xref: /linux/arch/x86/kvm/x86.c (revision 2e554390ab8470e9f8bccfd602395c3b4c19c37e)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21 
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "pmu.h"
31 #include "hyperv.h"
32 
33 #include <linux/clocksource.h>
34 #include <linux/interrupt.h>
35 #include <linux/kvm.h>
36 #include <linux/fs.h>
37 #include <linux/vmalloc.h>
38 #include <linux/export.h>
39 #include <linux/moduleparam.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <linux/sched/stat.h>
57 #include <linux/mem_encrypt.h>
58 
59 #include <trace/events/kvm.h>
60 
61 #include <asm/debugreg.h>
62 #include <asm/msr.h>
63 #include <asm/desc.h>
64 #include <asm/mce.h>
65 #include <linux/kernel_stat.h>
66 #include <asm/fpu/internal.h> /* Ugh! */
67 #include <asm/pvclock.h>
68 #include <asm/div64.h>
69 #include <asm/irq_remapping.h>
70 #include <asm/mshyperv.h>
71 #include <asm/hypervisor.h>
72 
73 #define CREATE_TRACE_POINTS
74 #include "trace.h"
75 
76 #define MAX_IO_MSRS 256
77 #define KVM_MAX_MCE_BANKS 32
78 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
79 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
80 
81 #define emul_to_vcpu(ctxt) \
82 	container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
83 
84 /* EFER defaults:
85  * - enable syscall per default because its emulated by KVM
86  * - enable LME and LMA per default on 64 bit KVM
87  */
88 #ifdef CONFIG_X86_64
89 static
90 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
91 #else
92 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
93 #endif
94 
95 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
96 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
97 
98 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
99                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
100 
101 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
102 static void process_nmi(struct kvm_vcpu *vcpu);
103 static void enter_smm(struct kvm_vcpu *vcpu);
104 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
105 static void store_regs(struct kvm_vcpu *vcpu);
106 static int sync_regs(struct kvm_vcpu *vcpu);
107 
108 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
109 EXPORT_SYMBOL_GPL(kvm_x86_ops);
110 
111 static bool __read_mostly ignore_msrs = 0;
112 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
113 
114 static bool __read_mostly report_ignored_msrs = true;
115 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
116 
117 unsigned int min_timer_period_us = 500;
118 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
119 
120 static bool __read_mostly kvmclock_periodic_sync = true;
121 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
122 
123 bool __read_mostly kvm_has_tsc_control;
124 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
125 u32  __read_mostly kvm_max_guest_tsc_khz;
126 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
127 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
128 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
129 u64  __read_mostly kvm_max_tsc_scaling_ratio;
130 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
131 u64 __read_mostly kvm_default_tsc_scaling_ratio;
132 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
133 
134 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
135 static u32 __read_mostly tsc_tolerance_ppm = 250;
136 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
137 
138 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
139 unsigned int __read_mostly lapic_timer_advance_ns = 0;
140 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
141 
142 static bool __read_mostly vector_hashing = true;
143 module_param(vector_hashing, bool, S_IRUGO);
144 
145 bool __read_mostly enable_vmware_backdoor = false;
146 module_param(enable_vmware_backdoor, bool, S_IRUGO);
147 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
148 
149 static bool __read_mostly force_emulation_prefix = false;
150 module_param(force_emulation_prefix, bool, S_IRUGO);
151 
152 #define KVM_NR_SHARED_MSRS 16
153 
154 struct kvm_shared_msrs_global {
155 	int nr;
156 	u32 msrs[KVM_NR_SHARED_MSRS];
157 };
158 
159 struct kvm_shared_msrs {
160 	struct user_return_notifier urn;
161 	bool registered;
162 	struct kvm_shared_msr_values {
163 		u64 host;
164 		u64 curr;
165 	} values[KVM_NR_SHARED_MSRS];
166 };
167 
168 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
169 static struct kvm_shared_msrs __percpu *shared_msrs;
170 
171 struct kvm_stats_debugfs_item debugfs_entries[] = {
172 	{ "pf_fixed", VCPU_STAT(pf_fixed) },
173 	{ "pf_guest", VCPU_STAT(pf_guest) },
174 	{ "tlb_flush", VCPU_STAT(tlb_flush) },
175 	{ "invlpg", VCPU_STAT(invlpg) },
176 	{ "exits", VCPU_STAT(exits) },
177 	{ "io_exits", VCPU_STAT(io_exits) },
178 	{ "mmio_exits", VCPU_STAT(mmio_exits) },
179 	{ "signal_exits", VCPU_STAT(signal_exits) },
180 	{ "irq_window", VCPU_STAT(irq_window_exits) },
181 	{ "nmi_window", VCPU_STAT(nmi_window_exits) },
182 	{ "halt_exits", VCPU_STAT(halt_exits) },
183 	{ "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
184 	{ "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
185 	{ "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
186 	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
187 	{ "hypercalls", VCPU_STAT(hypercalls) },
188 	{ "request_irq", VCPU_STAT(request_irq_exits) },
189 	{ "irq_exits", VCPU_STAT(irq_exits) },
190 	{ "host_state_reload", VCPU_STAT(host_state_reload) },
191 	{ "fpu_reload", VCPU_STAT(fpu_reload) },
192 	{ "insn_emulation", VCPU_STAT(insn_emulation) },
193 	{ "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
194 	{ "irq_injections", VCPU_STAT(irq_injections) },
195 	{ "nmi_injections", VCPU_STAT(nmi_injections) },
196 	{ "req_event", VCPU_STAT(req_event) },
197 	{ "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
198 	{ "mmu_pte_write", VM_STAT(mmu_pte_write) },
199 	{ "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
200 	{ "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
201 	{ "mmu_flooded", VM_STAT(mmu_flooded) },
202 	{ "mmu_recycled", VM_STAT(mmu_recycled) },
203 	{ "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
204 	{ "mmu_unsync", VM_STAT(mmu_unsync) },
205 	{ "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
206 	{ "largepages", VM_STAT(lpages) },
207 	{ "max_mmu_page_hash_collisions",
208 		VM_STAT(max_mmu_page_hash_collisions) },
209 	{ NULL }
210 };
211 
212 u64 __read_mostly host_xcr0;
213 
214 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
215 
216 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
217 {
218 	int i;
219 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
220 		vcpu->arch.apf.gfns[i] = ~0;
221 }
222 
223 static void kvm_on_user_return(struct user_return_notifier *urn)
224 {
225 	unsigned slot;
226 	struct kvm_shared_msrs *locals
227 		= container_of(urn, struct kvm_shared_msrs, urn);
228 	struct kvm_shared_msr_values *values;
229 	unsigned long flags;
230 
231 	/*
232 	 * Disabling irqs at this point since the following code could be
233 	 * interrupted and executed through kvm_arch_hardware_disable()
234 	 */
235 	local_irq_save(flags);
236 	if (locals->registered) {
237 		locals->registered = false;
238 		user_return_notifier_unregister(urn);
239 	}
240 	local_irq_restore(flags);
241 	for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
242 		values = &locals->values[slot];
243 		if (values->host != values->curr) {
244 			wrmsrl(shared_msrs_global.msrs[slot], values->host);
245 			values->curr = values->host;
246 		}
247 	}
248 }
249 
250 static void shared_msr_update(unsigned slot, u32 msr)
251 {
252 	u64 value;
253 	unsigned int cpu = smp_processor_id();
254 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
255 
256 	/* only read, and nobody should modify it at this time,
257 	 * so don't need lock */
258 	if (slot >= shared_msrs_global.nr) {
259 		printk(KERN_ERR "kvm: invalid MSR slot!");
260 		return;
261 	}
262 	rdmsrl_safe(msr, &value);
263 	smsr->values[slot].host = value;
264 	smsr->values[slot].curr = value;
265 }
266 
267 void kvm_define_shared_msr(unsigned slot, u32 msr)
268 {
269 	BUG_ON(slot >= KVM_NR_SHARED_MSRS);
270 	shared_msrs_global.msrs[slot] = msr;
271 	if (slot >= shared_msrs_global.nr)
272 		shared_msrs_global.nr = slot + 1;
273 }
274 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
275 
276 static void kvm_shared_msr_cpu_online(void)
277 {
278 	unsigned i;
279 
280 	for (i = 0; i < shared_msrs_global.nr; ++i)
281 		shared_msr_update(i, shared_msrs_global.msrs[i]);
282 }
283 
284 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
285 {
286 	unsigned int cpu = smp_processor_id();
287 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
288 	int err;
289 
290 	if (((value ^ smsr->values[slot].curr) & mask) == 0)
291 		return 0;
292 	smsr->values[slot].curr = value;
293 	err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
294 	if (err)
295 		return 1;
296 
297 	if (!smsr->registered) {
298 		smsr->urn.on_user_return = kvm_on_user_return;
299 		user_return_notifier_register(&smsr->urn);
300 		smsr->registered = true;
301 	}
302 	return 0;
303 }
304 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
305 
306 static void drop_user_return_notifiers(void)
307 {
308 	unsigned int cpu = smp_processor_id();
309 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
310 
311 	if (smsr->registered)
312 		kvm_on_user_return(&smsr->urn);
313 }
314 
315 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
316 {
317 	return vcpu->arch.apic_base;
318 }
319 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
320 
321 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
322 {
323 	u64 old_state = vcpu->arch.apic_base &
324 		(MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
325 	u64 new_state = msr_info->data &
326 		(MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
327 	u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
328 		(guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
329 
330 	if ((msr_info->data & reserved_bits) || new_state == X2APIC_ENABLE)
331 		return 1;
332 	if (!msr_info->host_initiated &&
333 	    ((new_state == MSR_IA32_APICBASE_ENABLE &&
334 	      old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
335 	     (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
336 	      old_state == 0)))
337 		return 1;
338 
339 	kvm_lapic_set_base(vcpu, msr_info->data);
340 	return 0;
341 }
342 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
343 
344 asmlinkage __visible void kvm_spurious_fault(void)
345 {
346 	/* Fault while not rebooting.  We want the trace. */
347 	BUG();
348 }
349 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
350 
351 #define EXCPT_BENIGN		0
352 #define EXCPT_CONTRIBUTORY	1
353 #define EXCPT_PF		2
354 
355 static int exception_class(int vector)
356 {
357 	switch (vector) {
358 	case PF_VECTOR:
359 		return EXCPT_PF;
360 	case DE_VECTOR:
361 	case TS_VECTOR:
362 	case NP_VECTOR:
363 	case SS_VECTOR:
364 	case GP_VECTOR:
365 		return EXCPT_CONTRIBUTORY;
366 	default:
367 		break;
368 	}
369 	return EXCPT_BENIGN;
370 }
371 
372 #define EXCPT_FAULT		0
373 #define EXCPT_TRAP		1
374 #define EXCPT_ABORT		2
375 #define EXCPT_INTERRUPT		3
376 
377 static int exception_type(int vector)
378 {
379 	unsigned int mask;
380 
381 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
382 		return EXCPT_INTERRUPT;
383 
384 	mask = 1 << vector;
385 
386 	/* #DB is trap, as instruction watchpoints are handled elsewhere */
387 	if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
388 		return EXCPT_TRAP;
389 
390 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
391 		return EXCPT_ABORT;
392 
393 	/* Reserved exceptions will result in fault */
394 	return EXCPT_FAULT;
395 }
396 
397 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
398 		unsigned nr, bool has_error, u32 error_code,
399 		bool reinject)
400 {
401 	u32 prev_nr;
402 	int class1, class2;
403 
404 	kvm_make_request(KVM_REQ_EVENT, vcpu);
405 
406 	if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
407 	queue:
408 		if (has_error && !is_protmode(vcpu))
409 			has_error = false;
410 		if (reinject) {
411 			/*
412 			 * On vmentry, vcpu->arch.exception.pending is only
413 			 * true if an event injection was blocked by
414 			 * nested_run_pending.  In that case, however,
415 			 * vcpu_enter_guest requests an immediate exit,
416 			 * and the guest shouldn't proceed far enough to
417 			 * need reinjection.
418 			 */
419 			WARN_ON_ONCE(vcpu->arch.exception.pending);
420 			vcpu->arch.exception.injected = true;
421 		} else {
422 			vcpu->arch.exception.pending = true;
423 			vcpu->arch.exception.injected = false;
424 		}
425 		vcpu->arch.exception.has_error_code = has_error;
426 		vcpu->arch.exception.nr = nr;
427 		vcpu->arch.exception.error_code = error_code;
428 		return;
429 	}
430 
431 	/* to check exception */
432 	prev_nr = vcpu->arch.exception.nr;
433 	if (prev_nr == DF_VECTOR) {
434 		/* triple fault -> shutdown */
435 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
436 		return;
437 	}
438 	class1 = exception_class(prev_nr);
439 	class2 = exception_class(nr);
440 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
441 		|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
442 		/*
443 		 * Generate double fault per SDM Table 5-5.  Set
444 		 * exception.pending = true so that the double fault
445 		 * can trigger a nested vmexit.
446 		 */
447 		vcpu->arch.exception.pending = true;
448 		vcpu->arch.exception.injected = false;
449 		vcpu->arch.exception.has_error_code = true;
450 		vcpu->arch.exception.nr = DF_VECTOR;
451 		vcpu->arch.exception.error_code = 0;
452 	} else
453 		/* replace previous exception with a new one in a hope
454 		   that instruction re-execution will regenerate lost
455 		   exception */
456 		goto queue;
457 }
458 
459 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
460 {
461 	kvm_multiple_exception(vcpu, nr, false, 0, false);
462 }
463 EXPORT_SYMBOL_GPL(kvm_queue_exception);
464 
465 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
466 {
467 	kvm_multiple_exception(vcpu, nr, false, 0, true);
468 }
469 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
470 
471 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
472 {
473 	if (err)
474 		kvm_inject_gp(vcpu, 0);
475 	else
476 		return kvm_skip_emulated_instruction(vcpu);
477 
478 	return 1;
479 }
480 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
481 
482 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
483 {
484 	++vcpu->stat.pf_guest;
485 	vcpu->arch.exception.nested_apf =
486 		is_guest_mode(vcpu) && fault->async_page_fault;
487 	if (vcpu->arch.exception.nested_apf)
488 		vcpu->arch.apf.nested_apf_token = fault->address;
489 	else
490 		vcpu->arch.cr2 = fault->address;
491 	kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
492 }
493 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
494 
495 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
496 {
497 	if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
498 		vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
499 	else
500 		vcpu->arch.mmu.inject_page_fault(vcpu, fault);
501 
502 	return fault->nested_page_fault;
503 }
504 
505 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
506 {
507 	atomic_inc(&vcpu->arch.nmi_queued);
508 	kvm_make_request(KVM_REQ_NMI, vcpu);
509 }
510 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
511 
512 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
513 {
514 	kvm_multiple_exception(vcpu, nr, true, error_code, false);
515 }
516 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
517 
518 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
519 {
520 	kvm_multiple_exception(vcpu, nr, true, error_code, true);
521 }
522 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
523 
524 /*
525  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
526  * a #GP and return false.
527  */
528 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
529 {
530 	if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
531 		return true;
532 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
533 	return false;
534 }
535 EXPORT_SYMBOL_GPL(kvm_require_cpl);
536 
537 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
538 {
539 	if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
540 		return true;
541 
542 	kvm_queue_exception(vcpu, UD_VECTOR);
543 	return false;
544 }
545 EXPORT_SYMBOL_GPL(kvm_require_dr);
546 
547 /*
548  * This function will be used to read from the physical memory of the currently
549  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
550  * can read from guest physical or from the guest's guest physical memory.
551  */
552 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
553 			    gfn_t ngfn, void *data, int offset, int len,
554 			    u32 access)
555 {
556 	struct x86_exception exception;
557 	gfn_t real_gfn;
558 	gpa_t ngpa;
559 
560 	ngpa     = gfn_to_gpa(ngfn);
561 	real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
562 	if (real_gfn == UNMAPPED_GVA)
563 		return -EFAULT;
564 
565 	real_gfn = gpa_to_gfn(real_gfn);
566 
567 	return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
568 }
569 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
570 
571 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
572 			       void *data, int offset, int len, u32 access)
573 {
574 	return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
575 				       data, offset, len, access);
576 }
577 
578 /*
579  * Load the pae pdptrs.  Return true is they are all valid.
580  */
581 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
582 {
583 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
584 	unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
585 	int i;
586 	int ret;
587 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
588 
589 	ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
590 				      offset * sizeof(u64), sizeof(pdpte),
591 				      PFERR_USER_MASK|PFERR_WRITE_MASK);
592 	if (ret < 0) {
593 		ret = 0;
594 		goto out;
595 	}
596 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
597 		if ((pdpte[i] & PT_PRESENT_MASK) &&
598 		    (pdpte[i] &
599 		     vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) {
600 			ret = 0;
601 			goto out;
602 		}
603 	}
604 	ret = 1;
605 
606 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
607 	__set_bit(VCPU_EXREG_PDPTR,
608 		  (unsigned long *)&vcpu->arch.regs_avail);
609 	__set_bit(VCPU_EXREG_PDPTR,
610 		  (unsigned long *)&vcpu->arch.regs_dirty);
611 out:
612 
613 	return ret;
614 }
615 EXPORT_SYMBOL_GPL(load_pdptrs);
616 
617 bool pdptrs_changed(struct kvm_vcpu *vcpu)
618 {
619 	u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
620 	bool changed = true;
621 	int offset;
622 	gfn_t gfn;
623 	int r;
624 
625 	if (is_long_mode(vcpu) || !is_pae(vcpu))
626 		return false;
627 
628 	if (!test_bit(VCPU_EXREG_PDPTR,
629 		      (unsigned long *)&vcpu->arch.regs_avail))
630 		return true;
631 
632 	gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
633 	offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
634 	r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
635 				       PFERR_USER_MASK | PFERR_WRITE_MASK);
636 	if (r < 0)
637 		goto out;
638 	changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
639 out:
640 
641 	return changed;
642 }
643 EXPORT_SYMBOL_GPL(pdptrs_changed);
644 
645 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
646 {
647 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
648 	unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
649 
650 	cr0 |= X86_CR0_ET;
651 
652 #ifdef CONFIG_X86_64
653 	if (cr0 & 0xffffffff00000000UL)
654 		return 1;
655 #endif
656 
657 	cr0 &= ~CR0_RESERVED_BITS;
658 
659 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
660 		return 1;
661 
662 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
663 		return 1;
664 
665 	if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
666 #ifdef CONFIG_X86_64
667 		if ((vcpu->arch.efer & EFER_LME)) {
668 			int cs_db, cs_l;
669 
670 			if (!is_pae(vcpu))
671 				return 1;
672 			kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
673 			if (cs_l)
674 				return 1;
675 		} else
676 #endif
677 		if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
678 						 kvm_read_cr3(vcpu)))
679 			return 1;
680 	}
681 
682 	if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
683 		return 1;
684 
685 	kvm_x86_ops->set_cr0(vcpu, cr0);
686 
687 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
688 		kvm_clear_async_pf_completion_queue(vcpu);
689 		kvm_async_pf_hash_reset(vcpu);
690 	}
691 
692 	if ((cr0 ^ old_cr0) & update_bits)
693 		kvm_mmu_reset_context(vcpu);
694 
695 	if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
696 	    kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
697 	    !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
698 		kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
699 
700 	return 0;
701 }
702 EXPORT_SYMBOL_GPL(kvm_set_cr0);
703 
704 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
705 {
706 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
707 }
708 EXPORT_SYMBOL_GPL(kvm_lmsw);
709 
710 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
711 {
712 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
713 			!vcpu->guest_xcr0_loaded) {
714 		/* kvm_set_xcr() also depends on this */
715 		if (vcpu->arch.xcr0 != host_xcr0)
716 			xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
717 		vcpu->guest_xcr0_loaded = 1;
718 	}
719 }
720 
721 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
722 {
723 	if (vcpu->guest_xcr0_loaded) {
724 		if (vcpu->arch.xcr0 != host_xcr0)
725 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
726 		vcpu->guest_xcr0_loaded = 0;
727 	}
728 }
729 
730 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
731 {
732 	u64 xcr0 = xcr;
733 	u64 old_xcr0 = vcpu->arch.xcr0;
734 	u64 valid_bits;
735 
736 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
737 	if (index != XCR_XFEATURE_ENABLED_MASK)
738 		return 1;
739 	if (!(xcr0 & XFEATURE_MASK_FP))
740 		return 1;
741 	if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
742 		return 1;
743 
744 	/*
745 	 * Do not allow the guest to set bits that we do not support
746 	 * saving.  However, xcr0 bit 0 is always set, even if the
747 	 * emulated CPU does not support XSAVE (see fx_init).
748 	 */
749 	valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
750 	if (xcr0 & ~valid_bits)
751 		return 1;
752 
753 	if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
754 	    (!(xcr0 & XFEATURE_MASK_BNDCSR)))
755 		return 1;
756 
757 	if (xcr0 & XFEATURE_MASK_AVX512) {
758 		if (!(xcr0 & XFEATURE_MASK_YMM))
759 			return 1;
760 		if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
761 			return 1;
762 	}
763 	vcpu->arch.xcr0 = xcr0;
764 
765 	if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
766 		kvm_update_cpuid(vcpu);
767 	return 0;
768 }
769 
770 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
771 {
772 	if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
773 	    __kvm_set_xcr(vcpu, index, xcr)) {
774 		kvm_inject_gp(vcpu, 0);
775 		return 1;
776 	}
777 	return 0;
778 }
779 EXPORT_SYMBOL_GPL(kvm_set_xcr);
780 
781 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
782 {
783 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
784 	unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
785 				   X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
786 
787 	if (cr4 & CR4_RESERVED_BITS)
788 		return 1;
789 
790 	if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && (cr4 & X86_CR4_OSXSAVE))
791 		return 1;
792 
793 	if (!guest_cpuid_has(vcpu, X86_FEATURE_SMEP) && (cr4 & X86_CR4_SMEP))
794 		return 1;
795 
796 	if (!guest_cpuid_has(vcpu, X86_FEATURE_SMAP) && (cr4 & X86_CR4_SMAP))
797 		return 1;
798 
799 	if (!guest_cpuid_has(vcpu, X86_FEATURE_FSGSBASE) && (cr4 & X86_CR4_FSGSBASE))
800 		return 1;
801 
802 	if (!guest_cpuid_has(vcpu, X86_FEATURE_PKU) && (cr4 & X86_CR4_PKE))
803 		return 1;
804 
805 	if (!guest_cpuid_has(vcpu, X86_FEATURE_LA57) && (cr4 & X86_CR4_LA57))
806 		return 1;
807 
808 	if (!guest_cpuid_has(vcpu, X86_FEATURE_UMIP) && (cr4 & X86_CR4_UMIP))
809 		return 1;
810 
811 	if (is_long_mode(vcpu)) {
812 		if (!(cr4 & X86_CR4_PAE))
813 			return 1;
814 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
815 		   && ((cr4 ^ old_cr4) & pdptr_bits)
816 		   && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
817 				   kvm_read_cr3(vcpu)))
818 		return 1;
819 
820 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
821 		if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
822 			return 1;
823 
824 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
825 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
826 			return 1;
827 	}
828 
829 	if (kvm_x86_ops->set_cr4(vcpu, cr4))
830 		return 1;
831 
832 	if (((cr4 ^ old_cr4) & pdptr_bits) ||
833 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
834 		kvm_mmu_reset_context(vcpu);
835 
836 	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
837 		kvm_update_cpuid(vcpu);
838 
839 	return 0;
840 }
841 EXPORT_SYMBOL_GPL(kvm_set_cr4);
842 
843 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
844 {
845 #ifdef CONFIG_X86_64
846 	cr3 &= ~CR3_PCID_INVD;
847 #endif
848 
849 	if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
850 		kvm_mmu_sync_roots(vcpu);
851 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
852 		return 0;
853 	}
854 
855 	if (is_long_mode(vcpu) &&
856 	    (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 62)))
857 		return 1;
858 	else if (is_pae(vcpu) && is_paging(vcpu) &&
859 		   !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
860 		return 1;
861 
862 	vcpu->arch.cr3 = cr3;
863 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
864 	kvm_mmu_new_cr3(vcpu);
865 	return 0;
866 }
867 EXPORT_SYMBOL_GPL(kvm_set_cr3);
868 
869 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
870 {
871 	if (cr8 & CR8_RESERVED_BITS)
872 		return 1;
873 	if (lapic_in_kernel(vcpu))
874 		kvm_lapic_set_tpr(vcpu, cr8);
875 	else
876 		vcpu->arch.cr8 = cr8;
877 	return 0;
878 }
879 EXPORT_SYMBOL_GPL(kvm_set_cr8);
880 
881 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
882 {
883 	if (lapic_in_kernel(vcpu))
884 		return kvm_lapic_get_cr8(vcpu);
885 	else
886 		return vcpu->arch.cr8;
887 }
888 EXPORT_SYMBOL_GPL(kvm_get_cr8);
889 
890 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
891 {
892 	int i;
893 
894 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
895 		for (i = 0; i < KVM_NR_DB_REGS; i++)
896 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
897 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
898 	}
899 }
900 
901 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
902 {
903 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
904 		kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
905 }
906 
907 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
908 {
909 	unsigned long dr7;
910 
911 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
912 		dr7 = vcpu->arch.guest_debug_dr7;
913 	else
914 		dr7 = vcpu->arch.dr7;
915 	kvm_x86_ops->set_dr7(vcpu, dr7);
916 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
917 	if (dr7 & DR7_BP_EN_MASK)
918 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
919 }
920 
921 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
922 {
923 	u64 fixed = DR6_FIXED_1;
924 
925 	if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
926 		fixed |= DR6_RTM;
927 	return fixed;
928 }
929 
930 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
931 {
932 	switch (dr) {
933 	case 0 ... 3:
934 		vcpu->arch.db[dr] = val;
935 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
936 			vcpu->arch.eff_db[dr] = val;
937 		break;
938 	case 4:
939 		/* fall through */
940 	case 6:
941 		if (val & 0xffffffff00000000ULL)
942 			return -1; /* #GP */
943 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
944 		kvm_update_dr6(vcpu);
945 		break;
946 	case 5:
947 		/* fall through */
948 	default: /* 7 */
949 		if (val & 0xffffffff00000000ULL)
950 			return -1; /* #GP */
951 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
952 		kvm_update_dr7(vcpu);
953 		break;
954 	}
955 
956 	return 0;
957 }
958 
959 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
960 {
961 	if (__kvm_set_dr(vcpu, dr, val)) {
962 		kvm_inject_gp(vcpu, 0);
963 		return 1;
964 	}
965 	return 0;
966 }
967 EXPORT_SYMBOL_GPL(kvm_set_dr);
968 
969 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
970 {
971 	switch (dr) {
972 	case 0 ... 3:
973 		*val = vcpu->arch.db[dr];
974 		break;
975 	case 4:
976 		/* fall through */
977 	case 6:
978 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
979 			*val = vcpu->arch.dr6;
980 		else
981 			*val = kvm_x86_ops->get_dr6(vcpu);
982 		break;
983 	case 5:
984 		/* fall through */
985 	default: /* 7 */
986 		*val = vcpu->arch.dr7;
987 		break;
988 	}
989 	return 0;
990 }
991 EXPORT_SYMBOL_GPL(kvm_get_dr);
992 
993 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
994 {
995 	u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
996 	u64 data;
997 	int err;
998 
999 	err = kvm_pmu_rdpmc(vcpu, ecx, &data);
1000 	if (err)
1001 		return err;
1002 	kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
1003 	kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
1004 	return err;
1005 }
1006 EXPORT_SYMBOL_GPL(kvm_rdpmc);
1007 
1008 /*
1009  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1010  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1011  *
1012  * This list is modified at module load time to reflect the
1013  * capabilities of the host cpu. This capabilities test skips MSRs that are
1014  * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
1015  * may depend on host virtualization features rather than host cpu features.
1016  */
1017 
1018 static u32 msrs_to_save[] = {
1019 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1020 	MSR_STAR,
1021 #ifdef CONFIG_X86_64
1022 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1023 #endif
1024 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1025 	MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1026 	MSR_IA32_SPEC_CTRL, MSR_IA32_ARCH_CAPABILITIES
1027 };
1028 
1029 static unsigned num_msrs_to_save;
1030 
1031 static u32 emulated_msrs[] = {
1032 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1033 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1034 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1035 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1036 	HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1037 	HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1038 	HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1039 	HV_X64_MSR_RESET,
1040 	HV_X64_MSR_VP_INDEX,
1041 	HV_X64_MSR_VP_RUNTIME,
1042 	HV_X64_MSR_SCONTROL,
1043 	HV_X64_MSR_STIMER0_CONFIG,
1044 	HV_X64_MSR_VP_ASSIST_PAGE,
1045 	HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1046 	HV_X64_MSR_TSC_EMULATION_STATUS,
1047 
1048 	MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1049 	MSR_KVM_PV_EOI_EN,
1050 
1051 	MSR_IA32_TSC_ADJUST,
1052 	MSR_IA32_TSCDEADLINE,
1053 	MSR_IA32_MISC_ENABLE,
1054 	MSR_IA32_MCG_STATUS,
1055 	MSR_IA32_MCG_CTL,
1056 	MSR_IA32_MCG_EXT_CTL,
1057 	MSR_IA32_SMBASE,
1058 	MSR_SMI_COUNT,
1059 	MSR_PLATFORM_INFO,
1060 	MSR_MISC_FEATURES_ENABLES,
1061 };
1062 
1063 static unsigned num_emulated_msrs;
1064 
1065 /*
1066  * List of msr numbers which are used to expose MSR-based features that
1067  * can be used by a hypervisor to validate requested CPU features.
1068  */
1069 static u32 msr_based_features[] = {
1070 	MSR_IA32_VMX_BASIC,
1071 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1072 	MSR_IA32_VMX_PINBASED_CTLS,
1073 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1074 	MSR_IA32_VMX_PROCBASED_CTLS,
1075 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1076 	MSR_IA32_VMX_EXIT_CTLS,
1077 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1078 	MSR_IA32_VMX_ENTRY_CTLS,
1079 	MSR_IA32_VMX_MISC,
1080 	MSR_IA32_VMX_CR0_FIXED0,
1081 	MSR_IA32_VMX_CR0_FIXED1,
1082 	MSR_IA32_VMX_CR4_FIXED0,
1083 	MSR_IA32_VMX_CR4_FIXED1,
1084 	MSR_IA32_VMX_VMCS_ENUM,
1085 	MSR_IA32_VMX_PROCBASED_CTLS2,
1086 	MSR_IA32_VMX_EPT_VPID_CAP,
1087 	MSR_IA32_VMX_VMFUNC,
1088 
1089 	MSR_F10H_DECFG,
1090 	MSR_IA32_UCODE_REV,
1091 };
1092 
1093 static unsigned int num_msr_based_features;
1094 
1095 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1096 {
1097 	switch (msr->index) {
1098 	case MSR_IA32_UCODE_REV:
1099 		rdmsrl(msr->index, msr->data);
1100 		break;
1101 	default:
1102 		if (kvm_x86_ops->get_msr_feature(msr))
1103 			return 1;
1104 	}
1105 	return 0;
1106 }
1107 
1108 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1109 {
1110 	struct kvm_msr_entry msr;
1111 	int r;
1112 
1113 	msr.index = index;
1114 	r = kvm_get_msr_feature(&msr);
1115 	if (r)
1116 		return r;
1117 
1118 	*data = msr.data;
1119 
1120 	return 0;
1121 }
1122 
1123 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1124 {
1125 	if (efer & efer_reserved_bits)
1126 		return false;
1127 
1128 	if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1129 			return false;
1130 
1131 	if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1132 			return false;
1133 
1134 	return true;
1135 }
1136 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1137 
1138 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
1139 {
1140 	u64 old_efer = vcpu->arch.efer;
1141 
1142 	if (!kvm_valid_efer(vcpu, efer))
1143 		return 1;
1144 
1145 	if (is_paging(vcpu)
1146 	    && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1147 		return 1;
1148 
1149 	efer &= ~EFER_LMA;
1150 	efer |= vcpu->arch.efer & EFER_LMA;
1151 
1152 	kvm_x86_ops->set_efer(vcpu, efer);
1153 
1154 	/* Update reserved bits */
1155 	if ((efer ^ old_efer) & EFER_NX)
1156 		kvm_mmu_reset_context(vcpu);
1157 
1158 	return 0;
1159 }
1160 
1161 void kvm_enable_efer_bits(u64 mask)
1162 {
1163        efer_reserved_bits &= ~mask;
1164 }
1165 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1166 
1167 /*
1168  * Writes msr value into into the appropriate "register".
1169  * Returns 0 on success, non-0 otherwise.
1170  * Assumes vcpu_load() was already called.
1171  */
1172 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1173 {
1174 	switch (msr->index) {
1175 	case MSR_FS_BASE:
1176 	case MSR_GS_BASE:
1177 	case MSR_KERNEL_GS_BASE:
1178 	case MSR_CSTAR:
1179 	case MSR_LSTAR:
1180 		if (is_noncanonical_address(msr->data, vcpu))
1181 			return 1;
1182 		break;
1183 	case MSR_IA32_SYSENTER_EIP:
1184 	case MSR_IA32_SYSENTER_ESP:
1185 		/*
1186 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1187 		 * non-canonical address is written on Intel but not on
1188 		 * AMD (which ignores the top 32-bits, because it does
1189 		 * not implement 64-bit SYSENTER).
1190 		 *
1191 		 * 64-bit code should hence be able to write a non-canonical
1192 		 * value on AMD.  Making the address canonical ensures that
1193 		 * vmentry does not fail on Intel after writing a non-canonical
1194 		 * value, and that something deterministic happens if the guest
1195 		 * invokes 64-bit SYSENTER.
1196 		 */
1197 		msr->data = get_canonical(msr->data, vcpu_virt_addr_bits(vcpu));
1198 	}
1199 	return kvm_x86_ops->set_msr(vcpu, msr);
1200 }
1201 EXPORT_SYMBOL_GPL(kvm_set_msr);
1202 
1203 /*
1204  * Adapt set_msr() to msr_io()'s calling convention
1205  */
1206 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1207 {
1208 	struct msr_data msr;
1209 	int r;
1210 
1211 	msr.index = index;
1212 	msr.host_initiated = true;
1213 	r = kvm_get_msr(vcpu, &msr);
1214 	if (r)
1215 		return r;
1216 
1217 	*data = msr.data;
1218 	return 0;
1219 }
1220 
1221 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1222 {
1223 	struct msr_data msr;
1224 
1225 	msr.data = *data;
1226 	msr.index = index;
1227 	msr.host_initiated = true;
1228 	return kvm_set_msr(vcpu, &msr);
1229 }
1230 
1231 #ifdef CONFIG_X86_64
1232 struct pvclock_gtod_data {
1233 	seqcount_t	seq;
1234 
1235 	struct { /* extract of a clocksource struct */
1236 		int vclock_mode;
1237 		u64	cycle_last;
1238 		u64	mask;
1239 		u32	mult;
1240 		u32	shift;
1241 	} clock;
1242 
1243 	u64		boot_ns;
1244 	u64		nsec_base;
1245 	u64		wall_time_sec;
1246 };
1247 
1248 static struct pvclock_gtod_data pvclock_gtod_data;
1249 
1250 static void update_pvclock_gtod(struct timekeeper *tk)
1251 {
1252 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1253 	u64 boot_ns;
1254 
1255 	boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1256 
1257 	write_seqcount_begin(&vdata->seq);
1258 
1259 	/* copy pvclock gtod data */
1260 	vdata->clock.vclock_mode	= tk->tkr_mono.clock->archdata.vclock_mode;
1261 	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
1262 	vdata->clock.mask		= tk->tkr_mono.mask;
1263 	vdata->clock.mult		= tk->tkr_mono.mult;
1264 	vdata->clock.shift		= tk->tkr_mono.shift;
1265 
1266 	vdata->boot_ns			= boot_ns;
1267 	vdata->nsec_base		= tk->tkr_mono.xtime_nsec;
1268 
1269 	vdata->wall_time_sec            = tk->xtime_sec;
1270 
1271 	write_seqcount_end(&vdata->seq);
1272 }
1273 #endif
1274 
1275 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1276 {
1277 	/*
1278 	 * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1279 	 * vcpu_enter_guest.  This function is only called from
1280 	 * the physical CPU that is running vcpu.
1281 	 */
1282 	kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1283 }
1284 
1285 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1286 {
1287 	int version;
1288 	int r;
1289 	struct pvclock_wall_clock wc;
1290 	struct timespec64 boot;
1291 
1292 	if (!wall_clock)
1293 		return;
1294 
1295 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1296 	if (r)
1297 		return;
1298 
1299 	if (version & 1)
1300 		++version;  /* first time write, random junk */
1301 
1302 	++version;
1303 
1304 	if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1305 		return;
1306 
1307 	/*
1308 	 * The guest calculates current wall clock time by adding
1309 	 * system time (updated by kvm_guest_time_update below) to the
1310 	 * wall clock specified here.  guest system time equals host
1311 	 * system time for us, thus we must fill in host boot time here.
1312 	 */
1313 	getboottime64(&boot);
1314 
1315 	if (kvm->arch.kvmclock_offset) {
1316 		struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
1317 		boot = timespec64_sub(boot, ts);
1318 	}
1319 	wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
1320 	wc.nsec = boot.tv_nsec;
1321 	wc.version = version;
1322 
1323 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1324 
1325 	version++;
1326 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1327 }
1328 
1329 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1330 {
1331 	do_shl32_div32(dividend, divisor);
1332 	return dividend;
1333 }
1334 
1335 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1336 			       s8 *pshift, u32 *pmultiplier)
1337 {
1338 	uint64_t scaled64;
1339 	int32_t  shift = 0;
1340 	uint64_t tps64;
1341 	uint32_t tps32;
1342 
1343 	tps64 = base_hz;
1344 	scaled64 = scaled_hz;
1345 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1346 		tps64 >>= 1;
1347 		shift--;
1348 	}
1349 
1350 	tps32 = (uint32_t)tps64;
1351 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1352 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1353 			scaled64 >>= 1;
1354 		else
1355 			tps32 <<= 1;
1356 		shift++;
1357 	}
1358 
1359 	*pshift = shift;
1360 	*pmultiplier = div_frac(scaled64, tps32);
1361 
1362 	pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1363 		 __func__, base_hz, scaled_hz, shift, *pmultiplier);
1364 }
1365 
1366 #ifdef CONFIG_X86_64
1367 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1368 #endif
1369 
1370 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1371 static unsigned long max_tsc_khz;
1372 
1373 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1374 {
1375 	u64 v = (u64)khz * (1000000 + ppm);
1376 	do_div(v, 1000000);
1377 	return v;
1378 }
1379 
1380 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1381 {
1382 	u64 ratio;
1383 
1384 	/* Guest TSC same frequency as host TSC? */
1385 	if (!scale) {
1386 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1387 		return 0;
1388 	}
1389 
1390 	/* TSC scaling supported? */
1391 	if (!kvm_has_tsc_control) {
1392 		if (user_tsc_khz > tsc_khz) {
1393 			vcpu->arch.tsc_catchup = 1;
1394 			vcpu->arch.tsc_always_catchup = 1;
1395 			return 0;
1396 		} else {
1397 			WARN(1, "user requested TSC rate below hardware speed\n");
1398 			return -1;
1399 		}
1400 	}
1401 
1402 	/* TSC scaling required  - calculate ratio */
1403 	ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1404 				user_tsc_khz, tsc_khz);
1405 
1406 	if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1407 		WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1408 			  user_tsc_khz);
1409 		return -1;
1410 	}
1411 
1412 	vcpu->arch.tsc_scaling_ratio = ratio;
1413 	return 0;
1414 }
1415 
1416 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1417 {
1418 	u32 thresh_lo, thresh_hi;
1419 	int use_scaling = 0;
1420 
1421 	/* tsc_khz can be zero if TSC calibration fails */
1422 	if (user_tsc_khz == 0) {
1423 		/* set tsc_scaling_ratio to a safe value */
1424 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1425 		return -1;
1426 	}
1427 
1428 	/* Compute a scale to convert nanoseconds in TSC cycles */
1429 	kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1430 			   &vcpu->arch.virtual_tsc_shift,
1431 			   &vcpu->arch.virtual_tsc_mult);
1432 	vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1433 
1434 	/*
1435 	 * Compute the variation in TSC rate which is acceptable
1436 	 * within the range of tolerance and decide if the
1437 	 * rate being applied is within that bounds of the hardware
1438 	 * rate.  If so, no scaling or compensation need be done.
1439 	 */
1440 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1441 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1442 	if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1443 		pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1444 		use_scaling = 1;
1445 	}
1446 	return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1447 }
1448 
1449 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1450 {
1451 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1452 				      vcpu->arch.virtual_tsc_mult,
1453 				      vcpu->arch.virtual_tsc_shift);
1454 	tsc += vcpu->arch.this_tsc_write;
1455 	return tsc;
1456 }
1457 
1458 static inline int gtod_is_based_on_tsc(int mode)
1459 {
1460 	return mode == VCLOCK_TSC || mode == VCLOCK_HVCLOCK;
1461 }
1462 
1463 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1464 {
1465 #ifdef CONFIG_X86_64
1466 	bool vcpus_matched;
1467 	struct kvm_arch *ka = &vcpu->kvm->arch;
1468 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1469 
1470 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1471 			 atomic_read(&vcpu->kvm->online_vcpus));
1472 
1473 	/*
1474 	 * Once the masterclock is enabled, always perform request in
1475 	 * order to update it.
1476 	 *
1477 	 * In order to enable masterclock, the host clocksource must be TSC
1478 	 * and the vcpus need to have matched TSCs.  When that happens,
1479 	 * perform request to enable masterclock.
1480 	 */
1481 	if (ka->use_master_clock ||
1482 	    (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
1483 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1484 
1485 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1486 			    atomic_read(&vcpu->kvm->online_vcpus),
1487 		            ka->use_master_clock, gtod->clock.vclock_mode);
1488 #endif
1489 }
1490 
1491 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1492 {
1493 	u64 curr_offset = vcpu->arch.tsc_offset;
1494 	vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1495 }
1496 
1497 /*
1498  * Multiply tsc by a fixed point number represented by ratio.
1499  *
1500  * The most significant 64-N bits (mult) of ratio represent the
1501  * integral part of the fixed point number; the remaining N bits
1502  * (frac) represent the fractional part, ie. ratio represents a fixed
1503  * point number (mult + frac * 2^(-N)).
1504  *
1505  * N equals to kvm_tsc_scaling_ratio_frac_bits.
1506  */
1507 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1508 {
1509 	return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1510 }
1511 
1512 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1513 {
1514 	u64 _tsc = tsc;
1515 	u64 ratio = vcpu->arch.tsc_scaling_ratio;
1516 
1517 	if (ratio != kvm_default_tsc_scaling_ratio)
1518 		_tsc = __scale_tsc(ratio, tsc);
1519 
1520 	return _tsc;
1521 }
1522 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1523 
1524 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1525 {
1526 	u64 tsc;
1527 
1528 	tsc = kvm_scale_tsc(vcpu, rdtsc());
1529 
1530 	return target_tsc - tsc;
1531 }
1532 
1533 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1534 {
1535 	return vcpu->arch.tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1536 }
1537 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1538 
1539 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1540 {
1541 	kvm_x86_ops->write_tsc_offset(vcpu, offset);
1542 	vcpu->arch.tsc_offset = offset;
1543 }
1544 
1545 static inline bool kvm_check_tsc_unstable(void)
1546 {
1547 #ifdef CONFIG_X86_64
1548 	/*
1549 	 * TSC is marked unstable when we're running on Hyper-V,
1550 	 * 'TSC page' clocksource is good.
1551 	 */
1552 	if (pvclock_gtod_data.clock.vclock_mode == VCLOCK_HVCLOCK)
1553 		return false;
1554 #endif
1555 	return check_tsc_unstable();
1556 }
1557 
1558 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1559 {
1560 	struct kvm *kvm = vcpu->kvm;
1561 	u64 offset, ns, elapsed;
1562 	unsigned long flags;
1563 	bool matched;
1564 	bool already_matched;
1565 	u64 data = msr->data;
1566 	bool synchronizing = false;
1567 
1568 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1569 	offset = kvm_compute_tsc_offset(vcpu, data);
1570 	ns = ktime_get_boot_ns();
1571 	elapsed = ns - kvm->arch.last_tsc_nsec;
1572 
1573 	if (vcpu->arch.virtual_tsc_khz) {
1574 		if (data == 0 && msr->host_initiated) {
1575 			/*
1576 			 * detection of vcpu initialization -- need to sync
1577 			 * with other vCPUs. This particularly helps to keep
1578 			 * kvm_clock stable after CPU hotplug
1579 			 */
1580 			synchronizing = true;
1581 		} else {
1582 			u64 tsc_exp = kvm->arch.last_tsc_write +
1583 						nsec_to_cycles(vcpu, elapsed);
1584 			u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
1585 			/*
1586 			 * Special case: TSC write with a small delta (1 second)
1587 			 * of virtual cycle time against real time is
1588 			 * interpreted as an attempt to synchronize the CPU.
1589 			 */
1590 			synchronizing = data < tsc_exp + tsc_hz &&
1591 					data + tsc_hz > tsc_exp;
1592 		}
1593 	}
1594 
1595 	/*
1596 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
1597 	 * TSC, we add elapsed time in this computation.  We could let the
1598 	 * compensation code attempt to catch up if we fall behind, but
1599 	 * it's better to try to match offsets from the beginning.
1600          */
1601 	if (synchronizing &&
1602 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1603 		if (!kvm_check_tsc_unstable()) {
1604 			offset = kvm->arch.cur_tsc_offset;
1605 			pr_debug("kvm: matched tsc offset for %llu\n", data);
1606 		} else {
1607 			u64 delta = nsec_to_cycles(vcpu, elapsed);
1608 			data += delta;
1609 			offset = kvm_compute_tsc_offset(vcpu, data);
1610 			pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1611 		}
1612 		matched = true;
1613 		already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1614 	} else {
1615 		/*
1616 		 * We split periods of matched TSC writes into generations.
1617 		 * For each generation, we track the original measured
1618 		 * nanosecond time, offset, and write, so if TSCs are in
1619 		 * sync, we can match exact offset, and if not, we can match
1620 		 * exact software computation in compute_guest_tsc()
1621 		 *
1622 		 * These values are tracked in kvm->arch.cur_xxx variables.
1623 		 */
1624 		kvm->arch.cur_tsc_generation++;
1625 		kvm->arch.cur_tsc_nsec = ns;
1626 		kvm->arch.cur_tsc_write = data;
1627 		kvm->arch.cur_tsc_offset = offset;
1628 		matched = false;
1629 		pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1630 			 kvm->arch.cur_tsc_generation, data);
1631 	}
1632 
1633 	/*
1634 	 * We also track th most recent recorded KHZ, write and time to
1635 	 * allow the matching interval to be extended at each write.
1636 	 */
1637 	kvm->arch.last_tsc_nsec = ns;
1638 	kvm->arch.last_tsc_write = data;
1639 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1640 
1641 	vcpu->arch.last_guest_tsc = data;
1642 
1643 	/* Keep track of which generation this VCPU has synchronized to */
1644 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1645 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1646 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1647 
1648 	if (!msr->host_initiated && guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST))
1649 		update_ia32_tsc_adjust_msr(vcpu, offset);
1650 
1651 	kvm_vcpu_write_tsc_offset(vcpu, offset);
1652 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1653 
1654 	spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1655 	if (!matched) {
1656 		kvm->arch.nr_vcpus_matched_tsc = 0;
1657 	} else if (!already_matched) {
1658 		kvm->arch.nr_vcpus_matched_tsc++;
1659 	}
1660 
1661 	kvm_track_tsc_matching(vcpu);
1662 	spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1663 }
1664 
1665 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1666 
1667 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1668 					   s64 adjustment)
1669 {
1670 	kvm_vcpu_write_tsc_offset(vcpu, vcpu->arch.tsc_offset + adjustment);
1671 }
1672 
1673 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1674 {
1675 	if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1676 		WARN_ON(adjustment < 0);
1677 	adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1678 	adjust_tsc_offset_guest(vcpu, adjustment);
1679 }
1680 
1681 #ifdef CONFIG_X86_64
1682 
1683 static u64 read_tsc(void)
1684 {
1685 	u64 ret = (u64)rdtsc_ordered();
1686 	u64 last = pvclock_gtod_data.clock.cycle_last;
1687 
1688 	if (likely(ret >= last))
1689 		return ret;
1690 
1691 	/*
1692 	 * GCC likes to generate cmov here, but this branch is extremely
1693 	 * predictable (it's just a function of time and the likely is
1694 	 * very likely) and there's a data dependence, so force GCC
1695 	 * to generate a branch instead.  I don't barrier() because
1696 	 * we don't actually need a barrier, and if this function
1697 	 * ever gets inlined it will generate worse code.
1698 	 */
1699 	asm volatile ("");
1700 	return last;
1701 }
1702 
1703 static inline u64 vgettsc(u64 *tsc_timestamp, int *mode)
1704 {
1705 	long v;
1706 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1707 	u64 tsc_pg_val;
1708 
1709 	switch (gtod->clock.vclock_mode) {
1710 	case VCLOCK_HVCLOCK:
1711 		tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
1712 						  tsc_timestamp);
1713 		if (tsc_pg_val != U64_MAX) {
1714 			/* TSC page valid */
1715 			*mode = VCLOCK_HVCLOCK;
1716 			v = (tsc_pg_val - gtod->clock.cycle_last) &
1717 				gtod->clock.mask;
1718 		} else {
1719 			/* TSC page invalid */
1720 			*mode = VCLOCK_NONE;
1721 		}
1722 		break;
1723 	case VCLOCK_TSC:
1724 		*mode = VCLOCK_TSC;
1725 		*tsc_timestamp = read_tsc();
1726 		v = (*tsc_timestamp - gtod->clock.cycle_last) &
1727 			gtod->clock.mask;
1728 		break;
1729 	default:
1730 		*mode = VCLOCK_NONE;
1731 	}
1732 
1733 	if (*mode == VCLOCK_NONE)
1734 		*tsc_timestamp = v = 0;
1735 
1736 	return v * gtod->clock.mult;
1737 }
1738 
1739 static int do_monotonic_boot(s64 *t, u64 *tsc_timestamp)
1740 {
1741 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1742 	unsigned long seq;
1743 	int mode;
1744 	u64 ns;
1745 
1746 	do {
1747 		seq = read_seqcount_begin(&gtod->seq);
1748 		ns = gtod->nsec_base;
1749 		ns += vgettsc(tsc_timestamp, &mode);
1750 		ns >>= gtod->clock.shift;
1751 		ns += gtod->boot_ns;
1752 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1753 	*t = ns;
1754 
1755 	return mode;
1756 }
1757 
1758 static int do_realtime(struct timespec *ts, u64 *tsc_timestamp)
1759 {
1760 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1761 	unsigned long seq;
1762 	int mode;
1763 	u64 ns;
1764 
1765 	do {
1766 		seq = read_seqcount_begin(&gtod->seq);
1767 		ts->tv_sec = gtod->wall_time_sec;
1768 		ns = gtod->nsec_base;
1769 		ns += vgettsc(tsc_timestamp, &mode);
1770 		ns >>= gtod->clock.shift;
1771 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1772 
1773 	ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
1774 	ts->tv_nsec = ns;
1775 
1776 	return mode;
1777 }
1778 
1779 /* returns true if host is using TSC based clocksource */
1780 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
1781 {
1782 	/* checked again under seqlock below */
1783 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
1784 		return false;
1785 
1786 	return gtod_is_based_on_tsc(do_monotonic_boot(kernel_ns,
1787 						      tsc_timestamp));
1788 }
1789 
1790 /* returns true if host is using TSC based clocksource */
1791 static bool kvm_get_walltime_and_clockread(struct timespec *ts,
1792 					   u64 *tsc_timestamp)
1793 {
1794 	/* checked again under seqlock below */
1795 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
1796 		return false;
1797 
1798 	return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
1799 }
1800 #endif
1801 
1802 /*
1803  *
1804  * Assuming a stable TSC across physical CPUS, and a stable TSC
1805  * across virtual CPUs, the following condition is possible.
1806  * Each numbered line represents an event visible to both
1807  * CPUs at the next numbered event.
1808  *
1809  * "timespecX" represents host monotonic time. "tscX" represents
1810  * RDTSC value.
1811  *
1812  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
1813  *
1814  * 1.  read timespec0,tsc0
1815  * 2.					| timespec1 = timespec0 + N
1816  * 					| tsc1 = tsc0 + M
1817  * 3. transition to guest		| transition to guest
1818  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1819  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
1820  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1821  *
1822  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1823  *
1824  * 	- ret0 < ret1
1825  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1826  *		...
1827  *	- 0 < N - M => M < N
1828  *
1829  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1830  * always the case (the difference between two distinct xtime instances
1831  * might be smaller then the difference between corresponding TSC reads,
1832  * when updating guest vcpus pvclock areas).
1833  *
1834  * To avoid that problem, do not allow visibility of distinct
1835  * system_timestamp/tsc_timestamp values simultaneously: use a master
1836  * copy of host monotonic time values. Update that master copy
1837  * in lockstep.
1838  *
1839  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1840  *
1841  */
1842 
1843 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1844 {
1845 #ifdef CONFIG_X86_64
1846 	struct kvm_arch *ka = &kvm->arch;
1847 	int vclock_mode;
1848 	bool host_tsc_clocksource, vcpus_matched;
1849 
1850 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1851 			atomic_read(&kvm->online_vcpus));
1852 
1853 	/*
1854 	 * If the host uses TSC clock, then passthrough TSC as stable
1855 	 * to the guest.
1856 	 */
1857 	host_tsc_clocksource = kvm_get_time_and_clockread(
1858 					&ka->master_kernel_ns,
1859 					&ka->master_cycle_now);
1860 
1861 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1862 				&& !ka->backwards_tsc_observed
1863 				&& !ka->boot_vcpu_runs_old_kvmclock;
1864 
1865 	if (ka->use_master_clock)
1866 		atomic_set(&kvm_guest_has_master_clock, 1);
1867 
1868 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1869 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1870 					vcpus_matched);
1871 #endif
1872 }
1873 
1874 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
1875 {
1876 	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
1877 }
1878 
1879 static void kvm_gen_update_masterclock(struct kvm *kvm)
1880 {
1881 #ifdef CONFIG_X86_64
1882 	int i;
1883 	struct kvm_vcpu *vcpu;
1884 	struct kvm_arch *ka = &kvm->arch;
1885 
1886 	spin_lock(&ka->pvclock_gtod_sync_lock);
1887 	kvm_make_mclock_inprogress_request(kvm);
1888 	/* no guest entries from this point */
1889 	pvclock_update_vm_gtod_copy(kvm);
1890 
1891 	kvm_for_each_vcpu(i, vcpu, kvm)
1892 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1893 
1894 	/* guest entries allowed */
1895 	kvm_for_each_vcpu(i, vcpu, kvm)
1896 		kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
1897 
1898 	spin_unlock(&ka->pvclock_gtod_sync_lock);
1899 #endif
1900 }
1901 
1902 u64 get_kvmclock_ns(struct kvm *kvm)
1903 {
1904 	struct kvm_arch *ka = &kvm->arch;
1905 	struct pvclock_vcpu_time_info hv_clock;
1906 	u64 ret;
1907 
1908 	spin_lock(&ka->pvclock_gtod_sync_lock);
1909 	if (!ka->use_master_clock) {
1910 		spin_unlock(&ka->pvclock_gtod_sync_lock);
1911 		return ktime_get_boot_ns() + ka->kvmclock_offset;
1912 	}
1913 
1914 	hv_clock.tsc_timestamp = ka->master_cycle_now;
1915 	hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
1916 	spin_unlock(&ka->pvclock_gtod_sync_lock);
1917 
1918 	/* both __this_cpu_read() and rdtsc() should be on the same cpu */
1919 	get_cpu();
1920 
1921 	if (__this_cpu_read(cpu_tsc_khz)) {
1922 		kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
1923 				   &hv_clock.tsc_shift,
1924 				   &hv_clock.tsc_to_system_mul);
1925 		ret = __pvclock_read_cycles(&hv_clock, rdtsc());
1926 	} else
1927 		ret = ktime_get_boot_ns() + ka->kvmclock_offset;
1928 
1929 	put_cpu();
1930 
1931 	return ret;
1932 }
1933 
1934 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
1935 {
1936 	struct kvm_vcpu_arch *vcpu = &v->arch;
1937 	struct pvclock_vcpu_time_info guest_hv_clock;
1938 
1939 	if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1940 		&guest_hv_clock, sizeof(guest_hv_clock))))
1941 		return;
1942 
1943 	/* This VCPU is paused, but it's legal for a guest to read another
1944 	 * VCPU's kvmclock, so we really have to follow the specification where
1945 	 * it says that version is odd if data is being modified, and even after
1946 	 * it is consistent.
1947 	 *
1948 	 * Version field updates must be kept separate.  This is because
1949 	 * kvm_write_guest_cached might use a "rep movs" instruction, and
1950 	 * writes within a string instruction are weakly ordered.  So there
1951 	 * are three writes overall.
1952 	 *
1953 	 * As a small optimization, only write the version field in the first
1954 	 * and third write.  The vcpu->pv_time cache is still valid, because the
1955 	 * version field is the first in the struct.
1956 	 */
1957 	BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1958 
1959 	if (guest_hv_clock.version & 1)
1960 		++guest_hv_clock.version;  /* first time write, random junk */
1961 
1962 	vcpu->hv_clock.version = guest_hv_clock.version + 1;
1963 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1964 				&vcpu->hv_clock,
1965 				sizeof(vcpu->hv_clock.version));
1966 
1967 	smp_wmb();
1968 
1969 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1970 	vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1971 
1972 	if (vcpu->pvclock_set_guest_stopped_request) {
1973 		vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
1974 		vcpu->pvclock_set_guest_stopped_request = false;
1975 	}
1976 
1977 	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1978 
1979 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1980 				&vcpu->hv_clock,
1981 				sizeof(vcpu->hv_clock));
1982 
1983 	smp_wmb();
1984 
1985 	vcpu->hv_clock.version++;
1986 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1987 				&vcpu->hv_clock,
1988 				sizeof(vcpu->hv_clock.version));
1989 }
1990 
1991 static int kvm_guest_time_update(struct kvm_vcpu *v)
1992 {
1993 	unsigned long flags, tgt_tsc_khz;
1994 	struct kvm_vcpu_arch *vcpu = &v->arch;
1995 	struct kvm_arch *ka = &v->kvm->arch;
1996 	s64 kernel_ns;
1997 	u64 tsc_timestamp, host_tsc;
1998 	u8 pvclock_flags;
1999 	bool use_master_clock;
2000 
2001 	kernel_ns = 0;
2002 	host_tsc = 0;
2003 
2004 	/*
2005 	 * If the host uses TSC clock, then passthrough TSC as stable
2006 	 * to the guest.
2007 	 */
2008 	spin_lock(&ka->pvclock_gtod_sync_lock);
2009 	use_master_clock = ka->use_master_clock;
2010 	if (use_master_clock) {
2011 		host_tsc = ka->master_cycle_now;
2012 		kernel_ns = ka->master_kernel_ns;
2013 	}
2014 	spin_unlock(&ka->pvclock_gtod_sync_lock);
2015 
2016 	/* Keep irq disabled to prevent changes to the clock */
2017 	local_irq_save(flags);
2018 	tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2019 	if (unlikely(tgt_tsc_khz == 0)) {
2020 		local_irq_restore(flags);
2021 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2022 		return 1;
2023 	}
2024 	if (!use_master_clock) {
2025 		host_tsc = rdtsc();
2026 		kernel_ns = ktime_get_boot_ns();
2027 	}
2028 
2029 	tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2030 
2031 	/*
2032 	 * We may have to catch up the TSC to match elapsed wall clock
2033 	 * time for two reasons, even if kvmclock is used.
2034 	 *   1) CPU could have been running below the maximum TSC rate
2035 	 *   2) Broken TSC compensation resets the base at each VCPU
2036 	 *      entry to avoid unknown leaps of TSC even when running
2037 	 *      again on the same CPU.  This may cause apparent elapsed
2038 	 *      time to disappear, and the guest to stand still or run
2039 	 *	very slowly.
2040 	 */
2041 	if (vcpu->tsc_catchup) {
2042 		u64 tsc = compute_guest_tsc(v, kernel_ns);
2043 		if (tsc > tsc_timestamp) {
2044 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2045 			tsc_timestamp = tsc;
2046 		}
2047 	}
2048 
2049 	local_irq_restore(flags);
2050 
2051 	/* With all the info we got, fill in the values */
2052 
2053 	if (kvm_has_tsc_control)
2054 		tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
2055 
2056 	if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2057 		kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2058 				   &vcpu->hv_clock.tsc_shift,
2059 				   &vcpu->hv_clock.tsc_to_system_mul);
2060 		vcpu->hw_tsc_khz = tgt_tsc_khz;
2061 	}
2062 
2063 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2064 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2065 	vcpu->last_guest_tsc = tsc_timestamp;
2066 
2067 	/* If the host uses TSC clocksource, then it is stable */
2068 	pvclock_flags = 0;
2069 	if (use_master_clock)
2070 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2071 
2072 	vcpu->hv_clock.flags = pvclock_flags;
2073 
2074 	if (vcpu->pv_time_enabled)
2075 		kvm_setup_pvclock_page(v);
2076 	if (v == kvm_get_vcpu(v->kvm, 0))
2077 		kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2078 	return 0;
2079 }
2080 
2081 /*
2082  * kvmclock updates which are isolated to a given vcpu, such as
2083  * vcpu->cpu migration, should not allow system_timestamp from
2084  * the rest of the vcpus to remain static. Otherwise ntp frequency
2085  * correction applies to one vcpu's system_timestamp but not
2086  * the others.
2087  *
2088  * So in those cases, request a kvmclock update for all vcpus.
2089  * We need to rate-limit these requests though, as they can
2090  * considerably slow guests that have a large number of vcpus.
2091  * The time for a remote vcpu to update its kvmclock is bound
2092  * by the delay we use to rate-limit the updates.
2093  */
2094 
2095 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2096 
2097 static void kvmclock_update_fn(struct work_struct *work)
2098 {
2099 	int i;
2100 	struct delayed_work *dwork = to_delayed_work(work);
2101 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2102 					   kvmclock_update_work);
2103 	struct kvm *kvm = container_of(ka, struct kvm, arch);
2104 	struct kvm_vcpu *vcpu;
2105 
2106 	kvm_for_each_vcpu(i, vcpu, kvm) {
2107 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2108 		kvm_vcpu_kick(vcpu);
2109 	}
2110 }
2111 
2112 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2113 {
2114 	struct kvm *kvm = v->kvm;
2115 
2116 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2117 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2118 					KVMCLOCK_UPDATE_DELAY);
2119 }
2120 
2121 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2122 
2123 static void kvmclock_sync_fn(struct work_struct *work)
2124 {
2125 	struct delayed_work *dwork = to_delayed_work(work);
2126 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2127 					   kvmclock_sync_work);
2128 	struct kvm *kvm = container_of(ka, struct kvm, arch);
2129 
2130 	if (!kvmclock_periodic_sync)
2131 		return;
2132 
2133 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2134 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2135 					KVMCLOCK_SYNC_PERIOD);
2136 }
2137 
2138 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2139 {
2140 	u64 mcg_cap = vcpu->arch.mcg_cap;
2141 	unsigned bank_num = mcg_cap & 0xff;
2142 	u32 msr = msr_info->index;
2143 	u64 data = msr_info->data;
2144 
2145 	switch (msr) {
2146 	case MSR_IA32_MCG_STATUS:
2147 		vcpu->arch.mcg_status = data;
2148 		break;
2149 	case MSR_IA32_MCG_CTL:
2150 		if (!(mcg_cap & MCG_CTL_P))
2151 			return 1;
2152 		if (data != 0 && data != ~(u64)0)
2153 			return -1;
2154 		vcpu->arch.mcg_ctl = data;
2155 		break;
2156 	default:
2157 		if (msr >= MSR_IA32_MC0_CTL &&
2158 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
2159 			u32 offset = msr - MSR_IA32_MC0_CTL;
2160 			/* only 0 or all 1s can be written to IA32_MCi_CTL
2161 			 * some Linux kernels though clear bit 10 in bank 4 to
2162 			 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2163 			 * this to avoid an uncatched #GP in the guest
2164 			 */
2165 			if ((offset & 0x3) == 0 &&
2166 			    data != 0 && (data | (1 << 10)) != ~(u64)0)
2167 				return -1;
2168 			if (!msr_info->host_initiated &&
2169 				(offset & 0x3) == 1 && data != 0)
2170 				return -1;
2171 			vcpu->arch.mce_banks[offset] = data;
2172 			break;
2173 		}
2174 		return 1;
2175 	}
2176 	return 0;
2177 }
2178 
2179 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2180 {
2181 	struct kvm *kvm = vcpu->kvm;
2182 	int lm = is_long_mode(vcpu);
2183 	u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2184 		: (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2185 	u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2186 		: kvm->arch.xen_hvm_config.blob_size_32;
2187 	u32 page_num = data & ~PAGE_MASK;
2188 	u64 page_addr = data & PAGE_MASK;
2189 	u8 *page;
2190 	int r;
2191 
2192 	r = -E2BIG;
2193 	if (page_num >= blob_size)
2194 		goto out;
2195 	r = -ENOMEM;
2196 	page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2197 	if (IS_ERR(page)) {
2198 		r = PTR_ERR(page);
2199 		goto out;
2200 	}
2201 	if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2202 		goto out_free;
2203 	r = 0;
2204 out_free:
2205 	kfree(page);
2206 out:
2207 	return r;
2208 }
2209 
2210 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2211 {
2212 	gpa_t gpa = data & ~0x3f;
2213 
2214 	/* Bits 3:5 are reserved, Should be zero */
2215 	if (data & 0x38)
2216 		return 1;
2217 
2218 	vcpu->arch.apf.msr_val = data;
2219 
2220 	if (!(data & KVM_ASYNC_PF_ENABLED)) {
2221 		kvm_clear_async_pf_completion_queue(vcpu);
2222 		kvm_async_pf_hash_reset(vcpu);
2223 		return 0;
2224 	}
2225 
2226 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2227 					sizeof(u32)))
2228 		return 1;
2229 
2230 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2231 	vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2232 	kvm_async_pf_wakeup_all(vcpu);
2233 	return 0;
2234 }
2235 
2236 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2237 {
2238 	vcpu->arch.pv_time_enabled = false;
2239 }
2240 
2241 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
2242 {
2243 	++vcpu->stat.tlb_flush;
2244 	kvm_x86_ops->tlb_flush(vcpu, invalidate_gpa);
2245 }
2246 
2247 static void record_steal_time(struct kvm_vcpu *vcpu)
2248 {
2249 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2250 		return;
2251 
2252 	if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2253 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2254 		return;
2255 
2256 	/*
2257 	 * Doing a TLB flush here, on the guest's behalf, can avoid
2258 	 * expensive IPIs.
2259 	 */
2260 	if (xchg(&vcpu->arch.st.steal.preempted, 0) & KVM_VCPU_FLUSH_TLB)
2261 		kvm_vcpu_flush_tlb(vcpu, false);
2262 
2263 	if (vcpu->arch.st.steal.version & 1)
2264 		vcpu->arch.st.steal.version += 1;  /* first time write, random junk */
2265 
2266 	vcpu->arch.st.steal.version += 1;
2267 
2268 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2269 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2270 
2271 	smp_wmb();
2272 
2273 	vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2274 		vcpu->arch.st.last_steal;
2275 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
2276 
2277 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2278 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2279 
2280 	smp_wmb();
2281 
2282 	vcpu->arch.st.steal.version += 1;
2283 
2284 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2285 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2286 }
2287 
2288 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2289 {
2290 	bool pr = false;
2291 	u32 msr = msr_info->index;
2292 	u64 data = msr_info->data;
2293 
2294 	switch (msr) {
2295 	case MSR_AMD64_NB_CFG:
2296 	case MSR_IA32_UCODE_WRITE:
2297 	case MSR_VM_HSAVE_PA:
2298 	case MSR_AMD64_PATCH_LOADER:
2299 	case MSR_AMD64_BU_CFG2:
2300 	case MSR_AMD64_DC_CFG:
2301 		break;
2302 
2303 	case MSR_IA32_UCODE_REV:
2304 		if (msr_info->host_initiated)
2305 			vcpu->arch.microcode_version = data;
2306 		break;
2307 	case MSR_EFER:
2308 		return set_efer(vcpu, data);
2309 	case MSR_K7_HWCR:
2310 		data &= ~(u64)0x40;	/* ignore flush filter disable */
2311 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
2312 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
2313 		data &= ~(u64)0x40000;  /* ignore Mc status write enable */
2314 		if (data != 0) {
2315 			vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2316 				    data);
2317 			return 1;
2318 		}
2319 		break;
2320 	case MSR_FAM10H_MMIO_CONF_BASE:
2321 		if (data != 0) {
2322 			vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2323 				    "0x%llx\n", data);
2324 			return 1;
2325 		}
2326 		break;
2327 	case MSR_IA32_DEBUGCTLMSR:
2328 		if (!data) {
2329 			/* We support the non-activated case already */
2330 			break;
2331 		} else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2332 			/* Values other than LBR and BTF are vendor-specific,
2333 			   thus reserved and should throw a #GP */
2334 			return 1;
2335 		}
2336 		vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2337 			    __func__, data);
2338 		break;
2339 	case 0x200 ... 0x2ff:
2340 		return kvm_mtrr_set_msr(vcpu, msr, data);
2341 	case MSR_IA32_APICBASE:
2342 		return kvm_set_apic_base(vcpu, msr_info);
2343 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2344 		return kvm_x2apic_msr_write(vcpu, msr, data);
2345 	case MSR_IA32_TSCDEADLINE:
2346 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
2347 		break;
2348 	case MSR_IA32_TSC_ADJUST:
2349 		if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
2350 			if (!msr_info->host_initiated) {
2351 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2352 				adjust_tsc_offset_guest(vcpu, adj);
2353 			}
2354 			vcpu->arch.ia32_tsc_adjust_msr = data;
2355 		}
2356 		break;
2357 	case MSR_IA32_MISC_ENABLE:
2358 		vcpu->arch.ia32_misc_enable_msr = data;
2359 		break;
2360 	case MSR_IA32_SMBASE:
2361 		if (!msr_info->host_initiated)
2362 			return 1;
2363 		vcpu->arch.smbase = data;
2364 		break;
2365 	case MSR_SMI_COUNT:
2366 		if (!msr_info->host_initiated)
2367 			return 1;
2368 		vcpu->arch.smi_count = data;
2369 		break;
2370 	case MSR_KVM_WALL_CLOCK_NEW:
2371 	case MSR_KVM_WALL_CLOCK:
2372 		vcpu->kvm->arch.wall_clock = data;
2373 		kvm_write_wall_clock(vcpu->kvm, data);
2374 		break;
2375 	case MSR_KVM_SYSTEM_TIME_NEW:
2376 	case MSR_KVM_SYSTEM_TIME: {
2377 		struct kvm_arch *ka = &vcpu->kvm->arch;
2378 
2379 		kvmclock_reset(vcpu);
2380 
2381 		if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2382 			bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2383 
2384 			if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2385 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2386 
2387 			ka->boot_vcpu_runs_old_kvmclock = tmp;
2388 		}
2389 
2390 		vcpu->arch.time = data;
2391 		kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2392 
2393 		/* we verify if the enable bit is set... */
2394 		if (!(data & 1))
2395 			break;
2396 
2397 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2398 		     &vcpu->arch.pv_time, data & ~1ULL,
2399 		     sizeof(struct pvclock_vcpu_time_info)))
2400 			vcpu->arch.pv_time_enabled = false;
2401 		else
2402 			vcpu->arch.pv_time_enabled = true;
2403 
2404 		break;
2405 	}
2406 	case MSR_KVM_ASYNC_PF_EN:
2407 		if (kvm_pv_enable_async_pf(vcpu, data))
2408 			return 1;
2409 		break;
2410 	case MSR_KVM_STEAL_TIME:
2411 
2412 		if (unlikely(!sched_info_on()))
2413 			return 1;
2414 
2415 		if (data & KVM_STEAL_RESERVED_MASK)
2416 			return 1;
2417 
2418 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2419 						data & KVM_STEAL_VALID_BITS,
2420 						sizeof(struct kvm_steal_time)))
2421 			return 1;
2422 
2423 		vcpu->arch.st.msr_val = data;
2424 
2425 		if (!(data & KVM_MSR_ENABLED))
2426 			break;
2427 
2428 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2429 
2430 		break;
2431 	case MSR_KVM_PV_EOI_EN:
2432 		if (kvm_lapic_enable_pv_eoi(vcpu, data))
2433 			return 1;
2434 		break;
2435 
2436 	case MSR_IA32_MCG_CTL:
2437 	case MSR_IA32_MCG_STATUS:
2438 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2439 		return set_msr_mce(vcpu, msr_info);
2440 
2441 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2442 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2443 		pr = true; /* fall through */
2444 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2445 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2446 		if (kvm_pmu_is_valid_msr(vcpu, msr))
2447 			return kvm_pmu_set_msr(vcpu, msr_info);
2448 
2449 		if (pr || data != 0)
2450 			vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2451 				    "0x%x data 0x%llx\n", msr, data);
2452 		break;
2453 	case MSR_K7_CLK_CTL:
2454 		/*
2455 		 * Ignore all writes to this no longer documented MSR.
2456 		 * Writes are only relevant for old K7 processors,
2457 		 * all pre-dating SVM, but a recommended workaround from
2458 		 * AMD for these chips. It is possible to specify the
2459 		 * affected processor models on the command line, hence
2460 		 * the need to ignore the workaround.
2461 		 */
2462 		break;
2463 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2464 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2465 	case HV_X64_MSR_CRASH_CTL:
2466 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2467 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2468 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
2469 	case HV_X64_MSR_TSC_EMULATION_STATUS:
2470 		return kvm_hv_set_msr_common(vcpu, msr, data,
2471 					     msr_info->host_initiated);
2472 	case MSR_IA32_BBL_CR_CTL3:
2473 		/* Drop writes to this legacy MSR -- see rdmsr
2474 		 * counterpart for further detail.
2475 		 */
2476 		if (report_ignored_msrs)
2477 			vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2478 				msr, data);
2479 		break;
2480 	case MSR_AMD64_OSVW_ID_LENGTH:
2481 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2482 			return 1;
2483 		vcpu->arch.osvw.length = data;
2484 		break;
2485 	case MSR_AMD64_OSVW_STATUS:
2486 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2487 			return 1;
2488 		vcpu->arch.osvw.status = data;
2489 		break;
2490 	case MSR_PLATFORM_INFO:
2491 		if (!msr_info->host_initiated ||
2492 		    data & ~MSR_PLATFORM_INFO_CPUID_FAULT ||
2493 		    (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
2494 		     cpuid_fault_enabled(vcpu)))
2495 			return 1;
2496 		vcpu->arch.msr_platform_info = data;
2497 		break;
2498 	case MSR_MISC_FEATURES_ENABLES:
2499 		if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
2500 		    (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
2501 		     !supports_cpuid_fault(vcpu)))
2502 			return 1;
2503 		vcpu->arch.msr_misc_features_enables = data;
2504 		break;
2505 	default:
2506 		if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2507 			return xen_hvm_config(vcpu, data);
2508 		if (kvm_pmu_is_valid_msr(vcpu, msr))
2509 			return kvm_pmu_set_msr(vcpu, msr_info);
2510 		if (!ignore_msrs) {
2511 			vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2512 				    msr, data);
2513 			return 1;
2514 		} else {
2515 			if (report_ignored_msrs)
2516 				vcpu_unimpl(vcpu,
2517 					"ignored wrmsr: 0x%x data 0x%llx\n",
2518 					msr, data);
2519 			break;
2520 		}
2521 	}
2522 	return 0;
2523 }
2524 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2525 
2526 
2527 /*
2528  * Reads an msr value (of 'msr_index') into 'pdata'.
2529  * Returns 0 on success, non-0 otherwise.
2530  * Assumes vcpu_load() was already called.
2531  */
2532 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2533 {
2534 	return kvm_x86_ops->get_msr(vcpu, msr);
2535 }
2536 EXPORT_SYMBOL_GPL(kvm_get_msr);
2537 
2538 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2539 {
2540 	u64 data;
2541 	u64 mcg_cap = vcpu->arch.mcg_cap;
2542 	unsigned bank_num = mcg_cap & 0xff;
2543 
2544 	switch (msr) {
2545 	case MSR_IA32_P5_MC_ADDR:
2546 	case MSR_IA32_P5_MC_TYPE:
2547 		data = 0;
2548 		break;
2549 	case MSR_IA32_MCG_CAP:
2550 		data = vcpu->arch.mcg_cap;
2551 		break;
2552 	case MSR_IA32_MCG_CTL:
2553 		if (!(mcg_cap & MCG_CTL_P))
2554 			return 1;
2555 		data = vcpu->arch.mcg_ctl;
2556 		break;
2557 	case MSR_IA32_MCG_STATUS:
2558 		data = vcpu->arch.mcg_status;
2559 		break;
2560 	default:
2561 		if (msr >= MSR_IA32_MC0_CTL &&
2562 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
2563 			u32 offset = msr - MSR_IA32_MC0_CTL;
2564 			data = vcpu->arch.mce_banks[offset];
2565 			break;
2566 		}
2567 		return 1;
2568 	}
2569 	*pdata = data;
2570 	return 0;
2571 }
2572 
2573 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2574 {
2575 	switch (msr_info->index) {
2576 	case MSR_IA32_PLATFORM_ID:
2577 	case MSR_IA32_EBL_CR_POWERON:
2578 	case MSR_IA32_DEBUGCTLMSR:
2579 	case MSR_IA32_LASTBRANCHFROMIP:
2580 	case MSR_IA32_LASTBRANCHTOIP:
2581 	case MSR_IA32_LASTINTFROMIP:
2582 	case MSR_IA32_LASTINTTOIP:
2583 	case MSR_K8_SYSCFG:
2584 	case MSR_K8_TSEG_ADDR:
2585 	case MSR_K8_TSEG_MASK:
2586 	case MSR_K7_HWCR:
2587 	case MSR_VM_HSAVE_PA:
2588 	case MSR_K8_INT_PENDING_MSG:
2589 	case MSR_AMD64_NB_CFG:
2590 	case MSR_FAM10H_MMIO_CONF_BASE:
2591 	case MSR_AMD64_BU_CFG2:
2592 	case MSR_IA32_PERF_CTL:
2593 	case MSR_AMD64_DC_CFG:
2594 		msr_info->data = 0;
2595 		break;
2596 	case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
2597 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2598 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2599 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2600 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2601 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2602 			return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2603 		msr_info->data = 0;
2604 		break;
2605 	case MSR_IA32_UCODE_REV:
2606 		msr_info->data = vcpu->arch.microcode_version;
2607 		break;
2608 	case MSR_MTRRcap:
2609 	case 0x200 ... 0x2ff:
2610 		return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2611 	case 0xcd: /* fsb frequency */
2612 		msr_info->data = 3;
2613 		break;
2614 		/*
2615 		 * MSR_EBC_FREQUENCY_ID
2616 		 * Conservative value valid for even the basic CPU models.
2617 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2618 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2619 		 * and 266MHz for model 3, or 4. Set Core Clock
2620 		 * Frequency to System Bus Frequency Ratio to 1 (bits
2621 		 * 31:24) even though these are only valid for CPU
2622 		 * models > 2, however guests may end up dividing or
2623 		 * multiplying by zero otherwise.
2624 		 */
2625 	case MSR_EBC_FREQUENCY_ID:
2626 		msr_info->data = 1 << 24;
2627 		break;
2628 	case MSR_IA32_APICBASE:
2629 		msr_info->data = kvm_get_apic_base(vcpu);
2630 		break;
2631 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2632 		return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2633 		break;
2634 	case MSR_IA32_TSCDEADLINE:
2635 		msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2636 		break;
2637 	case MSR_IA32_TSC_ADJUST:
2638 		msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2639 		break;
2640 	case MSR_IA32_MISC_ENABLE:
2641 		msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2642 		break;
2643 	case MSR_IA32_SMBASE:
2644 		if (!msr_info->host_initiated)
2645 			return 1;
2646 		msr_info->data = vcpu->arch.smbase;
2647 		break;
2648 	case MSR_SMI_COUNT:
2649 		msr_info->data = vcpu->arch.smi_count;
2650 		break;
2651 	case MSR_IA32_PERF_STATUS:
2652 		/* TSC increment by tick */
2653 		msr_info->data = 1000ULL;
2654 		/* CPU multiplier */
2655 		msr_info->data |= (((uint64_t)4ULL) << 40);
2656 		break;
2657 	case MSR_EFER:
2658 		msr_info->data = vcpu->arch.efer;
2659 		break;
2660 	case MSR_KVM_WALL_CLOCK:
2661 	case MSR_KVM_WALL_CLOCK_NEW:
2662 		msr_info->data = vcpu->kvm->arch.wall_clock;
2663 		break;
2664 	case MSR_KVM_SYSTEM_TIME:
2665 	case MSR_KVM_SYSTEM_TIME_NEW:
2666 		msr_info->data = vcpu->arch.time;
2667 		break;
2668 	case MSR_KVM_ASYNC_PF_EN:
2669 		msr_info->data = vcpu->arch.apf.msr_val;
2670 		break;
2671 	case MSR_KVM_STEAL_TIME:
2672 		msr_info->data = vcpu->arch.st.msr_val;
2673 		break;
2674 	case MSR_KVM_PV_EOI_EN:
2675 		msr_info->data = vcpu->arch.pv_eoi.msr_val;
2676 		break;
2677 	case MSR_IA32_P5_MC_ADDR:
2678 	case MSR_IA32_P5_MC_TYPE:
2679 	case MSR_IA32_MCG_CAP:
2680 	case MSR_IA32_MCG_CTL:
2681 	case MSR_IA32_MCG_STATUS:
2682 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2683 		return get_msr_mce(vcpu, msr_info->index, &msr_info->data);
2684 	case MSR_K7_CLK_CTL:
2685 		/*
2686 		 * Provide expected ramp-up count for K7. All other
2687 		 * are set to zero, indicating minimum divisors for
2688 		 * every field.
2689 		 *
2690 		 * This prevents guest kernels on AMD host with CPU
2691 		 * type 6, model 8 and higher from exploding due to
2692 		 * the rdmsr failing.
2693 		 */
2694 		msr_info->data = 0x20000000;
2695 		break;
2696 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2697 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2698 	case HV_X64_MSR_CRASH_CTL:
2699 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2700 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2701 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
2702 	case HV_X64_MSR_TSC_EMULATION_STATUS:
2703 		return kvm_hv_get_msr_common(vcpu,
2704 					     msr_info->index, &msr_info->data);
2705 		break;
2706 	case MSR_IA32_BBL_CR_CTL3:
2707 		/* This legacy MSR exists but isn't fully documented in current
2708 		 * silicon.  It is however accessed by winxp in very narrow
2709 		 * scenarios where it sets bit #19, itself documented as
2710 		 * a "reserved" bit.  Best effort attempt to source coherent
2711 		 * read data here should the balance of the register be
2712 		 * interpreted by the guest:
2713 		 *
2714 		 * L2 cache control register 3: 64GB range, 256KB size,
2715 		 * enabled, latency 0x1, configured
2716 		 */
2717 		msr_info->data = 0xbe702111;
2718 		break;
2719 	case MSR_AMD64_OSVW_ID_LENGTH:
2720 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2721 			return 1;
2722 		msr_info->data = vcpu->arch.osvw.length;
2723 		break;
2724 	case MSR_AMD64_OSVW_STATUS:
2725 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2726 			return 1;
2727 		msr_info->data = vcpu->arch.osvw.status;
2728 		break;
2729 	case MSR_PLATFORM_INFO:
2730 		msr_info->data = vcpu->arch.msr_platform_info;
2731 		break;
2732 	case MSR_MISC_FEATURES_ENABLES:
2733 		msr_info->data = vcpu->arch.msr_misc_features_enables;
2734 		break;
2735 	default:
2736 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2737 			return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2738 		if (!ignore_msrs) {
2739 			vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
2740 					       msr_info->index);
2741 			return 1;
2742 		} else {
2743 			if (report_ignored_msrs)
2744 				vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n",
2745 					msr_info->index);
2746 			msr_info->data = 0;
2747 		}
2748 		break;
2749 	}
2750 	return 0;
2751 }
2752 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2753 
2754 /*
2755  * Read or write a bunch of msrs. All parameters are kernel addresses.
2756  *
2757  * @return number of msrs set successfully.
2758  */
2759 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2760 		    struct kvm_msr_entry *entries,
2761 		    int (*do_msr)(struct kvm_vcpu *vcpu,
2762 				  unsigned index, u64 *data))
2763 {
2764 	int i;
2765 
2766 	for (i = 0; i < msrs->nmsrs; ++i)
2767 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
2768 			break;
2769 
2770 	return i;
2771 }
2772 
2773 /*
2774  * Read or write a bunch of msrs. Parameters are user addresses.
2775  *
2776  * @return number of msrs set successfully.
2777  */
2778 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2779 		  int (*do_msr)(struct kvm_vcpu *vcpu,
2780 				unsigned index, u64 *data),
2781 		  int writeback)
2782 {
2783 	struct kvm_msrs msrs;
2784 	struct kvm_msr_entry *entries;
2785 	int r, n;
2786 	unsigned size;
2787 
2788 	r = -EFAULT;
2789 	if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2790 		goto out;
2791 
2792 	r = -E2BIG;
2793 	if (msrs.nmsrs >= MAX_IO_MSRS)
2794 		goto out;
2795 
2796 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2797 	entries = memdup_user(user_msrs->entries, size);
2798 	if (IS_ERR(entries)) {
2799 		r = PTR_ERR(entries);
2800 		goto out;
2801 	}
2802 
2803 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2804 	if (r < 0)
2805 		goto out_free;
2806 
2807 	r = -EFAULT;
2808 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
2809 		goto out_free;
2810 
2811 	r = n;
2812 
2813 out_free:
2814 	kfree(entries);
2815 out:
2816 	return r;
2817 }
2818 
2819 static inline bool kvm_can_mwait_in_guest(void)
2820 {
2821 	return boot_cpu_has(X86_FEATURE_MWAIT) &&
2822 		!boot_cpu_has_bug(X86_BUG_MONITOR);
2823 }
2824 
2825 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2826 {
2827 	int r = 0;
2828 
2829 	switch (ext) {
2830 	case KVM_CAP_IRQCHIP:
2831 	case KVM_CAP_HLT:
2832 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2833 	case KVM_CAP_SET_TSS_ADDR:
2834 	case KVM_CAP_EXT_CPUID:
2835 	case KVM_CAP_EXT_EMUL_CPUID:
2836 	case KVM_CAP_CLOCKSOURCE:
2837 	case KVM_CAP_PIT:
2838 	case KVM_CAP_NOP_IO_DELAY:
2839 	case KVM_CAP_MP_STATE:
2840 	case KVM_CAP_SYNC_MMU:
2841 	case KVM_CAP_USER_NMI:
2842 	case KVM_CAP_REINJECT_CONTROL:
2843 	case KVM_CAP_IRQ_INJECT_STATUS:
2844 	case KVM_CAP_IOEVENTFD:
2845 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
2846 	case KVM_CAP_PIT2:
2847 	case KVM_CAP_PIT_STATE2:
2848 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2849 	case KVM_CAP_XEN_HVM:
2850 	case KVM_CAP_VCPU_EVENTS:
2851 	case KVM_CAP_HYPERV:
2852 	case KVM_CAP_HYPERV_VAPIC:
2853 	case KVM_CAP_HYPERV_SPIN:
2854 	case KVM_CAP_HYPERV_SYNIC:
2855 	case KVM_CAP_HYPERV_SYNIC2:
2856 	case KVM_CAP_HYPERV_VP_INDEX:
2857 	case KVM_CAP_HYPERV_EVENTFD:
2858 	case KVM_CAP_PCI_SEGMENT:
2859 	case KVM_CAP_DEBUGREGS:
2860 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
2861 	case KVM_CAP_XSAVE:
2862 	case KVM_CAP_ASYNC_PF:
2863 	case KVM_CAP_GET_TSC_KHZ:
2864 	case KVM_CAP_KVMCLOCK_CTRL:
2865 	case KVM_CAP_READONLY_MEM:
2866 	case KVM_CAP_HYPERV_TIME:
2867 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2868 	case KVM_CAP_TSC_DEADLINE_TIMER:
2869 	case KVM_CAP_ENABLE_CAP_VM:
2870 	case KVM_CAP_DISABLE_QUIRKS:
2871 	case KVM_CAP_SET_BOOT_CPU_ID:
2872  	case KVM_CAP_SPLIT_IRQCHIP:
2873 	case KVM_CAP_IMMEDIATE_EXIT:
2874 	case KVM_CAP_GET_MSR_FEATURES:
2875 		r = 1;
2876 		break;
2877 	case KVM_CAP_SYNC_REGS:
2878 		r = KVM_SYNC_X86_VALID_FIELDS;
2879 		break;
2880 	case KVM_CAP_ADJUST_CLOCK:
2881 		r = KVM_CLOCK_TSC_STABLE;
2882 		break;
2883 	case KVM_CAP_X86_DISABLE_EXITS:
2884 		r |=  KVM_X86_DISABLE_EXITS_HTL | KVM_X86_DISABLE_EXITS_PAUSE;
2885 		if(kvm_can_mwait_in_guest())
2886 			r |= KVM_X86_DISABLE_EXITS_MWAIT;
2887 		break;
2888 	case KVM_CAP_X86_SMM:
2889 		/* SMBASE is usually relocated above 1M on modern chipsets,
2890 		 * and SMM handlers might indeed rely on 4G segment limits,
2891 		 * so do not report SMM to be available if real mode is
2892 		 * emulated via vm86 mode.  Still, do not go to great lengths
2893 		 * to avoid userspace's usage of the feature, because it is a
2894 		 * fringe case that is not enabled except via specific settings
2895 		 * of the module parameters.
2896 		 */
2897 		r = kvm_x86_ops->cpu_has_high_real_mode_segbase();
2898 		break;
2899 	case KVM_CAP_VAPIC:
2900 		r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2901 		break;
2902 	case KVM_CAP_NR_VCPUS:
2903 		r = KVM_SOFT_MAX_VCPUS;
2904 		break;
2905 	case KVM_CAP_MAX_VCPUS:
2906 		r = KVM_MAX_VCPUS;
2907 		break;
2908 	case KVM_CAP_NR_MEMSLOTS:
2909 		r = KVM_USER_MEM_SLOTS;
2910 		break;
2911 	case KVM_CAP_PV_MMU:	/* obsolete */
2912 		r = 0;
2913 		break;
2914 	case KVM_CAP_MCE:
2915 		r = KVM_MAX_MCE_BANKS;
2916 		break;
2917 	case KVM_CAP_XCRS:
2918 		r = boot_cpu_has(X86_FEATURE_XSAVE);
2919 		break;
2920 	case KVM_CAP_TSC_CONTROL:
2921 		r = kvm_has_tsc_control;
2922 		break;
2923 	case KVM_CAP_X2APIC_API:
2924 		r = KVM_X2APIC_API_VALID_FLAGS;
2925 		break;
2926 	default:
2927 		break;
2928 	}
2929 	return r;
2930 
2931 }
2932 
2933 long kvm_arch_dev_ioctl(struct file *filp,
2934 			unsigned int ioctl, unsigned long arg)
2935 {
2936 	void __user *argp = (void __user *)arg;
2937 	long r;
2938 
2939 	switch (ioctl) {
2940 	case KVM_GET_MSR_INDEX_LIST: {
2941 		struct kvm_msr_list __user *user_msr_list = argp;
2942 		struct kvm_msr_list msr_list;
2943 		unsigned n;
2944 
2945 		r = -EFAULT;
2946 		if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2947 			goto out;
2948 		n = msr_list.nmsrs;
2949 		msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
2950 		if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2951 			goto out;
2952 		r = -E2BIG;
2953 		if (n < msr_list.nmsrs)
2954 			goto out;
2955 		r = -EFAULT;
2956 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2957 				 num_msrs_to_save * sizeof(u32)))
2958 			goto out;
2959 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2960 				 &emulated_msrs,
2961 				 num_emulated_msrs * sizeof(u32)))
2962 			goto out;
2963 		r = 0;
2964 		break;
2965 	}
2966 	case KVM_GET_SUPPORTED_CPUID:
2967 	case KVM_GET_EMULATED_CPUID: {
2968 		struct kvm_cpuid2 __user *cpuid_arg = argp;
2969 		struct kvm_cpuid2 cpuid;
2970 
2971 		r = -EFAULT;
2972 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2973 			goto out;
2974 
2975 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2976 					    ioctl);
2977 		if (r)
2978 			goto out;
2979 
2980 		r = -EFAULT;
2981 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2982 			goto out;
2983 		r = 0;
2984 		break;
2985 	}
2986 	case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2987 		r = -EFAULT;
2988 		if (copy_to_user(argp, &kvm_mce_cap_supported,
2989 				 sizeof(kvm_mce_cap_supported)))
2990 			goto out;
2991 		r = 0;
2992 		break;
2993 	case KVM_GET_MSR_FEATURE_INDEX_LIST: {
2994 		struct kvm_msr_list __user *user_msr_list = argp;
2995 		struct kvm_msr_list msr_list;
2996 		unsigned int n;
2997 
2998 		r = -EFAULT;
2999 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3000 			goto out;
3001 		n = msr_list.nmsrs;
3002 		msr_list.nmsrs = num_msr_based_features;
3003 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3004 			goto out;
3005 		r = -E2BIG;
3006 		if (n < msr_list.nmsrs)
3007 			goto out;
3008 		r = -EFAULT;
3009 		if (copy_to_user(user_msr_list->indices, &msr_based_features,
3010 				 num_msr_based_features * sizeof(u32)))
3011 			goto out;
3012 		r = 0;
3013 		break;
3014 	}
3015 	case KVM_GET_MSRS:
3016 		r = msr_io(NULL, argp, do_get_msr_feature, 1);
3017 		break;
3018 	}
3019 	default:
3020 		r = -EINVAL;
3021 	}
3022 out:
3023 	return r;
3024 }
3025 
3026 static void wbinvd_ipi(void *garbage)
3027 {
3028 	wbinvd();
3029 }
3030 
3031 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
3032 {
3033 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
3034 }
3035 
3036 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
3037 {
3038 	/* Address WBINVD may be executed by guest */
3039 	if (need_emulate_wbinvd(vcpu)) {
3040 		if (kvm_x86_ops->has_wbinvd_exit())
3041 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
3042 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
3043 			smp_call_function_single(vcpu->cpu,
3044 					wbinvd_ipi, NULL, 1);
3045 	}
3046 
3047 	kvm_x86_ops->vcpu_load(vcpu, cpu);
3048 
3049 	/* Apply any externally detected TSC adjustments (due to suspend) */
3050 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
3051 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
3052 		vcpu->arch.tsc_offset_adjustment = 0;
3053 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3054 	}
3055 
3056 	if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
3057 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
3058 				rdtsc() - vcpu->arch.last_host_tsc;
3059 		if (tsc_delta < 0)
3060 			mark_tsc_unstable("KVM discovered backwards TSC");
3061 
3062 		if (kvm_check_tsc_unstable()) {
3063 			u64 offset = kvm_compute_tsc_offset(vcpu,
3064 						vcpu->arch.last_guest_tsc);
3065 			kvm_vcpu_write_tsc_offset(vcpu, offset);
3066 			vcpu->arch.tsc_catchup = 1;
3067 		}
3068 
3069 		if (kvm_lapic_hv_timer_in_use(vcpu))
3070 			kvm_lapic_restart_hv_timer(vcpu);
3071 
3072 		/*
3073 		 * On a host with synchronized TSC, there is no need to update
3074 		 * kvmclock on vcpu->cpu migration
3075 		 */
3076 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
3077 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
3078 		if (vcpu->cpu != cpu)
3079 			kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
3080 		vcpu->cpu = cpu;
3081 	}
3082 
3083 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3084 }
3085 
3086 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
3087 {
3088 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3089 		return;
3090 
3091 	vcpu->arch.st.steal.preempted = KVM_VCPU_PREEMPTED;
3092 
3093 	kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.st.stime,
3094 			&vcpu->arch.st.steal.preempted,
3095 			offsetof(struct kvm_steal_time, preempted),
3096 			sizeof(vcpu->arch.st.steal.preempted));
3097 }
3098 
3099 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
3100 {
3101 	int idx;
3102 
3103 	if (vcpu->preempted)
3104 		vcpu->arch.preempted_in_kernel = !kvm_x86_ops->get_cpl(vcpu);
3105 
3106 	/*
3107 	 * Disable page faults because we're in atomic context here.
3108 	 * kvm_write_guest_offset_cached() would call might_fault()
3109 	 * that relies on pagefault_disable() to tell if there's a
3110 	 * bug. NOTE: the write to guest memory may not go through if
3111 	 * during postcopy live migration or if there's heavy guest
3112 	 * paging.
3113 	 */
3114 	pagefault_disable();
3115 	/*
3116 	 * kvm_memslots() will be called by
3117 	 * kvm_write_guest_offset_cached() so take the srcu lock.
3118 	 */
3119 	idx = srcu_read_lock(&vcpu->kvm->srcu);
3120 	kvm_steal_time_set_preempted(vcpu);
3121 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
3122 	pagefault_enable();
3123 	kvm_x86_ops->vcpu_put(vcpu);
3124 	vcpu->arch.last_host_tsc = rdtsc();
3125 	/*
3126 	 * If userspace has set any breakpoints or watchpoints, dr6 is restored
3127 	 * on every vmexit, but if not, we might have a stale dr6 from the
3128 	 * guest. do_debug expects dr6 to be cleared after it runs, do the same.
3129 	 */
3130 	set_debugreg(0, 6);
3131 }
3132 
3133 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
3134 				    struct kvm_lapic_state *s)
3135 {
3136 	if (vcpu->arch.apicv_active)
3137 		kvm_x86_ops->sync_pir_to_irr(vcpu);
3138 
3139 	return kvm_apic_get_state(vcpu, s);
3140 }
3141 
3142 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
3143 				    struct kvm_lapic_state *s)
3144 {
3145 	int r;
3146 
3147 	r = kvm_apic_set_state(vcpu, s);
3148 	if (r)
3149 		return r;
3150 	update_cr8_intercept(vcpu);
3151 
3152 	return 0;
3153 }
3154 
3155 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
3156 {
3157 	return (!lapic_in_kernel(vcpu) ||
3158 		kvm_apic_accept_pic_intr(vcpu));
3159 }
3160 
3161 /*
3162  * if userspace requested an interrupt window, check that the
3163  * interrupt window is open.
3164  *
3165  * No need to exit to userspace if we already have an interrupt queued.
3166  */
3167 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
3168 {
3169 	return kvm_arch_interrupt_allowed(vcpu) &&
3170 		!kvm_cpu_has_interrupt(vcpu) &&
3171 		!kvm_event_needs_reinjection(vcpu) &&
3172 		kvm_cpu_accept_dm_intr(vcpu);
3173 }
3174 
3175 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
3176 				    struct kvm_interrupt *irq)
3177 {
3178 	if (irq->irq >= KVM_NR_INTERRUPTS)
3179 		return -EINVAL;
3180 
3181 	if (!irqchip_in_kernel(vcpu->kvm)) {
3182 		kvm_queue_interrupt(vcpu, irq->irq, false);
3183 		kvm_make_request(KVM_REQ_EVENT, vcpu);
3184 		return 0;
3185 	}
3186 
3187 	/*
3188 	 * With in-kernel LAPIC, we only use this to inject EXTINT, so
3189 	 * fail for in-kernel 8259.
3190 	 */
3191 	if (pic_in_kernel(vcpu->kvm))
3192 		return -ENXIO;
3193 
3194 	if (vcpu->arch.pending_external_vector != -1)
3195 		return -EEXIST;
3196 
3197 	vcpu->arch.pending_external_vector = irq->irq;
3198 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3199 	return 0;
3200 }
3201 
3202 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
3203 {
3204 	kvm_inject_nmi(vcpu);
3205 
3206 	return 0;
3207 }
3208 
3209 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
3210 {
3211 	kvm_make_request(KVM_REQ_SMI, vcpu);
3212 
3213 	return 0;
3214 }
3215 
3216 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
3217 					   struct kvm_tpr_access_ctl *tac)
3218 {
3219 	if (tac->flags)
3220 		return -EINVAL;
3221 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
3222 	return 0;
3223 }
3224 
3225 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
3226 					u64 mcg_cap)
3227 {
3228 	int r;
3229 	unsigned bank_num = mcg_cap & 0xff, bank;
3230 
3231 	r = -EINVAL;
3232 	if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3233 		goto out;
3234 	if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
3235 		goto out;
3236 	r = 0;
3237 	vcpu->arch.mcg_cap = mcg_cap;
3238 	/* Init IA32_MCG_CTL to all 1s */
3239 	if (mcg_cap & MCG_CTL_P)
3240 		vcpu->arch.mcg_ctl = ~(u64)0;
3241 	/* Init IA32_MCi_CTL to all 1s */
3242 	for (bank = 0; bank < bank_num; bank++)
3243 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3244 
3245 	if (kvm_x86_ops->setup_mce)
3246 		kvm_x86_ops->setup_mce(vcpu);
3247 out:
3248 	return r;
3249 }
3250 
3251 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3252 				      struct kvm_x86_mce *mce)
3253 {
3254 	u64 mcg_cap = vcpu->arch.mcg_cap;
3255 	unsigned bank_num = mcg_cap & 0xff;
3256 	u64 *banks = vcpu->arch.mce_banks;
3257 
3258 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3259 		return -EINVAL;
3260 	/*
3261 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
3262 	 * reporting is disabled
3263 	 */
3264 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3265 	    vcpu->arch.mcg_ctl != ~(u64)0)
3266 		return 0;
3267 	banks += 4 * mce->bank;
3268 	/*
3269 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
3270 	 * reporting is disabled for the bank
3271 	 */
3272 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3273 		return 0;
3274 	if (mce->status & MCI_STATUS_UC) {
3275 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3276 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3277 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3278 			return 0;
3279 		}
3280 		if (banks[1] & MCI_STATUS_VAL)
3281 			mce->status |= MCI_STATUS_OVER;
3282 		banks[2] = mce->addr;
3283 		banks[3] = mce->misc;
3284 		vcpu->arch.mcg_status = mce->mcg_status;
3285 		banks[1] = mce->status;
3286 		kvm_queue_exception(vcpu, MC_VECTOR);
3287 	} else if (!(banks[1] & MCI_STATUS_VAL)
3288 		   || !(banks[1] & MCI_STATUS_UC)) {
3289 		if (banks[1] & MCI_STATUS_VAL)
3290 			mce->status |= MCI_STATUS_OVER;
3291 		banks[2] = mce->addr;
3292 		banks[3] = mce->misc;
3293 		banks[1] = mce->status;
3294 	} else
3295 		banks[1] |= MCI_STATUS_OVER;
3296 	return 0;
3297 }
3298 
3299 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3300 					       struct kvm_vcpu_events *events)
3301 {
3302 	process_nmi(vcpu);
3303 	/*
3304 	 * FIXME: pass injected and pending separately.  This is only
3305 	 * needed for nested virtualization, whose state cannot be
3306 	 * migrated yet.  For now we can combine them.
3307 	 */
3308 	events->exception.injected =
3309 		(vcpu->arch.exception.pending ||
3310 		 vcpu->arch.exception.injected) &&
3311 		!kvm_exception_is_soft(vcpu->arch.exception.nr);
3312 	events->exception.nr = vcpu->arch.exception.nr;
3313 	events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3314 	events->exception.pad = 0;
3315 	events->exception.error_code = vcpu->arch.exception.error_code;
3316 
3317 	events->interrupt.injected =
3318 		vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
3319 	events->interrupt.nr = vcpu->arch.interrupt.nr;
3320 	events->interrupt.soft = 0;
3321 	events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3322 
3323 	events->nmi.injected = vcpu->arch.nmi_injected;
3324 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
3325 	events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3326 	events->nmi.pad = 0;
3327 
3328 	events->sipi_vector = 0; /* never valid when reporting to user space */
3329 
3330 	events->smi.smm = is_smm(vcpu);
3331 	events->smi.pending = vcpu->arch.smi_pending;
3332 	events->smi.smm_inside_nmi =
3333 		!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3334 	events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3335 
3336 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3337 			 | KVM_VCPUEVENT_VALID_SHADOW
3338 			 | KVM_VCPUEVENT_VALID_SMM);
3339 	memset(&events->reserved, 0, sizeof(events->reserved));
3340 }
3341 
3342 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags);
3343 
3344 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3345 					      struct kvm_vcpu_events *events)
3346 {
3347 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3348 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3349 			      | KVM_VCPUEVENT_VALID_SHADOW
3350 			      | KVM_VCPUEVENT_VALID_SMM))
3351 		return -EINVAL;
3352 
3353 	if (events->exception.injected &&
3354 	    (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR ||
3355 	     is_guest_mode(vcpu)))
3356 		return -EINVAL;
3357 
3358 	/* INITs are latched while in SMM */
3359 	if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
3360 	    (events->smi.smm || events->smi.pending) &&
3361 	    vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3362 		return -EINVAL;
3363 
3364 	process_nmi(vcpu);
3365 	vcpu->arch.exception.injected = false;
3366 	vcpu->arch.exception.pending = events->exception.injected;
3367 	vcpu->arch.exception.nr = events->exception.nr;
3368 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3369 	vcpu->arch.exception.error_code = events->exception.error_code;
3370 
3371 	vcpu->arch.interrupt.injected = events->interrupt.injected;
3372 	vcpu->arch.interrupt.nr = events->interrupt.nr;
3373 	vcpu->arch.interrupt.soft = events->interrupt.soft;
3374 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3375 		kvm_x86_ops->set_interrupt_shadow(vcpu,
3376 						  events->interrupt.shadow);
3377 
3378 	vcpu->arch.nmi_injected = events->nmi.injected;
3379 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3380 		vcpu->arch.nmi_pending = events->nmi.pending;
3381 	kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3382 
3383 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3384 	    lapic_in_kernel(vcpu))
3385 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
3386 
3387 	if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3388 		u32 hflags = vcpu->arch.hflags;
3389 		if (events->smi.smm)
3390 			hflags |= HF_SMM_MASK;
3391 		else
3392 			hflags &= ~HF_SMM_MASK;
3393 		kvm_set_hflags(vcpu, hflags);
3394 
3395 		vcpu->arch.smi_pending = events->smi.pending;
3396 
3397 		if (events->smi.smm) {
3398 			if (events->smi.smm_inside_nmi)
3399 				vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3400 			else
3401 				vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3402 			if (lapic_in_kernel(vcpu)) {
3403 				if (events->smi.latched_init)
3404 					set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3405 				else
3406 					clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3407 			}
3408 		}
3409 	}
3410 
3411 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3412 
3413 	return 0;
3414 }
3415 
3416 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3417 					     struct kvm_debugregs *dbgregs)
3418 {
3419 	unsigned long val;
3420 
3421 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3422 	kvm_get_dr(vcpu, 6, &val);
3423 	dbgregs->dr6 = val;
3424 	dbgregs->dr7 = vcpu->arch.dr7;
3425 	dbgregs->flags = 0;
3426 	memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3427 }
3428 
3429 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3430 					    struct kvm_debugregs *dbgregs)
3431 {
3432 	if (dbgregs->flags)
3433 		return -EINVAL;
3434 
3435 	if (dbgregs->dr6 & ~0xffffffffull)
3436 		return -EINVAL;
3437 	if (dbgregs->dr7 & ~0xffffffffull)
3438 		return -EINVAL;
3439 
3440 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3441 	kvm_update_dr0123(vcpu);
3442 	vcpu->arch.dr6 = dbgregs->dr6;
3443 	kvm_update_dr6(vcpu);
3444 	vcpu->arch.dr7 = dbgregs->dr7;
3445 	kvm_update_dr7(vcpu);
3446 
3447 	return 0;
3448 }
3449 
3450 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3451 
3452 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3453 {
3454 	struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3455 	u64 xstate_bv = xsave->header.xfeatures;
3456 	u64 valid;
3457 
3458 	/*
3459 	 * Copy legacy XSAVE area, to avoid complications with CPUID
3460 	 * leaves 0 and 1 in the loop below.
3461 	 */
3462 	memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3463 
3464 	/* Set XSTATE_BV */
3465 	xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
3466 	*(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3467 
3468 	/*
3469 	 * Copy each region from the possibly compacted offset to the
3470 	 * non-compacted offset.
3471 	 */
3472 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3473 	while (valid) {
3474 		u64 feature = valid & -valid;
3475 		int index = fls64(feature) - 1;
3476 		void *src = get_xsave_addr(xsave, feature);
3477 
3478 		if (src) {
3479 			u32 size, offset, ecx, edx;
3480 			cpuid_count(XSTATE_CPUID, index,
3481 				    &size, &offset, &ecx, &edx);
3482 			if (feature == XFEATURE_MASK_PKRU)
3483 				memcpy(dest + offset, &vcpu->arch.pkru,
3484 				       sizeof(vcpu->arch.pkru));
3485 			else
3486 				memcpy(dest + offset, src, size);
3487 
3488 		}
3489 
3490 		valid -= feature;
3491 	}
3492 }
3493 
3494 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3495 {
3496 	struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3497 	u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3498 	u64 valid;
3499 
3500 	/*
3501 	 * Copy legacy XSAVE area, to avoid complications with CPUID
3502 	 * leaves 0 and 1 in the loop below.
3503 	 */
3504 	memcpy(xsave, src, XSAVE_HDR_OFFSET);
3505 
3506 	/* Set XSTATE_BV and possibly XCOMP_BV.  */
3507 	xsave->header.xfeatures = xstate_bv;
3508 	if (boot_cpu_has(X86_FEATURE_XSAVES))
3509 		xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3510 
3511 	/*
3512 	 * Copy each region from the non-compacted offset to the
3513 	 * possibly compacted offset.
3514 	 */
3515 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3516 	while (valid) {
3517 		u64 feature = valid & -valid;
3518 		int index = fls64(feature) - 1;
3519 		void *dest = get_xsave_addr(xsave, feature);
3520 
3521 		if (dest) {
3522 			u32 size, offset, ecx, edx;
3523 			cpuid_count(XSTATE_CPUID, index,
3524 				    &size, &offset, &ecx, &edx);
3525 			if (feature == XFEATURE_MASK_PKRU)
3526 				memcpy(&vcpu->arch.pkru, src + offset,
3527 				       sizeof(vcpu->arch.pkru));
3528 			else
3529 				memcpy(dest, src + offset, size);
3530 		}
3531 
3532 		valid -= feature;
3533 	}
3534 }
3535 
3536 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3537 					 struct kvm_xsave *guest_xsave)
3538 {
3539 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3540 		memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3541 		fill_xsave((u8 *) guest_xsave->region, vcpu);
3542 	} else {
3543 		memcpy(guest_xsave->region,
3544 			&vcpu->arch.guest_fpu.state.fxsave,
3545 			sizeof(struct fxregs_state));
3546 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3547 			XFEATURE_MASK_FPSSE;
3548 	}
3549 }
3550 
3551 #define XSAVE_MXCSR_OFFSET 24
3552 
3553 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3554 					struct kvm_xsave *guest_xsave)
3555 {
3556 	u64 xstate_bv =
3557 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3558 	u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
3559 
3560 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3561 		/*
3562 		 * Here we allow setting states that are not present in
3563 		 * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3564 		 * with old userspace.
3565 		 */
3566 		if (xstate_bv & ~kvm_supported_xcr0() ||
3567 			mxcsr & ~mxcsr_feature_mask)
3568 			return -EINVAL;
3569 		load_xsave(vcpu, (u8 *)guest_xsave->region);
3570 	} else {
3571 		if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
3572 			mxcsr & ~mxcsr_feature_mask)
3573 			return -EINVAL;
3574 		memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3575 			guest_xsave->region, sizeof(struct fxregs_state));
3576 	}
3577 	return 0;
3578 }
3579 
3580 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3581 					struct kvm_xcrs *guest_xcrs)
3582 {
3583 	if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3584 		guest_xcrs->nr_xcrs = 0;
3585 		return;
3586 	}
3587 
3588 	guest_xcrs->nr_xcrs = 1;
3589 	guest_xcrs->flags = 0;
3590 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3591 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3592 }
3593 
3594 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3595 				       struct kvm_xcrs *guest_xcrs)
3596 {
3597 	int i, r = 0;
3598 
3599 	if (!boot_cpu_has(X86_FEATURE_XSAVE))
3600 		return -EINVAL;
3601 
3602 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3603 		return -EINVAL;
3604 
3605 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3606 		/* Only support XCR0 currently */
3607 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3608 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3609 				guest_xcrs->xcrs[i].value);
3610 			break;
3611 		}
3612 	if (r)
3613 		r = -EINVAL;
3614 	return r;
3615 }
3616 
3617 /*
3618  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3619  * stopped by the hypervisor.  This function will be called from the host only.
3620  * EINVAL is returned when the host attempts to set the flag for a guest that
3621  * does not support pv clocks.
3622  */
3623 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3624 {
3625 	if (!vcpu->arch.pv_time_enabled)
3626 		return -EINVAL;
3627 	vcpu->arch.pvclock_set_guest_stopped_request = true;
3628 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3629 	return 0;
3630 }
3631 
3632 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3633 				     struct kvm_enable_cap *cap)
3634 {
3635 	if (cap->flags)
3636 		return -EINVAL;
3637 
3638 	switch (cap->cap) {
3639 	case KVM_CAP_HYPERV_SYNIC2:
3640 		if (cap->args[0])
3641 			return -EINVAL;
3642 	case KVM_CAP_HYPERV_SYNIC:
3643 		if (!irqchip_in_kernel(vcpu->kvm))
3644 			return -EINVAL;
3645 		return kvm_hv_activate_synic(vcpu, cap->cap ==
3646 					     KVM_CAP_HYPERV_SYNIC2);
3647 	default:
3648 		return -EINVAL;
3649 	}
3650 }
3651 
3652 long kvm_arch_vcpu_ioctl(struct file *filp,
3653 			 unsigned int ioctl, unsigned long arg)
3654 {
3655 	struct kvm_vcpu *vcpu = filp->private_data;
3656 	void __user *argp = (void __user *)arg;
3657 	int r;
3658 	union {
3659 		struct kvm_lapic_state *lapic;
3660 		struct kvm_xsave *xsave;
3661 		struct kvm_xcrs *xcrs;
3662 		void *buffer;
3663 	} u;
3664 
3665 	vcpu_load(vcpu);
3666 
3667 	u.buffer = NULL;
3668 	switch (ioctl) {
3669 	case KVM_GET_LAPIC: {
3670 		r = -EINVAL;
3671 		if (!lapic_in_kernel(vcpu))
3672 			goto out;
3673 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3674 
3675 		r = -ENOMEM;
3676 		if (!u.lapic)
3677 			goto out;
3678 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3679 		if (r)
3680 			goto out;
3681 		r = -EFAULT;
3682 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3683 			goto out;
3684 		r = 0;
3685 		break;
3686 	}
3687 	case KVM_SET_LAPIC: {
3688 		r = -EINVAL;
3689 		if (!lapic_in_kernel(vcpu))
3690 			goto out;
3691 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
3692 		if (IS_ERR(u.lapic)) {
3693 			r = PTR_ERR(u.lapic);
3694 			goto out_nofree;
3695 		}
3696 
3697 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3698 		break;
3699 	}
3700 	case KVM_INTERRUPT: {
3701 		struct kvm_interrupt irq;
3702 
3703 		r = -EFAULT;
3704 		if (copy_from_user(&irq, argp, sizeof irq))
3705 			goto out;
3706 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3707 		break;
3708 	}
3709 	case KVM_NMI: {
3710 		r = kvm_vcpu_ioctl_nmi(vcpu);
3711 		break;
3712 	}
3713 	case KVM_SMI: {
3714 		r = kvm_vcpu_ioctl_smi(vcpu);
3715 		break;
3716 	}
3717 	case KVM_SET_CPUID: {
3718 		struct kvm_cpuid __user *cpuid_arg = argp;
3719 		struct kvm_cpuid cpuid;
3720 
3721 		r = -EFAULT;
3722 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3723 			goto out;
3724 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3725 		break;
3726 	}
3727 	case KVM_SET_CPUID2: {
3728 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3729 		struct kvm_cpuid2 cpuid;
3730 
3731 		r = -EFAULT;
3732 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3733 			goto out;
3734 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3735 					      cpuid_arg->entries);
3736 		break;
3737 	}
3738 	case KVM_GET_CPUID2: {
3739 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3740 		struct kvm_cpuid2 cpuid;
3741 
3742 		r = -EFAULT;
3743 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3744 			goto out;
3745 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3746 					      cpuid_arg->entries);
3747 		if (r)
3748 			goto out;
3749 		r = -EFAULT;
3750 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3751 			goto out;
3752 		r = 0;
3753 		break;
3754 	}
3755 	case KVM_GET_MSRS: {
3756 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
3757 		r = msr_io(vcpu, argp, do_get_msr, 1);
3758 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
3759 		break;
3760 	}
3761 	case KVM_SET_MSRS: {
3762 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
3763 		r = msr_io(vcpu, argp, do_set_msr, 0);
3764 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
3765 		break;
3766 	}
3767 	case KVM_TPR_ACCESS_REPORTING: {
3768 		struct kvm_tpr_access_ctl tac;
3769 
3770 		r = -EFAULT;
3771 		if (copy_from_user(&tac, argp, sizeof tac))
3772 			goto out;
3773 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3774 		if (r)
3775 			goto out;
3776 		r = -EFAULT;
3777 		if (copy_to_user(argp, &tac, sizeof tac))
3778 			goto out;
3779 		r = 0;
3780 		break;
3781 	};
3782 	case KVM_SET_VAPIC_ADDR: {
3783 		struct kvm_vapic_addr va;
3784 		int idx;
3785 
3786 		r = -EINVAL;
3787 		if (!lapic_in_kernel(vcpu))
3788 			goto out;
3789 		r = -EFAULT;
3790 		if (copy_from_user(&va, argp, sizeof va))
3791 			goto out;
3792 		idx = srcu_read_lock(&vcpu->kvm->srcu);
3793 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3794 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
3795 		break;
3796 	}
3797 	case KVM_X86_SETUP_MCE: {
3798 		u64 mcg_cap;
3799 
3800 		r = -EFAULT;
3801 		if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3802 			goto out;
3803 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3804 		break;
3805 	}
3806 	case KVM_X86_SET_MCE: {
3807 		struct kvm_x86_mce mce;
3808 
3809 		r = -EFAULT;
3810 		if (copy_from_user(&mce, argp, sizeof mce))
3811 			goto out;
3812 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3813 		break;
3814 	}
3815 	case KVM_GET_VCPU_EVENTS: {
3816 		struct kvm_vcpu_events events;
3817 
3818 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3819 
3820 		r = -EFAULT;
3821 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3822 			break;
3823 		r = 0;
3824 		break;
3825 	}
3826 	case KVM_SET_VCPU_EVENTS: {
3827 		struct kvm_vcpu_events events;
3828 
3829 		r = -EFAULT;
3830 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3831 			break;
3832 
3833 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3834 		break;
3835 	}
3836 	case KVM_GET_DEBUGREGS: {
3837 		struct kvm_debugregs dbgregs;
3838 
3839 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3840 
3841 		r = -EFAULT;
3842 		if (copy_to_user(argp, &dbgregs,
3843 				 sizeof(struct kvm_debugregs)))
3844 			break;
3845 		r = 0;
3846 		break;
3847 	}
3848 	case KVM_SET_DEBUGREGS: {
3849 		struct kvm_debugregs dbgregs;
3850 
3851 		r = -EFAULT;
3852 		if (copy_from_user(&dbgregs, argp,
3853 				   sizeof(struct kvm_debugregs)))
3854 			break;
3855 
3856 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3857 		break;
3858 	}
3859 	case KVM_GET_XSAVE: {
3860 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3861 		r = -ENOMEM;
3862 		if (!u.xsave)
3863 			break;
3864 
3865 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3866 
3867 		r = -EFAULT;
3868 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3869 			break;
3870 		r = 0;
3871 		break;
3872 	}
3873 	case KVM_SET_XSAVE: {
3874 		u.xsave = memdup_user(argp, sizeof(*u.xsave));
3875 		if (IS_ERR(u.xsave)) {
3876 			r = PTR_ERR(u.xsave);
3877 			goto out_nofree;
3878 		}
3879 
3880 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3881 		break;
3882 	}
3883 	case KVM_GET_XCRS: {
3884 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3885 		r = -ENOMEM;
3886 		if (!u.xcrs)
3887 			break;
3888 
3889 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3890 
3891 		r = -EFAULT;
3892 		if (copy_to_user(argp, u.xcrs,
3893 				 sizeof(struct kvm_xcrs)))
3894 			break;
3895 		r = 0;
3896 		break;
3897 	}
3898 	case KVM_SET_XCRS: {
3899 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3900 		if (IS_ERR(u.xcrs)) {
3901 			r = PTR_ERR(u.xcrs);
3902 			goto out_nofree;
3903 		}
3904 
3905 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3906 		break;
3907 	}
3908 	case KVM_SET_TSC_KHZ: {
3909 		u32 user_tsc_khz;
3910 
3911 		r = -EINVAL;
3912 		user_tsc_khz = (u32)arg;
3913 
3914 		if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3915 			goto out;
3916 
3917 		if (user_tsc_khz == 0)
3918 			user_tsc_khz = tsc_khz;
3919 
3920 		if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
3921 			r = 0;
3922 
3923 		goto out;
3924 	}
3925 	case KVM_GET_TSC_KHZ: {
3926 		r = vcpu->arch.virtual_tsc_khz;
3927 		goto out;
3928 	}
3929 	case KVM_KVMCLOCK_CTRL: {
3930 		r = kvm_set_guest_paused(vcpu);
3931 		goto out;
3932 	}
3933 	case KVM_ENABLE_CAP: {
3934 		struct kvm_enable_cap cap;
3935 
3936 		r = -EFAULT;
3937 		if (copy_from_user(&cap, argp, sizeof(cap)))
3938 			goto out;
3939 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
3940 		break;
3941 	}
3942 	default:
3943 		r = -EINVAL;
3944 	}
3945 out:
3946 	kfree(u.buffer);
3947 out_nofree:
3948 	vcpu_put(vcpu);
3949 	return r;
3950 }
3951 
3952 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3953 {
3954 	return VM_FAULT_SIGBUS;
3955 }
3956 
3957 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3958 {
3959 	int ret;
3960 
3961 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
3962 		return -EINVAL;
3963 	ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3964 	return ret;
3965 }
3966 
3967 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3968 					      u64 ident_addr)
3969 {
3970 	return kvm_x86_ops->set_identity_map_addr(kvm, ident_addr);
3971 }
3972 
3973 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3974 					  u32 kvm_nr_mmu_pages)
3975 {
3976 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3977 		return -EINVAL;
3978 
3979 	mutex_lock(&kvm->slots_lock);
3980 
3981 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3982 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3983 
3984 	mutex_unlock(&kvm->slots_lock);
3985 	return 0;
3986 }
3987 
3988 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3989 {
3990 	return kvm->arch.n_max_mmu_pages;
3991 }
3992 
3993 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3994 {
3995 	struct kvm_pic *pic = kvm->arch.vpic;
3996 	int r;
3997 
3998 	r = 0;
3999 	switch (chip->chip_id) {
4000 	case KVM_IRQCHIP_PIC_MASTER:
4001 		memcpy(&chip->chip.pic, &pic->pics[0],
4002 			sizeof(struct kvm_pic_state));
4003 		break;
4004 	case KVM_IRQCHIP_PIC_SLAVE:
4005 		memcpy(&chip->chip.pic, &pic->pics[1],
4006 			sizeof(struct kvm_pic_state));
4007 		break;
4008 	case KVM_IRQCHIP_IOAPIC:
4009 		kvm_get_ioapic(kvm, &chip->chip.ioapic);
4010 		break;
4011 	default:
4012 		r = -EINVAL;
4013 		break;
4014 	}
4015 	return r;
4016 }
4017 
4018 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4019 {
4020 	struct kvm_pic *pic = kvm->arch.vpic;
4021 	int r;
4022 
4023 	r = 0;
4024 	switch (chip->chip_id) {
4025 	case KVM_IRQCHIP_PIC_MASTER:
4026 		spin_lock(&pic->lock);
4027 		memcpy(&pic->pics[0], &chip->chip.pic,
4028 			sizeof(struct kvm_pic_state));
4029 		spin_unlock(&pic->lock);
4030 		break;
4031 	case KVM_IRQCHIP_PIC_SLAVE:
4032 		spin_lock(&pic->lock);
4033 		memcpy(&pic->pics[1], &chip->chip.pic,
4034 			sizeof(struct kvm_pic_state));
4035 		spin_unlock(&pic->lock);
4036 		break;
4037 	case KVM_IRQCHIP_IOAPIC:
4038 		kvm_set_ioapic(kvm, &chip->chip.ioapic);
4039 		break;
4040 	default:
4041 		r = -EINVAL;
4042 		break;
4043 	}
4044 	kvm_pic_update_irq(pic);
4045 	return r;
4046 }
4047 
4048 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4049 {
4050 	struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
4051 
4052 	BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
4053 
4054 	mutex_lock(&kps->lock);
4055 	memcpy(ps, &kps->channels, sizeof(*ps));
4056 	mutex_unlock(&kps->lock);
4057 	return 0;
4058 }
4059 
4060 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4061 {
4062 	int i;
4063 	struct kvm_pit *pit = kvm->arch.vpit;
4064 
4065 	mutex_lock(&pit->pit_state.lock);
4066 	memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
4067 	for (i = 0; i < 3; i++)
4068 		kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
4069 	mutex_unlock(&pit->pit_state.lock);
4070 	return 0;
4071 }
4072 
4073 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4074 {
4075 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
4076 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
4077 		sizeof(ps->channels));
4078 	ps->flags = kvm->arch.vpit->pit_state.flags;
4079 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
4080 	memset(&ps->reserved, 0, sizeof(ps->reserved));
4081 	return 0;
4082 }
4083 
4084 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4085 {
4086 	int start = 0;
4087 	int i;
4088 	u32 prev_legacy, cur_legacy;
4089 	struct kvm_pit *pit = kvm->arch.vpit;
4090 
4091 	mutex_lock(&pit->pit_state.lock);
4092 	prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
4093 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
4094 	if (!prev_legacy && cur_legacy)
4095 		start = 1;
4096 	memcpy(&pit->pit_state.channels, &ps->channels,
4097 	       sizeof(pit->pit_state.channels));
4098 	pit->pit_state.flags = ps->flags;
4099 	for (i = 0; i < 3; i++)
4100 		kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
4101 				   start && i == 0);
4102 	mutex_unlock(&pit->pit_state.lock);
4103 	return 0;
4104 }
4105 
4106 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
4107 				 struct kvm_reinject_control *control)
4108 {
4109 	struct kvm_pit *pit = kvm->arch.vpit;
4110 
4111 	if (!pit)
4112 		return -ENXIO;
4113 
4114 	/* pit->pit_state.lock was overloaded to prevent userspace from getting
4115 	 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
4116 	 * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
4117 	 */
4118 	mutex_lock(&pit->pit_state.lock);
4119 	kvm_pit_set_reinject(pit, control->pit_reinject);
4120 	mutex_unlock(&pit->pit_state.lock);
4121 
4122 	return 0;
4123 }
4124 
4125 /**
4126  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
4127  * @kvm: kvm instance
4128  * @log: slot id and address to which we copy the log
4129  *
4130  * Steps 1-4 below provide general overview of dirty page logging. See
4131  * kvm_get_dirty_log_protect() function description for additional details.
4132  *
4133  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
4134  * always flush the TLB (step 4) even if previous step failed  and the dirty
4135  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
4136  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
4137  * writes will be marked dirty for next log read.
4138  *
4139  *   1. Take a snapshot of the bit and clear it if needed.
4140  *   2. Write protect the corresponding page.
4141  *   3. Copy the snapshot to the userspace.
4142  *   4. Flush TLB's if needed.
4143  */
4144 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
4145 {
4146 	bool is_dirty = false;
4147 	int r;
4148 
4149 	mutex_lock(&kvm->slots_lock);
4150 
4151 	/*
4152 	 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4153 	 */
4154 	if (kvm_x86_ops->flush_log_dirty)
4155 		kvm_x86_ops->flush_log_dirty(kvm);
4156 
4157 	r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
4158 
4159 	/*
4160 	 * All the TLBs can be flushed out of mmu lock, see the comments in
4161 	 * kvm_mmu_slot_remove_write_access().
4162 	 */
4163 	lockdep_assert_held(&kvm->slots_lock);
4164 	if (is_dirty)
4165 		kvm_flush_remote_tlbs(kvm);
4166 
4167 	mutex_unlock(&kvm->slots_lock);
4168 	return r;
4169 }
4170 
4171 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
4172 			bool line_status)
4173 {
4174 	if (!irqchip_in_kernel(kvm))
4175 		return -ENXIO;
4176 
4177 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
4178 					irq_event->irq, irq_event->level,
4179 					line_status);
4180 	return 0;
4181 }
4182 
4183 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4184 				   struct kvm_enable_cap *cap)
4185 {
4186 	int r;
4187 
4188 	if (cap->flags)
4189 		return -EINVAL;
4190 
4191 	switch (cap->cap) {
4192 	case KVM_CAP_DISABLE_QUIRKS:
4193 		kvm->arch.disabled_quirks = cap->args[0];
4194 		r = 0;
4195 		break;
4196 	case KVM_CAP_SPLIT_IRQCHIP: {
4197 		mutex_lock(&kvm->lock);
4198 		r = -EINVAL;
4199 		if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
4200 			goto split_irqchip_unlock;
4201 		r = -EEXIST;
4202 		if (irqchip_in_kernel(kvm))
4203 			goto split_irqchip_unlock;
4204 		if (kvm->created_vcpus)
4205 			goto split_irqchip_unlock;
4206 		r = kvm_setup_empty_irq_routing(kvm);
4207 		if (r)
4208 			goto split_irqchip_unlock;
4209 		/* Pairs with irqchip_in_kernel. */
4210 		smp_wmb();
4211 		kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
4212 		kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
4213 		r = 0;
4214 split_irqchip_unlock:
4215 		mutex_unlock(&kvm->lock);
4216 		break;
4217 	}
4218 	case KVM_CAP_X2APIC_API:
4219 		r = -EINVAL;
4220 		if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
4221 			break;
4222 
4223 		if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
4224 			kvm->arch.x2apic_format = true;
4225 		if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
4226 			kvm->arch.x2apic_broadcast_quirk_disabled = true;
4227 
4228 		r = 0;
4229 		break;
4230 	case KVM_CAP_X86_DISABLE_EXITS:
4231 		r = -EINVAL;
4232 		if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
4233 			break;
4234 
4235 		if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
4236 			kvm_can_mwait_in_guest())
4237 			kvm->arch.mwait_in_guest = true;
4238 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_HTL)
4239 			kvm->arch.hlt_in_guest = true;
4240 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
4241 			kvm->arch.pause_in_guest = true;
4242 		r = 0;
4243 		break;
4244 	default:
4245 		r = -EINVAL;
4246 		break;
4247 	}
4248 	return r;
4249 }
4250 
4251 long kvm_arch_vm_ioctl(struct file *filp,
4252 		       unsigned int ioctl, unsigned long arg)
4253 {
4254 	struct kvm *kvm = filp->private_data;
4255 	void __user *argp = (void __user *)arg;
4256 	int r = -ENOTTY;
4257 	/*
4258 	 * This union makes it completely explicit to gcc-3.x
4259 	 * that these two variables' stack usage should be
4260 	 * combined, not added together.
4261 	 */
4262 	union {
4263 		struct kvm_pit_state ps;
4264 		struct kvm_pit_state2 ps2;
4265 		struct kvm_pit_config pit_config;
4266 	} u;
4267 
4268 	switch (ioctl) {
4269 	case KVM_SET_TSS_ADDR:
4270 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
4271 		break;
4272 	case KVM_SET_IDENTITY_MAP_ADDR: {
4273 		u64 ident_addr;
4274 
4275 		mutex_lock(&kvm->lock);
4276 		r = -EINVAL;
4277 		if (kvm->created_vcpus)
4278 			goto set_identity_unlock;
4279 		r = -EFAULT;
4280 		if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
4281 			goto set_identity_unlock;
4282 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
4283 set_identity_unlock:
4284 		mutex_unlock(&kvm->lock);
4285 		break;
4286 	}
4287 	case KVM_SET_NR_MMU_PAGES:
4288 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
4289 		break;
4290 	case KVM_GET_NR_MMU_PAGES:
4291 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
4292 		break;
4293 	case KVM_CREATE_IRQCHIP: {
4294 		mutex_lock(&kvm->lock);
4295 
4296 		r = -EEXIST;
4297 		if (irqchip_in_kernel(kvm))
4298 			goto create_irqchip_unlock;
4299 
4300 		r = -EINVAL;
4301 		if (kvm->created_vcpus)
4302 			goto create_irqchip_unlock;
4303 
4304 		r = kvm_pic_init(kvm);
4305 		if (r)
4306 			goto create_irqchip_unlock;
4307 
4308 		r = kvm_ioapic_init(kvm);
4309 		if (r) {
4310 			kvm_pic_destroy(kvm);
4311 			goto create_irqchip_unlock;
4312 		}
4313 
4314 		r = kvm_setup_default_irq_routing(kvm);
4315 		if (r) {
4316 			kvm_ioapic_destroy(kvm);
4317 			kvm_pic_destroy(kvm);
4318 			goto create_irqchip_unlock;
4319 		}
4320 		/* Write kvm->irq_routing before enabling irqchip_in_kernel. */
4321 		smp_wmb();
4322 		kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
4323 	create_irqchip_unlock:
4324 		mutex_unlock(&kvm->lock);
4325 		break;
4326 	}
4327 	case KVM_CREATE_PIT:
4328 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
4329 		goto create_pit;
4330 	case KVM_CREATE_PIT2:
4331 		r = -EFAULT;
4332 		if (copy_from_user(&u.pit_config, argp,
4333 				   sizeof(struct kvm_pit_config)))
4334 			goto out;
4335 	create_pit:
4336 		mutex_lock(&kvm->lock);
4337 		r = -EEXIST;
4338 		if (kvm->arch.vpit)
4339 			goto create_pit_unlock;
4340 		r = -ENOMEM;
4341 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
4342 		if (kvm->arch.vpit)
4343 			r = 0;
4344 	create_pit_unlock:
4345 		mutex_unlock(&kvm->lock);
4346 		break;
4347 	case KVM_GET_IRQCHIP: {
4348 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4349 		struct kvm_irqchip *chip;
4350 
4351 		chip = memdup_user(argp, sizeof(*chip));
4352 		if (IS_ERR(chip)) {
4353 			r = PTR_ERR(chip);
4354 			goto out;
4355 		}
4356 
4357 		r = -ENXIO;
4358 		if (!irqchip_kernel(kvm))
4359 			goto get_irqchip_out;
4360 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
4361 		if (r)
4362 			goto get_irqchip_out;
4363 		r = -EFAULT;
4364 		if (copy_to_user(argp, chip, sizeof *chip))
4365 			goto get_irqchip_out;
4366 		r = 0;
4367 	get_irqchip_out:
4368 		kfree(chip);
4369 		break;
4370 	}
4371 	case KVM_SET_IRQCHIP: {
4372 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4373 		struct kvm_irqchip *chip;
4374 
4375 		chip = memdup_user(argp, sizeof(*chip));
4376 		if (IS_ERR(chip)) {
4377 			r = PTR_ERR(chip);
4378 			goto out;
4379 		}
4380 
4381 		r = -ENXIO;
4382 		if (!irqchip_kernel(kvm))
4383 			goto set_irqchip_out;
4384 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
4385 		if (r)
4386 			goto set_irqchip_out;
4387 		r = 0;
4388 	set_irqchip_out:
4389 		kfree(chip);
4390 		break;
4391 	}
4392 	case KVM_GET_PIT: {
4393 		r = -EFAULT;
4394 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
4395 			goto out;
4396 		r = -ENXIO;
4397 		if (!kvm->arch.vpit)
4398 			goto out;
4399 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4400 		if (r)
4401 			goto out;
4402 		r = -EFAULT;
4403 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4404 			goto out;
4405 		r = 0;
4406 		break;
4407 	}
4408 	case KVM_SET_PIT: {
4409 		r = -EFAULT;
4410 		if (copy_from_user(&u.ps, argp, sizeof u.ps))
4411 			goto out;
4412 		r = -ENXIO;
4413 		if (!kvm->arch.vpit)
4414 			goto out;
4415 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4416 		break;
4417 	}
4418 	case KVM_GET_PIT2: {
4419 		r = -ENXIO;
4420 		if (!kvm->arch.vpit)
4421 			goto out;
4422 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4423 		if (r)
4424 			goto out;
4425 		r = -EFAULT;
4426 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4427 			goto out;
4428 		r = 0;
4429 		break;
4430 	}
4431 	case KVM_SET_PIT2: {
4432 		r = -EFAULT;
4433 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4434 			goto out;
4435 		r = -ENXIO;
4436 		if (!kvm->arch.vpit)
4437 			goto out;
4438 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4439 		break;
4440 	}
4441 	case KVM_REINJECT_CONTROL: {
4442 		struct kvm_reinject_control control;
4443 		r =  -EFAULT;
4444 		if (copy_from_user(&control, argp, sizeof(control)))
4445 			goto out;
4446 		r = kvm_vm_ioctl_reinject(kvm, &control);
4447 		break;
4448 	}
4449 	case KVM_SET_BOOT_CPU_ID:
4450 		r = 0;
4451 		mutex_lock(&kvm->lock);
4452 		if (kvm->created_vcpus)
4453 			r = -EBUSY;
4454 		else
4455 			kvm->arch.bsp_vcpu_id = arg;
4456 		mutex_unlock(&kvm->lock);
4457 		break;
4458 	case KVM_XEN_HVM_CONFIG: {
4459 		struct kvm_xen_hvm_config xhc;
4460 		r = -EFAULT;
4461 		if (copy_from_user(&xhc, argp, sizeof(xhc)))
4462 			goto out;
4463 		r = -EINVAL;
4464 		if (xhc.flags)
4465 			goto out;
4466 		memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc));
4467 		r = 0;
4468 		break;
4469 	}
4470 	case KVM_SET_CLOCK: {
4471 		struct kvm_clock_data user_ns;
4472 		u64 now_ns;
4473 
4474 		r = -EFAULT;
4475 		if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4476 			goto out;
4477 
4478 		r = -EINVAL;
4479 		if (user_ns.flags)
4480 			goto out;
4481 
4482 		r = 0;
4483 		/*
4484 		 * TODO: userspace has to take care of races with VCPU_RUN, so
4485 		 * kvm_gen_update_masterclock() can be cut down to locked
4486 		 * pvclock_update_vm_gtod_copy().
4487 		 */
4488 		kvm_gen_update_masterclock(kvm);
4489 		now_ns = get_kvmclock_ns(kvm);
4490 		kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
4491 		kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
4492 		break;
4493 	}
4494 	case KVM_GET_CLOCK: {
4495 		struct kvm_clock_data user_ns;
4496 		u64 now_ns;
4497 
4498 		now_ns = get_kvmclock_ns(kvm);
4499 		user_ns.clock = now_ns;
4500 		user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
4501 		memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4502 
4503 		r = -EFAULT;
4504 		if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4505 			goto out;
4506 		r = 0;
4507 		break;
4508 	}
4509 	case KVM_ENABLE_CAP: {
4510 		struct kvm_enable_cap cap;
4511 
4512 		r = -EFAULT;
4513 		if (copy_from_user(&cap, argp, sizeof(cap)))
4514 			goto out;
4515 		r = kvm_vm_ioctl_enable_cap(kvm, &cap);
4516 		break;
4517 	}
4518 	case KVM_MEMORY_ENCRYPT_OP: {
4519 		r = -ENOTTY;
4520 		if (kvm_x86_ops->mem_enc_op)
4521 			r = kvm_x86_ops->mem_enc_op(kvm, argp);
4522 		break;
4523 	}
4524 	case KVM_MEMORY_ENCRYPT_REG_REGION: {
4525 		struct kvm_enc_region region;
4526 
4527 		r = -EFAULT;
4528 		if (copy_from_user(&region, argp, sizeof(region)))
4529 			goto out;
4530 
4531 		r = -ENOTTY;
4532 		if (kvm_x86_ops->mem_enc_reg_region)
4533 			r = kvm_x86_ops->mem_enc_reg_region(kvm, &region);
4534 		break;
4535 	}
4536 	case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
4537 		struct kvm_enc_region region;
4538 
4539 		r = -EFAULT;
4540 		if (copy_from_user(&region, argp, sizeof(region)))
4541 			goto out;
4542 
4543 		r = -ENOTTY;
4544 		if (kvm_x86_ops->mem_enc_unreg_region)
4545 			r = kvm_x86_ops->mem_enc_unreg_region(kvm, &region);
4546 		break;
4547 	}
4548 	case KVM_HYPERV_EVENTFD: {
4549 		struct kvm_hyperv_eventfd hvevfd;
4550 
4551 		r = -EFAULT;
4552 		if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
4553 			goto out;
4554 		r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
4555 		break;
4556 	}
4557 	default:
4558 		r = -ENOTTY;
4559 	}
4560 out:
4561 	return r;
4562 }
4563 
4564 static void kvm_init_msr_list(void)
4565 {
4566 	u32 dummy[2];
4567 	unsigned i, j;
4568 
4569 	for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4570 		if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4571 			continue;
4572 
4573 		/*
4574 		 * Even MSRs that are valid in the host may not be exposed
4575 		 * to the guests in some cases.
4576 		 */
4577 		switch (msrs_to_save[i]) {
4578 		case MSR_IA32_BNDCFGS:
4579 			if (!kvm_x86_ops->mpx_supported())
4580 				continue;
4581 			break;
4582 		case MSR_TSC_AUX:
4583 			if (!kvm_x86_ops->rdtscp_supported())
4584 				continue;
4585 			break;
4586 		default:
4587 			break;
4588 		}
4589 
4590 		if (j < i)
4591 			msrs_to_save[j] = msrs_to_save[i];
4592 		j++;
4593 	}
4594 	num_msrs_to_save = j;
4595 
4596 	for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4597 		switch (emulated_msrs[i]) {
4598 		case MSR_IA32_SMBASE:
4599 			if (!kvm_x86_ops->cpu_has_high_real_mode_segbase())
4600 				continue;
4601 			break;
4602 		default:
4603 			break;
4604 		}
4605 
4606 		if (j < i)
4607 			emulated_msrs[j] = emulated_msrs[i];
4608 		j++;
4609 	}
4610 	num_emulated_msrs = j;
4611 
4612 	for (i = j = 0; i < ARRAY_SIZE(msr_based_features); i++) {
4613 		struct kvm_msr_entry msr;
4614 
4615 		msr.index = msr_based_features[i];
4616 		if (kvm_get_msr_feature(&msr))
4617 			continue;
4618 
4619 		if (j < i)
4620 			msr_based_features[j] = msr_based_features[i];
4621 		j++;
4622 	}
4623 	num_msr_based_features = j;
4624 }
4625 
4626 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4627 			   const void *v)
4628 {
4629 	int handled = 0;
4630 	int n;
4631 
4632 	do {
4633 		n = min(len, 8);
4634 		if (!(lapic_in_kernel(vcpu) &&
4635 		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4636 		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4637 			break;
4638 		handled += n;
4639 		addr += n;
4640 		len -= n;
4641 		v += n;
4642 	} while (len);
4643 
4644 	return handled;
4645 }
4646 
4647 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4648 {
4649 	int handled = 0;
4650 	int n;
4651 
4652 	do {
4653 		n = min(len, 8);
4654 		if (!(lapic_in_kernel(vcpu) &&
4655 		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4656 					 addr, n, v))
4657 		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4658 			break;
4659 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
4660 		handled += n;
4661 		addr += n;
4662 		len -= n;
4663 		v += n;
4664 	} while (len);
4665 
4666 	return handled;
4667 }
4668 
4669 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4670 			struct kvm_segment *var, int seg)
4671 {
4672 	kvm_x86_ops->set_segment(vcpu, var, seg);
4673 }
4674 
4675 void kvm_get_segment(struct kvm_vcpu *vcpu,
4676 		     struct kvm_segment *var, int seg)
4677 {
4678 	kvm_x86_ops->get_segment(vcpu, var, seg);
4679 }
4680 
4681 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4682 			   struct x86_exception *exception)
4683 {
4684 	gpa_t t_gpa;
4685 
4686 	BUG_ON(!mmu_is_nested(vcpu));
4687 
4688 	/* NPT walks are always user-walks */
4689 	access |= PFERR_USER_MASK;
4690 	t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4691 
4692 	return t_gpa;
4693 }
4694 
4695 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4696 			      struct x86_exception *exception)
4697 {
4698 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4699 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4700 }
4701 
4702  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4703 				struct x86_exception *exception)
4704 {
4705 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4706 	access |= PFERR_FETCH_MASK;
4707 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4708 }
4709 
4710 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4711 			       struct x86_exception *exception)
4712 {
4713 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4714 	access |= PFERR_WRITE_MASK;
4715 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4716 }
4717 
4718 /* uses this to access any guest's mapped memory without checking CPL */
4719 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4720 				struct x86_exception *exception)
4721 {
4722 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4723 }
4724 
4725 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4726 				      struct kvm_vcpu *vcpu, u32 access,
4727 				      struct x86_exception *exception)
4728 {
4729 	void *data = val;
4730 	int r = X86EMUL_CONTINUE;
4731 
4732 	while (bytes) {
4733 		gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4734 							    exception);
4735 		unsigned offset = addr & (PAGE_SIZE-1);
4736 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4737 		int ret;
4738 
4739 		if (gpa == UNMAPPED_GVA)
4740 			return X86EMUL_PROPAGATE_FAULT;
4741 		ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4742 					       offset, toread);
4743 		if (ret < 0) {
4744 			r = X86EMUL_IO_NEEDED;
4745 			goto out;
4746 		}
4747 
4748 		bytes -= toread;
4749 		data += toread;
4750 		addr += toread;
4751 	}
4752 out:
4753 	return r;
4754 }
4755 
4756 /* used for instruction fetching */
4757 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4758 				gva_t addr, void *val, unsigned int bytes,
4759 				struct x86_exception *exception)
4760 {
4761 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4762 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4763 	unsigned offset;
4764 	int ret;
4765 
4766 	/* Inline kvm_read_guest_virt_helper for speed.  */
4767 	gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4768 						    exception);
4769 	if (unlikely(gpa == UNMAPPED_GVA))
4770 		return X86EMUL_PROPAGATE_FAULT;
4771 
4772 	offset = addr & (PAGE_SIZE-1);
4773 	if (WARN_ON(offset + bytes > PAGE_SIZE))
4774 		bytes = (unsigned)PAGE_SIZE - offset;
4775 	ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4776 				       offset, bytes);
4777 	if (unlikely(ret < 0))
4778 		return X86EMUL_IO_NEEDED;
4779 
4780 	return X86EMUL_CONTINUE;
4781 }
4782 
4783 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4784 			       gva_t addr, void *val, unsigned int bytes,
4785 			       struct x86_exception *exception)
4786 {
4787 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4788 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4789 
4790 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4791 					  exception);
4792 }
4793 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4794 
4795 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4796 				      gva_t addr, void *val, unsigned int bytes,
4797 				      struct x86_exception *exception)
4798 {
4799 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4800 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4801 }
4802 
4803 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
4804 		unsigned long addr, void *val, unsigned int bytes)
4805 {
4806 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4807 	int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
4808 
4809 	return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
4810 }
4811 
4812 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4813 				       gva_t addr, void *val,
4814 				       unsigned int bytes,
4815 				       struct x86_exception *exception)
4816 {
4817 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4818 	void *data = val;
4819 	int r = X86EMUL_CONTINUE;
4820 
4821 	while (bytes) {
4822 		gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4823 							     PFERR_WRITE_MASK,
4824 							     exception);
4825 		unsigned offset = addr & (PAGE_SIZE-1);
4826 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4827 		int ret;
4828 
4829 		if (gpa == UNMAPPED_GVA)
4830 			return X86EMUL_PROPAGATE_FAULT;
4831 		ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4832 		if (ret < 0) {
4833 			r = X86EMUL_IO_NEEDED;
4834 			goto out;
4835 		}
4836 
4837 		bytes -= towrite;
4838 		data += towrite;
4839 		addr += towrite;
4840 	}
4841 out:
4842 	return r;
4843 }
4844 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4845 
4846 int handle_ud(struct kvm_vcpu *vcpu)
4847 {
4848 	int emul_type = EMULTYPE_TRAP_UD;
4849 	enum emulation_result er;
4850 	char sig[5]; /* ud2; .ascii "kvm" */
4851 	struct x86_exception e;
4852 
4853 	if (force_emulation_prefix &&
4854 	    kvm_read_guest_virt(&vcpu->arch.emulate_ctxt,
4855 				kvm_get_linear_rip(vcpu), sig, sizeof(sig), &e) == 0 &&
4856 	    memcmp(sig, "\xf\xbkvm", sizeof(sig)) == 0) {
4857 		kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
4858 		emul_type = 0;
4859 	}
4860 
4861 	er = emulate_instruction(vcpu, emul_type);
4862 	if (er == EMULATE_USER_EXIT)
4863 		return 0;
4864 	if (er != EMULATE_DONE)
4865 		kvm_queue_exception(vcpu, UD_VECTOR);
4866 	return 1;
4867 }
4868 EXPORT_SYMBOL_GPL(handle_ud);
4869 
4870 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4871 			    gpa_t gpa, bool write)
4872 {
4873 	/* For APIC access vmexit */
4874 	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4875 		return 1;
4876 
4877 	if (vcpu_match_mmio_gpa(vcpu, gpa)) {
4878 		trace_vcpu_match_mmio(gva, gpa, write, true);
4879 		return 1;
4880 	}
4881 
4882 	return 0;
4883 }
4884 
4885 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4886 				gpa_t *gpa, struct x86_exception *exception,
4887 				bool write)
4888 {
4889 	u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4890 		| (write ? PFERR_WRITE_MASK : 0);
4891 
4892 	/*
4893 	 * currently PKRU is only applied to ept enabled guest so
4894 	 * there is no pkey in EPT page table for L1 guest or EPT
4895 	 * shadow page table for L2 guest.
4896 	 */
4897 	if (vcpu_match_mmio_gva(vcpu, gva)
4898 	    && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4899 				 vcpu->arch.access, 0, access)) {
4900 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4901 					(gva & (PAGE_SIZE - 1));
4902 		trace_vcpu_match_mmio(gva, *gpa, write, false);
4903 		return 1;
4904 	}
4905 
4906 	*gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4907 
4908 	if (*gpa == UNMAPPED_GVA)
4909 		return -1;
4910 
4911 	return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
4912 }
4913 
4914 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4915 			const void *val, int bytes)
4916 {
4917 	int ret;
4918 
4919 	ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
4920 	if (ret < 0)
4921 		return 0;
4922 	kvm_page_track_write(vcpu, gpa, val, bytes);
4923 	return 1;
4924 }
4925 
4926 struct read_write_emulator_ops {
4927 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4928 				  int bytes);
4929 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4930 				  void *val, int bytes);
4931 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4932 			       int bytes, void *val);
4933 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4934 				    void *val, int bytes);
4935 	bool write;
4936 };
4937 
4938 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4939 {
4940 	if (vcpu->mmio_read_completed) {
4941 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4942 			       vcpu->mmio_fragments[0].gpa, val);
4943 		vcpu->mmio_read_completed = 0;
4944 		return 1;
4945 	}
4946 
4947 	return 0;
4948 }
4949 
4950 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4951 			void *val, int bytes)
4952 {
4953 	return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
4954 }
4955 
4956 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4957 			 void *val, int bytes)
4958 {
4959 	return emulator_write_phys(vcpu, gpa, val, bytes);
4960 }
4961 
4962 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4963 {
4964 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
4965 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
4966 }
4967 
4968 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4969 			  void *val, int bytes)
4970 {
4971 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
4972 	return X86EMUL_IO_NEEDED;
4973 }
4974 
4975 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4976 			   void *val, int bytes)
4977 {
4978 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4979 
4980 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4981 	return X86EMUL_CONTINUE;
4982 }
4983 
4984 static const struct read_write_emulator_ops read_emultor = {
4985 	.read_write_prepare = read_prepare,
4986 	.read_write_emulate = read_emulate,
4987 	.read_write_mmio = vcpu_mmio_read,
4988 	.read_write_exit_mmio = read_exit_mmio,
4989 };
4990 
4991 static const struct read_write_emulator_ops write_emultor = {
4992 	.read_write_emulate = write_emulate,
4993 	.read_write_mmio = write_mmio,
4994 	.read_write_exit_mmio = write_exit_mmio,
4995 	.write = true,
4996 };
4997 
4998 static int emulator_read_write_onepage(unsigned long addr, void *val,
4999 				       unsigned int bytes,
5000 				       struct x86_exception *exception,
5001 				       struct kvm_vcpu *vcpu,
5002 				       const struct read_write_emulator_ops *ops)
5003 {
5004 	gpa_t gpa;
5005 	int handled, ret;
5006 	bool write = ops->write;
5007 	struct kvm_mmio_fragment *frag;
5008 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5009 
5010 	/*
5011 	 * If the exit was due to a NPF we may already have a GPA.
5012 	 * If the GPA is present, use it to avoid the GVA to GPA table walk.
5013 	 * Note, this cannot be used on string operations since string
5014 	 * operation using rep will only have the initial GPA from the NPF
5015 	 * occurred.
5016 	 */
5017 	if (vcpu->arch.gpa_available &&
5018 	    emulator_can_use_gpa(ctxt) &&
5019 	    (addr & ~PAGE_MASK) == (vcpu->arch.gpa_val & ~PAGE_MASK)) {
5020 		gpa = vcpu->arch.gpa_val;
5021 		ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
5022 	} else {
5023 		ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
5024 		if (ret < 0)
5025 			return X86EMUL_PROPAGATE_FAULT;
5026 	}
5027 
5028 	if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
5029 		return X86EMUL_CONTINUE;
5030 
5031 	/*
5032 	 * Is this MMIO handled locally?
5033 	 */
5034 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
5035 	if (handled == bytes)
5036 		return X86EMUL_CONTINUE;
5037 
5038 	gpa += handled;
5039 	bytes -= handled;
5040 	val += handled;
5041 
5042 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
5043 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
5044 	frag->gpa = gpa;
5045 	frag->data = val;
5046 	frag->len = bytes;
5047 	return X86EMUL_CONTINUE;
5048 }
5049 
5050 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
5051 			unsigned long addr,
5052 			void *val, unsigned int bytes,
5053 			struct x86_exception *exception,
5054 			const struct read_write_emulator_ops *ops)
5055 {
5056 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5057 	gpa_t gpa;
5058 	int rc;
5059 
5060 	if (ops->read_write_prepare &&
5061 		  ops->read_write_prepare(vcpu, val, bytes))
5062 		return X86EMUL_CONTINUE;
5063 
5064 	vcpu->mmio_nr_fragments = 0;
5065 
5066 	/* Crossing a page boundary? */
5067 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
5068 		int now;
5069 
5070 		now = -addr & ~PAGE_MASK;
5071 		rc = emulator_read_write_onepage(addr, val, now, exception,
5072 						 vcpu, ops);
5073 
5074 		if (rc != X86EMUL_CONTINUE)
5075 			return rc;
5076 		addr += now;
5077 		if (ctxt->mode != X86EMUL_MODE_PROT64)
5078 			addr = (u32)addr;
5079 		val += now;
5080 		bytes -= now;
5081 	}
5082 
5083 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
5084 					 vcpu, ops);
5085 	if (rc != X86EMUL_CONTINUE)
5086 		return rc;
5087 
5088 	if (!vcpu->mmio_nr_fragments)
5089 		return rc;
5090 
5091 	gpa = vcpu->mmio_fragments[0].gpa;
5092 
5093 	vcpu->mmio_needed = 1;
5094 	vcpu->mmio_cur_fragment = 0;
5095 
5096 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
5097 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
5098 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
5099 	vcpu->run->mmio.phys_addr = gpa;
5100 
5101 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
5102 }
5103 
5104 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
5105 				  unsigned long addr,
5106 				  void *val,
5107 				  unsigned int bytes,
5108 				  struct x86_exception *exception)
5109 {
5110 	return emulator_read_write(ctxt, addr, val, bytes,
5111 				   exception, &read_emultor);
5112 }
5113 
5114 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
5115 			    unsigned long addr,
5116 			    const void *val,
5117 			    unsigned int bytes,
5118 			    struct x86_exception *exception)
5119 {
5120 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
5121 				   exception, &write_emultor);
5122 }
5123 
5124 #define CMPXCHG_TYPE(t, ptr, old, new) \
5125 	(cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
5126 
5127 #ifdef CONFIG_X86_64
5128 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
5129 #else
5130 #  define CMPXCHG64(ptr, old, new) \
5131 	(cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
5132 #endif
5133 
5134 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
5135 				     unsigned long addr,
5136 				     const void *old,
5137 				     const void *new,
5138 				     unsigned int bytes,
5139 				     struct x86_exception *exception)
5140 {
5141 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5142 	gpa_t gpa;
5143 	struct page *page;
5144 	char *kaddr;
5145 	bool exchanged;
5146 
5147 	/* guests cmpxchg8b have to be emulated atomically */
5148 	if (bytes > 8 || (bytes & (bytes - 1)))
5149 		goto emul_write;
5150 
5151 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
5152 
5153 	if (gpa == UNMAPPED_GVA ||
5154 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5155 		goto emul_write;
5156 
5157 	if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
5158 		goto emul_write;
5159 
5160 	page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
5161 	if (is_error_page(page))
5162 		goto emul_write;
5163 
5164 	kaddr = kmap_atomic(page);
5165 	kaddr += offset_in_page(gpa);
5166 	switch (bytes) {
5167 	case 1:
5168 		exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
5169 		break;
5170 	case 2:
5171 		exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
5172 		break;
5173 	case 4:
5174 		exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
5175 		break;
5176 	case 8:
5177 		exchanged = CMPXCHG64(kaddr, old, new);
5178 		break;
5179 	default:
5180 		BUG();
5181 	}
5182 	kunmap_atomic(kaddr);
5183 	kvm_release_page_dirty(page);
5184 
5185 	if (!exchanged)
5186 		return X86EMUL_CMPXCHG_FAILED;
5187 
5188 	kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
5189 	kvm_page_track_write(vcpu, gpa, new, bytes);
5190 
5191 	return X86EMUL_CONTINUE;
5192 
5193 emul_write:
5194 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
5195 
5196 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
5197 }
5198 
5199 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
5200 {
5201 	int r = 0, i;
5202 
5203 	for (i = 0; i < vcpu->arch.pio.count; i++) {
5204 		if (vcpu->arch.pio.in)
5205 			r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
5206 					    vcpu->arch.pio.size, pd);
5207 		else
5208 			r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
5209 					     vcpu->arch.pio.port, vcpu->arch.pio.size,
5210 					     pd);
5211 		if (r)
5212 			break;
5213 		pd += vcpu->arch.pio.size;
5214 	}
5215 	return r;
5216 }
5217 
5218 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
5219 			       unsigned short port, void *val,
5220 			       unsigned int count, bool in)
5221 {
5222 	vcpu->arch.pio.port = port;
5223 	vcpu->arch.pio.in = in;
5224 	vcpu->arch.pio.count  = count;
5225 	vcpu->arch.pio.size = size;
5226 
5227 	if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
5228 		vcpu->arch.pio.count = 0;
5229 		return 1;
5230 	}
5231 
5232 	vcpu->run->exit_reason = KVM_EXIT_IO;
5233 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
5234 	vcpu->run->io.size = size;
5235 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
5236 	vcpu->run->io.count = count;
5237 	vcpu->run->io.port = port;
5238 
5239 	return 0;
5240 }
5241 
5242 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
5243 				    int size, unsigned short port, void *val,
5244 				    unsigned int count)
5245 {
5246 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5247 	int ret;
5248 
5249 	if (vcpu->arch.pio.count)
5250 		goto data_avail;
5251 
5252 	memset(vcpu->arch.pio_data, 0, size * count);
5253 
5254 	ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
5255 	if (ret) {
5256 data_avail:
5257 		memcpy(val, vcpu->arch.pio_data, size * count);
5258 		trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
5259 		vcpu->arch.pio.count = 0;
5260 		return 1;
5261 	}
5262 
5263 	return 0;
5264 }
5265 
5266 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
5267 				     int size, unsigned short port,
5268 				     const void *val, unsigned int count)
5269 {
5270 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5271 
5272 	memcpy(vcpu->arch.pio_data, val, size * count);
5273 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
5274 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
5275 }
5276 
5277 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
5278 {
5279 	return kvm_x86_ops->get_segment_base(vcpu, seg);
5280 }
5281 
5282 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
5283 {
5284 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
5285 }
5286 
5287 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
5288 {
5289 	if (!need_emulate_wbinvd(vcpu))
5290 		return X86EMUL_CONTINUE;
5291 
5292 	if (kvm_x86_ops->has_wbinvd_exit()) {
5293 		int cpu = get_cpu();
5294 
5295 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
5296 		smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
5297 				wbinvd_ipi, NULL, 1);
5298 		put_cpu();
5299 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
5300 	} else
5301 		wbinvd();
5302 	return X86EMUL_CONTINUE;
5303 }
5304 
5305 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
5306 {
5307 	kvm_emulate_wbinvd_noskip(vcpu);
5308 	return kvm_skip_emulated_instruction(vcpu);
5309 }
5310 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
5311 
5312 
5313 
5314 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
5315 {
5316 	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
5317 }
5318 
5319 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
5320 			   unsigned long *dest)
5321 {
5322 	return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
5323 }
5324 
5325 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
5326 			   unsigned long value)
5327 {
5328 
5329 	return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
5330 }
5331 
5332 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
5333 {
5334 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
5335 }
5336 
5337 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
5338 {
5339 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5340 	unsigned long value;
5341 
5342 	switch (cr) {
5343 	case 0:
5344 		value = kvm_read_cr0(vcpu);
5345 		break;
5346 	case 2:
5347 		value = vcpu->arch.cr2;
5348 		break;
5349 	case 3:
5350 		value = kvm_read_cr3(vcpu);
5351 		break;
5352 	case 4:
5353 		value = kvm_read_cr4(vcpu);
5354 		break;
5355 	case 8:
5356 		value = kvm_get_cr8(vcpu);
5357 		break;
5358 	default:
5359 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
5360 		return 0;
5361 	}
5362 
5363 	return value;
5364 }
5365 
5366 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
5367 {
5368 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5369 	int res = 0;
5370 
5371 	switch (cr) {
5372 	case 0:
5373 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
5374 		break;
5375 	case 2:
5376 		vcpu->arch.cr2 = val;
5377 		break;
5378 	case 3:
5379 		res = kvm_set_cr3(vcpu, val);
5380 		break;
5381 	case 4:
5382 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
5383 		break;
5384 	case 8:
5385 		res = kvm_set_cr8(vcpu, val);
5386 		break;
5387 	default:
5388 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
5389 		res = -1;
5390 	}
5391 
5392 	return res;
5393 }
5394 
5395 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
5396 {
5397 	return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
5398 }
5399 
5400 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5401 {
5402 	kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
5403 }
5404 
5405 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5406 {
5407 	kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
5408 }
5409 
5410 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5411 {
5412 	kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
5413 }
5414 
5415 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5416 {
5417 	kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
5418 }
5419 
5420 static unsigned long emulator_get_cached_segment_base(
5421 	struct x86_emulate_ctxt *ctxt, int seg)
5422 {
5423 	return get_segment_base(emul_to_vcpu(ctxt), seg);
5424 }
5425 
5426 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
5427 				 struct desc_struct *desc, u32 *base3,
5428 				 int seg)
5429 {
5430 	struct kvm_segment var;
5431 
5432 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
5433 	*selector = var.selector;
5434 
5435 	if (var.unusable) {
5436 		memset(desc, 0, sizeof(*desc));
5437 		if (base3)
5438 			*base3 = 0;
5439 		return false;
5440 	}
5441 
5442 	if (var.g)
5443 		var.limit >>= 12;
5444 	set_desc_limit(desc, var.limit);
5445 	set_desc_base(desc, (unsigned long)var.base);
5446 #ifdef CONFIG_X86_64
5447 	if (base3)
5448 		*base3 = var.base >> 32;
5449 #endif
5450 	desc->type = var.type;
5451 	desc->s = var.s;
5452 	desc->dpl = var.dpl;
5453 	desc->p = var.present;
5454 	desc->avl = var.avl;
5455 	desc->l = var.l;
5456 	desc->d = var.db;
5457 	desc->g = var.g;
5458 
5459 	return true;
5460 }
5461 
5462 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
5463 				 struct desc_struct *desc, u32 base3,
5464 				 int seg)
5465 {
5466 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5467 	struct kvm_segment var;
5468 
5469 	var.selector = selector;
5470 	var.base = get_desc_base(desc);
5471 #ifdef CONFIG_X86_64
5472 	var.base |= ((u64)base3) << 32;
5473 #endif
5474 	var.limit = get_desc_limit(desc);
5475 	if (desc->g)
5476 		var.limit = (var.limit << 12) | 0xfff;
5477 	var.type = desc->type;
5478 	var.dpl = desc->dpl;
5479 	var.db = desc->d;
5480 	var.s = desc->s;
5481 	var.l = desc->l;
5482 	var.g = desc->g;
5483 	var.avl = desc->avl;
5484 	var.present = desc->p;
5485 	var.unusable = !var.present;
5486 	var.padding = 0;
5487 
5488 	kvm_set_segment(vcpu, &var, seg);
5489 	return;
5490 }
5491 
5492 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
5493 			    u32 msr_index, u64 *pdata)
5494 {
5495 	struct msr_data msr;
5496 	int r;
5497 
5498 	msr.index = msr_index;
5499 	msr.host_initiated = false;
5500 	r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
5501 	if (r)
5502 		return r;
5503 
5504 	*pdata = msr.data;
5505 	return 0;
5506 }
5507 
5508 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
5509 			    u32 msr_index, u64 data)
5510 {
5511 	struct msr_data msr;
5512 
5513 	msr.data = data;
5514 	msr.index = msr_index;
5515 	msr.host_initiated = false;
5516 	return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
5517 }
5518 
5519 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
5520 {
5521 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5522 
5523 	return vcpu->arch.smbase;
5524 }
5525 
5526 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
5527 {
5528 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5529 
5530 	vcpu->arch.smbase = smbase;
5531 }
5532 
5533 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
5534 			      u32 pmc)
5535 {
5536 	return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
5537 }
5538 
5539 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
5540 			     u32 pmc, u64 *pdata)
5541 {
5542 	return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
5543 }
5544 
5545 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
5546 {
5547 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
5548 }
5549 
5550 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
5551 			      struct x86_instruction_info *info,
5552 			      enum x86_intercept_stage stage)
5553 {
5554 	return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5555 }
5556 
5557 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5558 			u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, bool check_limit)
5559 {
5560 	return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, check_limit);
5561 }
5562 
5563 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5564 {
5565 	return kvm_register_read(emul_to_vcpu(ctxt), reg);
5566 }
5567 
5568 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5569 {
5570 	kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5571 }
5572 
5573 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5574 {
5575 	kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5576 }
5577 
5578 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
5579 {
5580 	return emul_to_vcpu(ctxt)->arch.hflags;
5581 }
5582 
5583 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
5584 {
5585 	kvm_set_hflags(emul_to_vcpu(ctxt), emul_flags);
5586 }
5587 
5588 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt, u64 smbase)
5589 {
5590 	return kvm_x86_ops->pre_leave_smm(emul_to_vcpu(ctxt), smbase);
5591 }
5592 
5593 static const struct x86_emulate_ops emulate_ops = {
5594 	.read_gpr            = emulator_read_gpr,
5595 	.write_gpr           = emulator_write_gpr,
5596 	.read_std            = kvm_read_guest_virt_system,
5597 	.write_std           = kvm_write_guest_virt_system,
5598 	.read_phys           = kvm_read_guest_phys_system,
5599 	.fetch               = kvm_fetch_guest_virt,
5600 	.read_emulated       = emulator_read_emulated,
5601 	.write_emulated      = emulator_write_emulated,
5602 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
5603 	.invlpg              = emulator_invlpg,
5604 	.pio_in_emulated     = emulator_pio_in_emulated,
5605 	.pio_out_emulated    = emulator_pio_out_emulated,
5606 	.get_segment         = emulator_get_segment,
5607 	.set_segment         = emulator_set_segment,
5608 	.get_cached_segment_base = emulator_get_cached_segment_base,
5609 	.get_gdt             = emulator_get_gdt,
5610 	.get_idt	     = emulator_get_idt,
5611 	.set_gdt             = emulator_set_gdt,
5612 	.set_idt	     = emulator_set_idt,
5613 	.get_cr              = emulator_get_cr,
5614 	.set_cr              = emulator_set_cr,
5615 	.cpl                 = emulator_get_cpl,
5616 	.get_dr              = emulator_get_dr,
5617 	.set_dr              = emulator_set_dr,
5618 	.get_smbase          = emulator_get_smbase,
5619 	.set_smbase          = emulator_set_smbase,
5620 	.set_msr             = emulator_set_msr,
5621 	.get_msr             = emulator_get_msr,
5622 	.check_pmc	     = emulator_check_pmc,
5623 	.read_pmc            = emulator_read_pmc,
5624 	.halt                = emulator_halt,
5625 	.wbinvd              = emulator_wbinvd,
5626 	.fix_hypercall       = emulator_fix_hypercall,
5627 	.intercept           = emulator_intercept,
5628 	.get_cpuid           = emulator_get_cpuid,
5629 	.set_nmi_mask        = emulator_set_nmi_mask,
5630 	.get_hflags          = emulator_get_hflags,
5631 	.set_hflags          = emulator_set_hflags,
5632 	.pre_leave_smm       = emulator_pre_leave_smm,
5633 };
5634 
5635 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5636 {
5637 	u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5638 	/*
5639 	 * an sti; sti; sequence only disable interrupts for the first
5640 	 * instruction. So, if the last instruction, be it emulated or
5641 	 * not, left the system with the INT_STI flag enabled, it
5642 	 * means that the last instruction is an sti. We should not
5643 	 * leave the flag on in this case. The same goes for mov ss
5644 	 */
5645 	if (int_shadow & mask)
5646 		mask = 0;
5647 	if (unlikely(int_shadow || mask)) {
5648 		kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5649 		if (!mask)
5650 			kvm_make_request(KVM_REQ_EVENT, vcpu);
5651 	}
5652 }
5653 
5654 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5655 {
5656 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5657 	if (ctxt->exception.vector == PF_VECTOR)
5658 		return kvm_propagate_fault(vcpu, &ctxt->exception);
5659 
5660 	if (ctxt->exception.error_code_valid)
5661 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5662 				      ctxt->exception.error_code);
5663 	else
5664 		kvm_queue_exception(vcpu, ctxt->exception.vector);
5665 	return false;
5666 }
5667 
5668 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5669 {
5670 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5671 	int cs_db, cs_l;
5672 
5673 	kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5674 
5675 	ctxt->eflags = kvm_get_rflags(vcpu);
5676 	ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
5677 
5678 	ctxt->eip = kvm_rip_read(vcpu);
5679 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
5680 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
5681 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
5682 		     cs_db				? X86EMUL_MODE_PROT32 :
5683 							  X86EMUL_MODE_PROT16;
5684 	BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5685 	BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5686 	BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5687 
5688 	init_decode_cache(ctxt);
5689 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5690 }
5691 
5692 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5693 {
5694 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5695 	int ret;
5696 
5697 	init_emulate_ctxt(vcpu);
5698 
5699 	ctxt->op_bytes = 2;
5700 	ctxt->ad_bytes = 2;
5701 	ctxt->_eip = ctxt->eip + inc_eip;
5702 	ret = emulate_int_real(ctxt, irq);
5703 
5704 	if (ret != X86EMUL_CONTINUE)
5705 		return EMULATE_FAIL;
5706 
5707 	ctxt->eip = ctxt->_eip;
5708 	kvm_rip_write(vcpu, ctxt->eip);
5709 	kvm_set_rflags(vcpu, ctxt->eflags);
5710 
5711 	return EMULATE_DONE;
5712 }
5713 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5714 
5715 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
5716 {
5717 	int r = EMULATE_DONE;
5718 
5719 	++vcpu->stat.insn_emulation_fail;
5720 	trace_kvm_emulate_insn_failed(vcpu);
5721 
5722 	if (emulation_type & EMULTYPE_NO_UD_ON_FAIL)
5723 		return EMULATE_FAIL;
5724 
5725 	if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5726 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5727 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5728 		vcpu->run->internal.ndata = 0;
5729 		r = EMULATE_USER_EXIT;
5730 	}
5731 
5732 	kvm_queue_exception(vcpu, UD_VECTOR);
5733 
5734 	return r;
5735 }
5736 
5737 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5738 				  bool write_fault_to_shadow_pgtable,
5739 				  int emulation_type)
5740 {
5741 	gpa_t gpa = cr2;
5742 	kvm_pfn_t pfn;
5743 
5744 	if (emulation_type & EMULTYPE_NO_REEXECUTE)
5745 		return false;
5746 
5747 	if (!vcpu->arch.mmu.direct_map) {
5748 		/*
5749 		 * Write permission should be allowed since only
5750 		 * write access need to be emulated.
5751 		 */
5752 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5753 
5754 		/*
5755 		 * If the mapping is invalid in guest, let cpu retry
5756 		 * it to generate fault.
5757 		 */
5758 		if (gpa == UNMAPPED_GVA)
5759 			return true;
5760 	}
5761 
5762 	/*
5763 	 * Do not retry the unhandleable instruction if it faults on the
5764 	 * readonly host memory, otherwise it will goto a infinite loop:
5765 	 * retry instruction -> write #PF -> emulation fail -> retry
5766 	 * instruction -> ...
5767 	 */
5768 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5769 
5770 	/*
5771 	 * If the instruction failed on the error pfn, it can not be fixed,
5772 	 * report the error to userspace.
5773 	 */
5774 	if (is_error_noslot_pfn(pfn))
5775 		return false;
5776 
5777 	kvm_release_pfn_clean(pfn);
5778 
5779 	/* The instructions are well-emulated on direct mmu. */
5780 	if (vcpu->arch.mmu.direct_map) {
5781 		unsigned int indirect_shadow_pages;
5782 
5783 		spin_lock(&vcpu->kvm->mmu_lock);
5784 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5785 		spin_unlock(&vcpu->kvm->mmu_lock);
5786 
5787 		if (indirect_shadow_pages)
5788 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5789 
5790 		return true;
5791 	}
5792 
5793 	/*
5794 	 * if emulation was due to access to shadowed page table
5795 	 * and it failed try to unshadow page and re-enter the
5796 	 * guest to let CPU execute the instruction.
5797 	 */
5798 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5799 
5800 	/*
5801 	 * If the access faults on its page table, it can not
5802 	 * be fixed by unprotecting shadow page and it should
5803 	 * be reported to userspace.
5804 	 */
5805 	return !write_fault_to_shadow_pgtable;
5806 }
5807 
5808 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5809 			      unsigned long cr2,  int emulation_type)
5810 {
5811 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5812 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5813 
5814 	last_retry_eip = vcpu->arch.last_retry_eip;
5815 	last_retry_addr = vcpu->arch.last_retry_addr;
5816 
5817 	/*
5818 	 * If the emulation is caused by #PF and it is non-page_table
5819 	 * writing instruction, it means the VM-EXIT is caused by shadow
5820 	 * page protected, we can zap the shadow page and retry this
5821 	 * instruction directly.
5822 	 *
5823 	 * Note: if the guest uses a non-page-table modifying instruction
5824 	 * on the PDE that points to the instruction, then we will unmap
5825 	 * the instruction and go to an infinite loop. So, we cache the
5826 	 * last retried eip and the last fault address, if we meet the eip
5827 	 * and the address again, we can break out of the potential infinite
5828 	 * loop.
5829 	 */
5830 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5831 
5832 	if (!(emulation_type & EMULTYPE_RETRY))
5833 		return false;
5834 
5835 	if (x86_page_table_writing_insn(ctxt))
5836 		return false;
5837 
5838 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5839 		return false;
5840 
5841 	vcpu->arch.last_retry_eip = ctxt->eip;
5842 	vcpu->arch.last_retry_addr = cr2;
5843 
5844 	if (!vcpu->arch.mmu.direct_map)
5845 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5846 
5847 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5848 
5849 	return true;
5850 }
5851 
5852 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5853 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5854 
5855 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5856 {
5857 	if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5858 		/* This is a good place to trace that we are exiting SMM.  */
5859 		trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5860 
5861 		/* Process a latched INIT or SMI, if any.  */
5862 		kvm_make_request(KVM_REQ_EVENT, vcpu);
5863 	}
5864 
5865 	kvm_mmu_reset_context(vcpu);
5866 }
5867 
5868 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5869 {
5870 	unsigned changed = vcpu->arch.hflags ^ emul_flags;
5871 
5872 	vcpu->arch.hflags = emul_flags;
5873 
5874 	if (changed & HF_SMM_MASK)
5875 		kvm_smm_changed(vcpu);
5876 }
5877 
5878 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5879 				unsigned long *db)
5880 {
5881 	u32 dr6 = 0;
5882 	int i;
5883 	u32 enable, rwlen;
5884 
5885 	enable = dr7;
5886 	rwlen = dr7 >> 16;
5887 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5888 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5889 			dr6 |= (1 << i);
5890 	return dr6;
5891 }
5892 
5893 static void kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu, int *r)
5894 {
5895 	struct kvm_run *kvm_run = vcpu->run;
5896 
5897 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5898 		kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
5899 		kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5900 		kvm_run->debug.arch.exception = DB_VECTOR;
5901 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
5902 		*r = EMULATE_USER_EXIT;
5903 	} else {
5904 		/*
5905 		 * "Certain debug exceptions may clear bit 0-3.  The
5906 		 * remaining contents of the DR6 register are never
5907 		 * cleared by the processor".
5908 		 */
5909 		vcpu->arch.dr6 &= ~15;
5910 		vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5911 		kvm_queue_exception(vcpu, DB_VECTOR);
5912 	}
5913 }
5914 
5915 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
5916 {
5917 	unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5918 	int r = EMULATE_DONE;
5919 
5920 	kvm_x86_ops->skip_emulated_instruction(vcpu);
5921 
5922 	/*
5923 	 * rflags is the old, "raw" value of the flags.  The new value has
5924 	 * not been saved yet.
5925 	 *
5926 	 * This is correct even for TF set by the guest, because "the
5927 	 * processor will not generate this exception after the instruction
5928 	 * that sets the TF flag".
5929 	 */
5930 	if (unlikely(rflags & X86_EFLAGS_TF))
5931 		kvm_vcpu_do_singlestep(vcpu, &r);
5932 	return r == EMULATE_DONE;
5933 }
5934 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
5935 
5936 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5937 {
5938 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5939 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5940 		struct kvm_run *kvm_run = vcpu->run;
5941 		unsigned long eip = kvm_get_linear_rip(vcpu);
5942 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5943 					   vcpu->arch.guest_debug_dr7,
5944 					   vcpu->arch.eff_db);
5945 
5946 		if (dr6 != 0) {
5947 			kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5948 			kvm_run->debug.arch.pc = eip;
5949 			kvm_run->debug.arch.exception = DB_VECTOR;
5950 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
5951 			*r = EMULATE_USER_EXIT;
5952 			return true;
5953 		}
5954 	}
5955 
5956 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5957 	    !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5958 		unsigned long eip = kvm_get_linear_rip(vcpu);
5959 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5960 					   vcpu->arch.dr7,
5961 					   vcpu->arch.db);
5962 
5963 		if (dr6 != 0) {
5964 			vcpu->arch.dr6 &= ~15;
5965 			vcpu->arch.dr6 |= dr6 | DR6_RTM;
5966 			kvm_queue_exception(vcpu, DB_VECTOR);
5967 			*r = EMULATE_DONE;
5968 			return true;
5969 		}
5970 	}
5971 
5972 	return false;
5973 }
5974 
5975 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
5976 {
5977 	switch (ctxt->opcode_len) {
5978 	case 1:
5979 		switch (ctxt->b) {
5980 		case 0xe4:	/* IN */
5981 		case 0xe5:
5982 		case 0xec:
5983 		case 0xed:
5984 		case 0xe6:	/* OUT */
5985 		case 0xe7:
5986 		case 0xee:
5987 		case 0xef:
5988 		case 0x6c:	/* INS */
5989 		case 0x6d:
5990 		case 0x6e:	/* OUTS */
5991 		case 0x6f:
5992 			return true;
5993 		}
5994 		break;
5995 	case 2:
5996 		switch (ctxt->b) {
5997 		case 0x33:	/* RDPMC */
5998 			return true;
5999 		}
6000 		break;
6001 	}
6002 
6003 	return false;
6004 }
6005 
6006 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
6007 			    unsigned long cr2,
6008 			    int emulation_type,
6009 			    void *insn,
6010 			    int insn_len)
6011 {
6012 	int r;
6013 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6014 	bool writeback = true;
6015 	bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
6016 
6017 	/*
6018 	 * Clear write_fault_to_shadow_pgtable here to ensure it is
6019 	 * never reused.
6020 	 */
6021 	vcpu->arch.write_fault_to_shadow_pgtable = false;
6022 	kvm_clear_exception_queue(vcpu);
6023 
6024 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
6025 		init_emulate_ctxt(vcpu);
6026 
6027 		/*
6028 		 * We will reenter on the same instruction since
6029 		 * we do not set complete_userspace_io.  This does not
6030 		 * handle watchpoints yet, those would be handled in
6031 		 * the emulate_ops.
6032 		 */
6033 		if (!(emulation_type & EMULTYPE_SKIP) &&
6034 		    kvm_vcpu_check_breakpoint(vcpu, &r))
6035 			return r;
6036 
6037 		ctxt->interruptibility = 0;
6038 		ctxt->have_exception = false;
6039 		ctxt->exception.vector = -1;
6040 		ctxt->perm_ok = false;
6041 
6042 		ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
6043 
6044 		r = x86_decode_insn(ctxt, insn, insn_len);
6045 
6046 		trace_kvm_emulate_insn_start(vcpu);
6047 		++vcpu->stat.insn_emulation;
6048 		if (r != EMULATION_OK)  {
6049 			if (emulation_type & EMULTYPE_TRAP_UD)
6050 				return EMULATE_FAIL;
6051 			if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
6052 						emulation_type))
6053 				return EMULATE_DONE;
6054 			if (ctxt->have_exception && inject_emulated_exception(vcpu))
6055 				return EMULATE_DONE;
6056 			if (emulation_type & EMULTYPE_SKIP)
6057 				return EMULATE_FAIL;
6058 			return handle_emulation_failure(vcpu, emulation_type);
6059 		}
6060 	}
6061 
6062 	if ((emulation_type & EMULTYPE_VMWARE) &&
6063 	    !is_vmware_backdoor_opcode(ctxt))
6064 		return EMULATE_FAIL;
6065 
6066 	if (emulation_type & EMULTYPE_SKIP) {
6067 		kvm_rip_write(vcpu, ctxt->_eip);
6068 		if (ctxt->eflags & X86_EFLAGS_RF)
6069 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
6070 		return EMULATE_DONE;
6071 	}
6072 
6073 	if (retry_instruction(ctxt, cr2, emulation_type))
6074 		return EMULATE_DONE;
6075 
6076 	/* this is needed for vmware backdoor interface to work since it
6077 	   changes registers values  during IO operation */
6078 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
6079 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6080 		emulator_invalidate_register_cache(ctxt);
6081 	}
6082 
6083 restart:
6084 	/* Save the faulting GPA (cr2) in the address field */
6085 	ctxt->exception.address = cr2;
6086 
6087 	r = x86_emulate_insn(ctxt);
6088 
6089 	if (r == EMULATION_INTERCEPTED)
6090 		return EMULATE_DONE;
6091 
6092 	if (r == EMULATION_FAILED) {
6093 		if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
6094 					emulation_type))
6095 			return EMULATE_DONE;
6096 
6097 		return handle_emulation_failure(vcpu, emulation_type);
6098 	}
6099 
6100 	if (ctxt->have_exception) {
6101 		r = EMULATE_DONE;
6102 		if (inject_emulated_exception(vcpu))
6103 			return r;
6104 	} else if (vcpu->arch.pio.count) {
6105 		if (!vcpu->arch.pio.in) {
6106 			/* FIXME: return into emulator if single-stepping.  */
6107 			vcpu->arch.pio.count = 0;
6108 		} else {
6109 			writeback = false;
6110 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
6111 		}
6112 		r = EMULATE_USER_EXIT;
6113 	} else if (vcpu->mmio_needed) {
6114 		if (!vcpu->mmio_is_write)
6115 			writeback = false;
6116 		r = EMULATE_USER_EXIT;
6117 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6118 	} else if (r == EMULATION_RESTART)
6119 		goto restart;
6120 	else
6121 		r = EMULATE_DONE;
6122 
6123 	if (writeback) {
6124 		unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
6125 		toggle_interruptibility(vcpu, ctxt->interruptibility);
6126 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6127 		kvm_rip_write(vcpu, ctxt->eip);
6128 		if (r == EMULATE_DONE &&
6129 		    (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
6130 			kvm_vcpu_do_singlestep(vcpu, &r);
6131 		if (!ctxt->have_exception ||
6132 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP)
6133 			__kvm_set_rflags(vcpu, ctxt->eflags);
6134 
6135 		/*
6136 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
6137 		 * do nothing, and it will be requested again as soon as
6138 		 * the shadow expires.  But we still need to check here,
6139 		 * because POPF has no interrupt shadow.
6140 		 */
6141 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
6142 			kvm_make_request(KVM_REQ_EVENT, vcpu);
6143 	} else
6144 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
6145 
6146 	return r;
6147 }
6148 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
6149 
6150 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
6151 			    unsigned short port)
6152 {
6153 	unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
6154 	int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
6155 					    size, port, &val, 1);
6156 	/* do not return to emulator after return from userspace */
6157 	vcpu->arch.pio.count = 0;
6158 	return ret;
6159 }
6160 
6161 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
6162 {
6163 	unsigned long val;
6164 
6165 	/* We should only ever be called with arch.pio.count equal to 1 */
6166 	BUG_ON(vcpu->arch.pio.count != 1);
6167 
6168 	/* For size less than 4 we merge, else we zero extend */
6169 	val = (vcpu->arch.pio.size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX)
6170 					: 0;
6171 
6172 	/*
6173 	 * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
6174 	 * the copy and tracing
6175 	 */
6176 	emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size,
6177 				 vcpu->arch.pio.port, &val, 1);
6178 	kvm_register_write(vcpu, VCPU_REGS_RAX, val);
6179 
6180 	return 1;
6181 }
6182 
6183 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
6184 			   unsigned short port)
6185 {
6186 	unsigned long val;
6187 	int ret;
6188 
6189 	/* For size less than 4 we merge, else we zero extend */
6190 	val = (size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX) : 0;
6191 
6192 	ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port,
6193 				       &val, 1);
6194 	if (ret) {
6195 		kvm_register_write(vcpu, VCPU_REGS_RAX, val);
6196 		return ret;
6197 	}
6198 
6199 	vcpu->arch.complete_userspace_io = complete_fast_pio_in;
6200 
6201 	return 0;
6202 }
6203 
6204 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
6205 {
6206 	int ret = kvm_skip_emulated_instruction(vcpu);
6207 
6208 	/*
6209 	 * TODO: we might be squashing a KVM_GUESTDBG_SINGLESTEP-triggered
6210 	 * KVM_EXIT_DEBUG here.
6211 	 */
6212 	if (in)
6213 		return kvm_fast_pio_in(vcpu, size, port) && ret;
6214 	else
6215 		return kvm_fast_pio_out(vcpu, size, port) && ret;
6216 }
6217 EXPORT_SYMBOL_GPL(kvm_fast_pio);
6218 
6219 static int kvmclock_cpu_down_prep(unsigned int cpu)
6220 {
6221 	__this_cpu_write(cpu_tsc_khz, 0);
6222 	return 0;
6223 }
6224 
6225 static void tsc_khz_changed(void *data)
6226 {
6227 	struct cpufreq_freqs *freq = data;
6228 	unsigned long khz = 0;
6229 
6230 	if (data)
6231 		khz = freq->new;
6232 	else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6233 		khz = cpufreq_quick_get(raw_smp_processor_id());
6234 	if (!khz)
6235 		khz = tsc_khz;
6236 	__this_cpu_write(cpu_tsc_khz, khz);
6237 }
6238 
6239 #ifdef CONFIG_X86_64
6240 static void kvm_hyperv_tsc_notifier(void)
6241 {
6242 	struct kvm *kvm;
6243 	struct kvm_vcpu *vcpu;
6244 	int cpu;
6245 
6246 	spin_lock(&kvm_lock);
6247 	list_for_each_entry(kvm, &vm_list, vm_list)
6248 		kvm_make_mclock_inprogress_request(kvm);
6249 
6250 	hyperv_stop_tsc_emulation();
6251 
6252 	/* TSC frequency always matches when on Hyper-V */
6253 	for_each_present_cpu(cpu)
6254 		per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
6255 	kvm_max_guest_tsc_khz = tsc_khz;
6256 
6257 	list_for_each_entry(kvm, &vm_list, vm_list) {
6258 		struct kvm_arch *ka = &kvm->arch;
6259 
6260 		spin_lock(&ka->pvclock_gtod_sync_lock);
6261 
6262 		pvclock_update_vm_gtod_copy(kvm);
6263 
6264 		kvm_for_each_vcpu(cpu, vcpu, kvm)
6265 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6266 
6267 		kvm_for_each_vcpu(cpu, vcpu, kvm)
6268 			kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
6269 
6270 		spin_unlock(&ka->pvclock_gtod_sync_lock);
6271 	}
6272 	spin_unlock(&kvm_lock);
6273 }
6274 #endif
6275 
6276 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
6277 				     void *data)
6278 {
6279 	struct cpufreq_freqs *freq = data;
6280 	struct kvm *kvm;
6281 	struct kvm_vcpu *vcpu;
6282 	int i, send_ipi = 0;
6283 
6284 	/*
6285 	 * We allow guests to temporarily run on slowing clocks,
6286 	 * provided we notify them after, or to run on accelerating
6287 	 * clocks, provided we notify them before.  Thus time never
6288 	 * goes backwards.
6289 	 *
6290 	 * However, we have a problem.  We can't atomically update
6291 	 * the frequency of a given CPU from this function; it is
6292 	 * merely a notifier, which can be called from any CPU.
6293 	 * Changing the TSC frequency at arbitrary points in time
6294 	 * requires a recomputation of local variables related to
6295 	 * the TSC for each VCPU.  We must flag these local variables
6296 	 * to be updated and be sure the update takes place with the
6297 	 * new frequency before any guests proceed.
6298 	 *
6299 	 * Unfortunately, the combination of hotplug CPU and frequency
6300 	 * change creates an intractable locking scenario; the order
6301 	 * of when these callouts happen is undefined with respect to
6302 	 * CPU hotplug, and they can race with each other.  As such,
6303 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
6304 	 * undefined; you can actually have a CPU frequency change take
6305 	 * place in between the computation of X and the setting of the
6306 	 * variable.  To protect against this problem, all updates of
6307 	 * the per_cpu tsc_khz variable are done in an interrupt
6308 	 * protected IPI, and all callers wishing to update the value
6309 	 * must wait for a synchronous IPI to complete (which is trivial
6310 	 * if the caller is on the CPU already).  This establishes the
6311 	 * necessary total order on variable updates.
6312 	 *
6313 	 * Note that because a guest time update may take place
6314 	 * anytime after the setting of the VCPU's request bit, the
6315 	 * correct TSC value must be set before the request.  However,
6316 	 * to ensure the update actually makes it to any guest which
6317 	 * starts running in hardware virtualization between the set
6318 	 * and the acquisition of the spinlock, we must also ping the
6319 	 * CPU after setting the request bit.
6320 	 *
6321 	 */
6322 
6323 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
6324 		return 0;
6325 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
6326 		return 0;
6327 
6328 	smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
6329 
6330 	spin_lock(&kvm_lock);
6331 	list_for_each_entry(kvm, &vm_list, vm_list) {
6332 		kvm_for_each_vcpu(i, vcpu, kvm) {
6333 			if (vcpu->cpu != freq->cpu)
6334 				continue;
6335 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6336 			if (vcpu->cpu != smp_processor_id())
6337 				send_ipi = 1;
6338 		}
6339 	}
6340 	spin_unlock(&kvm_lock);
6341 
6342 	if (freq->old < freq->new && send_ipi) {
6343 		/*
6344 		 * We upscale the frequency.  Must make the guest
6345 		 * doesn't see old kvmclock values while running with
6346 		 * the new frequency, otherwise we risk the guest sees
6347 		 * time go backwards.
6348 		 *
6349 		 * In case we update the frequency for another cpu
6350 		 * (which might be in guest context) send an interrupt
6351 		 * to kick the cpu out of guest context.  Next time
6352 		 * guest context is entered kvmclock will be updated,
6353 		 * so the guest will not see stale values.
6354 		 */
6355 		smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
6356 	}
6357 	return 0;
6358 }
6359 
6360 static struct notifier_block kvmclock_cpufreq_notifier_block = {
6361 	.notifier_call  = kvmclock_cpufreq_notifier
6362 };
6363 
6364 static int kvmclock_cpu_online(unsigned int cpu)
6365 {
6366 	tsc_khz_changed(NULL);
6367 	return 0;
6368 }
6369 
6370 static void kvm_timer_init(void)
6371 {
6372 	max_tsc_khz = tsc_khz;
6373 
6374 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
6375 #ifdef CONFIG_CPU_FREQ
6376 		struct cpufreq_policy policy;
6377 		int cpu;
6378 
6379 		memset(&policy, 0, sizeof(policy));
6380 		cpu = get_cpu();
6381 		cpufreq_get_policy(&policy, cpu);
6382 		if (policy.cpuinfo.max_freq)
6383 			max_tsc_khz = policy.cpuinfo.max_freq;
6384 		put_cpu();
6385 #endif
6386 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
6387 					  CPUFREQ_TRANSITION_NOTIFIER);
6388 	}
6389 	pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
6390 
6391 	cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
6392 			  kvmclock_cpu_online, kvmclock_cpu_down_prep);
6393 }
6394 
6395 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
6396 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
6397 
6398 int kvm_is_in_guest(void)
6399 {
6400 	return __this_cpu_read(current_vcpu) != NULL;
6401 }
6402 
6403 static int kvm_is_user_mode(void)
6404 {
6405 	int user_mode = 3;
6406 
6407 	if (__this_cpu_read(current_vcpu))
6408 		user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
6409 
6410 	return user_mode != 0;
6411 }
6412 
6413 static unsigned long kvm_get_guest_ip(void)
6414 {
6415 	unsigned long ip = 0;
6416 
6417 	if (__this_cpu_read(current_vcpu))
6418 		ip = kvm_rip_read(__this_cpu_read(current_vcpu));
6419 
6420 	return ip;
6421 }
6422 
6423 static struct perf_guest_info_callbacks kvm_guest_cbs = {
6424 	.is_in_guest		= kvm_is_in_guest,
6425 	.is_user_mode		= kvm_is_user_mode,
6426 	.get_guest_ip		= kvm_get_guest_ip,
6427 };
6428 
6429 static void kvm_set_mmio_spte_mask(void)
6430 {
6431 	u64 mask;
6432 	int maxphyaddr = boot_cpu_data.x86_phys_bits;
6433 
6434 	/*
6435 	 * Set the reserved bits and the present bit of an paging-structure
6436 	 * entry to generate page fault with PFER.RSV = 1.
6437 	 */
6438 	 /* Mask the reserved physical address bits. */
6439 	mask = rsvd_bits(maxphyaddr, 51);
6440 
6441 	/* Set the present bit. */
6442 	mask |= 1ull;
6443 
6444 #ifdef CONFIG_X86_64
6445 	/*
6446 	 * If reserved bit is not supported, clear the present bit to disable
6447 	 * mmio page fault.
6448 	 */
6449 	if (maxphyaddr == 52)
6450 		mask &= ~1ull;
6451 #endif
6452 
6453 	kvm_mmu_set_mmio_spte_mask(mask, mask);
6454 }
6455 
6456 #ifdef CONFIG_X86_64
6457 static void pvclock_gtod_update_fn(struct work_struct *work)
6458 {
6459 	struct kvm *kvm;
6460 
6461 	struct kvm_vcpu *vcpu;
6462 	int i;
6463 
6464 	spin_lock(&kvm_lock);
6465 	list_for_each_entry(kvm, &vm_list, vm_list)
6466 		kvm_for_each_vcpu(i, vcpu, kvm)
6467 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
6468 	atomic_set(&kvm_guest_has_master_clock, 0);
6469 	spin_unlock(&kvm_lock);
6470 }
6471 
6472 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
6473 
6474 /*
6475  * Notification about pvclock gtod data update.
6476  */
6477 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
6478 			       void *priv)
6479 {
6480 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
6481 	struct timekeeper *tk = priv;
6482 
6483 	update_pvclock_gtod(tk);
6484 
6485 	/* disable master clock if host does not trust, or does not
6486 	 * use, TSC based clocksource.
6487 	 */
6488 	if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
6489 	    atomic_read(&kvm_guest_has_master_clock) != 0)
6490 		queue_work(system_long_wq, &pvclock_gtod_work);
6491 
6492 	return 0;
6493 }
6494 
6495 static struct notifier_block pvclock_gtod_notifier = {
6496 	.notifier_call = pvclock_gtod_notify,
6497 };
6498 #endif
6499 
6500 int kvm_arch_init(void *opaque)
6501 {
6502 	int r;
6503 	struct kvm_x86_ops *ops = opaque;
6504 
6505 	if (kvm_x86_ops) {
6506 		printk(KERN_ERR "kvm: already loaded the other module\n");
6507 		r = -EEXIST;
6508 		goto out;
6509 	}
6510 
6511 	if (!ops->cpu_has_kvm_support()) {
6512 		printk(KERN_ERR "kvm: no hardware support\n");
6513 		r = -EOPNOTSUPP;
6514 		goto out;
6515 	}
6516 	if (ops->disabled_by_bios()) {
6517 		printk(KERN_ERR "kvm: disabled by bios\n");
6518 		r = -EOPNOTSUPP;
6519 		goto out;
6520 	}
6521 
6522 	r = -ENOMEM;
6523 	shared_msrs = alloc_percpu(struct kvm_shared_msrs);
6524 	if (!shared_msrs) {
6525 		printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
6526 		goto out;
6527 	}
6528 
6529 	r = kvm_mmu_module_init();
6530 	if (r)
6531 		goto out_free_percpu;
6532 
6533 	kvm_set_mmio_spte_mask();
6534 
6535 	kvm_x86_ops = ops;
6536 
6537 	kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
6538 			PT_DIRTY_MASK, PT64_NX_MASK, 0,
6539 			PT_PRESENT_MASK, 0, sme_me_mask);
6540 	kvm_timer_init();
6541 
6542 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
6543 
6544 	if (boot_cpu_has(X86_FEATURE_XSAVE))
6545 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
6546 
6547 	kvm_lapic_init();
6548 #ifdef CONFIG_X86_64
6549 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
6550 
6551 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
6552 		set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
6553 #endif
6554 
6555 	return 0;
6556 
6557 out_free_percpu:
6558 	free_percpu(shared_msrs);
6559 out:
6560 	return r;
6561 }
6562 
6563 void kvm_arch_exit(void)
6564 {
6565 #ifdef CONFIG_X86_64
6566 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
6567 		clear_hv_tscchange_cb();
6568 #endif
6569 	kvm_lapic_exit();
6570 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6571 
6572 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6573 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
6574 					    CPUFREQ_TRANSITION_NOTIFIER);
6575 	cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
6576 #ifdef CONFIG_X86_64
6577 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
6578 #endif
6579 	kvm_x86_ops = NULL;
6580 	kvm_mmu_module_exit();
6581 	free_percpu(shared_msrs);
6582 }
6583 
6584 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
6585 {
6586 	++vcpu->stat.halt_exits;
6587 	if (lapic_in_kernel(vcpu)) {
6588 		vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
6589 		return 1;
6590 	} else {
6591 		vcpu->run->exit_reason = KVM_EXIT_HLT;
6592 		return 0;
6593 	}
6594 }
6595 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
6596 
6597 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
6598 {
6599 	int ret = kvm_skip_emulated_instruction(vcpu);
6600 	/*
6601 	 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
6602 	 * KVM_EXIT_DEBUG here.
6603 	 */
6604 	return kvm_vcpu_halt(vcpu) && ret;
6605 }
6606 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
6607 
6608 #ifdef CONFIG_X86_64
6609 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
6610 			        unsigned long clock_type)
6611 {
6612 	struct kvm_clock_pairing clock_pairing;
6613 	struct timespec ts;
6614 	u64 cycle;
6615 	int ret;
6616 
6617 	if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
6618 		return -KVM_EOPNOTSUPP;
6619 
6620 	if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
6621 		return -KVM_EOPNOTSUPP;
6622 
6623 	clock_pairing.sec = ts.tv_sec;
6624 	clock_pairing.nsec = ts.tv_nsec;
6625 	clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
6626 	clock_pairing.flags = 0;
6627 
6628 	ret = 0;
6629 	if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
6630 			    sizeof(struct kvm_clock_pairing)))
6631 		ret = -KVM_EFAULT;
6632 
6633 	return ret;
6634 }
6635 #endif
6636 
6637 /*
6638  * kvm_pv_kick_cpu_op:  Kick a vcpu.
6639  *
6640  * @apicid - apicid of vcpu to be kicked.
6641  */
6642 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
6643 {
6644 	struct kvm_lapic_irq lapic_irq;
6645 
6646 	lapic_irq.shorthand = 0;
6647 	lapic_irq.dest_mode = 0;
6648 	lapic_irq.level = 0;
6649 	lapic_irq.dest_id = apicid;
6650 	lapic_irq.msi_redir_hint = false;
6651 
6652 	lapic_irq.delivery_mode = APIC_DM_REMRD;
6653 	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
6654 }
6655 
6656 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
6657 {
6658 	vcpu->arch.apicv_active = false;
6659 	kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
6660 }
6661 
6662 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
6663 {
6664 	unsigned long nr, a0, a1, a2, a3, ret;
6665 	int op_64_bit, r;
6666 
6667 	r = kvm_skip_emulated_instruction(vcpu);
6668 
6669 	if (kvm_hv_hypercall_enabled(vcpu->kvm))
6670 		return kvm_hv_hypercall(vcpu);
6671 
6672 	nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
6673 	a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
6674 	a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
6675 	a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
6676 	a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
6677 
6678 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
6679 
6680 	op_64_bit = is_64_bit_mode(vcpu);
6681 	if (!op_64_bit) {
6682 		nr &= 0xFFFFFFFF;
6683 		a0 &= 0xFFFFFFFF;
6684 		a1 &= 0xFFFFFFFF;
6685 		a2 &= 0xFFFFFFFF;
6686 		a3 &= 0xFFFFFFFF;
6687 	}
6688 
6689 	if (kvm_x86_ops->get_cpl(vcpu) != 0) {
6690 		ret = -KVM_EPERM;
6691 		goto out;
6692 	}
6693 
6694 	switch (nr) {
6695 	case KVM_HC_VAPIC_POLL_IRQ:
6696 		ret = 0;
6697 		break;
6698 	case KVM_HC_KICK_CPU:
6699 		kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
6700 		ret = 0;
6701 		break;
6702 #ifdef CONFIG_X86_64
6703 	case KVM_HC_CLOCK_PAIRING:
6704 		ret = kvm_pv_clock_pairing(vcpu, a0, a1);
6705 		break;
6706 #endif
6707 	default:
6708 		ret = -KVM_ENOSYS;
6709 		break;
6710 	}
6711 out:
6712 	if (!op_64_bit)
6713 		ret = (u32)ret;
6714 	kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
6715 	++vcpu->stat.hypercalls;
6716 	return r;
6717 }
6718 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
6719 
6720 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
6721 {
6722 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6723 	char instruction[3];
6724 	unsigned long rip = kvm_rip_read(vcpu);
6725 
6726 	kvm_x86_ops->patch_hypercall(vcpu, instruction);
6727 
6728 	return emulator_write_emulated(ctxt, rip, instruction, 3,
6729 		&ctxt->exception);
6730 }
6731 
6732 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
6733 {
6734 	return vcpu->run->request_interrupt_window &&
6735 		likely(!pic_in_kernel(vcpu->kvm));
6736 }
6737 
6738 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
6739 {
6740 	struct kvm_run *kvm_run = vcpu->run;
6741 
6742 	kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
6743 	kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
6744 	kvm_run->cr8 = kvm_get_cr8(vcpu);
6745 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
6746 	kvm_run->ready_for_interrupt_injection =
6747 		pic_in_kernel(vcpu->kvm) ||
6748 		kvm_vcpu_ready_for_interrupt_injection(vcpu);
6749 }
6750 
6751 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6752 {
6753 	int max_irr, tpr;
6754 
6755 	if (!kvm_x86_ops->update_cr8_intercept)
6756 		return;
6757 
6758 	if (!lapic_in_kernel(vcpu))
6759 		return;
6760 
6761 	if (vcpu->arch.apicv_active)
6762 		return;
6763 
6764 	if (!vcpu->arch.apic->vapic_addr)
6765 		max_irr = kvm_lapic_find_highest_irr(vcpu);
6766 	else
6767 		max_irr = -1;
6768 
6769 	if (max_irr != -1)
6770 		max_irr >>= 4;
6771 
6772 	tpr = kvm_lapic_get_cr8(vcpu);
6773 
6774 	kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6775 }
6776 
6777 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6778 {
6779 	int r;
6780 
6781 	/* try to reinject previous events if any */
6782 
6783 	if (vcpu->arch.exception.injected)
6784 		kvm_x86_ops->queue_exception(vcpu);
6785 	/*
6786 	 * Do not inject an NMI or interrupt if there is a pending
6787 	 * exception.  Exceptions and interrupts are recognized at
6788 	 * instruction boundaries, i.e. the start of an instruction.
6789 	 * Trap-like exceptions, e.g. #DB, have higher priority than
6790 	 * NMIs and interrupts, i.e. traps are recognized before an
6791 	 * NMI/interrupt that's pending on the same instruction.
6792 	 * Fault-like exceptions, e.g. #GP and #PF, are the lowest
6793 	 * priority, but are only generated (pended) during instruction
6794 	 * execution, i.e. a pending fault-like exception means the
6795 	 * fault occurred on the *previous* instruction and must be
6796 	 * serviced prior to recognizing any new events in order to
6797 	 * fully complete the previous instruction.
6798 	 */
6799 	else if (!vcpu->arch.exception.pending) {
6800 		if (vcpu->arch.nmi_injected)
6801 			kvm_x86_ops->set_nmi(vcpu);
6802 		else if (vcpu->arch.interrupt.injected)
6803 			kvm_x86_ops->set_irq(vcpu);
6804 	}
6805 
6806 	/*
6807 	 * Call check_nested_events() even if we reinjected a previous event
6808 	 * in order for caller to determine if it should require immediate-exit
6809 	 * from L2 to L1 due to pending L1 events which require exit
6810 	 * from L2 to L1.
6811 	 */
6812 	if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6813 		r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6814 		if (r != 0)
6815 			return r;
6816 	}
6817 
6818 	/* try to inject new event if pending */
6819 	if (vcpu->arch.exception.pending) {
6820 		trace_kvm_inj_exception(vcpu->arch.exception.nr,
6821 					vcpu->arch.exception.has_error_code,
6822 					vcpu->arch.exception.error_code);
6823 
6824 		WARN_ON_ONCE(vcpu->arch.exception.injected);
6825 		vcpu->arch.exception.pending = false;
6826 		vcpu->arch.exception.injected = true;
6827 
6828 		if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6829 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6830 					     X86_EFLAGS_RF);
6831 
6832 		if (vcpu->arch.exception.nr == DB_VECTOR &&
6833 		    (vcpu->arch.dr7 & DR7_GD)) {
6834 			vcpu->arch.dr7 &= ~DR7_GD;
6835 			kvm_update_dr7(vcpu);
6836 		}
6837 
6838 		kvm_x86_ops->queue_exception(vcpu);
6839 	}
6840 
6841 	/* Don't consider new event if we re-injected an event */
6842 	if (kvm_event_needs_reinjection(vcpu))
6843 		return 0;
6844 
6845 	if (vcpu->arch.smi_pending && !is_smm(vcpu) &&
6846 	    kvm_x86_ops->smi_allowed(vcpu)) {
6847 		vcpu->arch.smi_pending = false;
6848 		++vcpu->arch.smi_count;
6849 		enter_smm(vcpu);
6850 	} else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
6851 		--vcpu->arch.nmi_pending;
6852 		vcpu->arch.nmi_injected = true;
6853 		kvm_x86_ops->set_nmi(vcpu);
6854 	} else if (kvm_cpu_has_injectable_intr(vcpu)) {
6855 		/*
6856 		 * Because interrupts can be injected asynchronously, we are
6857 		 * calling check_nested_events again here to avoid a race condition.
6858 		 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6859 		 * proposal and current concerns.  Perhaps we should be setting
6860 		 * KVM_REQ_EVENT only on certain events and not unconditionally?
6861 		 */
6862 		if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6863 			r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6864 			if (r != 0)
6865 				return r;
6866 		}
6867 		if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6868 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6869 					    false);
6870 			kvm_x86_ops->set_irq(vcpu);
6871 		}
6872 	}
6873 
6874 	return 0;
6875 }
6876 
6877 static void process_nmi(struct kvm_vcpu *vcpu)
6878 {
6879 	unsigned limit = 2;
6880 
6881 	/*
6882 	 * x86 is limited to one NMI running, and one NMI pending after it.
6883 	 * If an NMI is already in progress, limit further NMIs to just one.
6884 	 * Otherwise, allow two (and we'll inject the first one immediately).
6885 	 */
6886 	if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6887 		limit = 1;
6888 
6889 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6890 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6891 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6892 }
6893 
6894 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
6895 {
6896 	u32 flags = 0;
6897 	flags |= seg->g       << 23;
6898 	flags |= seg->db      << 22;
6899 	flags |= seg->l       << 21;
6900 	flags |= seg->avl     << 20;
6901 	flags |= seg->present << 15;
6902 	flags |= seg->dpl     << 13;
6903 	flags |= seg->s       << 12;
6904 	flags |= seg->type    << 8;
6905 	return flags;
6906 }
6907 
6908 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
6909 {
6910 	struct kvm_segment seg;
6911 	int offset;
6912 
6913 	kvm_get_segment(vcpu, &seg, n);
6914 	put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
6915 
6916 	if (n < 3)
6917 		offset = 0x7f84 + n * 12;
6918 	else
6919 		offset = 0x7f2c + (n - 3) * 12;
6920 
6921 	put_smstate(u32, buf, offset + 8, seg.base);
6922 	put_smstate(u32, buf, offset + 4, seg.limit);
6923 	put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
6924 }
6925 
6926 #ifdef CONFIG_X86_64
6927 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
6928 {
6929 	struct kvm_segment seg;
6930 	int offset;
6931 	u16 flags;
6932 
6933 	kvm_get_segment(vcpu, &seg, n);
6934 	offset = 0x7e00 + n * 16;
6935 
6936 	flags = enter_smm_get_segment_flags(&seg) >> 8;
6937 	put_smstate(u16, buf, offset, seg.selector);
6938 	put_smstate(u16, buf, offset + 2, flags);
6939 	put_smstate(u32, buf, offset + 4, seg.limit);
6940 	put_smstate(u64, buf, offset + 8, seg.base);
6941 }
6942 #endif
6943 
6944 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
6945 {
6946 	struct desc_ptr dt;
6947 	struct kvm_segment seg;
6948 	unsigned long val;
6949 	int i;
6950 
6951 	put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
6952 	put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
6953 	put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
6954 	put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
6955 
6956 	for (i = 0; i < 8; i++)
6957 		put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
6958 
6959 	kvm_get_dr(vcpu, 6, &val);
6960 	put_smstate(u32, buf, 0x7fcc, (u32)val);
6961 	kvm_get_dr(vcpu, 7, &val);
6962 	put_smstate(u32, buf, 0x7fc8, (u32)val);
6963 
6964 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6965 	put_smstate(u32, buf, 0x7fc4, seg.selector);
6966 	put_smstate(u32, buf, 0x7f64, seg.base);
6967 	put_smstate(u32, buf, 0x7f60, seg.limit);
6968 	put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
6969 
6970 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6971 	put_smstate(u32, buf, 0x7fc0, seg.selector);
6972 	put_smstate(u32, buf, 0x7f80, seg.base);
6973 	put_smstate(u32, buf, 0x7f7c, seg.limit);
6974 	put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
6975 
6976 	kvm_x86_ops->get_gdt(vcpu, &dt);
6977 	put_smstate(u32, buf, 0x7f74, dt.address);
6978 	put_smstate(u32, buf, 0x7f70, dt.size);
6979 
6980 	kvm_x86_ops->get_idt(vcpu, &dt);
6981 	put_smstate(u32, buf, 0x7f58, dt.address);
6982 	put_smstate(u32, buf, 0x7f54, dt.size);
6983 
6984 	for (i = 0; i < 6; i++)
6985 		enter_smm_save_seg_32(vcpu, buf, i);
6986 
6987 	put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
6988 
6989 	/* revision id */
6990 	put_smstate(u32, buf, 0x7efc, 0x00020000);
6991 	put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
6992 }
6993 
6994 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
6995 {
6996 #ifdef CONFIG_X86_64
6997 	struct desc_ptr dt;
6998 	struct kvm_segment seg;
6999 	unsigned long val;
7000 	int i;
7001 
7002 	for (i = 0; i < 16; i++)
7003 		put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
7004 
7005 	put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
7006 	put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
7007 
7008 	kvm_get_dr(vcpu, 6, &val);
7009 	put_smstate(u64, buf, 0x7f68, val);
7010 	kvm_get_dr(vcpu, 7, &val);
7011 	put_smstate(u64, buf, 0x7f60, val);
7012 
7013 	put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
7014 	put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
7015 	put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
7016 
7017 	put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
7018 
7019 	/* revision id */
7020 	put_smstate(u32, buf, 0x7efc, 0x00020064);
7021 
7022 	put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
7023 
7024 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7025 	put_smstate(u16, buf, 0x7e90, seg.selector);
7026 	put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
7027 	put_smstate(u32, buf, 0x7e94, seg.limit);
7028 	put_smstate(u64, buf, 0x7e98, seg.base);
7029 
7030 	kvm_x86_ops->get_idt(vcpu, &dt);
7031 	put_smstate(u32, buf, 0x7e84, dt.size);
7032 	put_smstate(u64, buf, 0x7e88, dt.address);
7033 
7034 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7035 	put_smstate(u16, buf, 0x7e70, seg.selector);
7036 	put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
7037 	put_smstate(u32, buf, 0x7e74, seg.limit);
7038 	put_smstate(u64, buf, 0x7e78, seg.base);
7039 
7040 	kvm_x86_ops->get_gdt(vcpu, &dt);
7041 	put_smstate(u32, buf, 0x7e64, dt.size);
7042 	put_smstate(u64, buf, 0x7e68, dt.address);
7043 
7044 	for (i = 0; i < 6; i++)
7045 		enter_smm_save_seg_64(vcpu, buf, i);
7046 #else
7047 	WARN_ON_ONCE(1);
7048 #endif
7049 }
7050 
7051 static void enter_smm(struct kvm_vcpu *vcpu)
7052 {
7053 	struct kvm_segment cs, ds;
7054 	struct desc_ptr dt;
7055 	char buf[512];
7056 	u32 cr0;
7057 
7058 	trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
7059 	memset(buf, 0, 512);
7060 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7061 		enter_smm_save_state_64(vcpu, buf);
7062 	else
7063 		enter_smm_save_state_32(vcpu, buf);
7064 
7065 	/*
7066 	 * Give pre_enter_smm() a chance to make ISA-specific changes to the
7067 	 * vCPU state (e.g. leave guest mode) after we've saved the state into
7068 	 * the SMM state-save area.
7069 	 */
7070 	kvm_x86_ops->pre_enter_smm(vcpu, buf);
7071 
7072 	vcpu->arch.hflags |= HF_SMM_MASK;
7073 	kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
7074 
7075 	if (kvm_x86_ops->get_nmi_mask(vcpu))
7076 		vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
7077 	else
7078 		kvm_x86_ops->set_nmi_mask(vcpu, true);
7079 
7080 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
7081 	kvm_rip_write(vcpu, 0x8000);
7082 
7083 	cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
7084 	kvm_x86_ops->set_cr0(vcpu, cr0);
7085 	vcpu->arch.cr0 = cr0;
7086 
7087 	kvm_x86_ops->set_cr4(vcpu, 0);
7088 
7089 	/* Undocumented: IDT limit is set to zero on entry to SMM.  */
7090 	dt.address = dt.size = 0;
7091 	kvm_x86_ops->set_idt(vcpu, &dt);
7092 
7093 	__kvm_set_dr(vcpu, 7, DR7_FIXED_1);
7094 
7095 	cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
7096 	cs.base = vcpu->arch.smbase;
7097 
7098 	ds.selector = 0;
7099 	ds.base = 0;
7100 
7101 	cs.limit    = ds.limit = 0xffffffff;
7102 	cs.type     = ds.type = 0x3;
7103 	cs.dpl      = ds.dpl = 0;
7104 	cs.db       = ds.db = 0;
7105 	cs.s        = ds.s = 1;
7106 	cs.l        = ds.l = 0;
7107 	cs.g        = ds.g = 1;
7108 	cs.avl      = ds.avl = 0;
7109 	cs.present  = ds.present = 1;
7110 	cs.unusable = ds.unusable = 0;
7111 	cs.padding  = ds.padding = 0;
7112 
7113 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7114 	kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
7115 	kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
7116 	kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
7117 	kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
7118 	kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
7119 
7120 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7121 		kvm_x86_ops->set_efer(vcpu, 0);
7122 
7123 	kvm_update_cpuid(vcpu);
7124 	kvm_mmu_reset_context(vcpu);
7125 }
7126 
7127 static void process_smi(struct kvm_vcpu *vcpu)
7128 {
7129 	vcpu->arch.smi_pending = true;
7130 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7131 }
7132 
7133 void kvm_make_scan_ioapic_request(struct kvm *kvm)
7134 {
7135 	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
7136 }
7137 
7138 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
7139 {
7140 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
7141 		return;
7142 
7143 	bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
7144 
7145 	if (irqchip_split(vcpu->kvm))
7146 		kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
7147 	else {
7148 		if (vcpu->arch.apicv_active)
7149 			kvm_x86_ops->sync_pir_to_irr(vcpu);
7150 		kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
7151 	}
7152 
7153 	if (is_guest_mode(vcpu))
7154 		vcpu->arch.load_eoi_exitmap_pending = true;
7155 	else
7156 		kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
7157 }
7158 
7159 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
7160 {
7161 	u64 eoi_exit_bitmap[4];
7162 
7163 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
7164 		return;
7165 
7166 	bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
7167 		  vcpu_to_synic(vcpu)->vec_bitmap, 256);
7168 	kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
7169 }
7170 
7171 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
7172 		unsigned long start, unsigned long end)
7173 {
7174 	unsigned long apic_address;
7175 
7176 	/*
7177 	 * The physical address of apic access page is stored in the VMCS.
7178 	 * Update it when it becomes invalid.
7179 	 */
7180 	apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
7181 	if (start <= apic_address && apic_address < end)
7182 		kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
7183 }
7184 
7185 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
7186 {
7187 	struct page *page = NULL;
7188 
7189 	if (!lapic_in_kernel(vcpu))
7190 		return;
7191 
7192 	if (!kvm_x86_ops->set_apic_access_page_addr)
7193 		return;
7194 
7195 	page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
7196 	if (is_error_page(page))
7197 		return;
7198 	kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
7199 
7200 	/*
7201 	 * Do not pin apic access page in memory, the MMU notifier
7202 	 * will call us again if it is migrated or swapped out.
7203 	 */
7204 	put_page(page);
7205 }
7206 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
7207 
7208 /*
7209  * Returns 1 to let vcpu_run() continue the guest execution loop without
7210  * exiting to the userspace.  Otherwise, the value will be returned to the
7211  * userspace.
7212  */
7213 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
7214 {
7215 	int r;
7216 	bool req_int_win =
7217 		dm_request_for_irq_injection(vcpu) &&
7218 		kvm_cpu_accept_dm_intr(vcpu);
7219 
7220 	bool req_immediate_exit = false;
7221 
7222 	if (kvm_request_pending(vcpu)) {
7223 		if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
7224 			kvm_mmu_unload(vcpu);
7225 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
7226 			__kvm_migrate_timers(vcpu);
7227 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
7228 			kvm_gen_update_masterclock(vcpu->kvm);
7229 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
7230 			kvm_gen_kvmclock_update(vcpu);
7231 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
7232 			r = kvm_guest_time_update(vcpu);
7233 			if (unlikely(r))
7234 				goto out;
7235 		}
7236 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
7237 			kvm_mmu_sync_roots(vcpu);
7238 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
7239 			kvm_vcpu_flush_tlb(vcpu, true);
7240 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
7241 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
7242 			r = 0;
7243 			goto out;
7244 		}
7245 		if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
7246 			vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
7247 			vcpu->mmio_needed = 0;
7248 			r = 0;
7249 			goto out;
7250 		}
7251 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
7252 			/* Page is swapped out. Do synthetic halt */
7253 			vcpu->arch.apf.halted = true;
7254 			r = 1;
7255 			goto out;
7256 		}
7257 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
7258 			record_steal_time(vcpu);
7259 		if (kvm_check_request(KVM_REQ_SMI, vcpu))
7260 			process_smi(vcpu);
7261 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
7262 			process_nmi(vcpu);
7263 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
7264 			kvm_pmu_handle_event(vcpu);
7265 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
7266 			kvm_pmu_deliver_pmi(vcpu);
7267 		if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
7268 			BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
7269 			if (test_bit(vcpu->arch.pending_ioapic_eoi,
7270 				     vcpu->arch.ioapic_handled_vectors)) {
7271 				vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
7272 				vcpu->run->eoi.vector =
7273 						vcpu->arch.pending_ioapic_eoi;
7274 				r = 0;
7275 				goto out;
7276 			}
7277 		}
7278 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
7279 			vcpu_scan_ioapic(vcpu);
7280 		if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
7281 			vcpu_load_eoi_exitmap(vcpu);
7282 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
7283 			kvm_vcpu_reload_apic_access_page(vcpu);
7284 		if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
7285 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
7286 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
7287 			r = 0;
7288 			goto out;
7289 		}
7290 		if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
7291 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
7292 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
7293 			r = 0;
7294 			goto out;
7295 		}
7296 		if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
7297 			vcpu->run->exit_reason = KVM_EXIT_HYPERV;
7298 			vcpu->run->hyperv = vcpu->arch.hyperv.exit;
7299 			r = 0;
7300 			goto out;
7301 		}
7302 
7303 		/*
7304 		 * KVM_REQ_HV_STIMER has to be processed after
7305 		 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
7306 		 * depend on the guest clock being up-to-date
7307 		 */
7308 		if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
7309 			kvm_hv_process_stimers(vcpu);
7310 	}
7311 
7312 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
7313 		++vcpu->stat.req_event;
7314 		kvm_apic_accept_events(vcpu);
7315 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
7316 			r = 1;
7317 			goto out;
7318 		}
7319 
7320 		if (inject_pending_event(vcpu, req_int_win) != 0)
7321 			req_immediate_exit = true;
7322 		else {
7323 			/* Enable SMI/NMI/IRQ window open exits if needed.
7324 			 *
7325 			 * SMIs have three cases:
7326 			 * 1) They can be nested, and then there is nothing to
7327 			 *    do here because RSM will cause a vmexit anyway.
7328 			 * 2) There is an ISA-specific reason why SMI cannot be
7329 			 *    injected, and the moment when this changes can be
7330 			 *    intercepted.
7331 			 * 3) Or the SMI can be pending because
7332 			 *    inject_pending_event has completed the injection
7333 			 *    of an IRQ or NMI from the previous vmexit, and
7334 			 *    then we request an immediate exit to inject the
7335 			 *    SMI.
7336 			 */
7337 			if (vcpu->arch.smi_pending && !is_smm(vcpu))
7338 				if (!kvm_x86_ops->enable_smi_window(vcpu))
7339 					req_immediate_exit = true;
7340 			if (vcpu->arch.nmi_pending)
7341 				kvm_x86_ops->enable_nmi_window(vcpu);
7342 			if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
7343 				kvm_x86_ops->enable_irq_window(vcpu);
7344 			WARN_ON(vcpu->arch.exception.pending);
7345 		}
7346 
7347 		if (kvm_lapic_enabled(vcpu)) {
7348 			update_cr8_intercept(vcpu);
7349 			kvm_lapic_sync_to_vapic(vcpu);
7350 		}
7351 	}
7352 
7353 	r = kvm_mmu_reload(vcpu);
7354 	if (unlikely(r)) {
7355 		goto cancel_injection;
7356 	}
7357 
7358 	preempt_disable();
7359 
7360 	kvm_x86_ops->prepare_guest_switch(vcpu);
7361 
7362 	/*
7363 	 * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
7364 	 * IPI are then delayed after guest entry, which ensures that they
7365 	 * result in virtual interrupt delivery.
7366 	 */
7367 	local_irq_disable();
7368 	vcpu->mode = IN_GUEST_MODE;
7369 
7370 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7371 
7372 	/*
7373 	 * 1) We should set ->mode before checking ->requests.  Please see
7374 	 * the comment in kvm_vcpu_exiting_guest_mode().
7375 	 *
7376 	 * 2) For APICv, we should set ->mode before checking PIR.ON.  This
7377 	 * pairs with the memory barrier implicit in pi_test_and_set_on
7378 	 * (see vmx_deliver_posted_interrupt).
7379 	 *
7380 	 * 3) This also orders the write to mode from any reads to the page
7381 	 * tables done while the VCPU is running.  Please see the comment
7382 	 * in kvm_flush_remote_tlbs.
7383 	 */
7384 	smp_mb__after_srcu_read_unlock();
7385 
7386 	/*
7387 	 * This handles the case where a posted interrupt was
7388 	 * notified with kvm_vcpu_kick.
7389 	 */
7390 	if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
7391 		kvm_x86_ops->sync_pir_to_irr(vcpu);
7392 
7393 	if (vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu)
7394 	    || need_resched() || signal_pending(current)) {
7395 		vcpu->mode = OUTSIDE_GUEST_MODE;
7396 		smp_wmb();
7397 		local_irq_enable();
7398 		preempt_enable();
7399 		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7400 		r = 1;
7401 		goto cancel_injection;
7402 	}
7403 
7404 	kvm_load_guest_xcr0(vcpu);
7405 
7406 	if (req_immediate_exit) {
7407 		kvm_make_request(KVM_REQ_EVENT, vcpu);
7408 		smp_send_reschedule(vcpu->cpu);
7409 	}
7410 
7411 	trace_kvm_entry(vcpu->vcpu_id);
7412 	if (lapic_timer_advance_ns)
7413 		wait_lapic_expire(vcpu);
7414 	guest_enter_irqoff();
7415 
7416 	if (unlikely(vcpu->arch.switch_db_regs)) {
7417 		set_debugreg(0, 7);
7418 		set_debugreg(vcpu->arch.eff_db[0], 0);
7419 		set_debugreg(vcpu->arch.eff_db[1], 1);
7420 		set_debugreg(vcpu->arch.eff_db[2], 2);
7421 		set_debugreg(vcpu->arch.eff_db[3], 3);
7422 		set_debugreg(vcpu->arch.dr6, 6);
7423 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
7424 	}
7425 
7426 	kvm_x86_ops->run(vcpu);
7427 
7428 	/*
7429 	 * Do this here before restoring debug registers on the host.  And
7430 	 * since we do this before handling the vmexit, a DR access vmexit
7431 	 * can (a) read the correct value of the debug registers, (b) set
7432 	 * KVM_DEBUGREG_WONT_EXIT again.
7433 	 */
7434 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
7435 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
7436 		kvm_x86_ops->sync_dirty_debug_regs(vcpu);
7437 		kvm_update_dr0123(vcpu);
7438 		kvm_update_dr6(vcpu);
7439 		kvm_update_dr7(vcpu);
7440 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
7441 	}
7442 
7443 	/*
7444 	 * If the guest has used debug registers, at least dr7
7445 	 * will be disabled while returning to the host.
7446 	 * If we don't have active breakpoints in the host, we don't
7447 	 * care about the messed up debug address registers. But if
7448 	 * we have some of them active, restore the old state.
7449 	 */
7450 	if (hw_breakpoint_active())
7451 		hw_breakpoint_restore();
7452 
7453 	vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
7454 
7455 	vcpu->mode = OUTSIDE_GUEST_MODE;
7456 	smp_wmb();
7457 
7458 	kvm_put_guest_xcr0(vcpu);
7459 
7460 	kvm_before_interrupt(vcpu);
7461 	kvm_x86_ops->handle_external_intr(vcpu);
7462 	kvm_after_interrupt(vcpu);
7463 
7464 	++vcpu->stat.exits;
7465 
7466 	guest_exit_irqoff();
7467 
7468 	local_irq_enable();
7469 	preempt_enable();
7470 
7471 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7472 
7473 	/*
7474 	 * Profile KVM exit RIPs:
7475 	 */
7476 	if (unlikely(prof_on == KVM_PROFILING)) {
7477 		unsigned long rip = kvm_rip_read(vcpu);
7478 		profile_hit(KVM_PROFILING, (void *)rip);
7479 	}
7480 
7481 	if (unlikely(vcpu->arch.tsc_always_catchup))
7482 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7483 
7484 	if (vcpu->arch.apic_attention)
7485 		kvm_lapic_sync_from_vapic(vcpu);
7486 
7487 	vcpu->arch.gpa_available = false;
7488 	r = kvm_x86_ops->handle_exit(vcpu);
7489 	return r;
7490 
7491 cancel_injection:
7492 	kvm_x86_ops->cancel_injection(vcpu);
7493 	if (unlikely(vcpu->arch.apic_attention))
7494 		kvm_lapic_sync_from_vapic(vcpu);
7495 out:
7496 	return r;
7497 }
7498 
7499 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
7500 {
7501 	if (!kvm_arch_vcpu_runnable(vcpu) &&
7502 	    (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
7503 		srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7504 		kvm_vcpu_block(vcpu);
7505 		vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7506 
7507 		if (kvm_x86_ops->post_block)
7508 			kvm_x86_ops->post_block(vcpu);
7509 
7510 		if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
7511 			return 1;
7512 	}
7513 
7514 	kvm_apic_accept_events(vcpu);
7515 	switch(vcpu->arch.mp_state) {
7516 	case KVM_MP_STATE_HALTED:
7517 		vcpu->arch.pv.pv_unhalted = false;
7518 		vcpu->arch.mp_state =
7519 			KVM_MP_STATE_RUNNABLE;
7520 	case KVM_MP_STATE_RUNNABLE:
7521 		vcpu->arch.apf.halted = false;
7522 		break;
7523 	case KVM_MP_STATE_INIT_RECEIVED:
7524 		break;
7525 	default:
7526 		return -EINTR;
7527 		break;
7528 	}
7529 	return 1;
7530 }
7531 
7532 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
7533 {
7534 	if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
7535 		kvm_x86_ops->check_nested_events(vcpu, false);
7536 
7537 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7538 		!vcpu->arch.apf.halted);
7539 }
7540 
7541 static int vcpu_run(struct kvm_vcpu *vcpu)
7542 {
7543 	int r;
7544 	struct kvm *kvm = vcpu->kvm;
7545 
7546 	vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7547 
7548 	for (;;) {
7549 		if (kvm_vcpu_running(vcpu)) {
7550 			r = vcpu_enter_guest(vcpu);
7551 		} else {
7552 			r = vcpu_block(kvm, vcpu);
7553 		}
7554 
7555 		if (r <= 0)
7556 			break;
7557 
7558 		kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
7559 		if (kvm_cpu_has_pending_timer(vcpu))
7560 			kvm_inject_pending_timer_irqs(vcpu);
7561 
7562 		if (dm_request_for_irq_injection(vcpu) &&
7563 			kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
7564 			r = 0;
7565 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
7566 			++vcpu->stat.request_irq_exits;
7567 			break;
7568 		}
7569 
7570 		kvm_check_async_pf_completion(vcpu);
7571 
7572 		if (signal_pending(current)) {
7573 			r = -EINTR;
7574 			vcpu->run->exit_reason = KVM_EXIT_INTR;
7575 			++vcpu->stat.signal_exits;
7576 			break;
7577 		}
7578 		if (need_resched()) {
7579 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7580 			cond_resched();
7581 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7582 		}
7583 	}
7584 
7585 	srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7586 
7587 	return r;
7588 }
7589 
7590 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
7591 {
7592 	int r;
7593 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7594 	r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
7595 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7596 	if (r != EMULATE_DONE)
7597 		return 0;
7598 	return 1;
7599 }
7600 
7601 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
7602 {
7603 	BUG_ON(!vcpu->arch.pio.count);
7604 
7605 	return complete_emulated_io(vcpu);
7606 }
7607 
7608 /*
7609  * Implements the following, as a state machine:
7610  *
7611  * read:
7612  *   for each fragment
7613  *     for each mmio piece in the fragment
7614  *       write gpa, len
7615  *       exit
7616  *       copy data
7617  *   execute insn
7618  *
7619  * write:
7620  *   for each fragment
7621  *     for each mmio piece in the fragment
7622  *       write gpa, len
7623  *       copy data
7624  *       exit
7625  */
7626 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
7627 {
7628 	struct kvm_run *run = vcpu->run;
7629 	struct kvm_mmio_fragment *frag;
7630 	unsigned len;
7631 
7632 	BUG_ON(!vcpu->mmio_needed);
7633 
7634 	/* Complete previous fragment */
7635 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
7636 	len = min(8u, frag->len);
7637 	if (!vcpu->mmio_is_write)
7638 		memcpy(frag->data, run->mmio.data, len);
7639 
7640 	if (frag->len <= 8) {
7641 		/* Switch to the next fragment. */
7642 		frag++;
7643 		vcpu->mmio_cur_fragment++;
7644 	} else {
7645 		/* Go forward to the next mmio piece. */
7646 		frag->data += len;
7647 		frag->gpa += len;
7648 		frag->len -= len;
7649 	}
7650 
7651 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
7652 		vcpu->mmio_needed = 0;
7653 
7654 		/* FIXME: return into emulator if single-stepping.  */
7655 		if (vcpu->mmio_is_write)
7656 			return 1;
7657 		vcpu->mmio_read_completed = 1;
7658 		return complete_emulated_io(vcpu);
7659 	}
7660 
7661 	run->exit_reason = KVM_EXIT_MMIO;
7662 	run->mmio.phys_addr = frag->gpa;
7663 	if (vcpu->mmio_is_write)
7664 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
7665 	run->mmio.len = min(8u, frag->len);
7666 	run->mmio.is_write = vcpu->mmio_is_write;
7667 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7668 	return 0;
7669 }
7670 
7671 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
7672 {
7673 	int r;
7674 
7675 	vcpu_load(vcpu);
7676 	kvm_sigset_activate(vcpu);
7677 	kvm_load_guest_fpu(vcpu);
7678 
7679 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
7680 		if (kvm_run->immediate_exit) {
7681 			r = -EINTR;
7682 			goto out;
7683 		}
7684 		kvm_vcpu_block(vcpu);
7685 		kvm_apic_accept_events(vcpu);
7686 		kvm_clear_request(KVM_REQ_UNHALT, vcpu);
7687 		r = -EAGAIN;
7688 		if (signal_pending(current)) {
7689 			r = -EINTR;
7690 			vcpu->run->exit_reason = KVM_EXIT_INTR;
7691 			++vcpu->stat.signal_exits;
7692 		}
7693 		goto out;
7694 	}
7695 
7696 	if (vcpu->run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) {
7697 		r = -EINVAL;
7698 		goto out;
7699 	}
7700 
7701 	if (vcpu->run->kvm_dirty_regs) {
7702 		r = sync_regs(vcpu);
7703 		if (r != 0)
7704 			goto out;
7705 	}
7706 
7707 	/* re-sync apic's tpr */
7708 	if (!lapic_in_kernel(vcpu)) {
7709 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
7710 			r = -EINVAL;
7711 			goto out;
7712 		}
7713 	}
7714 
7715 	if (unlikely(vcpu->arch.complete_userspace_io)) {
7716 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
7717 		vcpu->arch.complete_userspace_io = NULL;
7718 		r = cui(vcpu);
7719 		if (r <= 0)
7720 			goto out;
7721 	} else
7722 		WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
7723 
7724 	if (kvm_run->immediate_exit)
7725 		r = -EINTR;
7726 	else
7727 		r = vcpu_run(vcpu);
7728 
7729 out:
7730 	kvm_put_guest_fpu(vcpu);
7731 	if (vcpu->run->kvm_valid_regs)
7732 		store_regs(vcpu);
7733 	post_kvm_run_save(vcpu);
7734 	kvm_sigset_deactivate(vcpu);
7735 
7736 	vcpu_put(vcpu);
7737 	return r;
7738 }
7739 
7740 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7741 {
7742 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
7743 		/*
7744 		 * We are here if userspace calls get_regs() in the middle of
7745 		 * instruction emulation. Registers state needs to be copied
7746 		 * back from emulation context to vcpu. Userspace shouldn't do
7747 		 * that usually, but some bad designed PV devices (vmware
7748 		 * backdoor interface) need this to work
7749 		 */
7750 		emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
7751 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7752 	}
7753 	regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
7754 	regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
7755 	regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
7756 	regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
7757 	regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
7758 	regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
7759 	regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
7760 	regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
7761 #ifdef CONFIG_X86_64
7762 	regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
7763 	regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
7764 	regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
7765 	regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
7766 	regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
7767 	regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
7768 	regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
7769 	regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
7770 #endif
7771 
7772 	regs->rip = kvm_rip_read(vcpu);
7773 	regs->rflags = kvm_get_rflags(vcpu);
7774 }
7775 
7776 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7777 {
7778 	vcpu_load(vcpu);
7779 	__get_regs(vcpu, regs);
7780 	vcpu_put(vcpu);
7781 	return 0;
7782 }
7783 
7784 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7785 {
7786 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
7787 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7788 
7789 	kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
7790 	kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
7791 	kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
7792 	kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
7793 	kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
7794 	kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
7795 	kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
7796 	kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
7797 #ifdef CONFIG_X86_64
7798 	kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
7799 	kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
7800 	kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
7801 	kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
7802 	kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
7803 	kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
7804 	kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
7805 	kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
7806 #endif
7807 
7808 	kvm_rip_write(vcpu, regs->rip);
7809 	kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
7810 
7811 	vcpu->arch.exception.pending = false;
7812 
7813 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7814 }
7815 
7816 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7817 {
7818 	vcpu_load(vcpu);
7819 	__set_regs(vcpu, regs);
7820 	vcpu_put(vcpu);
7821 	return 0;
7822 }
7823 
7824 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
7825 {
7826 	struct kvm_segment cs;
7827 
7828 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7829 	*db = cs.db;
7830 	*l = cs.l;
7831 }
7832 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
7833 
7834 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
7835 {
7836 	struct desc_ptr dt;
7837 
7838 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7839 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7840 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7841 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7842 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7843 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7844 
7845 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7846 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7847 
7848 	kvm_x86_ops->get_idt(vcpu, &dt);
7849 	sregs->idt.limit = dt.size;
7850 	sregs->idt.base = dt.address;
7851 	kvm_x86_ops->get_gdt(vcpu, &dt);
7852 	sregs->gdt.limit = dt.size;
7853 	sregs->gdt.base = dt.address;
7854 
7855 	sregs->cr0 = kvm_read_cr0(vcpu);
7856 	sregs->cr2 = vcpu->arch.cr2;
7857 	sregs->cr3 = kvm_read_cr3(vcpu);
7858 	sregs->cr4 = kvm_read_cr4(vcpu);
7859 	sregs->cr8 = kvm_get_cr8(vcpu);
7860 	sregs->efer = vcpu->arch.efer;
7861 	sregs->apic_base = kvm_get_apic_base(vcpu);
7862 
7863 	memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
7864 
7865 	if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
7866 		set_bit(vcpu->arch.interrupt.nr,
7867 			(unsigned long *)sregs->interrupt_bitmap);
7868 }
7869 
7870 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
7871 				  struct kvm_sregs *sregs)
7872 {
7873 	vcpu_load(vcpu);
7874 	__get_sregs(vcpu, sregs);
7875 	vcpu_put(vcpu);
7876 	return 0;
7877 }
7878 
7879 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
7880 				    struct kvm_mp_state *mp_state)
7881 {
7882 	vcpu_load(vcpu);
7883 
7884 	kvm_apic_accept_events(vcpu);
7885 	if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
7886 					vcpu->arch.pv.pv_unhalted)
7887 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
7888 	else
7889 		mp_state->mp_state = vcpu->arch.mp_state;
7890 
7891 	vcpu_put(vcpu);
7892 	return 0;
7893 }
7894 
7895 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
7896 				    struct kvm_mp_state *mp_state)
7897 {
7898 	int ret = -EINVAL;
7899 
7900 	vcpu_load(vcpu);
7901 
7902 	if (!lapic_in_kernel(vcpu) &&
7903 	    mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
7904 		goto out;
7905 
7906 	/* INITs are latched while in SMM */
7907 	if ((is_smm(vcpu) || vcpu->arch.smi_pending) &&
7908 	    (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
7909 	     mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
7910 		goto out;
7911 
7912 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
7913 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
7914 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
7915 	} else
7916 		vcpu->arch.mp_state = mp_state->mp_state;
7917 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7918 
7919 	ret = 0;
7920 out:
7921 	vcpu_put(vcpu);
7922 	return ret;
7923 }
7924 
7925 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
7926 		    int reason, bool has_error_code, u32 error_code)
7927 {
7928 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7929 	int ret;
7930 
7931 	init_emulate_ctxt(vcpu);
7932 
7933 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
7934 				   has_error_code, error_code);
7935 
7936 	if (ret)
7937 		return EMULATE_FAIL;
7938 
7939 	kvm_rip_write(vcpu, ctxt->eip);
7940 	kvm_set_rflags(vcpu, ctxt->eflags);
7941 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7942 	return EMULATE_DONE;
7943 }
7944 EXPORT_SYMBOL_GPL(kvm_task_switch);
7945 
7946 static int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
7947 {
7948 	if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
7949 		/*
7950 		 * When EFER.LME and CR0.PG are set, the processor is in
7951 		 * 64-bit mode (though maybe in a 32-bit code segment).
7952 		 * CR4.PAE and EFER.LMA must be set.
7953 		 */
7954 		if (!(sregs->cr4 & X86_CR4_PAE)
7955 		    || !(sregs->efer & EFER_LMA))
7956 			return -EINVAL;
7957 	} else {
7958 		/*
7959 		 * Not in 64-bit mode: EFER.LMA is clear and the code
7960 		 * segment cannot be 64-bit.
7961 		 */
7962 		if (sregs->efer & EFER_LMA || sregs->cs.l)
7963 			return -EINVAL;
7964 	}
7965 
7966 	return 0;
7967 }
7968 
7969 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
7970 {
7971 	struct msr_data apic_base_msr;
7972 	int mmu_reset_needed = 0;
7973 	int pending_vec, max_bits, idx;
7974 	struct desc_ptr dt;
7975 	int ret = -EINVAL;
7976 
7977 	if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
7978 			(sregs->cr4 & X86_CR4_OSXSAVE))
7979 		goto out;
7980 
7981 	if (kvm_valid_sregs(vcpu, sregs))
7982 		goto out;
7983 
7984 	apic_base_msr.data = sregs->apic_base;
7985 	apic_base_msr.host_initiated = true;
7986 	if (kvm_set_apic_base(vcpu, &apic_base_msr))
7987 		goto out;
7988 
7989 	dt.size = sregs->idt.limit;
7990 	dt.address = sregs->idt.base;
7991 	kvm_x86_ops->set_idt(vcpu, &dt);
7992 	dt.size = sregs->gdt.limit;
7993 	dt.address = sregs->gdt.base;
7994 	kvm_x86_ops->set_gdt(vcpu, &dt);
7995 
7996 	vcpu->arch.cr2 = sregs->cr2;
7997 	mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
7998 	vcpu->arch.cr3 = sregs->cr3;
7999 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
8000 
8001 	kvm_set_cr8(vcpu, sregs->cr8);
8002 
8003 	mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
8004 	kvm_x86_ops->set_efer(vcpu, sregs->efer);
8005 
8006 	mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
8007 	kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
8008 	vcpu->arch.cr0 = sregs->cr0;
8009 
8010 	mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
8011 	kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
8012 	if (sregs->cr4 & (X86_CR4_OSXSAVE | X86_CR4_PKE))
8013 		kvm_update_cpuid(vcpu);
8014 
8015 	idx = srcu_read_lock(&vcpu->kvm->srcu);
8016 	if (!is_long_mode(vcpu) && is_pae(vcpu)) {
8017 		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
8018 		mmu_reset_needed = 1;
8019 	}
8020 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
8021 
8022 	if (mmu_reset_needed)
8023 		kvm_mmu_reset_context(vcpu);
8024 
8025 	max_bits = KVM_NR_INTERRUPTS;
8026 	pending_vec = find_first_bit(
8027 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
8028 	if (pending_vec < max_bits) {
8029 		kvm_queue_interrupt(vcpu, pending_vec, false);
8030 		pr_debug("Set back pending irq %d\n", pending_vec);
8031 	}
8032 
8033 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
8034 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
8035 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
8036 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
8037 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
8038 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
8039 
8040 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
8041 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
8042 
8043 	update_cr8_intercept(vcpu);
8044 
8045 	/* Older userspace won't unhalt the vcpu on reset. */
8046 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
8047 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
8048 	    !is_protmode(vcpu))
8049 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8050 
8051 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8052 
8053 	ret = 0;
8054 out:
8055 	return ret;
8056 }
8057 
8058 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
8059 				  struct kvm_sregs *sregs)
8060 {
8061 	int ret;
8062 
8063 	vcpu_load(vcpu);
8064 	ret = __set_sregs(vcpu, sregs);
8065 	vcpu_put(vcpu);
8066 	return ret;
8067 }
8068 
8069 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
8070 					struct kvm_guest_debug *dbg)
8071 {
8072 	unsigned long rflags;
8073 	int i, r;
8074 
8075 	vcpu_load(vcpu);
8076 
8077 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
8078 		r = -EBUSY;
8079 		if (vcpu->arch.exception.pending)
8080 			goto out;
8081 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
8082 			kvm_queue_exception(vcpu, DB_VECTOR);
8083 		else
8084 			kvm_queue_exception(vcpu, BP_VECTOR);
8085 	}
8086 
8087 	/*
8088 	 * Read rflags as long as potentially injected trace flags are still
8089 	 * filtered out.
8090 	 */
8091 	rflags = kvm_get_rflags(vcpu);
8092 
8093 	vcpu->guest_debug = dbg->control;
8094 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
8095 		vcpu->guest_debug = 0;
8096 
8097 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
8098 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
8099 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
8100 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
8101 	} else {
8102 		for (i = 0; i < KVM_NR_DB_REGS; i++)
8103 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
8104 	}
8105 	kvm_update_dr7(vcpu);
8106 
8107 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8108 		vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
8109 			get_segment_base(vcpu, VCPU_SREG_CS);
8110 
8111 	/*
8112 	 * Trigger an rflags update that will inject or remove the trace
8113 	 * flags.
8114 	 */
8115 	kvm_set_rflags(vcpu, rflags);
8116 
8117 	kvm_x86_ops->update_bp_intercept(vcpu);
8118 
8119 	r = 0;
8120 
8121 out:
8122 	vcpu_put(vcpu);
8123 	return r;
8124 }
8125 
8126 /*
8127  * Translate a guest virtual address to a guest physical address.
8128  */
8129 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
8130 				    struct kvm_translation *tr)
8131 {
8132 	unsigned long vaddr = tr->linear_address;
8133 	gpa_t gpa;
8134 	int idx;
8135 
8136 	vcpu_load(vcpu);
8137 
8138 	idx = srcu_read_lock(&vcpu->kvm->srcu);
8139 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
8140 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
8141 	tr->physical_address = gpa;
8142 	tr->valid = gpa != UNMAPPED_GVA;
8143 	tr->writeable = 1;
8144 	tr->usermode = 0;
8145 
8146 	vcpu_put(vcpu);
8147 	return 0;
8148 }
8149 
8150 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
8151 {
8152 	struct fxregs_state *fxsave;
8153 
8154 	vcpu_load(vcpu);
8155 
8156 	fxsave = &vcpu->arch.guest_fpu.state.fxsave;
8157 	memcpy(fpu->fpr, fxsave->st_space, 128);
8158 	fpu->fcw = fxsave->cwd;
8159 	fpu->fsw = fxsave->swd;
8160 	fpu->ftwx = fxsave->twd;
8161 	fpu->last_opcode = fxsave->fop;
8162 	fpu->last_ip = fxsave->rip;
8163 	fpu->last_dp = fxsave->rdp;
8164 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
8165 
8166 	vcpu_put(vcpu);
8167 	return 0;
8168 }
8169 
8170 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
8171 {
8172 	struct fxregs_state *fxsave;
8173 
8174 	vcpu_load(vcpu);
8175 
8176 	fxsave = &vcpu->arch.guest_fpu.state.fxsave;
8177 
8178 	memcpy(fxsave->st_space, fpu->fpr, 128);
8179 	fxsave->cwd = fpu->fcw;
8180 	fxsave->swd = fpu->fsw;
8181 	fxsave->twd = fpu->ftwx;
8182 	fxsave->fop = fpu->last_opcode;
8183 	fxsave->rip = fpu->last_ip;
8184 	fxsave->rdp = fpu->last_dp;
8185 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
8186 
8187 	vcpu_put(vcpu);
8188 	return 0;
8189 }
8190 
8191 static void store_regs(struct kvm_vcpu *vcpu)
8192 {
8193 	BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
8194 
8195 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
8196 		__get_regs(vcpu, &vcpu->run->s.regs.regs);
8197 
8198 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
8199 		__get_sregs(vcpu, &vcpu->run->s.regs.sregs);
8200 
8201 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
8202 		kvm_vcpu_ioctl_x86_get_vcpu_events(
8203 				vcpu, &vcpu->run->s.regs.events);
8204 }
8205 
8206 static int sync_regs(struct kvm_vcpu *vcpu)
8207 {
8208 	if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)
8209 		return -EINVAL;
8210 
8211 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
8212 		__set_regs(vcpu, &vcpu->run->s.regs.regs);
8213 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
8214 	}
8215 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
8216 		if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
8217 			return -EINVAL;
8218 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
8219 	}
8220 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
8221 		if (kvm_vcpu_ioctl_x86_set_vcpu_events(
8222 				vcpu, &vcpu->run->s.regs.events))
8223 			return -EINVAL;
8224 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
8225 	}
8226 
8227 	return 0;
8228 }
8229 
8230 static void fx_init(struct kvm_vcpu *vcpu)
8231 {
8232 	fpstate_init(&vcpu->arch.guest_fpu.state);
8233 	if (boot_cpu_has(X86_FEATURE_XSAVES))
8234 		vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
8235 			host_xcr0 | XSTATE_COMPACTION_ENABLED;
8236 
8237 	/*
8238 	 * Ensure guest xcr0 is valid for loading
8239 	 */
8240 	vcpu->arch.xcr0 = XFEATURE_MASK_FP;
8241 
8242 	vcpu->arch.cr0 |= X86_CR0_ET;
8243 }
8244 
8245 /* Swap (qemu) user FPU context for the guest FPU context. */
8246 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
8247 {
8248 	preempt_disable();
8249 	copy_fpregs_to_fpstate(&vcpu->arch.user_fpu);
8250 	/* PKRU is separately restored in kvm_x86_ops->run.  */
8251 	__copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state,
8252 				~XFEATURE_MASK_PKRU);
8253 	preempt_enable();
8254 	trace_kvm_fpu(1);
8255 }
8256 
8257 /* When vcpu_run ends, restore user space FPU context. */
8258 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
8259 {
8260 	preempt_disable();
8261 	copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
8262 	copy_kernel_to_fpregs(&vcpu->arch.user_fpu.state);
8263 	preempt_enable();
8264 	++vcpu->stat.fpu_reload;
8265 	trace_kvm_fpu(0);
8266 }
8267 
8268 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
8269 {
8270 	void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask;
8271 
8272 	kvmclock_reset(vcpu);
8273 
8274 	kvm_x86_ops->vcpu_free(vcpu);
8275 	free_cpumask_var(wbinvd_dirty_mask);
8276 }
8277 
8278 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
8279 						unsigned int id)
8280 {
8281 	struct kvm_vcpu *vcpu;
8282 
8283 	if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
8284 		printk_once(KERN_WARNING
8285 		"kvm: SMP vm created on host with unstable TSC; "
8286 		"guest TSC will not be reliable\n");
8287 
8288 	vcpu = kvm_x86_ops->vcpu_create(kvm, id);
8289 
8290 	return vcpu;
8291 }
8292 
8293 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
8294 {
8295 	kvm_vcpu_mtrr_init(vcpu);
8296 	vcpu_load(vcpu);
8297 	kvm_vcpu_reset(vcpu, false);
8298 	kvm_mmu_setup(vcpu);
8299 	vcpu_put(vcpu);
8300 	return 0;
8301 }
8302 
8303 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
8304 {
8305 	struct msr_data msr;
8306 	struct kvm *kvm = vcpu->kvm;
8307 
8308 	kvm_hv_vcpu_postcreate(vcpu);
8309 
8310 	if (mutex_lock_killable(&vcpu->mutex))
8311 		return;
8312 	vcpu_load(vcpu);
8313 	msr.data = 0x0;
8314 	msr.index = MSR_IA32_TSC;
8315 	msr.host_initiated = true;
8316 	kvm_write_tsc(vcpu, &msr);
8317 	vcpu_put(vcpu);
8318 	mutex_unlock(&vcpu->mutex);
8319 
8320 	if (!kvmclock_periodic_sync)
8321 		return;
8322 
8323 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
8324 					KVMCLOCK_SYNC_PERIOD);
8325 }
8326 
8327 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
8328 {
8329 	vcpu->arch.apf.msr_val = 0;
8330 
8331 	vcpu_load(vcpu);
8332 	kvm_mmu_unload(vcpu);
8333 	vcpu_put(vcpu);
8334 
8335 	kvm_x86_ops->vcpu_free(vcpu);
8336 }
8337 
8338 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
8339 {
8340 	kvm_lapic_reset(vcpu, init_event);
8341 
8342 	vcpu->arch.hflags = 0;
8343 
8344 	vcpu->arch.smi_pending = 0;
8345 	vcpu->arch.smi_count = 0;
8346 	atomic_set(&vcpu->arch.nmi_queued, 0);
8347 	vcpu->arch.nmi_pending = 0;
8348 	vcpu->arch.nmi_injected = false;
8349 	kvm_clear_interrupt_queue(vcpu);
8350 	kvm_clear_exception_queue(vcpu);
8351 	vcpu->arch.exception.pending = false;
8352 
8353 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
8354 	kvm_update_dr0123(vcpu);
8355 	vcpu->arch.dr6 = DR6_INIT;
8356 	kvm_update_dr6(vcpu);
8357 	vcpu->arch.dr7 = DR7_FIXED_1;
8358 	kvm_update_dr7(vcpu);
8359 
8360 	vcpu->arch.cr2 = 0;
8361 
8362 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8363 	vcpu->arch.apf.msr_val = 0;
8364 	vcpu->arch.st.msr_val = 0;
8365 
8366 	kvmclock_reset(vcpu);
8367 
8368 	kvm_clear_async_pf_completion_queue(vcpu);
8369 	kvm_async_pf_hash_reset(vcpu);
8370 	vcpu->arch.apf.halted = false;
8371 
8372 	if (kvm_mpx_supported()) {
8373 		void *mpx_state_buffer;
8374 
8375 		/*
8376 		 * To avoid have the INIT path from kvm_apic_has_events() that be
8377 		 * called with loaded FPU and does not let userspace fix the state.
8378 		 */
8379 		if (init_event)
8380 			kvm_put_guest_fpu(vcpu);
8381 		mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu.state.xsave,
8382 					XFEATURE_MASK_BNDREGS);
8383 		if (mpx_state_buffer)
8384 			memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
8385 		mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu.state.xsave,
8386 					XFEATURE_MASK_BNDCSR);
8387 		if (mpx_state_buffer)
8388 			memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
8389 		if (init_event)
8390 			kvm_load_guest_fpu(vcpu);
8391 	}
8392 
8393 	if (!init_event) {
8394 		kvm_pmu_reset(vcpu);
8395 		vcpu->arch.smbase = 0x30000;
8396 
8397 		vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
8398 		vcpu->arch.msr_misc_features_enables = 0;
8399 
8400 		vcpu->arch.xcr0 = XFEATURE_MASK_FP;
8401 	}
8402 
8403 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
8404 	vcpu->arch.regs_avail = ~0;
8405 	vcpu->arch.regs_dirty = ~0;
8406 
8407 	vcpu->arch.ia32_xss = 0;
8408 
8409 	kvm_x86_ops->vcpu_reset(vcpu, init_event);
8410 }
8411 
8412 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
8413 {
8414 	struct kvm_segment cs;
8415 
8416 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
8417 	cs.selector = vector << 8;
8418 	cs.base = vector << 12;
8419 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
8420 	kvm_rip_write(vcpu, 0);
8421 }
8422 
8423 int kvm_arch_hardware_enable(void)
8424 {
8425 	struct kvm *kvm;
8426 	struct kvm_vcpu *vcpu;
8427 	int i;
8428 	int ret;
8429 	u64 local_tsc;
8430 	u64 max_tsc = 0;
8431 	bool stable, backwards_tsc = false;
8432 
8433 	kvm_shared_msr_cpu_online();
8434 	ret = kvm_x86_ops->hardware_enable();
8435 	if (ret != 0)
8436 		return ret;
8437 
8438 	local_tsc = rdtsc();
8439 	stable = !kvm_check_tsc_unstable();
8440 	list_for_each_entry(kvm, &vm_list, vm_list) {
8441 		kvm_for_each_vcpu(i, vcpu, kvm) {
8442 			if (!stable && vcpu->cpu == smp_processor_id())
8443 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8444 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
8445 				backwards_tsc = true;
8446 				if (vcpu->arch.last_host_tsc > max_tsc)
8447 					max_tsc = vcpu->arch.last_host_tsc;
8448 			}
8449 		}
8450 	}
8451 
8452 	/*
8453 	 * Sometimes, even reliable TSCs go backwards.  This happens on
8454 	 * platforms that reset TSC during suspend or hibernate actions, but
8455 	 * maintain synchronization.  We must compensate.  Fortunately, we can
8456 	 * detect that condition here, which happens early in CPU bringup,
8457 	 * before any KVM threads can be running.  Unfortunately, we can't
8458 	 * bring the TSCs fully up to date with real time, as we aren't yet far
8459 	 * enough into CPU bringup that we know how much real time has actually
8460 	 * elapsed; our helper function, ktime_get_boot_ns() will be using boot
8461 	 * variables that haven't been updated yet.
8462 	 *
8463 	 * So we simply find the maximum observed TSC above, then record the
8464 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
8465 	 * the adjustment will be applied.  Note that we accumulate
8466 	 * adjustments, in case multiple suspend cycles happen before some VCPU
8467 	 * gets a chance to run again.  In the event that no KVM threads get a
8468 	 * chance to run, we will miss the entire elapsed period, as we'll have
8469 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
8470 	 * loose cycle time.  This isn't too big a deal, since the loss will be
8471 	 * uniform across all VCPUs (not to mention the scenario is extremely
8472 	 * unlikely). It is possible that a second hibernate recovery happens
8473 	 * much faster than a first, causing the observed TSC here to be
8474 	 * smaller; this would require additional padding adjustment, which is
8475 	 * why we set last_host_tsc to the local tsc observed here.
8476 	 *
8477 	 * N.B. - this code below runs only on platforms with reliable TSC,
8478 	 * as that is the only way backwards_tsc is set above.  Also note
8479 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
8480 	 * have the same delta_cyc adjustment applied if backwards_tsc
8481 	 * is detected.  Note further, this adjustment is only done once,
8482 	 * as we reset last_host_tsc on all VCPUs to stop this from being
8483 	 * called multiple times (one for each physical CPU bringup).
8484 	 *
8485 	 * Platforms with unreliable TSCs don't have to deal with this, they
8486 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
8487 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
8488 	 * guarantee that they stay in perfect synchronization.
8489 	 */
8490 	if (backwards_tsc) {
8491 		u64 delta_cyc = max_tsc - local_tsc;
8492 		list_for_each_entry(kvm, &vm_list, vm_list) {
8493 			kvm->arch.backwards_tsc_observed = true;
8494 			kvm_for_each_vcpu(i, vcpu, kvm) {
8495 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
8496 				vcpu->arch.last_host_tsc = local_tsc;
8497 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
8498 			}
8499 
8500 			/*
8501 			 * We have to disable TSC offset matching.. if you were
8502 			 * booting a VM while issuing an S4 host suspend....
8503 			 * you may have some problem.  Solving this issue is
8504 			 * left as an exercise to the reader.
8505 			 */
8506 			kvm->arch.last_tsc_nsec = 0;
8507 			kvm->arch.last_tsc_write = 0;
8508 		}
8509 
8510 	}
8511 	return 0;
8512 }
8513 
8514 void kvm_arch_hardware_disable(void)
8515 {
8516 	kvm_x86_ops->hardware_disable();
8517 	drop_user_return_notifiers();
8518 }
8519 
8520 int kvm_arch_hardware_setup(void)
8521 {
8522 	int r;
8523 
8524 	r = kvm_x86_ops->hardware_setup();
8525 	if (r != 0)
8526 		return r;
8527 
8528 	if (kvm_has_tsc_control) {
8529 		/*
8530 		 * Make sure the user can only configure tsc_khz values that
8531 		 * fit into a signed integer.
8532 		 * A min value is not calculated needed because it will always
8533 		 * be 1 on all machines.
8534 		 */
8535 		u64 max = min(0x7fffffffULL,
8536 			      __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
8537 		kvm_max_guest_tsc_khz = max;
8538 
8539 		kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
8540 	}
8541 
8542 	kvm_init_msr_list();
8543 	return 0;
8544 }
8545 
8546 void kvm_arch_hardware_unsetup(void)
8547 {
8548 	kvm_x86_ops->hardware_unsetup();
8549 }
8550 
8551 void kvm_arch_check_processor_compat(void *rtn)
8552 {
8553 	kvm_x86_ops->check_processor_compatibility(rtn);
8554 }
8555 
8556 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
8557 {
8558 	return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
8559 }
8560 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
8561 
8562 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
8563 {
8564 	return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
8565 }
8566 
8567 struct static_key kvm_no_apic_vcpu __read_mostly;
8568 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
8569 
8570 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
8571 {
8572 	struct page *page;
8573 	int r;
8574 
8575 	vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv(vcpu);
8576 	vcpu->arch.emulate_ctxt.ops = &emulate_ops;
8577 	if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
8578 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8579 	else
8580 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
8581 
8582 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
8583 	if (!page) {
8584 		r = -ENOMEM;
8585 		goto fail;
8586 	}
8587 	vcpu->arch.pio_data = page_address(page);
8588 
8589 	kvm_set_tsc_khz(vcpu, max_tsc_khz);
8590 
8591 	r = kvm_mmu_create(vcpu);
8592 	if (r < 0)
8593 		goto fail_free_pio_data;
8594 
8595 	if (irqchip_in_kernel(vcpu->kvm)) {
8596 		r = kvm_create_lapic(vcpu);
8597 		if (r < 0)
8598 			goto fail_mmu_destroy;
8599 	} else
8600 		static_key_slow_inc(&kvm_no_apic_vcpu);
8601 
8602 	vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
8603 				       GFP_KERNEL);
8604 	if (!vcpu->arch.mce_banks) {
8605 		r = -ENOMEM;
8606 		goto fail_free_lapic;
8607 	}
8608 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
8609 
8610 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
8611 		r = -ENOMEM;
8612 		goto fail_free_mce_banks;
8613 	}
8614 
8615 	fx_init(vcpu);
8616 
8617 	vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
8618 
8619 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
8620 
8621 	vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
8622 
8623 	kvm_async_pf_hash_reset(vcpu);
8624 	kvm_pmu_init(vcpu);
8625 
8626 	vcpu->arch.pending_external_vector = -1;
8627 	vcpu->arch.preempted_in_kernel = false;
8628 
8629 	kvm_hv_vcpu_init(vcpu);
8630 
8631 	return 0;
8632 
8633 fail_free_mce_banks:
8634 	kfree(vcpu->arch.mce_banks);
8635 fail_free_lapic:
8636 	kvm_free_lapic(vcpu);
8637 fail_mmu_destroy:
8638 	kvm_mmu_destroy(vcpu);
8639 fail_free_pio_data:
8640 	free_page((unsigned long)vcpu->arch.pio_data);
8641 fail:
8642 	return r;
8643 }
8644 
8645 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
8646 {
8647 	int idx;
8648 
8649 	kvm_hv_vcpu_uninit(vcpu);
8650 	kvm_pmu_destroy(vcpu);
8651 	kfree(vcpu->arch.mce_banks);
8652 	kvm_free_lapic(vcpu);
8653 	idx = srcu_read_lock(&vcpu->kvm->srcu);
8654 	kvm_mmu_destroy(vcpu);
8655 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
8656 	free_page((unsigned long)vcpu->arch.pio_data);
8657 	if (!lapic_in_kernel(vcpu))
8658 		static_key_slow_dec(&kvm_no_apic_vcpu);
8659 }
8660 
8661 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
8662 {
8663 	kvm_x86_ops->sched_in(vcpu, cpu);
8664 }
8665 
8666 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
8667 {
8668 	if (type)
8669 		return -EINVAL;
8670 
8671 	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
8672 	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
8673 	INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
8674 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
8675 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
8676 
8677 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
8678 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
8679 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
8680 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
8681 		&kvm->arch.irq_sources_bitmap);
8682 
8683 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
8684 	mutex_init(&kvm->arch.apic_map_lock);
8685 	spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
8686 
8687 	kvm->arch.kvmclock_offset = -ktime_get_boot_ns();
8688 	pvclock_update_vm_gtod_copy(kvm);
8689 
8690 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
8691 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
8692 
8693 	kvm_hv_init_vm(kvm);
8694 	kvm_page_track_init(kvm);
8695 	kvm_mmu_init_vm(kvm);
8696 
8697 	if (kvm_x86_ops->vm_init)
8698 		return kvm_x86_ops->vm_init(kvm);
8699 
8700 	return 0;
8701 }
8702 
8703 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
8704 {
8705 	vcpu_load(vcpu);
8706 	kvm_mmu_unload(vcpu);
8707 	vcpu_put(vcpu);
8708 }
8709 
8710 static void kvm_free_vcpus(struct kvm *kvm)
8711 {
8712 	unsigned int i;
8713 	struct kvm_vcpu *vcpu;
8714 
8715 	/*
8716 	 * Unpin any mmu pages first.
8717 	 */
8718 	kvm_for_each_vcpu(i, vcpu, kvm) {
8719 		kvm_clear_async_pf_completion_queue(vcpu);
8720 		kvm_unload_vcpu_mmu(vcpu);
8721 	}
8722 	kvm_for_each_vcpu(i, vcpu, kvm)
8723 		kvm_arch_vcpu_free(vcpu);
8724 
8725 	mutex_lock(&kvm->lock);
8726 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
8727 		kvm->vcpus[i] = NULL;
8728 
8729 	atomic_set(&kvm->online_vcpus, 0);
8730 	mutex_unlock(&kvm->lock);
8731 }
8732 
8733 void kvm_arch_sync_events(struct kvm *kvm)
8734 {
8735 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
8736 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
8737 	kvm_free_pit(kvm);
8738 }
8739 
8740 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8741 {
8742 	int i, r;
8743 	unsigned long hva;
8744 	struct kvm_memslots *slots = kvm_memslots(kvm);
8745 	struct kvm_memory_slot *slot, old;
8746 
8747 	/* Called with kvm->slots_lock held.  */
8748 	if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
8749 		return -EINVAL;
8750 
8751 	slot = id_to_memslot(slots, id);
8752 	if (size) {
8753 		if (slot->npages)
8754 			return -EEXIST;
8755 
8756 		/*
8757 		 * MAP_SHARED to prevent internal slot pages from being moved
8758 		 * by fork()/COW.
8759 		 */
8760 		hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
8761 			      MAP_SHARED | MAP_ANONYMOUS, 0);
8762 		if (IS_ERR((void *)hva))
8763 			return PTR_ERR((void *)hva);
8764 	} else {
8765 		if (!slot->npages)
8766 			return 0;
8767 
8768 		hva = 0;
8769 	}
8770 
8771 	old = *slot;
8772 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
8773 		struct kvm_userspace_memory_region m;
8774 
8775 		m.slot = id | (i << 16);
8776 		m.flags = 0;
8777 		m.guest_phys_addr = gpa;
8778 		m.userspace_addr = hva;
8779 		m.memory_size = size;
8780 		r = __kvm_set_memory_region(kvm, &m);
8781 		if (r < 0)
8782 			return r;
8783 	}
8784 
8785 	if (!size)
8786 		vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
8787 
8788 	return 0;
8789 }
8790 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
8791 
8792 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8793 {
8794 	int r;
8795 
8796 	mutex_lock(&kvm->slots_lock);
8797 	r = __x86_set_memory_region(kvm, id, gpa, size);
8798 	mutex_unlock(&kvm->slots_lock);
8799 
8800 	return r;
8801 }
8802 EXPORT_SYMBOL_GPL(x86_set_memory_region);
8803 
8804 void kvm_arch_destroy_vm(struct kvm *kvm)
8805 {
8806 	if (current->mm == kvm->mm) {
8807 		/*
8808 		 * Free memory regions allocated on behalf of userspace,
8809 		 * unless the the memory map has changed due to process exit
8810 		 * or fd copying.
8811 		 */
8812 		x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
8813 		x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
8814 		x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
8815 	}
8816 	if (kvm_x86_ops->vm_destroy)
8817 		kvm_x86_ops->vm_destroy(kvm);
8818 	kvm_pic_destroy(kvm);
8819 	kvm_ioapic_destroy(kvm);
8820 	kvm_free_vcpus(kvm);
8821 	kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
8822 	kvm_mmu_uninit_vm(kvm);
8823 	kvm_page_track_cleanup(kvm);
8824 	kvm_hv_destroy_vm(kvm);
8825 }
8826 
8827 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
8828 			   struct kvm_memory_slot *dont)
8829 {
8830 	int i;
8831 
8832 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8833 		if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
8834 			kvfree(free->arch.rmap[i]);
8835 			free->arch.rmap[i] = NULL;
8836 		}
8837 		if (i == 0)
8838 			continue;
8839 
8840 		if (!dont || free->arch.lpage_info[i - 1] !=
8841 			     dont->arch.lpage_info[i - 1]) {
8842 			kvfree(free->arch.lpage_info[i - 1]);
8843 			free->arch.lpage_info[i - 1] = NULL;
8844 		}
8845 	}
8846 
8847 	kvm_page_track_free_memslot(free, dont);
8848 }
8849 
8850 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
8851 			    unsigned long npages)
8852 {
8853 	int i;
8854 
8855 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8856 		struct kvm_lpage_info *linfo;
8857 		unsigned long ugfn;
8858 		int lpages;
8859 		int level = i + 1;
8860 
8861 		lpages = gfn_to_index(slot->base_gfn + npages - 1,
8862 				      slot->base_gfn, level) + 1;
8863 
8864 		slot->arch.rmap[i] =
8865 			kvzalloc(lpages * sizeof(*slot->arch.rmap[i]), GFP_KERNEL);
8866 		if (!slot->arch.rmap[i])
8867 			goto out_free;
8868 		if (i == 0)
8869 			continue;
8870 
8871 		linfo = kvzalloc(lpages * sizeof(*linfo), GFP_KERNEL);
8872 		if (!linfo)
8873 			goto out_free;
8874 
8875 		slot->arch.lpage_info[i - 1] = linfo;
8876 
8877 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
8878 			linfo[0].disallow_lpage = 1;
8879 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
8880 			linfo[lpages - 1].disallow_lpage = 1;
8881 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
8882 		/*
8883 		 * If the gfn and userspace address are not aligned wrt each
8884 		 * other, or if explicitly asked to, disable large page
8885 		 * support for this slot
8886 		 */
8887 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
8888 		    !kvm_largepages_enabled()) {
8889 			unsigned long j;
8890 
8891 			for (j = 0; j < lpages; ++j)
8892 				linfo[j].disallow_lpage = 1;
8893 		}
8894 	}
8895 
8896 	if (kvm_page_track_create_memslot(slot, npages))
8897 		goto out_free;
8898 
8899 	return 0;
8900 
8901 out_free:
8902 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8903 		kvfree(slot->arch.rmap[i]);
8904 		slot->arch.rmap[i] = NULL;
8905 		if (i == 0)
8906 			continue;
8907 
8908 		kvfree(slot->arch.lpage_info[i - 1]);
8909 		slot->arch.lpage_info[i - 1] = NULL;
8910 	}
8911 	return -ENOMEM;
8912 }
8913 
8914 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
8915 {
8916 	/*
8917 	 * memslots->generation has been incremented.
8918 	 * mmio generation may have reached its maximum value.
8919 	 */
8920 	kvm_mmu_invalidate_mmio_sptes(kvm, slots);
8921 }
8922 
8923 int kvm_arch_prepare_memory_region(struct kvm *kvm,
8924 				struct kvm_memory_slot *memslot,
8925 				const struct kvm_userspace_memory_region *mem,
8926 				enum kvm_mr_change change)
8927 {
8928 	return 0;
8929 }
8930 
8931 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
8932 				     struct kvm_memory_slot *new)
8933 {
8934 	/* Still write protect RO slot */
8935 	if (new->flags & KVM_MEM_READONLY) {
8936 		kvm_mmu_slot_remove_write_access(kvm, new);
8937 		return;
8938 	}
8939 
8940 	/*
8941 	 * Call kvm_x86_ops dirty logging hooks when they are valid.
8942 	 *
8943 	 * kvm_x86_ops->slot_disable_log_dirty is called when:
8944 	 *
8945 	 *  - KVM_MR_CREATE with dirty logging is disabled
8946 	 *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
8947 	 *
8948 	 * The reason is, in case of PML, we need to set D-bit for any slots
8949 	 * with dirty logging disabled in order to eliminate unnecessary GPA
8950 	 * logging in PML buffer (and potential PML buffer full VMEXT). This
8951 	 * guarantees leaving PML enabled during guest's lifetime won't have
8952 	 * any additonal overhead from PML when guest is running with dirty
8953 	 * logging disabled for memory slots.
8954 	 *
8955 	 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
8956 	 * to dirty logging mode.
8957 	 *
8958 	 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
8959 	 *
8960 	 * In case of write protect:
8961 	 *
8962 	 * Write protect all pages for dirty logging.
8963 	 *
8964 	 * All the sptes including the large sptes which point to this
8965 	 * slot are set to readonly. We can not create any new large
8966 	 * spte on this slot until the end of the logging.
8967 	 *
8968 	 * See the comments in fast_page_fault().
8969 	 */
8970 	if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
8971 		if (kvm_x86_ops->slot_enable_log_dirty)
8972 			kvm_x86_ops->slot_enable_log_dirty(kvm, new);
8973 		else
8974 			kvm_mmu_slot_remove_write_access(kvm, new);
8975 	} else {
8976 		if (kvm_x86_ops->slot_disable_log_dirty)
8977 			kvm_x86_ops->slot_disable_log_dirty(kvm, new);
8978 	}
8979 }
8980 
8981 void kvm_arch_commit_memory_region(struct kvm *kvm,
8982 				const struct kvm_userspace_memory_region *mem,
8983 				const struct kvm_memory_slot *old,
8984 				const struct kvm_memory_slot *new,
8985 				enum kvm_mr_change change)
8986 {
8987 	int nr_mmu_pages = 0;
8988 
8989 	if (!kvm->arch.n_requested_mmu_pages)
8990 		nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
8991 
8992 	if (nr_mmu_pages)
8993 		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
8994 
8995 	/*
8996 	 * Dirty logging tracks sptes in 4k granularity, meaning that large
8997 	 * sptes have to be split.  If live migration is successful, the guest
8998 	 * in the source machine will be destroyed and large sptes will be
8999 	 * created in the destination. However, if the guest continues to run
9000 	 * in the source machine (for example if live migration fails), small
9001 	 * sptes will remain around and cause bad performance.
9002 	 *
9003 	 * Scan sptes if dirty logging has been stopped, dropping those
9004 	 * which can be collapsed into a single large-page spte.  Later
9005 	 * page faults will create the large-page sptes.
9006 	 */
9007 	if ((change != KVM_MR_DELETE) &&
9008 		(old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
9009 		!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
9010 		kvm_mmu_zap_collapsible_sptes(kvm, new);
9011 
9012 	/*
9013 	 * Set up write protection and/or dirty logging for the new slot.
9014 	 *
9015 	 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
9016 	 * been zapped so no dirty logging staff is needed for old slot. For
9017 	 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
9018 	 * new and it's also covered when dealing with the new slot.
9019 	 *
9020 	 * FIXME: const-ify all uses of struct kvm_memory_slot.
9021 	 */
9022 	if (change != KVM_MR_DELETE)
9023 		kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
9024 }
9025 
9026 void kvm_arch_flush_shadow_all(struct kvm *kvm)
9027 {
9028 	kvm_mmu_invalidate_zap_all_pages(kvm);
9029 }
9030 
9031 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
9032 				   struct kvm_memory_slot *slot)
9033 {
9034 	kvm_page_track_flush_slot(kvm, slot);
9035 }
9036 
9037 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
9038 {
9039 	if (!list_empty_careful(&vcpu->async_pf.done))
9040 		return true;
9041 
9042 	if (kvm_apic_has_events(vcpu))
9043 		return true;
9044 
9045 	if (vcpu->arch.pv.pv_unhalted)
9046 		return true;
9047 
9048 	if (vcpu->arch.exception.pending)
9049 		return true;
9050 
9051 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
9052 	    (vcpu->arch.nmi_pending &&
9053 	     kvm_x86_ops->nmi_allowed(vcpu)))
9054 		return true;
9055 
9056 	if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
9057 	    (vcpu->arch.smi_pending && !is_smm(vcpu)))
9058 		return true;
9059 
9060 	if (kvm_arch_interrupt_allowed(vcpu) &&
9061 	    kvm_cpu_has_interrupt(vcpu))
9062 		return true;
9063 
9064 	if (kvm_hv_has_stimer_pending(vcpu))
9065 		return true;
9066 
9067 	return false;
9068 }
9069 
9070 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
9071 {
9072 	return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
9073 }
9074 
9075 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
9076 {
9077 	return vcpu->arch.preempted_in_kernel;
9078 }
9079 
9080 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
9081 {
9082 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
9083 }
9084 
9085 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
9086 {
9087 	return kvm_x86_ops->interrupt_allowed(vcpu);
9088 }
9089 
9090 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
9091 {
9092 	if (is_64_bit_mode(vcpu))
9093 		return kvm_rip_read(vcpu);
9094 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
9095 		     kvm_rip_read(vcpu));
9096 }
9097 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
9098 
9099 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
9100 {
9101 	return kvm_get_linear_rip(vcpu) == linear_rip;
9102 }
9103 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
9104 
9105 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
9106 {
9107 	unsigned long rflags;
9108 
9109 	rflags = kvm_x86_ops->get_rflags(vcpu);
9110 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9111 		rflags &= ~X86_EFLAGS_TF;
9112 	return rflags;
9113 }
9114 EXPORT_SYMBOL_GPL(kvm_get_rflags);
9115 
9116 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
9117 {
9118 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
9119 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
9120 		rflags |= X86_EFLAGS_TF;
9121 	kvm_x86_ops->set_rflags(vcpu, rflags);
9122 }
9123 
9124 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
9125 {
9126 	__kvm_set_rflags(vcpu, rflags);
9127 	kvm_make_request(KVM_REQ_EVENT, vcpu);
9128 }
9129 EXPORT_SYMBOL_GPL(kvm_set_rflags);
9130 
9131 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
9132 {
9133 	int r;
9134 
9135 	if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
9136 	      work->wakeup_all)
9137 		return;
9138 
9139 	r = kvm_mmu_reload(vcpu);
9140 	if (unlikely(r))
9141 		return;
9142 
9143 	if (!vcpu->arch.mmu.direct_map &&
9144 	      work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
9145 		return;
9146 
9147 	vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
9148 }
9149 
9150 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
9151 {
9152 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
9153 }
9154 
9155 static inline u32 kvm_async_pf_next_probe(u32 key)
9156 {
9157 	return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
9158 }
9159 
9160 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9161 {
9162 	u32 key = kvm_async_pf_hash_fn(gfn);
9163 
9164 	while (vcpu->arch.apf.gfns[key] != ~0)
9165 		key = kvm_async_pf_next_probe(key);
9166 
9167 	vcpu->arch.apf.gfns[key] = gfn;
9168 }
9169 
9170 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
9171 {
9172 	int i;
9173 	u32 key = kvm_async_pf_hash_fn(gfn);
9174 
9175 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
9176 		     (vcpu->arch.apf.gfns[key] != gfn &&
9177 		      vcpu->arch.apf.gfns[key] != ~0); i++)
9178 		key = kvm_async_pf_next_probe(key);
9179 
9180 	return key;
9181 }
9182 
9183 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9184 {
9185 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
9186 }
9187 
9188 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9189 {
9190 	u32 i, j, k;
9191 
9192 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
9193 	while (true) {
9194 		vcpu->arch.apf.gfns[i] = ~0;
9195 		do {
9196 			j = kvm_async_pf_next_probe(j);
9197 			if (vcpu->arch.apf.gfns[j] == ~0)
9198 				return;
9199 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
9200 			/*
9201 			 * k lies cyclically in ]i,j]
9202 			 * |    i.k.j |
9203 			 * |....j i.k.| or  |.k..j i...|
9204 			 */
9205 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
9206 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
9207 		i = j;
9208 	}
9209 }
9210 
9211 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
9212 {
9213 
9214 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
9215 				      sizeof(val));
9216 }
9217 
9218 static int apf_get_user(struct kvm_vcpu *vcpu, u32 *val)
9219 {
9220 
9221 	return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, val,
9222 				      sizeof(u32));
9223 }
9224 
9225 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
9226 				     struct kvm_async_pf *work)
9227 {
9228 	struct x86_exception fault;
9229 
9230 	trace_kvm_async_pf_not_present(work->arch.token, work->gva);
9231 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
9232 
9233 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
9234 	    (vcpu->arch.apf.send_user_only &&
9235 	     kvm_x86_ops->get_cpl(vcpu) == 0))
9236 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
9237 	else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
9238 		fault.vector = PF_VECTOR;
9239 		fault.error_code_valid = true;
9240 		fault.error_code = 0;
9241 		fault.nested_page_fault = false;
9242 		fault.address = work->arch.token;
9243 		fault.async_page_fault = true;
9244 		kvm_inject_page_fault(vcpu, &fault);
9245 	}
9246 }
9247 
9248 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
9249 				 struct kvm_async_pf *work)
9250 {
9251 	struct x86_exception fault;
9252 	u32 val;
9253 
9254 	if (work->wakeup_all)
9255 		work->arch.token = ~0; /* broadcast wakeup */
9256 	else
9257 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
9258 	trace_kvm_async_pf_ready(work->arch.token, work->gva);
9259 
9260 	if (vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED &&
9261 	    !apf_get_user(vcpu, &val)) {
9262 		if (val == KVM_PV_REASON_PAGE_NOT_PRESENT &&
9263 		    vcpu->arch.exception.pending &&
9264 		    vcpu->arch.exception.nr == PF_VECTOR &&
9265 		    !apf_put_user(vcpu, 0)) {
9266 			vcpu->arch.exception.injected = false;
9267 			vcpu->arch.exception.pending = false;
9268 			vcpu->arch.exception.nr = 0;
9269 			vcpu->arch.exception.has_error_code = false;
9270 			vcpu->arch.exception.error_code = 0;
9271 		} else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
9272 			fault.vector = PF_VECTOR;
9273 			fault.error_code_valid = true;
9274 			fault.error_code = 0;
9275 			fault.nested_page_fault = false;
9276 			fault.address = work->arch.token;
9277 			fault.async_page_fault = true;
9278 			kvm_inject_page_fault(vcpu, &fault);
9279 		}
9280 	}
9281 	vcpu->arch.apf.halted = false;
9282 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9283 }
9284 
9285 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
9286 {
9287 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
9288 		return true;
9289 	else
9290 		return kvm_can_do_async_pf(vcpu);
9291 }
9292 
9293 void kvm_arch_start_assignment(struct kvm *kvm)
9294 {
9295 	atomic_inc(&kvm->arch.assigned_device_count);
9296 }
9297 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
9298 
9299 void kvm_arch_end_assignment(struct kvm *kvm)
9300 {
9301 	atomic_dec(&kvm->arch.assigned_device_count);
9302 }
9303 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
9304 
9305 bool kvm_arch_has_assigned_device(struct kvm *kvm)
9306 {
9307 	return atomic_read(&kvm->arch.assigned_device_count);
9308 }
9309 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
9310 
9311 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
9312 {
9313 	atomic_inc(&kvm->arch.noncoherent_dma_count);
9314 }
9315 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
9316 
9317 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
9318 {
9319 	atomic_dec(&kvm->arch.noncoherent_dma_count);
9320 }
9321 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
9322 
9323 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
9324 {
9325 	return atomic_read(&kvm->arch.noncoherent_dma_count);
9326 }
9327 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
9328 
9329 bool kvm_arch_has_irq_bypass(void)
9330 {
9331 	return kvm_x86_ops->update_pi_irte != NULL;
9332 }
9333 
9334 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
9335 				      struct irq_bypass_producer *prod)
9336 {
9337 	struct kvm_kernel_irqfd *irqfd =
9338 		container_of(cons, struct kvm_kernel_irqfd, consumer);
9339 
9340 	irqfd->producer = prod;
9341 
9342 	return kvm_x86_ops->update_pi_irte(irqfd->kvm,
9343 					   prod->irq, irqfd->gsi, 1);
9344 }
9345 
9346 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
9347 				      struct irq_bypass_producer *prod)
9348 {
9349 	int ret;
9350 	struct kvm_kernel_irqfd *irqfd =
9351 		container_of(cons, struct kvm_kernel_irqfd, consumer);
9352 
9353 	WARN_ON(irqfd->producer != prod);
9354 	irqfd->producer = NULL;
9355 
9356 	/*
9357 	 * When producer of consumer is unregistered, we change back to
9358 	 * remapped mode, so we can re-use the current implementation
9359 	 * when the irq is masked/disabled or the consumer side (KVM
9360 	 * int this case doesn't want to receive the interrupts.
9361 	*/
9362 	ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
9363 	if (ret)
9364 		printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
9365 		       " fails: %d\n", irqfd->consumer.token, ret);
9366 }
9367 
9368 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
9369 				   uint32_t guest_irq, bool set)
9370 {
9371 	if (!kvm_x86_ops->update_pi_irte)
9372 		return -EINVAL;
9373 
9374 	return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
9375 }
9376 
9377 bool kvm_vector_hashing_enabled(void)
9378 {
9379 	return vector_hashing;
9380 }
9381 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
9382 
9383 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
9384 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
9385 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
9386 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
9387 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
9388 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
9389 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
9390 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
9391 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
9392 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
9393 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
9394 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
9395 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
9396 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
9397 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
9398 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
9399 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
9400 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
9401 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
9402