xref: /linux/arch/x86/mm/kmmio.c (revision f30828a6745281edda735f642b5f814e1123ecd3)
1 /* Support for MMIO probes.
2  * Benfit many code from kprobes
3  * (C) 2002 Louis Zhuang <louis.zhuang@intel.com>.
4  *     2007 Alexander Eichner
5  *     2008 Pekka Paalanen <pq@iki.fi>
6  */
7 
8 #include <linux/list.h>
9 #include <linux/rculist.h>
10 #include <linux/spinlock.h>
11 #include <linux/hash.h>
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/uaccess.h>
16 #include <linux/ptrace.h>
17 #include <linux/preempt.h>
18 #include <linux/percpu.h>
19 #include <linux/kdebug.h>
20 #include <linux/mutex.h>
21 #include <linux/io.h>
22 #include <asm/cacheflush.h>
23 #include <asm/tlbflush.h>
24 #include <linux/errno.h>
25 #include <asm/debugreg.h>
26 #include <linux/mmiotrace.h>
27 
28 #define KMMIO_PAGE_HASH_BITS 4
29 #define KMMIO_PAGE_TABLE_SIZE (1 << KMMIO_PAGE_HASH_BITS)
30 
31 struct kmmio_fault_page {
32 	struct list_head list;
33 	struct kmmio_fault_page *release_next;
34 	unsigned long page; /* location of the fault page */
35 
36 	/*
37 	 * Number of times this page has been registered as a part
38 	 * of a probe. If zero, page is disarmed and this may be freed.
39 	 * Used only by writers (RCU).
40 	 */
41 	int count;
42 };
43 
44 struct kmmio_delayed_release {
45 	struct rcu_head rcu;
46 	struct kmmio_fault_page *release_list;
47 };
48 
49 struct kmmio_context {
50 	struct kmmio_fault_page *fpage;
51 	struct kmmio_probe *probe;
52 	unsigned long saved_flags;
53 	unsigned long addr;
54 	int active;
55 };
56 
57 static DEFINE_SPINLOCK(kmmio_lock);
58 
59 /* Protected by kmmio_lock */
60 unsigned int kmmio_count;
61 
62 /* Read-protected by RCU, write-protected by kmmio_lock. */
63 static struct list_head kmmio_page_table[KMMIO_PAGE_TABLE_SIZE];
64 static LIST_HEAD(kmmio_probes);
65 
66 static struct list_head *kmmio_page_list(unsigned long page)
67 {
68 	return &kmmio_page_table[hash_long(page, KMMIO_PAGE_HASH_BITS)];
69 }
70 
71 /* Accessed per-cpu */
72 static DEFINE_PER_CPU(struct kmmio_context, kmmio_ctx);
73 
74 /*
75  * this is basically a dynamic stabbing problem:
76  * Could use the existing prio tree code or
77  * Possible better implementations:
78  * The Interval Skip List: A Data Structure for Finding All Intervals That
79  * Overlap a Point (might be simple)
80  * Space Efficient Dynamic Stabbing with Fast Queries - Mikkel Thorup
81  */
82 /* Get the kmmio at this addr (if any). You must be holding RCU read lock. */
83 static struct kmmio_probe *get_kmmio_probe(unsigned long addr)
84 {
85 	struct kmmio_probe *p;
86 	list_for_each_entry_rcu(p, &kmmio_probes, list) {
87 		if (addr >= p->addr && addr <= (p->addr + p->len))
88 			return p;
89 	}
90 	return NULL;
91 }
92 
93 /* You must be holding RCU read lock. */
94 static struct kmmio_fault_page *get_kmmio_fault_page(unsigned long page)
95 {
96 	struct list_head *head;
97 	struct kmmio_fault_page *p;
98 
99 	page &= PAGE_MASK;
100 	head = kmmio_page_list(page);
101 	list_for_each_entry_rcu(p, head, list) {
102 		if (p->page == page)
103 			return p;
104 	}
105 	return NULL;
106 }
107 
108 static void set_page_present(unsigned long addr, bool present,
109 							unsigned int *pglevel)
110 {
111 	pteval_t pteval;
112 	pmdval_t pmdval;
113 	unsigned int level;
114 	pmd_t *pmd;
115 	pte_t *pte = lookup_address(addr, &level);
116 
117 	if (!pte) {
118 		pr_err("kmmio: no pte for page 0x%08lx\n", addr);
119 		return;
120 	}
121 
122 	if (pglevel)
123 		*pglevel = level;
124 
125 	switch (level) {
126 	case PG_LEVEL_2M:
127 		pmd = (pmd_t *)pte;
128 		pmdval = pmd_val(*pmd) & ~_PAGE_PRESENT;
129 		if (present)
130 			pmdval |= _PAGE_PRESENT;
131 		set_pmd(pmd, __pmd(pmdval));
132 		break;
133 
134 	case PG_LEVEL_4K:
135 		pteval = pte_val(*pte) & ~_PAGE_PRESENT;
136 		if (present)
137 			pteval |= _PAGE_PRESENT;
138 		set_pte_atomic(pte, __pte(pteval));
139 		break;
140 
141 	default:
142 		pr_err("kmmio: unexpected page level 0x%x.\n", level);
143 		return;
144 	}
145 
146 	__flush_tlb_one(addr);
147 }
148 
149 /** Mark the given page as not present. Access to it will trigger a fault. */
150 static void arm_kmmio_fault_page(unsigned long page, unsigned int *pglevel)
151 {
152 	set_page_present(page & PAGE_MASK, false, pglevel);
153 }
154 
155 /** Mark the given page as present. */
156 static void disarm_kmmio_fault_page(unsigned long page, unsigned int *pglevel)
157 {
158 	set_page_present(page & PAGE_MASK, true, pglevel);
159 }
160 
161 /*
162  * This is being called from do_page_fault().
163  *
164  * We may be in an interrupt or a critical section. Also prefecthing may
165  * trigger a page fault. We may be in the middle of process switch.
166  * We cannot take any locks, because we could be executing especially
167  * within a kmmio critical section.
168  *
169  * Local interrupts are disabled, so preemption cannot happen.
170  * Do not enable interrupts, do not sleep, and watch out for other CPUs.
171  */
172 /*
173  * Interrupts are disabled on entry as trap3 is an interrupt gate
174  * and they remain disabled thorough out this function.
175  */
176 int kmmio_handler(struct pt_regs *regs, unsigned long addr)
177 {
178 	struct kmmio_context *ctx;
179 	struct kmmio_fault_page *faultpage;
180 	int ret = 0; /* default to fault not handled */
181 
182 	/*
183 	 * Preemption is now disabled to prevent process switch during
184 	 * single stepping. We can only handle one active kmmio trace
185 	 * per cpu, so ensure that we finish it before something else
186 	 * gets to run. We also hold the RCU read lock over single
187 	 * stepping to avoid looking up the probe and kmmio_fault_page
188 	 * again.
189 	 */
190 	preempt_disable();
191 	rcu_read_lock();
192 
193 	faultpage = get_kmmio_fault_page(addr);
194 	if (!faultpage) {
195 		/*
196 		 * Either this page fault is not caused by kmmio, or
197 		 * another CPU just pulled the kmmio probe from under
198 		 * our feet. The latter case should not be possible.
199 		 */
200 		goto no_kmmio;
201 	}
202 
203 	ctx = &get_cpu_var(kmmio_ctx);
204 	if (ctx->active) {
205 		disarm_kmmio_fault_page(faultpage->page, NULL);
206 		if (addr == ctx->addr) {
207 			/*
208 			 * On SMP we sometimes get recursive probe hits on the
209 			 * same address. Context is already saved, fall out.
210 			 */
211 			pr_debug("kmmio: duplicate probe hit on CPU %d, for "
212 						"address 0x%08lx.\n",
213 						smp_processor_id(), addr);
214 			ret = 1;
215 			goto no_kmmio_ctx;
216 		}
217 		/*
218 		 * Prevent overwriting already in-flight context.
219 		 * This should not happen, let's hope disarming at least
220 		 * prevents a panic.
221 		 */
222 		pr_emerg("kmmio: recursive probe hit on CPU %d, "
223 					"for address 0x%08lx. Ignoring.\n",
224 					smp_processor_id(), addr);
225 		pr_emerg("kmmio: previous hit was at 0x%08lx.\n",
226 					ctx->addr);
227 		goto no_kmmio_ctx;
228 	}
229 	ctx->active++;
230 
231 	ctx->fpage = faultpage;
232 	ctx->probe = get_kmmio_probe(addr);
233 	ctx->saved_flags = (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF));
234 	ctx->addr = addr;
235 
236 	if (ctx->probe && ctx->probe->pre_handler)
237 		ctx->probe->pre_handler(ctx->probe, regs, addr);
238 
239 	/*
240 	 * Enable single-stepping and disable interrupts for the faulting
241 	 * context. Local interrupts must not get enabled during stepping.
242 	 */
243 	regs->flags |= X86_EFLAGS_TF;
244 	regs->flags &= ~X86_EFLAGS_IF;
245 
246 	/* Now we set present bit in PTE and single step. */
247 	disarm_kmmio_fault_page(ctx->fpage->page, NULL);
248 
249 	/*
250 	 * If another cpu accesses the same page while we are stepping,
251 	 * the access will not be caught. It will simply succeed and the
252 	 * only downside is we lose the event. If this becomes a problem,
253 	 * the user should drop to single cpu before tracing.
254 	 */
255 
256 	put_cpu_var(kmmio_ctx);
257 	return 1; /* fault handled */
258 
259 no_kmmio_ctx:
260 	put_cpu_var(kmmio_ctx);
261 no_kmmio:
262 	rcu_read_unlock();
263 	preempt_enable_no_resched();
264 	return ret;
265 }
266 
267 /*
268  * Interrupts are disabled on entry as trap1 is an interrupt gate
269  * and they remain disabled thorough out this function.
270  * This must always get called as the pair to kmmio_handler().
271  */
272 static int post_kmmio_handler(unsigned long condition, struct pt_regs *regs)
273 {
274 	int ret = 0;
275 	struct kmmio_context *ctx = &get_cpu_var(kmmio_ctx);
276 
277 	if (!ctx->active) {
278 		pr_debug("kmmio: spurious debug trap on CPU %d.\n",
279 							smp_processor_id());
280 		goto out;
281 	}
282 
283 	if (ctx->probe && ctx->probe->post_handler)
284 		ctx->probe->post_handler(ctx->probe, condition, regs);
285 
286 	arm_kmmio_fault_page(ctx->fpage->page, NULL);
287 
288 	regs->flags &= ~X86_EFLAGS_TF;
289 	regs->flags |= ctx->saved_flags;
290 
291 	/* These were acquired in kmmio_handler(). */
292 	ctx->active--;
293 	BUG_ON(ctx->active);
294 	rcu_read_unlock();
295 	preempt_enable_no_resched();
296 
297 	/*
298 	 * if somebody else is singlestepping across a probe point, flags
299 	 * will have TF set, in which case, continue the remaining processing
300 	 * of do_debug, as if this is not a probe hit.
301 	 */
302 	if (!(regs->flags & X86_EFLAGS_TF))
303 		ret = 1;
304 out:
305 	put_cpu_var(kmmio_ctx);
306 	return ret;
307 }
308 
309 /* You must be holding kmmio_lock. */
310 static int add_kmmio_fault_page(unsigned long page)
311 {
312 	struct kmmio_fault_page *f;
313 
314 	page &= PAGE_MASK;
315 	f = get_kmmio_fault_page(page);
316 	if (f) {
317 		if (!f->count)
318 			arm_kmmio_fault_page(f->page, NULL);
319 		f->count++;
320 		return 0;
321 	}
322 
323 	f = kmalloc(sizeof(*f), GFP_ATOMIC);
324 	if (!f)
325 		return -1;
326 
327 	f->count = 1;
328 	f->page = page;
329 	list_add_rcu(&f->list, kmmio_page_list(f->page));
330 
331 	arm_kmmio_fault_page(f->page, NULL);
332 
333 	return 0;
334 }
335 
336 /* You must be holding kmmio_lock. */
337 static void release_kmmio_fault_page(unsigned long page,
338 				struct kmmio_fault_page **release_list)
339 {
340 	struct kmmio_fault_page *f;
341 
342 	page &= PAGE_MASK;
343 	f = get_kmmio_fault_page(page);
344 	if (!f)
345 		return;
346 
347 	f->count--;
348 	BUG_ON(f->count < 0);
349 	if (!f->count) {
350 		disarm_kmmio_fault_page(f->page, NULL);
351 		f->release_next = *release_list;
352 		*release_list = f;
353 	}
354 }
355 
356 /*
357  * With page-unaligned ioremaps, one or two armed pages may contain
358  * addresses from outside the intended mapping. Events for these addresses
359  * are currently silently dropped. The events may result only from programming
360  * mistakes by accessing addresses before the beginning or past the end of a
361  * mapping.
362  */
363 int register_kmmio_probe(struct kmmio_probe *p)
364 {
365 	unsigned long flags;
366 	int ret = 0;
367 	unsigned long size = 0;
368 	const unsigned long size_lim = p->len + (p->addr & ~PAGE_MASK);
369 
370 	spin_lock_irqsave(&kmmio_lock, flags);
371 	if (get_kmmio_probe(p->addr)) {
372 		ret = -EEXIST;
373 		goto out;
374 	}
375 	kmmio_count++;
376 	list_add_rcu(&p->list, &kmmio_probes);
377 	while (size < size_lim) {
378 		if (add_kmmio_fault_page(p->addr + size))
379 			pr_err("kmmio: Unable to set page fault.\n");
380 		size += PAGE_SIZE;
381 	}
382 out:
383 	spin_unlock_irqrestore(&kmmio_lock, flags);
384 	/*
385 	 * XXX: What should I do here?
386 	 * Here was a call to global_flush_tlb(), but it does not exist
387 	 * anymore. It seems it's not needed after all.
388 	 */
389 	return ret;
390 }
391 EXPORT_SYMBOL(register_kmmio_probe);
392 
393 static void rcu_free_kmmio_fault_pages(struct rcu_head *head)
394 {
395 	struct kmmio_delayed_release *dr = container_of(
396 						head,
397 						struct kmmio_delayed_release,
398 						rcu);
399 	struct kmmio_fault_page *p = dr->release_list;
400 	while (p) {
401 		struct kmmio_fault_page *next = p->release_next;
402 		BUG_ON(p->count);
403 		kfree(p);
404 		p = next;
405 	}
406 	kfree(dr);
407 }
408 
409 static void remove_kmmio_fault_pages(struct rcu_head *head)
410 {
411 	struct kmmio_delayed_release *dr = container_of(
412 						head,
413 						struct kmmio_delayed_release,
414 						rcu);
415 	struct kmmio_fault_page *p = dr->release_list;
416 	struct kmmio_fault_page **prevp = &dr->release_list;
417 	unsigned long flags;
418 	spin_lock_irqsave(&kmmio_lock, flags);
419 	while (p) {
420 		if (!p->count)
421 			list_del_rcu(&p->list);
422 		else
423 			*prevp = p->release_next;
424 		prevp = &p->release_next;
425 		p = p->release_next;
426 	}
427 	spin_unlock_irqrestore(&kmmio_lock, flags);
428 	/* This is the real RCU destroy call. */
429 	call_rcu(&dr->rcu, rcu_free_kmmio_fault_pages);
430 }
431 
432 /*
433  * Remove a kmmio probe. You have to synchronize_rcu() before you can be
434  * sure that the callbacks will not be called anymore. Only after that
435  * you may actually release your struct kmmio_probe.
436  *
437  * Unregistering a kmmio fault page has three steps:
438  * 1. release_kmmio_fault_page()
439  *    Disarm the page, wait a grace period to let all faults finish.
440  * 2. remove_kmmio_fault_pages()
441  *    Remove the pages from kmmio_page_table.
442  * 3. rcu_free_kmmio_fault_pages()
443  *    Actally free the kmmio_fault_page structs as with RCU.
444  */
445 void unregister_kmmio_probe(struct kmmio_probe *p)
446 {
447 	unsigned long flags;
448 	unsigned long size = 0;
449 	const unsigned long size_lim = p->len + (p->addr & ~PAGE_MASK);
450 	struct kmmio_fault_page *release_list = NULL;
451 	struct kmmio_delayed_release *drelease;
452 
453 	spin_lock_irqsave(&kmmio_lock, flags);
454 	while (size < size_lim) {
455 		release_kmmio_fault_page(p->addr + size, &release_list);
456 		size += PAGE_SIZE;
457 	}
458 	list_del_rcu(&p->list);
459 	kmmio_count--;
460 	spin_unlock_irqrestore(&kmmio_lock, flags);
461 
462 	drelease = kmalloc(sizeof(*drelease), GFP_ATOMIC);
463 	if (!drelease) {
464 		pr_crit("kmmio: leaking kmmio_fault_page objects.\n");
465 		return;
466 	}
467 	drelease->release_list = release_list;
468 
469 	/*
470 	 * This is not really RCU here. We have just disarmed a set of
471 	 * pages so that they cannot trigger page faults anymore. However,
472 	 * we cannot remove the pages from kmmio_page_table,
473 	 * because a probe hit might be in flight on another CPU. The
474 	 * pages are collected into a list, and they will be removed from
475 	 * kmmio_page_table when it is certain that no probe hit related to
476 	 * these pages can be in flight. RCU grace period sounds like a
477 	 * good choice.
478 	 *
479 	 * If we removed the pages too early, kmmio page fault handler might
480 	 * not find the respective kmmio_fault_page and determine it's not
481 	 * a kmmio fault, when it actually is. This would lead to madness.
482 	 */
483 	call_rcu(&drelease->rcu, remove_kmmio_fault_pages);
484 }
485 EXPORT_SYMBOL(unregister_kmmio_probe);
486 
487 static int kmmio_die_notifier(struct notifier_block *nb, unsigned long val,
488 								void *args)
489 {
490 	struct die_args *arg = args;
491 
492 	if (val == DIE_DEBUG && (arg->err & DR_STEP))
493 		if (post_kmmio_handler(arg->err, arg->regs) == 1)
494 			return NOTIFY_STOP;
495 
496 	return NOTIFY_DONE;
497 }
498 
499 static struct notifier_block nb_die = {
500 	.notifier_call = kmmio_die_notifier
501 };
502 
503 static int __init init_kmmio(void)
504 {
505 	int i;
506 	for (i = 0; i < KMMIO_PAGE_TABLE_SIZE; i++)
507 		INIT_LIST_HEAD(&kmmio_page_table[i]);
508 	return register_die_notifier(&nb_die);
509 }
510 fs_initcall(init_kmmio); /* should be before device_initcall() */
511