == 5 ? X86_REG_R9 : BPF_REG_1 + nr_regs, 2865 -stack_size); 2866 stack_size -= 8; 2867 nr_regs++; 2868 } 2869 } 2870 } 2871 2872 clean_stack_garbage(m, prog, nr_stack_slots, first_off); 2873 } 2874 2875 static void restore_regs(const struct btf_func_model *m, u8 **prog, 2876 int stack_size) 2877 { 2878 int i, j, arg_regs, nr_regs = 0; 2879 2880 /* Restore function arguments from stack. 2881 * For a function that accepts two pointers the sequence will be: 2882 * EMIT4(0x48, 0x8B, 0x7D, 0xF0); mov rdi,QWORD PTR [rbp-0x10] 2883 * EMIT4(0x48, 0x8B, 0x75, 0xF8); mov rsi,QWORD PTR [rbp-0x8] 2884 * 2885 * The logic here is similar to what we do in save_args() 2886 */ 2887 for (i = 0; i < min_t(int, m->nr_args, MAX_BPF_FUNC_ARGS); i++) { 2888 arg_regs = (m->arg_size[i] + 7) / 8; 2889 if (nr_regs + arg_regs <= 6) { 2890 for (j = 0; j < arg_regs; j++) { 2891 emit_ldx(prog, BPF_DW, 2892 nr_regs == 5 ? X86_REG_R9 : BPF_REG_1 + nr_regs, 2893 BPF_REG_FP, 2894 -stack_size); 2895 stack_size -= 8; 2896 nr_regs++; 2897 } 2898 } else { 2899 stack_size -= 8 * arg_regs; 2900 } 2901 2902 if (nr_regs >= 6) 2903 break; 2904 } 2905 } 2906 2907 static int invoke_bpf_prog(const struct btf_func_model *m, u8 **pprog, 2908 struct bpf_tramp_link *l, int stack_size, 2909 int run_ctx_off, bool save_ret, 2910 void *image, void *rw_image) 2911 { 2912 u8 *prog = *pprog; 2913 u8 *jmp_insn; 2914 int ctx_cookie_off = offsetof(struct bpf_tramp_run_ctx, bpf_cookie); 2915 struct bpf_prog *p = l->link.prog; 2916 u64 cookie = l->cookie; 2917 2918 /* mov rdi, cookie */ 2919 emit_mov_imm64(&prog, BPF_REG_1, (long) cookie >> 32, (u32) (long) cookie); 2920 2921 /* Prepare struct bpf_tramp_run_ctx. 2922 * 2923 * bpf_tramp_run_ctx is already preserved by 2924 * arch_prepare_bpf_trampoline(). 2925 * 2926 * mov QWORD PTR [rbp - run_ctx_off + ctx_cookie_off], rdi 2927 */ 2928 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_1, -run_ctx_off + ctx_cookie_off); 2929 2930 /* arg1: mov rdi, progs[i] */ 2931 emit_mov_imm64(&prog, BPF_REG_1, (long) p >> 32, (u32) (long) p); 2932 /* arg2: lea rsi, [rbp - ctx_cookie_off] */ 2933 if (!is_imm8(-run_ctx_off)) 2934 EMIT3_off32(0x48, 0x8D, 0xB5, -run_ctx_off); 2935 else 2936 EMIT4(0x48, 0x8D, 0x75, -run_ctx_off); 2937 2938 if (emit_rsb_call(&prog, bpf_trampoline_enter(p), image + (prog - (u8 *)rw_image))) 2939 return -EINVAL; 2940 /* remember prog start time returned by __bpf_prog_enter */ 2941 emit_mov_reg(&prog, true, BPF_REG_6, BPF_REG_0); 2942 2943 /* if (__bpf_prog_enter*(prog) == 0) 2944 * goto skip_exec_of_prog; 2945 */ 2946 EMIT3(0x48, 0x85, 0xC0); /* test rax,rax */ 2947 /* emit 2 nops that will be replaced with JE insn */ 2948 jmp_insn = prog; 2949 emit_nops(&prog, 2); 2950 2951 /* arg1: lea rdi, [rbp - stack_size] */ 2952 if (!is_imm8(-stack_size)) 2953 EMIT3_off32(0x48, 0x8D, 0xBD, -stack_size); 2954 else 2955 EMIT4(0x48, 0x8D, 0x7D, -stack_size); 2956 /* arg2: progs[i]->insnsi for interpreter */ 2957 if (!p->jited) 2958 emit_mov_imm64(&prog, BPF_REG_2, 2959 (long) p->insnsi >> 32, 2960 (u32) (long) p->insnsi); 2961 /* call JITed bpf program or interpreter */ 2962 if (emit_rsb_call(&prog, p->bpf_func, image + (prog - (u8 *)rw_image))) 2963 return -EINVAL; 2964 2965 /* 2966 * BPF_TRAMP_MODIFY_RETURN trampolines can modify the return 2967 * of the previous call which is then passed on the stack to 2968 * the next BPF program. 2969 * 2970 * BPF_TRAMP_FENTRY trampoline may need to return the return 2971 * value of BPF_PROG_TYPE_STRUCT_OPS prog. 2972 */ 2973 if (save_ret) 2974 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8); 2975 2976 /* replace 2 nops with JE insn, since jmp target is known */ 2977 jmp_insn[0] = X86_JE; 2978 jmp_insn[1] = prog - jmp_insn - 2; 2979 2980 /* arg1: mov rdi, progs[i] */ 2981 emit_mov_imm64(&prog, BPF_REG_1, (long) p >> 32, (u32) (long) p); 2982 /* arg2: mov rsi, rbx <- start time in nsec */ 2983 emit_mov_reg(&prog, true, BPF_REG_2, BPF_REG_6); 2984 /* arg3: lea rdx, [rbp - run_ctx_off] */ 2985 if (!is_imm8(-run_ctx_off)) 2986 EMIT3_off32(0x48, 0x8D, 0x95, -run_ctx_off); 2987 else 2988 EMIT4(0x48, 0x8D, 0x55, -run_ctx_off); 2989 if (emit_rsb_call(&prog, bpf_trampoline_exit(p), image + (prog - (u8 *)rw_image))) 2990 return -EINVAL; 2991 2992 *pprog = prog; 2993 return 0; 2994 } 2995 2996 static void emit_align(u8 **pprog, u32 align) 2997 { 2998 u8 *target, *prog = *pprog; 2999 3000 target = PTR_ALIGN(prog, align); 3001 if (target != prog) 3002 emit_nops(&prog, target - prog); 3003 3004 *pprog = prog; 3005 } 3006 3007 static int emit_cond_near_jump(u8 **pprog, void *func, void *ip, u8 jmp_cond) 3008 { 3009 u8 *prog = *pprog; 3010 s64 offset; 3011 3012 offset = func - (ip + 2 + 4); 3013 if (!is_simm32(offset)) { 3014 pr_err("Target %p is out of range\n", func); 3015 return -EINVAL; 3016 } 3017 EMIT2_off32(0x0F, jmp_cond + 0x10, offset); 3018 *pprog = prog; 3019 return 0; 3020 } 3021 3022 static int invoke_bpf(const struct btf_func_model *m, u8 **pprog, 3023 struct bpf_tramp_links *tl, int stack_size, 3024 int run_ctx_off, bool save_ret, 3025 void *image, void *rw_image) 3026 { 3027 int i; 3028 u8 *prog = *pprog; 3029 3030 for (i = 0; i < tl->nr_links; i++) { 3031 if (invoke_bpf_prog(m, &prog, tl->links[i], stack_size, 3032 run_ctx_off, save_ret, image, rw_image)) 3033 return -EINVAL; 3034 } 3035 *pprog = prog; 3036 return 0; 3037 } 3038 3039 static int invoke_bpf_mod_ret(const struct btf_func_model *m, u8 **pprog, 3040 struct bpf_tramp_links *tl, int stack_size, 3041 int run_ctx_off, u8 **branches, 3042 void *image, void *rw_image) 3043 { 3044 u8 *prog = *pprog; 3045 int i; 3046 3047 /* The first fmod_ret program will receive a garbage return value. 3048 * Set this to 0 to avoid confusing the program. 3049 */ 3050 emit_mov_imm32(&prog, false, BPF_REG_0, 0); 3051 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8); 3052 for (i = 0; i < tl->nr_links; i++) { 3053 if (invoke_bpf_prog(m, &prog, tl->links[i], stack_size, run_ctx_off, true, 3054 image, rw_image)) 3055 return -EINVAL; 3056 3057 /* mod_ret prog stored return value into [rbp - 8]. Emit: 3058 * if (*(u64 *)(rbp - 8) != 0) 3059 * goto do_fexit; 3060 */ 3061 /* cmp QWORD PTR [rbp - 0x8], 0x0 */ 3062 EMIT4(0x48, 0x83, 0x7d, 0xf8); EMIT1(0x00); 3063 3064 /* Save the location of the branch and Generate 6 nops 3065 * (4 bytes for an offset and 2 bytes for the jump) These nops 3066 * are replaced with a conditional jump once do_fexit (i.e. the 3067 * start of the fexit invocation) is finalized. 3068 */ 3069 branches[i] = prog; 3070 emit_nops(&prog, 4 + 2); 3071 } 3072 3073 *pprog = prog; 3074 return 0; 3075 } 3076 3077 /* mov rax, qword ptr [rbp - rounded_stack_depth - 8] */ 3078 #define LOAD_TRAMP_TAIL_CALL_CNT_PTR(stack) \ 3079 __LOAD_TCC_PTR(-round_up(stack, 8) - 8) 3080 3081 /* Example: 3082 * __be16 eth_type_trans(struct sk_buff *skb, struct net_device *dev); 3083 * its 'struct btf_func_model' will be nr_args=2 3084 * The assembly code when eth_type_trans is executing after trampoline: 3085 * 3086 * push rbp 3087 * mov rbp, rsp 3088 * sub rsp, 16 // space for skb and dev 3089 * push rbx // temp regs to pass start time 3090 * mov qword ptr [rbp - 16], rdi // save skb pointer to stack 3091 * mov qword ptr [rbp - 8], rsi // save dev pointer to stack 3092 * call __bpf_prog_enter // rcu_read_lock and preempt_disable 3093 * mov rbx, rax // remember start time in bpf stats are enabled 3094 * lea rdi, [rbp - 16] // R1==ctx of bpf prog 3095 * call addr_of_jited_FENTRY_prog 3096 * movabsq rdi, 64bit_addr_of_struct_bpf_prog // unused if bpf stats are off 3097 * mov rsi, rbx // prog start time 3098 * call __bpf_prog_exit // rcu_read_unlock, preempt_enable and stats math 3099 * mov rdi, qword ptr [rbp - 16] // restore skb pointer from stack 3100 * mov rsi, qword ptr [rbp - 8] // restore dev pointer from stack 3101 * pop rbx 3102 * leave 3103 * ret 3104 * 3105 * eth_type_trans has 5 byte nop at the beginning. These 5 bytes will be 3106 * replaced with 'call generated_bpf_trampoline'. When it returns 3107 * eth_type_trans will continue executing with original skb and dev pointers. 3108 * 3109 * The assembly code when eth_type_trans is called from trampoline: 3110 * 3111 * push rbp 3112 * mov rbp, rsp 3113 * sub rsp, 24 // space for skb, dev, return value 3114 * push rbx // temp regs to pass start time 3115 * mov qword ptr [rbp - 24], rdi // save skb pointer to stack 3116 * mov qword ptr [rbp - 16], rsi // save dev pointer to stack 3117 * call __bpf_prog_enter // rcu_read_lock and preempt_disable 3118 * mov rbx, rax // remember start time if bpf stats are enabled 3119 * lea rdi, [rbp - 24] // R1==ctx of bpf prog 3120 * call addr_of_jited_FENTRY_prog // bpf prog can access skb and dev 3121 * movabsq rdi, 64bit_addr_of_struct_bpf_prog // unused if bpf stats are off 3122 * mov rsi, rbx // prog start time 3123 * call __bpf_prog_exit // rcu_read_unlock, preempt_enable and stats math 3124 * mov rdi, qword ptr [rbp - 24] // restore skb pointer from stack 3125 * mov rsi, qword ptr [rbp - 16] // restore dev pointer from stack 3126 * call eth_type_trans+5 // execute body of eth_type_trans 3127 * mov qword ptr [rbp - 8], rax // save return value 3128 * call __bpf_prog_enter // rcu_read_lock and preempt_disable 3129 * mov rbx, rax // remember start time in bpf stats are enabled 3130 * lea rdi, [rbp - 24] // R1==ctx of bpf prog 3131 * call addr_of_jited_FEXIT_prog // bpf prog can access skb, dev, return value 3132 * movabsq rdi, 64bit_addr_of_struct_bpf_prog // unused if bpf stats are off 3133 * mov rsi, rbx // prog start time 3134 * call __bpf_prog_exit // rcu_read_unlock, preempt_enable and stats math 3135 * mov rax, qword ptr [rbp - 8] // restore eth_type_trans's return value 3136 * pop rbx 3137 * leave 3138 * add rsp, 8 // skip eth_type_trans's frame 3139 * ret // return to its caller 3140 */ 3141 static int __arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *rw_image, 3142 void *rw_image_end, void *image, 3143 const struct btf_func_model *m, u32 flags, 3144 struct bpf_tramp_links *tlinks, 3145 void *func_addr) 3146 { 3147 int i, ret, nr_regs = m->nr_args, stack_size = 0; 3148 int regs_off, nregs_off, ip_off, run_ctx_off, arg_stack_off, rbx_off; 3149 struct bpf_tramp_links *fentry = &tlinks[BPF_TRAMP_FENTRY]; 3150 struct bpf_tramp_links *fexit = &tlinks[BPF_TRAMP_FEXIT]; 3151 struct bpf_tramp_links *fmod_ret = &tlinks[BPF_TRAMP_MODIFY_RETURN]; 3152 void *orig_call = func_addr; 3153 u8 **branches = NULL; 3154 u8 *prog; 3155 bool save_ret; 3156 3157 /* 3158 * F_INDIRECT is only compatible with F_RET_FENTRY_RET, it is 3159 * explicitly incompatible with F_CALL_ORIG | F_SKIP_FRAME | F_IP_ARG 3160 * because @func_addr. 3161 */ 3162 WARN_ON_ONCE((flags & BPF_TRAMP_F_INDIRECT) && 3163 (flags & ~(BPF_TRAMP_F_INDIRECT | BPF_TRAMP_F_RET_FENTRY_RET))); 3164 3165 /* extra registers for struct arguments */ 3166 for (i = 0; i < m->nr_args; i++) { 3167 if (m->arg_flags[i] & BTF_FMODEL_STRUCT_ARG) 3168 nr_regs += (m->arg_size[i] + 7) / 8 - 1; 3169 } 3170 3171 /* x86-64 supports up to MAX_BPF_FUNC_ARGS arguments. 1-6 3172 * are passed through regs, the remains are through stack. 3173 */ 3174 if (nr_regs > MAX_BPF_FUNC_ARGS) 3175 return -ENOTSUPP; 3176 3177 /* Generated trampoline stack layout: 3178 * 3179 * RBP + 8 [ return address ] 3180 * RBP + 0 [ RBP ] 3181 * 3182 * RBP - 8 [ return value ] BPF_TRAMP_F_CALL_ORIG or 3183 * BPF_TRAMP_F_RET_FENTRY_RET flags 3184 * 3185 * [ reg_argN ] always 3186 * [ ... ] 3187 * RBP - regs_off [ reg_arg1 ] program's ctx pointer 3188 * 3189 * RBP - nregs_off [ regs count ] always 3190 * 3191 * RBP - ip_off [ traced function ] BPF_TRAMP_F_IP_ARG flag 3192 * 3193 * RBP - rbx_off [ rbx value ] always 3194 * 3195 * RBP - run_ctx_off [ bpf_tramp_run_ctx ] 3196 * 3197 * [ stack_argN ] BPF_TRAMP_F_CALL_ORIG 3198 * [ ... ] 3199 * [ stack_arg2 ] 3200 * RBP - arg_stack_off [ stack_arg1 ] 3201 * RSP [ tail_call_cnt_ptr ] BPF_TRAMP_F_TAIL_CALL_CTX 3202 */ 3203 3204 /* room for return value of orig_call or fentry prog */ 3205 save_ret = flags & (BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_RET_FENTRY_RET); 3206 if (save_ret) 3207 stack_size += 8; 3208 3209 stack_size += nr_regs * 8; 3210 regs_off = stack_size; 3211 3212 /* regs count */ 3213 stack_size += 8; 3214 nregs_off = stack_size; 3215 3216 if (flags & BPF_TRAMP_F_IP_ARG) 3217 stack_size += 8; /* room for IP address argument */ 3218 3219 ip_off = stack_size; 3220 3221 stack_size += 8; 3222 rbx_off = stack_size; 3223 3224 stack_size += (sizeof(struct bpf_tramp_run_ctx) + 7) & ~0x7; 3225 run_ctx_off = stack_size; 3226 3227 if (nr_regs > 6 && (flags & BPF_TRAMP_F_CALL_ORIG)) { 3228 /* the space that used to pass arguments on-stack */ 3229 stack_size += (nr_regs - get_nr_used_regs(m)) * 8; 3230 /* make sure the stack pointer is 16-byte aligned if we 3231 * need pass arguments on stack, which means 3232 * [stack_size + 8(rbp) + 8(rip) + 8(origin rip)] 3233 * should be 16-byte aligned. Following code depend on 3234 * that stack_size is already 8-byte aligned. 3235 */ 3236 stack_size += (stack_size % 16) ? 0 : 8; 3237 } 3238 3239 arg_stack_off = stack_size; 3240 3241 if (flags & BPF_TRAMP_F_SKIP_FRAME) { 3242 /* skip patched call instruction and point orig_call to actual 3243 * body of the kernel function. 3244 */ 3245 if (is_endbr(orig_call)) 3246 orig_call += ENDBR_INSN_SIZE; 3247 orig_call += X86_PATCH_SIZE; 3248 } 3249 3250 prog = rw_image; 3251 3252 if (flags & BPF_TRAMP_F_INDIRECT) { 3253 /* 3254 * Indirect call for bpf_struct_ops 3255 */ 3256 emit_cfi(&prog, image, 3257 cfi_get_func_hash(func_addr), 3258 cfi_get_func_arity(func_addr)); 3259 } else { 3260 /* 3261 * Direct-call fentry stub, as such it needs accounting for the 3262 * __fentry__ call. 3263 */ 3264 x86_call_depth_emit_accounting(&prog, NULL, image); 3265 } 3266 EMIT1(0x55); /* push rbp */ 3267 EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */ 3268 if (!is_imm8(stack_size)) { 3269 /* sub rsp, stack_size */ 3270 EMIT3_off32(0x48, 0x81, 0xEC, stack_size); 3271 } else { 3272 /* sub rsp, stack_size */ 3273 EMIT4(0x48, 0x83, 0xEC, stack_size); 3274 } 3275 if (flags & BPF_TRAMP_F_TAIL_CALL_CTX) 3276 EMIT1(0x50); /* push rax */ 3277 /* mov QWORD PTR [rbp - rbx_off], rbx */ 3278 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_6, -rbx_off); 3279 3280 /* Store number of argument registers of the traced function: 3281 * mov rax, nr_regs 3282 * mov QWORD PTR [rbp - nregs_off], rax 3283 */ 3284 emit_mov_imm64(&prog, BPF_REG_0, 0, (u32) nr_regs); 3285 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -nregs_off); 3286 3287 if (flags & BPF_TRAMP_F_IP_ARG) { 3288 /* Store IP address of the traced function: 3289 * movabsq rax, func_addr 3290 * mov QWORD PTR [rbp - ip_off], rax 3291 */ 3292 emit_mov_imm64(&prog, BPF_REG_0, (long) func_addr >> 32, (u32) (long) func_addr); 3293 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -ip_off); 3294 } 3295 3296 save_args(m, &prog, regs_off, false); 3297 3298 if (flags & BPF_TRAMP_F_CALL_ORIG) { 3299 /* arg1: mov rdi, im */ 3300 emit_mov_imm64(&prog, BPF_REG_1, (long) im >> 32, (u32) (long) im); 3301 if (emit_rsb_call(&prog, __bpf_tramp_enter, 3302 image + (prog - (u8 *)rw_image))) { 3303 ret = -EINVAL; 3304 goto cleanup; 3305 } 3306 } 3307 3308 if (fentry->nr_links) { 3309 if (invoke_bpf(m, &prog, fentry, regs_off, run_ctx_off, 3310 flags & BPF_TRAMP_F_RET_FENTRY_RET, image, rw_image)) 3311 return -EINVAL; 3312 } 3313 3314 if (fmod_ret->nr_links) { 3315 branches = kcalloc(fmod_ret->nr_links, sizeof(u8 *), 3316 GFP_KERNEL); 3317 if (!branches) 3318 return -ENOMEM; 3319 3320 if (invoke_bpf_mod_ret(m, &prog, fmod_ret, regs_off, 3321 run_ctx_off, branches, image, rw_image)) { 3322 ret = -EINVAL; 3323 goto cleanup; 3324 } 3325 } 3326 3327 if (flags & BPF_TRAMP_F_CALL_ORIG) { 3328 restore_regs(m, &prog, regs_off); 3329 save_args(m, &prog, arg_stack_off, true); 3330 3331 if (flags & BPF_TRAMP_F_TAIL_CALL_CTX) { 3332 /* Before calling the original function, load the 3333 * tail_call_cnt_ptr from stack to rax. 3334 */ 3335 LOAD_TRAMP_TAIL_CALL_CNT_PTR(stack_size); 3336 } 3337 3338 if (flags & BPF_TRAMP_F_ORIG_STACK) { 3339 emit_ldx(&prog, BPF_DW, BPF_REG_6, BPF_REG_FP, 8); 3340 EMIT2(0xff, 0xd3); /* call *rbx */ 3341 } else { 3342 /* call original function */ 3343 if (emit_rsb_call(&prog, orig_call, image + (prog - (u8 *)rw_image))) { 3344 ret = -EINVAL; 3345 goto cleanup; 3346 } 3347 } 3348 /* remember return value in a stack for bpf prog to access */ 3349 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8); 3350 im->ip_after_call = image + (prog - (u8 *)rw_image); 3351 emit_nops(&prog, X86_PATCH_SIZE); 3352 } 3353 3354 if (fmod_ret->nr_links) { 3355 /* From Intel 64 and IA-32 Architectures Optimization 3356 * Reference Manual, 3.4.1.4 Code Alignment, Assembly/Compiler 3357 * Coding Rule 11: All branch targets should be 16-byte 3358 * aligned. 3359 */ 3360 emit_align(&prog, 16); 3361 /* Update the branches saved in invoke_bpf_mod_ret with the 3362 * aligned address of do_fexit. 3363 */ 3364 for (i = 0; i < fmod_ret->nr_links; i++) { 3365 emit_cond_near_jump(&branches[i], image + (prog - (u8 *)rw_image), 3366 image + (branches[i] - (u8 *)rw_image), X86_JNE); 3367 } 3368 } 3369 3370 if (fexit->nr_links) { 3371 if (invoke_bpf(m, &prog, fexit, regs_off, run_ctx_off, 3372 false, image, rw_image)) { 3373 ret = -EINVAL; 3374 goto cleanup; 3375 } 3376 } 3377 3378 if (flags & BPF_TRAMP_F_RESTORE_REGS) 3379 restore_regs(m, &prog, regs_off); 3380 3381 /* This needs to be done regardless. If there were fmod_ret programs, 3382 * the return value is only updated on the stack and still needs to be 3383 * restored to R0. 3384 */ 3385 if (flags & BPF_TRAMP_F_CALL_ORIG) { 3386 im->ip_epilogue = image + (prog - (u8 *)rw_image); 3387 /* arg1: mov rdi, im */ 3388 emit_mov_imm64(&prog, BPF_REG_1, (long) im >> 32, (u32) (long) im); 3389 if (emit_rsb_call(&prog, __bpf_tramp_exit, image + (prog - (u8 *)rw_image))) { 3390 ret = -EINVAL; 3391 goto cleanup; 3392 } 3393 } else if (flags & BPF_TRAMP_F_TAIL_CALL_CTX) { 3394 /* Before running the original function, load the 3395 * tail_call_cnt_ptr from stack to rax. 3396 */ 3397 LOAD_TRAMP_TAIL_CALL_CNT_PTR(stack_size); 3398 } 3399 3400 /* restore return value of orig_call or fentry prog back into RAX */ 3401 if (save_ret) 3402 emit_ldx(&prog, BPF_DW, BPF_REG_0, BPF_REG_FP, -8); 3403 3404 emit_ldx(&prog, BPF_DW, BPF_REG_6, BPF_REG_FP, -rbx_off); 3405 EMIT1(0xC9); /* leave */ 3406 if (flags & BPF_TRAMP_F_SKIP_FRAME) { 3407 /* skip our return address and return to parent */ 3408 EMIT4(0x48, 0x83, 0xC4, 8); /* add rsp, 8 */ 3409 } 3410 emit_return(&prog, image + (prog - (u8 *)rw_image)); 3411 /* Make sure the trampoline generation logic doesn't overflow */ 3412 if (WARN_ON_ONCE(prog > (u8 *)rw_image_end - BPF_INSN_SAFETY)) { 3413 ret = -EFAULT; 3414 goto cleanup; 3415 } 3416 ret = prog - (u8 *)rw_image + BPF_INSN_SAFETY; 3417 3418 cleanup: 3419 kfree(branches); 3420 return ret; 3421 } 3422 3423 void *arch_alloc_bpf_trampoline(unsigned int size) 3424 { 3425 return bpf_prog_pack_alloc(size, jit_fill_hole); 3426 } 3427 3428 void arch_free_bpf_trampoline(void *image, unsigned int size) 3429 { 3430 bpf_prog_pack_free(image, size); 3431 } 3432 3433 int arch_protect_bpf_trampoline(void *image, unsigned int size) 3434 { 3435 return 0; 3436 } 3437 3438 int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *image, void *image_end, 3439 const struct btf_func_model *m, u32 flags, 3440 struct bpf_tramp_links *tlinks, 3441 void *func_addr) 3442 { 3443 void *rw_image, *tmp; 3444 int ret; 3445 u32 size = image_end - image; 3446 3447 /* rw_image doesn't need to be in module memory range, so we can 3448 * use kvmalloc. 3449 */ 3450 rw_image = kvmalloc(size, GFP_KERNEL); 3451 if (!rw_image) 3452 return -ENOMEM; 3453 3454 ret = __arch_prepare_bpf_trampoline(im, rw_image, rw_image + size, image, m, 3455 flags, tlinks, func_addr); 3456 if (ret < 0) 3457 goto out; 3458 3459 tmp = bpf_arch_text_copy(image, rw_image, size); 3460 if (IS_ERR(tmp)) 3461 ret = PTR_ERR(tmp); 3462 out: 3463 kvfree(rw_image); 3464 return ret; 3465 } 3466 3467 int arch_bpf_trampoline_size(const struct btf_func_model *m, u32 flags, 3468 struct bpf_tramp_links *tlinks, void *func_addr) 3469 { 3470 struct bpf_tramp_image im; 3471 void *image; 3472 int ret; 3473 3474 /* Allocate a temporary buffer for __arch_prepare_bpf_trampoline(). 3475 * This will NOT cause fragmentation in direct map, as we do not 3476 * call set_memory_*() on this buffer. 3477 * 3478 * We cannot use kvmalloc here, because we need image to be in 3479 * module memory range. 3480 */ 3481 image = bpf_jit_alloc_exec(PAGE_SIZE); 3482 if (!image) 3483 return -ENOMEM; 3484 3485 ret = __arch_prepare_bpf_trampoline(&im, image, image + PAGE_SIZE, image, 3486 m, flags, tlinks, func_addr); 3487 bpf_jit_free_exec(image); 3488 return ret; 3489 } 3490 3491 static int emit_bpf_dispatcher(u8 **pprog, int a, int b, s64 *progs, u8 *image, u8 *buf) 3492 { 3493 u8 *jg_reloc, *prog = *pprog; 3494 int pivot, err, jg_bytes = 1; 3495 s64 jg_offset; 3496 3497 if (a == b) { 3498 /* Leaf node of recursion, i.e. not a range of indices 3499 * anymore. 3500 */ 3501 EMIT1(add_1mod(0x48, BPF_REG_3)); /* cmp rdx,func */ 3502 if (!is_simm32(progs[a])) 3503 return -1; 3504 EMIT2_off32(0x81, add_1reg(0xF8, BPF_REG_3), 3505 progs[a]); 3506 err = emit_cond_near_jump(&prog, /* je func */ 3507 (void *)progs[a], image + (prog - buf), 3508 X86_JE); 3509 if (err) 3510 return err; 3511 3512 emit_indirect_jump(&prog, 2 /* rdx */, image + (prog - buf)); 3513 3514 *pprog = prog; 3515 return 0; 3516 } 3517 3518 /* Not a leaf node, so we pivot, and recursively descend into 3519 * the lower and upper ranges. 3520 */ 3521 pivot = (b - a) / 2; 3522 EMIT1(add_1mod(0x48, BPF_REG_3)); /* cmp rdx,func */ 3523 if (!is_simm32(progs[a + pivot])) 3524 return -1; 3525 EMIT2_off32(0x81, add_1reg(0xF8, BPF_REG_3), progs[a + pivot]); 3526 3527 if (pivot > 2) { /* jg upper_part */ 3528 /* Require near jump. */ 3529 jg_bytes = 4; 3530 EMIT2_off32(0x0F, X86_JG + 0x10, 0); 3531 } else { 3532 EMIT2(X86_JG, 0); 3533 } 3534 jg_reloc = prog; 3535 3536 err = emit_bpf_dispatcher(&prog, a, a + pivot, /* emit lower_part */ 3537 progs, image, buf); 3538 if (err) 3539 return err; 3540 3541 /* From Intel 64 and IA-32 Architectures Optimization 3542 * Reference Manual, 3.4.1.4 Code Alignment, Assembly/Compiler 3543 * Coding Rule 11: All branch targets should be 16-byte 3544 * aligned. 3545 */ 3546 emit_align(&prog, 16); 3547 jg_offset = prog - jg_reloc; 3548 emit_code(jg_reloc - jg_bytes, jg_offset, jg_bytes); 3549 3550 err = emit_bpf_dispatcher(&prog, a + pivot + 1, /* emit upper_part */ 3551 b, progs, image, buf); 3552 if (err) 3553 return err; 3554 3555 *pprog = prog; 3556 return 0; 3557 } 3558 3559 static int cmp_ips(const void *a, const void *b) 3560 { 3561 const s64 *ipa = a; 3562 const s64 *ipb = b; 3563 3564 if (*ipa > *ipb) 3565 return 1; 3566 if (*ipa < *ipb) 3567 return -1; 3568 return 0; 3569 } 3570 3571 int arch_prepare_bpf_dispatcher(void *image, void *buf, s64 *funcs, int num_funcs) 3572 { 3573 u8 *prog = buf; 3574 3575 sort(funcs, num_funcs, sizeof(funcs[0]), cmp_ips, NULL); 3576 return emit_bpf_dispatcher(&prog, 0, num_funcs - 1, funcs, image, buf); 3577 } 3578 3579 static void priv_stack_init_guard(void __percpu *priv_stack_ptr, int alloc_size) 3580 { 3581 int cpu, underflow_idx = (alloc_size - PRIV_STACK_GUARD_SZ) >> 3; 3582 u64 *stack_ptr; 3583 3584 for_each_possible_cpu(cpu) { 3585 stack_ptr = per_cpu_ptr(priv_stack_ptr, cpu); 3586 stack_ptr[0] = PRIV_STACK_GUARD_VAL; 3587 stack_ptr[underflow_idx] = PRIV_STACK_GUARD_VAL; 3588 } 3589 } 3590 3591 static void priv_stack_check_guard(void __percpu *priv_stack_ptr, int alloc_size, 3592 struct bpf_prog *prog) 3593 { 3594 int cpu, underflow_idx = (alloc_size - PRIV_STACK_GUARD_SZ) >> 3; 3595 u64 *stack_ptr; 3596 3597 for_each_possible_cpu(cpu) { 3598 stack_ptr = per_cpu_ptr(priv_stack_ptr, cpu); 3599 if (stack_ptr[0] != PRIV_STACK_GUARD_VAL || 3600 stack_ptr[underflow_idx] != PRIV_STACK_GUARD_VAL) { 3601 pr_err("BPF private stack overflow/underflow detected for prog %sx\n", 3602 bpf_jit_get_prog_name(prog)); 3603 break; 3604 } 3605 } 3606 } 3607 3608 struct x64_jit_data { 3609 struct bpf_binary_header *rw_header; 3610 struct bpf_binary_header *header; 3611 int *addrs; 3612 u8 *image; 3613 int proglen; 3614 struct jit_context ctx; 3615 }; 3616 3617 #define MAX_PASSES 20 3618 #define PADDING_PASSES (MAX_PASSES - 5) 3619 3620 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog) 3621 { 3622 struct bpf_binary_header *rw_header = NULL; 3623 struct bpf_binary_header *header = NULL; 3624 struct bpf_prog *tmp, *orig_prog = prog; 3625 void __percpu *priv_stack_ptr = NULL; 3626 struct x64_jit_data *jit_data; 3627 int priv_stack_alloc_sz; 3628 int proglen, oldproglen = 0; 3629 struct jit_context ctx = {}; 3630 bool tmp_blinded = false; 3631 bool extra_pass = false; 3632 bool padding = false; 3633 u8 *rw_image = NULL; 3634 u8 *image = NULL; 3635 int *addrs; 3636 int pass; 3637 int i; 3638 3639 if (!prog->jit_requested) 3640 return orig_prog; 3641 3642 tmp = bpf_jit_blind_constants(prog); 3643 /* 3644 * If blinding was requested and we failed during blinding, 3645 * we must fall back to the interpreter. 3646 */ 3647 if (IS_ERR(tmp)) 3648 return orig_prog; 3649 if (tmp != prog) { 3650 tmp_blinded = true; 3651 prog = tmp; 3652 } 3653 3654 jit_data = prog->aux->jit_data; 3655 if (!jit_data) { 3656 jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL); 3657 if (!jit_data) { 3658 prog = orig_prog; 3659 goto out; 3660 } 3661 prog->aux->jit_data = jit_data; 3662 } 3663 priv_stack_ptr = prog->aux->priv_stack_ptr; 3664 if (!priv_stack_ptr && prog->aux->jits_use_priv_stack) { 3665 /* Allocate actual private stack size with verifier-calculated 3666 * stack size plus two memory guards to protect overflow and 3667 * underflow. 3668 */ 3669 priv_stack_alloc_sz = round_up(prog->aux->stack_depth, 8) + 3670 2 * PRIV_STACK_GUARD_SZ; 3671 priv_stack_ptr = __alloc_percpu_gfp(priv_stack_alloc_sz, 8, GFP_KERNEL); 3672 if (!priv_stack_ptr) { 3673 prog = orig_prog; 3674 goto out_priv_stack; 3675 } 3676 3677 priv_stack_init_guard(priv_stack_ptr, priv_stack_alloc_sz); 3678 prog->aux->priv_stack_ptr = priv_stack_ptr; 3679 } 3680 addrs = jit_data->addrs; 3681 if (addrs) { 3682 ctx = jit_data->ctx; 3683 oldproglen = jit_data->proglen; 3684 image = jit_data->image; 3685 header = jit_data->header; 3686 rw_header = jit_data->rw_header; 3687 rw_image = (void *)rw_header + ((void *)image - (void *)header); 3688 extra_pass = true; 3689 padding = true; 3690 goto skip_init_addrs; 3691 } 3692 addrs = kvmalloc_array(prog->len + 1, sizeof(*addrs), GFP_KERNEL); 3693 if (!addrs) { 3694 prog = orig_prog; 3695 goto out_addrs; 3696 } 3697 3698 /* 3699 * Before first pass, make a rough estimation of addrs[] 3700 * each BPF instruction is translated to less than 64 bytes 3701 */ 3702 for (proglen = 0, i = 0; i <= prog->len; i++) { 3703 proglen += 64; 3704 addrs[i] = proglen; 3705 } 3706 ctx.cleanup_addr = proglen; 3707 skip_init_addrs: 3708 3709 /* 3710 * JITed image shrinks with every pass and the loop iterates 3711 * until the image stops shrinking. Very large BPF programs 3712 * may converge on the last pass. In such case do one more 3713 * pass to emit the final image. 3714 */ 3715 for (pass = 0; pass < MAX_PASSES || image; pass++) { 3716 if (!padding && pass >= PADDING_PASSES) 3717 padding = true; 3718 proglen = do_jit(prog, addrs, image, rw_image, oldproglen, &ctx, padding); 3719 if (proglen <= 0) { 3720 out_image: 3721 image = NULL; 3722 if (header) { 3723 bpf_arch_text_copy(&header->size, &rw_header->size, 3724 sizeof(rw_header->size)); 3725 bpf_jit_binary_pack_free(header, rw_header); 3726 } 3727 /* Fall back to interpreter mode */ 3728 prog = orig_prog; 3729 if (extra_pass) { 3730 prog->bpf_func = NULL; 3731 prog->jited = 0; 3732 prog->jited_len = 0; 3733 } 3734 goto out_addrs; 3735 } 3736 if (image) { 3737 if (proglen != oldproglen) { 3738 pr_err("bpf_jit: proglen=%d != oldproglen=%d\n", 3739 proglen, oldproglen); 3740 goto out_image; 3741 } 3742 break; 3743 } 3744 if (proglen == oldproglen) { 3745 /* 3746 * The number of entries in extable is the number of BPF_LDX 3747 * insns that access kernel memory via "pointer to BTF type". 3748 * The verifier changed their opcode from LDX|MEM|size 3749 * to LDX|PROBE_MEM|size to make JITing easier. 3750 */ 3751 u32 align = __alignof__(struct exception_table_entry); 3752 u32 extable_size = prog->aux->num_exentries * 3753 sizeof(struct exception_table_entry); 3754 3755 /* allocate module memory for x86 insns and extable */ 3756 header = bpf_jit_binary_pack_alloc(roundup(proglen, align) + extable_size, 3757 &image, align, &rw_header, &rw_image, 3758 jit_fill_hole); 3759 if (!header) { 3760 prog = orig_prog; 3761 goto out_addrs; 3762 } 3763 prog->aux->extable = (void *) image + roundup(proglen, align); 3764 } 3765 oldproglen = proglen; 3766 cond_resched(); 3767 } 3768 3769 if (bpf_jit_enable > 1) 3770 bpf_jit_dump(prog->len, proglen, pass + 1, rw_image); 3771 3772 if (image) { 3773 if (!prog->is_func || extra_pass) { 3774 /* 3775 * bpf_jit_binary_pack_finalize fails in two scenarios: 3776 * 1) header is not pointing to proper module memory; 3777 * 2) the arch doesn't support bpf_arch_text_copy(). 3778 * 3779 * Both cases are serious bugs and justify WARN_ON. 3780 */ 3781 if (WARN_ON(bpf_jit_binary_pack_finalize(header, rw_header))) { 3782 /* header has been freed */ 3783 header = NULL; 3784 goto out_image; 3785 } 3786 3787 bpf_tail_call_direct_fixup(prog); 3788 } else { 3789 jit_data->addrs = addrs; 3790 jit_data->ctx = ctx; 3791 jit_data->proglen = proglen; 3792 jit_data->image = image; 3793 jit_data->header = header; 3794 jit_data->rw_header = rw_header; 3795 } 3796 /* 3797 * ctx.prog_offset is used when CFI preambles put code *before* 3798 * the function. See emit_cfi(). For FineIBT specifically this code 3799 * can also be executed and bpf_prog_kallsyms_add() will 3800 * generate an additional symbol to cover this, hence also 3801 * decrement proglen. 3802 */ 3803 prog->bpf_func = (void *)image + cfi_get_offset(); 3804 prog->jited = 1; 3805 prog->jited_len = proglen - cfi_get_offset(); 3806 } else { 3807 prog = orig_prog; 3808 } 3809 3810 if (!image || !prog->is_func || extra_pass) { 3811 if (image) 3812 bpf_prog_fill_jited_linfo(prog, addrs + 1); 3813 out_addrs: 3814 kvfree(addrs); 3815 if (!image && priv_stack_ptr) { 3816 free_percpu(priv_stack_ptr); 3817 prog->aux->priv_stack_ptr = NULL; 3818 } 3819 out_priv_stack: 3820 kfree(jit_data); 3821 prog->aux->jit_data = NULL; 3822 } 3823 out: 3824 if (tmp_blinded) 3825 bpf_jit_prog_release_other(prog, prog == orig_prog ? 3826 tmp : orig_prog); 3827 return prog; 3828 } 3829 3830 bool bpf_jit_supports_kfunc_call(void) 3831 { 3832 return true; 3833 } 3834 3835 void *bpf_arch_text_copy(void *dst, void *src, size_t len) 3836 { 3837 if (text_poke_copy(dst, src, len) == NULL) 3838 return ERR_PTR(-EINVAL); 3839 return dst; 3840 } 3841 3842 /* Indicate the JIT backend supports mixing bpf2bpf and tailcalls. */ 3843 bool bpf_jit_supports_subprog_tailcalls(void) 3844 { 3845 return true; 3846 } 3847 3848 bool bpf_jit_supports_percpu_insn(void) 3849 { 3850 return true; 3851 } 3852 3853 void bpf_jit_free(struct bpf_prog *prog) 3854 { 3855 if (prog->jited) { 3856 struct x64_jit_data *jit_data = prog->aux->jit_data; 3857 struct bpf_binary_header *hdr; 3858 void __percpu *priv_stack_ptr; 3859 int priv_stack_alloc_sz; 3860 3861 /* 3862 * If we fail the final pass of JIT (from jit_subprogs), 3863 * the program may not be finalized yet. Call finalize here 3864 * before freeing it. 3865 */ 3866 if (jit_data) { 3867 bpf_jit_binary_pack_finalize(jit_data->header, 3868 jit_data->rw_header); 3869 kvfree(jit_data->addrs); 3870 kfree(jit_data); 3871 } 3872 prog->bpf_func = (void *)prog->bpf_func - cfi_get_offset(); 3873 hdr = bpf_jit_binary_pack_hdr(prog); 3874 bpf_jit_binary_pack_free(hdr, NULL); 3875 priv_stack_ptr = prog->aux->priv_stack_ptr; 3876 if (priv_stack_ptr) { 3877 priv_stack_alloc_sz = round_up(prog->aux->stack_depth, 8) + 3878 2 * PRIV_STACK_GUARD_SZ; 3879 priv_stack_check_guard(priv_stack_ptr, priv_stack_alloc_sz, prog); 3880 free_percpu(prog->aux->priv_stack_ptr); 3881 } 3882 WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(prog)); 3883 } 3884 3885 bpf_prog_unlock_free(prog); 3886 } 3887 3888 bool bpf_jit_supports_exceptions(void) 3889 { 3890 /* We unwind through both kernel frames (starting from within bpf_throw 3891 * call) and BPF frames. Therefore we require ORC unwinder to be enabled 3892 * to walk kernel frames and reach BPF frames in the stack trace. 3893 */ 3894 return IS_ENABLED(CONFIG_UNWINDER_ORC); 3895 } 3896 3897 bool bpf_jit_supports_private_stack(void) 3898 { 3899 return true; 3900 } 3901 3902 void arch_bpf_stack_walk(bool (*consume_fn)(void *cookie, u64 ip, u64 sp, u64 bp), void *cookie) 3903 { 3904 #if defined(CONFIG_UNWINDER_ORC) 3905 struct unwind_state state; 3906 unsigned long addr; 3907 3908 for (unwind_start(&state, current, NULL, NULL); !unwind_done(&state); 3909 unwind_next_frame(&state)) { 3910 addr = unwind_get_return_address(&state); 3911 if (!addr || !consume_fn(cookie, (u64)addr, (u64)state.sp, (u64)state.bp)) 3912 break; 3913 } 3914 return; 3915 #endif 3916 } 3917 3918 void bpf_arch_poke_desc_update(struct bpf_jit_poke_descriptor *poke, 3919 struct bpf_prog *new, struct bpf_prog *old) 3920 { 3921 u8 *old_addr, *new_addr, *old_bypass_addr; 3922 int ret; 3923 3924 old_bypass_addr = old ? NULL : poke->bypass_addr; 3925 old_addr = old ? (u8 *)old->bpf_func + poke->adj_off : NULL; 3926 new_addr = new ? (u8 *)new->bpf_func + poke->adj_off : NULL; 3927 3928 /* 3929 * On program loading or teardown, the program's kallsym entry 3930 * might not be in place, so we use __bpf_arch_text_poke to skip 3931 * the kallsyms check. 3932 */ 3933 if (new) { 3934 ret = __bpf_arch_text_poke(poke->tailcall_target, 3935 BPF_MOD_JUMP, 3936 old_addr, new_addr); 3937 BUG_ON(ret < 0); 3938 if (!old) { 3939 ret = __bpf_arch_text_poke(poke->tailcall_bypass, 3940 BPF_MOD_JUMP, 3941 poke->bypass_addr, 3942 NULL); 3943 BUG_ON(ret < 0); 3944 } 3945 } else { 3946 ret = __bpf_arch_text_poke(poke->tailcall_bypass, 3947 BPF_MOD_JUMP, 3948 old_bypass_addr, 3949 poke->bypass_addr); 3950 BUG_ON(ret < 0); 3951 /* let other CPUs finish the execution of program 3952 * so that it will not possible to expose them 3953 * to invalid nop, stack unwind, nop state 3954 */ 3955 if (!ret) 3956 synchronize_rcu(); 3957 ret = __bpf_arch_text_poke(poke->tailcall_target, 3958 BPF_MOD_JUMP, 3959 old_addr, NULL); 3960 BUG_ON(ret < 0); 3961 } 3962 } 3963 3964 bool bpf_jit_supports_arena(void) 3965 { 3966 return true; 3967 } 3968 3969 bool bpf_jit_supports_insn(struct bpf_insn *insn, bool in_arena) 3970 { 3971 if (!in_arena) 3972 return true; 3973 switch (insn->code) { 3974 case BPF_STX | BPF_ATOMIC | BPF_W: 3975 case BPF_STX | BPF_ATOMIC | BPF_DW: 3976 if (insn->imm == (BPF_AND | BPF_FETCH) || 3977 insn->imm == (BPF_OR | BPF_FETCH) || 3978 insn->imm == (BPF_XOR | BPF_FETCH)) 3979 return false; 3980 } 3981 return true; 3982 } 3983 3984 bool bpf_jit_supports_ptr_xchg(void) 3985 { 3986 return true; 3987 } 3988 3989 /* x86-64 JIT emits its own code to filter user addresses so return 0 here */ 3990 u64 bpf_arch_uaddress_limit(void) 3991 { 3992 return 0; 3993 } 3994 3995 bool bpf_jit_supports_timed_may_goto(void) 3996 { 3997 return true; 3998 } 3999