xref: /linux/arch/x86/kvm/svm/svm.c (revision 4ea7c1717f3f2344f7a1cdab4f5875cfa89c87a9)
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2 
3 #include <linux/kvm_host.h>
4 
5 #include "irq.h"
6 #include "mmu.h"
7 #include "kvm_cache_regs.h"
8 #include "x86.h"
9 #include "smm.h"
10 #include "cpuid.h"
11 #include "pmu.h"
12 
13 #include <linux/module.h>
14 #include <linux/mod_devicetable.h>
15 #include <linux/kernel.h>
16 #include <linux/vmalloc.h>
17 #include <linux/highmem.h>
18 #include <linux/amd-iommu.h>
19 #include <linux/sched.h>
20 #include <linux/trace_events.h>
21 #include <linux/slab.h>
22 #include <linux/hashtable.h>
23 #include <linux/objtool.h>
24 #include <linux/psp-sev.h>
25 #include <linux/file.h>
26 #include <linux/pagemap.h>
27 #include <linux/swap.h>
28 #include <linux/rwsem.h>
29 #include <linux/cc_platform.h>
30 #include <linux/smp.h>
31 #include <linux/string_choices.h>
32 #include <linux/mutex.h>
33 
34 #include <asm/apic.h>
35 #include <asm/msr.h>
36 #include <asm/perf_event.h>
37 #include <asm/tlbflush.h>
38 #include <asm/desc.h>
39 #include <asm/debugreg.h>
40 #include <asm/kvm_para.h>
41 #include <asm/irq_remapping.h>
42 #include <asm/spec-ctrl.h>
43 #include <asm/cpu_device_id.h>
44 #include <asm/traps.h>
45 #include <asm/reboot.h>
46 #include <asm/fpu/api.h>
47 
48 #include <trace/events/ipi.h>
49 
50 #include "trace.h"
51 
52 #include "svm.h"
53 #include "svm_ops.h"
54 
55 #include "kvm_onhyperv.h"
56 #include "svm_onhyperv.h"
57 
58 MODULE_AUTHOR("Qumranet");
59 MODULE_DESCRIPTION("KVM support for SVM (AMD-V) extensions");
60 MODULE_LICENSE("GPL");
61 
62 #ifdef MODULE
63 static const struct x86_cpu_id svm_cpu_id[] = {
64 	X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL),
65 	{}
66 };
67 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
68 #endif
69 
70 #define SEG_TYPE_LDT 2
71 #define SEG_TYPE_BUSY_TSS16 3
72 
73 static bool erratum_383_found __read_mostly;
74 
75 /*
76  * Set osvw_len to higher value when updated Revision Guides
77  * are published and we know what the new status bits are
78  */
79 static uint64_t osvw_len = 4, osvw_status;
80 
81 static DEFINE_PER_CPU(u64, current_tsc_ratio);
82 
83 /*
84  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
85  * pause_filter_count: On processors that support Pause filtering(indicated
86  *	by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter
87  *	count value. On VMRUN this value is loaded into an internal counter.
88  *	Each time a pause instruction is executed, this counter is decremented
89  *	until it reaches zero at which time a #VMEXIT is generated if pause
90  *	intercept is enabled. Refer to  AMD APM Vol 2 Section 15.14.4 Pause
91  *	Intercept Filtering for more details.
92  *	This also indicate if ple logic enabled.
93  *
94  * pause_filter_thresh: In addition, some processor families support advanced
95  *	pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on
96  *	the amount of time a guest is allowed to execute in a pause loop.
97  *	In this mode, a 16-bit pause filter threshold field is added in the
98  *	VMCB. The threshold value is a cycle count that is used to reset the
99  *	pause counter. As with simple pause filtering, VMRUN loads the pause
100  *	count value from VMCB into an internal counter. Then, on each pause
101  *	instruction the hardware checks the elapsed number of cycles since
102  *	the most recent pause instruction against the pause filter threshold.
103  *	If the elapsed cycle count is greater than the pause filter threshold,
104  *	then the internal pause count is reloaded from the VMCB and execution
105  *	continues. If the elapsed cycle count is less than the pause filter
106  *	threshold, then the internal pause count is decremented. If the count
107  *	value is less than zero and PAUSE intercept is enabled, a #VMEXIT is
108  *	triggered. If advanced pause filtering is supported and pause filter
109  *	threshold field is set to zero, the filter will operate in the simpler,
110  *	count only mode.
111  */
112 
113 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP;
114 module_param(pause_filter_thresh, ushort, 0444);
115 
116 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW;
117 module_param(pause_filter_count, ushort, 0444);
118 
119 /* Default doubles per-vcpu window every exit. */
120 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
121 module_param(pause_filter_count_grow, ushort, 0444);
122 
123 /* Default resets per-vcpu window every exit to pause_filter_count. */
124 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
125 module_param(pause_filter_count_shrink, ushort, 0444);
126 
127 /* Default is to compute the maximum so we can never overflow. */
128 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX;
129 module_param(pause_filter_count_max, ushort, 0444);
130 
131 /*
132  * Use nested page tables by default.  Note, NPT may get forced off by
133  * svm_hardware_setup() if it's unsupported by hardware or the host kernel.
134  */
135 bool npt_enabled = true;
136 module_param_named(npt, npt_enabled, bool, 0444);
137 
138 /* allow nested virtualization in KVM/SVM */
139 static int nested = true;
140 module_param(nested, int, 0444);
141 
142 /* enable/disable Next RIP Save */
143 int nrips = true;
144 module_param(nrips, int, 0444);
145 
146 /* enable/disable Virtual VMLOAD VMSAVE */
147 static int vls = true;
148 module_param(vls, int, 0444);
149 
150 /* enable/disable Virtual GIF */
151 int vgif = true;
152 module_param(vgif, int, 0444);
153 
154 /* enable/disable LBR virtualization */
155 int lbrv = true;
156 module_param(lbrv, int, 0444);
157 
158 static int tsc_scaling = true;
159 module_param(tsc_scaling, int, 0444);
160 
161 module_param(enable_device_posted_irqs, bool, 0444);
162 
163 bool __read_mostly dump_invalid_vmcb;
164 module_param(dump_invalid_vmcb, bool, 0644);
165 
166 
167 bool intercept_smi = true;
168 module_param(intercept_smi, bool, 0444);
169 
170 bool vnmi = true;
171 module_param(vnmi, bool, 0444);
172 
173 static bool svm_gp_erratum_intercept = true;
174 
175 static u8 rsm_ins_bytes[] = "\x0f\xaa";
176 
177 static unsigned long iopm_base;
178 
179 DEFINE_PER_CPU(struct svm_cpu_data, svm_data);
180 
181 static DEFINE_MUTEX(vmcb_dump_mutex);
182 
183 /*
184  * Only MSR_TSC_AUX is switched via the user return hook.  EFER is switched via
185  * the VMCB, and the SYSCALL/SYSENTER MSRs are handled by VMLOAD/VMSAVE.
186  *
187  * RDTSCP and RDPID are not used in the kernel, specifically to allow KVM to
188  * defer the restoration of TSC_AUX until the CPU returns to userspace.
189  */
190 int tsc_aux_uret_slot __ro_after_init = -1;
191 
get_npt_level(void)192 static int get_npt_level(void)
193 {
194 #ifdef CONFIG_X86_64
195 	return pgtable_l5_enabled() ? PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
196 #else
197 	return PT32E_ROOT_LEVEL;
198 #endif
199 }
200 
svm_set_efer(struct kvm_vcpu * vcpu,u64 efer)201 int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
202 {
203 	struct vcpu_svm *svm = to_svm(vcpu);
204 	u64 old_efer = vcpu->arch.efer;
205 	vcpu->arch.efer = efer;
206 
207 	if (!npt_enabled) {
208 		/* Shadow paging assumes NX to be available.  */
209 		efer |= EFER_NX;
210 
211 		if (!(efer & EFER_LMA))
212 			efer &= ~EFER_LME;
213 	}
214 
215 	if ((old_efer & EFER_SVME) != (efer & EFER_SVME)) {
216 		if (!(efer & EFER_SVME)) {
217 			svm_leave_nested(vcpu);
218 			svm_set_gif(svm, true);
219 			/* #GP intercept is still needed for vmware backdoor */
220 			if (!enable_vmware_backdoor)
221 				clr_exception_intercept(svm, GP_VECTOR);
222 
223 			/*
224 			 * Free the nested guest state, unless we are in SMM.
225 			 * In this case we will return to the nested guest
226 			 * as soon as we leave SMM.
227 			 */
228 			if (!is_smm(vcpu))
229 				svm_free_nested(svm);
230 
231 		} else {
232 			int ret = svm_allocate_nested(svm);
233 
234 			if (ret) {
235 				vcpu->arch.efer = old_efer;
236 				return ret;
237 			}
238 
239 			/*
240 			 * Never intercept #GP for SEV guests, KVM can't
241 			 * decrypt guest memory to workaround the erratum.
242 			 */
243 			if (svm_gp_erratum_intercept && !sev_guest(vcpu->kvm))
244 				set_exception_intercept(svm, GP_VECTOR);
245 		}
246 	}
247 
248 	svm->vmcb->save.efer = efer | EFER_SVME;
249 	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
250 	return 0;
251 }
252 
svm_get_interrupt_shadow(struct kvm_vcpu * vcpu)253 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
254 {
255 	struct vcpu_svm *svm = to_svm(vcpu);
256 	u32 ret = 0;
257 
258 	if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
259 		ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
260 	return ret;
261 }
262 
svm_set_interrupt_shadow(struct kvm_vcpu * vcpu,int mask)263 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
264 {
265 	struct vcpu_svm *svm = to_svm(vcpu);
266 
267 	if (mask == 0)
268 		svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
269 	else
270 		svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
271 
272 }
273 
__svm_skip_emulated_instruction(struct kvm_vcpu * vcpu,bool commit_side_effects)274 static int __svm_skip_emulated_instruction(struct kvm_vcpu *vcpu,
275 					   bool commit_side_effects)
276 {
277 	struct vcpu_svm *svm = to_svm(vcpu);
278 	unsigned long old_rflags;
279 
280 	/*
281 	 * SEV-ES does not expose the next RIP. The RIP update is controlled by
282 	 * the type of exit and the #VC handler in the guest.
283 	 */
284 	if (sev_es_guest(vcpu->kvm))
285 		goto done;
286 
287 	if (nrips && svm->vmcb->control.next_rip != 0) {
288 		WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
289 		svm->next_rip = svm->vmcb->control.next_rip;
290 	}
291 
292 	if (!svm->next_rip) {
293 		if (unlikely(!commit_side_effects))
294 			old_rflags = svm->vmcb->save.rflags;
295 
296 		if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
297 			return 0;
298 
299 		if (unlikely(!commit_side_effects))
300 			svm->vmcb->save.rflags = old_rflags;
301 	} else {
302 		kvm_rip_write(vcpu, svm->next_rip);
303 	}
304 
305 done:
306 	if (likely(commit_side_effects))
307 		svm_set_interrupt_shadow(vcpu, 0);
308 
309 	return 1;
310 }
311 
svm_skip_emulated_instruction(struct kvm_vcpu * vcpu)312 static int svm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
313 {
314 	return __svm_skip_emulated_instruction(vcpu, true);
315 }
316 
svm_update_soft_interrupt_rip(struct kvm_vcpu * vcpu)317 static int svm_update_soft_interrupt_rip(struct kvm_vcpu *vcpu)
318 {
319 	unsigned long rip, old_rip = kvm_rip_read(vcpu);
320 	struct vcpu_svm *svm = to_svm(vcpu);
321 
322 	/*
323 	 * Due to architectural shortcomings, the CPU doesn't always provide
324 	 * NextRIP, e.g. if KVM intercepted an exception that occurred while
325 	 * the CPU was vectoring an INTO/INT3 in the guest.  Temporarily skip
326 	 * the instruction even if NextRIP is supported to acquire the next
327 	 * RIP so that it can be shoved into the NextRIP field, otherwise
328 	 * hardware will fail to advance guest RIP during event injection.
329 	 * Drop the exception/interrupt if emulation fails and effectively
330 	 * retry the instruction, it's the least awful option.  If NRIPS is
331 	 * in use, the skip must not commit any side effects such as clearing
332 	 * the interrupt shadow or RFLAGS.RF.
333 	 */
334 	if (!__svm_skip_emulated_instruction(vcpu, !nrips))
335 		return -EIO;
336 
337 	rip = kvm_rip_read(vcpu);
338 
339 	/*
340 	 * Save the injection information, even when using next_rip, as the
341 	 * VMCB's next_rip will be lost (cleared on VM-Exit) if the injection
342 	 * doesn't complete due to a VM-Exit occurring while the CPU is
343 	 * vectoring the event.   Decoding the instruction isn't guaranteed to
344 	 * work as there may be no backing instruction, e.g. if the event is
345 	 * being injected by L1 for L2, or if the guest is patching INT3 into
346 	 * a different instruction.
347 	 */
348 	svm->soft_int_injected = true;
349 	svm->soft_int_csbase = svm->vmcb->save.cs.base;
350 	svm->soft_int_old_rip = old_rip;
351 	svm->soft_int_next_rip = rip;
352 
353 	if (nrips)
354 		kvm_rip_write(vcpu, old_rip);
355 
356 	if (static_cpu_has(X86_FEATURE_NRIPS))
357 		svm->vmcb->control.next_rip = rip;
358 
359 	return 0;
360 }
361 
svm_inject_exception(struct kvm_vcpu * vcpu)362 static void svm_inject_exception(struct kvm_vcpu *vcpu)
363 {
364 	struct kvm_queued_exception *ex = &vcpu->arch.exception;
365 	struct vcpu_svm *svm = to_svm(vcpu);
366 
367 	kvm_deliver_exception_payload(vcpu, ex);
368 
369 	if (kvm_exception_is_soft(ex->vector) &&
370 	    svm_update_soft_interrupt_rip(vcpu))
371 		return;
372 
373 	svm->vmcb->control.event_inj = ex->vector
374 		| SVM_EVTINJ_VALID
375 		| (ex->has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
376 		| SVM_EVTINJ_TYPE_EXEPT;
377 	svm->vmcb->control.event_inj_err = ex->error_code;
378 }
379 
svm_init_erratum_383(void)380 static void svm_init_erratum_383(void)
381 {
382 	u64 val;
383 
384 	if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
385 		return;
386 
387 	/* Use _safe variants to not break nested virtualization */
388 	if (native_read_msr_safe(MSR_AMD64_DC_CFG, &val))
389 		return;
390 
391 	val |= (1ULL << 47);
392 
393 	native_write_msr_safe(MSR_AMD64_DC_CFG, val);
394 
395 	erratum_383_found = true;
396 }
397 
svm_init_osvw(struct kvm_vcpu * vcpu)398 static void svm_init_osvw(struct kvm_vcpu *vcpu)
399 {
400 	/*
401 	 * Guests should see errata 400 and 415 as fixed (assuming that
402 	 * HLT and IO instructions are intercepted).
403 	 */
404 	vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
405 	vcpu->arch.osvw.status = osvw_status & ~(6ULL);
406 
407 	/*
408 	 * By increasing VCPU's osvw.length to 3 we are telling the guest that
409 	 * all osvw.status bits inside that length, including bit 0 (which is
410 	 * reserved for erratum 298), are valid. However, if host processor's
411 	 * osvw_len is 0 then osvw_status[0] carries no information. We need to
412 	 * be conservative here and therefore we tell the guest that erratum 298
413 	 * is present (because we really don't know).
414 	 */
415 	if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
416 		vcpu->arch.osvw.status |= 1;
417 }
418 
__kvm_is_svm_supported(void)419 static bool __kvm_is_svm_supported(void)
420 {
421 	int cpu = smp_processor_id();
422 	struct cpuinfo_x86 *c = &cpu_data(cpu);
423 
424 	if (c->x86_vendor != X86_VENDOR_AMD &&
425 	    c->x86_vendor != X86_VENDOR_HYGON) {
426 		pr_err("CPU %d isn't AMD or Hygon\n", cpu);
427 		return false;
428 	}
429 
430 	if (!cpu_has(c, X86_FEATURE_SVM)) {
431 		pr_err("SVM not supported by CPU %d\n", cpu);
432 		return false;
433 	}
434 
435 	if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) {
436 		pr_info("KVM is unsupported when running as an SEV guest\n");
437 		return false;
438 	}
439 
440 	return true;
441 }
442 
kvm_is_svm_supported(void)443 static bool kvm_is_svm_supported(void)
444 {
445 	bool supported;
446 
447 	migrate_disable();
448 	supported = __kvm_is_svm_supported();
449 	migrate_enable();
450 
451 	return supported;
452 }
453 
svm_check_processor_compat(void)454 static int svm_check_processor_compat(void)
455 {
456 	if (!__kvm_is_svm_supported())
457 		return -EIO;
458 
459 	return 0;
460 }
461 
__svm_write_tsc_multiplier(u64 multiplier)462 static void __svm_write_tsc_multiplier(u64 multiplier)
463 {
464 	if (multiplier == __this_cpu_read(current_tsc_ratio))
465 		return;
466 
467 	wrmsrq(MSR_AMD64_TSC_RATIO, multiplier);
468 	__this_cpu_write(current_tsc_ratio, multiplier);
469 }
470 
sev_es_host_save_area(struct svm_cpu_data * sd)471 static __always_inline struct sev_es_save_area *sev_es_host_save_area(struct svm_cpu_data *sd)
472 {
473 	return &sd->save_area->host_sev_es_save;
474 }
475 
kvm_cpu_svm_disable(void)476 static inline void kvm_cpu_svm_disable(void)
477 {
478 	uint64_t efer;
479 
480 	wrmsrq(MSR_VM_HSAVE_PA, 0);
481 	rdmsrq(MSR_EFER, efer);
482 	if (efer & EFER_SVME) {
483 		/*
484 		 * Force GIF=1 prior to disabling SVM, e.g. to ensure INIT and
485 		 * NMI aren't blocked.
486 		 */
487 		stgi();
488 		wrmsrq(MSR_EFER, efer & ~EFER_SVME);
489 	}
490 }
491 
svm_emergency_disable_virtualization_cpu(void)492 static void svm_emergency_disable_virtualization_cpu(void)
493 {
494 	kvm_rebooting = true;
495 
496 	kvm_cpu_svm_disable();
497 }
498 
svm_disable_virtualization_cpu(void)499 static void svm_disable_virtualization_cpu(void)
500 {
501 	/* Make sure we clean up behind us */
502 	if (tsc_scaling)
503 		__svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT);
504 
505 	kvm_cpu_svm_disable();
506 
507 	amd_pmu_disable_virt();
508 }
509 
svm_enable_virtualization_cpu(void)510 static int svm_enable_virtualization_cpu(void)
511 {
512 
513 	struct svm_cpu_data *sd;
514 	uint64_t efer;
515 	int me = raw_smp_processor_id();
516 
517 	rdmsrq(MSR_EFER, efer);
518 	if (efer & EFER_SVME)
519 		return -EBUSY;
520 
521 	sd = per_cpu_ptr(&svm_data, me);
522 	sd->asid_generation = 1;
523 	sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
524 	sd->next_asid = sd->max_asid + 1;
525 	sd->min_asid = max_sev_asid + 1;
526 
527 	wrmsrq(MSR_EFER, efer | EFER_SVME);
528 
529 	wrmsrq(MSR_VM_HSAVE_PA, sd->save_area_pa);
530 
531 	if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
532 		/*
533 		 * Set the default value, even if we don't use TSC scaling
534 		 * to avoid having stale value in the msr
535 		 */
536 		__svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT);
537 	}
538 
539 
540 	/*
541 	 * Get OSVW bits.
542 	 *
543 	 * Note that it is possible to have a system with mixed processor
544 	 * revisions and therefore different OSVW bits. If bits are not the same
545 	 * on different processors then choose the worst case (i.e. if erratum
546 	 * is present on one processor and not on another then assume that the
547 	 * erratum is present everywhere).
548 	 */
549 	if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
550 		u64 len, status = 0;
551 		int err;
552 
553 		err = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &len);
554 		if (!err)
555 			err = native_read_msr_safe(MSR_AMD64_OSVW_STATUS, &status);
556 
557 		if (err)
558 			osvw_status = osvw_len = 0;
559 		else {
560 			if (len < osvw_len)
561 				osvw_len = len;
562 			osvw_status |= status;
563 			osvw_status &= (1ULL << osvw_len) - 1;
564 		}
565 	} else
566 		osvw_status = osvw_len = 0;
567 
568 	svm_init_erratum_383();
569 
570 	amd_pmu_enable_virt();
571 
572 	return 0;
573 }
574 
svm_cpu_uninit(int cpu)575 static void svm_cpu_uninit(int cpu)
576 {
577 	struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
578 
579 	if (!sd->save_area)
580 		return;
581 
582 	kfree(sd->sev_vmcbs);
583 	__free_page(__sme_pa_to_page(sd->save_area_pa));
584 	sd->save_area_pa = 0;
585 	sd->save_area = NULL;
586 }
587 
svm_cpu_init(int cpu)588 static int svm_cpu_init(int cpu)
589 {
590 	struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
591 	struct page *save_area_page;
592 	int ret = -ENOMEM;
593 
594 	memset(sd, 0, sizeof(struct svm_cpu_data));
595 	save_area_page = snp_safe_alloc_page_node(cpu_to_node(cpu), GFP_KERNEL);
596 	if (!save_area_page)
597 		return ret;
598 
599 	ret = sev_cpu_init(sd);
600 	if (ret)
601 		goto free_save_area;
602 
603 	sd->save_area = page_address(save_area_page);
604 	sd->save_area_pa = __sme_page_pa(save_area_page);
605 	return 0;
606 
607 free_save_area:
608 	__free_page(save_area_page);
609 	return ret;
610 
611 }
612 
set_dr_intercepts(struct vcpu_svm * svm)613 static void set_dr_intercepts(struct vcpu_svm *svm)
614 {
615 	struct vmcb *vmcb = svm->vmcb01.ptr;
616 
617 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR0_READ);
618 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR1_READ);
619 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR2_READ);
620 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR3_READ);
621 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR4_READ);
622 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR5_READ);
623 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR6_READ);
624 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR0_WRITE);
625 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR1_WRITE);
626 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR2_WRITE);
627 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR3_WRITE);
628 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR4_WRITE);
629 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR5_WRITE);
630 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR6_WRITE);
631 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_READ);
632 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_WRITE);
633 
634 	recalc_intercepts(svm);
635 }
636 
clr_dr_intercepts(struct vcpu_svm * svm)637 static void clr_dr_intercepts(struct vcpu_svm *svm)
638 {
639 	struct vmcb *vmcb = svm->vmcb01.ptr;
640 
641 	vmcb->control.intercepts[INTERCEPT_DR] = 0;
642 
643 	recalc_intercepts(svm);
644 }
645 
msr_write_intercepted(struct kvm_vcpu * vcpu,u32 msr)646 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
647 {
648 	/*
649 	 * For non-nested case:
650 	 * If the L01 MSR bitmap does not intercept the MSR, then we need to
651 	 * save it.
652 	 *
653 	 * For nested case:
654 	 * If the L02 MSR bitmap does not intercept the MSR, then we need to
655 	 * save it.
656 	 */
657 	void *msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm :
658 					    to_svm(vcpu)->msrpm;
659 
660 	return svm_test_msr_bitmap_write(msrpm, msr);
661 }
662 
svm_set_intercept_for_msr(struct kvm_vcpu * vcpu,u32 msr,int type,bool set)663 void svm_set_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type, bool set)
664 {
665 	struct vcpu_svm *svm = to_svm(vcpu);
666 	void *msrpm = svm->msrpm;
667 
668 	/* Don't disable interception for MSRs userspace wants to handle. */
669 	if (type & MSR_TYPE_R) {
670 		if (!set && kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ))
671 			svm_clear_msr_bitmap_read(msrpm, msr);
672 		else
673 			svm_set_msr_bitmap_read(msrpm, msr);
674 	}
675 
676 	if (type & MSR_TYPE_W) {
677 		if (!set && kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE))
678 			svm_clear_msr_bitmap_write(msrpm, msr);
679 		else
680 			svm_set_msr_bitmap_write(msrpm, msr);
681 	}
682 
683 	svm_hv_vmcb_dirty_nested_enlightenments(vcpu);
684 	svm->nested.force_msr_bitmap_recalc = true;
685 }
686 
svm_alloc_permissions_map(unsigned long size,gfp_t gfp_mask)687 void *svm_alloc_permissions_map(unsigned long size, gfp_t gfp_mask)
688 {
689 	unsigned int order = get_order(size);
690 	struct page *pages = alloc_pages(gfp_mask, order);
691 	void *pm;
692 
693 	if (!pages)
694 		return NULL;
695 
696 	/*
697 	 * Set all bits in the permissions map so that all MSR and I/O accesses
698 	 * are intercepted by default.
699 	 */
700 	pm = page_address(pages);
701 	memset(pm, 0xff, PAGE_SIZE * (1 << order));
702 
703 	return pm;
704 }
705 
svm_recalc_lbr_msr_intercepts(struct kvm_vcpu * vcpu)706 static void svm_recalc_lbr_msr_intercepts(struct kvm_vcpu *vcpu)
707 {
708 	bool intercept = !(to_svm(vcpu)->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK);
709 
710 	svm_set_intercept_for_msr(vcpu, MSR_IA32_LASTBRANCHFROMIP, MSR_TYPE_RW, intercept);
711 	svm_set_intercept_for_msr(vcpu, MSR_IA32_LASTBRANCHTOIP, MSR_TYPE_RW, intercept);
712 	svm_set_intercept_for_msr(vcpu, MSR_IA32_LASTINTFROMIP, MSR_TYPE_RW, intercept);
713 	svm_set_intercept_for_msr(vcpu, MSR_IA32_LASTINTTOIP, MSR_TYPE_RW, intercept);
714 
715 	if (sev_es_guest(vcpu->kvm))
716 		svm_set_intercept_for_msr(vcpu, MSR_IA32_DEBUGCTLMSR, MSR_TYPE_RW, intercept);
717 }
718 
svm_vcpu_free_msrpm(void * msrpm)719 void svm_vcpu_free_msrpm(void *msrpm)
720 {
721 	__free_pages(virt_to_page(msrpm), get_order(MSRPM_SIZE));
722 }
723 
svm_recalc_msr_intercepts(struct kvm_vcpu * vcpu)724 static void svm_recalc_msr_intercepts(struct kvm_vcpu *vcpu)
725 {
726 	struct vcpu_svm *svm = to_svm(vcpu);
727 
728 	svm_disable_intercept_for_msr(vcpu, MSR_STAR, MSR_TYPE_RW);
729 	svm_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
730 
731 #ifdef CONFIG_X86_64
732 	svm_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW);
733 	svm_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW);
734 	svm_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
735 	svm_disable_intercept_for_msr(vcpu, MSR_LSTAR, MSR_TYPE_RW);
736 	svm_disable_intercept_for_msr(vcpu, MSR_CSTAR, MSR_TYPE_RW);
737 	svm_disable_intercept_for_msr(vcpu, MSR_SYSCALL_MASK, MSR_TYPE_RW);
738 #endif
739 
740 	if (lbrv)
741 		svm_recalc_lbr_msr_intercepts(vcpu);
742 
743 	if (cpu_feature_enabled(X86_FEATURE_IBPB))
744 		svm_set_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W,
745 					  !guest_has_pred_cmd_msr(vcpu));
746 
747 	if (cpu_feature_enabled(X86_FEATURE_FLUSH_L1D))
748 		svm_set_intercept_for_msr(vcpu, MSR_IA32_FLUSH_CMD, MSR_TYPE_W,
749 					  !guest_cpu_cap_has(vcpu, X86_FEATURE_FLUSH_L1D));
750 
751 	/*
752 	 * Disable interception of SPEC_CTRL if KVM doesn't need to manually
753 	 * context switch the MSR (SPEC_CTRL is virtualized by the CPU), or if
754 	 * the guest has a non-zero SPEC_CTRL value, i.e. is likely actively
755 	 * using SPEC_CTRL.
756 	 */
757 	if (cpu_feature_enabled(X86_FEATURE_V_SPEC_CTRL))
758 		svm_set_intercept_for_msr(vcpu, MSR_IA32_SPEC_CTRL, MSR_TYPE_RW,
759 					  !guest_has_spec_ctrl_msr(vcpu));
760 	else
761 		svm_set_intercept_for_msr(vcpu, MSR_IA32_SPEC_CTRL, MSR_TYPE_RW,
762 					  !svm->spec_ctrl);
763 
764 	/*
765 	 * Intercept SYSENTER_EIP and SYSENTER_ESP when emulating an Intel CPU,
766 	 * as AMD hardware only store 32 bits, whereas Intel CPUs track 64 bits.
767 	 */
768 	svm_set_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW,
769 				  guest_cpuid_is_intel_compatible(vcpu));
770 	svm_set_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW,
771 				  guest_cpuid_is_intel_compatible(vcpu));
772 
773 	if (kvm_aperfmperf_in_guest(vcpu->kvm)) {
774 		svm_disable_intercept_for_msr(vcpu, MSR_IA32_APERF, MSR_TYPE_R);
775 		svm_disable_intercept_for_msr(vcpu, MSR_IA32_MPERF, MSR_TYPE_R);
776 	}
777 
778 	if (kvm_cpu_cap_has(X86_FEATURE_SHSTK)) {
779 		bool shstk_enabled = guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK);
780 
781 		svm_set_intercept_for_msr(vcpu, MSR_IA32_U_CET, MSR_TYPE_RW, !shstk_enabled);
782 		svm_set_intercept_for_msr(vcpu, MSR_IA32_S_CET, MSR_TYPE_RW, !shstk_enabled);
783 		svm_set_intercept_for_msr(vcpu, MSR_IA32_PL0_SSP, MSR_TYPE_RW, !shstk_enabled);
784 		svm_set_intercept_for_msr(vcpu, MSR_IA32_PL1_SSP, MSR_TYPE_RW, !shstk_enabled);
785 		svm_set_intercept_for_msr(vcpu, MSR_IA32_PL2_SSP, MSR_TYPE_RW, !shstk_enabled);
786 		svm_set_intercept_for_msr(vcpu, MSR_IA32_PL3_SSP, MSR_TYPE_RW, !shstk_enabled);
787 	}
788 
789 	if (sev_es_guest(vcpu->kvm))
790 		sev_es_recalc_msr_intercepts(vcpu);
791 
792 	/*
793 	 * x2APIC intercepts are modified on-demand and cannot be filtered by
794 	 * userspace.
795 	 */
796 }
797 
svm_copy_lbrs(struct vmcb * to_vmcb,struct vmcb * from_vmcb)798 void svm_copy_lbrs(struct vmcb *to_vmcb, struct vmcb *from_vmcb)
799 {
800 	to_vmcb->save.dbgctl		= from_vmcb->save.dbgctl;
801 	to_vmcb->save.br_from		= from_vmcb->save.br_from;
802 	to_vmcb->save.br_to		= from_vmcb->save.br_to;
803 	to_vmcb->save.last_excp_from	= from_vmcb->save.last_excp_from;
804 	to_vmcb->save.last_excp_to	= from_vmcb->save.last_excp_to;
805 
806 	vmcb_mark_dirty(to_vmcb, VMCB_LBR);
807 }
808 
__svm_enable_lbrv(struct kvm_vcpu * vcpu)809 static void __svm_enable_lbrv(struct kvm_vcpu *vcpu)
810 {
811 	to_svm(vcpu)->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
812 }
813 
svm_enable_lbrv(struct kvm_vcpu * vcpu)814 void svm_enable_lbrv(struct kvm_vcpu *vcpu)
815 {
816 	__svm_enable_lbrv(vcpu);
817 	svm_recalc_lbr_msr_intercepts(vcpu);
818 }
819 
__svm_disable_lbrv(struct kvm_vcpu * vcpu)820 static void __svm_disable_lbrv(struct kvm_vcpu *vcpu)
821 {
822 	KVM_BUG_ON(sev_es_guest(vcpu->kvm), vcpu->kvm);
823 	to_svm(vcpu)->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
824 }
825 
svm_update_lbrv(struct kvm_vcpu * vcpu)826 void svm_update_lbrv(struct kvm_vcpu *vcpu)
827 {
828 	struct vcpu_svm *svm = to_svm(vcpu);
829 	bool current_enable_lbrv = svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK;
830 	bool enable_lbrv = (svm->vmcb->save.dbgctl & DEBUGCTLMSR_LBR) ||
831 			    (is_guest_mode(vcpu) && guest_cpu_cap_has(vcpu, X86_FEATURE_LBRV) &&
832 			    (svm->nested.ctl.virt_ext & LBR_CTL_ENABLE_MASK));
833 
834 	if (enable_lbrv && !current_enable_lbrv)
835 		__svm_enable_lbrv(vcpu);
836 	else if (!enable_lbrv && current_enable_lbrv)
837 		__svm_disable_lbrv(vcpu);
838 
839 	/*
840 	 * During nested transitions, it is possible that the current VMCB has
841 	 * LBR_CTL set, but the previous LBR_CTL had it cleared (or vice versa).
842 	 * In this case, even though LBR_CTL does not need an update, intercepts
843 	 * do, so always recalculate the intercepts here.
844 	 */
845 	svm_recalc_lbr_msr_intercepts(vcpu);
846 }
847 
disable_nmi_singlestep(struct vcpu_svm * svm)848 void disable_nmi_singlestep(struct vcpu_svm *svm)
849 {
850 	svm->nmi_singlestep = false;
851 
852 	if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
853 		/* Clear our flags if they were not set by the guest */
854 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
855 			svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
856 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
857 			svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
858 	}
859 }
860 
grow_ple_window(struct kvm_vcpu * vcpu)861 static void grow_ple_window(struct kvm_vcpu *vcpu)
862 {
863 	struct vcpu_svm *svm = to_svm(vcpu);
864 	struct vmcb_control_area *control = &svm->vmcb->control;
865 	int old = control->pause_filter_count;
866 
867 	if (kvm_pause_in_guest(vcpu->kvm))
868 		return;
869 
870 	control->pause_filter_count = __grow_ple_window(old,
871 							pause_filter_count,
872 							pause_filter_count_grow,
873 							pause_filter_count_max);
874 
875 	if (control->pause_filter_count != old) {
876 		vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
877 		trace_kvm_ple_window_update(vcpu->vcpu_id,
878 					    control->pause_filter_count, old);
879 	}
880 }
881 
shrink_ple_window(struct kvm_vcpu * vcpu)882 static void shrink_ple_window(struct kvm_vcpu *vcpu)
883 {
884 	struct vcpu_svm *svm = to_svm(vcpu);
885 	struct vmcb_control_area *control = &svm->vmcb->control;
886 	int old = control->pause_filter_count;
887 
888 	if (kvm_pause_in_guest(vcpu->kvm))
889 		return;
890 
891 	control->pause_filter_count =
892 				__shrink_ple_window(old,
893 						    pause_filter_count,
894 						    pause_filter_count_shrink,
895 						    pause_filter_count);
896 	if (control->pause_filter_count != old) {
897 		vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
898 		trace_kvm_ple_window_update(vcpu->vcpu_id,
899 					    control->pause_filter_count, old);
900 	}
901 }
902 
svm_hardware_unsetup(void)903 static void svm_hardware_unsetup(void)
904 {
905 	int cpu;
906 
907 	avic_hardware_unsetup();
908 
909 	sev_hardware_unsetup();
910 
911 	for_each_possible_cpu(cpu)
912 		svm_cpu_uninit(cpu);
913 
914 	__free_pages(__sme_pa_to_page(iopm_base), get_order(IOPM_SIZE));
915 	iopm_base = 0;
916 }
917 
init_seg(struct vmcb_seg * seg)918 static void init_seg(struct vmcb_seg *seg)
919 {
920 	seg->selector = 0;
921 	seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
922 		      SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
923 	seg->limit = 0xffff;
924 	seg->base = 0;
925 }
926 
init_sys_seg(struct vmcb_seg * seg,uint32_t type)927 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
928 {
929 	seg->selector = 0;
930 	seg->attrib = SVM_SELECTOR_P_MASK | type;
931 	seg->limit = 0xffff;
932 	seg->base = 0;
933 }
934 
svm_get_l2_tsc_offset(struct kvm_vcpu * vcpu)935 static u64 svm_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
936 {
937 	struct vcpu_svm *svm = to_svm(vcpu);
938 
939 	return svm->nested.ctl.tsc_offset;
940 }
941 
svm_get_l2_tsc_multiplier(struct kvm_vcpu * vcpu)942 static u64 svm_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
943 {
944 	struct vcpu_svm *svm = to_svm(vcpu);
945 
946 	return svm->tsc_ratio_msr;
947 }
948 
svm_write_tsc_offset(struct kvm_vcpu * vcpu)949 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu)
950 {
951 	struct vcpu_svm *svm = to_svm(vcpu);
952 
953 	svm->vmcb01.ptr->control.tsc_offset = vcpu->arch.l1_tsc_offset;
954 	svm->vmcb->control.tsc_offset = vcpu->arch.tsc_offset;
955 	vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
956 }
957 
svm_write_tsc_multiplier(struct kvm_vcpu * vcpu)958 void svm_write_tsc_multiplier(struct kvm_vcpu *vcpu)
959 {
960 	preempt_disable();
961 	if (to_svm(vcpu)->guest_state_loaded)
962 		__svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio);
963 	preempt_enable();
964 }
965 
966 /* Evaluate instruction intercepts that depend on guest CPUID features. */
svm_recalc_instruction_intercepts(struct kvm_vcpu * vcpu)967 static void svm_recalc_instruction_intercepts(struct kvm_vcpu *vcpu)
968 {
969 	struct vcpu_svm *svm = to_svm(vcpu);
970 
971 	/*
972 	 * Intercept INVPCID if shadow paging is enabled to sync/free shadow
973 	 * roots, or if INVPCID is disabled in the guest to inject #UD.
974 	 */
975 	if (kvm_cpu_cap_has(X86_FEATURE_INVPCID)) {
976 		if (!npt_enabled ||
977 		    !guest_cpu_cap_has(&svm->vcpu, X86_FEATURE_INVPCID))
978 			svm_set_intercept(svm, INTERCEPT_INVPCID);
979 		else
980 			svm_clr_intercept(svm, INTERCEPT_INVPCID);
981 	}
982 
983 	if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP)) {
984 		if (guest_cpu_cap_has(vcpu, X86_FEATURE_RDTSCP))
985 			svm_clr_intercept(svm, INTERCEPT_RDTSCP);
986 		else
987 			svm_set_intercept(svm, INTERCEPT_RDTSCP);
988 	}
989 
990 	if (guest_cpuid_is_intel_compatible(vcpu)) {
991 		svm_set_intercept(svm, INTERCEPT_VMLOAD);
992 		svm_set_intercept(svm, INTERCEPT_VMSAVE);
993 		svm->vmcb->control.virt_ext &= ~VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
994 	} else {
995 		/*
996 		 * If hardware supports Virtual VMLOAD VMSAVE then enable it
997 		 * in VMCB and clear intercepts to avoid #VMEXIT.
998 		 */
999 		if (vls) {
1000 			svm_clr_intercept(svm, INTERCEPT_VMLOAD);
1001 			svm_clr_intercept(svm, INTERCEPT_VMSAVE);
1002 			svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1003 		}
1004 	}
1005 }
1006 
svm_recalc_intercepts(struct kvm_vcpu * vcpu)1007 static void svm_recalc_intercepts(struct kvm_vcpu *vcpu)
1008 {
1009 	svm_recalc_instruction_intercepts(vcpu);
1010 	svm_recalc_msr_intercepts(vcpu);
1011 }
1012 
init_vmcb(struct kvm_vcpu * vcpu,bool init_event)1013 static void init_vmcb(struct kvm_vcpu *vcpu, bool init_event)
1014 {
1015 	struct vcpu_svm *svm = to_svm(vcpu);
1016 	struct vmcb *vmcb = svm->vmcb01.ptr;
1017 	struct vmcb_control_area *control = &vmcb->control;
1018 	struct vmcb_save_area *save = &vmcb->save;
1019 
1020 	svm_set_intercept(svm, INTERCEPT_CR0_READ);
1021 	svm_set_intercept(svm, INTERCEPT_CR3_READ);
1022 	svm_set_intercept(svm, INTERCEPT_CR4_READ);
1023 	svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1024 	svm_set_intercept(svm, INTERCEPT_CR3_WRITE);
1025 	svm_set_intercept(svm, INTERCEPT_CR4_WRITE);
1026 	if (!kvm_vcpu_apicv_active(vcpu))
1027 		svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
1028 
1029 	set_dr_intercepts(svm);
1030 
1031 	set_exception_intercept(svm, PF_VECTOR);
1032 	set_exception_intercept(svm, UD_VECTOR);
1033 	set_exception_intercept(svm, MC_VECTOR);
1034 	set_exception_intercept(svm, AC_VECTOR);
1035 	set_exception_intercept(svm, DB_VECTOR);
1036 	/*
1037 	 * Guest access to VMware backdoor ports could legitimately
1038 	 * trigger #GP because of TSS I/O permission bitmap.
1039 	 * We intercept those #GP and allow access to them anyway
1040 	 * as VMware does.
1041 	 */
1042 	if (enable_vmware_backdoor)
1043 		set_exception_intercept(svm, GP_VECTOR);
1044 
1045 	svm_set_intercept(svm, INTERCEPT_INTR);
1046 	svm_set_intercept(svm, INTERCEPT_NMI);
1047 
1048 	if (intercept_smi)
1049 		svm_set_intercept(svm, INTERCEPT_SMI);
1050 
1051 	svm_set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1052 	svm_set_intercept(svm, INTERCEPT_RDPMC);
1053 	svm_set_intercept(svm, INTERCEPT_CPUID);
1054 	svm_set_intercept(svm, INTERCEPT_INVD);
1055 	svm_set_intercept(svm, INTERCEPT_INVLPG);
1056 	svm_set_intercept(svm, INTERCEPT_INVLPGA);
1057 	svm_set_intercept(svm, INTERCEPT_IOIO_PROT);
1058 	svm_set_intercept(svm, INTERCEPT_MSR_PROT);
1059 	svm_set_intercept(svm, INTERCEPT_TASK_SWITCH);
1060 	svm_set_intercept(svm, INTERCEPT_SHUTDOWN);
1061 	svm_set_intercept(svm, INTERCEPT_VMRUN);
1062 	svm_set_intercept(svm, INTERCEPT_VMMCALL);
1063 	svm_set_intercept(svm, INTERCEPT_VMLOAD);
1064 	svm_set_intercept(svm, INTERCEPT_VMSAVE);
1065 	svm_set_intercept(svm, INTERCEPT_STGI);
1066 	svm_set_intercept(svm, INTERCEPT_CLGI);
1067 	svm_set_intercept(svm, INTERCEPT_SKINIT);
1068 	svm_set_intercept(svm, INTERCEPT_WBINVD);
1069 	svm_set_intercept(svm, INTERCEPT_XSETBV);
1070 	svm_set_intercept(svm, INTERCEPT_RDPRU);
1071 	svm_set_intercept(svm, INTERCEPT_RSM);
1072 
1073 	if (!kvm_mwait_in_guest(vcpu->kvm)) {
1074 		svm_set_intercept(svm, INTERCEPT_MONITOR);
1075 		svm_set_intercept(svm, INTERCEPT_MWAIT);
1076 	}
1077 
1078 	if (!kvm_hlt_in_guest(vcpu->kvm)) {
1079 		if (cpu_feature_enabled(X86_FEATURE_IDLE_HLT))
1080 			svm_set_intercept(svm, INTERCEPT_IDLE_HLT);
1081 		else
1082 			svm_set_intercept(svm, INTERCEPT_HLT);
1083 	}
1084 
1085 	control->iopm_base_pa = iopm_base;
1086 	control->msrpm_base_pa = __sme_set(__pa(svm->msrpm));
1087 	control->int_ctl = V_INTR_MASKING_MASK;
1088 
1089 	init_seg(&save->es);
1090 	init_seg(&save->ss);
1091 	init_seg(&save->ds);
1092 	init_seg(&save->fs);
1093 	init_seg(&save->gs);
1094 
1095 	save->cs.selector = 0xf000;
1096 	save->cs.base = 0xffff0000;
1097 	/* Executable/Readable Code Segment */
1098 	save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1099 		SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1100 	save->cs.limit = 0xffff;
1101 
1102 	save->gdtr.base = 0;
1103 	save->gdtr.limit = 0xffff;
1104 	save->idtr.base = 0;
1105 	save->idtr.limit = 0xffff;
1106 
1107 	init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1108 	init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1109 
1110 	if (npt_enabled) {
1111 		/* Setup VMCB for Nested Paging */
1112 		control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE;
1113 		svm_clr_intercept(svm, INTERCEPT_INVLPG);
1114 		clr_exception_intercept(svm, PF_VECTOR);
1115 		svm_clr_intercept(svm, INTERCEPT_CR3_READ);
1116 		svm_clr_intercept(svm, INTERCEPT_CR3_WRITE);
1117 		save->g_pat = vcpu->arch.pat;
1118 		save->cr3 = 0;
1119 	}
1120 	svm->current_vmcb->asid_generation = 0;
1121 	svm->asid = 0;
1122 
1123 	svm->nested.vmcb12_gpa = INVALID_GPA;
1124 	svm->nested.last_vmcb12_gpa = INVALID_GPA;
1125 
1126 	if (!kvm_pause_in_guest(vcpu->kvm)) {
1127 		control->pause_filter_count = pause_filter_count;
1128 		if (pause_filter_thresh)
1129 			control->pause_filter_thresh = pause_filter_thresh;
1130 		svm_set_intercept(svm, INTERCEPT_PAUSE);
1131 	} else {
1132 		svm_clr_intercept(svm, INTERCEPT_PAUSE);
1133 	}
1134 
1135 	if (kvm_vcpu_apicv_active(vcpu))
1136 		avic_init_vmcb(svm, vmcb);
1137 
1138 	if (vnmi)
1139 		svm->vmcb->control.int_ctl |= V_NMI_ENABLE_MASK;
1140 
1141 	if (vgif) {
1142 		svm_clr_intercept(svm, INTERCEPT_STGI);
1143 		svm_clr_intercept(svm, INTERCEPT_CLGI);
1144 		svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK;
1145 	}
1146 
1147 	if (vcpu->kvm->arch.bus_lock_detection_enabled)
1148 		svm_set_intercept(svm, INTERCEPT_BUSLOCK);
1149 
1150 	if (sev_guest(vcpu->kvm))
1151 		sev_init_vmcb(svm, init_event);
1152 
1153 	svm_hv_init_vmcb(vmcb);
1154 
1155 	kvm_make_request(KVM_REQ_RECALC_INTERCEPTS, vcpu);
1156 
1157 	vmcb_mark_all_dirty(vmcb);
1158 
1159 	enable_gif(svm);
1160 }
1161 
__svm_vcpu_reset(struct kvm_vcpu * vcpu)1162 static void __svm_vcpu_reset(struct kvm_vcpu *vcpu)
1163 {
1164 	struct vcpu_svm *svm = to_svm(vcpu);
1165 
1166 	svm_init_osvw(vcpu);
1167 
1168 	if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_STUFF_FEATURE_MSRS))
1169 		vcpu->arch.microcode_version = 0x01000065;
1170 	svm->tsc_ratio_msr = kvm_caps.default_tsc_scaling_ratio;
1171 
1172 	svm->nmi_masked = false;
1173 	svm->awaiting_iret_completion = false;
1174 }
1175 
svm_vcpu_reset(struct kvm_vcpu * vcpu,bool init_event)1176 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
1177 {
1178 	struct vcpu_svm *svm = to_svm(vcpu);
1179 
1180 	svm->spec_ctrl = 0;
1181 	svm->virt_spec_ctrl = 0;
1182 
1183 	init_vmcb(vcpu, init_event);
1184 
1185 	if (!init_event)
1186 		__svm_vcpu_reset(vcpu);
1187 }
1188 
svm_switch_vmcb(struct vcpu_svm * svm,struct kvm_vmcb_info * target_vmcb)1189 void svm_switch_vmcb(struct vcpu_svm *svm, struct kvm_vmcb_info *target_vmcb)
1190 {
1191 	svm->current_vmcb = target_vmcb;
1192 	svm->vmcb = target_vmcb->ptr;
1193 }
1194 
svm_vcpu_create(struct kvm_vcpu * vcpu)1195 static int svm_vcpu_create(struct kvm_vcpu *vcpu)
1196 {
1197 	struct vcpu_svm *svm;
1198 	struct page *vmcb01_page;
1199 	int err;
1200 
1201 	BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0);
1202 	svm = to_svm(vcpu);
1203 
1204 	err = -ENOMEM;
1205 	vmcb01_page = snp_safe_alloc_page();
1206 	if (!vmcb01_page)
1207 		goto out;
1208 
1209 	err = sev_vcpu_create(vcpu);
1210 	if (err)
1211 		goto error_free_vmcb_page;
1212 
1213 	err = avic_init_vcpu(svm);
1214 	if (err)
1215 		goto error_free_sev;
1216 
1217 	svm->msrpm = svm_vcpu_alloc_msrpm();
1218 	if (!svm->msrpm) {
1219 		err = -ENOMEM;
1220 		goto error_free_sev;
1221 	}
1222 
1223 	svm->x2avic_msrs_intercepted = true;
1224 
1225 	svm->vmcb01.ptr = page_address(vmcb01_page);
1226 	svm->vmcb01.pa = __sme_set(page_to_pfn(vmcb01_page) << PAGE_SHIFT);
1227 	svm_switch_vmcb(svm, &svm->vmcb01);
1228 
1229 	svm->guest_state_loaded = false;
1230 
1231 	return 0;
1232 
1233 error_free_sev:
1234 	sev_free_vcpu(vcpu);
1235 error_free_vmcb_page:
1236 	__free_page(vmcb01_page);
1237 out:
1238 	return err;
1239 }
1240 
svm_vcpu_free(struct kvm_vcpu * vcpu)1241 static void svm_vcpu_free(struct kvm_vcpu *vcpu)
1242 {
1243 	struct vcpu_svm *svm = to_svm(vcpu);
1244 
1245 	WARN_ON_ONCE(!list_empty(&svm->ir_list));
1246 
1247 	svm_leave_nested(vcpu);
1248 	svm_free_nested(svm);
1249 
1250 	sev_free_vcpu(vcpu);
1251 
1252 	__free_page(__sme_pa_to_page(svm->vmcb01.pa));
1253 	svm_vcpu_free_msrpm(svm->msrpm);
1254 }
1255 
1256 #ifdef CONFIG_CPU_MITIGATIONS
1257 static DEFINE_SPINLOCK(srso_lock);
1258 static atomic_t srso_nr_vms;
1259 
svm_srso_clear_bp_spec_reduce(void * ign)1260 static void svm_srso_clear_bp_spec_reduce(void *ign)
1261 {
1262 	struct svm_cpu_data *sd = this_cpu_ptr(&svm_data);
1263 
1264 	if (!sd->bp_spec_reduce_set)
1265 		return;
1266 
1267 	msr_clear_bit(MSR_ZEN4_BP_CFG, MSR_ZEN4_BP_CFG_BP_SPEC_REDUCE_BIT);
1268 	sd->bp_spec_reduce_set = false;
1269 }
1270 
svm_srso_vm_destroy(void)1271 static void svm_srso_vm_destroy(void)
1272 {
1273 	if (!cpu_feature_enabled(X86_FEATURE_SRSO_BP_SPEC_REDUCE))
1274 		return;
1275 
1276 	if (atomic_dec_return(&srso_nr_vms))
1277 		return;
1278 
1279 	guard(spinlock)(&srso_lock);
1280 
1281 	/*
1282 	 * Verify a new VM didn't come along, acquire the lock, and increment
1283 	 * the count before this task acquired the lock.
1284 	 */
1285 	if (atomic_read(&srso_nr_vms))
1286 		return;
1287 
1288 	on_each_cpu(svm_srso_clear_bp_spec_reduce, NULL, 1);
1289 }
1290 
svm_srso_vm_init(void)1291 static void svm_srso_vm_init(void)
1292 {
1293 	if (!cpu_feature_enabled(X86_FEATURE_SRSO_BP_SPEC_REDUCE))
1294 		return;
1295 
1296 	/*
1297 	 * Acquire the lock on 0 => 1 transitions to ensure a potential 1 => 0
1298 	 * transition, i.e. destroying the last VM, is fully complete, e.g. so
1299 	 * that a delayed IPI doesn't clear BP_SPEC_REDUCE after a vCPU runs.
1300 	 */
1301 	if (atomic_inc_not_zero(&srso_nr_vms))
1302 		return;
1303 
1304 	guard(spinlock)(&srso_lock);
1305 
1306 	atomic_inc(&srso_nr_vms);
1307 }
1308 #else
svm_srso_vm_init(void)1309 static void svm_srso_vm_init(void) { }
svm_srso_vm_destroy(void)1310 static void svm_srso_vm_destroy(void) { }
1311 #endif
1312 
svm_prepare_switch_to_guest(struct kvm_vcpu * vcpu)1313 static void svm_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1314 {
1315 	struct vcpu_svm *svm = to_svm(vcpu);
1316 	struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu);
1317 
1318 	if (sev_es_guest(vcpu->kvm))
1319 		sev_es_unmap_ghcb(svm);
1320 
1321 	if (svm->guest_state_loaded)
1322 		return;
1323 
1324 	/*
1325 	 * Save additional host state that will be restored on VMEXIT (sev-es)
1326 	 * or subsequent vmload of host save area.
1327 	 */
1328 	vmsave(sd->save_area_pa);
1329 	if (sev_es_guest(vcpu->kvm))
1330 		sev_es_prepare_switch_to_guest(svm, sev_es_host_save_area(sd));
1331 
1332 	if (tsc_scaling)
1333 		__svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio);
1334 
1335 	/*
1336 	 * TSC_AUX is always virtualized (context switched by hardware) for
1337 	 * SEV-ES guests when the feature is available.  For non-SEV-ES guests,
1338 	 * context switch TSC_AUX via the user_return MSR infrastructure (not
1339 	 * all CPUs support TSC_AUX virtualization).
1340 	 */
1341 	if (likely(tsc_aux_uret_slot >= 0) &&
1342 	    (!boot_cpu_has(X86_FEATURE_V_TSC_AUX) || !sev_es_guest(vcpu->kvm)))
1343 		kvm_set_user_return_msr(tsc_aux_uret_slot, svm->tsc_aux, -1ull);
1344 
1345 	if (cpu_feature_enabled(X86_FEATURE_SRSO_BP_SPEC_REDUCE) &&
1346 	    !sd->bp_spec_reduce_set) {
1347 		sd->bp_spec_reduce_set = true;
1348 		msr_set_bit(MSR_ZEN4_BP_CFG, MSR_ZEN4_BP_CFG_BP_SPEC_REDUCE_BIT);
1349 	}
1350 	svm->guest_state_loaded = true;
1351 }
1352 
svm_prepare_host_switch(struct kvm_vcpu * vcpu)1353 static void svm_prepare_host_switch(struct kvm_vcpu *vcpu)
1354 {
1355 	to_svm(vcpu)->guest_state_loaded = false;
1356 }
1357 
svm_vcpu_load(struct kvm_vcpu * vcpu,int cpu)1358 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1359 {
1360 	if (vcpu->scheduled_out && !kvm_pause_in_guest(vcpu->kvm))
1361 		shrink_ple_window(vcpu);
1362 
1363 	if (kvm_vcpu_apicv_active(vcpu))
1364 		avic_vcpu_load(vcpu, cpu);
1365 }
1366 
svm_vcpu_put(struct kvm_vcpu * vcpu)1367 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1368 {
1369 	if (kvm_vcpu_apicv_active(vcpu))
1370 		avic_vcpu_put(vcpu);
1371 
1372 	svm_prepare_host_switch(vcpu);
1373 
1374 	++vcpu->stat.host_state_reload;
1375 }
1376 
svm_get_rflags(struct kvm_vcpu * vcpu)1377 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1378 {
1379 	struct vcpu_svm *svm = to_svm(vcpu);
1380 	unsigned long rflags = svm->vmcb->save.rflags;
1381 
1382 	if (svm->nmi_singlestep) {
1383 		/* Hide our flags if they were not set by the guest */
1384 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1385 			rflags &= ~X86_EFLAGS_TF;
1386 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1387 			rflags &= ~X86_EFLAGS_RF;
1388 	}
1389 	return rflags;
1390 }
1391 
svm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)1392 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1393 {
1394 	if (to_svm(vcpu)->nmi_singlestep)
1395 		rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
1396 
1397        /*
1398         * Any change of EFLAGS.VM is accompanied by a reload of SS
1399         * (caused by either a task switch or an inter-privilege IRET),
1400         * so we do not need to update the CPL here.
1401         */
1402 	to_svm(vcpu)->vmcb->save.rflags = rflags;
1403 }
1404 
svm_get_if_flag(struct kvm_vcpu * vcpu)1405 static bool svm_get_if_flag(struct kvm_vcpu *vcpu)
1406 {
1407 	struct vmcb *vmcb = to_svm(vcpu)->vmcb;
1408 
1409 	return sev_es_guest(vcpu->kvm)
1410 		? vmcb->control.int_state & SVM_GUEST_INTERRUPT_MASK
1411 		: kvm_get_rflags(vcpu) & X86_EFLAGS_IF;
1412 }
1413 
svm_cache_reg(struct kvm_vcpu * vcpu,enum kvm_reg reg)1414 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1415 {
1416 	kvm_register_mark_available(vcpu, reg);
1417 
1418 	switch (reg) {
1419 	case VCPU_EXREG_PDPTR:
1420 		/*
1421 		 * When !npt_enabled, mmu->pdptrs[] is already available since
1422 		 * it is always updated per SDM when moving to CRs.
1423 		 */
1424 		if (npt_enabled)
1425 			load_pdptrs(vcpu, kvm_read_cr3(vcpu));
1426 		break;
1427 	default:
1428 		KVM_BUG_ON(1, vcpu->kvm);
1429 	}
1430 }
1431 
svm_set_vintr(struct vcpu_svm * svm)1432 static void svm_set_vintr(struct vcpu_svm *svm)
1433 {
1434 	struct vmcb_control_area *control;
1435 
1436 	/*
1437 	 * The following fields are ignored when AVIC is enabled
1438 	 */
1439 	WARN_ON(kvm_vcpu_apicv_activated(&svm->vcpu));
1440 
1441 	svm_set_intercept(svm, INTERCEPT_VINTR);
1442 
1443 	/*
1444 	 * Recalculating intercepts may have cleared the VINTR intercept.  If
1445 	 * V_INTR_MASKING is enabled in vmcb12, then the effective RFLAGS.IF
1446 	 * for L1 physical interrupts is L1's RFLAGS.IF at the time of VMRUN.
1447 	 * Requesting an interrupt window if save.RFLAGS.IF=0 is pointless as
1448 	 * interrupts will never be unblocked while L2 is running.
1449 	 */
1450 	if (!svm_is_intercept(svm, INTERCEPT_VINTR))
1451 		return;
1452 
1453 	/*
1454 	 * This is just a dummy VINTR to actually cause a vmexit to happen.
1455 	 * Actual injection of virtual interrupts happens through EVENTINJ.
1456 	 */
1457 	control = &svm->vmcb->control;
1458 	control->int_vector = 0x0;
1459 	control->int_ctl &= ~V_INTR_PRIO_MASK;
1460 	control->int_ctl |= V_IRQ_MASK |
1461 		((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
1462 	vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1463 }
1464 
svm_clear_vintr(struct vcpu_svm * svm)1465 static void svm_clear_vintr(struct vcpu_svm *svm)
1466 {
1467 	svm_clr_intercept(svm, INTERCEPT_VINTR);
1468 
1469 	/* Drop int_ctl fields related to VINTR injection.  */
1470 	svm->vmcb->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK;
1471 	if (is_guest_mode(&svm->vcpu)) {
1472 		svm->vmcb01.ptr->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK;
1473 
1474 		WARN_ON((svm->vmcb->control.int_ctl & V_TPR_MASK) !=
1475 			(svm->nested.ctl.int_ctl & V_TPR_MASK));
1476 
1477 		svm->vmcb->control.int_ctl |= svm->nested.ctl.int_ctl &
1478 			V_IRQ_INJECTION_BITS_MASK;
1479 
1480 		svm->vmcb->control.int_vector = svm->nested.ctl.int_vector;
1481 	}
1482 
1483 	vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1484 }
1485 
svm_seg(struct kvm_vcpu * vcpu,int seg)1486 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1487 {
1488 	struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1489 	struct vmcb_save_area *save01 = &to_svm(vcpu)->vmcb01.ptr->save;
1490 
1491 	switch (seg) {
1492 	case VCPU_SREG_CS: return &save->cs;
1493 	case VCPU_SREG_DS: return &save->ds;
1494 	case VCPU_SREG_ES: return &save->es;
1495 	case VCPU_SREG_FS: return &save01->fs;
1496 	case VCPU_SREG_GS: return &save01->gs;
1497 	case VCPU_SREG_SS: return &save->ss;
1498 	case VCPU_SREG_TR: return &save01->tr;
1499 	case VCPU_SREG_LDTR: return &save01->ldtr;
1500 	}
1501 	BUG();
1502 	return NULL;
1503 }
1504 
svm_get_segment_base(struct kvm_vcpu * vcpu,int seg)1505 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1506 {
1507 	struct vmcb_seg *s = svm_seg(vcpu, seg);
1508 
1509 	return s->base;
1510 }
1511 
svm_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)1512 static void svm_get_segment(struct kvm_vcpu *vcpu,
1513 			    struct kvm_segment *var, int seg)
1514 {
1515 	struct vmcb_seg *s = svm_seg(vcpu, seg);
1516 
1517 	var->base = s->base;
1518 	var->limit = s->limit;
1519 	var->selector = s->selector;
1520 	var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1521 	var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1522 	var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1523 	var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1524 	var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1525 	var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1526 	var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1527 
1528 	/*
1529 	 * AMD CPUs circa 2014 track the G bit for all segments except CS.
1530 	 * However, the SVM spec states that the G bit is not observed by the
1531 	 * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1532 	 * So let's synthesize a legal G bit for all segments, this helps
1533 	 * running KVM nested. It also helps cross-vendor migration, because
1534 	 * Intel's vmentry has a check on the 'G' bit.
1535 	 */
1536 	var->g = s->limit > 0xfffff;
1537 
1538 	/*
1539 	 * AMD's VMCB does not have an explicit unusable field, so emulate it
1540 	 * for cross vendor migration purposes by "not present"
1541 	 */
1542 	var->unusable = !var->present;
1543 
1544 	switch (seg) {
1545 	case VCPU_SREG_TR:
1546 		/*
1547 		 * Work around a bug where the busy flag in the tr selector
1548 		 * isn't exposed
1549 		 */
1550 		var->type |= 0x2;
1551 		break;
1552 	case VCPU_SREG_DS:
1553 	case VCPU_SREG_ES:
1554 	case VCPU_SREG_FS:
1555 	case VCPU_SREG_GS:
1556 		/*
1557 		 * The accessed bit must always be set in the segment
1558 		 * descriptor cache, although it can be cleared in the
1559 		 * descriptor, the cached bit always remains at 1. Since
1560 		 * Intel has a check on this, set it here to support
1561 		 * cross-vendor migration.
1562 		 */
1563 		if (!var->unusable)
1564 			var->type |= 0x1;
1565 		break;
1566 	case VCPU_SREG_SS:
1567 		/*
1568 		 * On AMD CPUs sometimes the DB bit in the segment
1569 		 * descriptor is left as 1, although the whole segment has
1570 		 * been made unusable. Clear it here to pass an Intel VMX
1571 		 * entry check when cross vendor migrating.
1572 		 */
1573 		if (var->unusable)
1574 			var->db = 0;
1575 		/* This is symmetric with svm_set_segment() */
1576 		var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1577 		break;
1578 	}
1579 }
1580 
svm_get_cpl(struct kvm_vcpu * vcpu)1581 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1582 {
1583 	struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1584 
1585 	return save->cpl;
1586 }
1587 
svm_get_cs_db_l_bits(struct kvm_vcpu * vcpu,int * db,int * l)1588 static void svm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
1589 {
1590 	struct kvm_segment cs;
1591 
1592 	svm_get_segment(vcpu, &cs, VCPU_SREG_CS);
1593 	*db = cs.db;
1594 	*l = cs.l;
1595 }
1596 
svm_get_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)1597 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1598 {
1599 	struct vcpu_svm *svm = to_svm(vcpu);
1600 
1601 	dt->size = svm->vmcb->save.idtr.limit;
1602 	dt->address = svm->vmcb->save.idtr.base;
1603 }
1604 
svm_set_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)1605 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1606 {
1607 	struct vcpu_svm *svm = to_svm(vcpu);
1608 
1609 	svm->vmcb->save.idtr.limit = dt->size;
1610 	svm->vmcb->save.idtr.base = dt->address ;
1611 	vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1612 }
1613 
svm_get_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)1614 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1615 {
1616 	struct vcpu_svm *svm = to_svm(vcpu);
1617 
1618 	dt->size = svm->vmcb->save.gdtr.limit;
1619 	dt->address = svm->vmcb->save.gdtr.base;
1620 }
1621 
svm_set_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)1622 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1623 {
1624 	struct vcpu_svm *svm = to_svm(vcpu);
1625 
1626 	svm->vmcb->save.gdtr.limit = dt->size;
1627 	svm->vmcb->save.gdtr.base = dt->address ;
1628 	vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1629 }
1630 
sev_post_set_cr3(struct kvm_vcpu * vcpu,unsigned long cr3)1631 static void sev_post_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1632 {
1633 	struct vcpu_svm *svm = to_svm(vcpu);
1634 
1635 	/*
1636 	 * For guests that don't set guest_state_protected, the cr3 update is
1637 	 * handled via kvm_mmu_load() while entering the guest. For guests
1638 	 * that do (SEV-ES/SEV-SNP), the cr3 update needs to be written to
1639 	 * VMCB save area now, since the save area will become the initial
1640 	 * contents of the VMSA, and future VMCB save area updates won't be
1641 	 * seen.
1642 	 */
1643 	if (sev_es_guest(vcpu->kvm)) {
1644 		svm->vmcb->save.cr3 = cr3;
1645 		vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1646 	}
1647 }
1648 
svm_is_valid_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)1649 static bool svm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1650 {
1651 	return true;
1652 }
1653 
svm_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)1654 void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1655 {
1656 	struct vcpu_svm *svm = to_svm(vcpu);
1657 	u64 hcr0 = cr0;
1658 	bool old_paging = is_paging(vcpu);
1659 
1660 #ifdef CONFIG_X86_64
1661 	if (vcpu->arch.efer & EFER_LME) {
1662 		if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1663 			vcpu->arch.efer |= EFER_LMA;
1664 			if (!vcpu->arch.guest_state_protected)
1665 				svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1666 		}
1667 
1668 		if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1669 			vcpu->arch.efer &= ~EFER_LMA;
1670 			if (!vcpu->arch.guest_state_protected)
1671 				svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1672 		}
1673 	}
1674 #endif
1675 	vcpu->arch.cr0 = cr0;
1676 
1677 	if (!npt_enabled) {
1678 		hcr0 |= X86_CR0_PG | X86_CR0_WP;
1679 		if (old_paging != is_paging(vcpu))
1680 			svm_set_cr4(vcpu, kvm_read_cr4(vcpu));
1681 	}
1682 
1683 	/*
1684 	 * re-enable caching here because the QEMU bios
1685 	 * does not do it - this results in some delay at
1686 	 * reboot
1687 	 */
1688 	if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
1689 		hcr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1690 
1691 	svm->vmcb->save.cr0 = hcr0;
1692 	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1693 
1694 	/*
1695 	 * SEV-ES guests must always keep the CR intercepts cleared. CR
1696 	 * tracking is done using the CR write traps.
1697 	 */
1698 	if (sev_es_guest(vcpu->kvm))
1699 		return;
1700 
1701 	if (hcr0 == cr0) {
1702 		/* Selective CR0 write remains on.  */
1703 		svm_clr_intercept(svm, INTERCEPT_CR0_READ);
1704 		svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
1705 	} else {
1706 		svm_set_intercept(svm, INTERCEPT_CR0_READ);
1707 		svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1708 	}
1709 }
1710 
svm_is_valid_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)1711 static bool svm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1712 {
1713 	return true;
1714 }
1715 
svm_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)1716 void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1717 {
1718 	unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
1719 	unsigned long old_cr4 = vcpu->arch.cr4;
1720 
1721 	vcpu->arch.cr4 = cr4;
1722 	if (!npt_enabled) {
1723 		cr4 |= X86_CR4_PAE;
1724 
1725 		if (!is_paging(vcpu))
1726 			cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
1727 	}
1728 	cr4 |= host_cr4_mce;
1729 	to_svm(vcpu)->vmcb->save.cr4 = cr4;
1730 	vmcb_mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1731 
1732 	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
1733 		vcpu->arch.cpuid_dynamic_bits_dirty = true;
1734 }
1735 
svm_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)1736 static void svm_set_segment(struct kvm_vcpu *vcpu,
1737 			    struct kvm_segment *var, int seg)
1738 {
1739 	struct vcpu_svm *svm = to_svm(vcpu);
1740 	struct vmcb_seg *s = svm_seg(vcpu, seg);
1741 
1742 	s->base = var->base;
1743 	s->limit = var->limit;
1744 	s->selector = var->selector;
1745 	s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1746 	s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1747 	s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1748 	s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
1749 	s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1750 	s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1751 	s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1752 	s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1753 
1754 	/*
1755 	 * This is always accurate, except if SYSRET returned to a segment
1756 	 * with SS.DPL != 3.  Intel does not have this quirk, and always
1757 	 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
1758 	 * would entail passing the CPL to userspace and back.
1759 	 */
1760 	if (seg == VCPU_SREG_SS)
1761 		/* This is symmetric with svm_get_segment() */
1762 		svm->vmcb->save.cpl = (var->dpl & 3);
1763 
1764 	vmcb_mark_dirty(svm->vmcb, VMCB_SEG);
1765 }
1766 
svm_update_exception_bitmap(struct kvm_vcpu * vcpu)1767 static void svm_update_exception_bitmap(struct kvm_vcpu *vcpu)
1768 {
1769 	struct vcpu_svm *svm = to_svm(vcpu);
1770 
1771 	clr_exception_intercept(svm, BP_VECTOR);
1772 
1773 	if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1774 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1775 			set_exception_intercept(svm, BP_VECTOR);
1776 	}
1777 }
1778 
new_asid(struct vcpu_svm * svm,struct svm_cpu_data * sd)1779 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1780 {
1781 	if (sd->next_asid > sd->max_asid) {
1782 		++sd->asid_generation;
1783 		sd->next_asid = sd->min_asid;
1784 		svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1785 		vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
1786 	}
1787 
1788 	svm->current_vmcb->asid_generation = sd->asid_generation;
1789 	svm->asid = sd->next_asid++;
1790 }
1791 
svm_set_dr6(struct kvm_vcpu * vcpu,unsigned long value)1792 static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value)
1793 {
1794 	struct vmcb *vmcb = to_svm(vcpu)->vmcb;
1795 
1796 	if (vcpu->arch.guest_state_protected)
1797 		return;
1798 
1799 	if (unlikely(value != vmcb->save.dr6)) {
1800 		vmcb->save.dr6 = value;
1801 		vmcb_mark_dirty(vmcb, VMCB_DR);
1802 	}
1803 }
1804 
svm_sync_dirty_debug_regs(struct kvm_vcpu * vcpu)1805 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
1806 {
1807 	struct vcpu_svm *svm = to_svm(vcpu);
1808 
1809 	if (WARN_ON_ONCE(sev_es_guest(vcpu->kvm)))
1810 		return;
1811 
1812 	get_debugreg(vcpu->arch.db[0], 0);
1813 	get_debugreg(vcpu->arch.db[1], 1);
1814 	get_debugreg(vcpu->arch.db[2], 2);
1815 	get_debugreg(vcpu->arch.db[3], 3);
1816 	/*
1817 	 * We cannot reset svm->vmcb->save.dr6 to DR6_ACTIVE_LOW here,
1818 	 * because db_interception might need it.  We can do it before vmentry.
1819 	 */
1820 	vcpu->arch.dr6 = svm->vmcb->save.dr6;
1821 	vcpu->arch.dr7 = svm->vmcb->save.dr7;
1822 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
1823 	set_dr_intercepts(svm);
1824 }
1825 
svm_set_dr7(struct kvm_vcpu * vcpu,unsigned long value)1826 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1827 {
1828 	struct vcpu_svm *svm = to_svm(vcpu);
1829 
1830 	if (vcpu->arch.guest_state_protected)
1831 		return;
1832 
1833 	svm->vmcb->save.dr7 = value;
1834 	vmcb_mark_dirty(svm->vmcb, VMCB_DR);
1835 }
1836 
pf_interception(struct kvm_vcpu * vcpu)1837 static int pf_interception(struct kvm_vcpu *vcpu)
1838 {
1839 	struct vcpu_svm *svm = to_svm(vcpu);
1840 
1841 	u64 fault_address = svm->vmcb->control.exit_info_2;
1842 	u64 error_code = svm->vmcb->control.exit_info_1;
1843 
1844 	return kvm_handle_page_fault(vcpu, error_code, fault_address,
1845 			static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
1846 			svm->vmcb->control.insn_bytes : NULL,
1847 			svm->vmcb->control.insn_len);
1848 }
1849 
npf_interception(struct kvm_vcpu * vcpu)1850 static int npf_interception(struct kvm_vcpu *vcpu)
1851 {
1852 	struct vcpu_svm *svm = to_svm(vcpu);
1853 	int rc;
1854 
1855 	u64 fault_address = svm->vmcb->control.exit_info_2;
1856 	u64 error_code = svm->vmcb->control.exit_info_1;
1857 
1858 	/*
1859 	 * WARN if hardware generates a fault with an error code that collides
1860 	 * with KVM-defined sythentic flags.  Clear the flags and continue on,
1861 	 * i.e. don't terminate the VM, as KVM can't possibly be relying on a
1862 	 * flag that KVM doesn't know about.
1863 	 */
1864 	if (WARN_ON_ONCE(error_code & PFERR_SYNTHETIC_MASK))
1865 		error_code &= ~PFERR_SYNTHETIC_MASK;
1866 
1867 	if (sev_snp_guest(vcpu->kvm) && (error_code & PFERR_GUEST_ENC_MASK))
1868 		error_code |= PFERR_PRIVATE_ACCESS;
1869 
1870 	trace_kvm_page_fault(vcpu, fault_address, error_code);
1871 	rc = kvm_mmu_page_fault(vcpu, fault_address, error_code,
1872 				static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
1873 				svm->vmcb->control.insn_bytes : NULL,
1874 				svm->vmcb->control.insn_len);
1875 
1876 	if (rc > 0 && error_code & PFERR_GUEST_RMP_MASK)
1877 		sev_handle_rmp_fault(vcpu, fault_address, error_code);
1878 
1879 	return rc;
1880 }
1881 
db_interception(struct kvm_vcpu * vcpu)1882 static int db_interception(struct kvm_vcpu *vcpu)
1883 {
1884 	struct kvm_run *kvm_run = vcpu->run;
1885 	struct vcpu_svm *svm = to_svm(vcpu);
1886 
1887 	if (!(vcpu->guest_debug &
1888 	      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1889 		!svm->nmi_singlestep) {
1890 		u32 payload = svm->vmcb->save.dr6 ^ DR6_ACTIVE_LOW;
1891 		kvm_queue_exception_p(vcpu, DB_VECTOR, payload);
1892 		return 1;
1893 	}
1894 
1895 	if (svm->nmi_singlestep) {
1896 		disable_nmi_singlestep(svm);
1897 		/* Make sure we check for pending NMIs upon entry */
1898 		kvm_make_request(KVM_REQ_EVENT, vcpu);
1899 	}
1900 
1901 	if (vcpu->guest_debug &
1902 	    (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
1903 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
1904 		kvm_run->debug.arch.dr6 = svm->vmcb->save.dr6;
1905 		kvm_run->debug.arch.dr7 = svm->vmcb->save.dr7;
1906 		kvm_run->debug.arch.pc =
1907 			svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1908 		kvm_run->debug.arch.exception = DB_VECTOR;
1909 		return 0;
1910 	}
1911 
1912 	return 1;
1913 }
1914 
bp_interception(struct kvm_vcpu * vcpu)1915 static int bp_interception(struct kvm_vcpu *vcpu)
1916 {
1917 	struct vcpu_svm *svm = to_svm(vcpu);
1918 	struct kvm_run *kvm_run = vcpu->run;
1919 
1920 	kvm_run->exit_reason = KVM_EXIT_DEBUG;
1921 	kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1922 	kvm_run->debug.arch.exception = BP_VECTOR;
1923 	return 0;
1924 }
1925 
ud_interception(struct kvm_vcpu * vcpu)1926 static int ud_interception(struct kvm_vcpu *vcpu)
1927 {
1928 	return handle_ud(vcpu);
1929 }
1930 
ac_interception(struct kvm_vcpu * vcpu)1931 static int ac_interception(struct kvm_vcpu *vcpu)
1932 {
1933 	kvm_queue_exception_e(vcpu, AC_VECTOR, 0);
1934 	return 1;
1935 }
1936 
is_erratum_383(void)1937 static bool is_erratum_383(void)
1938 {
1939 	int i;
1940 	u64 value;
1941 
1942 	if (!erratum_383_found)
1943 		return false;
1944 
1945 	if (native_read_msr_safe(MSR_IA32_MC0_STATUS, &value))
1946 		return false;
1947 
1948 	/* Bit 62 may or may not be set for this mce */
1949 	value &= ~(1ULL << 62);
1950 
1951 	if (value != 0xb600000000010015ULL)
1952 		return false;
1953 
1954 	/* Clear MCi_STATUS registers */
1955 	for (i = 0; i < 6; ++i)
1956 		native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0);
1957 
1958 	if (!native_read_msr_safe(MSR_IA32_MCG_STATUS, &value)) {
1959 		value &= ~(1ULL << 2);
1960 		native_write_msr_safe(MSR_IA32_MCG_STATUS, value);
1961 	}
1962 
1963 	/* Flush tlb to evict multi-match entries */
1964 	__flush_tlb_all();
1965 
1966 	return true;
1967 }
1968 
svm_handle_mce(struct kvm_vcpu * vcpu)1969 static void svm_handle_mce(struct kvm_vcpu *vcpu)
1970 {
1971 	if (is_erratum_383()) {
1972 		/*
1973 		 * Erratum 383 triggered. Guest state is corrupt so kill the
1974 		 * guest.
1975 		 */
1976 		pr_err("Guest triggered AMD Erratum 383\n");
1977 
1978 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
1979 
1980 		return;
1981 	}
1982 
1983 	/*
1984 	 * On an #MC intercept the MCE handler is not called automatically in
1985 	 * the host. So do it by hand here.
1986 	 */
1987 	kvm_machine_check();
1988 }
1989 
mc_interception(struct kvm_vcpu * vcpu)1990 static int mc_interception(struct kvm_vcpu *vcpu)
1991 {
1992 	return 1;
1993 }
1994 
shutdown_interception(struct kvm_vcpu * vcpu)1995 static int shutdown_interception(struct kvm_vcpu *vcpu)
1996 {
1997 	struct kvm_run *kvm_run = vcpu->run;
1998 	struct vcpu_svm *svm = to_svm(vcpu);
1999 
2000 
2001 	/*
2002 	 * VMCB is undefined after a SHUTDOWN intercept.  INIT the vCPU to put
2003 	 * the VMCB in a known good state.  Unfortuately, KVM doesn't have
2004 	 * KVM_MP_STATE_SHUTDOWN and can't add it without potentially breaking
2005 	 * userspace.  At a platform view, INIT is acceptable behavior as
2006 	 * there exist bare metal platforms that automatically INIT the CPU
2007 	 * in response to shutdown.
2008 	 *
2009 	 * The VM save area for SEV-ES guests has already been encrypted so it
2010 	 * cannot be reinitialized, i.e. synthesizing INIT is futile.
2011 	 */
2012 	if (!sev_es_guest(vcpu->kvm)) {
2013 		clear_page(svm->vmcb);
2014 #ifdef CONFIG_KVM_SMM
2015 		if (is_smm(vcpu))
2016 			kvm_smm_changed(vcpu, false);
2017 #endif
2018 		kvm_vcpu_reset(vcpu, true);
2019 	}
2020 
2021 	kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2022 	return 0;
2023 }
2024 
io_interception(struct kvm_vcpu * vcpu)2025 static int io_interception(struct kvm_vcpu *vcpu)
2026 {
2027 	struct vcpu_svm *svm = to_svm(vcpu);
2028 	u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
2029 	int size, in, string;
2030 	unsigned port;
2031 
2032 	++vcpu->stat.io_exits;
2033 	string = (io_info & SVM_IOIO_STR_MASK) != 0;
2034 	in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2035 	port = io_info >> 16;
2036 	size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2037 
2038 	if (string) {
2039 		if (sev_es_guest(vcpu->kvm))
2040 			return sev_es_string_io(svm, size, port, in);
2041 		else
2042 			return kvm_emulate_instruction(vcpu, 0);
2043 	}
2044 
2045 	svm->next_rip = svm->vmcb->control.exit_info_2;
2046 
2047 	return kvm_fast_pio(vcpu, size, port, in);
2048 }
2049 
nmi_interception(struct kvm_vcpu * vcpu)2050 static int nmi_interception(struct kvm_vcpu *vcpu)
2051 {
2052 	return 1;
2053 }
2054 
smi_interception(struct kvm_vcpu * vcpu)2055 static int smi_interception(struct kvm_vcpu *vcpu)
2056 {
2057 	return 1;
2058 }
2059 
intr_interception(struct kvm_vcpu * vcpu)2060 static int intr_interception(struct kvm_vcpu *vcpu)
2061 {
2062 	++vcpu->stat.irq_exits;
2063 	return 1;
2064 }
2065 
vmload_vmsave_interception(struct kvm_vcpu * vcpu,bool vmload)2066 static int vmload_vmsave_interception(struct kvm_vcpu *vcpu, bool vmload)
2067 {
2068 	struct vcpu_svm *svm = to_svm(vcpu);
2069 	struct vmcb *vmcb12;
2070 	struct kvm_host_map map;
2071 	int ret;
2072 
2073 	if (nested_svm_check_permissions(vcpu))
2074 		return 1;
2075 
2076 	ret = kvm_vcpu_map(vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
2077 	if (ret) {
2078 		if (ret == -EINVAL)
2079 			kvm_inject_gp(vcpu, 0);
2080 		return 1;
2081 	}
2082 
2083 	vmcb12 = map.hva;
2084 
2085 	ret = kvm_skip_emulated_instruction(vcpu);
2086 
2087 	if (vmload) {
2088 		svm_copy_vmloadsave_state(svm->vmcb, vmcb12);
2089 		svm->sysenter_eip_hi = 0;
2090 		svm->sysenter_esp_hi = 0;
2091 	} else {
2092 		svm_copy_vmloadsave_state(vmcb12, svm->vmcb);
2093 	}
2094 
2095 	kvm_vcpu_unmap(vcpu, &map);
2096 
2097 	return ret;
2098 }
2099 
vmload_interception(struct kvm_vcpu * vcpu)2100 static int vmload_interception(struct kvm_vcpu *vcpu)
2101 {
2102 	return vmload_vmsave_interception(vcpu, true);
2103 }
2104 
vmsave_interception(struct kvm_vcpu * vcpu)2105 static int vmsave_interception(struct kvm_vcpu *vcpu)
2106 {
2107 	return vmload_vmsave_interception(vcpu, false);
2108 }
2109 
vmrun_interception(struct kvm_vcpu * vcpu)2110 static int vmrun_interception(struct kvm_vcpu *vcpu)
2111 {
2112 	if (nested_svm_check_permissions(vcpu))
2113 		return 1;
2114 
2115 	return nested_svm_vmrun(vcpu);
2116 }
2117 
2118 enum {
2119 	NONE_SVM_INSTR,
2120 	SVM_INSTR_VMRUN,
2121 	SVM_INSTR_VMLOAD,
2122 	SVM_INSTR_VMSAVE,
2123 };
2124 
2125 /* Return NONE_SVM_INSTR if not SVM instrs, otherwise return decode result */
svm_instr_opcode(struct kvm_vcpu * vcpu)2126 static int svm_instr_opcode(struct kvm_vcpu *vcpu)
2127 {
2128 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
2129 
2130 	if (ctxt->b != 0x1 || ctxt->opcode_len != 2)
2131 		return NONE_SVM_INSTR;
2132 
2133 	switch (ctxt->modrm) {
2134 	case 0xd8: /* VMRUN */
2135 		return SVM_INSTR_VMRUN;
2136 	case 0xda: /* VMLOAD */
2137 		return SVM_INSTR_VMLOAD;
2138 	case 0xdb: /* VMSAVE */
2139 		return SVM_INSTR_VMSAVE;
2140 	default:
2141 		break;
2142 	}
2143 
2144 	return NONE_SVM_INSTR;
2145 }
2146 
emulate_svm_instr(struct kvm_vcpu * vcpu,int opcode)2147 static int emulate_svm_instr(struct kvm_vcpu *vcpu, int opcode)
2148 {
2149 	const int guest_mode_exit_codes[] = {
2150 		[SVM_INSTR_VMRUN] = SVM_EXIT_VMRUN,
2151 		[SVM_INSTR_VMLOAD] = SVM_EXIT_VMLOAD,
2152 		[SVM_INSTR_VMSAVE] = SVM_EXIT_VMSAVE,
2153 	};
2154 	int (*const svm_instr_handlers[])(struct kvm_vcpu *vcpu) = {
2155 		[SVM_INSTR_VMRUN] = vmrun_interception,
2156 		[SVM_INSTR_VMLOAD] = vmload_interception,
2157 		[SVM_INSTR_VMSAVE] = vmsave_interception,
2158 	};
2159 	struct vcpu_svm *svm = to_svm(vcpu);
2160 	int ret;
2161 
2162 	if (is_guest_mode(vcpu)) {
2163 		/* Returns '1' or -errno on failure, '0' on success. */
2164 		ret = nested_svm_simple_vmexit(svm, guest_mode_exit_codes[opcode]);
2165 		if (ret)
2166 			return ret;
2167 		return 1;
2168 	}
2169 	return svm_instr_handlers[opcode](vcpu);
2170 }
2171 
2172 /*
2173  * #GP handling code. Note that #GP can be triggered under the following two
2174  * cases:
2175  *   1) SVM VM-related instructions (VMRUN/VMSAVE/VMLOAD) that trigger #GP on
2176  *      some AMD CPUs when EAX of these instructions are in the reserved memory
2177  *      regions (e.g. SMM memory on host).
2178  *   2) VMware backdoor
2179  */
gp_interception(struct kvm_vcpu * vcpu)2180 static int gp_interception(struct kvm_vcpu *vcpu)
2181 {
2182 	struct vcpu_svm *svm = to_svm(vcpu);
2183 	u32 error_code = svm->vmcb->control.exit_info_1;
2184 	int opcode;
2185 
2186 	/* Both #GP cases have zero error_code */
2187 	if (error_code)
2188 		goto reinject;
2189 
2190 	/* Decode the instruction for usage later */
2191 	if (x86_decode_emulated_instruction(vcpu, 0, NULL, 0) != EMULATION_OK)
2192 		goto reinject;
2193 
2194 	opcode = svm_instr_opcode(vcpu);
2195 
2196 	if (opcode == NONE_SVM_INSTR) {
2197 		if (!enable_vmware_backdoor)
2198 			goto reinject;
2199 
2200 		/*
2201 		 * VMware backdoor emulation on #GP interception only handles
2202 		 * IN{S}, OUT{S}, and RDPMC.
2203 		 */
2204 		if (!is_guest_mode(vcpu))
2205 			return kvm_emulate_instruction(vcpu,
2206 				EMULTYPE_VMWARE_GP | EMULTYPE_NO_DECODE);
2207 	} else {
2208 		/* All SVM instructions expect page aligned RAX */
2209 		if (svm->vmcb->save.rax & ~PAGE_MASK)
2210 			goto reinject;
2211 
2212 		return emulate_svm_instr(vcpu, opcode);
2213 	}
2214 
2215 reinject:
2216 	kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
2217 	return 1;
2218 }
2219 
svm_set_gif(struct vcpu_svm * svm,bool value)2220 void svm_set_gif(struct vcpu_svm *svm, bool value)
2221 {
2222 	if (value) {
2223 		/*
2224 		 * If VGIF is enabled, the STGI intercept is only added to
2225 		 * detect the opening of the SMI/NMI window; remove it now.
2226 		 * Likewise, clear the VINTR intercept, we will set it
2227 		 * again while processing KVM_REQ_EVENT if needed.
2228 		 */
2229 		if (vgif)
2230 			svm_clr_intercept(svm, INTERCEPT_STGI);
2231 		if (svm_is_intercept(svm, INTERCEPT_VINTR))
2232 			svm_clear_vintr(svm);
2233 
2234 		enable_gif(svm);
2235 		if (svm->vcpu.arch.smi_pending ||
2236 		    svm->vcpu.arch.nmi_pending ||
2237 		    kvm_cpu_has_injectable_intr(&svm->vcpu) ||
2238 		    kvm_apic_has_pending_init_or_sipi(&svm->vcpu))
2239 			kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2240 	} else {
2241 		disable_gif(svm);
2242 
2243 		/*
2244 		 * After a CLGI no interrupts should come.  But if vGIF is
2245 		 * in use, we still rely on the VINTR intercept (rather than
2246 		 * STGI) to detect an open interrupt window.
2247 		*/
2248 		if (!vgif)
2249 			svm_clear_vintr(svm);
2250 	}
2251 }
2252 
stgi_interception(struct kvm_vcpu * vcpu)2253 static int stgi_interception(struct kvm_vcpu *vcpu)
2254 {
2255 	int ret;
2256 
2257 	if (nested_svm_check_permissions(vcpu))
2258 		return 1;
2259 
2260 	ret = kvm_skip_emulated_instruction(vcpu);
2261 	svm_set_gif(to_svm(vcpu), true);
2262 	return ret;
2263 }
2264 
clgi_interception(struct kvm_vcpu * vcpu)2265 static int clgi_interception(struct kvm_vcpu *vcpu)
2266 {
2267 	int ret;
2268 
2269 	if (nested_svm_check_permissions(vcpu))
2270 		return 1;
2271 
2272 	ret = kvm_skip_emulated_instruction(vcpu);
2273 	svm_set_gif(to_svm(vcpu), false);
2274 	return ret;
2275 }
2276 
invlpga_interception(struct kvm_vcpu * vcpu)2277 static int invlpga_interception(struct kvm_vcpu *vcpu)
2278 {
2279 	gva_t gva = kvm_rax_read(vcpu);
2280 	u32 asid = kvm_rcx_read(vcpu);
2281 
2282 	/* FIXME: Handle an address size prefix. */
2283 	if (!is_long_mode(vcpu))
2284 		gva = (u32)gva;
2285 
2286 	trace_kvm_invlpga(to_svm(vcpu)->vmcb->save.rip, asid, gva);
2287 
2288 	/* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2289 	kvm_mmu_invlpg(vcpu, gva);
2290 
2291 	return kvm_skip_emulated_instruction(vcpu);
2292 }
2293 
skinit_interception(struct kvm_vcpu * vcpu)2294 static int skinit_interception(struct kvm_vcpu *vcpu)
2295 {
2296 	trace_kvm_skinit(to_svm(vcpu)->vmcb->save.rip, kvm_rax_read(vcpu));
2297 
2298 	kvm_queue_exception(vcpu, UD_VECTOR);
2299 	return 1;
2300 }
2301 
task_switch_interception(struct kvm_vcpu * vcpu)2302 static int task_switch_interception(struct kvm_vcpu *vcpu)
2303 {
2304 	struct vcpu_svm *svm = to_svm(vcpu);
2305 	u16 tss_selector;
2306 	int reason;
2307 	int int_type = svm->vmcb->control.exit_int_info &
2308 		SVM_EXITINTINFO_TYPE_MASK;
2309 	int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2310 	uint32_t type =
2311 		svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2312 	uint32_t idt_v =
2313 		svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2314 	bool has_error_code = false;
2315 	u32 error_code = 0;
2316 
2317 	tss_selector = (u16)svm->vmcb->control.exit_info_1;
2318 
2319 	if (svm->vmcb->control.exit_info_2 &
2320 	    (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2321 		reason = TASK_SWITCH_IRET;
2322 	else if (svm->vmcb->control.exit_info_2 &
2323 		 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2324 		reason = TASK_SWITCH_JMP;
2325 	else if (idt_v)
2326 		reason = TASK_SWITCH_GATE;
2327 	else
2328 		reason = TASK_SWITCH_CALL;
2329 
2330 	if (reason == TASK_SWITCH_GATE) {
2331 		switch (type) {
2332 		case SVM_EXITINTINFO_TYPE_NMI:
2333 			vcpu->arch.nmi_injected = false;
2334 			break;
2335 		case SVM_EXITINTINFO_TYPE_EXEPT:
2336 			if (svm->vmcb->control.exit_info_2 &
2337 			    (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2338 				has_error_code = true;
2339 				error_code =
2340 					(u32)svm->vmcb->control.exit_info_2;
2341 			}
2342 			kvm_clear_exception_queue(vcpu);
2343 			break;
2344 		case SVM_EXITINTINFO_TYPE_INTR:
2345 		case SVM_EXITINTINFO_TYPE_SOFT:
2346 			kvm_clear_interrupt_queue(vcpu);
2347 			break;
2348 		default:
2349 			break;
2350 		}
2351 	}
2352 
2353 	if (reason != TASK_SWITCH_GATE ||
2354 	    int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2355 	    (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2356 	     (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) {
2357 		if (!svm_skip_emulated_instruction(vcpu))
2358 			return 0;
2359 	}
2360 
2361 	if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
2362 		int_vec = -1;
2363 
2364 	return kvm_task_switch(vcpu, tss_selector, int_vec, reason,
2365 			       has_error_code, error_code);
2366 }
2367 
svm_clr_iret_intercept(struct vcpu_svm * svm)2368 static void svm_clr_iret_intercept(struct vcpu_svm *svm)
2369 {
2370 	if (!sev_es_guest(svm->vcpu.kvm))
2371 		svm_clr_intercept(svm, INTERCEPT_IRET);
2372 }
2373 
svm_set_iret_intercept(struct vcpu_svm * svm)2374 static void svm_set_iret_intercept(struct vcpu_svm *svm)
2375 {
2376 	if (!sev_es_guest(svm->vcpu.kvm))
2377 		svm_set_intercept(svm, INTERCEPT_IRET);
2378 }
2379 
iret_interception(struct kvm_vcpu * vcpu)2380 static int iret_interception(struct kvm_vcpu *vcpu)
2381 {
2382 	struct vcpu_svm *svm = to_svm(vcpu);
2383 
2384 	WARN_ON_ONCE(sev_es_guest(vcpu->kvm));
2385 
2386 	++vcpu->stat.nmi_window_exits;
2387 	svm->awaiting_iret_completion = true;
2388 
2389 	svm_clr_iret_intercept(svm);
2390 	svm->nmi_iret_rip = kvm_rip_read(vcpu);
2391 
2392 	kvm_make_request(KVM_REQ_EVENT, vcpu);
2393 	return 1;
2394 }
2395 
invlpg_interception(struct kvm_vcpu * vcpu)2396 static int invlpg_interception(struct kvm_vcpu *vcpu)
2397 {
2398 	if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2399 		return kvm_emulate_instruction(vcpu, 0);
2400 
2401 	kvm_mmu_invlpg(vcpu, to_svm(vcpu)->vmcb->control.exit_info_1);
2402 	return kvm_skip_emulated_instruction(vcpu);
2403 }
2404 
emulate_on_interception(struct kvm_vcpu * vcpu)2405 static int emulate_on_interception(struct kvm_vcpu *vcpu)
2406 {
2407 	return kvm_emulate_instruction(vcpu, 0);
2408 }
2409 
rsm_interception(struct kvm_vcpu * vcpu)2410 static int rsm_interception(struct kvm_vcpu *vcpu)
2411 {
2412 	return kvm_emulate_instruction_from_buffer(vcpu, rsm_ins_bytes, 2);
2413 }
2414 
check_selective_cr0_intercepted(struct kvm_vcpu * vcpu,unsigned long val)2415 static bool check_selective_cr0_intercepted(struct kvm_vcpu *vcpu,
2416 					    unsigned long val)
2417 {
2418 	struct vcpu_svm *svm = to_svm(vcpu);
2419 	unsigned long cr0 = vcpu->arch.cr0;
2420 	bool ret = false;
2421 
2422 	if (!is_guest_mode(vcpu) ||
2423 	    (!(vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0))))
2424 		return false;
2425 
2426 	cr0 &= ~SVM_CR0_SELECTIVE_MASK;
2427 	val &= ~SVM_CR0_SELECTIVE_MASK;
2428 
2429 	if (cr0 ^ val) {
2430 		svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
2431 		ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
2432 	}
2433 
2434 	return ret;
2435 }
2436 
2437 #define CR_VALID (1ULL << 63)
2438 
cr_interception(struct kvm_vcpu * vcpu)2439 static int cr_interception(struct kvm_vcpu *vcpu)
2440 {
2441 	struct vcpu_svm *svm = to_svm(vcpu);
2442 	int reg, cr;
2443 	unsigned long val;
2444 	int err;
2445 
2446 	if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2447 		return emulate_on_interception(vcpu);
2448 
2449 	if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
2450 		return emulate_on_interception(vcpu);
2451 
2452 	reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2453 	if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
2454 		cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
2455 	else
2456 		cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
2457 
2458 	err = 0;
2459 	if (cr >= 16) { /* mov to cr */
2460 		cr -= 16;
2461 		val = kvm_register_read(vcpu, reg);
2462 		trace_kvm_cr_write(cr, val);
2463 		switch (cr) {
2464 		case 0:
2465 			if (!check_selective_cr0_intercepted(vcpu, val))
2466 				err = kvm_set_cr0(vcpu, val);
2467 			else
2468 				return 1;
2469 
2470 			break;
2471 		case 3:
2472 			err = kvm_set_cr3(vcpu, val);
2473 			break;
2474 		case 4:
2475 			err = kvm_set_cr4(vcpu, val);
2476 			break;
2477 		case 8:
2478 			err = kvm_set_cr8(vcpu, val);
2479 			break;
2480 		default:
2481 			WARN(1, "unhandled write to CR%d", cr);
2482 			kvm_queue_exception(vcpu, UD_VECTOR);
2483 			return 1;
2484 		}
2485 	} else { /* mov from cr */
2486 		switch (cr) {
2487 		case 0:
2488 			val = kvm_read_cr0(vcpu);
2489 			break;
2490 		case 2:
2491 			val = vcpu->arch.cr2;
2492 			break;
2493 		case 3:
2494 			val = kvm_read_cr3(vcpu);
2495 			break;
2496 		case 4:
2497 			val = kvm_read_cr4(vcpu);
2498 			break;
2499 		case 8:
2500 			val = kvm_get_cr8(vcpu);
2501 			break;
2502 		default:
2503 			WARN(1, "unhandled read from CR%d", cr);
2504 			kvm_queue_exception(vcpu, UD_VECTOR);
2505 			return 1;
2506 		}
2507 		kvm_register_write(vcpu, reg, val);
2508 		trace_kvm_cr_read(cr, val);
2509 	}
2510 	return kvm_complete_insn_gp(vcpu, err);
2511 }
2512 
cr_trap(struct kvm_vcpu * vcpu)2513 static int cr_trap(struct kvm_vcpu *vcpu)
2514 {
2515 	struct vcpu_svm *svm = to_svm(vcpu);
2516 	unsigned long old_value, new_value;
2517 	unsigned int cr;
2518 	int ret = 0;
2519 
2520 	new_value = (unsigned long)svm->vmcb->control.exit_info_1;
2521 
2522 	cr = svm->vmcb->control.exit_code - SVM_EXIT_CR0_WRITE_TRAP;
2523 	switch (cr) {
2524 	case 0:
2525 		old_value = kvm_read_cr0(vcpu);
2526 		svm_set_cr0(vcpu, new_value);
2527 
2528 		kvm_post_set_cr0(vcpu, old_value, new_value);
2529 		break;
2530 	case 4:
2531 		old_value = kvm_read_cr4(vcpu);
2532 		svm_set_cr4(vcpu, new_value);
2533 
2534 		kvm_post_set_cr4(vcpu, old_value, new_value);
2535 		break;
2536 	case 8:
2537 		ret = kvm_set_cr8(vcpu, new_value);
2538 		break;
2539 	default:
2540 		WARN(1, "unhandled CR%d write trap", cr);
2541 		kvm_queue_exception(vcpu, UD_VECTOR);
2542 		return 1;
2543 	}
2544 
2545 	return kvm_complete_insn_gp(vcpu, ret);
2546 }
2547 
dr_interception(struct kvm_vcpu * vcpu)2548 static int dr_interception(struct kvm_vcpu *vcpu)
2549 {
2550 	struct vcpu_svm *svm = to_svm(vcpu);
2551 	int reg, dr;
2552 	int err = 0;
2553 
2554 	/*
2555 	 * SEV-ES intercepts DR7 only to disable guest debugging and the guest issues a VMGEXIT
2556 	 * for DR7 write only. KVM cannot change DR7 (always swapped as type 'A') so return early.
2557 	 */
2558 	if (sev_es_guest(vcpu->kvm))
2559 		return 1;
2560 
2561 	if (vcpu->guest_debug == 0) {
2562 		/*
2563 		 * No more DR vmexits; force a reload of the debug registers
2564 		 * and reenter on this instruction.  The next vmexit will
2565 		 * retrieve the full state of the debug registers.
2566 		 */
2567 		clr_dr_intercepts(svm);
2568 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
2569 		return 1;
2570 	}
2571 
2572 	if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
2573 		return emulate_on_interception(vcpu);
2574 
2575 	reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2576 	dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
2577 	if (dr >= 16) { /* mov to DRn  */
2578 		dr -= 16;
2579 		err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg));
2580 	} else {
2581 		kvm_register_write(vcpu, reg, kvm_get_dr(vcpu, dr));
2582 	}
2583 
2584 	return kvm_complete_insn_gp(vcpu, err);
2585 }
2586 
cr8_write_interception(struct kvm_vcpu * vcpu)2587 static int cr8_write_interception(struct kvm_vcpu *vcpu)
2588 {
2589 	int r;
2590 
2591 	u8 cr8_prev = kvm_get_cr8(vcpu);
2592 	/* instruction emulation calls kvm_set_cr8() */
2593 	r = cr_interception(vcpu);
2594 	if (lapic_in_kernel(vcpu))
2595 		return r;
2596 	if (cr8_prev <= kvm_get_cr8(vcpu))
2597 		return r;
2598 	vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
2599 	return 0;
2600 }
2601 
efer_trap(struct kvm_vcpu * vcpu)2602 static int efer_trap(struct kvm_vcpu *vcpu)
2603 {
2604 	struct msr_data msr_info;
2605 	int ret;
2606 
2607 	/*
2608 	 * Clear the EFER_SVME bit from EFER. The SVM code always sets this
2609 	 * bit in svm_set_efer(), but __kvm_valid_efer() checks it against
2610 	 * whether the guest has X86_FEATURE_SVM - this avoids a failure if
2611 	 * the guest doesn't have X86_FEATURE_SVM.
2612 	 */
2613 	msr_info.host_initiated = false;
2614 	msr_info.index = MSR_EFER;
2615 	msr_info.data = to_svm(vcpu)->vmcb->control.exit_info_1 & ~EFER_SVME;
2616 	ret = kvm_set_msr_common(vcpu, &msr_info);
2617 
2618 	return kvm_complete_insn_gp(vcpu, ret);
2619 }
2620 
svm_get_feature_msr(u32 msr,u64 * data)2621 static int svm_get_feature_msr(u32 msr, u64 *data)
2622 {
2623 	*data = 0;
2624 
2625 	switch (msr) {
2626 	case MSR_AMD64_DE_CFG:
2627 		if (cpu_feature_enabled(X86_FEATURE_LFENCE_RDTSC))
2628 			*data |= MSR_AMD64_DE_CFG_LFENCE_SERIALIZE;
2629 		break;
2630 	default:
2631 		return KVM_MSR_RET_UNSUPPORTED;
2632 	}
2633 
2634 	return 0;
2635 }
2636 
sev_es_prevent_msr_access(struct kvm_vcpu * vcpu,struct msr_data * msr_info)2637 static bool sev_es_prevent_msr_access(struct kvm_vcpu *vcpu,
2638 				      struct msr_data *msr_info)
2639 {
2640 	return sev_es_guest(vcpu->kvm) && vcpu->arch.guest_state_protected &&
2641 	       msr_info->index != MSR_IA32_XSS &&
2642 	       !msr_write_intercepted(vcpu, msr_info->index);
2643 }
2644 
svm_get_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)2645 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2646 {
2647 	struct vcpu_svm *svm = to_svm(vcpu);
2648 
2649 	if (sev_es_prevent_msr_access(vcpu, msr_info)) {
2650 		msr_info->data = 0;
2651 		return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
2652 	}
2653 
2654 	switch (msr_info->index) {
2655 	case MSR_AMD64_TSC_RATIO:
2656 		if (!msr_info->host_initiated &&
2657 		    !guest_cpu_cap_has(vcpu, X86_FEATURE_TSCRATEMSR))
2658 			return 1;
2659 		msr_info->data = svm->tsc_ratio_msr;
2660 		break;
2661 	case MSR_STAR:
2662 		msr_info->data = svm->vmcb01.ptr->save.star;
2663 		break;
2664 #ifdef CONFIG_X86_64
2665 	case MSR_LSTAR:
2666 		msr_info->data = svm->vmcb01.ptr->save.lstar;
2667 		break;
2668 	case MSR_CSTAR:
2669 		msr_info->data = svm->vmcb01.ptr->save.cstar;
2670 		break;
2671 	case MSR_GS_BASE:
2672 		msr_info->data = svm->vmcb01.ptr->save.gs.base;
2673 		break;
2674 	case MSR_FS_BASE:
2675 		msr_info->data = svm->vmcb01.ptr->save.fs.base;
2676 		break;
2677 	case MSR_KERNEL_GS_BASE:
2678 		msr_info->data = svm->vmcb01.ptr->save.kernel_gs_base;
2679 		break;
2680 	case MSR_SYSCALL_MASK:
2681 		msr_info->data = svm->vmcb01.ptr->save.sfmask;
2682 		break;
2683 #endif
2684 	case MSR_IA32_SYSENTER_CS:
2685 		msr_info->data = svm->vmcb01.ptr->save.sysenter_cs;
2686 		break;
2687 	case MSR_IA32_SYSENTER_EIP:
2688 		msr_info->data = (u32)svm->vmcb01.ptr->save.sysenter_eip;
2689 		if (guest_cpuid_is_intel_compatible(vcpu))
2690 			msr_info->data |= (u64)svm->sysenter_eip_hi << 32;
2691 		break;
2692 	case MSR_IA32_SYSENTER_ESP:
2693 		msr_info->data = svm->vmcb01.ptr->save.sysenter_esp;
2694 		if (guest_cpuid_is_intel_compatible(vcpu))
2695 			msr_info->data |= (u64)svm->sysenter_esp_hi << 32;
2696 		break;
2697 	case MSR_IA32_S_CET:
2698 		msr_info->data = svm->vmcb->save.s_cet;
2699 		break;
2700 	case MSR_IA32_INT_SSP_TAB:
2701 		msr_info->data = svm->vmcb->save.isst_addr;
2702 		break;
2703 	case MSR_KVM_INTERNAL_GUEST_SSP:
2704 		msr_info->data = svm->vmcb->save.ssp;
2705 		break;
2706 	case MSR_TSC_AUX:
2707 		msr_info->data = svm->tsc_aux;
2708 		break;
2709 	case MSR_IA32_DEBUGCTLMSR:
2710 		msr_info->data = svm->vmcb->save.dbgctl;
2711 		break;
2712 	case MSR_IA32_LASTBRANCHFROMIP:
2713 		msr_info->data = svm->vmcb->save.br_from;
2714 		break;
2715 	case MSR_IA32_LASTBRANCHTOIP:
2716 		msr_info->data = svm->vmcb->save.br_to;
2717 		break;
2718 	case MSR_IA32_LASTINTFROMIP:
2719 		msr_info->data = svm->vmcb->save.last_excp_from;
2720 		break;
2721 	case MSR_IA32_LASTINTTOIP:
2722 		msr_info->data = svm->vmcb->save.last_excp_to;
2723 		break;
2724 	case MSR_VM_HSAVE_PA:
2725 		msr_info->data = svm->nested.hsave_msr;
2726 		break;
2727 	case MSR_VM_CR:
2728 		msr_info->data = svm->nested.vm_cr_msr;
2729 		break;
2730 	case MSR_IA32_SPEC_CTRL:
2731 		if (!msr_info->host_initiated &&
2732 		    !guest_has_spec_ctrl_msr(vcpu))
2733 			return 1;
2734 
2735 		if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
2736 			msr_info->data = svm->vmcb->save.spec_ctrl;
2737 		else
2738 			msr_info->data = svm->spec_ctrl;
2739 		break;
2740 	case MSR_AMD64_VIRT_SPEC_CTRL:
2741 		if (!msr_info->host_initiated &&
2742 		    !guest_cpu_cap_has(vcpu, X86_FEATURE_VIRT_SSBD))
2743 			return 1;
2744 
2745 		msr_info->data = svm->virt_spec_ctrl;
2746 		break;
2747 	case MSR_F15H_IC_CFG: {
2748 
2749 		int family, model;
2750 
2751 		family = guest_cpuid_family(vcpu);
2752 		model  = guest_cpuid_model(vcpu);
2753 
2754 		if (family < 0 || model < 0)
2755 			return kvm_get_msr_common(vcpu, msr_info);
2756 
2757 		msr_info->data = 0;
2758 
2759 		if (family == 0x15 &&
2760 		    (model >= 0x2 && model < 0x20))
2761 			msr_info->data = 0x1E;
2762 		}
2763 		break;
2764 	case MSR_AMD64_DE_CFG:
2765 		msr_info->data = svm->msr_decfg;
2766 		break;
2767 	default:
2768 		return kvm_get_msr_common(vcpu, msr_info);
2769 	}
2770 	return 0;
2771 }
2772 
svm_complete_emulated_msr(struct kvm_vcpu * vcpu,int err)2773 static int svm_complete_emulated_msr(struct kvm_vcpu *vcpu, int err)
2774 {
2775 	struct vcpu_svm *svm = to_svm(vcpu);
2776 	if (!err || !sev_es_guest(vcpu->kvm) || WARN_ON_ONCE(!svm->sev_es.ghcb))
2777 		return kvm_complete_insn_gp(vcpu, err);
2778 
2779 	svm_vmgexit_inject_exception(svm, X86_TRAP_GP);
2780 	return 1;
2781 }
2782 
svm_set_vm_cr(struct kvm_vcpu * vcpu,u64 data)2783 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
2784 {
2785 	struct vcpu_svm *svm = to_svm(vcpu);
2786 	int svm_dis, chg_mask;
2787 
2788 	if (data & ~SVM_VM_CR_VALID_MASK)
2789 		return 1;
2790 
2791 	chg_mask = SVM_VM_CR_VALID_MASK;
2792 
2793 	if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
2794 		chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
2795 
2796 	svm->nested.vm_cr_msr &= ~chg_mask;
2797 	svm->nested.vm_cr_msr |= (data & chg_mask);
2798 
2799 	svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
2800 
2801 	/* check for svm_disable while efer.svme is set */
2802 	if (svm_dis && (vcpu->arch.efer & EFER_SVME))
2803 		return 1;
2804 
2805 	return 0;
2806 }
2807 
svm_set_msr(struct kvm_vcpu * vcpu,struct msr_data * msr)2808 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2809 {
2810 	struct vcpu_svm *svm = to_svm(vcpu);
2811 	int ret = 0;
2812 
2813 	u32 ecx = msr->index;
2814 	u64 data = msr->data;
2815 
2816 	if (sev_es_prevent_msr_access(vcpu, msr))
2817 		return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
2818 
2819 	switch (ecx) {
2820 	case MSR_AMD64_TSC_RATIO:
2821 
2822 		if (!guest_cpu_cap_has(vcpu, X86_FEATURE_TSCRATEMSR)) {
2823 
2824 			if (!msr->host_initiated)
2825 				return 1;
2826 			/*
2827 			 * In case TSC scaling is not enabled, always
2828 			 * leave this MSR at the default value.
2829 			 *
2830 			 * Due to bug in qemu 6.2.0, it would try to set
2831 			 * this msr to 0 if tsc scaling is not enabled.
2832 			 * Ignore this value as well.
2833 			 */
2834 			if (data != 0 && data != svm->tsc_ratio_msr)
2835 				return 1;
2836 			break;
2837 		}
2838 
2839 		if (data & SVM_TSC_RATIO_RSVD)
2840 			return 1;
2841 
2842 		svm->tsc_ratio_msr = data;
2843 
2844 		if (guest_cpu_cap_has(vcpu, X86_FEATURE_TSCRATEMSR) &&
2845 		    is_guest_mode(vcpu))
2846 			nested_svm_update_tsc_ratio_msr(vcpu);
2847 
2848 		break;
2849 	case MSR_IA32_CR_PAT:
2850 		ret = kvm_set_msr_common(vcpu, msr);
2851 		if (ret)
2852 			break;
2853 
2854 		svm->vmcb01.ptr->save.g_pat = data;
2855 		if (is_guest_mode(vcpu))
2856 			nested_vmcb02_compute_g_pat(svm);
2857 		vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
2858 		break;
2859 	case MSR_IA32_SPEC_CTRL:
2860 		if (!msr->host_initiated &&
2861 		    !guest_has_spec_ctrl_msr(vcpu))
2862 			return 1;
2863 
2864 		if (kvm_spec_ctrl_test_value(data))
2865 			return 1;
2866 
2867 		if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
2868 			svm->vmcb->save.spec_ctrl = data;
2869 		else
2870 			svm->spec_ctrl = data;
2871 		if (!data)
2872 			break;
2873 
2874 		/*
2875 		 * For non-nested:
2876 		 * When it's written (to non-zero) for the first time, pass
2877 		 * it through.
2878 		 *
2879 		 * For nested:
2880 		 * The handling of the MSR bitmap for L2 guests is done in
2881 		 * nested_svm_merge_msrpm().
2882 		 * We update the L1 MSR bit as well since it will end up
2883 		 * touching the MSR anyway now.
2884 		 */
2885 		svm_disable_intercept_for_msr(vcpu, MSR_IA32_SPEC_CTRL, MSR_TYPE_RW);
2886 		break;
2887 	case MSR_AMD64_VIRT_SPEC_CTRL:
2888 		if (!msr->host_initiated &&
2889 		    !guest_cpu_cap_has(vcpu, X86_FEATURE_VIRT_SSBD))
2890 			return 1;
2891 
2892 		if (data & ~SPEC_CTRL_SSBD)
2893 			return 1;
2894 
2895 		svm->virt_spec_ctrl = data;
2896 		break;
2897 	case MSR_STAR:
2898 		svm->vmcb01.ptr->save.star = data;
2899 		break;
2900 #ifdef CONFIG_X86_64
2901 	case MSR_LSTAR:
2902 		svm->vmcb01.ptr->save.lstar = data;
2903 		break;
2904 	case MSR_CSTAR:
2905 		svm->vmcb01.ptr->save.cstar = data;
2906 		break;
2907 	case MSR_GS_BASE:
2908 		svm->vmcb01.ptr->save.gs.base = data;
2909 		break;
2910 	case MSR_FS_BASE:
2911 		svm->vmcb01.ptr->save.fs.base = data;
2912 		break;
2913 	case MSR_KERNEL_GS_BASE:
2914 		svm->vmcb01.ptr->save.kernel_gs_base = data;
2915 		break;
2916 	case MSR_SYSCALL_MASK:
2917 		svm->vmcb01.ptr->save.sfmask = data;
2918 		break;
2919 #endif
2920 	case MSR_IA32_SYSENTER_CS:
2921 		svm->vmcb01.ptr->save.sysenter_cs = data;
2922 		break;
2923 	case MSR_IA32_SYSENTER_EIP:
2924 		svm->vmcb01.ptr->save.sysenter_eip = (u32)data;
2925 		/*
2926 		 * We only intercept the MSR_IA32_SYSENTER_{EIP|ESP} msrs
2927 		 * when we spoof an Intel vendor ID (for cross vendor migration).
2928 		 * In this case we use this intercept to track the high
2929 		 * 32 bit part of these msrs to support Intel's
2930 		 * implementation of SYSENTER/SYSEXIT.
2931 		 */
2932 		svm->sysenter_eip_hi = guest_cpuid_is_intel_compatible(vcpu) ? (data >> 32) : 0;
2933 		break;
2934 	case MSR_IA32_SYSENTER_ESP:
2935 		svm->vmcb01.ptr->save.sysenter_esp = (u32)data;
2936 		svm->sysenter_esp_hi = guest_cpuid_is_intel_compatible(vcpu) ? (data >> 32) : 0;
2937 		break;
2938 	case MSR_IA32_S_CET:
2939 		svm->vmcb->save.s_cet = data;
2940 		vmcb_mark_dirty(svm->vmcb01.ptr, VMCB_CET);
2941 		break;
2942 	case MSR_IA32_INT_SSP_TAB:
2943 		svm->vmcb->save.isst_addr = data;
2944 		vmcb_mark_dirty(svm->vmcb01.ptr, VMCB_CET);
2945 		break;
2946 	case MSR_KVM_INTERNAL_GUEST_SSP:
2947 		svm->vmcb->save.ssp = data;
2948 		vmcb_mark_dirty(svm->vmcb01.ptr, VMCB_CET);
2949 		break;
2950 	case MSR_TSC_AUX:
2951 		/*
2952 		 * TSC_AUX is always virtualized for SEV-ES guests when the
2953 		 * feature is available. The user return MSR support is not
2954 		 * required in this case because TSC_AUX is restored on #VMEXIT
2955 		 * from the host save area.
2956 		 */
2957 		if (boot_cpu_has(X86_FEATURE_V_TSC_AUX) && sev_es_guest(vcpu->kvm))
2958 			break;
2959 
2960 		/*
2961 		 * TSC_AUX is usually changed only during boot and never read
2962 		 * directly.  Intercept TSC_AUX and switch it via user return.
2963 		 */
2964 		preempt_disable();
2965 		ret = kvm_set_user_return_msr(tsc_aux_uret_slot, data, -1ull);
2966 		preempt_enable();
2967 		if (ret)
2968 			break;
2969 
2970 		svm->tsc_aux = data;
2971 		break;
2972 	case MSR_IA32_DEBUGCTLMSR:
2973 		if (!lbrv) {
2974 			kvm_pr_unimpl_wrmsr(vcpu, ecx, data);
2975 			break;
2976 		}
2977 
2978 		/*
2979 		 * Suppress BTF as KVM doesn't virtualize BTF, but there's no
2980 		 * way to communicate lack of support to the guest.
2981 		 */
2982 		if (data & DEBUGCTLMSR_BTF) {
2983 			kvm_pr_unimpl_wrmsr(vcpu, MSR_IA32_DEBUGCTLMSR, data);
2984 			data &= ~DEBUGCTLMSR_BTF;
2985 		}
2986 
2987 		if (data & DEBUGCTL_RESERVED_BITS)
2988 			return 1;
2989 
2990 		if (svm->vmcb->save.dbgctl == data)
2991 			break;
2992 
2993 		svm->vmcb->save.dbgctl = data;
2994 		vmcb_mark_dirty(svm->vmcb, VMCB_LBR);
2995 		svm_update_lbrv(vcpu);
2996 		break;
2997 	case MSR_VM_HSAVE_PA:
2998 		/*
2999 		 * Old kernels did not validate the value written to
3000 		 * MSR_VM_HSAVE_PA.  Allow KVM_SET_MSR to set an invalid
3001 		 * value to allow live migrating buggy or malicious guests
3002 		 * originating from those kernels.
3003 		 */
3004 		if (!msr->host_initiated && !page_address_valid(vcpu, data))
3005 			return 1;
3006 
3007 		svm->nested.hsave_msr = data & PAGE_MASK;
3008 		break;
3009 	case MSR_VM_CR:
3010 		return svm_set_vm_cr(vcpu, data);
3011 	case MSR_VM_IGNNE:
3012 		kvm_pr_unimpl_wrmsr(vcpu, ecx, data);
3013 		break;
3014 	case MSR_AMD64_DE_CFG: {
3015 		u64 supported_de_cfg;
3016 
3017 		if (svm_get_feature_msr(ecx, &supported_de_cfg))
3018 			return 1;
3019 
3020 		if (data & ~supported_de_cfg)
3021 			return 1;
3022 
3023 		svm->msr_decfg = data;
3024 		break;
3025 	}
3026 	default:
3027 		return kvm_set_msr_common(vcpu, msr);
3028 	}
3029 	return ret;
3030 }
3031 
msr_interception(struct kvm_vcpu * vcpu)3032 static int msr_interception(struct kvm_vcpu *vcpu)
3033 {
3034 	if (to_svm(vcpu)->vmcb->control.exit_info_1)
3035 		return kvm_emulate_wrmsr(vcpu);
3036 	else
3037 		return kvm_emulate_rdmsr(vcpu);
3038 }
3039 
interrupt_window_interception(struct kvm_vcpu * vcpu)3040 static int interrupt_window_interception(struct kvm_vcpu *vcpu)
3041 {
3042 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3043 	svm_clear_vintr(to_svm(vcpu));
3044 
3045 	/*
3046 	 * If not running nested, for AVIC, the only reason to end up here is ExtINTs.
3047 	 * In this case AVIC was temporarily disabled for
3048 	 * requesting the IRQ window and we have to re-enable it.
3049 	 *
3050 	 * If running nested, still remove the VM wide AVIC inhibit to
3051 	 * support case in which the interrupt window was requested when the
3052 	 * vCPU was not running nested.
3053 
3054 	 * All vCPUs which run still run nested, will remain to have their
3055 	 * AVIC still inhibited due to per-cpu AVIC inhibition.
3056 	 */
3057 	kvm_clear_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN);
3058 
3059 	++vcpu->stat.irq_window_exits;
3060 	return 1;
3061 }
3062 
pause_interception(struct kvm_vcpu * vcpu)3063 static int pause_interception(struct kvm_vcpu *vcpu)
3064 {
3065 	bool in_kernel;
3066 	/*
3067 	 * CPL is not made available for an SEV-ES guest, therefore
3068 	 * vcpu->arch.preempted_in_kernel can never be true.  Just
3069 	 * set in_kernel to false as well.
3070 	 */
3071 	in_kernel = !sev_es_guest(vcpu->kvm) && svm_get_cpl(vcpu) == 0;
3072 
3073 	grow_ple_window(vcpu);
3074 
3075 	kvm_vcpu_on_spin(vcpu, in_kernel);
3076 	return kvm_skip_emulated_instruction(vcpu);
3077 }
3078 
invpcid_interception(struct kvm_vcpu * vcpu)3079 static int invpcid_interception(struct kvm_vcpu *vcpu)
3080 {
3081 	struct vcpu_svm *svm = to_svm(vcpu);
3082 	unsigned long type;
3083 	gva_t gva;
3084 
3085 	if (!guest_cpu_cap_has(vcpu, X86_FEATURE_INVPCID)) {
3086 		kvm_queue_exception(vcpu, UD_VECTOR);
3087 		return 1;
3088 	}
3089 
3090 	/*
3091 	 * For an INVPCID intercept:
3092 	 * EXITINFO1 provides the linear address of the memory operand.
3093 	 * EXITINFO2 provides the contents of the register operand.
3094 	 */
3095 	type = svm->vmcb->control.exit_info_2;
3096 	gva = svm->vmcb->control.exit_info_1;
3097 
3098 	/*
3099 	 * FIXME: Perform segment checks for 32-bit mode, and inject #SS if the
3100 	 *        stack segment is used.  The intercept takes priority over all
3101 	 *        #GP checks except CPL>0, but somehow still generates a linear
3102 	 *        address?  The APM is sorely lacking.
3103 	 */
3104 	if (is_noncanonical_address(gva, vcpu, 0)) {
3105 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
3106 		return 1;
3107 	}
3108 
3109 	return kvm_handle_invpcid(vcpu, type, gva);
3110 }
3111 
complete_userspace_buslock(struct kvm_vcpu * vcpu)3112 static inline int complete_userspace_buslock(struct kvm_vcpu *vcpu)
3113 {
3114 	struct vcpu_svm *svm = to_svm(vcpu);
3115 
3116 	/*
3117 	 * If userspace has NOT changed RIP, then KVM's ABI is to let the guest
3118 	 * execute the bus-locking instruction.  Set the bus lock counter to '1'
3119 	 * to effectively step past the bus lock.
3120 	 */
3121 	if (kvm_is_linear_rip(vcpu, vcpu->arch.cui_linear_rip))
3122 		svm->vmcb->control.bus_lock_counter = 1;
3123 
3124 	return 1;
3125 }
3126 
bus_lock_exit(struct kvm_vcpu * vcpu)3127 static int bus_lock_exit(struct kvm_vcpu *vcpu)
3128 {
3129 	struct vcpu_svm *svm = to_svm(vcpu);
3130 
3131 	vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK;
3132 	vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK;
3133 
3134 	vcpu->arch.cui_linear_rip = kvm_get_linear_rip(vcpu);
3135 	vcpu->arch.complete_userspace_io = complete_userspace_buslock;
3136 
3137 	if (is_guest_mode(vcpu))
3138 		svm->nested.ctl.bus_lock_rip = vcpu->arch.cui_linear_rip;
3139 
3140 	return 0;
3141 }
3142 
3143 static int (*const svm_exit_handlers[])(struct kvm_vcpu *vcpu) = {
3144 	[SVM_EXIT_READ_CR0]			= cr_interception,
3145 	[SVM_EXIT_READ_CR3]			= cr_interception,
3146 	[SVM_EXIT_READ_CR4]			= cr_interception,
3147 	[SVM_EXIT_READ_CR8]			= cr_interception,
3148 	[SVM_EXIT_CR0_SEL_WRITE]		= cr_interception,
3149 	[SVM_EXIT_WRITE_CR0]			= cr_interception,
3150 	[SVM_EXIT_WRITE_CR3]			= cr_interception,
3151 	[SVM_EXIT_WRITE_CR4]			= cr_interception,
3152 	[SVM_EXIT_WRITE_CR8]			= cr8_write_interception,
3153 	[SVM_EXIT_READ_DR0]			= dr_interception,
3154 	[SVM_EXIT_READ_DR1]			= dr_interception,
3155 	[SVM_EXIT_READ_DR2]			= dr_interception,
3156 	[SVM_EXIT_READ_DR3]			= dr_interception,
3157 	[SVM_EXIT_READ_DR4]			= dr_interception,
3158 	[SVM_EXIT_READ_DR5]			= dr_interception,
3159 	[SVM_EXIT_READ_DR6]			= dr_interception,
3160 	[SVM_EXIT_READ_DR7]			= dr_interception,
3161 	[SVM_EXIT_WRITE_DR0]			= dr_interception,
3162 	[SVM_EXIT_WRITE_DR1]			= dr_interception,
3163 	[SVM_EXIT_WRITE_DR2]			= dr_interception,
3164 	[SVM_EXIT_WRITE_DR3]			= dr_interception,
3165 	[SVM_EXIT_WRITE_DR4]			= dr_interception,
3166 	[SVM_EXIT_WRITE_DR5]			= dr_interception,
3167 	[SVM_EXIT_WRITE_DR6]			= dr_interception,
3168 	[SVM_EXIT_WRITE_DR7]			= dr_interception,
3169 	[SVM_EXIT_EXCP_BASE + DB_VECTOR]	= db_interception,
3170 	[SVM_EXIT_EXCP_BASE + BP_VECTOR]	= bp_interception,
3171 	[SVM_EXIT_EXCP_BASE + UD_VECTOR]	= ud_interception,
3172 	[SVM_EXIT_EXCP_BASE + PF_VECTOR]	= pf_interception,
3173 	[SVM_EXIT_EXCP_BASE + MC_VECTOR]	= mc_interception,
3174 	[SVM_EXIT_EXCP_BASE + AC_VECTOR]	= ac_interception,
3175 	[SVM_EXIT_EXCP_BASE + GP_VECTOR]	= gp_interception,
3176 	[SVM_EXIT_INTR]				= intr_interception,
3177 	[SVM_EXIT_NMI]				= nmi_interception,
3178 	[SVM_EXIT_SMI]				= smi_interception,
3179 	[SVM_EXIT_VINTR]			= interrupt_window_interception,
3180 	[SVM_EXIT_RDPMC]			= kvm_emulate_rdpmc,
3181 	[SVM_EXIT_CPUID]			= kvm_emulate_cpuid,
3182 	[SVM_EXIT_IRET]                         = iret_interception,
3183 	[SVM_EXIT_INVD]                         = kvm_emulate_invd,
3184 	[SVM_EXIT_PAUSE]			= pause_interception,
3185 	[SVM_EXIT_HLT]				= kvm_emulate_halt,
3186 	[SVM_EXIT_INVLPG]			= invlpg_interception,
3187 	[SVM_EXIT_INVLPGA]			= invlpga_interception,
3188 	[SVM_EXIT_IOIO]				= io_interception,
3189 	[SVM_EXIT_MSR]				= msr_interception,
3190 	[SVM_EXIT_TASK_SWITCH]			= task_switch_interception,
3191 	[SVM_EXIT_SHUTDOWN]			= shutdown_interception,
3192 	[SVM_EXIT_VMRUN]			= vmrun_interception,
3193 	[SVM_EXIT_VMMCALL]			= kvm_emulate_hypercall,
3194 	[SVM_EXIT_VMLOAD]			= vmload_interception,
3195 	[SVM_EXIT_VMSAVE]			= vmsave_interception,
3196 	[SVM_EXIT_STGI]				= stgi_interception,
3197 	[SVM_EXIT_CLGI]				= clgi_interception,
3198 	[SVM_EXIT_SKINIT]			= skinit_interception,
3199 	[SVM_EXIT_RDTSCP]			= kvm_handle_invalid_op,
3200 	[SVM_EXIT_WBINVD]                       = kvm_emulate_wbinvd,
3201 	[SVM_EXIT_MONITOR]			= kvm_emulate_monitor,
3202 	[SVM_EXIT_MWAIT]			= kvm_emulate_mwait,
3203 	[SVM_EXIT_XSETBV]			= kvm_emulate_xsetbv,
3204 	[SVM_EXIT_RDPRU]			= kvm_handle_invalid_op,
3205 	[SVM_EXIT_EFER_WRITE_TRAP]		= efer_trap,
3206 	[SVM_EXIT_CR0_WRITE_TRAP]		= cr_trap,
3207 	[SVM_EXIT_CR4_WRITE_TRAP]		= cr_trap,
3208 	[SVM_EXIT_CR8_WRITE_TRAP]		= cr_trap,
3209 	[SVM_EXIT_INVPCID]                      = invpcid_interception,
3210 	[SVM_EXIT_IDLE_HLT]			= kvm_emulate_halt,
3211 	[SVM_EXIT_NPF]				= npf_interception,
3212 	[SVM_EXIT_BUS_LOCK]			= bus_lock_exit,
3213 	[SVM_EXIT_RSM]                          = rsm_interception,
3214 	[SVM_EXIT_AVIC_INCOMPLETE_IPI]		= avic_incomplete_ipi_interception,
3215 	[SVM_EXIT_AVIC_UNACCELERATED_ACCESS]	= avic_unaccelerated_access_interception,
3216 #ifdef CONFIG_KVM_AMD_SEV
3217 	[SVM_EXIT_VMGEXIT]			= sev_handle_vmgexit,
3218 #endif
3219 };
3220 
dump_vmcb(struct kvm_vcpu * vcpu)3221 static void dump_vmcb(struct kvm_vcpu *vcpu)
3222 {
3223 	struct vcpu_svm *svm = to_svm(vcpu);
3224 	struct vmcb_control_area *control = &svm->vmcb->control;
3225 	struct vmcb_save_area *save = &svm->vmcb->save;
3226 	struct vmcb_save_area *save01 = &svm->vmcb01.ptr->save;
3227 	char *vm_type;
3228 
3229 	if (!dump_invalid_vmcb) {
3230 		pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
3231 		return;
3232 	}
3233 
3234 	guard(mutex)(&vmcb_dump_mutex);
3235 
3236 	vm_type = sev_snp_guest(vcpu->kvm) ? "SEV-SNP" :
3237 		  sev_es_guest(vcpu->kvm) ? "SEV-ES" :
3238 		  sev_guest(vcpu->kvm) ? "SEV" : "SVM";
3239 
3240 	pr_err("%s vCPU%u VMCB %p, last attempted VMRUN on CPU %d\n",
3241 	       vm_type, vcpu->vcpu_id, svm->current_vmcb->ptr, vcpu->arch.last_vmentry_cpu);
3242 	pr_err("VMCB Control Area:\n");
3243 	pr_err("%-20s%04x\n", "cr_read:", control->intercepts[INTERCEPT_CR] & 0xffff);
3244 	pr_err("%-20s%04x\n", "cr_write:", control->intercepts[INTERCEPT_CR] >> 16);
3245 	pr_err("%-20s%04x\n", "dr_read:", control->intercepts[INTERCEPT_DR] & 0xffff);
3246 	pr_err("%-20s%04x\n", "dr_write:", control->intercepts[INTERCEPT_DR] >> 16);
3247 	pr_err("%-20s%08x\n", "exceptions:", control->intercepts[INTERCEPT_EXCEPTION]);
3248 	pr_err("%-20s%08x %08x\n", "intercepts:",
3249               control->intercepts[INTERCEPT_WORD3],
3250 	       control->intercepts[INTERCEPT_WORD4]);
3251 	pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
3252 	pr_err("%-20s%d\n", "pause filter threshold:",
3253 	       control->pause_filter_thresh);
3254 	pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
3255 	pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
3256 	pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
3257 	pr_err("%-20s%d\n", "asid:", control->asid);
3258 	pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
3259 	pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
3260 	pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
3261 	pr_err("%-20s%08x\n", "int_state:", control->int_state);
3262 	pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
3263 	pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
3264 	pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
3265 	pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
3266 	pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
3267 	pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
3268 	pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
3269 	pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
3270 	pr_err("%-20s%016llx\n", "ghcb:", control->ghcb_gpa);
3271 	pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
3272 	pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
3273 	pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
3274 	pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
3275 	pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
3276 	pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
3277 	pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
3278 	pr_err("%-20s%016llx\n", "vmsa_pa:", control->vmsa_pa);
3279 	pr_err("%-20s%016llx\n", "allowed_sev_features:", control->allowed_sev_features);
3280 	pr_err("%-20s%016llx\n", "guest_sev_features:", control->guest_sev_features);
3281 
3282 	if (sev_es_guest(vcpu->kvm)) {
3283 		save = sev_decrypt_vmsa(vcpu);
3284 		if (!save)
3285 			goto no_vmsa;
3286 
3287 		save01 = save;
3288 	}
3289 
3290 	pr_err("VMCB State Save Area:\n");
3291 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3292 	       "es:",
3293 	       save->es.selector, save->es.attrib,
3294 	       save->es.limit, save->es.base);
3295 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3296 	       "cs:",
3297 	       save->cs.selector, save->cs.attrib,
3298 	       save->cs.limit, save->cs.base);
3299 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3300 	       "ss:",
3301 	       save->ss.selector, save->ss.attrib,
3302 	       save->ss.limit, save->ss.base);
3303 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3304 	       "ds:",
3305 	       save->ds.selector, save->ds.attrib,
3306 	       save->ds.limit, save->ds.base);
3307 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3308 	       "fs:",
3309 	       save01->fs.selector, save01->fs.attrib,
3310 	       save01->fs.limit, save01->fs.base);
3311 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3312 	       "gs:",
3313 	       save01->gs.selector, save01->gs.attrib,
3314 	       save01->gs.limit, save01->gs.base);
3315 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3316 	       "gdtr:",
3317 	       save->gdtr.selector, save->gdtr.attrib,
3318 	       save->gdtr.limit, save->gdtr.base);
3319 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3320 	       "ldtr:",
3321 	       save01->ldtr.selector, save01->ldtr.attrib,
3322 	       save01->ldtr.limit, save01->ldtr.base);
3323 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3324 	       "idtr:",
3325 	       save->idtr.selector, save->idtr.attrib,
3326 	       save->idtr.limit, save->idtr.base);
3327 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3328 	       "tr:",
3329 	       save01->tr.selector, save01->tr.attrib,
3330 	       save01->tr.limit, save01->tr.base);
3331 	pr_err("vmpl: %d   cpl:  %d               efer:          %016llx\n",
3332 	       save->vmpl, save->cpl, save->efer);
3333 	pr_err("%-15s %016llx %-13s %016llx\n",
3334 	       "cr0:", save->cr0, "cr2:", save->cr2);
3335 	pr_err("%-15s %016llx %-13s %016llx\n",
3336 	       "cr3:", save->cr3, "cr4:", save->cr4);
3337 	pr_err("%-15s %016llx %-13s %016llx\n",
3338 	       "dr6:", save->dr6, "dr7:", save->dr7);
3339 	pr_err("%-15s %016llx %-13s %016llx\n",
3340 	       "rip:", save->rip, "rflags:", save->rflags);
3341 	pr_err("%-15s %016llx %-13s %016llx\n",
3342 	       "rsp:", save->rsp, "rax:", save->rax);
3343 	pr_err("%-15s %016llx %-13s %016llx\n",
3344 	       "s_cet:", save->s_cet, "ssp:", save->ssp);
3345 	pr_err("%-15s %016llx\n",
3346 	       "isst_addr:", save->isst_addr);
3347 	pr_err("%-15s %016llx %-13s %016llx\n",
3348 	       "star:", save01->star, "lstar:", save01->lstar);
3349 	pr_err("%-15s %016llx %-13s %016llx\n",
3350 	       "cstar:", save01->cstar, "sfmask:", save01->sfmask);
3351 	pr_err("%-15s %016llx %-13s %016llx\n",
3352 	       "kernel_gs_base:", save01->kernel_gs_base,
3353 	       "sysenter_cs:", save01->sysenter_cs);
3354 	pr_err("%-15s %016llx %-13s %016llx\n",
3355 	       "sysenter_esp:", save01->sysenter_esp,
3356 	       "sysenter_eip:", save01->sysenter_eip);
3357 	pr_err("%-15s %016llx %-13s %016llx\n",
3358 	       "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
3359 	pr_err("%-15s %016llx %-13s %016llx\n",
3360 	       "br_from:", save->br_from, "br_to:", save->br_to);
3361 	pr_err("%-15s %016llx %-13s %016llx\n",
3362 	       "excp_from:", save->last_excp_from,
3363 	       "excp_to:", save->last_excp_to);
3364 
3365 	if (sev_es_guest(vcpu->kvm)) {
3366 		struct sev_es_save_area *vmsa = (struct sev_es_save_area *)save;
3367 
3368 		pr_err("%-15s %016llx\n",
3369 		       "sev_features", vmsa->sev_features);
3370 
3371 		pr_err("%-15s %016llx %-13s %016llx\n",
3372 		       "pl0_ssp:", vmsa->pl0_ssp, "pl1_ssp:", vmsa->pl1_ssp);
3373 		pr_err("%-15s %016llx %-13s %016llx\n",
3374 		       "pl2_ssp:", vmsa->pl2_ssp, "pl3_ssp:", vmsa->pl3_ssp);
3375 		pr_err("%-15s %016llx\n",
3376 		       "u_cet:", vmsa->u_cet);
3377 
3378 		pr_err("%-15s %016llx %-13s %016llx\n",
3379 		       "rax:", vmsa->rax, "rbx:", vmsa->rbx);
3380 		pr_err("%-15s %016llx %-13s %016llx\n",
3381 		       "rcx:", vmsa->rcx, "rdx:", vmsa->rdx);
3382 		pr_err("%-15s %016llx %-13s %016llx\n",
3383 		       "rsi:", vmsa->rsi, "rdi:", vmsa->rdi);
3384 		pr_err("%-15s %016llx %-13s %016llx\n",
3385 		       "rbp:", vmsa->rbp, "rsp:", vmsa->rsp);
3386 		pr_err("%-15s %016llx %-13s %016llx\n",
3387 		       "r8:", vmsa->r8, "r9:", vmsa->r9);
3388 		pr_err("%-15s %016llx %-13s %016llx\n",
3389 		       "r10:", vmsa->r10, "r11:", vmsa->r11);
3390 		pr_err("%-15s %016llx %-13s %016llx\n",
3391 		       "r12:", vmsa->r12, "r13:", vmsa->r13);
3392 		pr_err("%-15s %016llx %-13s %016llx\n",
3393 		       "r14:", vmsa->r14, "r15:", vmsa->r15);
3394 		pr_err("%-15s %016llx %-13s %016llx\n",
3395 		       "xcr0:", vmsa->xcr0, "xss:", vmsa->xss);
3396 	} else {
3397 		pr_err("%-15s %016llx %-13s %016lx\n",
3398 		       "rax:", save->rax, "rbx:",
3399 		       vcpu->arch.regs[VCPU_REGS_RBX]);
3400 		pr_err("%-15s %016lx %-13s %016lx\n",
3401 		       "rcx:", vcpu->arch.regs[VCPU_REGS_RCX],
3402 		       "rdx:", vcpu->arch.regs[VCPU_REGS_RDX]);
3403 		pr_err("%-15s %016lx %-13s %016lx\n",
3404 		       "rsi:", vcpu->arch.regs[VCPU_REGS_RSI],
3405 		       "rdi:", vcpu->arch.regs[VCPU_REGS_RDI]);
3406 		pr_err("%-15s %016lx %-13s %016llx\n",
3407 		       "rbp:", vcpu->arch.regs[VCPU_REGS_RBP],
3408 		       "rsp:", save->rsp);
3409 #ifdef CONFIG_X86_64
3410 		pr_err("%-15s %016lx %-13s %016lx\n",
3411 		       "r8:", vcpu->arch.regs[VCPU_REGS_R8],
3412 		       "r9:", vcpu->arch.regs[VCPU_REGS_R9]);
3413 		pr_err("%-15s %016lx %-13s %016lx\n",
3414 		       "r10:", vcpu->arch.regs[VCPU_REGS_R10],
3415 		       "r11:", vcpu->arch.regs[VCPU_REGS_R11]);
3416 		pr_err("%-15s %016lx %-13s %016lx\n",
3417 		       "r12:", vcpu->arch.regs[VCPU_REGS_R12],
3418 		       "r13:", vcpu->arch.regs[VCPU_REGS_R13]);
3419 		pr_err("%-15s %016lx %-13s %016lx\n",
3420 		       "r14:", vcpu->arch.regs[VCPU_REGS_R14],
3421 		       "r15:", vcpu->arch.regs[VCPU_REGS_R15]);
3422 #endif
3423 	}
3424 
3425 no_vmsa:
3426 	if (sev_es_guest(vcpu->kvm))
3427 		sev_free_decrypted_vmsa(vcpu, save);
3428 }
3429 
svm_check_exit_valid(u64 exit_code)3430 static bool svm_check_exit_valid(u64 exit_code)
3431 {
3432 	return (exit_code < ARRAY_SIZE(svm_exit_handlers) &&
3433 		svm_exit_handlers[exit_code]);
3434 }
3435 
svm_handle_invalid_exit(struct kvm_vcpu * vcpu,u64 exit_code)3436 static int svm_handle_invalid_exit(struct kvm_vcpu *vcpu, u64 exit_code)
3437 {
3438 	vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%llx\n", exit_code);
3439 	dump_vmcb(vcpu);
3440 	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3441 	vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
3442 	vcpu->run->internal.ndata = 2;
3443 	vcpu->run->internal.data[0] = exit_code;
3444 	vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
3445 	return 0;
3446 }
3447 
svm_invoke_exit_handler(struct kvm_vcpu * vcpu,u64 exit_code)3448 int svm_invoke_exit_handler(struct kvm_vcpu *vcpu, u64 exit_code)
3449 {
3450 	if (!svm_check_exit_valid(exit_code))
3451 		return svm_handle_invalid_exit(vcpu, exit_code);
3452 
3453 #ifdef CONFIG_MITIGATION_RETPOLINE
3454 	if (exit_code == SVM_EXIT_MSR)
3455 		return msr_interception(vcpu);
3456 	else if (exit_code == SVM_EXIT_VINTR)
3457 		return interrupt_window_interception(vcpu);
3458 	else if (exit_code == SVM_EXIT_INTR)
3459 		return intr_interception(vcpu);
3460 	else if (exit_code == SVM_EXIT_HLT || exit_code == SVM_EXIT_IDLE_HLT)
3461 		return kvm_emulate_halt(vcpu);
3462 	else if (exit_code == SVM_EXIT_NPF)
3463 		return npf_interception(vcpu);
3464 #ifdef CONFIG_KVM_AMD_SEV
3465 	else if (exit_code == SVM_EXIT_VMGEXIT)
3466 		return sev_handle_vmgexit(vcpu);
3467 #endif
3468 #endif
3469 	return svm_exit_handlers[exit_code](vcpu);
3470 }
3471 
svm_get_exit_info(struct kvm_vcpu * vcpu,u32 * reason,u64 * info1,u64 * info2,u32 * intr_info,u32 * error_code)3472 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason,
3473 			      u64 *info1, u64 *info2,
3474 			      u32 *intr_info, u32 *error_code)
3475 {
3476 	struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3477 
3478 	*reason = control->exit_code;
3479 	*info1 = control->exit_info_1;
3480 	*info2 = control->exit_info_2;
3481 	*intr_info = control->exit_int_info;
3482 	if ((*intr_info & SVM_EXITINTINFO_VALID) &&
3483 	    (*intr_info & SVM_EXITINTINFO_VALID_ERR))
3484 		*error_code = control->exit_int_info_err;
3485 	else
3486 		*error_code = 0;
3487 }
3488 
svm_get_entry_info(struct kvm_vcpu * vcpu,u32 * intr_info,u32 * error_code)3489 static void svm_get_entry_info(struct kvm_vcpu *vcpu, u32 *intr_info,
3490 			       u32 *error_code)
3491 {
3492 	struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3493 
3494 	*intr_info = control->event_inj;
3495 
3496 	if ((*intr_info & SVM_EXITINTINFO_VALID) &&
3497 	    (*intr_info & SVM_EXITINTINFO_VALID_ERR))
3498 		*error_code = control->event_inj_err;
3499 	else
3500 		*error_code = 0;
3501 
3502 }
3503 
svm_handle_exit(struct kvm_vcpu * vcpu,fastpath_t exit_fastpath)3504 static int svm_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
3505 {
3506 	struct vcpu_svm *svm = to_svm(vcpu);
3507 	struct kvm_run *kvm_run = vcpu->run;
3508 	u32 exit_code = svm->vmcb->control.exit_code;
3509 
3510 	/* SEV-ES guests must use the CR write traps to track CR registers. */
3511 	if (!sev_es_guest(vcpu->kvm)) {
3512 		if (!svm_is_intercept(svm, INTERCEPT_CR0_WRITE))
3513 			vcpu->arch.cr0 = svm->vmcb->save.cr0;
3514 		if (npt_enabled)
3515 			vcpu->arch.cr3 = svm->vmcb->save.cr3;
3516 	}
3517 
3518 	if (is_guest_mode(vcpu)) {
3519 		int vmexit;
3520 
3521 		trace_kvm_nested_vmexit(vcpu, KVM_ISA_SVM);
3522 
3523 		vmexit = nested_svm_exit_special(svm);
3524 
3525 		if (vmexit == NESTED_EXIT_CONTINUE)
3526 			vmexit = nested_svm_exit_handled(svm);
3527 
3528 		if (vmexit == NESTED_EXIT_DONE)
3529 			return 1;
3530 	}
3531 
3532 	if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3533 		kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3534 		kvm_run->fail_entry.hardware_entry_failure_reason
3535 			= svm->vmcb->control.exit_code;
3536 		kvm_run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
3537 		dump_vmcb(vcpu);
3538 		return 0;
3539 	}
3540 
3541 	if (exit_fastpath != EXIT_FASTPATH_NONE)
3542 		return 1;
3543 
3544 	return svm_invoke_exit_handler(vcpu, exit_code);
3545 }
3546 
pre_svm_run(struct kvm_vcpu * vcpu)3547 static int pre_svm_run(struct kvm_vcpu *vcpu)
3548 {
3549 	struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu);
3550 	struct vcpu_svm *svm = to_svm(vcpu);
3551 
3552 	/*
3553 	 * If the previous vmrun of the vmcb occurred on a different physical
3554 	 * cpu, then mark the vmcb dirty and assign a new asid.  Hardware's
3555 	 * vmcb clean bits are per logical CPU, as are KVM's asid assignments.
3556 	 */
3557 	if (unlikely(svm->current_vmcb->cpu != vcpu->cpu)) {
3558 		svm->current_vmcb->asid_generation = 0;
3559 		vmcb_mark_all_dirty(svm->vmcb);
3560 		svm->current_vmcb->cpu = vcpu->cpu;
3561         }
3562 
3563 	if (sev_guest(vcpu->kvm))
3564 		return pre_sev_run(svm, vcpu->cpu);
3565 
3566 	/* FIXME: handle wraparound of asid_generation */
3567 	if (svm->current_vmcb->asid_generation != sd->asid_generation)
3568 		new_asid(svm, sd);
3569 
3570 	return 0;
3571 }
3572 
svm_inject_nmi(struct kvm_vcpu * vcpu)3573 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3574 {
3575 	struct vcpu_svm *svm = to_svm(vcpu);
3576 
3577 	svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3578 
3579 	if (svm->nmi_l1_to_l2)
3580 		return;
3581 
3582 	/*
3583 	 * No need to manually track NMI masking when vNMI is enabled, hardware
3584 	 * automatically sets V_NMI_BLOCKING_MASK as appropriate, including the
3585 	 * case where software directly injects an NMI.
3586 	 */
3587 	if (!is_vnmi_enabled(svm)) {
3588 		svm->nmi_masked = true;
3589 		svm_set_iret_intercept(svm);
3590 	}
3591 	++vcpu->stat.nmi_injections;
3592 }
3593 
svm_is_vnmi_pending(struct kvm_vcpu * vcpu)3594 static bool svm_is_vnmi_pending(struct kvm_vcpu *vcpu)
3595 {
3596 	struct vcpu_svm *svm = to_svm(vcpu);
3597 
3598 	if (!is_vnmi_enabled(svm))
3599 		return false;
3600 
3601 	return !!(svm->vmcb->control.int_ctl & V_NMI_PENDING_MASK);
3602 }
3603 
svm_set_vnmi_pending(struct kvm_vcpu * vcpu)3604 static bool svm_set_vnmi_pending(struct kvm_vcpu *vcpu)
3605 {
3606 	struct vcpu_svm *svm = to_svm(vcpu);
3607 
3608 	if (!is_vnmi_enabled(svm))
3609 		return false;
3610 
3611 	if (svm->vmcb->control.int_ctl & V_NMI_PENDING_MASK)
3612 		return false;
3613 
3614 	svm->vmcb->control.int_ctl |= V_NMI_PENDING_MASK;
3615 	vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
3616 
3617 	/*
3618 	 * Because the pending NMI is serviced by hardware, KVM can't know when
3619 	 * the NMI is "injected", but for all intents and purposes, passing the
3620 	 * NMI off to hardware counts as injection.
3621 	 */
3622 	++vcpu->stat.nmi_injections;
3623 
3624 	return true;
3625 }
3626 
svm_inject_irq(struct kvm_vcpu * vcpu,bool reinjected)3627 static void svm_inject_irq(struct kvm_vcpu *vcpu, bool reinjected)
3628 {
3629 	struct vcpu_svm *svm = to_svm(vcpu);
3630 	u32 type;
3631 
3632 	if (vcpu->arch.interrupt.soft) {
3633 		if (svm_update_soft_interrupt_rip(vcpu))
3634 			return;
3635 
3636 		type = SVM_EVTINJ_TYPE_SOFT;
3637 	} else {
3638 		type = SVM_EVTINJ_TYPE_INTR;
3639 	}
3640 
3641 	trace_kvm_inj_virq(vcpu->arch.interrupt.nr,
3642 			   vcpu->arch.interrupt.soft, reinjected);
3643 	++vcpu->stat.irq_injections;
3644 
3645 	svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3646 				       SVM_EVTINJ_VALID | type;
3647 }
3648 
svm_complete_interrupt_delivery(struct kvm_vcpu * vcpu,int delivery_mode,int trig_mode,int vector)3649 void svm_complete_interrupt_delivery(struct kvm_vcpu *vcpu, int delivery_mode,
3650 				     int trig_mode, int vector)
3651 {
3652 	/*
3653 	 * apic->apicv_active must be read after vcpu->mode.
3654 	 * Pairs with smp_store_release in vcpu_enter_guest.
3655 	 */
3656 	bool in_guest_mode = (smp_load_acquire(&vcpu->mode) == IN_GUEST_MODE);
3657 
3658 	/* Note, this is called iff the local APIC is in-kernel. */
3659 	if (!READ_ONCE(vcpu->arch.apic->apicv_active)) {
3660 		/* Process the interrupt via kvm_check_and_inject_events(). */
3661 		kvm_make_request(KVM_REQ_EVENT, vcpu);
3662 		kvm_vcpu_kick(vcpu);
3663 		return;
3664 	}
3665 
3666 	trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode, trig_mode, vector);
3667 	if (in_guest_mode) {
3668 		/*
3669 		 * Signal the doorbell to tell hardware to inject the IRQ.  If
3670 		 * the vCPU exits the guest before the doorbell chimes, hardware
3671 		 * will automatically process AVIC interrupts at the next VMRUN.
3672 		 */
3673 		avic_ring_doorbell(vcpu);
3674 	} else {
3675 		/*
3676 		 * Wake the vCPU if it was blocking.  KVM will then detect the
3677 		 * pending IRQ when checking if the vCPU has a wake event.
3678 		 */
3679 		kvm_vcpu_wake_up(vcpu);
3680 	}
3681 }
3682 
svm_deliver_interrupt(struct kvm_lapic * apic,int delivery_mode,int trig_mode,int vector)3683 static void svm_deliver_interrupt(struct kvm_lapic *apic,  int delivery_mode,
3684 				  int trig_mode, int vector)
3685 {
3686 	kvm_lapic_set_irr(vector, apic);
3687 
3688 	/*
3689 	 * Pairs with the smp_mb_*() after setting vcpu->guest_mode in
3690 	 * vcpu_enter_guest() to ensure the write to the vIRR is ordered before
3691 	 * the read of guest_mode.  This guarantees that either VMRUN will see
3692 	 * and process the new vIRR entry, or that svm_complete_interrupt_delivery
3693 	 * will signal the doorbell if the CPU has already entered the guest.
3694 	 */
3695 	smp_mb__after_atomic();
3696 	svm_complete_interrupt_delivery(apic->vcpu, delivery_mode, trig_mode, vector);
3697 }
3698 
svm_update_cr8_intercept(struct kvm_vcpu * vcpu,int tpr,int irr)3699 static void svm_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3700 {
3701 	struct vcpu_svm *svm = to_svm(vcpu);
3702 
3703 	/*
3704 	 * SEV-ES guests must always keep the CR intercepts cleared. CR
3705 	 * tracking is done using the CR write traps.
3706 	 */
3707 	if (sev_es_guest(vcpu->kvm))
3708 		return;
3709 
3710 	if (nested_svm_virtualize_tpr(vcpu))
3711 		return;
3712 
3713 	svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);
3714 
3715 	if (irr == -1)
3716 		return;
3717 
3718 	if (tpr >= irr)
3719 		svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
3720 }
3721 
svm_get_nmi_mask(struct kvm_vcpu * vcpu)3722 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3723 {
3724 	struct vcpu_svm *svm = to_svm(vcpu);
3725 
3726 	if (is_vnmi_enabled(svm))
3727 		return svm->vmcb->control.int_ctl & V_NMI_BLOCKING_MASK;
3728 	else
3729 		return svm->nmi_masked;
3730 }
3731 
svm_set_nmi_mask(struct kvm_vcpu * vcpu,bool masked)3732 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3733 {
3734 	struct vcpu_svm *svm = to_svm(vcpu);
3735 
3736 	if (is_vnmi_enabled(svm)) {
3737 		if (masked)
3738 			svm->vmcb->control.int_ctl |= V_NMI_BLOCKING_MASK;
3739 		else
3740 			svm->vmcb->control.int_ctl &= ~V_NMI_BLOCKING_MASK;
3741 
3742 	} else {
3743 		svm->nmi_masked = masked;
3744 		if (masked)
3745 			svm_set_iret_intercept(svm);
3746 		else
3747 			svm_clr_iret_intercept(svm);
3748 	}
3749 }
3750 
svm_nmi_blocked(struct kvm_vcpu * vcpu)3751 bool svm_nmi_blocked(struct kvm_vcpu *vcpu)
3752 {
3753 	struct vcpu_svm *svm = to_svm(vcpu);
3754 	struct vmcb *vmcb = svm->vmcb;
3755 
3756 	if (!gif_set(svm))
3757 		return true;
3758 
3759 	if (is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3760 		return false;
3761 
3762 	if (svm_get_nmi_mask(vcpu))
3763 		return true;
3764 
3765 	return vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK;
3766 }
3767 
svm_nmi_allowed(struct kvm_vcpu * vcpu,bool for_injection)3768 static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3769 {
3770 	struct vcpu_svm *svm = to_svm(vcpu);
3771 	if (svm->nested.nested_run_pending)
3772 		return -EBUSY;
3773 
3774 	if (svm_nmi_blocked(vcpu))
3775 		return 0;
3776 
3777 	/* An NMI must not be injected into L2 if it's supposed to VM-Exit.  */
3778 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3779 		return -EBUSY;
3780 	return 1;
3781 }
3782 
svm_interrupt_blocked(struct kvm_vcpu * vcpu)3783 bool svm_interrupt_blocked(struct kvm_vcpu *vcpu)
3784 {
3785 	struct vcpu_svm *svm = to_svm(vcpu);
3786 	struct vmcb *vmcb = svm->vmcb;
3787 
3788 	if (!gif_set(svm))
3789 		return true;
3790 
3791 	if (is_guest_mode(vcpu)) {
3792 		/* As long as interrupts are being delivered...  */
3793 		if ((svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK)
3794 		    ? !(svm->vmcb01.ptr->save.rflags & X86_EFLAGS_IF)
3795 		    : !(kvm_get_rflags(vcpu) & X86_EFLAGS_IF))
3796 			return true;
3797 
3798 		/* ... vmexits aren't blocked by the interrupt shadow  */
3799 		if (nested_exit_on_intr(svm))
3800 			return false;
3801 	} else {
3802 		if (!svm_get_if_flag(vcpu))
3803 			return true;
3804 	}
3805 
3806 	return (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK);
3807 }
3808 
svm_interrupt_allowed(struct kvm_vcpu * vcpu,bool for_injection)3809 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3810 {
3811 	struct vcpu_svm *svm = to_svm(vcpu);
3812 
3813 	if (svm->nested.nested_run_pending)
3814 		return -EBUSY;
3815 
3816 	if (svm_interrupt_blocked(vcpu))
3817 		return 0;
3818 
3819 	/*
3820 	 * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
3821 	 * e.g. if the IRQ arrived asynchronously after checking nested events.
3822 	 */
3823 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(svm))
3824 		return -EBUSY;
3825 
3826 	return 1;
3827 }
3828 
svm_enable_irq_window(struct kvm_vcpu * vcpu)3829 static void svm_enable_irq_window(struct kvm_vcpu *vcpu)
3830 {
3831 	struct vcpu_svm *svm = to_svm(vcpu);
3832 
3833 	/*
3834 	 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3835 	 * 1, because that's a separate STGI/VMRUN intercept.  The next time we
3836 	 * get that intercept, this function will be called again though and
3837 	 * we'll get the vintr intercept. However, if the vGIF feature is
3838 	 * enabled, the STGI interception will not occur. Enable the irq
3839 	 * window under the assumption that the hardware will set the GIF.
3840 	 */
3841 	if (vgif || gif_set(svm)) {
3842 		/*
3843 		 * IRQ window is not needed when AVIC is enabled,
3844 		 * unless we have pending ExtINT since it cannot be injected
3845 		 * via AVIC. In such case, KVM needs to temporarily disable AVIC,
3846 		 * and fallback to injecting IRQ via V_IRQ.
3847 		 *
3848 		 * If running nested, AVIC is already locally inhibited
3849 		 * on this vCPU, therefore there is no need to request
3850 		 * the VM wide AVIC inhibition.
3851 		 */
3852 		if (!is_guest_mode(vcpu))
3853 			kvm_set_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN);
3854 
3855 		svm_set_vintr(svm);
3856 	}
3857 }
3858 
svm_enable_nmi_window(struct kvm_vcpu * vcpu)3859 static void svm_enable_nmi_window(struct kvm_vcpu *vcpu)
3860 {
3861 	struct vcpu_svm *svm = to_svm(vcpu);
3862 
3863 	/*
3864 	 * If NMIs are outright masked, i.e. the vCPU is already handling an
3865 	 * NMI, and KVM has not yet intercepted an IRET, then there is nothing
3866 	 * more to do at this time as KVM has already enabled IRET intercepts.
3867 	 * If KVM has already intercepted IRET, then single-step over the IRET,
3868 	 * as NMIs aren't architecturally unmasked until the IRET completes.
3869 	 *
3870 	 * If vNMI is enabled, KVM should never request an NMI window if NMIs
3871 	 * are masked, as KVM allows at most one to-be-injected NMI and one
3872 	 * pending NMI.  If two NMIs arrive simultaneously, KVM will inject one
3873 	 * NMI and set V_NMI_PENDING for the other, but if and only if NMIs are
3874 	 * unmasked.  KVM _will_ request an NMI window in some situations, e.g.
3875 	 * if the vCPU is in an STI shadow or if GIF=0, KVM can't immediately
3876 	 * inject the NMI.  In those situations, KVM needs to single-step over
3877 	 * the STI shadow or intercept STGI.
3878 	 */
3879 	if (svm_get_nmi_mask(vcpu)) {
3880 		WARN_ON_ONCE(is_vnmi_enabled(svm));
3881 
3882 		if (!svm->awaiting_iret_completion)
3883 			return; /* IRET will cause a vm exit */
3884 	}
3885 
3886 	/*
3887 	 * SEV-ES guests are responsible for signaling when a vCPU is ready to
3888 	 * receive a new NMI, as SEV-ES guests can't be single-stepped, i.e.
3889 	 * KVM can't intercept and single-step IRET to detect when NMIs are
3890 	 * unblocked (architecturally speaking).  See SVM_VMGEXIT_NMI_COMPLETE.
3891 	 *
3892 	 * Note, GIF is guaranteed to be '1' for SEV-ES guests as hardware
3893 	 * ignores SEV-ES guest writes to EFER.SVME *and* CLGI/STGI are not
3894 	 * supported NAEs in the GHCB protocol.
3895 	 */
3896 	if (sev_es_guest(vcpu->kvm))
3897 		return;
3898 
3899 	if (!gif_set(svm)) {
3900 		if (vgif)
3901 			svm_set_intercept(svm, INTERCEPT_STGI);
3902 		return; /* STGI will cause a vm exit */
3903 	}
3904 
3905 	/*
3906 	 * Something prevents NMI from been injected. Single step over possible
3907 	 * problem (IRET or exception injection or interrupt shadow)
3908 	 */
3909 	svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
3910 	svm->nmi_singlestep = true;
3911 	svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3912 }
3913 
svm_flush_tlb_asid(struct kvm_vcpu * vcpu)3914 static void svm_flush_tlb_asid(struct kvm_vcpu *vcpu)
3915 {
3916 	struct vcpu_svm *svm = to_svm(vcpu);
3917 
3918 	/*
3919 	 * Unlike VMX, SVM doesn't provide a way to flush only NPT TLB entries.
3920 	 * A TLB flush for the current ASID flushes both "host" and "guest" TLB
3921 	 * entries, and thus is a superset of Hyper-V's fine grained flushing.
3922 	 */
3923 	kvm_hv_vcpu_purge_flush_tlb(vcpu);
3924 
3925 	/*
3926 	 * Flush only the current ASID even if the TLB flush was invoked via
3927 	 * kvm_flush_remote_tlbs().  Although flushing remote TLBs requires all
3928 	 * ASIDs to be flushed, KVM uses a single ASID for L1 and L2, and
3929 	 * unconditionally does a TLB flush on both nested VM-Enter and nested
3930 	 * VM-Exit (via kvm_mmu_reset_context()).
3931 	 */
3932 	if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
3933 		svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3934 	else
3935 		svm->current_vmcb->asid_generation--;
3936 }
3937 
svm_flush_tlb_current(struct kvm_vcpu * vcpu)3938 static void svm_flush_tlb_current(struct kvm_vcpu *vcpu)
3939 {
3940 	hpa_t root_tdp = vcpu->arch.mmu->root.hpa;
3941 
3942 	/*
3943 	 * When running on Hyper-V with EnlightenedNptTlb enabled, explicitly
3944 	 * flush the NPT mappings via hypercall as flushing the ASID only
3945 	 * affects virtual to physical mappings, it does not invalidate guest
3946 	 * physical to host physical mappings.
3947 	 */
3948 	if (svm_hv_is_enlightened_tlb_enabled(vcpu) && VALID_PAGE(root_tdp))
3949 		hyperv_flush_guest_mapping(root_tdp);
3950 
3951 	svm_flush_tlb_asid(vcpu);
3952 }
3953 
svm_flush_tlb_all(struct kvm_vcpu * vcpu)3954 static void svm_flush_tlb_all(struct kvm_vcpu *vcpu)
3955 {
3956 	/*
3957 	 * When running on Hyper-V with EnlightenedNptTlb enabled, remote TLB
3958 	 * flushes should be routed to hv_flush_remote_tlbs() without requesting
3959 	 * a "regular" remote flush.  Reaching this point means either there's
3960 	 * a KVM bug or a prior hv_flush_remote_tlbs() call failed, both of
3961 	 * which might be fatal to the guest.  Yell, but try to recover.
3962 	 */
3963 	if (WARN_ON_ONCE(svm_hv_is_enlightened_tlb_enabled(vcpu)))
3964 		hv_flush_remote_tlbs(vcpu->kvm);
3965 
3966 	svm_flush_tlb_asid(vcpu);
3967 }
3968 
svm_flush_tlb_gva(struct kvm_vcpu * vcpu,gva_t gva)3969 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva)
3970 {
3971 	struct vcpu_svm *svm = to_svm(vcpu);
3972 
3973 	invlpga(gva, svm->vmcb->control.asid);
3974 }
3975 
sync_cr8_to_lapic(struct kvm_vcpu * vcpu)3976 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3977 {
3978 	struct vcpu_svm *svm = to_svm(vcpu);
3979 
3980 	if (nested_svm_virtualize_tpr(vcpu))
3981 		return;
3982 
3983 	if (!svm_is_intercept(svm, INTERCEPT_CR8_WRITE)) {
3984 		int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3985 		kvm_set_cr8(vcpu, cr8);
3986 	}
3987 }
3988 
sync_lapic_to_cr8(struct kvm_vcpu * vcpu)3989 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3990 {
3991 	struct vcpu_svm *svm = to_svm(vcpu);
3992 	u64 cr8;
3993 
3994 	if (nested_svm_virtualize_tpr(vcpu))
3995 		return;
3996 
3997 	cr8 = kvm_get_cr8(vcpu);
3998 	svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
3999 	svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
4000 }
4001 
svm_complete_soft_interrupt(struct kvm_vcpu * vcpu,u8 vector,int type)4002 static void svm_complete_soft_interrupt(struct kvm_vcpu *vcpu, u8 vector,
4003 					int type)
4004 {
4005 	bool is_exception = (type == SVM_EXITINTINFO_TYPE_EXEPT);
4006 	bool is_soft = (type == SVM_EXITINTINFO_TYPE_SOFT);
4007 	struct vcpu_svm *svm = to_svm(vcpu);
4008 
4009 	/*
4010 	 * If NRIPS is enabled, KVM must snapshot the pre-VMRUN next_rip that's
4011 	 * associated with the original soft exception/interrupt.  next_rip is
4012 	 * cleared on all exits that can occur while vectoring an event, so KVM
4013 	 * needs to manually set next_rip for re-injection.  Unlike the !nrips
4014 	 * case below, this needs to be done if and only if KVM is re-injecting
4015 	 * the same event, i.e. if the event is a soft exception/interrupt,
4016 	 * otherwise next_rip is unused on VMRUN.
4017 	 */
4018 	if (nrips && (is_soft || (is_exception && kvm_exception_is_soft(vector))) &&
4019 	    kvm_is_linear_rip(vcpu, svm->soft_int_old_rip + svm->soft_int_csbase))
4020 		svm->vmcb->control.next_rip = svm->soft_int_next_rip;
4021 	/*
4022 	 * If NRIPS isn't enabled, KVM must manually advance RIP prior to
4023 	 * injecting the soft exception/interrupt.  That advancement needs to
4024 	 * be unwound if vectoring didn't complete.  Note, the new event may
4025 	 * not be the injected event, e.g. if KVM injected an INTn, the INTn
4026 	 * hit a #NP in the guest, and the #NP encountered a #PF, the #NP will
4027 	 * be the reported vectored event, but RIP still needs to be unwound.
4028 	 */
4029 	else if (!nrips && (is_soft || is_exception) &&
4030 		 kvm_is_linear_rip(vcpu, svm->soft_int_next_rip + svm->soft_int_csbase))
4031 		kvm_rip_write(vcpu, svm->soft_int_old_rip);
4032 }
4033 
svm_complete_interrupts(struct kvm_vcpu * vcpu)4034 static void svm_complete_interrupts(struct kvm_vcpu *vcpu)
4035 {
4036 	struct vcpu_svm *svm = to_svm(vcpu);
4037 	u8 vector;
4038 	int type;
4039 	u32 exitintinfo = svm->vmcb->control.exit_int_info;
4040 	bool nmi_l1_to_l2 = svm->nmi_l1_to_l2;
4041 	bool soft_int_injected = svm->soft_int_injected;
4042 
4043 	svm->nmi_l1_to_l2 = false;
4044 	svm->soft_int_injected = false;
4045 
4046 	/*
4047 	 * If we've made progress since setting awaiting_iret_completion, we've
4048 	 * executed an IRET and can allow NMI injection.
4049 	 */
4050 	if (svm->awaiting_iret_completion &&
4051 	    kvm_rip_read(vcpu) != svm->nmi_iret_rip) {
4052 		svm->awaiting_iret_completion = false;
4053 		svm->nmi_masked = false;
4054 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4055 	}
4056 
4057 	vcpu->arch.nmi_injected = false;
4058 	kvm_clear_exception_queue(vcpu);
4059 	kvm_clear_interrupt_queue(vcpu);
4060 
4061 	if (!(exitintinfo & SVM_EXITINTINFO_VALID))
4062 		return;
4063 
4064 	kvm_make_request(KVM_REQ_EVENT, vcpu);
4065 
4066 	vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
4067 	type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
4068 
4069 	if (soft_int_injected)
4070 		svm_complete_soft_interrupt(vcpu, vector, type);
4071 
4072 	switch (type) {
4073 	case SVM_EXITINTINFO_TYPE_NMI:
4074 		vcpu->arch.nmi_injected = true;
4075 		svm->nmi_l1_to_l2 = nmi_l1_to_l2;
4076 		break;
4077 	case SVM_EXITINTINFO_TYPE_EXEPT: {
4078 		u32 error_code = 0;
4079 
4080 		/*
4081 		 * Never re-inject a #VC exception.
4082 		 */
4083 		if (vector == X86_TRAP_VC)
4084 			break;
4085 
4086 		if (exitintinfo & SVM_EXITINTINFO_VALID_ERR)
4087 			error_code = svm->vmcb->control.exit_int_info_err;
4088 
4089 		kvm_requeue_exception(vcpu, vector,
4090 				      exitintinfo & SVM_EXITINTINFO_VALID_ERR,
4091 				      error_code);
4092 		break;
4093 	}
4094 	case SVM_EXITINTINFO_TYPE_INTR:
4095 		kvm_queue_interrupt(vcpu, vector, false);
4096 		break;
4097 	case SVM_EXITINTINFO_TYPE_SOFT:
4098 		kvm_queue_interrupt(vcpu, vector, true);
4099 		break;
4100 	default:
4101 		break;
4102 	}
4103 
4104 }
4105 
svm_cancel_injection(struct kvm_vcpu * vcpu)4106 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
4107 {
4108 	struct vcpu_svm *svm = to_svm(vcpu);
4109 	struct vmcb_control_area *control = &svm->vmcb->control;
4110 
4111 	control->exit_int_info = control->event_inj;
4112 	control->exit_int_info_err = control->event_inj_err;
4113 	control->event_inj = 0;
4114 	svm_complete_interrupts(vcpu);
4115 }
4116 
svm_vcpu_pre_run(struct kvm_vcpu * vcpu)4117 static int svm_vcpu_pre_run(struct kvm_vcpu *vcpu)
4118 {
4119 	if (to_kvm_sev_info(vcpu->kvm)->need_init)
4120 		return -EINVAL;
4121 
4122 	return 1;
4123 }
4124 
svm_exit_handlers_fastpath(struct kvm_vcpu * vcpu)4125 static fastpath_t svm_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
4126 {
4127 	struct vcpu_svm *svm = to_svm(vcpu);
4128 	struct vmcb_control_area *control = &svm->vmcb->control;
4129 
4130 	/*
4131 	 * Next RIP must be provided as IRQs are disabled, and accessing guest
4132 	 * memory to decode the instruction might fault, i.e. might sleep.
4133 	 */
4134 	if (!nrips || !control->next_rip)
4135 		return EXIT_FASTPATH_NONE;
4136 
4137 	if (is_guest_mode(vcpu))
4138 		return EXIT_FASTPATH_NONE;
4139 
4140 	switch (control->exit_code) {
4141 	case SVM_EXIT_MSR:
4142 		if (!control->exit_info_1)
4143 			break;
4144 		return handle_fastpath_wrmsr(vcpu);
4145 	case SVM_EXIT_HLT:
4146 		return handle_fastpath_hlt(vcpu);
4147 	case SVM_EXIT_INVD:
4148 		return handle_fastpath_invd(vcpu);
4149 	default:
4150 		break;
4151 	}
4152 
4153 	return EXIT_FASTPATH_NONE;
4154 }
4155 
svm_vcpu_enter_exit(struct kvm_vcpu * vcpu,bool spec_ctrl_intercepted)4156 static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu, bool spec_ctrl_intercepted)
4157 {
4158 	struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu);
4159 	struct vcpu_svm *svm = to_svm(vcpu);
4160 
4161 	guest_state_enter_irqoff();
4162 
4163 	/*
4164 	 * Set RFLAGS.IF prior to VMRUN, as the host's RFLAGS.IF at the time of
4165 	 * VMRUN controls whether or not physical IRQs are masked (KVM always
4166 	 * runs with V_INTR_MASKING_MASK).  Toggle RFLAGS.IF here to avoid the
4167 	 * temptation to do STI+VMRUN+CLI, as AMD CPUs bleed the STI shadow
4168 	 * into guest state if delivery of an event during VMRUN triggers a
4169 	 * #VMEXIT, and the guest_state transitions already tell lockdep that
4170 	 * IRQs are being enabled/disabled.  Note!  GIF=0 for the entirety of
4171 	 * this path, so IRQs aren't actually unmasked while running host code.
4172 	 */
4173 	raw_local_irq_enable();
4174 
4175 	amd_clear_divider();
4176 
4177 	if (sev_es_guest(vcpu->kvm))
4178 		__svm_sev_es_vcpu_run(svm, spec_ctrl_intercepted,
4179 				      sev_es_host_save_area(sd));
4180 	else
4181 		__svm_vcpu_run(svm, spec_ctrl_intercepted);
4182 
4183 	raw_local_irq_disable();
4184 
4185 	guest_state_exit_irqoff();
4186 }
4187 
svm_vcpu_run(struct kvm_vcpu * vcpu,u64 run_flags)4188 static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu, u64 run_flags)
4189 {
4190 	bool force_immediate_exit = run_flags & KVM_RUN_FORCE_IMMEDIATE_EXIT;
4191 	struct vcpu_svm *svm = to_svm(vcpu);
4192 	bool spec_ctrl_intercepted = msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL);
4193 
4194 	trace_kvm_entry(vcpu, force_immediate_exit);
4195 
4196 	svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
4197 	svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
4198 	svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
4199 
4200 	/*
4201 	 * Disable singlestep if we're injecting an interrupt/exception.
4202 	 * We don't want our modified rflags to be pushed on the stack where
4203 	 * we might not be able to easily reset them if we disabled NMI
4204 	 * singlestep later.
4205 	 */
4206 	if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
4207 		/*
4208 		 * Event injection happens before external interrupts cause a
4209 		 * vmexit and interrupts are disabled here, so smp_send_reschedule
4210 		 * is enough to force an immediate vmexit.
4211 		 */
4212 		disable_nmi_singlestep(svm);
4213 		force_immediate_exit = true;
4214 	}
4215 
4216 	if (force_immediate_exit)
4217 		smp_send_reschedule(vcpu->cpu);
4218 
4219 	if (pre_svm_run(vcpu)) {
4220 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4221 		vcpu->run->fail_entry.hardware_entry_failure_reason = SVM_EXIT_ERR;
4222 		vcpu->run->fail_entry.cpu = vcpu->cpu;
4223 		return EXIT_FASTPATH_EXIT_USERSPACE;
4224 	}
4225 
4226 	sync_lapic_to_cr8(vcpu);
4227 
4228 	if (unlikely(svm->asid != svm->vmcb->control.asid)) {
4229 		svm->vmcb->control.asid = svm->asid;
4230 		vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
4231 	}
4232 	svm->vmcb->save.cr2 = vcpu->arch.cr2;
4233 
4234 	svm_hv_update_vp_id(svm->vmcb, vcpu);
4235 
4236 	/*
4237 	 * Run with all-zero DR6 unless the guest can write DR6 freely, so that
4238 	 * KVM can get the exact cause of a #DB.  Note, loading guest DR6 from
4239 	 * KVM's snapshot is only necessary when DR accesses won't exit.
4240 	 */
4241 	if (unlikely(run_flags & KVM_RUN_LOAD_GUEST_DR6))
4242 		svm_set_dr6(vcpu, vcpu->arch.dr6);
4243 	else if (likely(!(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)))
4244 		svm_set_dr6(vcpu, DR6_ACTIVE_LOW);
4245 
4246 	clgi();
4247 	kvm_load_guest_xsave_state(vcpu);
4248 
4249 	/*
4250 	 * Hardware only context switches DEBUGCTL if LBR virtualization is
4251 	 * enabled.  Manually load DEBUGCTL if necessary (and restore it after
4252 	 * VM-Exit), as running with the host's DEBUGCTL can negatively affect
4253 	 * guest state and can even be fatal, e.g. due to Bus Lock Detect.
4254 	 */
4255 	if (!(svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK) &&
4256 	    vcpu->arch.host_debugctl != svm->vmcb->save.dbgctl)
4257 		update_debugctlmsr(svm->vmcb->save.dbgctl);
4258 
4259 	kvm_wait_lapic_expire(vcpu);
4260 
4261 	/*
4262 	 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
4263 	 * it's non-zero. Since vmentry is serialising on affected CPUs, there
4264 	 * is no need to worry about the conditional branch over the wrmsr
4265 	 * being speculatively taken.
4266 	 */
4267 	if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL))
4268 		x86_spec_ctrl_set_guest(svm->virt_spec_ctrl);
4269 
4270 	svm_vcpu_enter_exit(vcpu, spec_ctrl_intercepted);
4271 
4272 	if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL))
4273 		x86_spec_ctrl_restore_host(svm->virt_spec_ctrl);
4274 
4275 	if (!sev_es_guest(vcpu->kvm)) {
4276 		vcpu->arch.cr2 = svm->vmcb->save.cr2;
4277 		vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
4278 		vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
4279 		vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
4280 	}
4281 	vcpu->arch.regs_dirty = 0;
4282 
4283 	if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4284 		kvm_before_interrupt(vcpu, KVM_HANDLING_NMI);
4285 
4286 	if (!(svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK) &&
4287 	    vcpu->arch.host_debugctl != svm->vmcb->save.dbgctl)
4288 		update_debugctlmsr(vcpu->arch.host_debugctl);
4289 
4290 	kvm_load_host_xsave_state(vcpu);
4291 	stgi();
4292 
4293 	/* Any pending NMI will happen here */
4294 
4295 	if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4296 		kvm_after_interrupt(vcpu);
4297 
4298 	sync_cr8_to_lapic(vcpu);
4299 
4300 	svm->next_rip = 0;
4301 	if (is_guest_mode(vcpu)) {
4302 		nested_sync_control_from_vmcb02(svm);
4303 
4304 		/* Track VMRUNs that have made past consistency checking */
4305 		if (svm->nested.nested_run_pending &&
4306 		    svm->vmcb->control.exit_code != SVM_EXIT_ERR)
4307                         ++vcpu->stat.nested_run;
4308 
4309 		svm->nested.nested_run_pending = 0;
4310 	}
4311 
4312 	svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
4313 	vmcb_mark_all_clean(svm->vmcb);
4314 
4315 	/* if exit due to PF check for async PF */
4316 	if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
4317 		vcpu->arch.apf.host_apf_flags =
4318 			kvm_read_and_reset_apf_flags();
4319 
4320 	vcpu->arch.regs_avail &= ~SVM_REGS_LAZY_LOAD_SET;
4321 
4322 	/*
4323 	 * We need to handle MC intercepts here before the vcpu has a chance to
4324 	 * change the physical cpu
4325 	 */
4326 	if (unlikely(svm->vmcb->control.exit_code ==
4327 		     SVM_EXIT_EXCP_BASE + MC_VECTOR))
4328 		svm_handle_mce(vcpu);
4329 
4330 	trace_kvm_exit(vcpu, KVM_ISA_SVM);
4331 
4332 	svm_complete_interrupts(vcpu);
4333 
4334 	return svm_exit_handlers_fastpath(vcpu);
4335 }
4336 
svm_load_mmu_pgd(struct kvm_vcpu * vcpu,hpa_t root_hpa,int root_level)4337 static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa,
4338 			     int root_level)
4339 {
4340 	struct vcpu_svm *svm = to_svm(vcpu);
4341 	unsigned long cr3;
4342 
4343 	if (npt_enabled) {
4344 		svm->vmcb->control.nested_cr3 = __sme_set(root_hpa);
4345 		vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
4346 
4347 		hv_track_root_tdp(vcpu, root_hpa);
4348 
4349 		cr3 = vcpu->arch.cr3;
4350 	} else if (root_level >= PT64_ROOT_4LEVEL) {
4351 		cr3 = __sme_set(root_hpa) | kvm_get_active_pcid(vcpu);
4352 	} else {
4353 		/* PCID in the guest should be impossible with a 32-bit MMU. */
4354 		WARN_ON_ONCE(kvm_get_active_pcid(vcpu));
4355 		cr3 = root_hpa;
4356 	}
4357 
4358 	svm->vmcb->save.cr3 = cr3;
4359 	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
4360 }
4361 
4362 static void
svm_patch_hypercall(struct kvm_vcpu * vcpu,unsigned char * hypercall)4363 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4364 {
4365 	/*
4366 	 * Patch in the VMMCALL instruction:
4367 	 */
4368 	hypercall[0] = 0x0f;
4369 	hypercall[1] = 0x01;
4370 	hypercall[2] = 0xd9;
4371 }
4372 
4373 /*
4374  * The kvm parameter can be NULL (module initialization, or invocation before
4375  * VM creation). Be sure to check the kvm parameter before using it.
4376  */
svm_has_emulated_msr(struct kvm * kvm,u32 index)4377 static bool svm_has_emulated_msr(struct kvm *kvm, u32 index)
4378 {
4379 	switch (index) {
4380 	case MSR_IA32_MCG_EXT_CTL:
4381 	case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
4382 		return false;
4383 	case MSR_IA32_SMBASE:
4384 		if (!IS_ENABLED(CONFIG_KVM_SMM))
4385 			return false;
4386 		/* SEV-ES guests do not support SMM, so report false */
4387 		if (kvm && sev_es_guest(kvm))
4388 			return false;
4389 		break;
4390 	default:
4391 		break;
4392 	}
4393 
4394 	return true;
4395 }
4396 
svm_vcpu_after_set_cpuid(struct kvm_vcpu * vcpu)4397 static void svm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
4398 {
4399 	struct vcpu_svm *svm = to_svm(vcpu);
4400 
4401 	/*
4402 	 * SVM doesn't provide a way to disable just XSAVES in the guest, KVM
4403 	 * can only disable all variants of by disallowing CR4.OSXSAVE from
4404 	 * being set.  As a result, if the host has XSAVE and XSAVES, and the
4405 	 * guest has XSAVE enabled, the guest can execute XSAVES without
4406 	 * faulting.  Treat XSAVES as enabled in this case regardless of
4407 	 * whether it's advertised to the guest so that KVM context switches
4408 	 * XSS on VM-Enter/VM-Exit.  Failure to do so would effectively give
4409 	 * the guest read/write access to the host's XSS.
4410 	 */
4411 	guest_cpu_cap_change(vcpu, X86_FEATURE_XSAVES,
4412 			     boot_cpu_has(X86_FEATURE_XSAVES) &&
4413 			     guest_cpu_cap_has(vcpu, X86_FEATURE_XSAVE));
4414 
4415 	/*
4416 	 * Intercept VMLOAD if the vCPU model is Intel in order to emulate that
4417 	 * VMLOAD drops bits 63:32 of SYSENTER (ignoring the fact that exposing
4418 	 * SVM on Intel is bonkers and extremely unlikely to work).
4419 	 */
4420 	if (guest_cpuid_is_intel_compatible(vcpu))
4421 		guest_cpu_cap_clear(vcpu, X86_FEATURE_V_VMSAVE_VMLOAD);
4422 
4423 	if (sev_guest(vcpu->kvm))
4424 		sev_vcpu_after_set_cpuid(svm);
4425 }
4426 
svm_has_wbinvd_exit(void)4427 static bool svm_has_wbinvd_exit(void)
4428 {
4429 	return true;
4430 }
4431 
4432 #define PRE_EX(exit)  { .exit_code = (exit), \
4433 			.stage = X86_ICPT_PRE_EXCEPT, }
4434 #define POST_EX(exit) { .exit_code = (exit), \
4435 			.stage = X86_ICPT_POST_EXCEPT, }
4436 #define POST_MEM(exit) { .exit_code = (exit), \
4437 			.stage = X86_ICPT_POST_MEMACCESS, }
4438 
4439 static const struct __x86_intercept {
4440 	u32 exit_code;
4441 	enum x86_intercept_stage stage;
4442 } x86_intercept_map[] = {
4443 	[x86_intercept_cr_read]		= POST_EX(SVM_EXIT_READ_CR0),
4444 	[x86_intercept_cr_write]	= POST_EX(SVM_EXIT_WRITE_CR0),
4445 	[x86_intercept_clts]		= POST_EX(SVM_EXIT_WRITE_CR0),
4446 	[x86_intercept_lmsw]		= POST_EX(SVM_EXIT_WRITE_CR0),
4447 	[x86_intercept_smsw]		= POST_EX(SVM_EXIT_READ_CR0),
4448 	[x86_intercept_dr_read]		= POST_EX(SVM_EXIT_READ_DR0),
4449 	[x86_intercept_dr_write]	= POST_EX(SVM_EXIT_WRITE_DR0),
4450 	[x86_intercept_sldt]		= POST_EX(SVM_EXIT_LDTR_READ),
4451 	[x86_intercept_str]		= POST_EX(SVM_EXIT_TR_READ),
4452 	[x86_intercept_lldt]		= POST_EX(SVM_EXIT_LDTR_WRITE),
4453 	[x86_intercept_ltr]		= POST_EX(SVM_EXIT_TR_WRITE),
4454 	[x86_intercept_sgdt]		= POST_EX(SVM_EXIT_GDTR_READ),
4455 	[x86_intercept_sidt]		= POST_EX(SVM_EXIT_IDTR_READ),
4456 	[x86_intercept_lgdt]		= POST_EX(SVM_EXIT_GDTR_WRITE),
4457 	[x86_intercept_lidt]		= POST_EX(SVM_EXIT_IDTR_WRITE),
4458 	[x86_intercept_vmrun]		= POST_EX(SVM_EXIT_VMRUN),
4459 	[x86_intercept_vmmcall]		= POST_EX(SVM_EXIT_VMMCALL),
4460 	[x86_intercept_vmload]		= POST_EX(SVM_EXIT_VMLOAD),
4461 	[x86_intercept_vmsave]		= POST_EX(SVM_EXIT_VMSAVE),
4462 	[x86_intercept_stgi]		= POST_EX(SVM_EXIT_STGI),
4463 	[x86_intercept_clgi]		= POST_EX(SVM_EXIT_CLGI),
4464 	[x86_intercept_skinit]		= POST_EX(SVM_EXIT_SKINIT),
4465 	[x86_intercept_invlpga]		= POST_EX(SVM_EXIT_INVLPGA),
4466 	[x86_intercept_rdtscp]		= POST_EX(SVM_EXIT_RDTSCP),
4467 	[x86_intercept_monitor]		= POST_MEM(SVM_EXIT_MONITOR),
4468 	[x86_intercept_mwait]		= POST_EX(SVM_EXIT_MWAIT),
4469 	[x86_intercept_invlpg]		= POST_EX(SVM_EXIT_INVLPG),
4470 	[x86_intercept_invd]		= POST_EX(SVM_EXIT_INVD),
4471 	[x86_intercept_wbinvd]		= POST_EX(SVM_EXIT_WBINVD),
4472 	[x86_intercept_wrmsr]		= POST_EX(SVM_EXIT_MSR),
4473 	[x86_intercept_rdtsc]		= POST_EX(SVM_EXIT_RDTSC),
4474 	[x86_intercept_rdmsr]		= POST_EX(SVM_EXIT_MSR),
4475 	[x86_intercept_rdpmc]		= POST_EX(SVM_EXIT_RDPMC),
4476 	[x86_intercept_cpuid]		= PRE_EX(SVM_EXIT_CPUID),
4477 	[x86_intercept_rsm]		= PRE_EX(SVM_EXIT_RSM),
4478 	[x86_intercept_pause]		= PRE_EX(SVM_EXIT_PAUSE),
4479 	[x86_intercept_pushf]		= PRE_EX(SVM_EXIT_PUSHF),
4480 	[x86_intercept_popf]		= PRE_EX(SVM_EXIT_POPF),
4481 	[x86_intercept_intn]		= PRE_EX(SVM_EXIT_SWINT),
4482 	[x86_intercept_iret]		= PRE_EX(SVM_EXIT_IRET),
4483 	[x86_intercept_icebp]		= PRE_EX(SVM_EXIT_ICEBP),
4484 	[x86_intercept_hlt]		= POST_EX(SVM_EXIT_HLT),
4485 	[x86_intercept_in]		= POST_EX(SVM_EXIT_IOIO),
4486 	[x86_intercept_ins]		= POST_EX(SVM_EXIT_IOIO),
4487 	[x86_intercept_out]		= POST_EX(SVM_EXIT_IOIO),
4488 	[x86_intercept_outs]		= POST_EX(SVM_EXIT_IOIO),
4489 	[x86_intercept_xsetbv]		= PRE_EX(SVM_EXIT_XSETBV),
4490 };
4491 
4492 #undef PRE_EX
4493 #undef POST_EX
4494 #undef POST_MEM
4495 
svm_check_intercept(struct kvm_vcpu * vcpu,struct x86_instruction_info * info,enum x86_intercept_stage stage,struct x86_exception * exception)4496 static int svm_check_intercept(struct kvm_vcpu *vcpu,
4497 			       struct x86_instruction_info *info,
4498 			       enum x86_intercept_stage stage,
4499 			       struct x86_exception *exception)
4500 {
4501 	struct vcpu_svm *svm = to_svm(vcpu);
4502 	int vmexit, ret = X86EMUL_CONTINUE;
4503 	struct __x86_intercept icpt_info;
4504 	struct vmcb *vmcb = svm->vmcb;
4505 
4506 	if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
4507 		goto out;
4508 
4509 	icpt_info = x86_intercept_map[info->intercept];
4510 
4511 	if (stage != icpt_info.stage)
4512 		goto out;
4513 
4514 	switch (icpt_info.exit_code) {
4515 	case SVM_EXIT_READ_CR0:
4516 		if (info->intercept == x86_intercept_cr_read)
4517 			icpt_info.exit_code += info->modrm_reg;
4518 		break;
4519 	case SVM_EXIT_WRITE_CR0: {
4520 		unsigned long cr0, val;
4521 
4522 		if (info->intercept == x86_intercept_cr_write)
4523 			icpt_info.exit_code += info->modrm_reg;
4524 
4525 		if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
4526 		    info->intercept == x86_intercept_clts)
4527 			break;
4528 
4529 		if (!(vmcb12_is_intercept(&svm->nested.ctl,
4530 					INTERCEPT_SELECTIVE_CR0)))
4531 			break;
4532 
4533 		cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
4534 		val = info->src_val  & ~SVM_CR0_SELECTIVE_MASK;
4535 
4536 		if (info->intercept == x86_intercept_lmsw) {
4537 			cr0 &= 0xfUL;
4538 			val &= 0xfUL;
4539 			/* lmsw can't clear PE - catch this here */
4540 			if (cr0 & X86_CR0_PE)
4541 				val |= X86_CR0_PE;
4542 		}
4543 
4544 		if (cr0 ^ val)
4545 			icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
4546 
4547 		break;
4548 	}
4549 	case SVM_EXIT_READ_DR0:
4550 	case SVM_EXIT_WRITE_DR0:
4551 		icpt_info.exit_code += info->modrm_reg;
4552 		break;
4553 	case SVM_EXIT_MSR:
4554 		if (info->intercept == x86_intercept_wrmsr)
4555 			vmcb->control.exit_info_1 = 1;
4556 		else
4557 			vmcb->control.exit_info_1 = 0;
4558 		break;
4559 	case SVM_EXIT_PAUSE:
4560 		/*
4561 		 * We get this for NOP only, but pause
4562 		 * is rep not, check this here
4563 		 */
4564 		if (info->rep_prefix != REPE_PREFIX)
4565 			goto out;
4566 		break;
4567 	case SVM_EXIT_IOIO: {
4568 		u64 exit_info;
4569 		u32 bytes;
4570 
4571 		if (info->intercept == x86_intercept_in ||
4572 		    info->intercept == x86_intercept_ins) {
4573 			exit_info = ((info->src_val & 0xffff) << 16) |
4574 				SVM_IOIO_TYPE_MASK;
4575 			bytes = info->dst_bytes;
4576 		} else {
4577 			exit_info = (info->dst_val & 0xffff) << 16;
4578 			bytes = info->src_bytes;
4579 		}
4580 
4581 		if (info->intercept == x86_intercept_outs ||
4582 		    info->intercept == x86_intercept_ins)
4583 			exit_info |= SVM_IOIO_STR_MASK;
4584 
4585 		if (info->rep_prefix)
4586 			exit_info |= SVM_IOIO_REP_MASK;
4587 
4588 		bytes = min(bytes, 4u);
4589 
4590 		exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
4591 
4592 		exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
4593 
4594 		vmcb->control.exit_info_1 = exit_info;
4595 		vmcb->control.exit_info_2 = info->next_rip;
4596 
4597 		break;
4598 	}
4599 	default:
4600 		break;
4601 	}
4602 
4603 	/* TODO: Advertise NRIPS to guest hypervisor unconditionally */
4604 	if (static_cpu_has(X86_FEATURE_NRIPS))
4605 		vmcb->control.next_rip  = info->next_rip;
4606 	vmcb->control.exit_code = icpt_info.exit_code;
4607 	vmexit = nested_svm_exit_handled(svm);
4608 
4609 	ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
4610 					   : X86EMUL_CONTINUE;
4611 
4612 out:
4613 	return ret;
4614 }
4615 
svm_handle_exit_irqoff(struct kvm_vcpu * vcpu)4616 static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu)
4617 {
4618 	if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_INTR)
4619 		vcpu->arch.at_instruction_boundary = true;
4620 }
4621 
svm_setup_mce(struct kvm_vcpu * vcpu)4622 static void svm_setup_mce(struct kvm_vcpu *vcpu)
4623 {
4624 	/* [63:9] are reserved. */
4625 	vcpu->arch.mcg_cap &= 0x1ff;
4626 }
4627 
4628 #ifdef CONFIG_KVM_SMM
svm_smi_blocked(struct kvm_vcpu * vcpu)4629 bool svm_smi_blocked(struct kvm_vcpu *vcpu)
4630 {
4631 	struct vcpu_svm *svm = to_svm(vcpu);
4632 
4633 	/* Per APM Vol.2 15.22.2 "Response to SMI" */
4634 	if (!gif_set(svm))
4635 		return true;
4636 
4637 	return is_smm(vcpu);
4638 }
4639 
svm_smi_allowed(struct kvm_vcpu * vcpu,bool for_injection)4640 static int svm_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4641 {
4642 	struct vcpu_svm *svm = to_svm(vcpu);
4643 	if (svm->nested.nested_run_pending)
4644 		return -EBUSY;
4645 
4646 	if (svm_smi_blocked(vcpu))
4647 		return 0;
4648 
4649 	/* An SMI must not be injected into L2 if it's supposed to VM-Exit.  */
4650 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_smi(svm))
4651 		return -EBUSY;
4652 
4653 	return 1;
4654 }
4655 
svm_enter_smm(struct kvm_vcpu * vcpu,union kvm_smram * smram)4656 static int svm_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram)
4657 {
4658 	struct vcpu_svm *svm = to_svm(vcpu);
4659 	struct kvm_host_map map_save;
4660 	int ret;
4661 
4662 	if (!is_guest_mode(vcpu))
4663 		return 0;
4664 
4665 	/*
4666 	 * 32-bit SMRAM format doesn't preserve EFER and SVM state.  Userspace is
4667 	 * responsible for ensuring nested SVM and SMIs are mutually exclusive.
4668 	 */
4669 
4670 	if (!guest_cpu_cap_has(vcpu, X86_FEATURE_LM))
4671 		return 1;
4672 
4673 	smram->smram64.svm_guest_flag = 1;
4674 	smram->smram64.svm_guest_vmcb_gpa = svm->nested.vmcb12_gpa;
4675 
4676 	svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
4677 	svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
4678 	svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
4679 
4680 	ret = nested_svm_simple_vmexit(svm, SVM_EXIT_SW);
4681 	if (ret)
4682 		return ret;
4683 
4684 	/*
4685 	 * KVM uses VMCB01 to store L1 host state while L2 runs but
4686 	 * VMCB01 is going to be used during SMM and thus the state will
4687 	 * be lost. Temporary save non-VMLOAD/VMSAVE state to the host save
4688 	 * area pointed to by MSR_VM_HSAVE_PA. APM guarantees that the
4689 	 * format of the area is identical to guest save area offsetted
4690 	 * by 0x400 (matches the offset of 'struct vmcb_save_area'
4691 	 * within 'struct vmcb'). Note: HSAVE area may also be used by
4692 	 * L1 hypervisor to save additional host context (e.g. KVM does
4693 	 * that, see svm_prepare_switch_to_guest()) which must be
4694 	 * preserved.
4695 	 */
4696 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save))
4697 		return 1;
4698 
4699 	BUILD_BUG_ON(offsetof(struct vmcb, save) != 0x400);
4700 
4701 	svm_copy_vmrun_state(map_save.hva + 0x400,
4702 			     &svm->vmcb01.ptr->save);
4703 
4704 	kvm_vcpu_unmap(vcpu, &map_save);
4705 	return 0;
4706 }
4707 
svm_leave_smm(struct kvm_vcpu * vcpu,const union kvm_smram * smram)4708 static int svm_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram)
4709 {
4710 	struct vcpu_svm *svm = to_svm(vcpu);
4711 	struct kvm_host_map map, map_save;
4712 	struct vmcb *vmcb12;
4713 	int ret;
4714 
4715 	const struct kvm_smram_state_64 *smram64 = &smram->smram64;
4716 
4717 	if (!guest_cpu_cap_has(vcpu, X86_FEATURE_LM))
4718 		return 0;
4719 
4720 	/* Non-zero if SMI arrived while vCPU was in guest mode. */
4721 	if (!smram64->svm_guest_flag)
4722 		return 0;
4723 
4724 	if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SVM))
4725 		return 1;
4726 
4727 	if (!(smram64->efer & EFER_SVME))
4728 		return 1;
4729 
4730 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(smram64->svm_guest_vmcb_gpa), &map))
4731 		return 1;
4732 
4733 	ret = 1;
4734 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save))
4735 		goto unmap_map;
4736 
4737 	if (svm_allocate_nested(svm))
4738 		goto unmap_save;
4739 
4740 	/*
4741 	 * Restore L1 host state from L1 HSAVE area as VMCB01 was
4742 	 * used during SMM (see svm_enter_smm())
4743 	 */
4744 
4745 	svm_copy_vmrun_state(&svm->vmcb01.ptr->save, map_save.hva + 0x400);
4746 
4747 	/*
4748 	 * Enter the nested guest now
4749 	 */
4750 
4751 	vmcb_mark_all_dirty(svm->vmcb01.ptr);
4752 
4753 	vmcb12 = map.hva;
4754 	nested_copy_vmcb_control_to_cache(svm, &vmcb12->control);
4755 	nested_copy_vmcb_save_to_cache(svm, &vmcb12->save);
4756 	ret = enter_svm_guest_mode(vcpu, smram64->svm_guest_vmcb_gpa, vmcb12, false);
4757 
4758 	if (ret)
4759 		goto unmap_save;
4760 
4761 	svm->nested.nested_run_pending = 1;
4762 
4763 unmap_save:
4764 	kvm_vcpu_unmap(vcpu, &map_save);
4765 unmap_map:
4766 	kvm_vcpu_unmap(vcpu, &map);
4767 	return ret;
4768 }
4769 
svm_enable_smi_window(struct kvm_vcpu * vcpu)4770 static void svm_enable_smi_window(struct kvm_vcpu *vcpu)
4771 {
4772 	struct vcpu_svm *svm = to_svm(vcpu);
4773 
4774 	if (!gif_set(svm)) {
4775 		if (vgif)
4776 			svm_set_intercept(svm, INTERCEPT_STGI);
4777 		/* STGI will cause a vm exit */
4778 	} else {
4779 		/* We must be in SMM; RSM will cause a vmexit anyway.  */
4780 	}
4781 }
4782 #endif
4783 
svm_check_emulate_instruction(struct kvm_vcpu * vcpu,int emul_type,void * insn,int insn_len)4784 static int svm_check_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type,
4785 					 void *insn, int insn_len)
4786 {
4787 	struct vcpu_svm *svm = to_svm(vcpu);
4788 	bool smep, smap, is_user;
4789 	u64 error_code;
4790 
4791 	/* Check that emulation is possible during event vectoring */
4792 	if ((svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK) &&
4793 	    !kvm_can_emulate_event_vectoring(emul_type))
4794 		return X86EMUL_UNHANDLEABLE_VECTORING;
4795 
4796 	/* Emulation is always possible when KVM has access to all guest state. */
4797 	if (!sev_guest(vcpu->kvm))
4798 		return X86EMUL_CONTINUE;
4799 
4800 	/* #UD and #GP should never be intercepted for SEV guests. */
4801 	WARN_ON_ONCE(emul_type & (EMULTYPE_TRAP_UD |
4802 				  EMULTYPE_TRAP_UD_FORCED |
4803 				  EMULTYPE_VMWARE_GP));
4804 
4805 	/*
4806 	 * Emulation is impossible for SEV-ES guests as KVM doesn't have access
4807 	 * to guest register state.
4808 	 */
4809 	if (sev_es_guest(vcpu->kvm))
4810 		return X86EMUL_RETRY_INSTR;
4811 
4812 	/*
4813 	 * Emulation is possible if the instruction is already decoded, e.g.
4814 	 * when completing I/O after returning from userspace.
4815 	 */
4816 	if (emul_type & EMULTYPE_NO_DECODE)
4817 		return X86EMUL_CONTINUE;
4818 
4819 	/*
4820 	 * Emulation is possible for SEV guests if and only if a prefilled
4821 	 * buffer containing the bytes of the intercepted instruction is
4822 	 * available. SEV guest memory is encrypted with a guest specific key
4823 	 * and cannot be decrypted by KVM, i.e. KVM would read ciphertext and
4824 	 * decode garbage.
4825 	 *
4826 	 * If KVM is NOT trying to simply skip an instruction, inject #UD if
4827 	 * KVM reached this point without an instruction buffer.  In practice,
4828 	 * this path should never be hit by a well-behaved guest, e.g. KVM
4829 	 * doesn't intercept #UD or #GP for SEV guests, but this path is still
4830 	 * theoretically reachable, e.g. via unaccelerated fault-like AVIC
4831 	 * access, and needs to be handled by KVM to avoid putting the guest
4832 	 * into an infinite loop.   Injecting #UD is somewhat arbitrary, but
4833 	 * its the least awful option given lack of insight into the guest.
4834 	 *
4835 	 * If KVM is trying to skip an instruction, simply resume the guest.
4836 	 * If a #NPF occurs while the guest is vectoring an INT3/INTO, then KVM
4837 	 * will attempt to re-inject the INT3/INTO and skip the instruction.
4838 	 * In that scenario, retrying the INT3/INTO and hoping the guest will
4839 	 * make forward progress is the only option that has a chance of
4840 	 * success (and in practice it will work the vast majority of the time).
4841 	 */
4842 	if (unlikely(!insn)) {
4843 		if (emul_type & EMULTYPE_SKIP)
4844 			return X86EMUL_UNHANDLEABLE;
4845 
4846 		kvm_queue_exception(vcpu, UD_VECTOR);
4847 		return X86EMUL_PROPAGATE_FAULT;
4848 	}
4849 
4850 	/*
4851 	 * Emulate for SEV guests if the insn buffer is not empty.  The buffer
4852 	 * will be empty if the DecodeAssist microcode cannot fetch bytes for
4853 	 * the faulting instruction because the code fetch itself faulted, e.g.
4854 	 * the guest attempted to fetch from emulated MMIO or a guest page
4855 	 * table used to translate CS:RIP resides in emulated MMIO.
4856 	 */
4857 	if (likely(insn_len))
4858 		return X86EMUL_CONTINUE;
4859 
4860 	/*
4861 	 * Detect and workaround Errata 1096 Fam_17h_00_0Fh.
4862 	 *
4863 	 * Errata:
4864 	 * When CPU raises #NPF on guest data access and vCPU CR4.SMAP=1, it is
4865 	 * possible that CPU microcode implementing DecodeAssist will fail to
4866 	 * read guest memory at CS:RIP and vmcb.GuestIntrBytes will incorrectly
4867 	 * be '0'.  This happens because microcode reads CS:RIP using a _data_
4868 	 * loap uop with CPL=0 privileges.  If the load hits a SMAP #PF, ucode
4869 	 * gives up and does not fill the instruction bytes buffer.
4870 	 *
4871 	 * As above, KVM reaches this point iff the VM is an SEV guest, the CPU
4872 	 * supports DecodeAssist, a #NPF was raised, KVM's page fault handler
4873 	 * triggered emulation (e.g. for MMIO), and the CPU returned 0 in the
4874 	 * GuestIntrBytes field of the VMCB.
4875 	 *
4876 	 * This does _not_ mean that the erratum has been encountered, as the
4877 	 * DecodeAssist will also fail if the load for CS:RIP hits a legitimate
4878 	 * #PF, e.g. if the guest attempt to execute from emulated MMIO and
4879 	 * encountered a reserved/not-present #PF.
4880 	 *
4881 	 * To hit the erratum, the following conditions must be true:
4882 	 *    1. CR4.SMAP=1 (obviously).
4883 	 *    2. CR4.SMEP=0 || CPL=3.  If SMEP=1 and CPL<3, the erratum cannot
4884 	 *       have been hit as the guest would have encountered a SMEP
4885 	 *       violation #PF, not a #NPF.
4886 	 *    3. The #NPF is not due to a code fetch, in which case failure to
4887 	 *       retrieve the instruction bytes is legitimate (see abvoe).
4888 	 *
4889 	 * In addition, don't apply the erratum workaround if the #NPF occurred
4890 	 * while translating guest page tables (see below).
4891 	 */
4892 	error_code = svm->vmcb->control.exit_info_1;
4893 	if (error_code & (PFERR_GUEST_PAGE_MASK | PFERR_FETCH_MASK))
4894 		goto resume_guest;
4895 
4896 	smep = kvm_is_cr4_bit_set(vcpu, X86_CR4_SMEP);
4897 	smap = kvm_is_cr4_bit_set(vcpu, X86_CR4_SMAP);
4898 	is_user = svm_get_cpl(vcpu) == 3;
4899 	if (smap && (!smep || is_user)) {
4900 		pr_err_ratelimited("SEV Guest triggered AMD Erratum 1096\n");
4901 
4902 		/*
4903 		 * If the fault occurred in userspace, arbitrarily inject #GP
4904 		 * to avoid killing the guest and to hopefully avoid confusing
4905 		 * the guest kernel too much, e.g. injecting #PF would not be
4906 		 * coherent with respect to the guest's page tables.  Request
4907 		 * triple fault if the fault occurred in the kernel as there's
4908 		 * no fault that KVM can inject without confusing the guest.
4909 		 * In practice, the triple fault is moot as no sane SEV kernel
4910 		 * will execute from user memory while also running with SMAP=1.
4911 		 */
4912 		if (is_user)
4913 			kvm_inject_gp(vcpu, 0);
4914 		else
4915 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4916 		return X86EMUL_PROPAGATE_FAULT;
4917 	}
4918 
4919 resume_guest:
4920 	/*
4921 	 * If the erratum was not hit, simply resume the guest and let it fault
4922 	 * again.  While awful, e.g. the vCPU may get stuck in an infinite loop
4923 	 * if the fault is at CPL=0, it's the lesser of all evils.  Exiting to
4924 	 * userspace will kill the guest, and letting the emulator read garbage
4925 	 * will yield random behavior and potentially corrupt the guest.
4926 	 *
4927 	 * Simply resuming the guest is technically not a violation of the SEV
4928 	 * architecture.  AMD's APM states that all code fetches and page table
4929 	 * accesses for SEV guest are encrypted, regardless of the C-Bit.  The
4930 	 * APM also states that encrypted accesses to MMIO are "ignored", but
4931 	 * doesn't explicitly define "ignored", i.e. doing nothing and letting
4932 	 * the guest spin is technically "ignoring" the access.
4933 	 */
4934 	return X86EMUL_RETRY_INSTR;
4935 }
4936 
svm_apic_init_signal_blocked(struct kvm_vcpu * vcpu)4937 static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
4938 {
4939 	struct vcpu_svm *svm = to_svm(vcpu);
4940 
4941 	return !gif_set(svm);
4942 }
4943 
svm_vcpu_deliver_sipi_vector(struct kvm_vcpu * vcpu,u8 vector)4944 static void svm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
4945 {
4946 	if (!sev_es_guest(vcpu->kvm))
4947 		return kvm_vcpu_deliver_sipi_vector(vcpu, vector);
4948 
4949 	sev_vcpu_deliver_sipi_vector(vcpu, vector);
4950 }
4951 
svm_vm_destroy(struct kvm * kvm)4952 static void svm_vm_destroy(struct kvm *kvm)
4953 {
4954 	avic_vm_destroy(kvm);
4955 	sev_vm_destroy(kvm);
4956 
4957 	svm_srso_vm_destroy();
4958 }
4959 
svm_vm_init(struct kvm * kvm)4960 static int svm_vm_init(struct kvm *kvm)
4961 {
4962 	int type = kvm->arch.vm_type;
4963 
4964 	if (type != KVM_X86_DEFAULT_VM &&
4965 	    type != KVM_X86_SW_PROTECTED_VM) {
4966 		kvm->arch.has_protected_state =
4967 			(type == KVM_X86_SEV_ES_VM || type == KVM_X86_SNP_VM);
4968 		to_kvm_sev_info(kvm)->need_init = true;
4969 
4970 		kvm->arch.has_private_mem = (type == KVM_X86_SNP_VM);
4971 		kvm->arch.pre_fault_allowed = !kvm->arch.has_private_mem;
4972 	}
4973 
4974 	if (!pause_filter_count || !pause_filter_thresh)
4975 		kvm_disable_exits(kvm, KVM_X86_DISABLE_EXITS_PAUSE);
4976 
4977 	if (enable_apicv) {
4978 		int ret = avic_vm_init(kvm);
4979 		if (ret)
4980 			return ret;
4981 	}
4982 
4983 	svm_srso_vm_init();
4984 	return 0;
4985 }
4986 
svm_alloc_apic_backing_page(struct kvm_vcpu * vcpu)4987 static void *svm_alloc_apic_backing_page(struct kvm_vcpu *vcpu)
4988 {
4989 	struct page *page = snp_safe_alloc_page();
4990 
4991 	if (!page)
4992 		return NULL;
4993 
4994 	return page_address(page);
4995 }
4996 
4997 struct kvm_x86_ops svm_x86_ops __initdata = {
4998 	.name = KBUILD_MODNAME,
4999 
5000 	.check_processor_compatibility = svm_check_processor_compat,
5001 
5002 	.hardware_unsetup = svm_hardware_unsetup,
5003 	.enable_virtualization_cpu = svm_enable_virtualization_cpu,
5004 	.disable_virtualization_cpu = svm_disable_virtualization_cpu,
5005 	.emergency_disable_virtualization_cpu = svm_emergency_disable_virtualization_cpu,
5006 	.has_emulated_msr = svm_has_emulated_msr,
5007 
5008 	.vcpu_create = svm_vcpu_create,
5009 	.vcpu_free = svm_vcpu_free,
5010 	.vcpu_reset = svm_vcpu_reset,
5011 
5012 	.vm_size = sizeof(struct kvm_svm),
5013 	.vm_init = svm_vm_init,
5014 	.vm_destroy = svm_vm_destroy,
5015 
5016 	.prepare_switch_to_guest = svm_prepare_switch_to_guest,
5017 	.vcpu_load = svm_vcpu_load,
5018 	.vcpu_put = svm_vcpu_put,
5019 	.vcpu_blocking = avic_vcpu_blocking,
5020 	.vcpu_unblocking = avic_vcpu_unblocking,
5021 
5022 	.update_exception_bitmap = svm_update_exception_bitmap,
5023 	.get_feature_msr = svm_get_feature_msr,
5024 	.get_msr = svm_get_msr,
5025 	.set_msr = svm_set_msr,
5026 	.get_segment_base = svm_get_segment_base,
5027 	.get_segment = svm_get_segment,
5028 	.set_segment = svm_set_segment,
5029 	.get_cpl = svm_get_cpl,
5030 	.get_cpl_no_cache = svm_get_cpl,
5031 	.get_cs_db_l_bits = svm_get_cs_db_l_bits,
5032 	.is_valid_cr0 = svm_is_valid_cr0,
5033 	.set_cr0 = svm_set_cr0,
5034 	.post_set_cr3 = sev_post_set_cr3,
5035 	.is_valid_cr4 = svm_is_valid_cr4,
5036 	.set_cr4 = svm_set_cr4,
5037 	.set_efer = svm_set_efer,
5038 	.get_idt = svm_get_idt,
5039 	.set_idt = svm_set_idt,
5040 	.get_gdt = svm_get_gdt,
5041 	.set_gdt = svm_set_gdt,
5042 	.set_dr7 = svm_set_dr7,
5043 	.sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
5044 	.cache_reg = svm_cache_reg,
5045 	.get_rflags = svm_get_rflags,
5046 	.set_rflags = svm_set_rflags,
5047 	.get_if_flag = svm_get_if_flag,
5048 
5049 	.flush_tlb_all = svm_flush_tlb_all,
5050 	.flush_tlb_current = svm_flush_tlb_current,
5051 	.flush_tlb_gva = svm_flush_tlb_gva,
5052 	.flush_tlb_guest = svm_flush_tlb_asid,
5053 
5054 	.vcpu_pre_run = svm_vcpu_pre_run,
5055 	.vcpu_run = svm_vcpu_run,
5056 	.handle_exit = svm_handle_exit,
5057 	.skip_emulated_instruction = svm_skip_emulated_instruction,
5058 	.update_emulated_instruction = NULL,
5059 	.set_interrupt_shadow = svm_set_interrupt_shadow,
5060 	.get_interrupt_shadow = svm_get_interrupt_shadow,
5061 	.patch_hypercall = svm_patch_hypercall,
5062 	.inject_irq = svm_inject_irq,
5063 	.inject_nmi = svm_inject_nmi,
5064 	.is_vnmi_pending = svm_is_vnmi_pending,
5065 	.set_vnmi_pending = svm_set_vnmi_pending,
5066 	.inject_exception = svm_inject_exception,
5067 	.cancel_injection = svm_cancel_injection,
5068 	.interrupt_allowed = svm_interrupt_allowed,
5069 	.nmi_allowed = svm_nmi_allowed,
5070 	.get_nmi_mask = svm_get_nmi_mask,
5071 	.set_nmi_mask = svm_set_nmi_mask,
5072 	.enable_nmi_window = svm_enable_nmi_window,
5073 	.enable_irq_window = svm_enable_irq_window,
5074 	.update_cr8_intercept = svm_update_cr8_intercept,
5075 
5076 	.x2apic_icr_is_split = true,
5077 	.set_virtual_apic_mode = avic_refresh_virtual_apic_mode,
5078 	.refresh_apicv_exec_ctrl = avic_refresh_apicv_exec_ctrl,
5079 	.apicv_post_state_restore = avic_apicv_post_state_restore,
5080 	.required_apicv_inhibits = AVIC_REQUIRED_APICV_INHIBITS,
5081 
5082 	.get_exit_info = svm_get_exit_info,
5083 	.get_entry_info = svm_get_entry_info,
5084 
5085 	.vcpu_after_set_cpuid = svm_vcpu_after_set_cpuid,
5086 
5087 	.has_wbinvd_exit = svm_has_wbinvd_exit,
5088 
5089 	.get_l2_tsc_offset = svm_get_l2_tsc_offset,
5090 	.get_l2_tsc_multiplier = svm_get_l2_tsc_multiplier,
5091 	.write_tsc_offset = svm_write_tsc_offset,
5092 	.write_tsc_multiplier = svm_write_tsc_multiplier,
5093 
5094 	.load_mmu_pgd = svm_load_mmu_pgd,
5095 
5096 	.check_intercept = svm_check_intercept,
5097 	.handle_exit_irqoff = svm_handle_exit_irqoff,
5098 
5099 	.nested_ops = &svm_nested_ops,
5100 
5101 	.deliver_interrupt = svm_deliver_interrupt,
5102 	.pi_update_irte = avic_pi_update_irte,
5103 	.setup_mce = svm_setup_mce,
5104 
5105 #ifdef CONFIG_KVM_SMM
5106 	.smi_allowed = svm_smi_allowed,
5107 	.enter_smm = svm_enter_smm,
5108 	.leave_smm = svm_leave_smm,
5109 	.enable_smi_window = svm_enable_smi_window,
5110 #endif
5111 
5112 #ifdef CONFIG_KVM_AMD_SEV
5113 	.dev_get_attr = sev_dev_get_attr,
5114 	.mem_enc_ioctl = sev_mem_enc_ioctl,
5115 	.mem_enc_register_region = sev_mem_enc_register_region,
5116 	.mem_enc_unregister_region = sev_mem_enc_unregister_region,
5117 	.guest_memory_reclaimed = sev_guest_memory_reclaimed,
5118 
5119 	.vm_copy_enc_context_from = sev_vm_copy_enc_context_from,
5120 	.vm_move_enc_context_from = sev_vm_move_enc_context_from,
5121 #endif
5122 	.check_emulate_instruction = svm_check_emulate_instruction,
5123 
5124 	.apic_init_signal_blocked = svm_apic_init_signal_blocked,
5125 
5126 	.recalc_intercepts = svm_recalc_intercepts,
5127 	.complete_emulated_msr = svm_complete_emulated_msr,
5128 
5129 	.vcpu_deliver_sipi_vector = svm_vcpu_deliver_sipi_vector,
5130 	.vcpu_get_apicv_inhibit_reasons = avic_vcpu_get_apicv_inhibit_reasons,
5131 	.alloc_apic_backing_page = svm_alloc_apic_backing_page,
5132 
5133 	.gmem_prepare = sev_gmem_prepare,
5134 	.gmem_invalidate = sev_gmem_invalidate,
5135 	.gmem_max_mapping_level = sev_gmem_max_mapping_level,
5136 };
5137 
5138 /*
5139  * The default MMIO mask is a single bit (excluding the present bit),
5140  * which could conflict with the memory encryption bit. Check for
5141  * memory encryption support and override the default MMIO mask if
5142  * memory encryption is enabled.
5143  */
svm_adjust_mmio_mask(void)5144 static __init void svm_adjust_mmio_mask(void)
5145 {
5146 	unsigned int enc_bit, mask_bit;
5147 	u64 msr, mask;
5148 
5149 	/* If there is no memory encryption support, use existing mask */
5150 	if (cpuid_eax(0x80000000) < 0x8000001f)
5151 		return;
5152 
5153 	/* If memory encryption is not enabled, use existing mask */
5154 	rdmsrq(MSR_AMD64_SYSCFG, msr);
5155 	if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT))
5156 		return;
5157 
5158 	enc_bit = cpuid_ebx(0x8000001f) & 0x3f;
5159 	mask_bit = boot_cpu_data.x86_phys_bits;
5160 
5161 	/* Increment the mask bit if it is the same as the encryption bit */
5162 	if (enc_bit == mask_bit)
5163 		mask_bit++;
5164 
5165 	/*
5166 	 * If the mask bit location is below 52, then some bits above the
5167 	 * physical addressing limit will always be reserved, so use the
5168 	 * rsvd_bits() function to generate the mask. This mask, along with
5169 	 * the present bit, will be used to generate a page fault with
5170 	 * PFER.RSV = 1.
5171 	 *
5172 	 * If the mask bit location is 52 (or above), then clear the mask.
5173 	 */
5174 	mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0;
5175 
5176 	kvm_mmu_set_mmio_spte_mask(mask, mask, PT_WRITABLE_MASK | PT_USER_MASK);
5177 }
5178 
svm_set_cpu_caps(void)5179 static __init void svm_set_cpu_caps(void)
5180 {
5181 	kvm_set_cpu_caps();
5182 
5183 	kvm_caps.supported_perf_cap = 0;
5184 
5185 	kvm_cpu_cap_clear(X86_FEATURE_IBT);
5186 
5187 	/* CPUID 0x80000001 and 0x8000000A (SVM features) */
5188 	if (nested) {
5189 		kvm_cpu_cap_set(X86_FEATURE_SVM);
5190 		kvm_cpu_cap_set(X86_FEATURE_VMCBCLEAN);
5191 
5192 		/*
5193 		 * KVM currently flushes TLBs on *every* nested SVM transition,
5194 		 * and so for all intents and purposes KVM supports flushing by
5195 		 * ASID, i.e. KVM is guaranteed to honor every L1 ASID flush.
5196 		 */
5197 		kvm_cpu_cap_set(X86_FEATURE_FLUSHBYASID);
5198 
5199 		if (nrips)
5200 			kvm_cpu_cap_set(X86_FEATURE_NRIPS);
5201 
5202 		if (npt_enabled)
5203 			kvm_cpu_cap_set(X86_FEATURE_NPT);
5204 
5205 		if (tsc_scaling)
5206 			kvm_cpu_cap_set(X86_FEATURE_TSCRATEMSR);
5207 
5208 		if (vls)
5209 			kvm_cpu_cap_set(X86_FEATURE_V_VMSAVE_VMLOAD);
5210 		if (lbrv)
5211 			kvm_cpu_cap_set(X86_FEATURE_LBRV);
5212 
5213 		if (boot_cpu_has(X86_FEATURE_PAUSEFILTER))
5214 			kvm_cpu_cap_set(X86_FEATURE_PAUSEFILTER);
5215 
5216 		if (boot_cpu_has(X86_FEATURE_PFTHRESHOLD))
5217 			kvm_cpu_cap_set(X86_FEATURE_PFTHRESHOLD);
5218 
5219 		if (vgif)
5220 			kvm_cpu_cap_set(X86_FEATURE_VGIF);
5221 
5222 		if (vnmi)
5223 			kvm_cpu_cap_set(X86_FEATURE_VNMI);
5224 
5225 		/* Nested VM can receive #VMEXIT instead of triggering #GP */
5226 		kvm_cpu_cap_set(X86_FEATURE_SVME_ADDR_CHK);
5227 	}
5228 
5229 	if (cpu_feature_enabled(X86_FEATURE_BUS_LOCK_THRESHOLD))
5230 		kvm_caps.has_bus_lock_exit = true;
5231 
5232 	/* CPUID 0x80000008 */
5233 	if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) ||
5234 	    boot_cpu_has(X86_FEATURE_AMD_SSBD))
5235 		kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
5236 
5237 	if (enable_pmu) {
5238 		/*
5239 		 * Enumerate support for PERFCTR_CORE if and only if KVM has
5240 		 * access to enough counters to virtualize "core" support,
5241 		 * otherwise limit vPMU support to the legacy number of counters.
5242 		 */
5243 		if (kvm_pmu_cap.num_counters_gp < AMD64_NUM_COUNTERS_CORE)
5244 			kvm_pmu_cap.num_counters_gp = min(AMD64_NUM_COUNTERS,
5245 							  kvm_pmu_cap.num_counters_gp);
5246 		else
5247 			kvm_cpu_cap_check_and_set(X86_FEATURE_PERFCTR_CORE);
5248 
5249 		if (kvm_pmu_cap.version != 2 ||
5250 		    !kvm_cpu_cap_has(X86_FEATURE_PERFCTR_CORE))
5251 			kvm_cpu_cap_clear(X86_FEATURE_PERFMON_V2);
5252 	}
5253 
5254 	/* CPUID 0x8000001F (SME/SEV features) */
5255 	sev_set_cpu_caps();
5256 
5257 	/*
5258 	 * Clear capabilities that are automatically configured by common code,
5259 	 * but that require explicit SVM support (that isn't yet implemented).
5260 	 */
5261 	kvm_cpu_cap_clear(X86_FEATURE_BUS_LOCK_DETECT);
5262 	kvm_cpu_cap_clear(X86_FEATURE_MSR_IMM);
5263 }
5264 
svm_hardware_setup(void)5265 static __init int svm_hardware_setup(void)
5266 {
5267 	void *iopm_va;
5268 	int cpu, r;
5269 
5270 	/*
5271 	 * NX is required for shadow paging and for NPT if the NX huge pages
5272 	 * mitigation is enabled.
5273 	 */
5274 	if (!boot_cpu_has(X86_FEATURE_NX)) {
5275 		pr_err_ratelimited("NX (Execute Disable) not supported\n");
5276 		return -EOPNOTSUPP;
5277 	}
5278 	kvm_enable_efer_bits(EFER_NX);
5279 
5280 	kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
5281 				     XFEATURE_MASK_BNDCSR);
5282 
5283 	if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
5284 		kvm_enable_efer_bits(EFER_FFXSR);
5285 
5286 	if (tsc_scaling) {
5287 		if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
5288 			tsc_scaling = false;
5289 		} else {
5290 			pr_info("TSC scaling supported\n");
5291 			kvm_caps.has_tsc_control = true;
5292 		}
5293 	}
5294 	kvm_caps.max_tsc_scaling_ratio = SVM_TSC_RATIO_MAX;
5295 	kvm_caps.tsc_scaling_ratio_frac_bits = 32;
5296 
5297 	tsc_aux_uret_slot = kvm_add_user_return_msr(MSR_TSC_AUX);
5298 
5299 	if (boot_cpu_has(X86_FEATURE_AUTOIBRS))
5300 		kvm_enable_efer_bits(EFER_AUTOIBRS);
5301 
5302 	/* Check for pause filtering support */
5303 	if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
5304 		pause_filter_count = 0;
5305 		pause_filter_thresh = 0;
5306 	} else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) {
5307 		pause_filter_thresh = 0;
5308 	}
5309 
5310 	if (nested) {
5311 		pr_info("Nested Virtualization enabled\n");
5312 		kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
5313 
5314 		r = nested_svm_init_msrpm_merge_offsets();
5315 		if (r)
5316 			return r;
5317 	}
5318 
5319 	/*
5320 	 * KVM's MMU doesn't support using 2-level paging for itself, and thus
5321 	 * NPT isn't supported if the host is using 2-level paging since host
5322 	 * CR4 is unchanged on VMRUN.
5323 	 */
5324 	if (!IS_ENABLED(CONFIG_X86_64) && !IS_ENABLED(CONFIG_X86_PAE))
5325 		npt_enabled = false;
5326 
5327 	if (!boot_cpu_has(X86_FEATURE_NPT))
5328 		npt_enabled = false;
5329 
5330 	/* Force VM NPT level equal to the host's paging level */
5331 	kvm_configure_mmu(npt_enabled, get_npt_level(),
5332 			  get_npt_level(), PG_LEVEL_1G);
5333 	pr_info("Nested Paging %s\n", str_enabled_disabled(npt_enabled));
5334 
5335 	/*
5336 	 * It seems that on AMD processors PTE's accessed bit is
5337 	 * being set by the CPU hardware before the NPF vmexit.
5338 	 * This is not expected behaviour and our tests fail because
5339 	 * of it.
5340 	 * A workaround here is to disable support for
5341 	 * GUEST_MAXPHYADDR < HOST_MAXPHYADDR if NPT is enabled.
5342 	 * In this case userspace can know if there is support using
5343 	 * KVM_CAP_SMALLER_MAXPHYADDR extension and decide how to handle
5344 	 * it
5345 	 * If future AMD CPU models change the behaviour described above,
5346 	 * this variable can be changed accordingly
5347 	 */
5348 	allow_smaller_maxphyaddr = !npt_enabled;
5349 
5350 	/* Setup shadow_me_value and shadow_me_mask */
5351 	kvm_mmu_set_me_spte_mask(sme_me_mask, sme_me_mask);
5352 
5353 	svm_adjust_mmio_mask();
5354 
5355 	nrips = nrips && boot_cpu_has(X86_FEATURE_NRIPS);
5356 
5357 	if (lbrv) {
5358 		if (!boot_cpu_has(X86_FEATURE_LBRV))
5359 			lbrv = false;
5360 		else
5361 			pr_info("LBR virtualization supported\n");
5362 	}
5363 
5364 	iopm_va = svm_alloc_permissions_map(IOPM_SIZE, GFP_KERNEL);
5365 	if (!iopm_va)
5366 		return -ENOMEM;
5367 
5368 	iopm_base = __sme_set(__pa(iopm_va));
5369 
5370 	/*
5371 	 * Note, SEV setup consumes npt_enabled and enable_mmio_caching (which
5372 	 * may be modified by svm_adjust_mmio_mask()), as well as nrips.
5373 	 */
5374 	sev_hardware_setup();
5375 
5376 	svm_hv_hardware_setup();
5377 
5378 	enable_apicv = avic_hardware_setup();
5379 	if (!enable_apicv) {
5380 		enable_ipiv = false;
5381 		svm_x86_ops.vcpu_blocking = NULL;
5382 		svm_x86_ops.vcpu_unblocking = NULL;
5383 		svm_x86_ops.vcpu_get_apicv_inhibit_reasons = NULL;
5384 	}
5385 
5386 	if (vls) {
5387 		if (!npt_enabled ||
5388 		    !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
5389 		    !IS_ENABLED(CONFIG_X86_64)) {
5390 			vls = false;
5391 		} else {
5392 			pr_info("Virtual VMLOAD VMSAVE supported\n");
5393 		}
5394 	}
5395 
5396 	if (boot_cpu_has(X86_FEATURE_SVME_ADDR_CHK))
5397 		svm_gp_erratum_intercept = false;
5398 
5399 	if (vgif) {
5400 		if (!boot_cpu_has(X86_FEATURE_VGIF))
5401 			vgif = false;
5402 		else
5403 			pr_info("Virtual GIF supported\n");
5404 	}
5405 
5406 	vnmi = vgif && vnmi && boot_cpu_has(X86_FEATURE_VNMI);
5407 	if (vnmi)
5408 		pr_info("Virtual NMI enabled\n");
5409 
5410 	if (!vnmi) {
5411 		svm_x86_ops.is_vnmi_pending = NULL;
5412 		svm_x86_ops.set_vnmi_pending = NULL;
5413 	}
5414 
5415 	if (!enable_pmu)
5416 		pr_info("PMU virtualization is disabled\n");
5417 
5418 	svm_set_cpu_caps();
5419 
5420 	kvm_caps.inapplicable_quirks &= ~KVM_X86_QUIRK_CD_NW_CLEARED;
5421 
5422 	for_each_possible_cpu(cpu) {
5423 		r = svm_cpu_init(cpu);
5424 		if (r)
5425 			goto err;
5426 	}
5427 
5428 	return 0;
5429 
5430 err:
5431 	svm_hardware_unsetup();
5432 	return r;
5433 }
5434 
5435 
5436 static struct kvm_x86_init_ops svm_init_ops __initdata = {
5437 	.hardware_setup = svm_hardware_setup,
5438 
5439 	.runtime_ops = &svm_x86_ops,
5440 	.pmu_ops = &amd_pmu_ops,
5441 };
5442 
__svm_exit(void)5443 static void __svm_exit(void)
5444 {
5445 	kvm_x86_vendor_exit();
5446 }
5447 
svm_init(void)5448 static int __init svm_init(void)
5449 {
5450 	int r;
5451 
5452 	KVM_SANITY_CHECK_VM_STRUCT_SIZE(kvm_svm);
5453 
5454 	__unused_size_checks();
5455 
5456 	if (!kvm_is_svm_supported())
5457 		return -EOPNOTSUPP;
5458 
5459 	r = kvm_x86_vendor_init(&svm_init_ops);
5460 	if (r)
5461 		return r;
5462 
5463 	/*
5464 	 * Common KVM initialization _must_ come last, after this, /dev/kvm is
5465 	 * exposed to userspace!
5466 	 */
5467 	r = kvm_init(sizeof(struct vcpu_svm), __alignof__(struct vcpu_svm),
5468 		     THIS_MODULE);
5469 	if (r)
5470 		goto err_kvm_init;
5471 
5472 	return 0;
5473 
5474 err_kvm_init:
5475 	__svm_exit();
5476 	return r;
5477 }
5478 
svm_exit(void)5479 static void __exit svm_exit(void)
5480 {
5481 	kvm_exit();
5482 	__svm_exit();
5483 }
5484 
5485 module_init(svm_init)
5486 module_exit(svm_exit)
5487