1 // SPDX-License-Identifier: GPL-2.0-only 2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 3 4 #include <linux/kvm_host.h> 5 6 #include <asm/irq_remapping.h> 7 #include <asm/cpu.h> 8 9 #include "lapic.h" 10 #include "irq.h" 11 #include "posted_intr.h" 12 #include "trace.h" 13 #include "vmx.h" 14 #include "tdx.h" 15 16 /* 17 * Maintain a per-CPU list of vCPUs that need to be awakened by wakeup_handler() 18 * when a WAKEUP_VECTOR interrupted is posted. vCPUs are added to the list when 19 * the vCPU is scheduled out and is blocking (e.g. in HLT) with IRQs enabled. 20 * The vCPUs posted interrupt descriptor is updated at the same time to set its 21 * notification vector to WAKEUP_VECTOR, so that posted interrupt from devices 22 * wake the target vCPUs. vCPUs are removed from the list and the notification 23 * vector is reset when the vCPU is scheduled in. 24 */ 25 static DEFINE_PER_CPU(struct list_head, wakeup_vcpus_on_cpu); 26 /* 27 * Protect the per-CPU list with a per-CPU spinlock to handle task migration. 28 * When a blocking vCPU is awakened _and_ migrated to a different pCPU, the 29 * ->sched_in() path will need to take the vCPU off the list of the _previous_ 30 * CPU. IRQs must be disabled when taking this lock, otherwise deadlock will 31 * occur if a wakeup IRQ arrives and attempts to acquire the lock. 32 */ 33 static DEFINE_PER_CPU(raw_spinlock_t, wakeup_vcpus_on_cpu_lock); 34 35 #define PI_LOCK_SCHED_OUT SINGLE_DEPTH_NESTING 36 37 struct pi_desc *vcpu_to_pi_desc(struct kvm_vcpu *vcpu) 38 { 39 return &(to_vt(vcpu)->pi_desc); 40 } 41 42 static int pi_try_set_control(struct pi_desc *pi_desc, u64 *pold, u64 new) 43 { 44 /* 45 * PID.ON can be set at any time by a different vCPU or by hardware, 46 * e.g. a device. PID.control must be written atomically, and the 47 * update must be retried with a fresh snapshot an ON change causes 48 * the cmpxchg to fail. 49 */ 50 if (!try_cmpxchg64(&pi_desc->control, pold, new)) 51 return -EBUSY; 52 53 return 0; 54 } 55 56 void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu) 57 { 58 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu); 59 struct vcpu_vt *vt = to_vt(vcpu); 60 struct pi_desc old, new; 61 unsigned long flags; 62 unsigned int dest; 63 64 /* 65 * To simplify hot-plug and dynamic toggling of APICv, keep PI.NDST and 66 * PI.SN up-to-date even if there is no assigned device or if APICv is 67 * deactivated due to a dynamic inhibit bit, e.g. for Hyper-V's SyncIC. 68 */ 69 if (!enable_apicv || !lapic_in_kernel(vcpu)) 70 return; 71 72 /* 73 * If the vCPU wasn't on the wakeup list and wasn't migrated, then the 74 * full update can be skipped as neither the vector nor the destination 75 * needs to be changed. 76 */ 77 if (pi_desc->nv != POSTED_INTR_WAKEUP_VECTOR && vcpu->cpu == cpu) { 78 /* 79 * Clear SN if it was set due to being preempted. Again, do 80 * this even if there is no assigned device for simplicity. 81 */ 82 if (pi_test_and_clear_sn(pi_desc)) 83 goto after_clear_sn; 84 return; 85 } 86 87 local_irq_save(flags); 88 89 /* 90 * If the vCPU was waiting for wakeup, remove the vCPU from the wakeup 91 * list of the _previous_ pCPU, which will not be the same as the 92 * current pCPU if the task was migrated. 93 */ 94 if (pi_desc->nv == POSTED_INTR_WAKEUP_VECTOR) { 95 raw_spinlock_t *spinlock = &per_cpu(wakeup_vcpus_on_cpu_lock, vcpu->cpu); 96 97 /* 98 * In addition to taking the wakeup lock for the regular/IRQ 99 * context, tell lockdep it is being taken for the "sched out" 100 * context as well. vCPU loads happens in task context, and 101 * this is taking the lock of the *previous* CPU, i.e. can race 102 * with both the scheduler and the wakeup handler. 103 */ 104 raw_spin_lock(spinlock); 105 spin_acquire(&spinlock->dep_map, PI_LOCK_SCHED_OUT, 0, _RET_IP_); 106 list_del(&vt->pi_wakeup_list); 107 spin_release(&spinlock->dep_map, _RET_IP_); 108 raw_spin_unlock(spinlock); 109 } 110 111 dest = cpu_physical_id(cpu); 112 if (!x2apic_mode) 113 dest = (dest << 8) & 0xFF00; 114 115 old.control = READ_ONCE(pi_desc->control); 116 do { 117 new.control = old.control; 118 119 /* 120 * Clear SN (as above) and refresh the destination APIC ID to 121 * handle task migration (@cpu != vcpu->cpu). 122 */ 123 new.ndst = dest; 124 __pi_clear_sn(&new); 125 126 /* 127 * Restore the notification vector; in the blocking case, the 128 * descriptor was modified on "put" to use the wakeup vector. 129 */ 130 new.nv = POSTED_INTR_VECTOR; 131 } while (pi_try_set_control(pi_desc, &old.control, new.control)); 132 133 local_irq_restore(flags); 134 135 after_clear_sn: 136 137 /* 138 * Clear SN before reading the bitmap. The VT-d firmware 139 * writes the bitmap and reads SN atomically (5.2.3 in the 140 * spec), so it doesn't really have a memory barrier that 141 * pairs with this, but we cannot do that and we need one. 142 */ 143 smp_mb__after_atomic(); 144 145 if (!pi_is_pir_empty(pi_desc)) 146 pi_set_on(pi_desc); 147 } 148 149 static bool vmx_can_use_vtd_pi(struct kvm *kvm) 150 { 151 return irqchip_in_kernel(kvm) && enable_apicv && 152 kvm_arch_has_assigned_device(kvm) && 153 irq_remapping_cap(IRQ_POSTING_CAP); 154 } 155 156 /* 157 * Put the vCPU on this pCPU's list of vCPUs that needs to be awakened and set 158 * WAKEUP as the notification vector in the PI descriptor. 159 */ 160 static void pi_enable_wakeup_handler(struct kvm_vcpu *vcpu) 161 { 162 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu); 163 struct vcpu_vt *vt = to_vt(vcpu); 164 struct pi_desc old, new; 165 166 lockdep_assert_irqs_disabled(); 167 168 /* 169 * Acquire the wakeup lock using the "sched out" context to workaround 170 * a lockdep false positive. When this is called, schedule() holds 171 * various per-CPU scheduler locks. When the wakeup handler runs, it 172 * holds this CPU's wakeup lock while calling try_to_wake_up(), which 173 * can eventually take the aforementioned scheduler locks, which causes 174 * lockdep to assume there is deadlock. 175 * 176 * Deadlock can't actually occur because IRQs are disabled for the 177 * entirety of the sched_out critical section, i.e. the wakeup handler 178 * can't run while the scheduler locks are held. 179 */ 180 raw_spin_lock_nested(&per_cpu(wakeup_vcpus_on_cpu_lock, vcpu->cpu), 181 PI_LOCK_SCHED_OUT); 182 list_add_tail(&vt->pi_wakeup_list, 183 &per_cpu(wakeup_vcpus_on_cpu, vcpu->cpu)); 184 raw_spin_unlock(&per_cpu(wakeup_vcpus_on_cpu_lock, vcpu->cpu)); 185 186 WARN(pi_test_sn(pi_desc), "PI descriptor SN field set before blocking"); 187 188 old.control = READ_ONCE(pi_desc->control); 189 do { 190 /* set 'NV' to 'wakeup vector' */ 191 new.control = old.control; 192 new.nv = POSTED_INTR_WAKEUP_VECTOR; 193 } while (pi_try_set_control(pi_desc, &old.control, new.control)); 194 195 /* 196 * Send a wakeup IPI to this CPU if an interrupt may have been posted 197 * before the notification vector was updated, in which case the IRQ 198 * will arrive on the non-wakeup vector. An IPI is needed as calling 199 * try_to_wake_up() from ->sched_out() isn't allowed (IRQs are not 200 * enabled until it is safe to call try_to_wake_up() on the task being 201 * scheduled out). 202 */ 203 if (pi_test_on(&new)) 204 __apic_send_IPI_self(POSTED_INTR_WAKEUP_VECTOR); 205 } 206 207 static bool vmx_needs_pi_wakeup(struct kvm_vcpu *vcpu) 208 { 209 /* 210 * The default posted interrupt vector does nothing when 211 * invoked outside guest mode. Return whether a blocked vCPU 212 * can be the target of posted interrupts, as is the case when 213 * using either IPI virtualization or VT-d PI, so that the 214 * notification vector is switched to the one that calls 215 * back to the pi_wakeup_handler() function. 216 */ 217 return (vmx_can_use_ipiv(vcpu) && !is_td_vcpu(vcpu)) || 218 vmx_can_use_vtd_pi(vcpu->kvm); 219 } 220 221 void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu) 222 { 223 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu); 224 225 if (!vmx_needs_pi_wakeup(vcpu)) 226 return; 227 228 if (kvm_vcpu_is_blocking(vcpu) && 229 ((is_td_vcpu(vcpu) && tdx_interrupt_allowed(vcpu)) || 230 (!is_td_vcpu(vcpu) && !vmx_interrupt_blocked(vcpu)))) 231 pi_enable_wakeup_handler(vcpu); 232 233 /* 234 * Set SN when the vCPU is preempted. Note, the vCPU can both be seen 235 * as blocking and preempted, e.g. if it's preempted between setting 236 * its wait state and manually scheduling out. 237 */ 238 if (vcpu->preempted) 239 pi_set_sn(pi_desc); 240 } 241 242 /* 243 * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR. 244 */ 245 void pi_wakeup_handler(void) 246 { 247 int cpu = smp_processor_id(); 248 struct list_head *wakeup_list = &per_cpu(wakeup_vcpus_on_cpu, cpu); 249 raw_spinlock_t *spinlock = &per_cpu(wakeup_vcpus_on_cpu_lock, cpu); 250 struct vcpu_vt *vt; 251 252 raw_spin_lock(spinlock); 253 list_for_each_entry(vt, wakeup_list, pi_wakeup_list) { 254 255 if (pi_test_on(&vt->pi_desc)) 256 kvm_vcpu_wake_up(vt_to_vcpu(vt)); 257 } 258 raw_spin_unlock(spinlock); 259 } 260 261 void __init pi_init_cpu(int cpu) 262 { 263 INIT_LIST_HEAD(&per_cpu(wakeup_vcpus_on_cpu, cpu)); 264 raw_spin_lock_init(&per_cpu(wakeup_vcpus_on_cpu_lock, cpu)); 265 } 266 267 bool pi_has_pending_interrupt(struct kvm_vcpu *vcpu) 268 { 269 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu); 270 271 return pi_test_on(pi_desc) || 272 (pi_test_sn(pi_desc) && !pi_is_pir_empty(pi_desc)); 273 } 274 275 276 /* 277 * Bail out of the block loop if the VM has an assigned 278 * device, but the blocking vCPU didn't reconfigure the 279 * PI.NV to the wakeup vector, i.e. the assigned device 280 * came along after the initial check in vmx_vcpu_pi_put(). 281 */ 282 void vmx_pi_start_assignment(struct kvm *kvm) 283 { 284 if (!irq_remapping_cap(IRQ_POSTING_CAP)) 285 return; 286 287 kvm_make_all_cpus_request(kvm, KVM_REQ_UNBLOCK); 288 } 289 290 /* 291 * vmx_pi_update_irte - set IRTE for Posted-Interrupts 292 * 293 * @kvm: kvm 294 * @host_irq: host irq of the interrupt 295 * @guest_irq: gsi of the interrupt 296 * @set: set or unset PI 297 * returns 0 on success, < 0 on failure 298 */ 299 int vmx_pi_update_irte(struct kvm *kvm, unsigned int host_irq, 300 uint32_t guest_irq, bool set) 301 { 302 struct kvm_kernel_irq_routing_entry *e; 303 struct kvm_irq_routing_table *irq_rt; 304 bool enable_remapped_mode = true; 305 struct kvm_lapic_irq irq; 306 struct kvm_vcpu *vcpu; 307 struct vcpu_data vcpu_info; 308 int idx, ret = 0; 309 310 if (!vmx_can_use_vtd_pi(kvm)) 311 return 0; 312 313 idx = srcu_read_lock(&kvm->irq_srcu); 314 irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu); 315 if (guest_irq >= irq_rt->nr_rt_entries || 316 hlist_empty(&irq_rt->map[guest_irq])) { 317 pr_warn_once("no route for guest_irq %u/%u (broken user space?)\n", 318 guest_irq, irq_rt->nr_rt_entries); 319 goto out; 320 } 321 322 hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) { 323 if (e->type != KVM_IRQ_ROUTING_MSI) 324 continue; 325 /* 326 * VT-d PI cannot support posting multicast/broadcast 327 * interrupts to a vCPU, we still use interrupt remapping 328 * for these kind of interrupts. 329 * 330 * For lowest-priority interrupts, we only support 331 * those with single CPU as the destination, e.g. user 332 * configures the interrupts via /proc/irq or uses 333 * irqbalance to make the interrupts single-CPU. 334 * 335 * We will support full lowest-priority interrupt later. 336 * 337 * In addition, we can only inject generic interrupts using 338 * the PI mechanism, refuse to route others through it. 339 */ 340 341 kvm_set_msi_irq(kvm, e, &irq); 342 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu) || 343 !kvm_irq_is_postable(&irq)) 344 continue; 345 346 vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu)); 347 vcpu_info.vector = irq.vector; 348 349 trace_kvm_pi_irte_update(host_irq, vcpu->vcpu_id, e->gsi, 350 vcpu_info.vector, vcpu_info.pi_desc_addr, set); 351 352 if (!set) 353 continue; 354 355 enable_remapped_mode = false; 356 357 ret = irq_set_vcpu_affinity(host_irq, &vcpu_info); 358 if (ret < 0) { 359 printk(KERN_INFO "%s: failed to update PI IRTE\n", 360 __func__); 361 goto out; 362 } 363 } 364 365 if (enable_remapped_mode) 366 ret = irq_set_vcpu_affinity(host_irq, NULL); 367 368 ret = 0; 369 out: 370 srcu_read_unlock(&kvm->irq_srcu, idx); 371 return ret; 372 } 373