xref: /linux/arch/x86/kvm/x86.c (revision 5e4e38446a62a4f50d77b0dd11d4b379dee08988)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21 
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "assigned-dev.h"
31 #include "pmu.h"
32 #include "hyperv.h"
33 
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
37 #include <linux/fs.h>
38 #include <linux/vmalloc.h>
39 #include <linux/module.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <trace/events/kvm.h>
57 
58 #define CREATE_TRACE_POINTS
59 #include "trace.h"
60 
61 #include <asm/debugreg.h>
62 #include <asm/msr.h>
63 #include <asm/desc.h>
64 #include <asm/mce.h>
65 #include <linux/kernel_stat.h>
66 #include <asm/fpu/internal.h> /* Ugh! */
67 #include <asm/pvclock.h>
68 #include <asm/div64.h>
69 #include <asm/irq_remapping.h>
70 
71 #define MAX_IO_MSRS 256
72 #define KVM_MAX_MCE_BANKS 32
73 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
74 
75 #define emul_to_vcpu(ctxt) \
76 	container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
77 
78 /* EFER defaults:
79  * - enable syscall per default because its emulated by KVM
80  * - enable LME and LMA per default on 64 bit KVM
81  */
82 #ifdef CONFIG_X86_64
83 static
84 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
85 #else
86 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
87 #endif
88 
89 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
90 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
91 
92 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
93 static void process_nmi(struct kvm_vcpu *vcpu);
94 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
95 
96 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
97 EXPORT_SYMBOL_GPL(kvm_x86_ops);
98 
99 static bool __read_mostly ignore_msrs = 0;
100 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
101 
102 unsigned int min_timer_period_us = 500;
103 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
104 
105 static bool __read_mostly kvmclock_periodic_sync = true;
106 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
107 
108 bool __read_mostly kvm_has_tsc_control;
109 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
110 u32  __read_mostly kvm_max_guest_tsc_khz;
111 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
112 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
113 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
114 u64  __read_mostly kvm_max_tsc_scaling_ratio;
115 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
116 static u64 __read_mostly kvm_default_tsc_scaling_ratio;
117 
118 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
119 static u32 __read_mostly tsc_tolerance_ppm = 250;
120 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
121 
122 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
123 unsigned int __read_mostly lapic_timer_advance_ns = 0;
124 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
125 
126 static bool __read_mostly vector_hashing = true;
127 module_param(vector_hashing, bool, S_IRUGO);
128 
129 static bool __read_mostly backwards_tsc_observed = false;
130 
131 #define KVM_NR_SHARED_MSRS 16
132 
133 struct kvm_shared_msrs_global {
134 	int nr;
135 	u32 msrs[KVM_NR_SHARED_MSRS];
136 };
137 
138 struct kvm_shared_msrs {
139 	struct user_return_notifier urn;
140 	bool registered;
141 	struct kvm_shared_msr_values {
142 		u64 host;
143 		u64 curr;
144 	} values[KVM_NR_SHARED_MSRS];
145 };
146 
147 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
148 static struct kvm_shared_msrs __percpu *shared_msrs;
149 
150 struct kvm_stats_debugfs_item debugfs_entries[] = {
151 	{ "pf_fixed", VCPU_STAT(pf_fixed) },
152 	{ "pf_guest", VCPU_STAT(pf_guest) },
153 	{ "tlb_flush", VCPU_STAT(tlb_flush) },
154 	{ "invlpg", VCPU_STAT(invlpg) },
155 	{ "exits", VCPU_STAT(exits) },
156 	{ "io_exits", VCPU_STAT(io_exits) },
157 	{ "mmio_exits", VCPU_STAT(mmio_exits) },
158 	{ "signal_exits", VCPU_STAT(signal_exits) },
159 	{ "irq_window", VCPU_STAT(irq_window_exits) },
160 	{ "nmi_window", VCPU_STAT(nmi_window_exits) },
161 	{ "halt_exits", VCPU_STAT(halt_exits) },
162 	{ "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
163 	{ "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
164 	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
165 	{ "hypercalls", VCPU_STAT(hypercalls) },
166 	{ "request_irq", VCPU_STAT(request_irq_exits) },
167 	{ "irq_exits", VCPU_STAT(irq_exits) },
168 	{ "host_state_reload", VCPU_STAT(host_state_reload) },
169 	{ "efer_reload", VCPU_STAT(efer_reload) },
170 	{ "fpu_reload", VCPU_STAT(fpu_reload) },
171 	{ "insn_emulation", VCPU_STAT(insn_emulation) },
172 	{ "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
173 	{ "irq_injections", VCPU_STAT(irq_injections) },
174 	{ "nmi_injections", VCPU_STAT(nmi_injections) },
175 	{ "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
176 	{ "mmu_pte_write", VM_STAT(mmu_pte_write) },
177 	{ "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
178 	{ "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
179 	{ "mmu_flooded", VM_STAT(mmu_flooded) },
180 	{ "mmu_recycled", VM_STAT(mmu_recycled) },
181 	{ "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
182 	{ "mmu_unsync", VM_STAT(mmu_unsync) },
183 	{ "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
184 	{ "largepages", VM_STAT(lpages) },
185 	{ NULL }
186 };
187 
188 u64 __read_mostly host_xcr0;
189 
190 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
191 
192 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
193 {
194 	int i;
195 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
196 		vcpu->arch.apf.gfns[i] = ~0;
197 }
198 
199 static void kvm_on_user_return(struct user_return_notifier *urn)
200 {
201 	unsigned slot;
202 	struct kvm_shared_msrs *locals
203 		= container_of(urn, struct kvm_shared_msrs, urn);
204 	struct kvm_shared_msr_values *values;
205 
206 	for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
207 		values = &locals->values[slot];
208 		if (values->host != values->curr) {
209 			wrmsrl(shared_msrs_global.msrs[slot], values->host);
210 			values->curr = values->host;
211 		}
212 	}
213 	locals->registered = false;
214 	user_return_notifier_unregister(urn);
215 }
216 
217 static void shared_msr_update(unsigned slot, u32 msr)
218 {
219 	u64 value;
220 	unsigned int cpu = smp_processor_id();
221 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
222 
223 	/* only read, and nobody should modify it at this time,
224 	 * so don't need lock */
225 	if (slot >= shared_msrs_global.nr) {
226 		printk(KERN_ERR "kvm: invalid MSR slot!");
227 		return;
228 	}
229 	rdmsrl_safe(msr, &value);
230 	smsr->values[slot].host = value;
231 	smsr->values[slot].curr = value;
232 }
233 
234 void kvm_define_shared_msr(unsigned slot, u32 msr)
235 {
236 	BUG_ON(slot >= KVM_NR_SHARED_MSRS);
237 	shared_msrs_global.msrs[slot] = msr;
238 	if (slot >= shared_msrs_global.nr)
239 		shared_msrs_global.nr = slot + 1;
240 }
241 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
242 
243 static void kvm_shared_msr_cpu_online(void)
244 {
245 	unsigned i;
246 
247 	for (i = 0; i < shared_msrs_global.nr; ++i)
248 		shared_msr_update(i, shared_msrs_global.msrs[i]);
249 }
250 
251 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
252 {
253 	unsigned int cpu = smp_processor_id();
254 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
255 	int err;
256 
257 	if (((value ^ smsr->values[slot].curr) & mask) == 0)
258 		return 0;
259 	smsr->values[slot].curr = value;
260 	err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
261 	if (err)
262 		return 1;
263 
264 	if (!smsr->registered) {
265 		smsr->urn.on_user_return = kvm_on_user_return;
266 		user_return_notifier_register(&smsr->urn);
267 		smsr->registered = true;
268 	}
269 	return 0;
270 }
271 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
272 
273 static void drop_user_return_notifiers(void)
274 {
275 	unsigned int cpu = smp_processor_id();
276 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
277 
278 	if (smsr->registered)
279 		kvm_on_user_return(&smsr->urn);
280 }
281 
282 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
283 {
284 	return vcpu->arch.apic_base;
285 }
286 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
287 
288 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
289 {
290 	u64 old_state = vcpu->arch.apic_base &
291 		(MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
292 	u64 new_state = msr_info->data &
293 		(MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
294 	u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
295 		0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
296 
297 	if (!msr_info->host_initiated &&
298 	    ((msr_info->data & reserved_bits) != 0 ||
299 	     new_state == X2APIC_ENABLE ||
300 	     (new_state == MSR_IA32_APICBASE_ENABLE &&
301 	      old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
302 	     (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
303 	      old_state == 0)))
304 		return 1;
305 
306 	kvm_lapic_set_base(vcpu, msr_info->data);
307 	return 0;
308 }
309 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
310 
311 asmlinkage __visible void kvm_spurious_fault(void)
312 {
313 	/* Fault while not rebooting.  We want the trace. */
314 	BUG();
315 }
316 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
317 
318 #define EXCPT_BENIGN		0
319 #define EXCPT_CONTRIBUTORY	1
320 #define EXCPT_PF		2
321 
322 static int exception_class(int vector)
323 {
324 	switch (vector) {
325 	case PF_VECTOR:
326 		return EXCPT_PF;
327 	case DE_VECTOR:
328 	case TS_VECTOR:
329 	case NP_VECTOR:
330 	case SS_VECTOR:
331 	case GP_VECTOR:
332 		return EXCPT_CONTRIBUTORY;
333 	default:
334 		break;
335 	}
336 	return EXCPT_BENIGN;
337 }
338 
339 #define EXCPT_FAULT		0
340 #define EXCPT_TRAP		1
341 #define EXCPT_ABORT		2
342 #define EXCPT_INTERRUPT		3
343 
344 static int exception_type(int vector)
345 {
346 	unsigned int mask;
347 
348 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
349 		return EXCPT_INTERRUPT;
350 
351 	mask = 1 << vector;
352 
353 	/* #DB is trap, as instruction watchpoints are handled elsewhere */
354 	if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
355 		return EXCPT_TRAP;
356 
357 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
358 		return EXCPT_ABORT;
359 
360 	/* Reserved exceptions will result in fault */
361 	return EXCPT_FAULT;
362 }
363 
364 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
365 		unsigned nr, bool has_error, u32 error_code,
366 		bool reinject)
367 {
368 	u32 prev_nr;
369 	int class1, class2;
370 
371 	kvm_make_request(KVM_REQ_EVENT, vcpu);
372 
373 	if (!vcpu->arch.exception.pending) {
374 	queue:
375 		if (has_error && !is_protmode(vcpu))
376 			has_error = false;
377 		vcpu->arch.exception.pending = true;
378 		vcpu->arch.exception.has_error_code = has_error;
379 		vcpu->arch.exception.nr = nr;
380 		vcpu->arch.exception.error_code = error_code;
381 		vcpu->arch.exception.reinject = reinject;
382 		return;
383 	}
384 
385 	/* to check exception */
386 	prev_nr = vcpu->arch.exception.nr;
387 	if (prev_nr == DF_VECTOR) {
388 		/* triple fault -> shutdown */
389 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
390 		return;
391 	}
392 	class1 = exception_class(prev_nr);
393 	class2 = exception_class(nr);
394 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
395 		|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
396 		/* generate double fault per SDM Table 5-5 */
397 		vcpu->arch.exception.pending = true;
398 		vcpu->arch.exception.has_error_code = true;
399 		vcpu->arch.exception.nr = DF_VECTOR;
400 		vcpu->arch.exception.error_code = 0;
401 	} else
402 		/* replace previous exception with a new one in a hope
403 		   that instruction re-execution will regenerate lost
404 		   exception */
405 		goto queue;
406 }
407 
408 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
409 {
410 	kvm_multiple_exception(vcpu, nr, false, 0, false);
411 }
412 EXPORT_SYMBOL_GPL(kvm_queue_exception);
413 
414 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
415 {
416 	kvm_multiple_exception(vcpu, nr, false, 0, true);
417 }
418 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
419 
420 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
421 {
422 	if (err)
423 		kvm_inject_gp(vcpu, 0);
424 	else
425 		kvm_x86_ops->skip_emulated_instruction(vcpu);
426 }
427 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
428 
429 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
430 {
431 	++vcpu->stat.pf_guest;
432 	vcpu->arch.cr2 = fault->address;
433 	kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
434 }
435 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
436 
437 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
438 {
439 	if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
440 		vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
441 	else
442 		vcpu->arch.mmu.inject_page_fault(vcpu, fault);
443 
444 	return fault->nested_page_fault;
445 }
446 
447 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
448 {
449 	atomic_inc(&vcpu->arch.nmi_queued);
450 	kvm_make_request(KVM_REQ_NMI, vcpu);
451 }
452 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
453 
454 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
455 {
456 	kvm_multiple_exception(vcpu, nr, true, error_code, false);
457 }
458 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
459 
460 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
461 {
462 	kvm_multiple_exception(vcpu, nr, true, error_code, true);
463 }
464 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
465 
466 /*
467  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
468  * a #GP and return false.
469  */
470 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
471 {
472 	if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
473 		return true;
474 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
475 	return false;
476 }
477 EXPORT_SYMBOL_GPL(kvm_require_cpl);
478 
479 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
480 {
481 	if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
482 		return true;
483 
484 	kvm_queue_exception(vcpu, UD_VECTOR);
485 	return false;
486 }
487 EXPORT_SYMBOL_GPL(kvm_require_dr);
488 
489 /*
490  * This function will be used to read from the physical memory of the currently
491  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
492  * can read from guest physical or from the guest's guest physical memory.
493  */
494 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
495 			    gfn_t ngfn, void *data, int offset, int len,
496 			    u32 access)
497 {
498 	struct x86_exception exception;
499 	gfn_t real_gfn;
500 	gpa_t ngpa;
501 
502 	ngpa     = gfn_to_gpa(ngfn);
503 	real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
504 	if (real_gfn == UNMAPPED_GVA)
505 		return -EFAULT;
506 
507 	real_gfn = gpa_to_gfn(real_gfn);
508 
509 	return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
510 }
511 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
512 
513 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
514 			       void *data, int offset, int len, u32 access)
515 {
516 	return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
517 				       data, offset, len, access);
518 }
519 
520 /*
521  * Load the pae pdptrs.  Return true is they are all valid.
522  */
523 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
524 {
525 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
526 	unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
527 	int i;
528 	int ret;
529 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
530 
531 	ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
532 				      offset * sizeof(u64), sizeof(pdpte),
533 				      PFERR_USER_MASK|PFERR_WRITE_MASK);
534 	if (ret < 0) {
535 		ret = 0;
536 		goto out;
537 	}
538 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
539 		if (is_present_gpte(pdpte[i]) &&
540 		    (pdpte[i] &
541 		     vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) {
542 			ret = 0;
543 			goto out;
544 		}
545 	}
546 	ret = 1;
547 
548 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
549 	__set_bit(VCPU_EXREG_PDPTR,
550 		  (unsigned long *)&vcpu->arch.regs_avail);
551 	__set_bit(VCPU_EXREG_PDPTR,
552 		  (unsigned long *)&vcpu->arch.regs_dirty);
553 out:
554 
555 	return ret;
556 }
557 EXPORT_SYMBOL_GPL(load_pdptrs);
558 
559 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
560 {
561 	u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
562 	bool changed = true;
563 	int offset;
564 	gfn_t gfn;
565 	int r;
566 
567 	if (is_long_mode(vcpu) || !is_pae(vcpu))
568 		return false;
569 
570 	if (!test_bit(VCPU_EXREG_PDPTR,
571 		      (unsigned long *)&vcpu->arch.regs_avail))
572 		return true;
573 
574 	gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
575 	offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
576 	r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
577 				       PFERR_USER_MASK | PFERR_WRITE_MASK);
578 	if (r < 0)
579 		goto out;
580 	changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
581 out:
582 
583 	return changed;
584 }
585 
586 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
587 {
588 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
589 	unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
590 
591 	cr0 |= X86_CR0_ET;
592 
593 #ifdef CONFIG_X86_64
594 	if (cr0 & 0xffffffff00000000UL)
595 		return 1;
596 #endif
597 
598 	cr0 &= ~CR0_RESERVED_BITS;
599 
600 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
601 		return 1;
602 
603 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
604 		return 1;
605 
606 	if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
607 #ifdef CONFIG_X86_64
608 		if ((vcpu->arch.efer & EFER_LME)) {
609 			int cs_db, cs_l;
610 
611 			if (!is_pae(vcpu))
612 				return 1;
613 			kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
614 			if (cs_l)
615 				return 1;
616 		} else
617 #endif
618 		if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
619 						 kvm_read_cr3(vcpu)))
620 			return 1;
621 	}
622 
623 	if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
624 		return 1;
625 
626 	kvm_x86_ops->set_cr0(vcpu, cr0);
627 
628 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
629 		kvm_clear_async_pf_completion_queue(vcpu);
630 		kvm_async_pf_hash_reset(vcpu);
631 	}
632 
633 	if ((cr0 ^ old_cr0) & update_bits)
634 		kvm_mmu_reset_context(vcpu);
635 
636 	if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
637 	    kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
638 	    !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
639 		kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
640 
641 	return 0;
642 }
643 EXPORT_SYMBOL_GPL(kvm_set_cr0);
644 
645 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
646 {
647 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
648 }
649 EXPORT_SYMBOL_GPL(kvm_lmsw);
650 
651 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
652 {
653 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
654 			!vcpu->guest_xcr0_loaded) {
655 		/* kvm_set_xcr() also depends on this */
656 		xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
657 		vcpu->guest_xcr0_loaded = 1;
658 	}
659 }
660 
661 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
662 {
663 	if (vcpu->guest_xcr0_loaded) {
664 		if (vcpu->arch.xcr0 != host_xcr0)
665 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
666 		vcpu->guest_xcr0_loaded = 0;
667 	}
668 }
669 
670 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
671 {
672 	u64 xcr0 = xcr;
673 	u64 old_xcr0 = vcpu->arch.xcr0;
674 	u64 valid_bits;
675 
676 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
677 	if (index != XCR_XFEATURE_ENABLED_MASK)
678 		return 1;
679 	if (!(xcr0 & XFEATURE_MASK_FP))
680 		return 1;
681 	if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
682 		return 1;
683 
684 	/*
685 	 * Do not allow the guest to set bits that we do not support
686 	 * saving.  However, xcr0 bit 0 is always set, even if the
687 	 * emulated CPU does not support XSAVE (see fx_init).
688 	 */
689 	valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
690 	if (xcr0 & ~valid_bits)
691 		return 1;
692 
693 	if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
694 	    (!(xcr0 & XFEATURE_MASK_BNDCSR)))
695 		return 1;
696 
697 	if (xcr0 & XFEATURE_MASK_AVX512) {
698 		if (!(xcr0 & XFEATURE_MASK_YMM))
699 			return 1;
700 		if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
701 			return 1;
702 	}
703 	kvm_put_guest_xcr0(vcpu);
704 	vcpu->arch.xcr0 = xcr0;
705 
706 	if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
707 		kvm_update_cpuid(vcpu);
708 	return 0;
709 }
710 
711 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
712 {
713 	if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
714 	    __kvm_set_xcr(vcpu, index, xcr)) {
715 		kvm_inject_gp(vcpu, 0);
716 		return 1;
717 	}
718 	return 0;
719 }
720 EXPORT_SYMBOL_GPL(kvm_set_xcr);
721 
722 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
723 {
724 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
725 	unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
726 				   X86_CR4_SMEP | X86_CR4_SMAP;
727 
728 	if (cr4 & CR4_RESERVED_BITS)
729 		return 1;
730 
731 	if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
732 		return 1;
733 
734 	if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
735 		return 1;
736 
737 	if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP))
738 		return 1;
739 
740 	if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
741 		return 1;
742 
743 	if (is_long_mode(vcpu)) {
744 		if (!(cr4 & X86_CR4_PAE))
745 			return 1;
746 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
747 		   && ((cr4 ^ old_cr4) & pdptr_bits)
748 		   && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
749 				   kvm_read_cr3(vcpu)))
750 		return 1;
751 
752 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
753 		if (!guest_cpuid_has_pcid(vcpu))
754 			return 1;
755 
756 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
757 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
758 			return 1;
759 	}
760 
761 	if (kvm_x86_ops->set_cr4(vcpu, cr4))
762 		return 1;
763 
764 	if (((cr4 ^ old_cr4) & pdptr_bits) ||
765 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
766 		kvm_mmu_reset_context(vcpu);
767 
768 	if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
769 		kvm_update_cpuid(vcpu);
770 
771 	return 0;
772 }
773 EXPORT_SYMBOL_GPL(kvm_set_cr4);
774 
775 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
776 {
777 #ifdef CONFIG_X86_64
778 	cr3 &= ~CR3_PCID_INVD;
779 #endif
780 
781 	if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
782 		kvm_mmu_sync_roots(vcpu);
783 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
784 		return 0;
785 	}
786 
787 	if (is_long_mode(vcpu)) {
788 		if (cr3 & CR3_L_MODE_RESERVED_BITS)
789 			return 1;
790 	} else if (is_pae(vcpu) && is_paging(vcpu) &&
791 		   !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
792 		return 1;
793 
794 	vcpu->arch.cr3 = cr3;
795 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
796 	kvm_mmu_new_cr3(vcpu);
797 	return 0;
798 }
799 EXPORT_SYMBOL_GPL(kvm_set_cr3);
800 
801 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
802 {
803 	if (cr8 & CR8_RESERVED_BITS)
804 		return 1;
805 	if (lapic_in_kernel(vcpu))
806 		kvm_lapic_set_tpr(vcpu, cr8);
807 	else
808 		vcpu->arch.cr8 = cr8;
809 	return 0;
810 }
811 EXPORT_SYMBOL_GPL(kvm_set_cr8);
812 
813 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
814 {
815 	if (lapic_in_kernel(vcpu))
816 		return kvm_lapic_get_cr8(vcpu);
817 	else
818 		return vcpu->arch.cr8;
819 }
820 EXPORT_SYMBOL_GPL(kvm_get_cr8);
821 
822 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
823 {
824 	int i;
825 
826 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
827 		for (i = 0; i < KVM_NR_DB_REGS; i++)
828 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
829 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
830 	}
831 }
832 
833 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
834 {
835 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
836 		kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
837 }
838 
839 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
840 {
841 	unsigned long dr7;
842 
843 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
844 		dr7 = vcpu->arch.guest_debug_dr7;
845 	else
846 		dr7 = vcpu->arch.dr7;
847 	kvm_x86_ops->set_dr7(vcpu, dr7);
848 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
849 	if (dr7 & DR7_BP_EN_MASK)
850 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
851 }
852 
853 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
854 {
855 	u64 fixed = DR6_FIXED_1;
856 
857 	if (!guest_cpuid_has_rtm(vcpu))
858 		fixed |= DR6_RTM;
859 	return fixed;
860 }
861 
862 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
863 {
864 	switch (dr) {
865 	case 0 ... 3:
866 		vcpu->arch.db[dr] = val;
867 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
868 			vcpu->arch.eff_db[dr] = val;
869 		break;
870 	case 4:
871 		/* fall through */
872 	case 6:
873 		if (val & 0xffffffff00000000ULL)
874 			return -1; /* #GP */
875 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
876 		kvm_update_dr6(vcpu);
877 		break;
878 	case 5:
879 		/* fall through */
880 	default: /* 7 */
881 		if (val & 0xffffffff00000000ULL)
882 			return -1; /* #GP */
883 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
884 		kvm_update_dr7(vcpu);
885 		break;
886 	}
887 
888 	return 0;
889 }
890 
891 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
892 {
893 	if (__kvm_set_dr(vcpu, dr, val)) {
894 		kvm_inject_gp(vcpu, 0);
895 		return 1;
896 	}
897 	return 0;
898 }
899 EXPORT_SYMBOL_GPL(kvm_set_dr);
900 
901 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
902 {
903 	switch (dr) {
904 	case 0 ... 3:
905 		*val = vcpu->arch.db[dr];
906 		break;
907 	case 4:
908 		/* fall through */
909 	case 6:
910 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
911 			*val = vcpu->arch.dr6;
912 		else
913 			*val = kvm_x86_ops->get_dr6(vcpu);
914 		break;
915 	case 5:
916 		/* fall through */
917 	default: /* 7 */
918 		*val = vcpu->arch.dr7;
919 		break;
920 	}
921 	return 0;
922 }
923 EXPORT_SYMBOL_GPL(kvm_get_dr);
924 
925 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
926 {
927 	u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
928 	u64 data;
929 	int err;
930 
931 	err = kvm_pmu_rdpmc(vcpu, ecx, &data);
932 	if (err)
933 		return err;
934 	kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
935 	kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
936 	return err;
937 }
938 EXPORT_SYMBOL_GPL(kvm_rdpmc);
939 
940 /*
941  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
942  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
943  *
944  * This list is modified at module load time to reflect the
945  * capabilities of the host cpu. This capabilities test skips MSRs that are
946  * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
947  * may depend on host virtualization features rather than host cpu features.
948  */
949 
950 static u32 msrs_to_save[] = {
951 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
952 	MSR_STAR,
953 #ifdef CONFIG_X86_64
954 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
955 #endif
956 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
957 	MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
958 };
959 
960 static unsigned num_msrs_to_save;
961 
962 static u32 emulated_msrs[] = {
963 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
964 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
965 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
966 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
967 	HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
968 	HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
969 	HV_X64_MSR_RESET,
970 	HV_X64_MSR_VP_INDEX,
971 	HV_X64_MSR_VP_RUNTIME,
972 	HV_X64_MSR_SCONTROL,
973 	HV_X64_MSR_STIMER0_CONFIG,
974 	HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
975 	MSR_KVM_PV_EOI_EN,
976 
977 	MSR_IA32_TSC_ADJUST,
978 	MSR_IA32_TSCDEADLINE,
979 	MSR_IA32_MISC_ENABLE,
980 	MSR_IA32_MCG_STATUS,
981 	MSR_IA32_MCG_CTL,
982 	MSR_IA32_SMBASE,
983 };
984 
985 static unsigned num_emulated_msrs;
986 
987 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
988 {
989 	if (efer & efer_reserved_bits)
990 		return false;
991 
992 	if (efer & EFER_FFXSR) {
993 		struct kvm_cpuid_entry2 *feat;
994 
995 		feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
996 		if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
997 			return false;
998 	}
999 
1000 	if (efer & EFER_SVME) {
1001 		struct kvm_cpuid_entry2 *feat;
1002 
1003 		feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
1004 		if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
1005 			return false;
1006 	}
1007 
1008 	return true;
1009 }
1010 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1011 
1012 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
1013 {
1014 	u64 old_efer = vcpu->arch.efer;
1015 
1016 	if (!kvm_valid_efer(vcpu, efer))
1017 		return 1;
1018 
1019 	if (is_paging(vcpu)
1020 	    && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1021 		return 1;
1022 
1023 	efer &= ~EFER_LMA;
1024 	efer |= vcpu->arch.efer & EFER_LMA;
1025 
1026 	kvm_x86_ops->set_efer(vcpu, efer);
1027 
1028 	/* Update reserved bits */
1029 	if ((efer ^ old_efer) & EFER_NX)
1030 		kvm_mmu_reset_context(vcpu);
1031 
1032 	return 0;
1033 }
1034 
1035 void kvm_enable_efer_bits(u64 mask)
1036 {
1037        efer_reserved_bits &= ~mask;
1038 }
1039 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1040 
1041 /*
1042  * Writes msr value into into the appropriate "register".
1043  * Returns 0 on success, non-0 otherwise.
1044  * Assumes vcpu_load() was already called.
1045  */
1046 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1047 {
1048 	switch (msr->index) {
1049 	case MSR_FS_BASE:
1050 	case MSR_GS_BASE:
1051 	case MSR_KERNEL_GS_BASE:
1052 	case MSR_CSTAR:
1053 	case MSR_LSTAR:
1054 		if (is_noncanonical_address(msr->data))
1055 			return 1;
1056 		break;
1057 	case MSR_IA32_SYSENTER_EIP:
1058 	case MSR_IA32_SYSENTER_ESP:
1059 		/*
1060 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1061 		 * non-canonical address is written on Intel but not on
1062 		 * AMD (which ignores the top 32-bits, because it does
1063 		 * not implement 64-bit SYSENTER).
1064 		 *
1065 		 * 64-bit code should hence be able to write a non-canonical
1066 		 * value on AMD.  Making the address canonical ensures that
1067 		 * vmentry does not fail on Intel after writing a non-canonical
1068 		 * value, and that something deterministic happens if the guest
1069 		 * invokes 64-bit SYSENTER.
1070 		 */
1071 		msr->data = get_canonical(msr->data);
1072 	}
1073 	return kvm_x86_ops->set_msr(vcpu, msr);
1074 }
1075 EXPORT_SYMBOL_GPL(kvm_set_msr);
1076 
1077 /*
1078  * Adapt set_msr() to msr_io()'s calling convention
1079  */
1080 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1081 {
1082 	struct msr_data msr;
1083 	int r;
1084 
1085 	msr.index = index;
1086 	msr.host_initiated = true;
1087 	r = kvm_get_msr(vcpu, &msr);
1088 	if (r)
1089 		return r;
1090 
1091 	*data = msr.data;
1092 	return 0;
1093 }
1094 
1095 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1096 {
1097 	struct msr_data msr;
1098 
1099 	msr.data = *data;
1100 	msr.index = index;
1101 	msr.host_initiated = true;
1102 	return kvm_set_msr(vcpu, &msr);
1103 }
1104 
1105 #ifdef CONFIG_X86_64
1106 struct pvclock_gtod_data {
1107 	seqcount_t	seq;
1108 
1109 	struct { /* extract of a clocksource struct */
1110 		int vclock_mode;
1111 		cycle_t	cycle_last;
1112 		cycle_t	mask;
1113 		u32	mult;
1114 		u32	shift;
1115 	} clock;
1116 
1117 	u64		boot_ns;
1118 	u64		nsec_base;
1119 };
1120 
1121 static struct pvclock_gtod_data pvclock_gtod_data;
1122 
1123 static void update_pvclock_gtod(struct timekeeper *tk)
1124 {
1125 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1126 	u64 boot_ns;
1127 
1128 	boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1129 
1130 	write_seqcount_begin(&vdata->seq);
1131 
1132 	/* copy pvclock gtod data */
1133 	vdata->clock.vclock_mode	= tk->tkr_mono.clock->archdata.vclock_mode;
1134 	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
1135 	vdata->clock.mask		= tk->tkr_mono.mask;
1136 	vdata->clock.mult		= tk->tkr_mono.mult;
1137 	vdata->clock.shift		= tk->tkr_mono.shift;
1138 
1139 	vdata->boot_ns			= boot_ns;
1140 	vdata->nsec_base		= tk->tkr_mono.xtime_nsec;
1141 
1142 	write_seqcount_end(&vdata->seq);
1143 }
1144 #endif
1145 
1146 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1147 {
1148 	/*
1149 	 * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1150 	 * vcpu_enter_guest.  This function is only called from
1151 	 * the physical CPU that is running vcpu.
1152 	 */
1153 	kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1154 }
1155 
1156 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1157 {
1158 	int version;
1159 	int r;
1160 	struct pvclock_wall_clock wc;
1161 	struct timespec boot;
1162 
1163 	if (!wall_clock)
1164 		return;
1165 
1166 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1167 	if (r)
1168 		return;
1169 
1170 	if (version & 1)
1171 		++version;  /* first time write, random junk */
1172 
1173 	++version;
1174 
1175 	if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1176 		return;
1177 
1178 	/*
1179 	 * The guest calculates current wall clock time by adding
1180 	 * system time (updated by kvm_guest_time_update below) to the
1181 	 * wall clock specified here.  guest system time equals host
1182 	 * system time for us, thus we must fill in host boot time here.
1183 	 */
1184 	getboottime(&boot);
1185 
1186 	if (kvm->arch.kvmclock_offset) {
1187 		struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
1188 		boot = timespec_sub(boot, ts);
1189 	}
1190 	wc.sec = boot.tv_sec;
1191 	wc.nsec = boot.tv_nsec;
1192 	wc.version = version;
1193 
1194 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1195 
1196 	version++;
1197 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1198 }
1199 
1200 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1201 {
1202 	do_shl32_div32(dividend, divisor);
1203 	return dividend;
1204 }
1205 
1206 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1207 			       s8 *pshift, u32 *pmultiplier)
1208 {
1209 	uint64_t scaled64;
1210 	int32_t  shift = 0;
1211 	uint64_t tps64;
1212 	uint32_t tps32;
1213 
1214 	tps64 = base_hz;
1215 	scaled64 = scaled_hz;
1216 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1217 		tps64 >>= 1;
1218 		shift--;
1219 	}
1220 
1221 	tps32 = (uint32_t)tps64;
1222 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1223 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1224 			scaled64 >>= 1;
1225 		else
1226 			tps32 <<= 1;
1227 		shift++;
1228 	}
1229 
1230 	*pshift = shift;
1231 	*pmultiplier = div_frac(scaled64, tps32);
1232 
1233 	pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1234 		 __func__, base_hz, scaled_hz, shift, *pmultiplier);
1235 }
1236 
1237 #ifdef CONFIG_X86_64
1238 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1239 #endif
1240 
1241 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1242 static unsigned long max_tsc_khz;
1243 
1244 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1245 {
1246 	return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
1247 				   vcpu->arch.virtual_tsc_shift);
1248 }
1249 
1250 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1251 {
1252 	u64 v = (u64)khz * (1000000 + ppm);
1253 	do_div(v, 1000000);
1254 	return v;
1255 }
1256 
1257 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1258 {
1259 	u64 ratio;
1260 
1261 	/* Guest TSC same frequency as host TSC? */
1262 	if (!scale) {
1263 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1264 		return 0;
1265 	}
1266 
1267 	/* TSC scaling supported? */
1268 	if (!kvm_has_tsc_control) {
1269 		if (user_tsc_khz > tsc_khz) {
1270 			vcpu->arch.tsc_catchup = 1;
1271 			vcpu->arch.tsc_always_catchup = 1;
1272 			return 0;
1273 		} else {
1274 			WARN(1, "user requested TSC rate below hardware speed\n");
1275 			return -1;
1276 		}
1277 	}
1278 
1279 	/* TSC scaling required  - calculate ratio */
1280 	ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1281 				user_tsc_khz, tsc_khz);
1282 
1283 	if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1284 		WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1285 			  user_tsc_khz);
1286 		return -1;
1287 	}
1288 
1289 	vcpu->arch.tsc_scaling_ratio = ratio;
1290 	return 0;
1291 }
1292 
1293 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1294 {
1295 	u32 thresh_lo, thresh_hi;
1296 	int use_scaling = 0;
1297 
1298 	/* tsc_khz can be zero if TSC calibration fails */
1299 	if (user_tsc_khz == 0) {
1300 		/* set tsc_scaling_ratio to a safe value */
1301 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1302 		return -1;
1303 	}
1304 
1305 	/* Compute a scale to convert nanoseconds in TSC cycles */
1306 	kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1307 			   &vcpu->arch.virtual_tsc_shift,
1308 			   &vcpu->arch.virtual_tsc_mult);
1309 	vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1310 
1311 	/*
1312 	 * Compute the variation in TSC rate which is acceptable
1313 	 * within the range of tolerance and decide if the
1314 	 * rate being applied is within that bounds of the hardware
1315 	 * rate.  If so, no scaling or compensation need be done.
1316 	 */
1317 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1318 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1319 	if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1320 		pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1321 		use_scaling = 1;
1322 	}
1323 	return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1324 }
1325 
1326 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1327 {
1328 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1329 				      vcpu->arch.virtual_tsc_mult,
1330 				      vcpu->arch.virtual_tsc_shift);
1331 	tsc += vcpu->arch.this_tsc_write;
1332 	return tsc;
1333 }
1334 
1335 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1336 {
1337 #ifdef CONFIG_X86_64
1338 	bool vcpus_matched;
1339 	struct kvm_arch *ka = &vcpu->kvm->arch;
1340 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1341 
1342 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1343 			 atomic_read(&vcpu->kvm->online_vcpus));
1344 
1345 	/*
1346 	 * Once the masterclock is enabled, always perform request in
1347 	 * order to update it.
1348 	 *
1349 	 * In order to enable masterclock, the host clocksource must be TSC
1350 	 * and the vcpus need to have matched TSCs.  When that happens,
1351 	 * perform request to enable masterclock.
1352 	 */
1353 	if (ka->use_master_clock ||
1354 	    (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1355 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1356 
1357 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1358 			    atomic_read(&vcpu->kvm->online_vcpus),
1359 		            ka->use_master_clock, gtod->clock.vclock_mode);
1360 #endif
1361 }
1362 
1363 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1364 {
1365 	u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
1366 	vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1367 }
1368 
1369 /*
1370  * Multiply tsc by a fixed point number represented by ratio.
1371  *
1372  * The most significant 64-N bits (mult) of ratio represent the
1373  * integral part of the fixed point number; the remaining N bits
1374  * (frac) represent the fractional part, ie. ratio represents a fixed
1375  * point number (mult + frac * 2^(-N)).
1376  *
1377  * N equals to kvm_tsc_scaling_ratio_frac_bits.
1378  */
1379 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1380 {
1381 	return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1382 }
1383 
1384 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1385 {
1386 	u64 _tsc = tsc;
1387 	u64 ratio = vcpu->arch.tsc_scaling_ratio;
1388 
1389 	if (ratio != kvm_default_tsc_scaling_ratio)
1390 		_tsc = __scale_tsc(ratio, tsc);
1391 
1392 	return _tsc;
1393 }
1394 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1395 
1396 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1397 {
1398 	u64 tsc;
1399 
1400 	tsc = kvm_scale_tsc(vcpu, rdtsc());
1401 
1402 	return target_tsc - tsc;
1403 }
1404 
1405 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1406 {
1407 	return kvm_x86_ops->read_l1_tsc(vcpu, kvm_scale_tsc(vcpu, host_tsc));
1408 }
1409 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1410 
1411 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1412 {
1413 	struct kvm *kvm = vcpu->kvm;
1414 	u64 offset, ns, elapsed;
1415 	unsigned long flags;
1416 	s64 usdiff;
1417 	bool matched;
1418 	bool already_matched;
1419 	u64 data = msr->data;
1420 
1421 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1422 	offset = kvm_compute_tsc_offset(vcpu, data);
1423 	ns = get_kernel_ns();
1424 	elapsed = ns - kvm->arch.last_tsc_nsec;
1425 
1426 	if (vcpu->arch.virtual_tsc_khz) {
1427 		int faulted = 0;
1428 
1429 		/* n.b - signed multiplication and division required */
1430 		usdiff = data - kvm->arch.last_tsc_write;
1431 #ifdef CONFIG_X86_64
1432 		usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1433 #else
1434 		/* do_div() only does unsigned */
1435 		asm("1: idivl %[divisor]\n"
1436 		    "2: xor %%edx, %%edx\n"
1437 		    "   movl $0, %[faulted]\n"
1438 		    "3:\n"
1439 		    ".section .fixup,\"ax\"\n"
1440 		    "4: movl $1, %[faulted]\n"
1441 		    "   jmp  3b\n"
1442 		    ".previous\n"
1443 
1444 		_ASM_EXTABLE(1b, 4b)
1445 
1446 		: "=A"(usdiff), [faulted] "=r" (faulted)
1447 		: "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
1448 
1449 #endif
1450 		do_div(elapsed, 1000);
1451 		usdiff -= elapsed;
1452 		if (usdiff < 0)
1453 			usdiff = -usdiff;
1454 
1455 		/* idivl overflow => difference is larger than USEC_PER_SEC */
1456 		if (faulted)
1457 			usdiff = USEC_PER_SEC;
1458 	} else
1459 		usdiff = USEC_PER_SEC; /* disable TSC match window below */
1460 
1461 	/*
1462 	 * Special case: TSC write with a small delta (1 second) of virtual
1463 	 * cycle time against real time is interpreted as an attempt to
1464 	 * synchronize the CPU.
1465          *
1466 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
1467 	 * TSC, we add elapsed time in this computation.  We could let the
1468 	 * compensation code attempt to catch up if we fall behind, but
1469 	 * it's better to try to match offsets from the beginning.
1470          */
1471 	if (usdiff < USEC_PER_SEC &&
1472 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1473 		if (!check_tsc_unstable()) {
1474 			offset = kvm->arch.cur_tsc_offset;
1475 			pr_debug("kvm: matched tsc offset for %llu\n", data);
1476 		} else {
1477 			u64 delta = nsec_to_cycles(vcpu, elapsed);
1478 			data += delta;
1479 			offset = kvm_compute_tsc_offset(vcpu, data);
1480 			pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1481 		}
1482 		matched = true;
1483 		already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1484 	} else {
1485 		/*
1486 		 * We split periods of matched TSC writes into generations.
1487 		 * For each generation, we track the original measured
1488 		 * nanosecond time, offset, and write, so if TSCs are in
1489 		 * sync, we can match exact offset, and if not, we can match
1490 		 * exact software computation in compute_guest_tsc()
1491 		 *
1492 		 * These values are tracked in kvm->arch.cur_xxx variables.
1493 		 */
1494 		kvm->arch.cur_tsc_generation++;
1495 		kvm->arch.cur_tsc_nsec = ns;
1496 		kvm->arch.cur_tsc_write = data;
1497 		kvm->arch.cur_tsc_offset = offset;
1498 		matched = false;
1499 		pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1500 			 kvm->arch.cur_tsc_generation, data);
1501 	}
1502 
1503 	/*
1504 	 * We also track th most recent recorded KHZ, write and time to
1505 	 * allow the matching interval to be extended at each write.
1506 	 */
1507 	kvm->arch.last_tsc_nsec = ns;
1508 	kvm->arch.last_tsc_write = data;
1509 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1510 
1511 	vcpu->arch.last_guest_tsc = data;
1512 
1513 	/* Keep track of which generation this VCPU has synchronized to */
1514 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1515 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1516 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1517 
1518 	if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1519 		update_ia32_tsc_adjust_msr(vcpu, offset);
1520 	kvm_x86_ops->write_tsc_offset(vcpu, offset);
1521 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1522 
1523 	spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1524 	if (!matched) {
1525 		kvm->arch.nr_vcpus_matched_tsc = 0;
1526 	} else if (!already_matched) {
1527 		kvm->arch.nr_vcpus_matched_tsc++;
1528 	}
1529 
1530 	kvm_track_tsc_matching(vcpu);
1531 	spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1532 }
1533 
1534 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1535 
1536 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1537 					   s64 adjustment)
1538 {
1539 	kvm_x86_ops->adjust_tsc_offset_guest(vcpu, adjustment);
1540 }
1541 
1542 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1543 {
1544 	if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1545 		WARN_ON(adjustment < 0);
1546 	adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1547 	kvm_x86_ops->adjust_tsc_offset_guest(vcpu, adjustment);
1548 }
1549 
1550 #ifdef CONFIG_X86_64
1551 
1552 static cycle_t read_tsc(void)
1553 {
1554 	cycle_t ret = (cycle_t)rdtsc_ordered();
1555 	u64 last = pvclock_gtod_data.clock.cycle_last;
1556 
1557 	if (likely(ret >= last))
1558 		return ret;
1559 
1560 	/*
1561 	 * GCC likes to generate cmov here, but this branch is extremely
1562 	 * predictable (it's just a funciton of time and the likely is
1563 	 * very likely) and there's a data dependence, so force GCC
1564 	 * to generate a branch instead.  I don't barrier() because
1565 	 * we don't actually need a barrier, and if this function
1566 	 * ever gets inlined it will generate worse code.
1567 	 */
1568 	asm volatile ("");
1569 	return last;
1570 }
1571 
1572 static inline u64 vgettsc(cycle_t *cycle_now)
1573 {
1574 	long v;
1575 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1576 
1577 	*cycle_now = read_tsc();
1578 
1579 	v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1580 	return v * gtod->clock.mult;
1581 }
1582 
1583 static int do_monotonic_boot(s64 *t, cycle_t *cycle_now)
1584 {
1585 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1586 	unsigned long seq;
1587 	int mode;
1588 	u64 ns;
1589 
1590 	do {
1591 		seq = read_seqcount_begin(&gtod->seq);
1592 		mode = gtod->clock.vclock_mode;
1593 		ns = gtod->nsec_base;
1594 		ns += vgettsc(cycle_now);
1595 		ns >>= gtod->clock.shift;
1596 		ns += gtod->boot_ns;
1597 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1598 	*t = ns;
1599 
1600 	return mode;
1601 }
1602 
1603 /* returns true if host is using tsc clocksource */
1604 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1605 {
1606 	/* checked again under seqlock below */
1607 	if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1608 		return false;
1609 
1610 	return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1611 }
1612 #endif
1613 
1614 /*
1615  *
1616  * Assuming a stable TSC across physical CPUS, and a stable TSC
1617  * across virtual CPUs, the following condition is possible.
1618  * Each numbered line represents an event visible to both
1619  * CPUs at the next numbered event.
1620  *
1621  * "timespecX" represents host monotonic time. "tscX" represents
1622  * RDTSC value.
1623  *
1624  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
1625  *
1626  * 1.  read timespec0,tsc0
1627  * 2.					| timespec1 = timespec0 + N
1628  * 					| tsc1 = tsc0 + M
1629  * 3. transition to guest		| transition to guest
1630  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1631  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
1632  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1633  *
1634  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1635  *
1636  * 	- ret0 < ret1
1637  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1638  *		...
1639  *	- 0 < N - M => M < N
1640  *
1641  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1642  * always the case (the difference between two distinct xtime instances
1643  * might be smaller then the difference between corresponding TSC reads,
1644  * when updating guest vcpus pvclock areas).
1645  *
1646  * To avoid that problem, do not allow visibility of distinct
1647  * system_timestamp/tsc_timestamp values simultaneously: use a master
1648  * copy of host monotonic time values. Update that master copy
1649  * in lockstep.
1650  *
1651  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1652  *
1653  */
1654 
1655 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1656 {
1657 #ifdef CONFIG_X86_64
1658 	struct kvm_arch *ka = &kvm->arch;
1659 	int vclock_mode;
1660 	bool host_tsc_clocksource, vcpus_matched;
1661 
1662 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1663 			atomic_read(&kvm->online_vcpus));
1664 
1665 	/*
1666 	 * If the host uses TSC clock, then passthrough TSC as stable
1667 	 * to the guest.
1668 	 */
1669 	host_tsc_clocksource = kvm_get_time_and_clockread(
1670 					&ka->master_kernel_ns,
1671 					&ka->master_cycle_now);
1672 
1673 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1674 				&& !backwards_tsc_observed
1675 				&& !ka->boot_vcpu_runs_old_kvmclock;
1676 
1677 	if (ka->use_master_clock)
1678 		atomic_set(&kvm_guest_has_master_clock, 1);
1679 
1680 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1681 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1682 					vcpus_matched);
1683 #endif
1684 }
1685 
1686 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
1687 {
1688 	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
1689 }
1690 
1691 static void kvm_gen_update_masterclock(struct kvm *kvm)
1692 {
1693 #ifdef CONFIG_X86_64
1694 	int i;
1695 	struct kvm_vcpu *vcpu;
1696 	struct kvm_arch *ka = &kvm->arch;
1697 
1698 	spin_lock(&ka->pvclock_gtod_sync_lock);
1699 	kvm_make_mclock_inprogress_request(kvm);
1700 	/* no guest entries from this point */
1701 	pvclock_update_vm_gtod_copy(kvm);
1702 
1703 	kvm_for_each_vcpu(i, vcpu, kvm)
1704 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1705 
1706 	/* guest entries allowed */
1707 	kvm_for_each_vcpu(i, vcpu, kvm)
1708 		clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
1709 
1710 	spin_unlock(&ka->pvclock_gtod_sync_lock);
1711 #endif
1712 }
1713 
1714 static int kvm_guest_time_update(struct kvm_vcpu *v)
1715 {
1716 	unsigned long flags, tgt_tsc_khz;
1717 	struct kvm_vcpu_arch *vcpu = &v->arch;
1718 	struct kvm_arch *ka = &v->kvm->arch;
1719 	s64 kernel_ns;
1720 	u64 tsc_timestamp, host_tsc;
1721 	struct pvclock_vcpu_time_info guest_hv_clock;
1722 	u8 pvclock_flags;
1723 	bool use_master_clock;
1724 
1725 	kernel_ns = 0;
1726 	host_tsc = 0;
1727 
1728 	/*
1729 	 * If the host uses TSC clock, then passthrough TSC as stable
1730 	 * to the guest.
1731 	 */
1732 	spin_lock(&ka->pvclock_gtod_sync_lock);
1733 	use_master_clock = ka->use_master_clock;
1734 	if (use_master_clock) {
1735 		host_tsc = ka->master_cycle_now;
1736 		kernel_ns = ka->master_kernel_ns;
1737 	}
1738 	spin_unlock(&ka->pvclock_gtod_sync_lock);
1739 
1740 	/* Keep irq disabled to prevent changes to the clock */
1741 	local_irq_save(flags);
1742 	tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1743 	if (unlikely(tgt_tsc_khz == 0)) {
1744 		local_irq_restore(flags);
1745 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1746 		return 1;
1747 	}
1748 	if (!use_master_clock) {
1749 		host_tsc = rdtsc();
1750 		kernel_ns = get_kernel_ns();
1751 	}
1752 
1753 	tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
1754 
1755 	/*
1756 	 * We may have to catch up the TSC to match elapsed wall clock
1757 	 * time for two reasons, even if kvmclock is used.
1758 	 *   1) CPU could have been running below the maximum TSC rate
1759 	 *   2) Broken TSC compensation resets the base at each VCPU
1760 	 *      entry to avoid unknown leaps of TSC even when running
1761 	 *      again on the same CPU.  This may cause apparent elapsed
1762 	 *      time to disappear, and the guest to stand still or run
1763 	 *	very slowly.
1764 	 */
1765 	if (vcpu->tsc_catchup) {
1766 		u64 tsc = compute_guest_tsc(v, kernel_ns);
1767 		if (tsc > tsc_timestamp) {
1768 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1769 			tsc_timestamp = tsc;
1770 		}
1771 	}
1772 
1773 	local_irq_restore(flags);
1774 
1775 	if (!vcpu->pv_time_enabled)
1776 		return 0;
1777 
1778 	if (kvm_has_tsc_control)
1779 		tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
1780 
1781 	if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
1782 		kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
1783 				   &vcpu->hv_clock.tsc_shift,
1784 				   &vcpu->hv_clock.tsc_to_system_mul);
1785 		vcpu->hw_tsc_khz = tgt_tsc_khz;
1786 	}
1787 
1788 	/* With all the info we got, fill in the values */
1789 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1790 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1791 	vcpu->last_guest_tsc = tsc_timestamp;
1792 
1793 	if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1794 		&guest_hv_clock, sizeof(guest_hv_clock))))
1795 		return 0;
1796 
1797 	/* This VCPU is paused, but it's legal for a guest to read another
1798 	 * VCPU's kvmclock, so we really have to follow the specification where
1799 	 * it says that version is odd if data is being modified, and even after
1800 	 * it is consistent.
1801 	 *
1802 	 * Version field updates must be kept separate.  This is because
1803 	 * kvm_write_guest_cached might use a "rep movs" instruction, and
1804 	 * writes within a string instruction are weakly ordered.  So there
1805 	 * are three writes overall.
1806 	 *
1807 	 * As a small optimization, only write the version field in the first
1808 	 * and third write.  The vcpu->pv_time cache is still valid, because the
1809 	 * version field is the first in the struct.
1810 	 */
1811 	BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1812 
1813 	vcpu->hv_clock.version = guest_hv_clock.version + 1;
1814 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1815 				&vcpu->hv_clock,
1816 				sizeof(vcpu->hv_clock.version));
1817 
1818 	smp_wmb();
1819 
1820 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1821 	pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1822 
1823 	if (vcpu->pvclock_set_guest_stopped_request) {
1824 		pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1825 		vcpu->pvclock_set_guest_stopped_request = false;
1826 	}
1827 
1828 	/* If the host uses TSC clocksource, then it is stable */
1829 	if (use_master_clock)
1830 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1831 
1832 	vcpu->hv_clock.flags = pvclock_flags;
1833 
1834 	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1835 
1836 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1837 				&vcpu->hv_clock,
1838 				sizeof(vcpu->hv_clock));
1839 
1840 	smp_wmb();
1841 
1842 	vcpu->hv_clock.version++;
1843 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1844 				&vcpu->hv_clock,
1845 				sizeof(vcpu->hv_clock.version));
1846 	return 0;
1847 }
1848 
1849 /*
1850  * kvmclock updates which are isolated to a given vcpu, such as
1851  * vcpu->cpu migration, should not allow system_timestamp from
1852  * the rest of the vcpus to remain static. Otherwise ntp frequency
1853  * correction applies to one vcpu's system_timestamp but not
1854  * the others.
1855  *
1856  * So in those cases, request a kvmclock update for all vcpus.
1857  * We need to rate-limit these requests though, as they can
1858  * considerably slow guests that have a large number of vcpus.
1859  * The time for a remote vcpu to update its kvmclock is bound
1860  * by the delay we use to rate-limit the updates.
1861  */
1862 
1863 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1864 
1865 static void kvmclock_update_fn(struct work_struct *work)
1866 {
1867 	int i;
1868 	struct delayed_work *dwork = to_delayed_work(work);
1869 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1870 					   kvmclock_update_work);
1871 	struct kvm *kvm = container_of(ka, struct kvm, arch);
1872 	struct kvm_vcpu *vcpu;
1873 
1874 	kvm_for_each_vcpu(i, vcpu, kvm) {
1875 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1876 		kvm_vcpu_kick(vcpu);
1877 	}
1878 }
1879 
1880 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1881 {
1882 	struct kvm *kvm = v->kvm;
1883 
1884 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1885 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1886 					KVMCLOCK_UPDATE_DELAY);
1887 }
1888 
1889 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1890 
1891 static void kvmclock_sync_fn(struct work_struct *work)
1892 {
1893 	struct delayed_work *dwork = to_delayed_work(work);
1894 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1895 					   kvmclock_sync_work);
1896 	struct kvm *kvm = container_of(ka, struct kvm, arch);
1897 
1898 	if (!kvmclock_periodic_sync)
1899 		return;
1900 
1901 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
1902 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
1903 					KVMCLOCK_SYNC_PERIOD);
1904 }
1905 
1906 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1907 {
1908 	u64 mcg_cap = vcpu->arch.mcg_cap;
1909 	unsigned bank_num = mcg_cap & 0xff;
1910 
1911 	switch (msr) {
1912 	case MSR_IA32_MCG_STATUS:
1913 		vcpu->arch.mcg_status = data;
1914 		break;
1915 	case MSR_IA32_MCG_CTL:
1916 		if (!(mcg_cap & MCG_CTL_P))
1917 			return 1;
1918 		if (data != 0 && data != ~(u64)0)
1919 			return -1;
1920 		vcpu->arch.mcg_ctl = data;
1921 		break;
1922 	default:
1923 		if (msr >= MSR_IA32_MC0_CTL &&
1924 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
1925 			u32 offset = msr - MSR_IA32_MC0_CTL;
1926 			/* only 0 or all 1s can be written to IA32_MCi_CTL
1927 			 * some Linux kernels though clear bit 10 in bank 4 to
1928 			 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1929 			 * this to avoid an uncatched #GP in the guest
1930 			 */
1931 			if ((offset & 0x3) == 0 &&
1932 			    data != 0 && (data | (1 << 10)) != ~(u64)0)
1933 				return -1;
1934 			vcpu->arch.mce_banks[offset] = data;
1935 			break;
1936 		}
1937 		return 1;
1938 	}
1939 	return 0;
1940 }
1941 
1942 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1943 {
1944 	struct kvm *kvm = vcpu->kvm;
1945 	int lm = is_long_mode(vcpu);
1946 	u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1947 		: (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1948 	u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1949 		: kvm->arch.xen_hvm_config.blob_size_32;
1950 	u32 page_num = data & ~PAGE_MASK;
1951 	u64 page_addr = data & PAGE_MASK;
1952 	u8 *page;
1953 	int r;
1954 
1955 	r = -E2BIG;
1956 	if (page_num >= blob_size)
1957 		goto out;
1958 	r = -ENOMEM;
1959 	page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1960 	if (IS_ERR(page)) {
1961 		r = PTR_ERR(page);
1962 		goto out;
1963 	}
1964 	if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
1965 		goto out_free;
1966 	r = 0;
1967 out_free:
1968 	kfree(page);
1969 out:
1970 	return r;
1971 }
1972 
1973 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1974 {
1975 	gpa_t gpa = data & ~0x3f;
1976 
1977 	/* Bits 2:5 are reserved, Should be zero */
1978 	if (data & 0x3c)
1979 		return 1;
1980 
1981 	vcpu->arch.apf.msr_val = data;
1982 
1983 	if (!(data & KVM_ASYNC_PF_ENABLED)) {
1984 		kvm_clear_async_pf_completion_queue(vcpu);
1985 		kvm_async_pf_hash_reset(vcpu);
1986 		return 0;
1987 	}
1988 
1989 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
1990 					sizeof(u32)))
1991 		return 1;
1992 
1993 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1994 	kvm_async_pf_wakeup_all(vcpu);
1995 	return 0;
1996 }
1997 
1998 static void kvmclock_reset(struct kvm_vcpu *vcpu)
1999 {
2000 	vcpu->arch.pv_time_enabled = false;
2001 }
2002 
2003 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
2004 {
2005 	u64 delta;
2006 
2007 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2008 		return;
2009 
2010 	delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
2011 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
2012 	vcpu->arch.st.accum_steal = delta;
2013 }
2014 
2015 static void record_steal_time(struct kvm_vcpu *vcpu)
2016 {
2017 	accumulate_steal_time(vcpu);
2018 
2019 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2020 		return;
2021 
2022 	if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2023 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2024 		return;
2025 
2026 	vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
2027 	vcpu->arch.st.steal.version += 2;
2028 	vcpu->arch.st.accum_steal = 0;
2029 
2030 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2031 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2032 }
2033 
2034 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2035 {
2036 	bool pr = false;
2037 	u32 msr = msr_info->index;
2038 	u64 data = msr_info->data;
2039 
2040 	switch (msr) {
2041 	case MSR_AMD64_NB_CFG:
2042 	case MSR_IA32_UCODE_REV:
2043 	case MSR_IA32_UCODE_WRITE:
2044 	case MSR_VM_HSAVE_PA:
2045 	case MSR_AMD64_PATCH_LOADER:
2046 	case MSR_AMD64_BU_CFG2:
2047 		break;
2048 
2049 	case MSR_EFER:
2050 		return set_efer(vcpu, data);
2051 	case MSR_K7_HWCR:
2052 		data &= ~(u64)0x40;	/* ignore flush filter disable */
2053 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
2054 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
2055 		data &= ~(u64)0x40000;  /* ignore Mc status write enable */
2056 		if (data != 0) {
2057 			vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2058 				    data);
2059 			return 1;
2060 		}
2061 		break;
2062 	case MSR_FAM10H_MMIO_CONF_BASE:
2063 		if (data != 0) {
2064 			vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2065 				    "0x%llx\n", data);
2066 			return 1;
2067 		}
2068 		break;
2069 	case MSR_IA32_DEBUGCTLMSR:
2070 		if (!data) {
2071 			/* We support the non-activated case already */
2072 			break;
2073 		} else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2074 			/* Values other than LBR and BTF are vendor-specific,
2075 			   thus reserved and should throw a #GP */
2076 			return 1;
2077 		}
2078 		vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2079 			    __func__, data);
2080 		break;
2081 	case 0x200 ... 0x2ff:
2082 		return kvm_mtrr_set_msr(vcpu, msr, data);
2083 	case MSR_IA32_APICBASE:
2084 		return kvm_set_apic_base(vcpu, msr_info);
2085 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2086 		return kvm_x2apic_msr_write(vcpu, msr, data);
2087 	case MSR_IA32_TSCDEADLINE:
2088 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
2089 		break;
2090 	case MSR_IA32_TSC_ADJUST:
2091 		if (guest_cpuid_has_tsc_adjust(vcpu)) {
2092 			if (!msr_info->host_initiated) {
2093 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2094 				adjust_tsc_offset_guest(vcpu, adj);
2095 			}
2096 			vcpu->arch.ia32_tsc_adjust_msr = data;
2097 		}
2098 		break;
2099 	case MSR_IA32_MISC_ENABLE:
2100 		vcpu->arch.ia32_misc_enable_msr = data;
2101 		break;
2102 	case MSR_IA32_SMBASE:
2103 		if (!msr_info->host_initiated)
2104 			return 1;
2105 		vcpu->arch.smbase = data;
2106 		break;
2107 	case MSR_KVM_WALL_CLOCK_NEW:
2108 	case MSR_KVM_WALL_CLOCK:
2109 		vcpu->kvm->arch.wall_clock = data;
2110 		kvm_write_wall_clock(vcpu->kvm, data);
2111 		break;
2112 	case MSR_KVM_SYSTEM_TIME_NEW:
2113 	case MSR_KVM_SYSTEM_TIME: {
2114 		u64 gpa_offset;
2115 		struct kvm_arch *ka = &vcpu->kvm->arch;
2116 
2117 		kvmclock_reset(vcpu);
2118 
2119 		if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2120 			bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2121 
2122 			if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2123 				set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
2124 					&vcpu->requests);
2125 
2126 			ka->boot_vcpu_runs_old_kvmclock = tmp;
2127 		}
2128 
2129 		vcpu->arch.time = data;
2130 		kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2131 
2132 		/* we verify if the enable bit is set... */
2133 		if (!(data & 1))
2134 			break;
2135 
2136 		gpa_offset = data & ~(PAGE_MASK | 1);
2137 
2138 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2139 		     &vcpu->arch.pv_time, data & ~1ULL,
2140 		     sizeof(struct pvclock_vcpu_time_info)))
2141 			vcpu->arch.pv_time_enabled = false;
2142 		else
2143 			vcpu->arch.pv_time_enabled = true;
2144 
2145 		break;
2146 	}
2147 	case MSR_KVM_ASYNC_PF_EN:
2148 		if (kvm_pv_enable_async_pf(vcpu, data))
2149 			return 1;
2150 		break;
2151 	case MSR_KVM_STEAL_TIME:
2152 
2153 		if (unlikely(!sched_info_on()))
2154 			return 1;
2155 
2156 		if (data & KVM_STEAL_RESERVED_MASK)
2157 			return 1;
2158 
2159 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2160 						data & KVM_STEAL_VALID_BITS,
2161 						sizeof(struct kvm_steal_time)))
2162 			return 1;
2163 
2164 		vcpu->arch.st.msr_val = data;
2165 
2166 		if (!(data & KVM_MSR_ENABLED))
2167 			break;
2168 
2169 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2170 
2171 		break;
2172 	case MSR_KVM_PV_EOI_EN:
2173 		if (kvm_lapic_enable_pv_eoi(vcpu, data))
2174 			return 1;
2175 		break;
2176 
2177 	case MSR_IA32_MCG_CTL:
2178 	case MSR_IA32_MCG_STATUS:
2179 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2180 		return set_msr_mce(vcpu, msr, data);
2181 
2182 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2183 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2184 		pr = true; /* fall through */
2185 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2186 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2187 		if (kvm_pmu_is_valid_msr(vcpu, msr))
2188 			return kvm_pmu_set_msr(vcpu, msr_info);
2189 
2190 		if (pr || data != 0)
2191 			vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2192 				    "0x%x data 0x%llx\n", msr, data);
2193 		break;
2194 	case MSR_K7_CLK_CTL:
2195 		/*
2196 		 * Ignore all writes to this no longer documented MSR.
2197 		 * Writes are only relevant for old K7 processors,
2198 		 * all pre-dating SVM, but a recommended workaround from
2199 		 * AMD for these chips. It is possible to specify the
2200 		 * affected processor models on the command line, hence
2201 		 * the need to ignore the workaround.
2202 		 */
2203 		break;
2204 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2205 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2206 	case HV_X64_MSR_CRASH_CTL:
2207 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2208 		return kvm_hv_set_msr_common(vcpu, msr, data,
2209 					     msr_info->host_initiated);
2210 	case MSR_IA32_BBL_CR_CTL3:
2211 		/* Drop writes to this legacy MSR -- see rdmsr
2212 		 * counterpart for further detail.
2213 		 */
2214 		vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
2215 		break;
2216 	case MSR_AMD64_OSVW_ID_LENGTH:
2217 		if (!guest_cpuid_has_osvw(vcpu))
2218 			return 1;
2219 		vcpu->arch.osvw.length = data;
2220 		break;
2221 	case MSR_AMD64_OSVW_STATUS:
2222 		if (!guest_cpuid_has_osvw(vcpu))
2223 			return 1;
2224 		vcpu->arch.osvw.status = data;
2225 		break;
2226 	default:
2227 		if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2228 			return xen_hvm_config(vcpu, data);
2229 		if (kvm_pmu_is_valid_msr(vcpu, msr))
2230 			return kvm_pmu_set_msr(vcpu, msr_info);
2231 		if (!ignore_msrs) {
2232 			vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
2233 				    msr, data);
2234 			return 1;
2235 		} else {
2236 			vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
2237 				    msr, data);
2238 			break;
2239 		}
2240 	}
2241 	return 0;
2242 }
2243 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2244 
2245 
2246 /*
2247  * Reads an msr value (of 'msr_index') into 'pdata'.
2248  * Returns 0 on success, non-0 otherwise.
2249  * Assumes vcpu_load() was already called.
2250  */
2251 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2252 {
2253 	return kvm_x86_ops->get_msr(vcpu, msr);
2254 }
2255 EXPORT_SYMBOL_GPL(kvm_get_msr);
2256 
2257 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2258 {
2259 	u64 data;
2260 	u64 mcg_cap = vcpu->arch.mcg_cap;
2261 	unsigned bank_num = mcg_cap & 0xff;
2262 
2263 	switch (msr) {
2264 	case MSR_IA32_P5_MC_ADDR:
2265 	case MSR_IA32_P5_MC_TYPE:
2266 		data = 0;
2267 		break;
2268 	case MSR_IA32_MCG_CAP:
2269 		data = vcpu->arch.mcg_cap;
2270 		break;
2271 	case MSR_IA32_MCG_CTL:
2272 		if (!(mcg_cap & MCG_CTL_P))
2273 			return 1;
2274 		data = vcpu->arch.mcg_ctl;
2275 		break;
2276 	case MSR_IA32_MCG_STATUS:
2277 		data = vcpu->arch.mcg_status;
2278 		break;
2279 	default:
2280 		if (msr >= MSR_IA32_MC0_CTL &&
2281 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
2282 			u32 offset = msr - MSR_IA32_MC0_CTL;
2283 			data = vcpu->arch.mce_banks[offset];
2284 			break;
2285 		}
2286 		return 1;
2287 	}
2288 	*pdata = data;
2289 	return 0;
2290 }
2291 
2292 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2293 {
2294 	switch (msr_info->index) {
2295 	case MSR_IA32_PLATFORM_ID:
2296 	case MSR_IA32_EBL_CR_POWERON:
2297 	case MSR_IA32_DEBUGCTLMSR:
2298 	case MSR_IA32_LASTBRANCHFROMIP:
2299 	case MSR_IA32_LASTBRANCHTOIP:
2300 	case MSR_IA32_LASTINTFROMIP:
2301 	case MSR_IA32_LASTINTTOIP:
2302 	case MSR_K8_SYSCFG:
2303 	case MSR_K8_TSEG_ADDR:
2304 	case MSR_K8_TSEG_MASK:
2305 	case MSR_K7_HWCR:
2306 	case MSR_VM_HSAVE_PA:
2307 	case MSR_K8_INT_PENDING_MSG:
2308 	case MSR_AMD64_NB_CFG:
2309 	case MSR_FAM10H_MMIO_CONF_BASE:
2310 	case MSR_AMD64_BU_CFG2:
2311 		msr_info->data = 0;
2312 		break;
2313 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2314 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2315 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2316 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2317 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2318 			return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2319 		msr_info->data = 0;
2320 		break;
2321 	case MSR_IA32_UCODE_REV:
2322 		msr_info->data = 0x100000000ULL;
2323 		break;
2324 	case MSR_MTRRcap:
2325 	case 0x200 ... 0x2ff:
2326 		return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2327 	case 0xcd: /* fsb frequency */
2328 		msr_info->data = 3;
2329 		break;
2330 		/*
2331 		 * MSR_EBC_FREQUENCY_ID
2332 		 * Conservative value valid for even the basic CPU models.
2333 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2334 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2335 		 * and 266MHz for model 3, or 4. Set Core Clock
2336 		 * Frequency to System Bus Frequency Ratio to 1 (bits
2337 		 * 31:24) even though these are only valid for CPU
2338 		 * models > 2, however guests may end up dividing or
2339 		 * multiplying by zero otherwise.
2340 		 */
2341 	case MSR_EBC_FREQUENCY_ID:
2342 		msr_info->data = 1 << 24;
2343 		break;
2344 	case MSR_IA32_APICBASE:
2345 		msr_info->data = kvm_get_apic_base(vcpu);
2346 		break;
2347 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2348 		return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2349 		break;
2350 	case MSR_IA32_TSCDEADLINE:
2351 		msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2352 		break;
2353 	case MSR_IA32_TSC_ADJUST:
2354 		msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2355 		break;
2356 	case MSR_IA32_MISC_ENABLE:
2357 		msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2358 		break;
2359 	case MSR_IA32_SMBASE:
2360 		if (!msr_info->host_initiated)
2361 			return 1;
2362 		msr_info->data = vcpu->arch.smbase;
2363 		break;
2364 	case MSR_IA32_PERF_STATUS:
2365 		/* TSC increment by tick */
2366 		msr_info->data = 1000ULL;
2367 		/* CPU multiplier */
2368 		msr_info->data |= (((uint64_t)4ULL) << 40);
2369 		break;
2370 	case MSR_EFER:
2371 		msr_info->data = vcpu->arch.efer;
2372 		break;
2373 	case MSR_KVM_WALL_CLOCK:
2374 	case MSR_KVM_WALL_CLOCK_NEW:
2375 		msr_info->data = vcpu->kvm->arch.wall_clock;
2376 		break;
2377 	case MSR_KVM_SYSTEM_TIME:
2378 	case MSR_KVM_SYSTEM_TIME_NEW:
2379 		msr_info->data = vcpu->arch.time;
2380 		break;
2381 	case MSR_KVM_ASYNC_PF_EN:
2382 		msr_info->data = vcpu->arch.apf.msr_val;
2383 		break;
2384 	case MSR_KVM_STEAL_TIME:
2385 		msr_info->data = vcpu->arch.st.msr_val;
2386 		break;
2387 	case MSR_KVM_PV_EOI_EN:
2388 		msr_info->data = vcpu->arch.pv_eoi.msr_val;
2389 		break;
2390 	case MSR_IA32_P5_MC_ADDR:
2391 	case MSR_IA32_P5_MC_TYPE:
2392 	case MSR_IA32_MCG_CAP:
2393 	case MSR_IA32_MCG_CTL:
2394 	case MSR_IA32_MCG_STATUS:
2395 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2396 		return get_msr_mce(vcpu, msr_info->index, &msr_info->data);
2397 	case MSR_K7_CLK_CTL:
2398 		/*
2399 		 * Provide expected ramp-up count for K7. All other
2400 		 * are set to zero, indicating minimum divisors for
2401 		 * every field.
2402 		 *
2403 		 * This prevents guest kernels on AMD host with CPU
2404 		 * type 6, model 8 and higher from exploding due to
2405 		 * the rdmsr failing.
2406 		 */
2407 		msr_info->data = 0x20000000;
2408 		break;
2409 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2410 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2411 	case HV_X64_MSR_CRASH_CTL:
2412 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2413 		return kvm_hv_get_msr_common(vcpu,
2414 					     msr_info->index, &msr_info->data);
2415 		break;
2416 	case MSR_IA32_BBL_CR_CTL3:
2417 		/* This legacy MSR exists but isn't fully documented in current
2418 		 * silicon.  It is however accessed by winxp in very narrow
2419 		 * scenarios where it sets bit #19, itself documented as
2420 		 * a "reserved" bit.  Best effort attempt to source coherent
2421 		 * read data here should the balance of the register be
2422 		 * interpreted by the guest:
2423 		 *
2424 		 * L2 cache control register 3: 64GB range, 256KB size,
2425 		 * enabled, latency 0x1, configured
2426 		 */
2427 		msr_info->data = 0xbe702111;
2428 		break;
2429 	case MSR_AMD64_OSVW_ID_LENGTH:
2430 		if (!guest_cpuid_has_osvw(vcpu))
2431 			return 1;
2432 		msr_info->data = vcpu->arch.osvw.length;
2433 		break;
2434 	case MSR_AMD64_OSVW_STATUS:
2435 		if (!guest_cpuid_has_osvw(vcpu))
2436 			return 1;
2437 		msr_info->data = vcpu->arch.osvw.status;
2438 		break;
2439 	default:
2440 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2441 			return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2442 		if (!ignore_msrs) {
2443 			vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr_info->index);
2444 			return 1;
2445 		} else {
2446 			vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr_info->index);
2447 			msr_info->data = 0;
2448 		}
2449 		break;
2450 	}
2451 	return 0;
2452 }
2453 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2454 
2455 /*
2456  * Read or write a bunch of msrs. All parameters are kernel addresses.
2457  *
2458  * @return number of msrs set successfully.
2459  */
2460 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2461 		    struct kvm_msr_entry *entries,
2462 		    int (*do_msr)(struct kvm_vcpu *vcpu,
2463 				  unsigned index, u64 *data))
2464 {
2465 	int i, idx;
2466 
2467 	idx = srcu_read_lock(&vcpu->kvm->srcu);
2468 	for (i = 0; i < msrs->nmsrs; ++i)
2469 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
2470 			break;
2471 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
2472 
2473 	return i;
2474 }
2475 
2476 /*
2477  * Read or write a bunch of msrs. Parameters are user addresses.
2478  *
2479  * @return number of msrs set successfully.
2480  */
2481 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2482 		  int (*do_msr)(struct kvm_vcpu *vcpu,
2483 				unsigned index, u64 *data),
2484 		  int writeback)
2485 {
2486 	struct kvm_msrs msrs;
2487 	struct kvm_msr_entry *entries;
2488 	int r, n;
2489 	unsigned size;
2490 
2491 	r = -EFAULT;
2492 	if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2493 		goto out;
2494 
2495 	r = -E2BIG;
2496 	if (msrs.nmsrs >= MAX_IO_MSRS)
2497 		goto out;
2498 
2499 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2500 	entries = memdup_user(user_msrs->entries, size);
2501 	if (IS_ERR(entries)) {
2502 		r = PTR_ERR(entries);
2503 		goto out;
2504 	}
2505 
2506 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2507 	if (r < 0)
2508 		goto out_free;
2509 
2510 	r = -EFAULT;
2511 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
2512 		goto out_free;
2513 
2514 	r = n;
2515 
2516 out_free:
2517 	kfree(entries);
2518 out:
2519 	return r;
2520 }
2521 
2522 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2523 {
2524 	int r;
2525 
2526 	switch (ext) {
2527 	case KVM_CAP_IRQCHIP:
2528 	case KVM_CAP_HLT:
2529 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2530 	case KVM_CAP_SET_TSS_ADDR:
2531 	case KVM_CAP_EXT_CPUID:
2532 	case KVM_CAP_EXT_EMUL_CPUID:
2533 	case KVM_CAP_CLOCKSOURCE:
2534 	case KVM_CAP_PIT:
2535 	case KVM_CAP_NOP_IO_DELAY:
2536 	case KVM_CAP_MP_STATE:
2537 	case KVM_CAP_SYNC_MMU:
2538 	case KVM_CAP_USER_NMI:
2539 	case KVM_CAP_REINJECT_CONTROL:
2540 	case KVM_CAP_IRQ_INJECT_STATUS:
2541 	case KVM_CAP_IOEVENTFD:
2542 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
2543 	case KVM_CAP_PIT2:
2544 	case KVM_CAP_PIT_STATE2:
2545 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2546 	case KVM_CAP_XEN_HVM:
2547 	case KVM_CAP_ADJUST_CLOCK:
2548 	case KVM_CAP_VCPU_EVENTS:
2549 	case KVM_CAP_HYPERV:
2550 	case KVM_CAP_HYPERV_VAPIC:
2551 	case KVM_CAP_HYPERV_SPIN:
2552 	case KVM_CAP_HYPERV_SYNIC:
2553 	case KVM_CAP_PCI_SEGMENT:
2554 	case KVM_CAP_DEBUGREGS:
2555 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
2556 	case KVM_CAP_XSAVE:
2557 	case KVM_CAP_ASYNC_PF:
2558 	case KVM_CAP_GET_TSC_KHZ:
2559 	case KVM_CAP_KVMCLOCK_CTRL:
2560 	case KVM_CAP_READONLY_MEM:
2561 	case KVM_CAP_HYPERV_TIME:
2562 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2563 	case KVM_CAP_TSC_DEADLINE_TIMER:
2564 	case KVM_CAP_ENABLE_CAP_VM:
2565 	case KVM_CAP_DISABLE_QUIRKS:
2566 	case KVM_CAP_SET_BOOT_CPU_ID:
2567  	case KVM_CAP_SPLIT_IRQCHIP:
2568 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2569 	case KVM_CAP_ASSIGN_DEV_IRQ:
2570 	case KVM_CAP_PCI_2_3:
2571 #endif
2572 		r = 1;
2573 		break;
2574 	case KVM_CAP_X86_SMM:
2575 		/* SMBASE is usually relocated above 1M on modern chipsets,
2576 		 * and SMM handlers might indeed rely on 4G segment limits,
2577 		 * so do not report SMM to be available if real mode is
2578 		 * emulated via vm86 mode.  Still, do not go to great lengths
2579 		 * to avoid userspace's usage of the feature, because it is a
2580 		 * fringe case that is not enabled except via specific settings
2581 		 * of the module parameters.
2582 		 */
2583 		r = kvm_x86_ops->cpu_has_high_real_mode_segbase();
2584 		break;
2585 	case KVM_CAP_COALESCED_MMIO:
2586 		r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2587 		break;
2588 	case KVM_CAP_VAPIC:
2589 		r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2590 		break;
2591 	case KVM_CAP_NR_VCPUS:
2592 		r = KVM_SOFT_MAX_VCPUS;
2593 		break;
2594 	case KVM_CAP_MAX_VCPUS:
2595 		r = KVM_MAX_VCPUS;
2596 		break;
2597 	case KVM_CAP_NR_MEMSLOTS:
2598 		r = KVM_USER_MEM_SLOTS;
2599 		break;
2600 	case KVM_CAP_PV_MMU:	/* obsolete */
2601 		r = 0;
2602 		break;
2603 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2604 	case KVM_CAP_IOMMU:
2605 		r = iommu_present(&pci_bus_type);
2606 		break;
2607 #endif
2608 	case KVM_CAP_MCE:
2609 		r = KVM_MAX_MCE_BANKS;
2610 		break;
2611 	case KVM_CAP_XCRS:
2612 		r = cpu_has_xsave;
2613 		break;
2614 	case KVM_CAP_TSC_CONTROL:
2615 		r = kvm_has_tsc_control;
2616 		break;
2617 	default:
2618 		r = 0;
2619 		break;
2620 	}
2621 	return r;
2622 
2623 }
2624 
2625 long kvm_arch_dev_ioctl(struct file *filp,
2626 			unsigned int ioctl, unsigned long arg)
2627 {
2628 	void __user *argp = (void __user *)arg;
2629 	long r;
2630 
2631 	switch (ioctl) {
2632 	case KVM_GET_MSR_INDEX_LIST: {
2633 		struct kvm_msr_list __user *user_msr_list = argp;
2634 		struct kvm_msr_list msr_list;
2635 		unsigned n;
2636 
2637 		r = -EFAULT;
2638 		if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2639 			goto out;
2640 		n = msr_list.nmsrs;
2641 		msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
2642 		if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2643 			goto out;
2644 		r = -E2BIG;
2645 		if (n < msr_list.nmsrs)
2646 			goto out;
2647 		r = -EFAULT;
2648 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2649 				 num_msrs_to_save * sizeof(u32)))
2650 			goto out;
2651 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2652 				 &emulated_msrs,
2653 				 num_emulated_msrs * sizeof(u32)))
2654 			goto out;
2655 		r = 0;
2656 		break;
2657 	}
2658 	case KVM_GET_SUPPORTED_CPUID:
2659 	case KVM_GET_EMULATED_CPUID: {
2660 		struct kvm_cpuid2 __user *cpuid_arg = argp;
2661 		struct kvm_cpuid2 cpuid;
2662 
2663 		r = -EFAULT;
2664 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2665 			goto out;
2666 
2667 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2668 					    ioctl);
2669 		if (r)
2670 			goto out;
2671 
2672 		r = -EFAULT;
2673 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2674 			goto out;
2675 		r = 0;
2676 		break;
2677 	}
2678 	case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2679 		u64 mce_cap;
2680 
2681 		mce_cap = KVM_MCE_CAP_SUPPORTED;
2682 		r = -EFAULT;
2683 		if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2684 			goto out;
2685 		r = 0;
2686 		break;
2687 	}
2688 	default:
2689 		r = -EINVAL;
2690 	}
2691 out:
2692 	return r;
2693 }
2694 
2695 static void wbinvd_ipi(void *garbage)
2696 {
2697 	wbinvd();
2698 }
2699 
2700 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2701 {
2702 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2703 }
2704 
2705 static inline void kvm_migrate_timers(struct kvm_vcpu *vcpu)
2706 {
2707 	set_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests);
2708 }
2709 
2710 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2711 {
2712 	/* Address WBINVD may be executed by guest */
2713 	if (need_emulate_wbinvd(vcpu)) {
2714 		if (kvm_x86_ops->has_wbinvd_exit())
2715 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2716 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2717 			smp_call_function_single(vcpu->cpu,
2718 					wbinvd_ipi, NULL, 1);
2719 	}
2720 
2721 	kvm_x86_ops->vcpu_load(vcpu, cpu);
2722 
2723 	/* Apply any externally detected TSC adjustments (due to suspend) */
2724 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2725 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2726 		vcpu->arch.tsc_offset_adjustment = 0;
2727 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2728 	}
2729 
2730 	if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2731 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2732 				rdtsc() - vcpu->arch.last_host_tsc;
2733 		if (tsc_delta < 0)
2734 			mark_tsc_unstable("KVM discovered backwards TSC");
2735 		if (check_tsc_unstable()) {
2736 			u64 offset = kvm_compute_tsc_offset(vcpu,
2737 						vcpu->arch.last_guest_tsc);
2738 			kvm_x86_ops->write_tsc_offset(vcpu, offset);
2739 			vcpu->arch.tsc_catchup = 1;
2740 		}
2741 		/*
2742 		 * On a host with synchronized TSC, there is no need to update
2743 		 * kvmclock on vcpu->cpu migration
2744 		 */
2745 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2746 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2747 		if (vcpu->cpu != cpu)
2748 			kvm_migrate_timers(vcpu);
2749 		vcpu->cpu = cpu;
2750 	}
2751 
2752 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2753 }
2754 
2755 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2756 {
2757 	kvm_x86_ops->vcpu_put(vcpu);
2758 	kvm_put_guest_fpu(vcpu);
2759 	vcpu->arch.last_host_tsc = rdtsc();
2760 }
2761 
2762 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2763 				    struct kvm_lapic_state *s)
2764 {
2765 	if (vcpu->arch.apicv_active)
2766 		kvm_x86_ops->sync_pir_to_irr(vcpu);
2767 
2768 	memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2769 
2770 	return 0;
2771 }
2772 
2773 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2774 				    struct kvm_lapic_state *s)
2775 {
2776 	kvm_apic_post_state_restore(vcpu, s);
2777 	update_cr8_intercept(vcpu);
2778 
2779 	return 0;
2780 }
2781 
2782 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
2783 {
2784 	return (!lapic_in_kernel(vcpu) ||
2785 		kvm_apic_accept_pic_intr(vcpu));
2786 }
2787 
2788 /*
2789  * if userspace requested an interrupt window, check that the
2790  * interrupt window is open.
2791  *
2792  * No need to exit to userspace if we already have an interrupt queued.
2793  */
2794 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
2795 {
2796 	return kvm_arch_interrupt_allowed(vcpu) &&
2797 		!kvm_cpu_has_interrupt(vcpu) &&
2798 		!kvm_event_needs_reinjection(vcpu) &&
2799 		kvm_cpu_accept_dm_intr(vcpu);
2800 }
2801 
2802 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2803 				    struct kvm_interrupt *irq)
2804 {
2805 	if (irq->irq >= KVM_NR_INTERRUPTS)
2806 		return -EINVAL;
2807 
2808 	if (!irqchip_in_kernel(vcpu->kvm)) {
2809 		kvm_queue_interrupt(vcpu, irq->irq, false);
2810 		kvm_make_request(KVM_REQ_EVENT, vcpu);
2811 		return 0;
2812 	}
2813 
2814 	/*
2815 	 * With in-kernel LAPIC, we only use this to inject EXTINT, so
2816 	 * fail for in-kernel 8259.
2817 	 */
2818 	if (pic_in_kernel(vcpu->kvm))
2819 		return -ENXIO;
2820 
2821 	if (vcpu->arch.pending_external_vector != -1)
2822 		return -EEXIST;
2823 
2824 	vcpu->arch.pending_external_vector = irq->irq;
2825 	kvm_make_request(KVM_REQ_EVENT, vcpu);
2826 	return 0;
2827 }
2828 
2829 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2830 {
2831 	kvm_inject_nmi(vcpu);
2832 
2833 	return 0;
2834 }
2835 
2836 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
2837 {
2838 	kvm_make_request(KVM_REQ_SMI, vcpu);
2839 
2840 	return 0;
2841 }
2842 
2843 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2844 					   struct kvm_tpr_access_ctl *tac)
2845 {
2846 	if (tac->flags)
2847 		return -EINVAL;
2848 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
2849 	return 0;
2850 }
2851 
2852 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2853 					u64 mcg_cap)
2854 {
2855 	int r;
2856 	unsigned bank_num = mcg_cap & 0xff, bank;
2857 
2858 	r = -EINVAL;
2859 	if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2860 		goto out;
2861 	if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2862 		goto out;
2863 	r = 0;
2864 	vcpu->arch.mcg_cap = mcg_cap;
2865 	/* Init IA32_MCG_CTL to all 1s */
2866 	if (mcg_cap & MCG_CTL_P)
2867 		vcpu->arch.mcg_ctl = ~(u64)0;
2868 	/* Init IA32_MCi_CTL to all 1s */
2869 	for (bank = 0; bank < bank_num; bank++)
2870 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2871 out:
2872 	return r;
2873 }
2874 
2875 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2876 				      struct kvm_x86_mce *mce)
2877 {
2878 	u64 mcg_cap = vcpu->arch.mcg_cap;
2879 	unsigned bank_num = mcg_cap & 0xff;
2880 	u64 *banks = vcpu->arch.mce_banks;
2881 
2882 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2883 		return -EINVAL;
2884 	/*
2885 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2886 	 * reporting is disabled
2887 	 */
2888 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2889 	    vcpu->arch.mcg_ctl != ~(u64)0)
2890 		return 0;
2891 	banks += 4 * mce->bank;
2892 	/*
2893 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
2894 	 * reporting is disabled for the bank
2895 	 */
2896 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2897 		return 0;
2898 	if (mce->status & MCI_STATUS_UC) {
2899 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2900 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2901 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2902 			return 0;
2903 		}
2904 		if (banks[1] & MCI_STATUS_VAL)
2905 			mce->status |= MCI_STATUS_OVER;
2906 		banks[2] = mce->addr;
2907 		banks[3] = mce->misc;
2908 		vcpu->arch.mcg_status = mce->mcg_status;
2909 		banks[1] = mce->status;
2910 		kvm_queue_exception(vcpu, MC_VECTOR);
2911 	} else if (!(banks[1] & MCI_STATUS_VAL)
2912 		   || !(banks[1] & MCI_STATUS_UC)) {
2913 		if (banks[1] & MCI_STATUS_VAL)
2914 			mce->status |= MCI_STATUS_OVER;
2915 		banks[2] = mce->addr;
2916 		banks[3] = mce->misc;
2917 		banks[1] = mce->status;
2918 	} else
2919 		banks[1] |= MCI_STATUS_OVER;
2920 	return 0;
2921 }
2922 
2923 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2924 					       struct kvm_vcpu_events *events)
2925 {
2926 	process_nmi(vcpu);
2927 	events->exception.injected =
2928 		vcpu->arch.exception.pending &&
2929 		!kvm_exception_is_soft(vcpu->arch.exception.nr);
2930 	events->exception.nr = vcpu->arch.exception.nr;
2931 	events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2932 	events->exception.pad = 0;
2933 	events->exception.error_code = vcpu->arch.exception.error_code;
2934 
2935 	events->interrupt.injected =
2936 		vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2937 	events->interrupt.nr = vcpu->arch.interrupt.nr;
2938 	events->interrupt.soft = 0;
2939 	events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
2940 
2941 	events->nmi.injected = vcpu->arch.nmi_injected;
2942 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
2943 	events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2944 	events->nmi.pad = 0;
2945 
2946 	events->sipi_vector = 0; /* never valid when reporting to user space */
2947 
2948 	events->smi.smm = is_smm(vcpu);
2949 	events->smi.pending = vcpu->arch.smi_pending;
2950 	events->smi.smm_inside_nmi =
2951 		!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
2952 	events->smi.latched_init = kvm_lapic_latched_init(vcpu);
2953 
2954 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2955 			 | KVM_VCPUEVENT_VALID_SHADOW
2956 			 | KVM_VCPUEVENT_VALID_SMM);
2957 	memset(&events->reserved, 0, sizeof(events->reserved));
2958 }
2959 
2960 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2961 					      struct kvm_vcpu_events *events)
2962 {
2963 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2964 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2965 			      | KVM_VCPUEVENT_VALID_SHADOW
2966 			      | KVM_VCPUEVENT_VALID_SMM))
2967 		return -EINVAL;
2968 
2969 	process_nmi(vcpu);
2970 	vcpu->arch.exception.pending = events->exception.injected;
2971 	vcpu->arch.exception.nr = events->exception.nr;
2972 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2973 	vcpu->arch.exception.error_code = events->exception.error_code;
2974 
2975 	vcpu->arch.interrupt.pending = events->interrupt.injected;
2976 	vcpu->arch.interrupt.nr = events->interrupt.nr;
2977 	vcpu->arch.interrupt.soft = events->interrupt.soft;
2978 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2979 		kvm_x86_ops->set_interrupt_shadow(vcpu,
2980 						  events->interrupt.shadow);
2981 
2982 	vcpu->arch.nmi_injected = events->nmi.injected;
2983 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2984 		vcpu->arch.nmi_pending = events->nmi.pending;
2985 	kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2986 
2987 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
2988 	    lapic_in_kernel(vcpu))
2989 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
2990 
2991 	if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
2992 		if (events->smi.smm)
2993 			vcpu->arch.hflags |= HF_SMM_MASK;
2994 		else
2995 			vcpu->arch.hflags &= ~HF_SMM_MASK;
2996 		vcpu->arch.smi_pending = events->smi.pending;
2997 		if (events->smi.smm_inside_nmi)
2998 			vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
2999 		else
3000 			vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3001 		if (lapic_in_kernel(vcpu)) {
3002 			if (events->smi.latched_init)
3003 				set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3004 			else
3005 				clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3006 		}
3007 	}
3008 
3009 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3010 
3011 	return 0;
3012 }
3013 
3014 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3015 					     struct kvm_debugregs *dbgregs)
3016 {
3017 	unsigned long val;
3018 
3019 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3020 	kvm_get_dr(vcpu, 6, &val);
3021 	dbgregs->dr6 = val;
3022 	dbgregs->dr7 = vcpu->arch.dr7;
3023 	dbgregs->flags = 0;
3024 	memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3025 }
3026 
3027 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3028 					    struct kvm_debugregs *dbgregs)
3029 {
3030 	if (dbgregs->flags)
3031 		return -EINVAL;
3032 
3033 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3034 	kvm_update_dr0123(vcpu);
3035 	vcpu->arch.dr6 = dbgregs->dr6;
3036 	kvm_update_dr6(vcpu);
3037 	vcpu->arch.dr7 = dbgregs->dr7;
3038 	kvm_update_dr7(vcpu);
3039 
3040 	return 0;
3041 }
3042 
3043 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3044 
3045 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3046 {
3047 	struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3048 	u64 xstate_bv = xsave->header.xfeatures;
3049 	u64 valid;
3050 
3051 	/*
3052 	 * Copy legacy XSAVE area, to avoid complications with CPUID
3053 	 * leaves 0 and 1 in the loop below.
3054 	 */
3055 	memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3056 
3057 	/* Set XSTATE_BV */
3058 	*(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3059 
3060 	/*
3061 	 * Copy each region from the possibly compacted offset to the
3062 	 * non-compacted offset.
3063 	 */
3064 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3065 	while (valid) {
3066 		u64 feature = valid & -valid;
3067 		int index = fls64(feature) - 1;
3068 		void *src = get_xsave_addr(xsave, feature);
3069 
3070 		if (src) {
3071 			u32 size, offset, ecx, edx;
3072 			cpuid_count(XSTATE_CPUID, index,
3073 				    &size, &offset, &ecx, &edx);
3074 			memcpy(dest + offset, src, size);
3075 		}
3076 
3077 		valid -= feature;
3078 	}
3079 }
3080 
3081 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3082 {
3083 	struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3084 	u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3085 	u64 valid;
3086 
3087 	/*
3088 	 * Copy legacy XSAVE area, to avoid complications with CPUID
3089 	 * leaves 0 and 1 in the loop below.
3090 	 */
3091 	memcpy(xsave, src, XSAVE_HDR_OFFSET);
3092 
3093 	/* Set XSTATE_BV and possibly XCOMP_BV.  */
3094 	xsave->header.xfeatures = xstate_bv;
3095 	if (cpu_has_xsaves)
3096 		xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3097 
3098 	/*
3099 	 * Copy each region from the non-compacted offset to the
3100 	 * possibly compacted offset.
3101 	 */
3102 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3103 	while (valid) {
3104 		u64 feature = valid & -valid;
3105 		int index = fls64(feature) - 1;
3106 		void *dest = get_xsave_addr(xsave, feature);
3107 
3108 		if (dest) {
3109 			u32 size, offset, ecx, edx;
3110 			cpuid_count(XSTATE_CPUID, index,
3111 				    &size, &offset, &ecx, &edx);
3112 			memcpy(dest, src + offset, size);
3113 		}
3114 
3115 		valid -= feature;
3116 	}
3117 }
3118 
3119 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3120 					 struct kvm_xsave *guest_xsave)
3121 {
3122 	if (cpu_has_xsave) {
3123 		memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3124 		fill_xsave((u8 *) guest_xsave->region, vcpu);
3125 	} else {
3126 		memcpy(guest_xsave->region,
3127 			&vcpu->arch.guest_fpu.state.fxsave,
3128 			sizeof(struct fxregs_state));
3129 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3130 			XFEATURE_MASK_FPSSE;
3131 	}
3132 }
3133 
3134 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3135 					struct kvm_xsave *guest_xsave)
3136 {
3137 	u64 xstate_bv =
3138 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3139 
3140 	if (cpu_has_xsave) {
3141 		/*
3142 		 * Here we allow setting states that are not present in
3143 		 * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3144 		 * with old userspace.
3145 		 */
3146 		if (xstate_bv & ~kvm_supported_xcr0())
3147 			return -EINVAL;
3148 		load_xsave(vcpu, (u8 *)guest_xsave->region);
3149 	} else {
3150 		if (xstate_bv & ~XFEATURE_MASK_FPSSE)
3151 			return -EINVAL;
3152 		memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3153 			guest_xsave->region, sizeof(struct fxregs_state));
3154 	}
3155 	return 0;
3156 }
3157 
3158 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3159 					struct kvm_xcrs *guest_xcrs)
3160 {
3161 	if (!cpu_has_xsave) {
3162 		guest_xcrs->nr_xcrs = 0;
3163 		return;
3164 	}
3165 
3166 	guest_xcrs->nr_xcrs = 1;
3167 	guest_xcrs->flags = 0;
3168 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3169 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3170 }
3171 
3172 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3173 				       struct kvm_xcrs *guest_xcrs)
3174 {
3175 	int i, r = 0;
3176 
3177 	if (!cpu_has_xsave)
3178 		return -EINVAL;
3179 
3180 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3181 		return -EINVAL;
3182 
3183 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3184 		/* Only support XCR0 currently */
3185 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3186 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3187 				guest_xcrs->xcrs[i].value);
3188 			break;
3189 		}
3190 	if (r)
3191 		r = -EINVAL;
3192 	return r;
3193 }
3194 
3195 /*
3196  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3197  * stopped by the hypervisor.  This function will be called from the host only.
3198  * EINVAL is returned when the host attempts to set the flag for a guest that
3199  * does not support pv clocks.
3200  */
3201 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3202 {
3203 	if (!vcpu->arch.pv_time_enabled)
3204 		return -EINVAL;
3205 	vcpu->arch.pvclock_set_guest_stopped_request = true;
3206 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3207 	return 0;
3208 }
3209 
3210 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3211 				     struct kvm_enable_cap *cap)
3212 {
3213 	if (cap->flags)
3214 		return -EINVAL;
3215 
3216 	switch (cap->cap) {
3217 	case KVM_CAP_HYPERV_SYNIC:
3218 		return kvm_hv_activate_synic(vcpu);
3219 	default:
3220 		return -EINVAL;
3221 	}
3222 }
3223 
3224 long kvm_arch_vcpu_ioctl(struct file *filp,
3225 			 unsigned int ioctl, unsigned long arg)
3226 {
3227 	struct kvm_vcpu *vcpu = filp->private_data;
3228 	void __user *argp = (void __user *)arg;
3229 	int r;
3230 	union {
3231 		struct kvm_lapic_state *lapic;
3232 		struct kvm_xsave *xsave;
3233 		struct kvm_xcrs *xcrs;
3234 		void *buffer;
3235 	} u;
3236 
3237 	u.buffer = NULL;
3238 	switch (ioctl) {
3239 	case KVM_GET_LAPIC: {
3240 		r = -EINVAL;
3241 		if (!lapic_in_kernel(vcpu))
3242 			goto out;
3243 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3244 
3245 		r = -ENOMEM;
3246 		if (!u.lapic)
3247 			goto out;
3248 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3249 		if (r)
3250 			goto out;
3251 		r = -EFAULT;
3252 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3253 			goto out;
3254 		r = 0;
3255 		break;
3256 	}
3257 	case KVM_SET_LAPIC: {
3258 		r = -EINVAL;
3259 		if (!lapic_in_kernel(vcpu))
3260 			goto out;
3261 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
3262 		if (IS_ERR(u.lapic))
3263 			return PTR_ERR(u.lapic);
3264 
3265 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3266 		break;
3267 	}
3268 	case KVM_INTERRUPT: {
3269 		struct kvm_interrupt irq;
3270 
3271 		r = -EFAULT;
3272 		if (copy_from_user(&irq, argp, sizeof irq))
3273 			goto out;
3274 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3275 		break;
3276 	}
3277 	case KVM_NMI: {
3278 		r = kvm_vcpu_ioctl_nmi(vcpu);
3279 		break;
3280 	}
3281 	case KVM_SMI: {
3282 		r = kvm_vcpu_ioctl_smi(vcpu);
3283 		break;
3284 	}
3285 	case KVM_SET_CPUID: {
3286 		struct kvm_cpuid __user *cpuid_arg = argp;
3287 		struct kvm_cpuid cpuid;
3288 
3289 		r = -EFAULT;
3290 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3291 			goto out;
3292 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3293 		break;
3294 	}
3295 	case KVM_SET_CPUID2: {
3296 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3297 		struct kvm_cpuid2 cpuid;
3298 
3299 		r = -EFAULT;
3300 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3301 			goto out;
3302 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3303 					      cpuid_arg->entries);
3304 		break;
3305 	}
3306 	case KVM_GET_CPUID2: {
3307 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3308 		struct kvm_cpuid2 cpuid;
3309 
3310 		r = -EFAULT;
3311 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3312 			goto out;
3313 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3314 					      cpuid_arg->entries);
3315 		if (r)
3316 			goto out;
3317 		r = -EFAULT;
3318 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3319 			goto out;
3320 		r = 0;
3321 		break;
3322 	}
3323 	case KVM_GET_MSRS:
3324 		r = msr_io(vcpu, argp, do_get_msr, 1);
3325 		break;
3326 	case KVM_SET_MSRS:
3327 		r = msr_io(vcpu, argp, do_set_msr, 0);
3328 		break;
3329 	case KVM_TPR_ACCESS_REPORTING: {
3330 		struct kvm_tpr_access_ctl tac;
3331 
3332 		r = -EFAULT;
3333 		if (copy_from_user(&tac, argp, sizeof tac))
3334 			goto out;
3335 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3336 		if (r)
3337 			goto out;
3338 		r = -EFAULT;
3339 		if (copy_to_user(argp, &tac, sizeof tac))
3340 			goto out;
3341 		r = 0;
3342 		break;
3343 	};
3344 	case KVM_SET_VAPIC_ADDR: {
3345 		struct kvm_vapic_addr va;
3346 
3347 		r = -EINVAL;
3348 		if (!lapic_in_kernel(vcpu))
3349 			goto out;
3350 		r = -EFAULT;
3351 		if (copy_from_user(&va, argp, sizeof va))
3352 			goto out;
3353 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3354 		break;
3355 	}
3356 	case KVM_X86_SETUP_MCE: {
3357 		u64 mcg_cap;
3358 
3359 		r = -EFAULT;
3360 		if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3361 			goto out;
3362 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3363 		break;
3364 	}
3365 	case KVM_X86_SET_MCE: {
3366 		struct kvm_x86_mce mce;
3367 
3368 		r = -EFAULT;
3369 		if (copy_from_user(&mce, argp, sizeof mce))
3370 			goto out;
3371 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3372 		break;
3373 	}
3374 	case KVM_GET_VCPU_EVENTS: {
3375 		struct kvm_vcpu_events events;
3376 
3377 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3378 
3379 		r = -EFAULT;
3380 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3381 			break;
3382 		r = 0;
3383 		break;
3384 	}
3385 	case KVM_SET_VCPU_EVENTS: {
3386 		struct kvm_vcpu_events events;
3387 
3388 		r = -EFAULT;
3389 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3390 			break;
3391 
3392 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3393 		break;
3394 	}
3395 	case KVM_GET_DEBUGREGS: {
3396 		struct kvm_debugregs dbgregs;
3397 
3398 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3399 
3400 		r = -EFAULT;
3401 		if (copy_to_user(argp, &dbgregs,
3402 				 sizeof(struct kvm_debugregs)))
3403 			break;
3404 		r = 0;
3405 		break;
3406 	}
3407 	case KVM_SET_DEBUGREGS: {
3408 		struct kvm_debugregs dbgregs;
3409 
3410 		r = -EFAULT;
3411 		if (copy_from_user(&dbgregs, argp,
3412 				   sizeof(struct kvm_debugregs)))
3413 			break;
3414 
3415 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3416 		break;
3417 	}
3418 	case KVM_GET_XSAVE: {
3419 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3420 		r = -ENOMEM;
3421 		if (!u.xsave)
3422 			break;
3423 
3424 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3425 
3426 		r = -EFAULT;
3427 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3428 			break;
3429 		r = 0;
3430 		break;
3431 	}
3432 	case KVM_SET_XSAVE: {
3433 		u.xsave = memdup_user(argp, sizeof(*u.xsave));
3434 		if (IS_ERR(u.xsave))
3435 			return PTR_ERR(u.xsave);
3436 
3437 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3438 		break;
3439 	}
3440 	case KVM_GET_XCRS: {
3441 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3442 		r = -ENOMEM;
3443 		if (!u.xcrs)
3444 			break;
3445 
3446 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3447 
3448 		r = -EFAULT;
3449 		if (copy_to_user(argp, u.xcrs,
3450 				 sizeof(struct kvm_xcrs)))
3451 			break;
3452 		r = 0;
3453 		break;
3454 	}
3455 	case KVM_SET_XCRS: {
3456 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3457 		if (IS_ERR(u.xcrs))
3458 			return PTR_ERR(u.xcrs);
3459 
3460 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3461 		break;
3462 	}
3463 	case KVM_SET_TSC_KHZ: {
3464 		u32 user_tsc_khz;
3465 
3466 		r = -EINVAL;
3467 		user_tsc_khz = (u32)arg;
3468 
3469 		if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3470 			goto out;
3471 
3472 		if (user_tsc_khz == 0)
3473 			user_tsc_khz = tsc_khz;
3474 
3475 		if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
3476 			r = 0;
3477 
3478 		goto out;
3479 	}
3480 	case KVM_GET_TSC_KHZ: {
3481 		r = vcpu->arch.virtual_tsc_khz;
3482 		goto out;
3483 	}
3484 	case KVM_KVMCLOCK_CTRL: {
3485 		r = kvm_set_guest_paused(vcpu);
3486 		goto out;
3487 	}
3488 	case KVM_ENABLE_CAP: {
3489 		struct kvm_enable_cap cap;
3490 
3491 		r = -EFAULT;
3492 		if (copy_from_user(&cap, argp, sizeof(cap)))
3493 			goto out;
3494 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
3495 		break;
3496 	}
3497 	default:
3498 		r = -EINVAL;
3499 	}
3500 out:
3501 	kfree(u.buffer);
3502 	return r;
3503 }
3504 
3505 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3506 {
3507 	return VM_FAULT_SIGBUS;
3508 }
3509 
3510 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3511 {
3512 	int ret;
3513 
3514 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
3515 		return -EINVAL;
3516 	ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3517 	return ret;
3518 }
3519 
3520 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3521 					      u64 ident_addr)
3522 {
3523 	kvm->arch.ept_identity_map_addr = ident_addr;
3524 	return 0;
3525 }
3526 
3527 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3528 					  u32 kvm_nr_mmu_pages)
3529 {
3530 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3531 		return -EINVAL;
3532 
3533 	mutex_lock(&kvm->slots_lock);
3534 
3535 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3536 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3537 
3538 	mutex_unlock(&kvm->slots_lock);
3539 	return 0;
3540 }
3541 
3542 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3543 {
3544 	return kvm->arch.n_max_mmu_pages;
3545 }
3546 
3547 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3548 {
3549 	int r;
3550 
3551 	r = 0;
3552 	switch (chip->chip_id) {
3553 	case KVM_IRQCHIP_PIC_MASTER:
3554 		memcpy(&chip->chip.pic,
3555 			&pic_irqchip(kvm)->pics[0],
3556 			sizeof(struct kvm_pic_state));
3557 		break;
3558 	case KVM_IRQCHIP_PIC_SLAVE:
3559 		memcpy(&chip->chip.pic,
3560 			&pic_irqchip(kvm)->pics[1],
3561 			sizeof(struct kvm_pic_state));
3562 		break;
3563 	case KVM_IRQCHIP_IOAPIC:
3564 		r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3565 		break;
3566 	default:
3567 		r = -EINVAL;
3568 		break;
3569 	}
3570 	return r;
3571 }
3572 
3573 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3574 {
3575 	int r;
3576 
3577 	r = 0;
3578 	switch (chip->chip_id) {
3579 	case KVM_IRQCHIP_PIC_MASTER:
3580 		spin_lock(&pic_irqchip(kvm)->lock);
3581 		memcpy(&pic_irqchip(kvm)->pics[0],
3582 			&chip->chip.pic,
3583 			sizeof(struct kvm_pic_state));
3584 		spin_unlock(&pic_irqchip(kvm)->lock);
3585 		break;
3586 	case KVM_IRQCHIP_PIC_SLAVE:
3587 		spin_lock(&pic_irqchip(kvm)->lock);
3588 		memcpy(&pic_irqchip(kvm)->pics[1],
3589 			&chip->chip.pic,
3590 			sizeof(struct kvm_pic_state));
3591 		spin_unlock(&pic_irqchip(kvm)->lock);
3592 		break;
3593 	case KVM_IRQCHIP_IOAPIC:
3594 		r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3595 		break;
3596 	default:
3597 		r = -EINVAL;
3598 		break;
3599 	}
3600 	kvm_pic_update_irq(pic_irqchip(kvm));
3601 	return r;
3602 }
3603 
3604 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3605 {
3606 	struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
3607 
3608 	BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
3609 
3610 	mutex_lock(&kps->lock);
3611 	memcpy(ps, &kps->channels, sizeof(*ps));
3612 	mutex_unlock(&kps->lock);
3613 	return 0;
3614 }
3615 
3616 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3617 {
3618 	int i;
3619 	struct kvm_pit *pit = kvm->arch.vpit;
3620 
3621 	mutex_lock(&pit->pit_state.lock);
3622 	memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
3623 	for (i = 0; i < 3; i++)
3624 		kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
3625 	mutex_unlock(&pit->pit_state.lock);
3626 	return 0;
3627 }
3628 
3629 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3630 {
3631 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3632 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3633 		sizeof(ps->channels));
3634 	ps->flags = kvm->arch.vpit->pit_state.flags;
3635 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3636 	memset(&ps->reserved, 0, sizeof(ps->reserved));
3637 	return 0;
3638 }
3639 
3640 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3641 {
3642 	int start = 0;
3643 	int i;
3644 	u32 prev_legacy, cur_legacy;
3645 	struct kvm_pit *pit = kvm->arch.vpit;
3646 
3647 	mutex_lock(&pit->pit_state.lock);
3648 	prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3649 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3650 	if (!prev_legacy && cur_legacy)
3651 		start = 1;
3652 	memcpy(&pit->pit_state.channels, &ps->channels,
3653 	       sizeof(pit->pit_state.channels));
3654 	pit->pit_state.flags = ps->flags;
3655 	for (i = 0; i < 3; i++)
3656 		kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
3657 				   start && i == 0);
3658 	mutex_unlock(&pit->pit_state.lock);
3659 	return 0;
3660 }
3661 
3662 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3663 				 struct kvm_reinject_control *control)
3664 {
3665 	struct kvm_pit *pit = kvm->arch.vpit;
3666 
3667 	if (!pit)
3668 		return -ENXIO;
3669 
3670 	/* pit->pit_state.lock was overloaded to prevent userspace from getting
3671 	 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
3672 	 * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
3673 	 */
3674 	mutex_lock(&pit->pit_state.lock);
3675 	kvm_pit_set_reinject(pit, control->pit_reinject);
3676 	mutex_unlock(&pit->pit_state.lock);
3677 
3678 	return 0;
3679 }
3680 
3681 /**
3682  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3683  * @kvm: kvm instance
3684  * @log: slot id and address to which we copy the log
3685  *
3686  * Steps 1-4 below provide general overview of dirty page logging. See
3687  * kvm_get_dirty_log_protect() function description for additional details.
3688  *
3689  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
3690  * always flush the TLB (step 4) even if previous step failed  and the dirty
3691  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
3692  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
3693  * writes will be marked dirty for next log read.
3694  *
3695  *   1. Take a snapshot of the bit and clear it if needed.
3696  *   2. Write protect the corresponding page.
3697  *   3. Copy the snapshot to the userspace.
3698  *   4. Flush TLB's if needed.
3699  */
3700 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3701 {
3702 	bool is_dirty = false;
3703 	int r;
3704 
3705 	mutex_lock(&kvm->slots_lock);
3706 
3707 	/*
3708 	 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
3709 	 */
3710 	if (kvm_x86_ops->flush_log_dirty)
3711 		kvm_x86_ops->flush_log_dirty(kvm);
3712 
3713 	r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
3714 
3715 	/*
3716 	 * All the TLBs can be flushed out of mmu lock, see the comments in
3717 	 * kvm_mmu_slot_remove_write_access().
3718 	 */
3719 	lockdep_assert_held(&kvm->slots_lock);
3720 	if (is_dirty)
3721 		kvm_flush_remote_tlbs(kvm);
3722 
3723 	mutex_unlock(&kvm->slots_lock);
3724 	return r;
3725 }
3726 
3727 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3728 			bool line_status)
3729 {
3730 	if (!irqchip_in_kernel(kvm))
3731 		return -ENXIO;
3732 
3733 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3734 					irq_event->irq, irq_event->level,
3735 					line_status);
3736 	return 0;
3737 }
3738 
3739 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3740 				   struct kvm_enable_cap *cap)
3741 {
3742 	int r;
3743 
3744 	if (cap->flags)
3745 		return -EINVAL;
3746 
3747 	switch (cap->cap) {
3748 	case KVM_CAP_DISABLE_QUIRKS:
3749 		kvm->arch.disabled_quirks = cap->args[0];
3750 		r = 0;
3751 		break;
3752 	case KVM_CAP_SPLIT_IRQCHIP: {
3753 		mutex_lock(&kvm->lock);
3754 		r = -EINVAL;
3755 		if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
3756 			goto split_irqchip_unlock;
3757 		r = -EEXIST;
3758 		if (irqchip_in_kernel(kvm))
3759 			goto split_irqchip_unlock;
3760 		if (atomic_read(&kvm->online_vcpus))
3761 			goto split_irqchip_unlock;
3762 		r = kvm_setup_empty_irq_routing(kvm);
3763 		if (r)
3764 			goto split_irqchip_unlock;
3765 		/* Pairs with irqchip_in_kernel. */
3766 		smp_wmb();
3767 		kvm->arch.irqchip_split = true;
3768 		kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
3769 		r = 0;
3770 split_irqchip_unlock:
3771 		mutex_unlock(&kvm->lock);
3772 		break;
3773 	}
3774 	default:
3775 		r = -EINVAL;
3776 		break;
3777 	}
3778 	return r;
3779 }
3780 
3781 long kvm_arch_vm_ioctl(struct file *filp,
3782 		       unsigned int ioctl, unsigned long arg)
3783 {
3784 	struct kvm *kvm = filp->private_data;
3785 	void __user *argp = (void __user *)arg;
3786 	int r = -ENOTTY;
3787 	/*
3788 	 * This union makes it completely explicit to gcc-3.x
3789 	 * that these two variables' stack usage should be
3790 	 * combined, not added together.
3791 	 */
3792 	union {
3793 		struct kvm_pit_state ps;
3794 		struct kvm_pit_state2 ps2;
3795 		struct kvm_pit_config pit_config;
3796 	} u;
3797 
3798 	switch (ioctl) {
3799 	case KVM_SET_TSS_ADDR:
3800 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3801 		break;
3802 	case KVM_SET_IDENTITY_MAP_ADDR: {
3803 		u64 ident_addr;
3804 
3805 		r = -EFAULT;
3806 		if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3807 			goto out;
3808 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3809 		break;
3810 	}
3811 	case KVM_SET_NR_MMU_PAGES:
3812 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3813 		break;
3814 	case KVM_GET_NR_MMU_PAGES:
3815 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3816 		break;
3817 	case KVM_CREATE_IRQCHIP: {
3818 		struct kvm_pic *vpic;
3819 
3820 		mutex_lock(&kvm->lock);
3821 		r = -EEXIST;
3822 		if (kvm->arch.vpic)
3823 			goto create_irqchip_unlock;
3824 		r = -EINVAL;
3825 		if (atomic_read(&kvm->online_vcpus))
3826 			goto create_irqchip_unlock;
3827 		r = -ENOMEM;
3828 		vpic = kvm_create_pic(kvm);
3829 		if (vpic) {
3830 			r = kvm_ioapic_init(kvm);
3831 			if (r) {
3832 				mutex_lock(&kvm->slots_lock);
3833 				kvm_destroy_pic(vpic);
3834 				mutex_unlock(&kvm->slots_lock);
3835 				goto create_irqchip_unlock;
3836 			}
3837 		} else
3838 			goto create_irqchip_unlock;
3839 		r = kvm_setup_default_irq_routing(kvm);
3840 		if (r) {
3841 			mutex_lock(&kvm->slots_lock);
3842 			mutex_lock(&kvm->irq_lock);
3843 			kvm_ioapic_destroy(kvm);
3844 			kvm_destroy_pic(vpic);
3845 			mutex_unlock(&kvm->irq_lock);
3846 			mutex_unlock(&kvm->slots_lock);
3847 			goto create_irqchip_unlock;
3848 		}
3849 		/* Write kvm->irq_routing before kvm->arch.vpic.  */
3850 		smp_wmb();
3851 		kvm->arch.vpic = vpic;
3852 	create_irqchip_unlock:
3853 		mutex_unlock(&kvm->lock);
3854 		break;
3855 	}
3856 	case KVM_CREATE_PIT:
3857 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3858 		goto create_pit;
3859 	case KVM_CREATE_PIT2:
3860 		r = -EFAULT;
3861 		if (copy_from_user(&u.pit_config, argp,
3862 				   sizeof(struct kvm_pit_config)))
3863 			goto out;
3864 	create_pit:
3865 		mutex_lock(&kvm->slots_lock);
3866 		r = -EEXIST;
3867 		if (kvm->arch.vpit)
3868 			goto create_pit_unlock;
3869 		r = -ENOMEM;
3870 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3871 		if (kvm->arch.vpit)
3872 			r = 0;
3873 	create_pit_unlock:
3874 		mutex_unlock(&kvm->slots_lock);
3875 		break;
3876 	case KVM_GET_IRQCHIP: {
3877 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3878 		struct kvm_irqchip *chip;
3879 
3880 		chip = memdup_user(argp, sizeof(*chip));
3881 		if (IS_ERR(chip)) {
3882 			r = PTR_ERR(chip);
3883 			goto out;
3884 		}
3885 
3886 		r = -ENXIO;
3887 		if (!irqchip_in_kernel(kvm) || irqchip_split(kvm))
3888 			goto get_irqchip_out;
3889 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3890 		if (r)
3891 			goto get_irqchip_out;
3892 		r = -EFAULT;
3893 		if (copy_to_user(argp, chip, sizeof *chip))
3894 			goto get_irqchip_out;
3895 		r = 0;
3896 	get_irqchip_out:
3897 		kfree(chip);
3898 		break;
3899 	}
3900 	case KVM_SET_IRQCHIP: {
3901 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3902 		struct kvm_irqchip *chip;
3903 
3904 		chip = memdup_user(argp, sizeof(*chip));
3905 		if (IS_ERR(chip)) {
3906 			r = PTR_ERR(chip);
3907 			goto out;
3908 		}
3909 
3910 		r = -ENXIO;
3911 		if (!irqchip_in_kernel(kvm) || irqchip_split(kvm))
3912 			goto set_irqchip_out;
3913 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3914 		if (r)
3915 			goto set_irqchip_out;
3916 		r = 0;
3917 	set_irqchip_out:
3918 		kfree(chip);
3919 		break;
3920 	}
3921 	case KVM_GET_PIT: {
3922 		r = -EFAULT;
3923 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3924 			goto out;
3925 		r = -ENXIO;
3926 		if (!kvm->arch.vpit)
3927 			goto out;
3928 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3929 		if (r)
3930 			goto out;
3931 		r = -EFAULT;
3932 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3933 			goto out;
3934 		r = 0;
3935 		break;
3936 	}
3937 	case KVM_SET_PIT: {
3938 		r = -EFAULT;
3939 		if (copy_from_user(&u.ps, argp, sizeof u.ps))
3940 			goto out;
3941 		r = -ENXIO;
3942 		if (!kvm->arch.vpit)
3943 			goto out;
3944 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3945 		break;
3946 	}
3947 	case KVM_GET_PIT2: {
3948 		r = -ENXIO;
3949 		if (!kvm->arch.vpit)
3950 			goto out;
3951 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3952 		if (r)
3953 			goto out;
3954 		r = -EFAULT;
3955 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3956 			goto out;
3957 		r = 0;
3958 		break;
3959 	}
3960 	case KVM_SET_PIT2: {
3961 		r = -EFAULT;
3962 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3963 			goto out;
3964 		r = -ENXIO;
3965 		if (!kvm->arch.vpit)
3966 			goto out;
3967 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3968 		break;
3969 	}
3970 	case KVM_REINJECT_CONTROL: {
3971 		struct kvm_reinject_control control;
3972 		r =  -EFAULT;
3973 		if (copy_from_user(&control, argp, sizeof(control)))
3974 			goto out;
3975 		r = kvm_vm_ioctl_reinject(kvm, &control);
3976 		break;
3977 	}
3978 	case KVM_SET_BOOT_CPU_ID:
3979 		r = 0;
3980 		mutex_lock(&kvm->lock);
3981 		if (atomic_read(&kvm->online_vcpus) != 0)
3982 			r = -EBUSY;
3983 		else
3984 			kvm->arch.bsp_vcpu_id = arg;
3985 		mutex_unlock(&kvm->lock);
3986 		break;
3987 	case KVM_XEN_HVM_CONFIG: {
3988 		r = -EFAULT;
3989 		if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3990 				   sizeof(struct kvm_xen_hvm_config)))
3991 			goto out;
3992 		r = -EINVAL;
3993 		if (kvm->arch.xen_hvm_config.flags)
3994 			goto out;
3995 		r = 0;
3996 		break;
3997 	}
3998 	case KVM_SET_CLOCK: {
3999 		struct kvm_clock_data user_ns;
4000 		u64 now_ns;
4001 		s64 delta;
4002 
4003 		r = -EFAULT;
4004 		if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4005 			goto out;
4006 
4007 		r = -EINVAL;
4008 		if (user_ns.flags)
4009 			goto out;
4010 
4011 		r = 0;
4012 		local_irq_disable();
4013 		now_ns = get_kernel_ns();
4014 		delta = user_ns.clock - now_ns;
4015 		local_irq_enable();
4016 		kvm->arch.kvmclock_offset = delta;
4017 		kvm_gen_update_masterclock(kvm);
4018 		break;
4019 	}
4020 	case KVM_GET_CLOCK: {
4021 		struct kvm_clock_data user_ns;
4022 		u64 now_ns;
4023 
4024 		local_irq_disable();
4025 		now_ns = get_kernel_ns();
4026 		user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
4027 		local_irq_enable();
4028 		user_ns.flags = 0;
4029 		memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4030 
4031 		r = -EFAULT;
4032 		if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4033 			goto out;
4034 		r = 0;
4035 		break;
4036 	}
4037 	case KVM_ENABLE_CAP: {
4038 		struct kvm_enable_cap cap;
4039 
4040 		r = -EFAULT;
4041 		if (copy_from_user(&cap, argp, sizeof(cap)))
4042 			goto out;
4043 		r = kvm_vm_ioctl_enable_cap(kvm, &cap);
4044 		break;
4045 	}
4046 	default:
4047 		r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
4048 	}
4049 out:
4050 	return r;
4051 }
4052 
4053 static void kvm_init_msr_list(void)
4054 {
4055 	u32 dummy[2];
4056 	unsigned i, j;
4057 
4058 	for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4059 		if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4060 			continue;
4061 
4062 		/*
4063 		 * Even MSRs that are valid in the host may not be exposed
4064 		 * to the guests in some cases.
4065 		 */
4066 		switch (msrs_to_save[i]) {
4067 		case MSR_IA32_BNDCFGS:
4068 			if (!kvm_x86_ops->mpx_supported())
4069 				continue;
4070 			break;
4071 		case MSR_TSC_AUX:
4072 			if (!kvm_x86_ops->rdtscp_supported())
4073 				continue;
4074 			break;
4075 		default:
4076 			break;
4077 		}
4078 
4079 		if (j < i)
4080 			msrs_to_save[j] = msrs_to_save[i];
4081 		j++;
4082 	}
4083 	num_msrs_to_save = j;
4084 
4085 	for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4086 		switch (emulated_msrs[i]) {
4087 		case MSR_IA32_SMBASE:
4088 			if (!kvm_x86_ops->cpu_has_high_real_mode_segbase())
4089 				continue;
4090 			break;
4091 		default:
4092 			break;
4093 		}
4094 
4095 		if (j < i)
4096 			emulated_msrs[j] = emulated_msrs[i];
4097 		j++;
4098 	}
4099 	num_emulated_msrs = j;
4100 }
4101 
4102 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4103 			   const void *v)
4104 {
4105 	int handled = 0;
4106 	int n;
4107 
4108 	do {
4109 		n = min(len, 8);
4110 		if (!(lapic_in_kernel(vcpu) &&
4111 		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4112 		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4113 			break;
4114 		handled += n;
4115 		addr += n;
4116 		len -= n;
4117 		v += n;
4118 	} while (len);
4119 
4120 	return handled;
4121 }
4122 
4123 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4124 {
4125 	int handled = 0;
4126 	int n;
4127 
4128 	do {
4129 		n = min(len, 8);
4130 		if (!(lapic_in_kernel(vcpu) &&
4131 		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4132 					 addr, n, v))
4133 		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4134 			break;
4135 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
4136 		handled += n;
4137 		addr += n;
4138 		len -= n;
4139 		v += n;
4140 	} while (len);
4141 
4142 	return handled;
4143 }
4144 
4145 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4146 			struct kvm_segment *var, int seg)
4147 {
4148 	kvm_x86_ops->set_segment(vcpu, var, seg);
4149 }
4150 
4151 void kvm_get_segment(struct kvm_vcpu *vcpu,
4152 		     struct kvm_segment *var, int seg)
4153 {
4154 	kvm_x86_ops->get_segment(vcpu, var, seg);
4155 }
4156 
4157 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4158 			   struct x86_exception *exception)
4159 {
4160 	gpa_t t_gpa;
4161 
4162 	BUG_ON(!mmu_is_nested(vcpu));
4163 
4164 	/* NPT walks are always user-walks */
4165 	access |= PFERR_USER_MASK;
4166 	t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4167 
4168 	return t_gpa;
4169 }
4170 
4171 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4172 			      struct x86_exception *exception)
4173 {
4174 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4175 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4176 }
4177 
4178  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4179 				struct x86_exception *exception)
4180 {
4181 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4182 	access |= PFERR_FETCH_MASK;
4183 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4184 }
4185 
4186 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4187 			       struct x86_exception *exception)
4188 {
4189 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4190 	access |= PFERR_WRITE_MASK;
4191 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4192 }
4193 
4194 /* uses this to access any guest's mapped memory without checking CPL */
4195 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4196 				struct x86_exception *exception)
4197 {
4198 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4199 }
4200 
4201 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4202 				      struct kvm_vcpu *vcpu, u32 access,
4203 				      struct x86_exception *exception)
4204 {
4205 	void *data = val;
4206 	int r = X86EMUL_CONTINUE;
4207 
4208 	while (bytes) {
4209 		gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4210 							    exception);
4211 		unsigned offset = addr & (PAGE_SIZE-1);
4212 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4213 		int ret;
4214 
4215 		if (gpa == UNMAPPED_GVA)
4216 			return X86EMUL_PROPAGATE_FAULT;
4217 		ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4218 					       offset, toread);
4219 		if (ret < 0) {
4220 			r = X86EMUL_IO_NEEDED;
4221 			goto out;
4222 		}
4223 
4224 		bytes -= toread;
4225 		data += toread;
4226 		addr += toread;
4227 	}
4228 out:
4229 	return r;
4230 }
4231 
4232 /* used for instruction fetching */
4233 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4234 				gva_t addr, void *val, unsigned int bytes,
4235 				struct x86_exception *exception)
4236 {
4237 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4238 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4239 	unsigned offset;
4240 	int ret;
4241 
4242 	/* Inline kvm_read_guest_virt_helper for speed.  */
4243 	gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4244 						    exception);
4245 	if (unlikely(gpa == UNMAPPED_GVA))
4246 		return X86EMUL_PROPAGATE_FAULT;
4247 
4248 	offset = addr & (PAGE_SIZE-1);
4249 	if (WARN_ON(offset + bytes > PAGE_SIZE))
4250 		bytes = (unsigned)PAGE_SIZE - offset;
4251 	ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4252 				       offset, bytes);
4253 	if (unlikely(ret < 0))
4254 		return X86EMUL_IO_NEEDED;
4255 
4256 	return X86EMUL_CONTINUE;
4257 }
4258 
4259 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4260 			       gva_t addr, void *val, unsigned int bytes,
4261 			       struct x86_exception *exception)
4262 {
4263 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4264 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4265 
4266 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4267 					  exception);
4268 }
4269 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4270 
4271 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4272 				      gva_t addr, void *val, unsigned int bytes,
4273 				      struct x86_exception *exception)
4274 {
4275 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4276 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4277 }
4278 
4279 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
4280 		unsigned long addr, void *val, unsigned int bytes)
4281 {
4282 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4283 	int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
4284 
4285 	return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
4286 }
4287 
4288 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4289 				       gva_t addr, void *val,
4290 				       unsigned int bytes,
4291 				       struct x86_exception *exception)
4292 {
4293 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4294 	void *data = val;
4295 	int r = X86EMUL_CONTINUE;
4296 
4297 	while (bytes) {
4298 		gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4299 							     PFERR_WRITE_MASK,
4300 							     exception);
4301 		unsigned offset = addr & (PAGE_SIZE-1);
4302 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4303 		int ret;
4304 
4305 		if (gpa == UNMAPPED_GVA)
4306 			return X86EMUL_PROPAGATE_FAULT;
4307 		ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4308 		if (ret < 0) {
4309 			r = X86EMUL_IO_NEEDED;
4310 			goto out;
4311 		}
4312 
4313 		bytes -= towrite;
4314 		data += towrite;
4315 		addr += towrite;
4316 	}
4317 out:
4318 	return r;
4319 }
4320 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4321 
4322 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4323 				gpa_t *gpa, struct x86_exception *exception,
4324 				bool write)
4325 {
4326 	u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4327 		| (write ? PFERR_WRITE_MASK : 0);
4328 
4329 	if (vcpu_match_mmio_gva(vcpu, gva)
4330 	    && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4331 				 vcpu->arch.access, access)) {
4332 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4333 					(gva & (PAGE_SIZE - 1));
4334 		trace_vcpu_match_mmio(gva, *gpa, write, false);
4335 		return 1;
4336 	}
4337 
4338 	*gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4339 
4340 	if (*gpa == UNMAPPED_GVA)
4341 		return -1;
4342 
4343 	/* For APIC access vmexit */
4344 	if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4345 		return 1;
4346 
4347 	if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4348 		trace_vcpu_match_mmio(gva, *gpa, write, true);
4349 		return 1;
4350 	}
4351 
4352 	return 0;
4353 }
4354 
4355 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4356 			const void *val, int bytes)
4357 {
4358 	int ret;
4359 
4360 	ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
4361 	if (ret < 0)
4362 		return 0;
4363 	kvm_page_track_write(vcpu, gpa, val, bytes);
4364 	return 1;
4365 }
4366 
4367 struct read_write_emulator_ops {
4368 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4369 				  int bytes);
4370 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4371 				  void *val, int bytes);
4372 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4373 			       int bytes, void *val);
4374 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4375 				    void *val, int bytes);
4376 	bool write;
4377 };
4378 
4379 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4380 {
4381 	if (vcpu->mmio_read_completed) {
4382 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4383 			       vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4384 		vcpu->mmio_read_completed = 0;
4385 		return 1;
4386 	}
4387 
4388 	return 0;
4389 }
4390 
4391 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4392 			void *val, int bytes)
4393 {
4394 	return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
4395 }
4396 
4397 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4398 			 void *val, int bytes)
4399 {
4400 	return emulator_write_phys(vcpu, gpa, val, bytes);
4401 }
4402 
4403 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4404 {
4405 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4406 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
4407 }
4408 
4409 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4410 			  void *val, int bytes)
4411 {
4412 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4413 	return X86EMUL_IO_NEEDED;
4414 }
4415 
4416 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4417 			   void *val, int bytes)
4418 {
4419 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4420 
4421 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4422 	return X86EMUL_CONTINUE;
4423 }
4424 
4425 static const struct read_write_emulator_ops read_emultor = {
4426 	.read_write_prepare = read_prepare,
4427 	.read_write_emulate = read_emulate,
4428 	.read_write_mmio = vcpu_mmio_read,
4429 	.read_write_exit_mmio = read_exit_mmio,
4430 };
4431 
4432 static const struct read_write_emulator_ops write_emultor = {
4433 	.read_write_emulate = write_emulate,
4434 	.read_write_mmio = write_mmio,
4435 	.read_write_exit_mmio = write_exit_mmio,
4436 	.write = true,
4437 };
4438 
4439 static int emulator_read_write_onepage(unsigned long addr, void *val,
4440 				       unsigned int bytes,
4441 				       struct x86_exception *exception,
4442 				       struct kvm_vcpu *vcpu,
4443 				       const struct read_write_emulator_ops *ops)
4444 {
4445 	gpa_t gpa;
4446 	int handled, ret;
4447 	bool write = ops->write;
4448 	struct kvm_mmio_fragment *frag;
4449 
4450 	ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4451 
4452 	if (ret < 0)
4453 		return X86EMUL_PROPAGATE_FAULT;
4454 
4455 	/* For APIC access vmexit */
4456 	if (ret)
4457 		goto mmio;
4458 
4459 	if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4460 		return X86EMUL_CONTINUE;
4461 
4462 mmio:
4463 	/*
4464 	 * Is this MMIO handled locally?
4465 	 */
4466 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4467 	if (handled == bytes)
4468 		return X86EMUL_CONTINUE;
4469 
4470 	gpa += handled;
4471 	bytes -= handled;
4472 	val += handled;
4473 
4474 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4475 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4476 	frag->gpa = gpa;
4477 	frag->data = val;
4478 	frag->len = bytes;
4479 	return X86EMUL_CONTINUE;
4480 }
4481 
4482 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4483 			unsigned long addr,
4484 			void *val, unsigned int bytes,
4485 			struct x86_exception *exception,
4486 			const struct read_write_emulator_ops *ops)
4487 {
4488 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4489 	gpa_t gpa;
4490 	int rc;
4491 
4492 	if (ops->read_write_prepare &&
4493 		  ops->read_write_prepare(vcpu, val, bytes))
4494 		return X86EMUL_CONTINUE;
4495 
4496 	vcpu->mmio_nr_fragments = 0;
4497 
4498 	/* Crossing a page boundary? */
4499 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4500 		int now;
4501 
4502 		now = -addr & ~PAGE_MASK;
4503 		rc = emulator_read_write_onepage(addr, val, now, exception,
4504 						 vcpu, ops);
4505 
4506 		if (rc != X86EMUL_CONTINUE)
4507 			return rc;
4508 		addr += now;
4509 		if (ctxt->mode != X86EMUL_MODE_PROT64)
4510 			addr = (u32)addr;
4511 		val += now;
4512 		bytes -= now;
4513 	}
4514 
4515 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
4516 					 vcpu, ops);
4517 	if (rc != X86EMUL_CONTINUE)
4518 		return rc;
4519 
4520 	if (!vcpu->mmio_nr_fragments)
4521 		return rc;
4522 
4523 	gpa = vcpu->mmio_fragments[0].gpa;
4524 
4525 	vcpu->mmio_needed = 1;
4526 	vcpu->mmio_cur_fragment = 0;
4527 
4528 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4529 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4530 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
4531 	vcpu->run->mmio.phys_addr = gpa;
4532 
4533 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4534 }
4535 
4536 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4537 				  unsigned long addr,
4538 				  void *val,
4539 				  unsigned int bytes,
4540 				  struct x86_exception *exception)
4541 {
4542 	return emulator_read_write(ctxt, addr, val, bytes,
4543 				   exception, &read_emultor);
4544 }
4545 
4546 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4547 			    unsigned long addr,
4548 			    const void *val,
4549 			    unsigned int bytes,
4550 			    struct x86_exception *exception)
4551 {
4552 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
4553 				   exception, &write_emultor);
4554 }
4555 
4556 #define CMPXCHG_TYPE(t, ptr, old, new) \
4557 	(cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4558 
4559 #ifdef CONFIG_X86_64
4560 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4561 #else
4562 #  define CMPXCHG64(ptr, old, new) \
4563 	(cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4564 #endif
4565 
4566 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4567 				     unsigned long addr,
4568 				     const void *old,
4569 				     const void *new,
4570 				     unsigned int bytes,
4571 				     struct x86_exception *exception)
4572 {
4573 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4574 	gpa_t gpa;
4575 	struct page *page;
4576 	char *kaddr;
4577 	bool exchanged;
4578 
4579 	/* guests cmpxchg8b have to be emulated atomically */
4580 	if (bytes > 8 || (bytes & (bytes - 1)))
4581 		goto emul_write;
4582 
4583 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4584 
4585 	if (gpa == UNMAPPED_GVA ||
4586 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4587 		goto emul_write;
4588 
4589 	if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4590 		goto emul_write;
4591 
4592 	page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
4593 	if (is_error_page(page))
4594 		goto emul_write;
4595 
4596 	kaddr = kmap_atomic(page);
4597 	kaddr += offset_in_page(gpa);
4598 	switch (bytes) {
4599 	case 1:
4600 		exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4601 		break;
4602 	case 2:
4603 		exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4604 		break;
4605 	case 4:
4606 		exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4607 		break;
4608 	case 8:
4609 		exchanged = CMPXCHG64(kaddr, old, new);
4610 		break;
4611 	default:
4612 		BUG();
4613 	}
4614 	kunmap_atomic(kaddr);
4615 	kvm_release_page_dirty(page);
4616 
4617 	if (!exchanged)
4618 		return X86EMUL_CMPXCHG_FAILED;
4619 
4620 	kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
4621 	kvm_page_track_write(vcpu, gpa, new, bytes);
4622 
4623 	return X86EMUL_CONTINUE;
4624 
4625 emul_write:
4626 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4627 
4628 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4629 }
4630 
4631 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4632 {
4633 	/* TODO: String I/O for in kernel device */
4634 	int r;
4635 
4636 	if (vcpu->arch.pio.in)
4637 		r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
4638 				    vcpu->arch.pio.size, pd);
4639 	else
4640 		r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
4641 				     vcpu->arch.pio.port, vcpu->arch.pio.size,
4642 				     pd);
4643 	return r;
4644 }
4645 
4646 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4647 			       unsigned short port, void *val,
4648 			       unsigned int count, bool in)
4649 {
4650 	vcpu->arch.pio.port = port;
4651 	vcpu->arch.pio.in = in;
4652 	vcpu->arch.pio.count  = count;
4653 	vcpu->arch.pio.size = size;
4654 
4655 	if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4656 		vcpu->arch.pio.count = 0;
4657 		return 1;
4658 	}
4659 
4660 	vcpu->run->exit_reason = KVM_EXIT_IO;
4661 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4662 	vcpu->run->io.size = size;
4663 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4664 	vcpu->run->io.count = count;
4665 	vcpu->run->io.port = port;
4666 
4667 	return 0;
4668 }
4669 
4670 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4671 				    int size, unsigned short port, void *val,
4672 				    unsigned int count)
4673 {
4674 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4675 	int ret;
4676 
4677 	if (vcpu->arch.pio.count)
4678 		goto data_avail;
4679 
4680 	ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4681 	if (ret) {
4682 data_avail:
4683 		memcpy(val, vcpu->arch.pio_data, size * count);
4684 		trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4685 		vcpu->arch.pio.count = 0;
4686 		return 1;
4687 	}
4688 
4689 	return 0;
4690 }
4691 
4692 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4693 				     int size, unsigned short port,
4694 				     const void *val, unsigned int count)
4695 {
4696 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4697 
4698 	memcpy(vcpu->arch.pio_data, val, size * count);
4699 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4700 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4701 }
4702 
4703 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4704 {
4705 	return kvm_x86_ops->get_segment_base(vcpu, seg);
4706 }
4707 
4708 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4709 {
4710 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4711 }
4712 
4713 int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
4714 {
4715 	if (!need_emulate_wbinvd(vcpu))
4716 		return X86EMUL_CONTINUE;
4717 
4718 	if (kvm_x86_ops->has_wbinvd_exit()) {
4719 		int cpu = get_cpu();
4720 
4721 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4722 		smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4723 				wbinvd_ipi, NULL, 1);
4724 		put_cpu();
4725 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4726 	} else
4727 		wbinvd();
4728 	return X86EMUL_CONTINUE;
4729 }
4730 
4731 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4732 {
4733 	kvm_x86_ops->skip_emulated_instruction(vcpu);
4734 	return kvm_emulate_wbinvd_noskip(vcpu);
4735 }
4736 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4737 
4738 
4739 
4740 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4741 {
4742 	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
4743 }
4744 
4745 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
4746 			   unsigned long *dest)
4747 {
4748 	return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4749 }
4750 
4751 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
4752 			   unsigned long value)
4753 {
4754 
4755 	return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4756 }
4757 
4758 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4759 {
4760 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4761 }
4762 
4763 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4764 {
4765 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4766 	unsigned long value;
4767 
4768 	switch (cr) {
4769 	case 0:
4770 		value = kvm_read_cr0(vcpu);
4771 		break;
4772 	case 2:
4773 		value = vcpu->arch.cr2;
4774 		break;
4775 	case 3:
4776 		value = kvm_read_cr3(vcpu);
4777 		break;
4778 	case 4:
4779 		value = kvm_read_cr4(vcpu);
4780 		break;
4781 	case 8:
4782 		value = kvm_get_cr8(vcpu);
4783 		break;
4784 	default:
4785 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
4786 		return 0;
4787 	}
4788 
4789 	return value;
4790 }
4791 
4792 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4793 {
4794 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4795 	int res = 0;
4796 
4797 	switch (cr) {
4798 	case 0:
4799 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4800 		break;
4801 	case 2:
4802 		vcpu->arch.cr2 = val;
4803 		break;
4804 	case 3:
4805 		res = kvm_set_cr3(vcpu, val);
4806 		break;
4807 	case 4:
4808 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4809 		break;
4810 	case 8:
4811 		res = kvm_set_cr8(vcpu, val);
4812 		break;
4813 	default:
4814 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
4815 		res = -1;
4816 	}
4817 
4818 	return res;
4819 }
4820 
4821 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4822 {
4823 	return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4824 }
4825 
4826 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4827 {
4828 	kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4829 }
4830 
4831 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4832 {
4833 	kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4834 }
4835 
4836 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4837 {
4838 	kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4839 }
4840 
4841 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4842 {
4843 	kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4844 }
4845 
4846 static unsigned long emulator_get_cached_segment_base(
4847 	struct x86_emulate_ctxt *ctxt, int seg)
4848 {
4849 	return get_segment_base(emul_to_vcpu(ctxt), seg);
4850 }
4851 
4852 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4853 				 struct desc_struct *desc, u32 *base3,
4854 				 int seg)
4855 {
4856 	struct kvm_segment var;
4857 
4858 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4859 	*selector = var.selector;
4860 
4861 	if (var.unusable) {
4862 		memset(desc, 0, sizeof(*desc));
4863 		return false;
4864 	}
4865 
4866 	if (var.g)
4867 		var.limit >>= 12;
4868 	set_desc_limit(desc, var.limit);
4869 	set_desc_base(desc, (unsigned long)var.base);
4870 #ifdef CONFIG_X86_64
4871 	if (base3)
4872 		*base3 = var.base >> 32;
4873 #endif
4874 	desc->type = var.type;
4875 	desc->s = var.s;
4876 	desc->dpl = var.dpl;
4877 	desc->p = var.present;
4878 	desc->avl = var.avl;
4879 	desc->l = var.l;
4880 	desc->d = var.db;
4881 	desc->g = var.g;
4882 
4883 	return true;
4884 }
4885 
4886 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4887 				 struct desc_struct *desc, u32 base3,
4888 				 int seg)
4889 {
4890 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4891 	struct kvm_segment var;
4892 
4893 	var.selector = selector;
4894 	var.base = get_desc_base(desc);
4895 #ifdef CONFIG_X86_64
4896 	var.base |= ((u64)base3) << 32;
4897 #endif
4898 	var.limit = get_desc_limit(desc);
4899 	if (desc->g)
4900 		var.limit = (var.limit << 12) | 0xfff;
4901 	var.type = desc->type;
4902 	var.dpl = desc->dpl;
4903 	var.db = desc->d;
4904 	var.s = desc->s;
4905 	var.l = desc->l;
4906 	var.g = desc->g;
4907 	var.avl = desc->avl;
4908 	var.present = desc->p;
4909 	var.unusable = !var.present;
4910 	var.padding = 0;
4911 
4912 	kvm_set_segment(vcpu, &var, seg);
4913 	return;
4914 }
4915 
4916 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4917 			    u32 msr_index, u64 *pdata)
4918 {
4919 	struct msr_data msr;
4920 	int r;
4921 
4922 	msr.index = msr_index;
4923 	msr.host_initiated = false;
4924 	r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
4925 	if (r)
4926 		return r;
4927 
4928 	*pdata = msr.data;
4929 	return 0;
4930 }
4931 
4932 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4933 			    u32 msr_index, u64 data)
4934 {
4935 	struct msr_data msr;
4936 
4937 	msr.data = data;
4938 	msr.index = msr_index;
4939 	msr.host_initiated = false;
4940 	return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
4941 }
4942 
4943 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
4944 {
4945 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4946 
4947 	return vcpu->arch.smbase;
4948 }
4949 
4950 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
4951 {
4952 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4953 
4954 	vcpu->arch.smbase = smbase;
4955 }
4956 
4957 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
4958 			      u32 pmc)
4959 {
4960 	return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
4961 }
4962 
4963 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4964 			     u32 pmc, u64 *pdata)
4965 {
4966 	return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
4967 }
4968 
4969 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4970 {
4971 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
4972 }
4973 
4974 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4975 {
4976 	preempt_disable();
4977 	kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4978 	/*
4979 	 * CR0.TS may reference the host fpu state, not the guest fpu state,
4980 	 * so it may be clear at this point.
4981 	 */
4982 	clts();
4983 }
4984 
4985 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4986 {
4987 	preempt_enable();
4988 }
4989 
4990 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4991 			      struct x86_instruction_info *info,
4992 			      enum x86_intercept_stage stage)
4993 {
4994 	return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4995 }
4996 
4997 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
4998 			       u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
4999 {
5000 	kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
5001 }
5002 
5003 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5004 {
5005 	return kvm_register_read(emul_to_vcpu(ctxt), reg);
5006 }
5007 
5008 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5009 {
5010 	kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5011 }
5012 
5013 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5014 {
5015 	kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5016 }
5017 
5018 static const struct x86_emulate_ops emulate_ops = {
5019 	.read_gpr            = emulator_read_gpr,
5020 	.write_gpr           = emulator_write_gpr,
5021 	.read_std            = kvm_read_guest_virt_system,
5022 	.write_std           = kvm_write_guest_virt_system,
5023 	.read_phys           = kvm_read_guest_phys_system,
5024 	.fetch               = kvm_fetch_guest_virt,
5025 	.read_emulated       = emulator_read_emulated,
5026 	.write_emulated      = emulator_write_emulated,
5027 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
5028 	.invlpg              = emulator_invlpg,
5029 	.pio_in_emulated     = emulator_pio_in_emulated,
5030 	.pio_out_emulated    = emulator_pio_out_emulated,
5031 	.get_segment         = emulator_get_segment,
5032 	.set_segment         = emulator_set_segment,
5033 	.get_cached_segment_base = emulator_get_cached_segment_base,
5034 	.get_gdt             = emulator_get_gdt,
5035 	.get_idt	     = emulator_get_idt,
5036 	.set_gdt             = emulator_set_gdt,
5037 	.set_idt	     = emulator_set_idt,
5038 	.get_cr              = emulator_get_cr,
5039 	.set_cr              = emulator_set_cr,
5040 	.cpl                 = emulator_get_cpl,
5041 	.get_dr              = emulator_get_dr,
5042 	.set_dr              = emulator_set_dr,
5043 	.get_smbase          = emulator_get_smbase,
5044 	.set_smbase          = emulator_set_smbase,
5045 	.set_msr             = emulator_set_msr,
5046 	.get_msr             = emulator_get_msr,
5047 	.check_pmc	     = emulator_check_pmc,
5048 	.read_pmc            = emulator_read_pmc,
5049 	.halt                = emulator_halt,
5050 	.wbinvd              = emulator_wbinvd,
5051 	.fix_hypercall       = emulator_fix_hypercall,
5052 	.get_fpu             = emulator_get_fpu,
5053 	.put_fpu             = emulator_put_fpu,
5054 	.intercept           = emulator_intercept,
5055 	.get_cpuid           = emulator_get_cpuid,
5056 	.set_nmi_mask        = emulator_set_nmi_mask,
5057 };
5058 
5059 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5060 {
5061 	u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5062 	/*
5063 	 * an sti; sti; sequence only disable interrupts for the first
5064 	 * instruction. So, if the last instruction, be it emulated or
5065 	 * not, left the system with the INT_STI flag enabled, it
5066 	 * means that the last instruction is an sti. We should not
5067 	 * leave the flag on in this case. The same goes for mov ss
5068 	 */
5069 	if (int_shadow & mask)
5070 		mask = 0;
5071 	if (unlikely(int_shadow || mask)) {
5072 		kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5073 		if (!mask)
5074 			kvm_make_request(KVM_REQ_EVENT, vcpu);
5075 	}
5076 }
5077 
5078 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5079 {
5080 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5081 	if (ctxt->exception.vector == PF_VECTOR)
5082 		return kvm_propagate_fault(vcpu, &ctxt->exception);
5083 
5084 	if (ctxt->exception.error_code_valid)
5085 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5086 				      ctxt->exception.error_code);
5087 	else
5088 		kvm_queue_exception(vcpu, ctxt->exception.vector);
5089 	return false;
5090 }
5091 
5092 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5093 {
5094 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5095 	int cs_db, cs_l;
5096 
5097 	kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5098 
5099 	ctxt->eflags = kvm_get_rflags(vcpu);
5100 	ctxt->eip = kvm_rip_read(vcpu);
5101 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
5102 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
5103 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
5104 		     cs_db				? X86EMUL_MODE_PROT32 :
5105 							  X86EMUL_MODE_PROT16;
5106 	BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5107 	BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5108 	BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5109 	ctxt->emul_flags = vcpu->arch.hflags;
5110 
5111 	init_decode_cache(ctxt);
5112 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5113 }
5114 
5115 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5116 {
5117 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5118 	int ret;
5119 
5120 	init_emulate_ctxt(vcpu);
5121 
5122 	ctxt->op_bytes = 2;
5123 	ctxt->ad_bytes = 2;
5124 	ctxt->_eip = ctxt->eip + inc_eip;
5125 	ret = emulate_int_real(ctxt, irq);
5126 
5127 	if (ret != X86EMUL_CONTINUE)
5128 		return EMULATE_FAIL;
5129 
5130 	ctxt->eip = ctxt->_eip;
5131 	kvm_rip_write(vcpu, ctxt->eip);
5132 	kvm_set_rflags(vcpu, ctxt->eflags);
5133 
5134 	if (irq == NMI_VECTOR)
5135 		vcpu->arch.nmi_pending = 0;
5136 	else
5137 		vcpu->arch.interrupt.pending = false;
5138 
5139 	return EMULATE_DONE;
5140 }
5141 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5142 
5143 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5144 {
5145 	int r = EMULATE_DONE;
5146 
5147 	++vcpu->stat.insn_emulation_fail;
5148 	trace_kvm_emulate_insn_failed(vcpu);
5149 	if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5150 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5151 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5152 		vcpu->run->internal.ndata = 0;
5153 		r = EMULATE_FAIL;
5154 	}
5155 	kvm_queue_exception(vcpu, UD_VECTOR);
5156 
5157 	return r;
5158 }
5159 
5160 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5161 				  bool write_fault_to_shadow_pgtable,
5162 				  int emulation_type)
5163 {
5164 	gpa_t gpa = cr2;
5165 	kvm_pfn_t pfn;
5166 
5167 	if (emulation_type & EMULTYPE_NO_REEXECUTE)
5168 		return false;
5169 
5170 	if (!vcpu->arch.mmu.direct_map) {
5171 		/*
5172 		 * Write permission should be allowed since only
5173 		 * write access need to be emulated.
5174 		 */
5175 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5176 
5177 		/*
5178 		 * If the mapping is invalid in guest, let cpu retry
5179 		 * it to generate fault.
5180 		 */
5181 		if (gpa == UNMAPPED_GVA)
5182 			return true;
5183 	}
5184 
5185 	/*
5186 	 * Do not retry the unhandleable instruction if it faults on the
5187 	 * readonly host memory, otherwise it will goto a infinite loop:
5188 	 * retry instruction -> write #PF -> emulation fail -> retry
5189 	 * instruction -> ...
5190 	 */
5191 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5192 
5193 	/*
5194 	 * If the instruction failed on the error pfn, it can not be fixed,
5195 	 * report the error to userspace.
5196 	 */
5197 	if (is_error_noslot_pfn(pfn))
5198 		return false;
5199 
5200 	kvm_release_pfn_clean(pfn);
5201 
5202 	/* The instructions are well-emulated on direct mmu. */
5203 	if (vcpu->arch.mmu.direct_map) {
5204 		unsigned int indirect_shadow_pages;
5205 
5206 		spin_lock(&vcpu->kvm->mmu_lock);
5207 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5208 		spin_unlock(&vcpu->kvm->mmu_lock);
5209 
5210 		if (indirect_shadow_pages)
5211 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5212 
5213 		return true;
5214 	}
5215 
5216 	/*
5217 	 * if emulation was due to access to shadowed page table
5218 	 * and it failed try to unshadow page and re-enter the
5219 	 * guest to let CPU execute the instruction.
5220 	 */
5221 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5222 
5223 	/*
5224 	 * If the access faults on its page table, it can not
5225 	 * be fixed by unprotecting shadow page and it should
5226 	 * be reported to userspace.
5227 	 */
5228 	return !write_fault_to_shadow_pgtable;
5229 }
5230 
5231 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5232 			      unsigned long cr2,  int emulation_type)
5233 {
5234 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5235 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5236 
5237 	last_retry_eip = vcpu->arch.last_retry_eip;
5238 	last_retry_addr = vcpu->arch.last_retry_addr;
5239 
5240 	/*
5241 	 * If the emulation is caused by #PF and it is non-page_table
5242 	 * writing instruction, it means the VM-EXIT is caused by shadow
5243 	 * page protected, we can zap the shadow page and retry this
5244 	 * instruction directly.
5245 	 *
5246 	 * Note: if the guest uses a non-page-table modifying instruction
5247 	 * on the PDE that points to the instruction, then we will unmap
5248 	 * the instruction and go to an infinite loop. So, we cache the
5249 	 * last retried eip and the last fault address, if we meet the eip
5250 	 * and the address again, we can break out of the potential infinite
5251 	 * loop.
5252 	 */
5253 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5254 
5255 	if (!(emulation_type & EMULTYPE_RETRY))
5256 		return false;
5257 
5258 	if (x86_page_table_writing_insn(ctxt))
5259 		return false;
5260 
5261 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5262 		return false;
5263 
5264 	vcpu->arch.last_retry_eip = ctxt->eip;
5265 	vcpu->arch.last_retry_addr = cr2;
5266 
5267 	if (!vcpu->arch.mmu.direct_map)
5268 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5269 
5270 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5271 
5272 	return true;
5273 }
5274 
5275 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5276 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5277 
5278 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5279 {
5280 	if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5281 		/* This is a good place to trace that we are exiting SMM.  */
5282 		trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5283 
5284 		if (unlikely(vcpu->arch.smi_pending)) {
5285 			kvm_make_request(KVM_REQ_SMI, vcpu);
5286 			vcpu->arch.smi_pending = 0;
5287 		} else {
5288 			/* Process a latched INIT, if any.  */
5289 			kvm_make_request(KVM_REQ_EVENT, vcpu);
5290 		}
5291 	}
5292 
5293 	kvm_mmu_reset_context(vcpu);
5294 }
5295 
5296 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5297 {
5298 	unsigned changed = vcpu->arch.hflags ^ emul_flags;
5299 
5300 	vcpu->arch.hflags = emul_flags;
5301 
5302 	if (changed & HF_SMM_MASK)
5303 		kvm_smm_changed(vcpu);
5304 }
5305 
5306 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5307 				unsigned long *db)
5308 {
5309 	u32 dr6 = 0;
5310 	int i;
5311 	u32 enable, rwlen;
5312 
5313 	enable = dr7;
5314 	rwlen = dr7 >> 16;
5315 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5316 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5317 			dr6 |= (1 << i);
5318 	return dr6;
5319 }
5320 
5321 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, unsigned long rflags, int *r)
5322 {
5323 	struct kvm_run *kvm_run = vcpu->run;
5324 
5325 	/*
5326 	 * rflags is the old, "raw" value of the flags.  The new value has
5327 	 * not been saved yet.
5328 	 *
5329 	 * This is correct even for TF set by the guest, because "the
5330 	 * processor will not generate this exception after the instruction
5331 	 * that sets the TF flag".
5332 	 */
5333 	if (unlikely(rflags & X86_EFLAGS_TF)) {
5334 		if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5335 			kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 |
5336 						  DR6_RTM;
5337 			kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5338 			kvm_run->debug.arch.exception = DB_VECTOR;
5339 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
5340 			*r = EMULATE_USER_EXIT;
5341 		} else {
5342 			vcpu->arch.emulate_ctxt.eflags &= ~X86_EFLAGS_TF;
5343 			/*
5344 			 * "Certain debug exceptions may clear bit 0-3.  The
5345 			 * remaining contents of the DR6 register are never
5346 			 * cleared by the processor".
5347 			 */
5348 			vcpu->arch.dr6 &= ~15;
5349 			vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5350 			kvm_queue_exception(vcpu, DB_VECTOR);
5351 		}
5352 	}
5353 }
5354 
5355 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5356 {
5357 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5358 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5359 		struct kvm_run *kvm_run = vcpu->run;
5360 		unsigned long eip = kvm_get_linear_rip(vcpu);
5361 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5362 					   vcpu->arch.guest_debug_dr7,
5363 					   vcpu->arch.eff_db);
5364 
5365 		if (dr6 != 0) {
5366 			kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5367 			kvm_run->debug.arch.pc = eip;
5368 			kvm_run->debug.arch.exception = DB_VECTOR;
5369 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
5370 			*r = EMULATE_USER_EXIT;
5371 			return true;
5372 		}
5373 	}
5374 
5375 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5376 	    !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5377 		unsigned long eip = kvm_get_linear_rip(vcpu);
5378 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5379 					   vcpu->arch.dr7,
5380 					   vcpu->arch.db);
5381 
5382 		if (dr6 != 0) {
5383 			vcpu->arch.dr6 &= ~15;
5384 			vcpu->arch.dr6 |= dr6 | DR6_RTM;
5385 			kvm_queue_exception(vcpu, DB_VECTOR);
5386 			*r = EMULATE_DONE;
5387 			return true;
5388 		}
5389 	}
5390 
5391 	return false;
5392 }
5393 
5394 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5395 			    unsigned long cr2,
5396 			    int emulation_type,
5397 			    void *insn,
5398 			    int insn_len)
5399 {
5400 	int r;
5401 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5402 	bool writeback = true;
5403 	bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5404 
5405 	/*
5406 	 * Clear write_fault_to_shadow_pgtable here to ensure it is
5407 	 * never reused.
5408 	 */
5409 	vcpu->arch.write_fault_to_shadow_pgtable = false;
5410 	kvm_clear_exception_queue(vcpu);
5411 
5412 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5413 		init_emulate_ctxt(vcpu);
5414 
5415 		/*
5416 		 * We will reenter on the same instruction since
5417 		 * we do not set complete_userspace_io.  This does not
5418 		 * handle watchpoints yet, those would be handled in
5419 		 * the emulate_ops.
5420 		 */
5421 		if (kvm_vcpu_check_breakpoint(vcpu, &r))
5422 			return r;
5423 
5424 		ctxt->interruptibility = 0;
5425 		ctxt->have_exception = false;
5426 		ctxt->exception.vector = -1;
5427 		ctxt->perm_ok = false;
5428 
5429 		ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5430 
5431 		r = x86_decode_insn(ctxt, insn, insn_len);
5432 
5433 		trace_kvm_emulate_insn_start(vcpu);
5434 		++vcpu->stat.insn_emulation;
5435 		if (r != EMULATION_OK)  {
5436 			if (emulation_type & EMULTYPE_TRAP_UD)
5437 				return EMULATE_FAIL;
5438 			if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5439 						emulation_type))
5440 				return EMULATE_DONE;
5441 			if (emulation_type & EMULTYPE_SKIP)
5442 				return EMULATE_FAIL;
5443 			return handle_emulation_failure(vcpu);
5444 		}
5445 	}
5446 
5447 	if (emulation_type & EMULTYPE_SKIP) {
5448 		kvm_rip_write(vcpu, ctxt->_eip);
5449 		if (ctxt->eflags & X86_EFLAGS_RF)
5450 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5451 		return EMULATE_DONE;
5452 	}
5453 
5454 	if (retry_instruction(ctxt, cr2, emulation_type))
5455 		return EMULATE_DONE;
5456 
5457 	/* this is needed for vmware backdoor interface to work since it
5458 	   changes registers values  during IO operation */
5459 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5460 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5461 		emulator_invalidate_register_cache(ctxt);
5462 	}
5463 
5464 restart:
5465 	r = x86_emulate_insn(ctxt);
5466 
5467 	if (r == EMULATION_INTERCEPTED)
5468 		return EMULATE_DONE;
5469 
5470 	if (r == EMULATION_FAILED) {
5471 		if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5472 					emulation_type))
5473 			return EMULATE_DONE;
5474 
5475 		return handle_emulation_failure(vcpu);
5476 	}
5477 
5478 	if (ctxt->have_exception) {
5479 		r = EMULATE_DONE;
5480 		if (inject_emulated_exception(vcpu))
5481 			return r;
5482 	} else if (vcpu->arch.pio.count) {
5483 		if (!vcpu->arch.pio.in) {
5484 			/* FIXME: return into emulator if single-stepping.  */
5485 			vcpu->arch.pio.count = 0;
5486 		} else {
5487 			writeback = false;
5488 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
5489 		}
5490 		r = EMULATE_USER_EXIT;
5491 	} else if (vcpu->mmio_needed) {
5492 		if (!vcpu->mmio_is_write)
5493 			writeback = false;
5494 		r = EMULATE_USER_EXIT;
5495 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5496 	} else if (r == EMULATION_RESTART)
5497 		goto restart;
5498 	else
5499 		r = EMULATE_DONE;
5500 
5501 	if (writeback) {
5502 		unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5503 		toggle_interruptibility(vcpu, ctxt->interruptibility);
5504 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5505 		if (vcpu->arch.hflags != ctxt->emul_flags)
5506 			kvm_set_hflags(vcpu, ctxt->emul_flags);
5507 		kvm_rip_write(vcpu, ctxt->eip);
5508 		if (r == EMULATE_DONE)
5509 			kvm_vcpu_check_singlestep(vcpu, rflags, &r);
5510 		if (!ctxt->have_exception ||
5511 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP)
5512 			__kvm_set_rflags(vcpu, ctxt->eflags);
5513 
5514 		/*
5515 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5516 		 * do nothing, and it will be requested again as soon as
5517 		 * the shadow expires.  But we still need to check here,
5518 		 * because POPF has no interrupt shadow.
5519 		 */
5520 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5521 			kvm_make_request(KVM_REQ_EVENT, vcpu);
5522 	} else
5523 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5524 
5525 	return r;
5526 }
5527 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5528 
5529 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5530 {
5531 	unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5532 	int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5533 					    size, port, &val, 1);
5534 	/* do not return to emulator after return from userspace */
5535 	vcpu->arch.pio.count = 0;
5536 	return ret;
5537 }
5538 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5539 
5540 static void tsc_bad(void *info)
5541 {
5542 	__this_cpu_write(cpu_tsc_khz, 0);
5543 }
5544 
5545 static void tsc_khz_changed(void *data)
5546 {
5547 	struct cpufreq_freqs *freq = data;
5548 	unsigned long khz = 0;
5549 
5550 	if (data)
5551 		khz = freq->new;
5552 	else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5553 		khz = cpufreq_quick_get(raw_smp_processor_id());
5554 	if (!khz)
5555 		khz = tsc_khz;
5556 	__this_cpu_write(cpu_tsc_khz, khz);
5557 }
5558 
5559 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5560 				     void *data)
5561 {
5562 	struct cpufreq_freqs *freq = data;
5563 	struct kvm *kvm;
5564 	struct kvm_vcpu *vcpu;
5565 	int i, send_ipi = 0;
5566 
5567 	/*
5568 	 * We allow guests to temporarily run on slowing clocks,
5569 	 * provided we notify them after, or to run on accelerating
5570 	 * clocks, provided we notify them before.  Thus time never
5571 	 * goes backwards.
5572 	 *
5573 	 * However, we have a problem.  We can't atomically update
5574 	 * the frequency of a given CPU from this function; it is
5575 	 * merely a notifier, which can be called from any CPU.
5576 	 * Changing the TSC frequency at arbitrary points in time
5577 	 * requires a recomputation of local variables related to
5578 	 * the TSC for each VCPU.  We must flag these local variables
5579 	 * to be updated and be sure the update takes place with the
5580 	 * new frequency before any guests proceed.
5581 	 *
5582 	 * Unfortunately, the combination of hotplug CPU and frequency
5583 	 * change creates an intractable locking scenario; the order
5584 	 * of when these callouts happen is undefined with respect to
5585 	 * CPU hotplug, and they can race with each other.  As such,
5586 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5587 	 * undefined; you can actually have a CPU frequency change take
5588 	 * place in between the computation of X and the setting of the
5589 	 * variable.  To protect against this problem, all updates of
5590 	 * the per_cpu tsc_khz variable are done in an interrupt
5591 	 * protected IPI, and all callers wishing to update the value
5592 	 * must wait for a synchronous IPI to complete (which is trivial
5593 	 * if the caller is on the CPU already).  This establishes the
5594 	 * necessary total order on variable updates.
5595 	 *
5596 	 * Note that because a guest time update may take place
5597 	 * anytime after the setting of the VCPU's request bit, the
5598 	 * correct TSC value must be set before the request.  However,
5599 	 * to ensure the update actually makes it to any guest which
5600 	 * starts running in hardware virtualization between the set
5601 	 * and the acquisition of the spinlock, we must also ping the
5602 	 * CPU after setting the request bit.
5603 	 *
5604 	 */
5605 
5606 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5607 		return 0;
5608 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5609 		return 0;
5610 
5611 	smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5612 
5613 	spin_lock(&kvm_lock);
5614 	list_for_each_entry(kvm, &vm_list, vm_list) {
5615 		kvm_for_each_vcpu(i, vcpu, kvm) {
5616 			if (vcpu->cpu != freq->cpu)
5617 				continue;
5618 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5619 			if (vcpu->cpu != smp_processor_id())
5620 				send_ipi = 1;
5621 		}
5622 	}
5623 	spin_unlock(&kvm_lock);
5624 
5625 	if (freq->old < freq->new && send_ipi) {
5626 		/*
5627 		 * We upscale the frequency.  Must make the guest
5628 		 * doesn't see old kvmclock values while running with
5629 		 * the new frequency, otherwise we risk the guest sees
5630 		 * time go backwards.
5631 		 *
5632 		 * In case we update the frequency for another cpu
5633 		 * (which might be in guest context) send an interrupt
5634 		 * to kick the cpu out of guest context.  Next time
5635 		 * guest context is entered kvmclock will be updated,
5636 		 * so the guest will not see stale values.
5637 		 */
5638 		smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5639 	}
5640 	return 0;
5641 }
5642 
5643 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5644 	.notifier_call  = kvmclock_cpufreq_notifier
5645 };
5646 
5647 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
5648 					unsigned long action, void *hcpu)
5649 {
5650 	unsigned int cpu = (unsigned long)hcpu;
5651 
5652 	switch (action) {
5653 		case CPU_ONLINE:
5654 		case CPU_DOWN_FAILED:
5655 			smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5656 			break;
5657 		case CPU_DOWN_PREPARE:
5658 			smp_call_function_single(cpu, tsc_bad, NULL, 1);
5659 			break;
5660 	}
5661 	return NOTIFY_OK;
5662 }
5663 
5664 static struct notifier_block kvmclock_cpu_notifier_block = {
5665 	.notifier_call  = kvmclock_cpu_notifier,
5666 	.priority = -INT_MAX
5667 };
5668 
5669 static void kvm_timer_init(void)
5670 {
5671 	int cpu;
5672 
5673 	max_tsc_khz = tsc_khz;
5674 
5675 	cpu_notifier_register_begin();
5676 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5677 #ifdef CONFIG_CPU_FREQ
5678 		struct cpufreq_policy policy;
5679 		memset(&policy, 0, sizeof(policy));
5680 		cpu = get_cpu();
5681 		cpufreq_get_policy(&policy, cpu);
5682 		if (policy.cpuinfo.max_freq)
5683 			max_tsc_khz = policy.cpuinfo.max_freq;
5684 		put_cpu();
5685 #endif
5686 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5687 					  CPUFREQ_TRANSITION_NOTIFIER);
5688 	}
5689 	pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5690 	for_each_online_cpu(cpu)
5691 		smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5692 
5693 	__register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5694 	cpu_notifier_register_done();
5695 
5696 }
5697 
5698 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5699 
5700 int kvm_is_in_guest(void)
5701 {
5702 	return __this_cpu_read(current_vcpu) != NULL;
5703 }
5704 
5705 static int kvm_is_user_mode(void)
5706 {
5707 	int user_mode = 3;
5708 
5709 	if (__this_cpu_read(current_vcpu))
5710 		user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5711 
5712 	return user_mode != 0;
5713 }
5714 
5715 static unsigned long kvm_get_guest_ip(void)
5716 {
5717 	unsigned long ip = 0;
5718 
5719 	if (__this_cpu_read(current_vcpu))
5720 		ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5721 
5722 	return ip;
5723 }
5724 
5725 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5726 	.is_in_guest		= kvm_is_in_guest,
5727 	.is_user_mode		= kvm_is_user_mode,
5728 	.get_guest_ip		= kvm_get_guest_ip,
5729 };
5730 
5731 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5732 {
5733 	__this_cpu_write(current_vcpu, vcpu);
5734 }
5735 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5736 
5737 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5738 {
5739 	__this_cpu_write(current_vcpu, NULL);
5740 }
5741 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5742 
5743 static void kvm_set_mmio_spte_mask(void)
5744 {
5745 	u64 mask;
5746 	int maxphyaddr = boot_cpu_data.x86_phys_bits;
5747 
5748 	/*
5749 	 * Set the reserved bits and the present bit of an paging-structure
5750 	 * entry to generate page fault with PFER.RSV = 1.
5751 	 */
5752 	 /* Mask the reserved physical address bits. */
5753 	mask = rsvd_bits(maxphyaddr, 51);
5754 
5755 	/* Bit 62 is always reserved for 32bit host. */
5756 	mask |= 0x3ull << 62;
5757 
5758 	/* Set the present bit. */
5759 	mask |= 1ull;
5760 
5761 #ifdef CONFIG_X86_64
5762 	/*
5763 	 * If reserved bit is not supported, clear the present bit to disable
5764 	 * mmio page fault.
5765 	 */
5766 	if (maxphyaddr == 52)
5767 		mask &= ~1ull;
5768 #endif
5769 
5770 	kvm_mmu_set_mmio_spte_mask(mask);
5771 }
5772 
5773 #ifdef CONFIG_X86_64
5774 static void pvclock_gtod_update_fn(struct work_struct *work)
5775 {
5776 	struct kvm *kvm;
5777 
5778 	struct kvm_vcpu *vcpu;
5779 	int i;
5780 
5781 	spin_lock(&kvm_lock);
5782 	list_for_each_entry(kvm, &vm_list, vm_list)
5783 		kvm_for_each_vcpu(i, vcpu, kvm)
5784 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
5785 	atomic_set(&kvm_guest_has_master_clock, 0);
5786 	spin_unlock(&kvm_lock);
5787 }
5788 
5789 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5790 
5791 /*
5792  * Notification about pvclock gtod data update.
5793  */
5794 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5795 			       void *priv)
5796 {
5797 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5798 	struct timekeeper *tk = priv;
5799 
5800 	update_pvclock_gtod(tk);
5801 
5802 	/* disable master clock if host does not trust, or does not
5803 	 * use, TSC clocksource
5804 	 */
5805 	if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5806 	    atomic_read(&kvm_guest_has_master_clock) != 0)
5807 		queue_work(system_long_wq, &pvclock_gtod_work);
5808 
5809 	return 0;
5810 }
5811 
5812 static struct notifier_block pvclock_gtod_notifier = {
5813 	.notifier_call = pvclock_gtod_notify,
5814 };
5815 #endif
5816 
5817 int kvm_arch_init(void *opaque)
5818 {
5819 	int r;
5820 	struct kvm_x86_ops *ops = opaque;
5821 
5822 	if (kvm_x86_ops) {
5823 		printk(KERN_ERR "kvm: already loaded the other module\n");
5824 		r = -EEXIST;
5825 		goto out;
5826 	}
5827 
5828 	if (!ops->cpu_has_kvm_support()) {
5829 		printk(KERN_ERR "kvm: no hardware support\n");
5830 		r = -EOPNOTSUPP;
5831 		goto out;
5832 	}
5833 	if (ops->disabled_by_bios()) {
5834 		printk(KERN_ERR "kvm: disabled by bios\n");
5835 		r = -EOPNOTSUPP;
5836 		goto out;
5837 	}
5838 
5839 	r = -ENOMEM;
5840 	shared_msrs = alloc_percpu(struct kvm_shared_msrs);
5841 	if (!shared_msrs) {
5842 		printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
5843 		goto out;
5844 	}
5845 
5846 	r = kvm_mmu_module_init();
5847 	if (r)
5848 		goto out_free_percpu;
5849 
5850 	kvm_set_mmio_spte_mask();
5851 
5852 	kvm_x86_ops = ops;
5853 
5854 	kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5855 			PT_DIRTY_MASK, PT64_NX_MASK, 0);
5856 
5857 	kvm_timer_init();
5858 
5859 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
5860 
5861 	if (cpu_has_xsave)
5862 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5863 
5864 	kvm_lapic_init();
5865 #ifdef CONFIG_X86_64
5866 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
5867 #endif
5868 
5869 	return 0;
5870 
5871 out_free_percpu:
5872 	free_percpu(shared_msrs);
5873 out:
5874 	return r;
5875 }
5876 
5877 void kvm_arch_exit(void)
5878 {
5879 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5880 
5881 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5882 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5883 					    CPUFREQ_TRANSITION_NOTIFIER);
5884 	unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5885 #ifdef CONFIG_X86_64
5886 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
5887 #endif
5888 	kvm_x86_ops = NULL;
5889 	kvm_mmu_module_exit();
5890 	free_percpu(shared_msrs);
5891 }
5892 
5893 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
5894 {
5895 	++vcpu->stat.halt_exits;
5896 	if (lapic_in_kernel(vcpu)) {
5897 		vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5898 		return 1;
5899 	} else {
5900 		vcpu->run->exit_reason = KVM_EXIT_HLT;
5901 		return 0;
5902 	}
5903 }
5904 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
5905 
5906 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5907 {
5908 	kvm_x86_ops->skip_emulated_instruction(vcpu);
5909 	return kvm_vcpu_halt(vcpu);
5910 }
5911 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5912 
5913 /*
5914  * kvm_pv_kick_cpu_op:  Kick a vcpu.
5915  *
5916  * @apicid - apicid of vcpu to be kicked.
5917  */
5918 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
5919 {
5920 	struct kvm_lapic_irq lapic_irq;
5921 
5922 	lapic_irq.shorthand = 0;
5923 	lapic_irq.dest_mode = 0;
5924 	lapic_irq.dest_id = apicid;
5925 	lapic_irq.msi_redir_hint = false;
5926 
5927 	lapic_irq.delivery_mode = APIC_DM_REMRD;
5928 	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
5929 }
5930 
5931 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
5932 {
5933 	vcpu->arch.apicv_active = false;
5934 	kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
5935 }
5936 
5937 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5938 {
5939 	unsigned long nr, a0, a1, a2, a3, ret;
5940 	int op_64_bit, r = 1;
5941 
5942 	kvm_x86_ops->skip_emulated_instruction(vcpu);
5943 
5944 	if (kvm_hv_hypercall_enabled(vcpu->kvm))
5945 		return kvm_hv_hypercall(vcpu);
5946 
5947 	nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5948 	a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5949 	a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5950 	a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5951 	a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5952 
5953 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
5954 
5955 	op_64_bit = is_64_bit_mode(vcpu);
5956 	if (!op_64_bit) {
5957 		nr &= 0xFFFFFFFF;
5958 		a0 &= 0xFFFFFFFF;
5959 		a1 &= 0xFFFFFFFF;
5960 		a2 &= 0xFFFFFFFF;
5961 		a3 &= 0xFFFFFFFF;
5962 	}
5963 
5964 	if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5965 		ret = -KVM_EPERM;
5966 		goto out;
5967 	}
5968 
5969 	switch (nr) {
5970 	case KVM_HC_VAPIC_POLL_IRQ:
5971 		ret = 0;
5972 		break;
5973 	case KVM_HC_KICK_CPU:
5974 		kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
5975 		ret = 0;
5976 		break;
5977 	default:
5978 		ret = -KVM_ENOSYS;
5979 		break;
5980 	}
5981 out:
5982 	if (!op_64_bit)
5983 		ret = (u32)ret;
5984 	kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5985 	++vcpu->stat.hypercalls;
5986 	return r;
5987 }
5988 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
5989 
5990 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
5991 {
5992 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5993 	char instruction[3];
5994 	unsigned long rip = kvm_rip_read(vcpu);
5995 
5996 	kvm_x86_ops->patch_hypercall(vcpu, instruction);
5997 
5998 	return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
5999 }
6000 
6001 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
6002 {
6003 	return vcpu->run->request_interrupt_window &&
6004 		likely(!pic_in_kernel(vcpu->kvm));
6005 }
6006 
6007 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
6008 {
6009 	struct kvm_run *kvm_run = vcpu->run;
6010 
6011 	kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
6012 	kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
6013 	kvm_run->cr8 = kvm_get_cr8(vcpu);
6014 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
6015 	kvm_run->ready_for_interrupt_injection =
6016 		pic_in_kernel(vcpu->kvm) ||
6017 		kvm_vcpu_ready_for_interrupt_injection(vcpu);
6018 }
6019 
6020 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6021 {
6022 	int max_irr, tpr;
6023 
6024 	if (!kvm_x86_ops->update_cr8_intercept)
6025 		return;
6026 
6027 	if (!lapic_in_kernel(vcpu))
6028 		return;
6029 
6030 	if (vcpu->arch.apicv_active)
6031 		return;
6032 
6033 	if (!vcpu->arch.apic->vapic_addr)
6034 		max_irr = kvm_lapic_find_highest_irr(vcpu);
6035 	else
6036 		max_irr = -1;
6037 
6038 	if (max_irr != -1)
6039 		max_irr >>= 4;
6040 
6041 	tpr = kvm_lapic_get_cr8(vcpu);
6042 
6043 	kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6044 }
6045 
6046 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6047 {
6048 	int r;
6049 
6050 	/* try to reinject previous events if any */
6051 	if (vcpu->arch.exception.pending) {
6052 		trace_kvm_inj_exception(vcpu->arch.exception.nr,
6053 					vcpu->arch.exception.has_error_code,
6054 					vcpu->arch.exception.error_code);
6055 
6056 		if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6057 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6058 					     X86_EFLAGS_RF);
6059 
6060 		if (vcpu->arch.exception.nr == DB_VECTOR &&
6061 		    (vcpu->arch.dr7 & DR7_GD)) {
6062 			vcpu->arch.dr7 &= ~DR7_GD;
6063 			kvm_update_dr7(vcpu);
6064 		}
6065 
6066 		kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
6067 					  vcpu->arch.exception.has_error_code,
6068 					  vcpu->arch.exception.error_code,
6069 					  vcpu->arch.exception.reinject);
6070 		return 0;
6071 	}
6072 
6073 	if (vcpu->arch.nmi_injected) {
6074 		kvm_x86_ops->set_nmi(vcpu);
6075 		return 0;
6076 	}
6077 
6078 	if (vcpu->arch.interrupt.pending) {
6079 		kvm_x86_ops->set_irq(vcpu);
6080 		return 0;
6081 	}
6082 
6083 	if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6084 		r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6085 		if (r != 0)
6086 			return r;
6087 	}
6088 
6089 	/* try to inject new event if pending */
6090 	if (vcpu->arch.nmi_pending) {
6091 		if (kvm_x86_ops->nmi_allowed(vcpu)) {
6092 			--vcpu->arch.nmi_pending;
6093 			vcpu->arch.nmi_injected = true;
6094 			kvm_x86_ops->set_nmi(vcpu);
6095 		}
6096 	} else if (kvm_cpu_has_injectable_intr(vcpu)) {
6097 		/*
6098 		 * Because interrupts can be injected asynchronously, we are
6099 		 * calling check_nested_events again here to avoid a race condition.
6100 		 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6101 		 * proposal and current concerns.  Perhaps we should be setting
6102 		 * KVM_REQ_EVENT only on certain events and not unconditionally?
6103 		 */
6104 		if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6105 			r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6106 			if (r != 0)
6107 				return r;
6108 		}
6109 		if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6110 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6111 					    false);
6112 			kvm_x86_ops->set_irq(vcpu);
6113 		}
6114 	}
6115 	return 0;
6116 }
6117 
6118 static void process_nmi(struct kvm_vcpu *vcpu)
6119 {
6120 	unsigned limit = 2;
6121 
6122 	/*
6123 	 * x86 is limited to one NMI running, and one NMI pending after it.
6124 	 * If an NMI is already in progress, limit further NMIs to just one.
6125 	 * Otherwise, allow two (and we'll inject the first one immediately).
6126 	 */
6127 	if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6128 		limit = 1;
6129 
6130 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6131 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6132 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6133 }
6134 
6135 #define put_smstate(type, buf, offset, val)			  \
6136 	*(type *)((buf) + (offset) - 0x7e00) = val
6137 
6138 static u32 process_smi_get_segment_flags(struct kvm_segment *seg)
6139 {
6140 	u32 flags = 0;
6141 	flags |= seg->g       << 23;
6142 	flags |= seg->db      << 22;
6143 	flags |= seg->l       << 21;
6144 	flags |= seg->avl     << 20;
6145 	flags |= seg->present << 15;
6146 	flags |= seg->dpl     << 13;
6147 	flags |= seg->s       << 12;
6148 	flags |= seg->type    << 8;
6149 	return flags;
6150 }
6151 
6152 static void process_smi_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
6153 {
6154 	struct kvm_segment seg;
6155 	int offset;
6156 
6157 	kvm_get_segment(vcpu, &seg, n);
6158 	put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
6159 
6160 	if (n < 3)
6161 		offset = 0x7f84 + n * 12;
6162 	else
6163 		offset = 0x7f2c + (n - 3) * 12;
6164 
6165 	put_smstate(u32, buf, offset + 8, seg.base);
6166 	put_smstate(u32, buf, offset + 4, seg.limit);
6167 	put_smstate(u32, buf, offset, process_smi_get_segment_flags(&seg));
6168 }
6169 
6170 #ifdef CONFIG_X86_64
6171 static void process_smi_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
6172 {
6173 	struct kvm_segment seg;
6174 	int offset;
6175 	u16 flags;
6176 
6177 	kvm_get_segment(vcpu, &seg, n);
6178 	offset = 0x7e00 + n * 16;
6179 
6180 	flags = process_smi_get_segment_flags(&seg) >> 8;
6181 	put_smstate(u16, buf, offset, seg.selector);
6182 	put_smstate(u16, buf, offset + 2, flags);
6183 	put_smstate(u32, buf, offset + 4, seg.limit);
6184 	put_smstate(u64, buf, offset + 8, seg.base);
6185 }
6186 #endif
6187 
6188 static void process_smi_save_state_32(struct kvm_vcpu *vcpu, char *buf)
6189 {
6190 	struct desc_ptr dt;
6191 	struct kvm_segment seg;
6192 	unsigned long val;
6193 	int i;
6194 
6195 	put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
6196 	put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
6197 	put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
6198 	put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
6199 
6200 	for (i = 0; i < 8; i++)
6201 		put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
6202 
6203 	kvm_get_dr(vcpu, 6, &val);
6204 	put_smstate(u32, buf, 0x7fcc, (u32)val);
6205 	kvm_get_dr(vcpu, 7, &val);
6206 	put_smstate(u32, buf, 0x7fc8, (u32)val);
6207 
6208 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6209 	put_smstate(u32, buf, 0x7fc4, seg.selector);
6210 	put_smstate(u32, buf, 0x7f64, seg.base);
6211 	put_smstate(u32, buf, 0x7f60, seg.limit);
6212 	put_smstate(u32, buf, 0x7f5c, process_smi_get_segment_flags(&seg));
6213 
6214 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6215 	put_smstate(u32, buf, 0x7fc0, seg.selector);
6216 	put_smstate(u32, buf, 0x7f80, seg.base);
6217 	put_smstate(u32, buf, 0x7f7c, seg.limit);
6218 	put_smstate(u32, buf, 0x7f78, process_smi_get_segment_flags(&seg));
6219 
6220 	kvm_x86_ops->get_gdt(vcpu, &dt);
6221 	put_smstate(u32, buf, 0x7f74, dt.address);
6222 	put_smstate(u32, buf, 0x7f70, dt.size);
6223 
6224 	kvm_x86_ops->get_idt(vcpu, &dt);
6225 	put_smstate(u32, buf, 0x7f58, dt.address);
6226 	put_smstate(u32, buf, 0x7f54, dt.size);
6227 
6228 	for (i = 0; i < 6; i++)
6229 		process_smi_save_seg_32(vcpu, buf, i);
6230 
6231 	put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
6232 
6233 	/* revision id */
6234 	put_smstate(u32, buf, 0x7efc, 0x00020000);
6235 	put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
6236 }
6237 
6238 static void process_smi_save_state_64(struct kvm_vcpu *vcpu, char *buf)
6239 {
6240 #ifdef CONFIG_X86_64
6241 	struct desc_ptr dt;
6242 	struct kvm_segment seg;
6243 	unsigned long val;
6244 	int i;
6245 
6246 	for (i = 0; i < 16; i++)
6247 		put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
6248 
6249 	put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
6250 	put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
6251 
6252 	kvm_get_dr(vcpu, 6, &val);
6253 	put_smstate(u64, buf, 0x7f68, val);
6254 	kvm_get_dr(vcpu, 7, &val);
6255 	put_smstate(u64, buf, 0x7f60, val);
6256 
6257 	put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
6258 	put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
6259 	put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
6260 
6261 	put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
6262 
6263 	/* revision id */
6264 	put_smstate(u32, buf, 0x7efc, 0x00020064);
6265 
6266 	put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
6267 
6268 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6269 	put_smstate(u16, buf, 0x7e90, seg.selector);
6270 	put_smstate(u16, buf, 0x7e92, process_smi_get_segment_flags(&seg) >> 8);
6271 	put_smstate(u32, buf, 0x7e94, seg.limit);
6272 	put_smstate(u64, buf, 0x7e98, seg.base);
6273 
6274 	kvm_x86_ops->get_idt(vcpu, &dt);
6275 	put_smstate(u32, buf, 0x7e84, dt.size);
6276 	put_smstate(u64, buf, 0x7e88, dt.address);
6277 
6278 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6279 	put_smstate(u16, buf, 0x7e70, seg.selector);
6280 	put_smstate(u16, buf, 0x7e72, process_smi_get_segment_flags(&seg) >> 8);
6281 	put_smstate(u32, buf, 0x7e74, seg.limit);
6282 	put_smstate(u64, buf, 0x7e78, seg.base);
6283 
6284 	kvm_x86_ops->get_gdt(vcpu, &dt);
6285 	put_smstate(u32, buf, 0x7e64, dt.size);
6286 	put_smstate(u64, buf, 0x7e68, dt.address);
6287 
6288 	for (i = 0; i < 6; i++)
6289 		process_smi_save_seg_64(vcpu, buf, i);
6290 #else
6291 	WARN_ON_ONCE(1);
6292 #endif
6293 }
6294 
6295 static void process_smi(struct kvm_vcpu *vcpu)
6296 {
6297 	struct kvm_segment cs, ds;
6298 	struct desc_ptr dt;
6299 	char buf[512];
6300 	u32 cr0;
6301 
6302 	if (is_smm(vcpu)) {
6303 		vcpu->arch.smi_pending = true;
6304 		return;
6305 	}
6306 
6307 	trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
6308 	vcpu->arch.hflags |= HF_SMM_MASK;
6309 	memset(buf, 0, 512);
6310 	if (guest_cpuid_has_longmode(vcpu))
6311 		process_smi_save_state_64(vcpu, buf);
6312 	else
6313 		process_smi_save_state_32(vcpu, buf);
6314 
6315 	kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
6316 
6317 	if (kvm_x86_ops->get_nmi_mask(vcpu))
6318 		vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
6319 	else
6320 		kvm_x86_ops->set_nmi_mask(vcpu, true);
6321 
6322 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
6323 	kvm_rip_write(vcpu, 0x8000);
6324 
6325 	cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
6326 	kvm_x86_ops->set_cr0(vcpu, cr0);
6327 	vcpu->arch.cr0 = cr0;
6328 
6329 	kvm_x86_ops->set_cr4(vcpu, 0);
6330 
6331 	/* Undocumented: IDT limit is set to zero on entry to SMM.  */
6332 	dt.address = dt.size = 0;
6333 	kvm_x86_ops->set_idt(vcpu, &dt);
6334 
6335 	__kvm_set_dr(vcpu, 7, DR7_FIXED_1);
6336 
6337 	cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
6338 	cs.base = vcpu->arch.smbase;
6339 
6340 	ds.selector = 0;
6341 	ds.base = 0;
6342 
6343 	cs.limit    = ds.limit = 0xffffffff;
6344 	cs.type     = ds.type = 0x3;
6345 	cs.dpl      = ds.dpl = 0;
6346 	cs.db       = ds.db = 0;
6347 	cs.s        = ds.s = 1;
6348 	cs.l        = ds.l = 0;
6349 	cs.g        = ds.g = 1;
6350 	cs.avl      = ds.avl = 0;
6351 	cs.present  = ds.present = 1;
6352 	cs.unusable = ds.unusable = 0;
6353 	cs.padding  = ds.padding = 0;
6354 
6355 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6356 	kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
6357 	kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
6358 	kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
6359 	kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
6360 	kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
6361 
6362 	if (guest_cpuid_has_longmode(vcpu))
6363 		kvm_x86_ops->set_efer(vcpu, 0);
6364 
6365 	kvm_update_cpuid(vcpu);
6366 	kvm_mmu_reset_context(vcpu);
6367 }
6368 
6369 void kvm_make_scan_ioapic_request(struct kvm *kvm)
6370 {
6371 	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
6372 }
6373 
6374 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6375 {
6376 	u64 eoi_exit_bitmap[4];
6377 
6378 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6379 		return;
6380 
6381 	bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
6382 
6383 	if (irqchip_split(vcpu->kvm))
6384 		kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
6385 	else {
6386 		if (vcpu->arch.apicv_active)
6387 			kvm_x86_ops->sync_pir_to_irr(vcpu);
6388 		kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
6389 	}
6390 	bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
6391 		  vcpu_to_synic(vcpu)->vec_bitmap, 256);
6392 	kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6393 }
6394 
6395 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6396 {
6397 	++vcpu->stat.tlb_flush;
6398 	kvm_x86_ops->tlb_flush(vcpu);
6399 }
6400 
6401 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6402 {
6403 	struct page *page = NULL;
6404 
6405 	if (!lapic_in_kernel(vcpu))
6406 		return;
6407 
6408 	if (!kvm_x86_ops->set_apic_access_page_addr)
6409 		return;
6410 
6411 	page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6412 	if (is_error_page(page))
6413 		return;
6414 	kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6415 
6416 	/*
6417 	 * Do not pin apic access page in memory, the MMU notifier
6418 	 * will call us again if it is migrated or swapped out.
6419 	 */
6420 	put_page(page);
6421 }
6422 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6423 
6424 void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm,
6425 					   unsigned long address)
6426 {
6427 	/*
6428 	 * The physical address of apic access page is stored in the VMCS.
6429 	 * Update it when it becomes invalid.
6430 	 */
6431 	if (address == gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT))
6432 		kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
6433 }
6434 
6435 /*
6436  * Returns 1 to let vcpu_run() continue the guest execution loop without
6437  * exiting to the userspace.  Otherwise, the value will be returned to the
6438  * userspace.
6439  */
6440 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6441 {
6442 	int r;
6443 	bool req_int_win =
6444 		dm_request_for_irq_injection(vcpu) &&
6445 		kvm_cpu_accept_dm_intr(vcpu);
6446 
6447 	bool req_immediate_exit = false;
6448 
6449 	if (vcpu->requests) {
6450 		if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6451 			kvm_mmu_unload(vcpu);
6452 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6453 			__kvm_migrate_timers(vcpu);
6454 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6455 			kvm_gen_update_masterclock(vcpu->kvm);
6456 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6457 			kvm_gen_kvmclock_update(vcpu);
6458 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6459 			r = kvm_guest_time_update(vcpu);
6460 			if (unlikely(r))
6461 				goto out;
6462 		}
6463 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6464 			kvm_mmu_sync_roots(vcpu);
6465 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6466 			kvm_vcpu_flush_tlb(vcpu);
6467 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6468 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6469 			r = 0;
6470 			goto out;
6471 		}
6472 		if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6473 			vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6474 			r = 0;
6475 			goto out;
6476 		}
6477 		if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
6478 			vcpu->fpu_active = 0;
6479 			kvm_x86_ops->fpu_deactivate(vcpu);
6480 		}
6481 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6482 			/* Page is swapped out. Do synthetic halt */
6483 			vcpu->arch.apf.halted = true;
6484 			r = 1;
6485 			goto out;
6486 		}
6487 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6488 			record_steal_time(vcpu);
6489 		if (kvm_check_request(KVM_REQ_SMI, vcpu))
6490 			process_smi(vcpu);
6491 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
6492 			process_nmi(vcpu);
6493 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
6494 			kvm_pmu_handle_event(vcpu);
6495 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
6496 			kvm_pmu_deliver_pmi(vcpu);
6497 		if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
6498 			BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
6499 			if (test_bit(vcpu->arch.pending_ioapic_eoi,
6500 				     vcpu->arch.ioapic_handled_vectors)) {
6501 				vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
6502 				vcpu->run->eoi.vector =
6503 						vcpu->arch.pending_ioapic_eoi;
6504 				r = 0;
6505 				goto out;
6506 			}
6507 		}
6508 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6509 			vcpu_scan_ioapic(vcpu);
6510 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
6511 			kvm_vcpu_reload_apic_access_page(vcpu);
6512 		if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
6513 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6514 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
6515 			r = 0;
6516 			goto out;
6517 		}
6518 		if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
6519 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6520 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
6521 			r = 0;
6522 			goto out;
6523 		}
6524 		if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
6525 			vcpu->run->exit_reason = KVM_EXIT_HYPERV;
6526 			vcpu->run->hyperv = vcpu->arch.hyperv.exit;
6527 			r = 0;
6528 			goto out;
6529 		}
6530 
6531 		/*
6532 		 * KVM_REQ_HV_STIMER has to be processed after
6533 		 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
6534 		 * depend on the guest clock being up-to-date
6535 		 */
6536 		if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
6537 			kvm_hv_process_stimers(vcpu);
6538 	}
6539 
6540 	/*
6541 	 * KVM_REQ_EVENT is not set when posted interrupts are set by
6542 	 * VT-d hardware, so we have to update RVI unconditionally.
6543 	 */
6544 	if (kvm_lapic_enabled(vcpu)) {
6545 		/*
6546 		 * Update architecture specific hints for APIC
6547 		 * virtual interrupt delivery.
6548 		 */
6549 		if (vcpu->arch.apicv_active)
6550 			kvm_x86_ops->hwapic_irr_update(vcpu,
6551 				kvm_lapic_find_highest_irr(vcpu));
6552 	}
6553 
6554 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6555 		kvm_apic_accept_events(vcpu);
6556 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6557 			r = 1;
6558 			goto out;
6559 		}
6560 
6561 		if (inject_pending_event(vcpu, req_int_win) != 0)
6562 			req_immediate_exit = true;
6563 		/* enable NMI/IRQ window open exits if needed */
6564 		else if (vcpu->arch.nmi_pending)
6565 			kvm_x86_ops->enable_nmi_window(vcpu);
6566 		else if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6567 			kvm_x86_ops->enable_irq_window(vcpu);
6568 
6569 		if (kvm_lapic_enabled(vcpu)) {
6570 			update_cr8_intercept(vcpu);
6571 			kvm_lapic_sync_to_vapic(vcpu);
6572 		}
6573 	}
6574 
6575 	r = kvm_mmu_reload(vcpu);
6576 	if (unlikely(r)) {
6577 		goto cancel_injection;
6578 	}
6579 
6580 	preempt_disable();
6581 
6582 	kvm_x86_ops->prepare_guest_switch(vcpu);
6583 	if (vcpu->fpu_active)
6584 		kvm_load_guest_fpu(vcpu);
6585 	kvm_load_guest_xcr0(vcpu);
6586 
6587 	vcpu->mode = IN_GUEST_MODE;
6588 
6589 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6590 
6591 	/* We should set ->mode before check ->requests,
6592 	 * see the comment in make_all_cpus_request.
6593 	 */
6594 	smp_mb__after_srcu_read_unlock();
6595 
6596 	local_irq_disable();
6597 
6598 	if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
6599 	    || need_resched() || signal_pending(current)) {
6600 		vcpu->mode = OUTSIDE_GUEST_MODE;
6601 		smp_wmb();
6602 		local_irq_enable();
6603 		preempt_enable();
6604 		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6605 		r = 1;
6606 		goto cancel_injection;
6607 	}
6608 
6609 	if (req_immediate_exit)
6610 		smp_send_reschedule(vcpu->cpu);
6611 
6612 	trace_kvm_entry(vcpu->vcpu_id);
6613 	wait_lapic_expire(vcpu);
6614 	__kvm_guest_enter();
6615 
6616 	if (unlikely(vcpu->arch.switch_db_regs)) {
6617 		set_debugreg(0, 7);
6618 		set_debugreg(vcpu->arch.eff_db[0], 0);
6619 		set_debugreg(vcpu->arch.eff_db[1], 1);
6620 		set_debugreg(vcpu->arch.eff_db[2], 2);
6621 		set_debugreg(vcpu->arch.eff_db[3], 3);
6622 		set_debugreg(vcpu->arch.dr6, 6);
6623 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6624 	}
6625 
6626 	kvm_x86_ops->run(vcpu);
6627 
6628 	/*
6629 	 * Do this here before restoring debug registers on the host.  And
6630 	 * since we do this before handling the vmexit, a DR access vmexit
6631 	 * can (a) read the correct value of the debug registers, (b) set
6632 	 * KVM_DEBUGREG_WONT_EXIT again.
6633 	 */
6634 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
6635 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
6636 		kvm_x86_ops->sync_dirty_debug_regs(vcpu);
6637 		kvm_update_dr0123(vcpu);
6638 		kvm_update_dr6(vcpu);
6639 		kvm_update_dr7(vcpu);
6640 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6641 	}
6642 
6643 	/*
6644 	 * If the guest has used debug registers, at least dr7
6645 	 * will be disabled while returning to the host.
6646 	 * If we don't have active breakpoints in the host, we don't
6647 	 * care about the messed up debug address registers. But if
6648 	 * we have some of them active, restore the old state.
6649 	 */
6650 	if (hw_breakpoint_active())
6651 		hw_breakpoint_restore();
6652 
6653 	vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
6654 
6655 	vcpu->mode = OUTSIDE_GUEST_MODE;
6656 	smp_wmb();
6657 
6658 	/* Interrupt is enabled by handle_external_intr() */
6659 	kvm_x86_ops->handle_external_intr(vcpu);
6660 
6661 	++vcpu->stat.exits;
6662 
6663 	/*
6664 	 * We must have an instruction between local_irq_enable() and
6665 	 * kvm_guest_exit(), so the timer interrupt isn't delayed by
6666 	 * the interrupt shadow.  The stat.exits increment will do nicely.
6667 	 * But we need to prevent reordering, hence this barrier():
6668 	 */
6669 	barrier();
6670 
6671 	kvm_guest_exit();
6672 
6673 	preempt_enable();
6674 
6675 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6676 
6677 	/*
6678 	 * Profile KVM exit RIPs:
6679 	 */
6680 	if (unlikely(prof_on == KVM_PROFILING)) {
6681 		unsigned long rip = kvm_rip_read(vcpu);
6682 		profile_hit(KVM_PROFILING, (void *)rip);
6683 	}
6684 
6685 	if (unlikely(vcpu->arch.tsc_always_catchup))
6686 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6687 
6688 	if (vcpu->arch.apic_attention)
6689 		kvm_lapic_sync_from_vapic(vcpu);
6690 
6691 	r = kvm_x86_ops->handle_exit(vcpu);
6692 	return r;
6693 
6694 cancel_injection:
6695 	kvm_x86_ops->cancel_injection(vcpu);
6696 	if (unlikely(vcpu->arch.apic_attention))
6697 		kvm_lapic_sync_from_vapic(vcpu);
6698 out:
6699 	return r;
6700 }
6701 
6702 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
6703 {
6704 	if (!kvm_arch_vcpu_runnable(vcpu) &&
6705 	    (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
6706 		srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6707 		kvm_vcpu_block(vcpu);
6708 		vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6709 
6710 		if (kvm_x86_ops->post_block)
6711 			kvm_x86_ops->post_block(vcpu);
6712 
6713 		if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
6714 			return 1;
6715 	}
6716 
6717 	kvm_apic_accept_events(vcpu);
6718 	switch(vcpu->arch.mp_state) {
6719 	case KVM_MP_STATE_HALTED:
6720 		vcpu->arch.pv.pv_unhalted = false;
6721 		vcpu->arch.mp_state =
6722 			KVM_MP_STATE_RUNNABLE;
6723 	case KVM_MP_STATE_RUNNABLE:
6724 		vcpu->arch.apf.halted = false;
6725 		break;
6726 	case KVM_MP_STATE_INIT_RECEIVED:
6727 		break;
6728 	default:
6729 		return -EINTR;
6730 		break;
6731 	}
6732 	return 1;
6733 }
6734 
6735 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
6736 {
6737 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6738 		!vcpu->arch.apf.halted);
6739 }
6740 
6741 static int vcpu_run(struct kvm_vcpu *vcpu)
6742 {
6743 	int r;
6744 	struct kvm *kvm = vcpu->kvm;
6745 
6746 	vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6747 
6748 	for (;;) {
6749 		if (kvm_vcpu_running(vcpu)) {
6750 			r = vcpu_enter_guest(vcpu);
6751 		} else {
6752 			r = vcpu_block(kvm, vcpu);
6753 		}
6754 
6755 		if (r <= 0)
6756 			break;
6757 
6758 		clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
6759 		if (kvm_cpu_has_pending_timer(vcpu))
6760 			kvm_inject_pending_timer_irqs(vcpu);
6761 
6762 		if (dm_request_for_irq_injection(vcpu) &&
6763 			kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
6764 			r = 0;
6765 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
6766 			++vcpu->stat.request_irq_exits;
6767 			break;
6768 		}
6769 
6770 		kvm_check_async_pf_completion(vcpu);
6771 
6772 		if (signal_pending(current)) {
6773 			r = -EINTR;
6774 			vcpu->run->exit_reason = KVM_EXIT_INTR;
6775 			++vcpu->stat.signal_exits;
6776 			break;
6777 		}
6778 		if (need_resched()) {
6779 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6780 			cond_resched();
6781 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6782 		}
6783 	}
6784 
6785 	srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6786 
6787 	return r;
6788 }
6789 
6790 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
6791 {
6792 	int r;
6793 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6794 	r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
6795 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6796 	if (r != EMULATE_DONE)
6797 		return 0;
6798 	return 1;
6799 }
6800 
6801 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
6802 {
6803 	BUG_ON(!vcpu->arch.pio.count);
6804 
6805 	return complete_emulated_io(vcpu);
6806 }
6807 
6808 /*
6809  * Implements the following, as a state machine:
6810  *
6811  * read:
6812  *   for each fragment
6813  *     for each mmio piece in the fragment
6814  *       write gpa, len
6815  *       exit
6816  *       copy data
6817  *   execute insn
6818  *
6819  * write:
6820  *   for each fragment
6821  *     for each mmio piece in the fragment
6822  *       write gpa, len
6823  *       copy data
6824  *       exit
6825  */
6826 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
6827 {
6828 	struct kvm_run *run = vcpu->run;
6829 	struct kvm_mmio_fragment *frag;
6830 	unsigned len;
6831 
6832 	BUG_ON(!vcpu->mmio_needed);
6833 
6834 	/* Complete previous fragment */
6835 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
6836 	len = min(8u, frag->len);
6837 	if (!vcpu->mmio_is_write)
6838 		memcpy(frag->data, run->mmio.data, len);
6839 
6840 	if (frag->len <= 8) {
6841 		/* Switch to the next fragment. */
6842 		frag++;
6843 		vcpu->mmio_cur_fragment++;
6844 	} else {
6845 		/* Go forward to the next mmio piece. */
6846 		frag->data += len;
6847 		frag->gpa += len;
6848 		frag->len -= len;
6849 	}
6850 
6851 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
6852 		vcpu->mmio_needed = 0;
6853 
6854 		/* FIXME: return into emulator if single-stepping.  */
6855 		if (vcpu->mmio_is_write)
6856 			return 1;
6857 		vcpu->mmio_read_completed = 1;
6858 		return complete_emulated_io(vcpu);
6859 	}
6860 
6861 	run->exit_reason = KVM_EXIT_MMIO;
6862 	run->mmio.phys_addr = frag->gpa;
6863 	if (vcpu->mmio_is_write)
6864 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
6865 	run->mmio.len = min(8u, frag->len);
6866 	run->mmio.is_write = vcpu->mmio_is_write;
6867 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6868 	return 0;
6869 }
6870 
6871 
6872 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
6873 {
6874 	struct fpu *fpu = &current->thread.fpu;
6875 	int r;
6876 	sigset_t sigsaved;
6877 
6878 	fpu__activate_curr(fpu);
6879 
6880 	if (vcpu->sigset_active)
6881 		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
6882 
6883 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
6884 		kvm_vcpu_block(vcpu);
6885 		kvm_apic_accept_events(vcpu);
6886 		clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
6887 		r = -EAGAIN;
6888 		goto out;
6889 	}
6890 
6891 	/* re-sync apic's tpr */
6892 	if (!lapic_in_kernel(vcpu)) {
6893 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
6894 			r = -EINVAL;
6895 			goto out;
6896 		}
6897 	}
6898 
6899 	if (unlikely(vcpu->arch.complete_userspace_io)) {
6900 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
6901 		vcpu->arch.complete_userspace_io = NULL;
6902 		r = cui(vcpu);
6903 		if (r <= 0)
6904 			goto out;
6905 	} else
6906 		WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
6907 
6908 	r = vcpu_run(vcpu);
6909 
6910 out:
6911 	post_kvm_run_save(vcpu);
6912 	if (vcpu->sigset_active)
6913 		sigprocmask(SIG_SETMASK, &sigsaved, NULL);
6914 
6915 	return r;
6916 }
6917 
6918 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6919 {
6920 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
6921 		/*
6922 		 * We are here if userspace calls get_regs() in the middle of
6923 		 * instruction emulation. Registers state needs to be copied
6924 		 * back from emulation context to vcpu. Userspace shouldn't do
6925 		 * that usually, but some bad designed PV devices (vmware
6926 		 * backdoor interface) need this to work
6927 		 */
6928 		emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
6929 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6930 	}
6931 	regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
6932 	regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
6933 	regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
6934 	regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
6935 	regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
6936 	regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
6937 	regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6938 	regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
6939 #ifdef CONFIG_X86_64
6940 	regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
6941 	regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
6942 	regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
6943 	regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
6944 	regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
6945 	regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
6946 	regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
6947 	regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
6948 #endif
6949 
6950 	regs->rip = kvm_rip_read(vcpu);
6951 	regs->rflags = kvm_get_rflags(vcpu);
6952 
6953 	return 0;
6954 }
6955 
6956 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6957 {
6958 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
6959 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6960 
6961 	kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
6962 	kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
6963 	kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
6964 	kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
6965 	kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
6966 	kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
6967 	kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
6968 	kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
6969 #ifdef CONFIG_X86_64
6970 	kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
6971 	kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
6972 	kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
6973 	kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
6974 	kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
6975 	kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
6976 	kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
6977 	kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
6978 #endif
6979 
6980 	kvm_rip_write(vcpu, regs->rip);
6981 	kvm_set_rflags(vcpu, regs->rflags);
6982 
6983 	vcpu->arch.exception.pending = false;
6984 
6985 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6986 
6987 	return 0;
6988 }
6989 
6990 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
6991 {
6992 	struct kvm_segment cs;
6993 
6994 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6995 	*db = cs.db;
6996 	*l = cs.l;
6997 }
6998 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
6999 
7000 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
7001 				  struct kvm_sregs *sregs)
7002 {
7003 	struct desc_ptr dt;
7004 
7005 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7006 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7007 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7008 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7009 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7010 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7011 
7012 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7013 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7014 
7015 	kvm_x86_ops->get_idt(vcpu, &dt);
7016 	sregs->idt.limit = dt.size;
7017 	sregs->idt.base = dt.address;
7018 	kvm_x86_ops->get_gdt(vcpu, &dt);
7019 	sregs->gdt.limit = dt.size;
7020 	sregs->gdt.base = dt.address;
7021 
7022 	sregs->cr0 = kvm_read_cr0(vcpu);
7023 	sregs->cr2 = vcpu->arch.cr2;
7024 	sregs->cr3 = kvm_read_cr3(vcpu);
7025 	sregs->cr4 = kvm_read_cr4(vcpu);
7026 	sregs->cr8 = kvm_get_cr8(vcpu);
7027 	sregs->efer = vcpu->arch.efer;
7028 	sregs->apic_base = kvm_get_apic_base(vcpu);
7029 
7030 	memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
7031 
7032 	if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
7033 		set_bit(vcpu->arch.interrupt.nr,
7034 			(unsigned long *)sregs->interrupt_bitmap);
7035 
7036 	return 0;
7037 }
7038 
7039 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
7040 				    struct kvm_mp_state *mp_state)
7041 {
7042 	kvm_apic_accept_events(vcpu);
7043 	if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
7044 					vcpu->arch.pv.pv_unhalted)
7045 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
7046 	else
7047 		mp_state->mp_state = vcpu->arch.mp_state;
7048 
7049 	return 0;
7050 }
7051 
7052 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
7053 				    struct kvm_mp_state *mp_state)
7054 {
7055 	if (!lapic_in_kernel(vcpu) &&
7056 	    mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
7057 		return -EINVAL;
7058 
7059 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
7060 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
7061 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
7062 	} else
7063 		vcpu->arch.mp_state = mp_state->mp_state;
7064 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7065 	return 0;
7066 }
7067 
7068 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
7069 		    int reason, bool has_error_code, u32 error_code)
7070 {
7071 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7072 	int ret;
7073 
7074 	init_emulate_ctxt(vcpu);
7075 
7076 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
7077 				   has_error_code, error_code);
7078 
7079 	if (ret)
7080 		return EMULATE_FAIL;
7081 
7082 	kvm_rip_write(vcpu, ctxt->eip);
7083 	kvm_set_rflags(vcpu, ctxt->eflags);
7084 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7085 	return EMULATE_DONE;
7086 }
7087 EXPORT_SYMBOL_GPL(kvm_task_switch);
7088 
7089 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
7090 				  struct kvm_sregs *sregs)
7091 {
7092 	struct msr_data apic_base_msr;
7093 	int mmu_reset_needed = 0;
7094 	int pending_vec, max_bits, idx;
7095 	struct desc_ptr dt;
7096 
7097 	if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
7098 		return -EINVAL;
7099 
7100 	dt.size = sregs->idt.limit;
7101 	dt.address = sregs->idt.base;
7102 	kvm_x86_ops->set_idt(vcpu, &dt);
7103 	dt.size = sregs->gdt.limit;
7104 	dt.address = sregs->gdt.base;
7105 	kvm_x86_ops->set_gdt(vcpu, &dt);
7106 
7107 	vcpu->arch.cr2 = sregs->cr2;
7108 	mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
7109 	vcpu->arch.cr3 = sregs->cr3;
7110 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
7111 
7112 	kvm_set_cr8(vcpu, sregs->cr8);
7113 
7114 	mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
7115 	kvm_x86_ops->set_efer(vcpu, sregs->efer);
7116 	apic_base_msr.data = sregs->apic_base;
7117 	apic_base_msr.host_initiated = true;
7118 	kvm_set_apic_base(vcpu, &apic_base_msr);
7119 
7120 	mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
7121 	kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
7122 	vcpu->arch.cr0 = sregs->cr0;
7123 
7124 	mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
7125 	kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
7126 	if (sregs->cr4 & X86_CR4_OSXSAVE)
7127 		kvm_update_cpuid(vcpu);
7128 
7129 	idx = srcu_read_lock(&vcpu->kvm->srcu);
7130 	if (!is_long_mode(vcpu) && is_pae(vcpu)) {
7131 		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
7132 		mmu_reset_needed = 1;
7133 	}
7134 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
7135 
7136 	if (mmu_reset_needed)
7137 		kvm_mmu_reset_context(vcpu);
7138 
7139 	max_bits = KVM_NR_INTERRUPTS;
7140 	pending_vec = find_first_bit(
7141 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
7142 	if (pending_vec < max_bits) {
7143 		kvm_queue_interrupt(vcpu, pending_vec, false);
7144 		pr_debug("Set back pending irq %d\n", pending_vec);
7145 	}
7146 
7147 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7148 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7149 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7150 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7151 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7152 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7153 
7154 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7155 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7156 
7157 	update_cr8_intercept(vcpu);
7158 
7159 	/* Older userspace won't unhalt the vcpu on reset. */
7160 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
7161 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
7162 	    !is_protmode(vcpu))
7163 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7164 
7165 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7166 
7167 	return 0;
7168 }
7169 
7170 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
7171 					struct kvm_guest_debug *dbg)
7172 {
7173 	unsigned long rflags;
7174 	int i, r;
7175 
7176 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
7177 		r = -EBUSY;
7178 		if (vcpu->arch.exception.pending)
7179 			goto out;
7180 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
7181 			kvm_queue_exception(vcpu, DB_VECTOR);
7182 		else
7183 			kvm_queue_exception(vcpu, BP_VECTOR);
7184 	}
7185 
7186 	/*
7187 	 * Read rflags as long as potentially injected trace flags are still
7188 	 * filtered out.
7189 	 */
7190 	rflags = kvm_get_rflags(vcpu);
7191 
7192 	vcpu->guest_debug = dbg->control;
7193 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
7194 		vcpu->guest_debug = 0;
7195 
7196 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
7197 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
7198 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
7199 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
7200 	} else {
7201 		for (i = 0; i < KVM_NR_DB_REGS; i++)
7202 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
7203 	}
7204 	kvm_update_dr7(vcpu);
7205 
7206 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7207 		vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
7208 			get_segment_base(vcpu, VCPU_SREG_CS);
7209 
7210 	/*
7211 	 * Trigger an rflags update that will inject or remove the trace
7212 	 * flags.
7213 	 */
7214 	kvm_set_rflags(vcpu, rflags);
7215 
7216 	kvm_x86_ops->update_bp_intercept(vcpu);
7217 
7218 	r = 0;
7219 
7220 out:
7221 
7222 	return r;
7223 }
7224 
7225 /*
7226  * Translate a guest virtual address to a guest physical address.
7227  */
7228 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
7229 				    struct kvm_translation *tr)
7230 {
7231 	unsigned long vaddr = tr->linear_address;
7232 	gpa_t gpa;
7233 	int idx;
7234 
7235 	idx = srcu_read_lock(&vcpu->kvm->srcu);
7236 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
7237 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
7238 	tr->physical_address = gpa;
7239 	tr->valid = gpa != UNMAPPED_GVA;
7240 	tr->writeable = 1;
7241 	tr->usermode = 0;
7242 
7243 	return 0;
7244 }
7245 
7246 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7247 {
7248 	struct fxregs_state *fxsave =
7249 			&vcpu->arch.guest_fpu.state.fxsave;
7250 
7251 	memcpy(fpu->fpr, fxsave->st_space, 128);
7252 	fpu->fcw = fxsave->cwd;
7253 	fpu->fsw = fxsave->swd;
7254 	fpu->ftwx = fxsave->twd;
7255 	fpu->last_opcode = fxsave->fop;
7256 	fpu->last_ip = fxsave->rip;
7257 	fpu->last_dp = fxsave->rdp;
7258 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
7259 
7260 	return 0;
7261 }
7262 
7263 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7264 {
7265 	struct fxregs_state *fxsave =
7266 			&vcpu->arch.guest_fpu.state.fxsave;
7267 
7268 	memcpy(fxsave->st_space, fpu->fpr, 128);
7269 	fxsave->cwd = fpu->fcw;
7270 	fxsave->swd = fpu->fsw;
7271 	fxsave->twd = fpu->ftwx;
7272 	fxsave->fop = fpu->last_opcode;
7273 	fxsave->rip = fpu->last_ip;
7274 	fxsave->rdp = fpu->last_dp;
7275 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
7276 
7277 	return 0;
7278 }
7279 
7280 static void fx_init(struct kvm_vcpu *vcpu)
7281 {
7282 	fpstate_init(&vcpu->arch.guest_fpu.state);
7283 	if (cpu_has_xsaves)
7284 		vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
7285 			host_xcr0 | XSTATE_COMPACTION_ENABLED;
7286 
7287 	/*
7288 	 * Ensure guest xcr0 is valid for loading
7289 	 */
7290 	vcpu->arch.xcr0 = XFEATURE_MASK_FP;
7291 
7292 	vcpu->arch.cr0 |= X86_CR0_ET;
7293 }
7294 
7295 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7296 {
7297 	if (vcpu->guest_fpu_loaded)
7298 		return;
7299 
7300 	/*
7301 	 * Restore all possible states in the guest,
7302 	 * and assume host would use all available bits.
7303 	 * Guest xcr0 would be loaded later.
7304 	 */
7305 	kvm_put_guest_xcr0(vcpu);
7306 	vcpu->guest_fpu_loaded = 1;
7307 	__kernel_fpu_begin();
7308 	__copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state);
7309 	trace_kvm_fpu(1);
7310 }
7311 
7312 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7313 {
7314 	kvm_put_guest_xcr0(vcpu);
7315 
7316 	if (!vcpu->guest_fpu_loaded) {
7317 		vcpu->fpu_counter = 0;
7318 		return;
7319 	}
7320 
7321 	vcpu->guest_fpu_loaded = 0;
7322 	copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
7323 	__kernel_fpu_end();
7324 	++vcpu->stat.fpu_reload;
7325 	/*
7326 	 * If using eager FPU mode, or if the guest is a frequent user
7327 	 * of the FPU, just leave the FPU active for next time.
7328 	 * Every 255 times fpu_counter rolls over to 0; a guest that uses
7329 	 * the FPU in bursts will revert to loading it on demand.
7330 	 */
7331 	if (!use_eager_fpu()) {
7332 		if (++vcpu->fpu_counter < 5)
7333 			kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
7334 	}
7335 	trace_kvm_fpu(0);
7336 }
7337 
7338 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7339 {
7340 	kvmclock_reset(vcpu);
7341 
7342 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
7343 	kvm_x86_ops->vcpu_free(vcpu);
7344 }
7345 
7346 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7347 						unsigned int id)
7348 {
7349 	struct kvm_vcpu *vcpu;
7350 
7351 	if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7352 		printk_once(KERN_WARNING
7353 		"kvm: SMP vm created on host with unstable TSC; "
7354 		"guest TSC will not be reliable\n");
7355 
7356 	vcpu = kvm_x86_ops->vcpu_create(kvm, id);
7357 
7358 	return vcpu;
7359 }
7360 
7361 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7362 {
7363 	int r;
7364 
7365 	kvm_vcpu_mtrr_init(vcpu);
7366 	r = vcpu_load(vcpu);
7367 	if (r)
7368 		return r;
7369 	kvm_vcpu_reset(vcpu, false);
7370 	kvm_mmu_setup(vcpu);
7371 	vcpu_put(vcpu);
7372 	return r;
7373 }
7374 
7375 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7376 {
7377 	struct msr_data msr;
7378 	struct kvm *kvm = vcpu->kvm;
7379 
7380 	if (vcpu_load(vcpu))
7381 		return;
7382 	msr.data = 0x0;
7383 	msr.index = MSR_IA32_TSC;
7384 	msr.host_initiated = true;
7385 	kvm_write_tsc(vcpu, &msr);
7386 	vcpu_put(vcpu);
7387 
7388 	if (!kvmclock_periodic_sync)
7389 		return;
7390 
7391 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
7392 					KVMCLOCK_SYNC_PERIOD);
7393 }
7394 
7395 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
7396 {
7397 	int r;
7398 	vcpu->arch.apf.msr_val = 0;
7399 
7400 	r = vcpu_load(vcpu);
7401 	BUG_ON(r);
7402 	kvm_mmu_unload(vcpu);
7403 	vcpu_put(vcpu);
7404 
7405 	kvm_x86_ops->vcpu_free(vcpu);
7406 }
7407 
7408 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
7409 {
7410 	vcpu->arch.hflags = 0;
7411 
7412 	atomic_set(&vcpu->arch.nmi_queued, 0);
7413 	vcpu->arch.nmi_pending = 0;
7414 	vcpu->arch.nmi_injected = false;
7415 	kvm_clear_interrupt_queue(vcpu);
7416 	kvm_clear_exception_queue(vcpu);
7417 
7418 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
7419 	kvm_update_dr0123(vcpu);
7420 	vcpu->arch.dr6 = DR6_INIT;
7421 	kvm_update_dr6(vcpu);
7422 	vcpu->arch.dr7 = DR7_FIXED_1;
7423 	kvm_update_dr7(vcpu);
7424 
7425 	vcpu->arch.cr2 = 0;
7426 
7427 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7428 	vcpu->arch.apf.msr_val = 0;
7429 	vcpu->arch.st.msr_val = 0;
7430 
7431 	kvmclock_reset(vcpu);
7432 
7433 	kvm_clear_async_pf_completion_queue(vcpu);
7434 	kvm_async_pf_hash_reset(vcpu);
7435 	vcpu->arch.apf.halted = false;
7436 
7437 	if (!init_event) {
7438 		kvm_pmu_reset(vcpu);
7439 		vcpu->arch.smbase = 0x30000;
7440 	}
7441 
7442 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
7443 	vcpu->arch.regs_avail = ~0;
7444 	vcpu->arch.regs_dirty = ~0;
7445 
7446 	kvm_x86_ops->vcpu_reset(vcpu, init_event);
7447 }
7448 
7449 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
7450 {
7451 	struct kvm_segment cs;
7452 
7453 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7454 	cs.selector = vector << 8;
7455 	cs.base = vector << 12;
7456 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7457 	kvm_rip_write(vcpu, 0);
7458 }
7459 
7460 int kvm_arch_hardware_enable(void)
7461 {
7462 	struct kvm *kvm;
7463 	struct kvm_vcpu *vcpu;
7464 	int i;
7465 	int ret;
7466 	u64 local_tsc;
7467 	u64 max_tsc = 0;
7468 	bool stable, backwards_tsc = false;
7469 
7470 	kvm_shared_msr_cpu_online();
7471 	ret = kvm_x86_ops->hardware_enable();
7472 	if (ret != 0)
7473 		return ret;
7474 
7475 	local_tsc = rdtsc();
7476 	stable = !check_tsc_unstable();
7477 	list_for_each_entry(kvm, &vm_list, vm_list) {
7478 		kvm_for_each_vcpu(i, vcpu, kvm) {
7479 			if (!stable && vcpu->cpu == smp_processor_id())
7480 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7481 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
7482 				backwards_tsc = true;
7483 				if (vcpu->arch.last_host_tsc > max_tsc)
7484 					max_tsc = vcpu->arch.last_host_tsc;
7485 			}
7486 		}
7487 	}
7488 
7489 	/*
7490 	 * Sometimes, even reliable TSCs go backwards.  This happens on
7491 	 * platforms that reset TSC during suspend or hibernate actions, but
7492 	 * maintain synchronization.  We must compensate.  Fortunately, we can
7493 	 * detect that condition here, which happens early in CPU bringup,
7494 	 * before any KVM threads can be running.  Unfortunately, we can't
7495 	 * bring the TSCs fully up to date with real time, as we aren't yet far
7496 	 * enough into CPU bringup that we know how much real time has actually
7497 	 * elapsed; our helper function, get_kernel_ns() will be using boot
7498 	 * variables that haven't been updated yet.
7499 	 *
7500 	 * So we simply find the maximum observed TSC above, then record the
7501 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
7502 	 * the adjustment will be applied.  Note that we accumulate
7503 	 * adjustments, in case multiple suspend cycles happen before some VCPU
7504 	 * gets a chance to run again.  In the event that no KVM threads get a
7505 	 * chance to run, we will miss the entire elapsed period, as we'll have
7506 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7507 	 * loose cycle time.  This isn't too big a deal, since the loss will be
7508 	 * uniform across all VCPUs (not to mention the scenario is extremely
7509 	 * unlikely). It is possible that a second hibernate recovery happens
7510 	 * much faster than a first, causing the observed TSC here to be
7511 	 * smaller; this would require additional padding adjustment, which is
7512 	 * why we set last_host_tsc to the local tsc observed here.
7513 	 *
7514 	 * N.B. - this code below runs only on platforms with reliable TSC,
7515 	 * as that is the only way backwards_tsc is set above.  Also note
7516 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7517 	 * have the same delta_cyc adjustment applied if backwards_tsc
7518 	 * is detected.  Note further, this adjustment is only done once,
7519 	 * as we reset last_host_tsc on all VCPUs to stop this from being
7520 	 * called multiple times (one for each physical CPU bringup).
7521 	 *
7522 	 * Platforms with unreliable TSCs don't have to deal with this, they
7523 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
7524 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
7525 	 * guarantee that they stay in perfect synchronization.
7526 	 */
7527 	if (backwards_tsc) {
7528 		u64 delta_cyc = max_tsc - local_tsc;
7529 		backwards_tsc_observed = true;
7530 		list_for_each_entry(kvm, &vm_list, vm_list) {
7531 			kvm_for_each_vcpu(i, vcpu, kvm) {
7532 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
7533 				vcpu->arch.last_host_tsc = local_tsc;
7534 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7535 			}
7536 
7537 			/*
7538 			 * We have to disable TSC offset matching.. if you were
7539 			 * booting a VM while issuing an S4 host suspend....
7540 			 * you may have some problem.  Solving this issue is
7541 			 * left as an exercise to the reader.
7542 			 */
7543 			kvm->arch.last_tsc_nsec = 0;
7544 			kvm->arch.last_tsc_write = 0;
7545 		}
7546 
7547 	}
7548 	return 0;
7549 }
7550 
7551 void kvm_arch_hardware_disable(void)
7552 {
7553 	kvm_x86_ops->hardware_disable();
7554 	drop_user_return_notifiers();
7555 }
7556 
7557 int kvm_arch_hardware_setup(void)
7558 {
7559 	int r;
7560 
7561 	r = kvm_x86_ops->hardware_setup();
7562 	if (r != 0)
7563 		return r;
7564 
7565 	if (kvm_has_tsc_control) {
7566 		/*
7567 		 * Make sure the user can only configure tsc_khz values that
7568 		 * fit into a signed integer.
7569 		 * A min value is not calculated needed because it will always
7570 		 * be 1 on all machines.
7571 		 */
7572 		u64 max = min(0x7fffffffULL,
7573 			      __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
7574 		kvm_max_guest_tsc_khz = max;
7575 
7576 		kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
7577 	}
7578 
7579 	kvm_init_msr_list();
7580 	return 0;
7581 }
7582 
7583 void kvm_arch_hardware_unsetup(void)
7584 {
7585 	kvm_x86_ops->hardware_unsetup();
7586 }
7587 
7588 void kvm_arch_check_processor_compat(void *rtn)
7589 {
7590 	kvm_x86_ops->check_processor_compatibility(rtn);
7591 }
7592 
7593 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
7594 {
7595 	return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
7596 }
7597 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
7598 
7599 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
7600 {
7601 	return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
7602 }
7603 
7604 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
7605 {
7606 	return irqchip_in_kernel(vcpu->kvm) == lapic_in_kernel(vcpu);
7607 }
7608 
7609 struct static_key kvm_no_apic_vcpu __read_mostly;
7610 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
7611 
7612 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
7613 {
7614 	struct page *page;
7615 	struct kvm *kvm;
7616 	int r;
7617 
7618 	BUG_ON(vcpu->kvm == NULL);
7619 	kvm = vcpu->kvm;
7620 
7621 	vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv();
7622 	vcpu->arch.pv.pv_unhalted = false;
7623 	vcpu->arch.emulate_ctxt.ops = &emulate_ops;
7624 	if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_reset_bsp(vcpu))
7625 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7626 	else
7627 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
7628 
7629 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
7630 	if (!page) {
7631 		r = -ENOMEM;
7632 		goto fail;
7633 	}
7634 	vcpu->arch.pio_data = page_address(page);
7635 
7636 	kvm_set_tsc_khz(vcpu, max_tsc_khz);
7637 
7638 	r = kvm_mmu_create(vcpu);
7639 	if (r < 0)
7640 		goto fail_free_pio_data;
7641 
7642 	if (irqchip_in_kernel(kvm)) {
7643 		r = kvm_create_lapic(vcpu);
7644 		if (r < 0)
7645 			goto fail_mmu_destroy;
7646 	} else
7647 		static_key_slow_inc(&kvm_no_apic_vcpu);
7648 
7649 	vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
7650 				       GFP_KERNEL);
7651 	if (!vcpu->arch.mce_banks) {
7652 		r = -ENOMEM;
7653 		goto fail_free_lapic;
7654 	}
7655 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
7656 
7657 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
7658 		r = -ENOMEM;
7659 		goto fail_free_mce_banks;
7660 	}
7661 
7662 	fx_init(vcpu);
7663 
7664 	vcpu->arch.ia32_tsc_adjust_msr = 0x0;
7665 	vcpu->arch.pv_time_enabled = false;
7666 
7667 	vcpu->arch.guest_supported_xcr0 = 0;
7668 	vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
7669 
7670 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
7671 
7672 	vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
7673 
7674 	kvm_async_pf_hash_reset(vcpu);
7675 	kvm_pmu_init(vcpu);
7676 
7677 	vcpu->arch.pending_external_vector = -1;
7678 
7679 	kvm_hv_vcpu_init(vcpu);
7680 
7681 	return 0;
7682 
7683 fail_free_mce_banks:
7684 	kfree(vcpu->arch.mce_banks);
7685 fail_free_lapic:
7686 	kvm_free_lapic(vcpu);
7687 fail_mmu_destroy:
7688 	kvm_mmu_destroy(vcpu);
7689 fail_free_pio_data:
7690 	free_page((unsigned long)vcpu->arch.pio_data);
7691 fail:
7692 	return r;
7693 }
7694 
7695 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
7696 {
7697 	int idx;
7698 
7699 	kvm_hv_vcpu_uninit(vcpu);
7700 	kvm_pmu_destroy(vcpu);
7701 	kfree(vcpu->arch.mce_banks);
7702 	kvm_free_lapic(vcpu);
7703 	idx = srcu_read_lock(&vcpu->kvm->srcu);
7704 	kvm_mmu_destroy(vcpu);
7705 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
7706 	free_page((unsigned long)vcpu->arch.pio_data);
7707 	if (!lapic_in_kernel(vcpu))
7708 		static_key_slow_dec(&kvm_no_apic_vcpu);
7709 }
7710 
7711 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
7712 {
7713 	kvm_x86_ops->sched_in(vcpu, cpu);
7714 }
7715 
7716 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
7717 {
7718 	if (type)
7719 		return -EINVAL;
7720 
7721 	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
7722 	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
7723 	INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
7724 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
7725 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
7726 
7727 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
7728 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
7729 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
7730 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
7731 		&kvm->arch.irq_sources_bitmap);
7732 
7733 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
7734 	mutex_init(&kvm->arch.apic_map_lock);
7735 	spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
7736 
7737 	pvclock_update_vm_gtod_copy(kvm);
7738 
7739 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
7740 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
7741 
7742 	kvm_page_track_init(kvm);
7743 	kvm_mmu_init_vm(kvm);
7744 
7745 	return 0;
7746 }
7747 
7748 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
7749 {
7750 	int r;
7751 	r = vcpu_load(vcpu);
7752 	BUG_ON(r);
7753 	kvm_mmu_unload(vcpu);
7754 	vcpu_put(vcpu);
7755 }
7756 
7757 static void kvm_free_vcpus(struct kvm *kvm)
7758 {
7759 	unsigned int i;
7760 	struct kvm_vcpu *vcpu;
7761 
7762 	/*
7763 	 * Unpin any mmu pages first.
7764 	 */
7765 	kvm_for_each_vcpu(i, vcpu, kvm) {
7766 		kvm_clear_async_pf_completion_queue(vcpu);
7767 		kvm_unload_vcpu_mmu(vcpu);
7768 	}
7769 	kvm_for_each_vcpu(i, vcpu, kvm)
7770 		kvm_arch_vcpu_free(vcpu);
7771 
7772 	mutex_lock(&kvm->lock);
7773 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
7774 		kvm->vcpus[i] = NULL;
7775 
7776 	atomic_set(&kvm->online_vcpus, 0);
7777 	mutex_unlock(&kvm->lock);
7778 }
7779 
7780 void kvm_arch_sync_events(struct kvm *kvm)
7781 {
7782 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
7783 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
7784 	kvm_free_all_assigned_devices(kvm);
7785 	kvm_free_pit(kvm);
7786 }
7787 
7788 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
7789 {
7790 	int i, r;
7791 	unsigned long hva;
7792 	struct kvm_memslots *slots = kvm_memslots(kvm);
7793 	struct kvm_memory_slot *slot, old;
7794 
7795 	/* Called with kvm->slots_lock held.  */
7796 	if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
7797 		return -EINVAL;
7798 
7799 	slot = id_to_memslot(slots, id);
7800 	if (size) {
7801 		if (WARN_ON(slot->npages))
7802 			return -EEXIST;
7803 
7804 		/*
7805 		 * MAP_SHARED to prevent internal slot pages from being moved
7806 		 * by fork()/COW.
7807 		 */
7808 		hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
7809 			      MAP_SHARED | MAP_ANONYMOUS, 0);
7810 		if (IS_ERR((void *)hva))
7811 			return PTR_ERR((void *)hva);
7812 	} else {
7813 		if (!slot->npages)
7814 			return 0;
7815 
7816 		hva = 0;
7817 	}
7818 
7819 	old = *slot;
7820 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
7821 		struct kvm_userspace_memory_region m;
7822 
7823 		m.slot = id | (i << 16);
7824 		m.flags = 0;
7825 		m.guest_phys_addr = gpa;
7826 		m.userspace_addr = hva;
7827 		m.memory_size = size;
7828 		r = __kvm_set_memory_region(kvm, &m);
7829 		if (r < 0)
7830 			return r;
7831 	}
7832 
7833 	if (!size) {
7834 		r = vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
7835 		WARN_ON(r < 0);
7836 	}
7837 
7838 	return 0;
7839 }
7840 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
7841 
7842 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
7843 {
7844 	int r;
7845 
7846 	mutex_lock(&kvm->slots_lock);
7847 	r = __x86_set_memory_region(kvm, id, gpa, size);
7848 	mutex_unlock(&kvm->slots_lock);
7849 
7850 	return r;
7851 }
7852 EXPORT_SYMBOL_GPL(x86_set_memory_region);
7853 
7854 void kvm_arch_destroy_vm(struct kvm *kvm)
7855 {
7856 	if (current->mm == kvm->mm) {
7857 		/*
7858 		 * Free memory regions allocated on behalf of userspace,
7859 		 * unless the the memory map has changed due to process exit
7860 		 * or fd copying.
7861 		 */
7862 		x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
7863 		x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
7864 		x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
7865 	}
7866 	kvm_iommu_unmap_guest(kvm);
7867 	kfree(kvm->arch.vpic);
7868 	kfree(kvm->arch.vioapic);
7869 	kvm_free_vcpus(kvm);
7870 	kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
7871 	kvm_mmu_uninit_vm(kvm);
7872 }
7873 
7874 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
7875 			   struct kvm_memory_slot *dont)
7876 {
7877 	int i;
7878 
7879 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7880 		if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
7881 			kvfree(free->arch.rmap[i]);
7882 			free->arch.rmap[i] = NULL;
7883 		}
7884 		if (i == 0)
7885 			continue;
7886 
7887 		if (!dont || free->arch.lpage_info[i - 1] !=
7888 			     dont->arch.lpage_info[i - 1]) {
7889 			kvfree(free->arch.lpage_info[i - 1]);
7890 			free->arch.lpage_info[i - 1] = NULL;
7891 		}
7892 	}
7893 
7894 	kvm_page_track_free_memslot(free, dont);
7895 }
7896 
7897 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
7898 			    unsigned long npages)
7899 {
7900 	int i;
7901 
7902 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7903 		struct kvm_lpage_info *linfo;
7904 		unsigned long ugfn;
7905 		int lpages;
7906 		int level = i + 1;
7907 
7908 		lpages = gfn_to_index(slot->base_gfn + npages - 1,
7909 				      slot->base_gfn, level) + 1;
7910 
7911 		slot->arch.rmap[i] =
7912 			kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
7913 		if (!slot->arch.rmap[i])
7914 			goto out_free;
7915 		if (i == 0)
7916 			continue;
7917 
7918 		linfo = kvm_kvzalloc(lpages * sizeof(*linfo));
7919 		if (!linfo)
7920 			goto out_free;
7921 
7922 		slot->arch.lpage_info[i - 1] = linfo;
7923 
7924 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
7925 			linfo[0].disallow_lpage = 1;
7926 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
7927 			linfo[lpages - 1].disallow_lpage = 1;
7928 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
7929 		/*
7930 		 * If the gfn and userspace address are not aligned wrt each
7931 		 * other, or if explicitly asked to, disable large page
7932 		 * support for this slot
7933 		 */
7934 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
7935 		    !kvm_largepages_enabled()) {
7936 			unsigned long j;
7937 
7938 			for (j = 0; j < lpages; ++j)
7939 				linfo[j].disallow_lpage = 1;
7940 		}
7941 	}
7942 
7943 	if (kvm_page_track_create_memslot(slot, npages))
7944 		goto out_free;
7945 
7946 	return 0;
7947 
7948 out_free:
7949 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7950 		kvfree(slot->arch.rmap[i]);
7951 		slot->arch.rmap[i] = NULL;
7952 		if (i == 0)
7953 			continue;
7954 
7955 		kvfree(slot->arch.lpage_info[i - 1]);
7956 		slot->arch.lpage_info[i - 1] = NULL;
7957 	}
7958 	return -ENOMEM;
7959 }
7960 
7961 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
7962 {
7963 	/*
7964 	 * memslots->generation has been incremented.
7965 	 * mmio generation may have reached its maximum value.
7966 	 */
7967 	kvm_mmu_invalidate_mmio_sptes(kvm, slots);
7968 }
7969 
7970 int kvm_arch_prepare_memory_region(struct kvm *kvm,
7971 				struct kvm_memory_slot *memslot,
7972 				const struct kvm_userspace_memory_region *mem,
7973 				enum kvm_mr_change change)
7974 {
7975 	return 0;
7976 }
7977 
7978 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
7979 				     struct kvm_memory_slot *new)
7980 {
7981 	/* Still write protect RO slot */
7982 	if (new->flags & KVM_MEM_READONLY) {
7983 		kvm_mmu_slot_remove_write_access(kvm, new);
7984 		return;
7985 	}
7986 
7987 	/*
7988 	 * Call kvm_x86_ops dirty logging hooks when they are valid.
7989 	 *
7990 	 * kvm_x86_ops->slot_disable_log_dirty is called when:
7991 	 *
7992 	 *  - KVM_MR_CREATE with dirty logging is disabled
7993 	 *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
7994 	 *
7995 	 * The reason is, in case of PML, we need to set D-bit for any slots
7996 	 * with dirty logging disabled in order to eliminate unnecessary GPA
7997 	 * logging in PML buffer (and potential PML buffer full VMEXT). This
7998 	 * guarantees leaving PML enabled during guest's lifetime won't have
7999 	 * any additonal overhead from PML when guest is running with dirty
8000 	 * logging disabled for memory slots.
8001 	 *
8002 	 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
8003 	 * to dirty logging mode.
8004 	 *
8005 	 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
8006 	 *
8007 	 * In case of write protect:
8008 	 *
8009 	 * Write protect all pages for dirty logging.
8010 	 *
8011 	 * All the sptes including the large sptes which point to this
8012 	 * slot are set to readonly. We can not create any new large
8013 	 * spte on this slot until the end of the logging.
8014 	 *
8015 	 * See the comments in fast_page_fault().
8016 	 */
8017 	if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
8018 		if (kvm_x86_ops->slot_enable_log_dirty)
8019 			kvm_x86_ops->slot_enable_log_dirty(kvm, new);
8020 		else
8021 			kvm_mmu_slot_remove_write_access(kvm, new);
8022 	} else {
8023 		if (kvm_x86_ops->slot_disable_log_dirty)
8024 			kvm_x86_ops->slot_disable_log_dirty(kvm, new);
8025 	}
8026 }
8027 
8028 void kvm_arch_commit_memory_region(struct kvm *kvm,
8029 				const struct kvm_userspace_memory_region *mem,
8030 				const struct kvm_memory_slot *old,
8031 				const struct kvm_memory_slot *new,
8032 				enum kvm_mr_change change)
8033 {
8034 	int nr_mmu_pages = 0;
8035 
8036 	if (!kvm->arch.n_requested_mmu_pages)
8037 		nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
8038 
8039 	if (nr_mmu_pages)
8040 		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
8041 
8042 	/*
8043 	 * Dirty logging tracks sptes in 4k granularity, meaning that large
8044 	 * sptes have to be split.  If live migration is successful, the guest
8045 	 * in the source machine will be destroyed and large sptes will be
8046 	 * created in the destination. However, if the guest continues to run
8047 	 * in the source machine (for example if live migration fails), small
8048 	 * sptes will remain around and cause bad performance.
8049 	 *
8050 	 * Scan sptes if dirty logging has been stopped, dropping those
8051 	 * which can be collapsed into a single large-page spte.  Later
8052 	 * page faults will create the large-page sptes.
8053 	 */
8054 	if ((change != KVM_MR_DELETE) &&
8055 		(old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
8056 		!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
8057 		kvm_mmu_zap_collapsible_sptes(kvm, new);
8058 
8059 	/*
8060 	 * Set up write protection and/or dirty logging for the new slot.
8061 	 *
8062 	 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
8063 	 * been zapped so no dirty logging staff is needed for old slot. For
8064 	 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
8065 	 * new and it's also covered when dealing with the new slot.
8066 	 *
8067 	 * FIXME: const-ify all uses of struct kvm_memory_slot.
8068 	 */
8069 	if (change != KVM_MR_DELETE)
8070 		kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
8071 }
8072 
8073 void kvm_arch_flush_shadow_all(struct kvm *kvm)
8074 {
8075 	kvm_mmu_invalidate_zap_all_pages(kvm);
8076 }
8077 
8078 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
8079 				   struct kvm_memory_slot *slot)
8080 {
8081 	kvm_mmu_invalidate_zap_all_pages(kvm);
8082 }
8083 
8084 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
8085 {
8086 	if (!list_empty_careful(&vcpu->async_pf.done))
8087 		return true;
8088 
8089 	if (kvm_apic_has_events(vcpu))
8090 		return true;
8091 
8092 	if (vcpu->arch.pv.pv_unhalted)
8093 		return true;
8094 
8095 	if (atomic_read(&vcpu->arch.nmi_queued))
8096 		return true;
8097 
8098 	if (test_bit(KVM_REQ_SMI, &vcpu->requests))
8099 		return true;
8100 
8101 	if (kvm_arch_interrupt_allowed(vcpu) &&
8102 	    kvm_cpu_has_interrupt(vcpu))
8103 		return true;
8104 
8105 	if (kvm_hv_has_stimer_pending(vcpu))
8106 		return true;
8107 
8108 	return false;
8109 }
8110 
8111 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
8112 {
8113 	if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
8114 		kvm_x86_ops->check_nested_events(vcpu, false);
8115 
8116 	return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
8117 }
8118 
8119 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
8120 {
8121 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
8122 }
8123 
8124 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
8125 {
8126 	return kvm_x86_ops->interrupt_allowed(vcpu);
8127 }
8128 
8129 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
8130 {
8131 	if (is_64_bit_mode(vcpu))
8132 		return kvm_rip_read(vcpu);
8133 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
8134 		     kvm_rip_read(vcpu));
8135 }
8136 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
8137 
8138 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
8139 {
8140 	return kvm_get_linear_rip(vcpu) == linear_rip;
8141 }
8142 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
8143 
8144 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
8145 {
8146 	unsigned long rflags;
8147 
8148 	rflags = kvm_x86_ops->get_rflags(vcpu);
8149 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8150 		rflags &= ~X86_EFLAGS_TF;
8151 	return rflags;
8152 }
8153 EXPORT_SYMBOL_GPL(kvm_get_rflags);
8154 
8155 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8156 {
8157 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
8158 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
8159 		rflags |= X86_EFLAGS_TF;
8160 	kvm_x86_ops->set_rflags(vcpu, rflags);
8161 }
8162 
8163 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8164 {
8165 	__kvm_set_rflags(vcpu, rflags);
8166 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8167 }
8168 EXPORT_SYMBOL_GPL(kvm_set_rflags);
8169 
8170 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
8171 {
8172 	int r;
8173 
8174 	if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
8175 	      work->wakeup_all)
8176 		return;
8177 
8178 	r = kvm_mmu_reload(vcpu);
8179 	if (unlikely(r))
8180 		return;
8181 
8182 	if (!vcpu->arch.mmu.direct_map &&
8183 	      work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
8184 		return;
8185 
8186 	vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
8187 }
8188 
8189 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
8190 {
8191 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
8192 }
8193 
8194 static inline u32 kvm_async_pf_next_probe(u32 key)
8195 {
8196 	return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
8197 }
8198 
8199 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8200 {
8201 	u32 key = kvm_async_pf_hash_fn(gfn);
8202 
8203 	while (vcpu->arch.apf.gfns[key] != ~0)
8204 		key = kvm_async_pf_next_probe(key);
8205 
8206 	vcpu->arch.apf.gfns[key] = gfn;
8207 }
8208 
8209 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
8210 {
8211 	int i;
8212 	u32 key = kvm_async_pf_hash_fn(gfn);
8213 
8214 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
8215 		     (vcpu->arch.apf.gfns[key] != gfn &&
8216 		      vcpu->arch.apf.gfns[key] != ~0); i++)
8217 		key = kvm_async_pf_next_probe(key);
8218 
8219 	return key;
8220 }
8221 
8222 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8223 {
8224 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
8225 }
8226 
8227 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8228 {
8229 	u32 i, j, k;
8230 
8231 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
8232 	while (true) {
8233 		vcpu->arch.apf.gfns[i] = ~0;
8234 		do {
8235 			j = kvm_async_pf_next_probe(j);
8236 			if (vcpu->arch.apf.gfns[j] == ~0)
8237 				return;
8238 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
8239 			/*
8240 			 * k lies cyclically in ]i,j]
8241 			 * |    i.k.j |
8242 			 * |....j i.k.| or  |.k..j i...|
8243 			 */
8244 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
8245 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
8246 		i = j;
8247 	}
8248 }
8249 
8250 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
8251 {
8252 
8253 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
8254 				      sizeof(val));
8255 }
8256 
8257 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
8258 				     struct kvm_async_pf *work)
8259 {
8260 	struct x86_exception fault;
8261 
8262 	trace_kvm_async_pf_not_present(work->arch.token, work->gva);
8263 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
8264 
8265 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
8266 	    (vcpu->arch.apf.send_user_only &&
8267 	     kvm_x86_ops->get_cpl(vcpu) == 0))
8268 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
8269 	else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
8270 		fault.vector = PF_VECTOR;
8271 		fault.error_code_valid = true;
8272 		fault.error_code = 0;
8273 		fault.nested_page_fault = false;
8274 		fault.address = work->arch.token;
8275 		kvm_inject_page_fault(vcpu, &fault);
8276 	}
8277 }
8278 
8279 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
8280 				 struct kvm_async_pf *work)
8281 {
8282 	struct x86_exception fault;
8283 
8284 	trace_kvm_async_pf_ready(work->arch.token, work->gva);
8285 	if (work->wakeup_all)
8286 		work->arch.token = ~0; /* broadcast wakeup */
8287 	else
8288 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
8289 
8290 	if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
8291 	    !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
8292 		fault.vector = PF_VECTOR;
8293 		fault.error_code_valid = true;
8294 		fault.error_code = 0;
8295 		fault.nested_page_fault = false;
8296 		fault.address = work->arch.token;
8297 		kvm_inject_page_fault(vcpu, &fault);
8298 	}
8299 	vcpu->arch.apf.halted = false;
8300 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8301 }
8302 
8303 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
8304 {
8305 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
8306 		return true;
8307 	else
8308 		return !kvm_event_needs_reinjection(vcpu) &&
8309 			kvm_x86_ops->interrupt_allowed(vcpu);
8310 }
8311 
8312 void kvm_arch_start_assignment(struct kvm *kvm)
8313 {
8314 	atomic_inc(&kvm->arch.assigned_device_count);
8315 }
8316 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
8317 
8318 void kvm_arch_end_assignment(struct kvm *kvm)
8319 {
8320 	atomic_dec(&kvm->arch.assigned_device_count);
8321 }
8322 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
8323 
8324 bool kvm_arch_has_assigned_device(struct kvm *kvm)
8325 {
8326 	return atomic_read(&kvm->arch.assigned_device_count);
8327 }
8328 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
8329 
8330 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
8331 {
8332 	atomic_inc(&kvm->arch.noncoherent_dma_count);
8333 }
8334 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
8335 
8336 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
8337 {
8338 	atomic_dec(&kvm->arch.noncoherent_dma_count);
8339 }
8340 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
8341 
8342 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
8343 {
8344 	return atomic_read(&kvm->arch.noncoherent_dma_count);
8345 }
8346 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
8347 
8348 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
8349 				      struct irq_bypass_producer *prod)
8350 {
8351 	struct kvm_kernel_irqfd *irqfd =
8352 		container_of(cons, struct kvm_kernel_irqfd, consumer);
8353 
8354 	if (kvm_x86_ops->update_pi_irte) {
8355 		irqfd->producer = prod;
8356 		return kvm_x86_ops->update_pi_irte(irqfd->kvm,
8357 				prod->irq, irqfd->gsi, 1);
8358 	}
8359 
8360 	return -EINVAL;
8361 }
8362 
8363 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
8364 				      struct irq_bypass_producer *prod)
8365 {
8366 	int ret;
8367 	struct kvm_kernel_irqfd *irqfd =
8368 		container_of(cons, struct kvm_kernel_irqfd, consumer);
8369 
8370 	if (!kvm_x86_ops->update_pi_irte) {
8371 		WARN_ON(irqfd->producer != NULL);
8372 		return;
8373 	}
8374 
8375 	WARN_ON(irqfd->producer != prod);
8376 	irqfd->producer = NULL;
8377 
8378 	/*
8379 	 * When producer of consumer is unregistered, we change back to
8380 	 * remapped mode, so we can re-use the current implementation
8381 	 * when the irq is masked/disabed or the consumer side (KVM
8382 	 * int this case doesn't want to receive the interrupts.
8383 	*/
8384 	ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
8385 	if (ret)
8386 		printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
8387 		       " fails: %d\n", irqfd->consumer.token, ret);
8388 }
8389 
8390 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
8391 				   uint32_t guest_irq, bool set)
8392 {
8393 	if (!kvm_x86_ops->update_pi_irte)
8394 		return -EINVAL;
8395 
8396 	return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
8397 }
8398 
8399 bool kvm_vector_hashing_enabled(void)
8400 {
8401 	return vector_hashing;
8402 }
8403 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
8404 
8405 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
8406 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
8407 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
8408 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
8409 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
8410 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
8411 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
8412 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
8413 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
8414 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
8415 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
8416 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
8417 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
8418 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
8419 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
8420 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
8421 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
8422