xref: /linux/arch/x86/kernel/vm86_32.c (revision 42fda66387daa53538ae13a2c858396aaf037158)
1 /*
2  *  Copyright (C) 1994  Linus Torvalds
3  *
4  *  29 dec 2001 - Fixed oopses caused by unchecked access to the vm86
5  *                stack - Manfred Spraul <manfred@colorfullife.com>
6  *
7  *  22 mar 2002 - Manfred detected the stackfaults, but didn't handle
8  *                them correctly. Now the emulation will be in a
9  *                consistent state after stackfaults - Kasper Dupont
10  *                <kasperd@daimi.au.dk>
11  *
12  *  22 mar 2002 - Added missing clear_IF in set_vflags_* Kasper Dupont
13  *                <kasperd@daimi.au.dk>
14  *
15  *  ?? ??? 2002 - Fixed premature returns from handle_vm86_fault
16  *                caused by Kasper Dupont's changes - Stas Sergeev
17  *
18  *   4 apr 2002 - Fixed CHECK_IF_IN_TRAP broken by Stas' changes.
19  *                Kasper Dupont <kasperd@daimi.au.dk>
20  *
21  *   9 apr 2002 - Changed syntax of macros in handle_vm86_fault.
22  *                Kasper Dupont <kasperd@daimi.au.dk>
23  *
24  *   9 apr 2002 - Changed stack access macros to jump to a label
25  *                instead of returning to userspace. This simplifies
26  *                do_int, and is needed by handle_vm6_fault. Kasper
27  *                Dupont <kasperd@daimi.au.dk>
28  *
29  */
30 
31 #include <linux/capability.h>
32 #include <linux/errno.h>
33 #include <linux/interrupt.h>
34 #include <linux/sched.h>
35 #include <linux/kernel.h>
36 #include <linux/signal.h>
37 #include <linux/string.h>
38 #include <linux/mm.h>
39 #include <linux/smp.h>
40 #include <linux/highmem.h>
41 #include <linux/ptrace.h>
42 #include <linux/audit.h>
43 #include <linux/stddef.h>
44 
45 #include <asm/uaccess.h>
46 #include <asm/io.h>
47 #include <asm/tlbflush.h>
48 #include <asm/irq.h>
49 
50 /*
51  * Known problems:
52  *
53  * Interrupt handling is not guaranteed:
54  * - a real x86 will disable all interrupts for one instruction
55  *   after a "mov ss,xx" to make stack handling atomic even without
56  *   the 'lss' instruction. We can't guarantee this in v86 mode,
57  *   as the next instruction might result in a page fault or similar.
58  * - a real x86 will have interrupts disabled for one instruction
59  *   past the 'sti' that enables them. We don't bother with all the
60  *   details yet.
61  *
62  * Let's hope these problems do not actually matter for anything.
63  */
64 
65 
66 #define KVM86	((struct kernel_vm86_struct *)regs)
67 #define VMPI 	KVM86->vm86plus
68 
69 
70 /*
71  * 8- and 16-bit register defines..
72  */
73 #define AL(regs)	(((unsigned char *)&((regs)->pt.eax))[0])
74 #define AH(regs)	(((unsigned char *)&((regs)->pt.eax))[1])
75 #define IP(regs)	(*(unsigned short *)&((regs)->pt.eip))
76 #define SP(regs)	(*(unsigned short *)&((regs)->pt.esp))
77 
78 /*
79  * virtual flags (16 and 32-bit versions)
80  */
81 #define VFLAGS	(*(unsigned short *)&(current->thread.v86flags))
82 #define VEFLAGS	(current->thread.v86flags)
83 
84 #define set_flags(X,new,mask) \
85 ((X) = ((X) & ~(mask)) | ((new) & (mask)))
86 
87 #define SAFE_MASK	(0xDD5)
88 #define RETURN_MASK	(0xDFF)
89 
90 /* convert kernel_vm86_regs to vm86_regs */
91 static int copy_vm86_regs_to_user(struct vm86_regs __user *user,
92 				  const struct kernel_vm86_regs *regs)
93 {
94 	int ret = 0;
95 
96 	/* kernel_vm86_regs is missing xgs, so copy everything up to
97 	   (but not including) orig_eax, and then rest including orig_eax. */
98 	ret += copy_to_user(user, regs, offsetof(struct kernel_vm86_regs, pt.orig_eax));
99 	ret += copy_to_user(&user->orig_eax, &regs->pt.orig_eax,
100 			    sizeof(struct kernel_vm86_regs) -
101 			    offsetof(struct kernel_vm86_regs, pt.orig_eax));
102 
103 	return ret;
104 }
105 
106 /* convert vm86_regs to kernel_vm86_regs */
107 static int copy_vm86_regs_from_user(struct kernel_vm86_regs *regs,
108 				    const struct vm86_regs __user *user,
109 				    unsigned extra)
110 {
111 	int ret = 0;
112 
113 	/* copy eax-xfs inclusive */
114 	ret += copy_from_user(regs, user, offsetof(struct kernel_vm86_regs, pt.orig_eax));
115 	/* copy orig_eax-__gsh+extra */
116 	ret += copy_from_user(&regs->pt.orig_eax, &user->orig_eax,
117 			      sizeof(struct kernel_vm86_regs) -
118 			      offsetof(struct kernel_vm86_regs, pt.orig_eax) +
119 			      extra);
120 	return ret;
121 }
122 
123 struct pt_regs * FASTCALL(save_v86_state(struct kernel_vm86_regs * regs));
124 struct pt_regs * fastcall save_v86_state(struct kernel_vm86_regs * regs)
125 {
126 	struct tss_struct *tss;
127 	struct pt_regs *ret;
128 	unsigned long tmp;
129 
130 	/*
131 	 * This gets called from entry.S with interrupts disabled, but
132 	 * from process context. Enable interrupts here, before trying
133 	 * to access user space.
134 	 */
135 	local_irq_enable();
136 
137 	if (!current->thread.vm86_info) {
138 		printk("no vm86_info: BAD\n");
139 		do_exit(SIGSEGV);
140 	}
141 	set_flags(regs->pt.eflags, VEFLAGS, VIF_MASK | current->thread.v86mask);
142 	tmp = copy_vm86_regs_to_user(&current->thread.vm86_info->regs,regs);
143 	tmp += put_user(current->thread.screen_bitmap,&current->thread.vm86_info->screen_bitmap);
144 	if (tmp) {
145 		printk("vm86: could not access userspace vm86_info\n");
146 		do_exit(SIGSEGV);
147 	}
148 
149 	tss = &per_cpu(init_tss, get_cpu());
150 	current->thread.esp0 = current->thread.saved_esp0;
151 	current->thread.sysenter_cs = __KERNEL_CS;
152 	load_esp0(tss, &current->thread);
153 	current->thread.saved_esp0 = 0;
154 	put_cpu();
155 
156 	ret = KVM86->regs32;
157 
158 	ret->xfs = current->thread.saved_fs;
159 	loadsegment(gs, current->thread.saved_gs);
160 
161 	return ret;
162 }
163 
164 static void mark_screen_rdonly(struct mm_struct *mm)
165 {
166 	pgd_t *pgd;
167 	pud_t *pud;
168 	pmd_t *pmd;
169 	pte_t *pte;
170 	spinlock_t *ptl;
171 	int i;
172 
173 	pgd = pgd_offset(mm, 0xA0000);
174 	if (pgd_none_or_clear_bad(pgd))
175 		goto out;
176 	pud = pud_offset(pgd, 0xA0000);
177 	if (pud_none_or_clear_bad(pud))
178 		goto out;
179 	pmd = pmd_offset(pud, 0xA0000);
180 	if (pmd_none_or_clear_bad(pmd))
181 		goto out;
182 	pte = pte_offset_map_lock(mm, pmd, 0xA0000, &ptl);
183 	for (i = 0; i < 32; i++) {
184 		if (pte_present(*pte))
185 			set_pte(pte, pte_wrprotect(*pte));
186 		pte++;
187 	}
188 	pte_unmap_unlock(pte, ptl);
189 out:
190 	flush_tlb();
191 }
192 
193 
194 
195 static int do_vm86_irq_handling(int subfunction, int irqnumber);
196 static void do_sys_vm86(struct kernel_vm86_struct *info, struct task_struct *tsk);
197 
198 asmlinkage int sys_vm86old(struct pt_regs regs)
199 {
200 	struct vm86_struct __user *v86 = (struct vm86_struct __user *)regs.ebx;
201 	struct kernel_vm86_struct info; /* declare this _on top_,
202 					 * this avoids wasting of stack space.
203 					 * This remains on the stack until we
204 					 * return to 32 bit user space.
205 					 */
206 	struct task_struct *tsk;
207 	int tmp, ret = -EPERM;
208 
209 	tsk = current;
210 	if (tsk->thread.saved_esp0)
211 		goto out;
212 	tmp = copy_vm86_regs_from_user(&info.regs, &v86->regs,
213 				       offsetof(struct kernel_vm86_struct, vm86plus) -
214 				       sizeof(info.regs));
215 	ret = -EFAULT;
216 	if (tmp)
217 		goto out;
218 	memset(&info.vm86plus, 0, (int)&info.regs32 - (int)&info.vm86plus);
219 	info.regs32 = &regs;
220 	tsk->thread.vm86_info = v86;
221 	do_sys_vm86(&info, tsk);
222 	ret = 0;	/* we never return here */
223 out:
224 	return ret;
225 }
226 
227 
228 asmlinkage int sys_vm86(struct pt_regs regs)
229 {
230 	struct kernel_vm86_struct info; /* declare this _on top_,
231 					 * this avoids wasting of stack space.
232 					 * This remains on the stack until we
233 					 * return to 32 bit user space.
234 					 */
235 	struct task_struct *tsk;
236 	int tmp, ret;
237 	struct vm86plus_struct __user *v86;
238 
239 	tsk = current;
240 	switch (regs.ebx) {
241 		case VM86_REQUEST_IRQ:
242 		case VM86_FREE_IRQ:
243 		case VM86_GET_IRQ_BITS:
244 		case VM86_GET_AND_RESET_IRQ:
245 			ret = do_vm86_irq_handling(regs.ebx, (int)regs.ecx);
246 			goto out;
247 		case VM86_PLUS_INSTALL_CHECK:
248 			/* NOTE: on old vm86 stuff this will return the error
249 			   from access_ok(), because the subfunction is
250 			   interpreted as (invalid) address to vm86_struct.
251 			   So the installation check works.
252 			 */
253 			ret = 0;
254 			goto out;
255 	}
256 
257 	/* we come here only for functions VM86_ENTER, VM86_ENTER_NO_BYPASS */
258 	ret = -EPERM;
259 	if (tsk->thread.saved_esp0)
260 		goto out;
261 	v86 = (struct vm86plus_struct __user *)regs.ecx;
262 	tmp = copy_vm86_regs_from_user(&info.regs, &v86->regs,
263 				       offsetof(struct kernel_vm86_struct, regs32) -
264 				       sizeof(info.regs));
265 	ret = -EFAULT;
266 	if (tmp)
267 		goto out;
268 	info.regs32 = &regs;
269 	info.vm86plus.is_vm86pus = 1;
270 	tsk->thread.vm86_info = (struct vm86_struct __user *)v86;
271 	do_sys_vm86(&info, tsk);
272 	ret = 0;	/* we never return here */
273 out:
274 	return ret;
275 }
276 
277 
278 static void do_sys_vm86(struct kernel_vm86_struct *info, struct task_struct *tsk)
279 {
280 	struct tss_struct *tss;
281 /*
282  * make sure the vm86() system call doesn't try to do anything silly
283  */
284 	info->regs.pt.xds = 0;
285 	info->regs.pt.xes = 0;
286 	info->regs.pt.xfs = 0;
287 
288 /* we are clearing gs later just before "jmp resume_userspace",
289  * because it is not saved/restored.
290  */
291 
292 /*
293  * The eflags register is also special: we cannot trust that the user
294  * has set it up safely, so this makes sure interrupt etc flags are
295  * inherited from protected mode.
296  */
297  	VEFLAGS = info->regs.pt.eflags;
298 	info->regs.pt.eflags &= SAFE_MASK;
299 	info->regs.pt.eflags |= info->regs32->eflags & ~SAFE_MASK;
300 	info->regs.pt.eflags |= VM_MASK;
301 
302 	switch (info->cpu_type) {
303 		case CPU_286:
304 			tsk->thread.v86mask = 0;
305 			break;
306 		case CPU_386:
307 			tsk->thread.v86mask = NT_MASK | IOPL_MASK;
308 			break;
309 		case CPU_486:
310 			tsk->thread.v86mask = AC_MASK | NT_MASK | IOPL_MASK;
311 			break;
312 		default:
313 			tsk->thread.v86mask = ID_MASK | AC_MASK | NT_MASK | IOPL_MASK;
314 			break;
315 	}
316 
317 /*
318  * Save old state, set default return value (%eax) to 0
319  */
320 	info->regs32->eax = 0;
321 	tsk->thread.saved_esp0 = tsk->thread.esp0;
322 	tsk->thread.saved_fs = info->regs32->xfs;
323 	savesegment(gs, tsk->thread.saved_gs);
324 
325 	tss = &per_cpu(init_tss, get_cpu());
326 	tsk->thread.esp0 = (unsigned long) &info->VM86_TSS_ESP0;
327 	if (cpu_has_sep)
328 		tsk->thread.sysenter_cs = 0;
329 	load_esp0(tss, &tsk->thread);
330 	put_cpu();
331 
332 	tsk->thread.screen_bitmap = info->screen_bitmap;
333 	if (info->flags & VM86_SCREEN_BITMAP)
334 		mark_screen_rdonly(tsk->mm);
335 
336 	/*call audit_syscall_exit since we do not exit via the normal paths */
337 	if (unlikely(current->audit_context))
338 		audit_syscall_exit(AUDITSC_RESULT(0), 0);
339 
340 	__asm__ __volatile__(
341 		"movl %0,%%esp\n\t"
342 		"movl %1,%%ebp\n\t"
343 		"mov  %2, %%gs\n\t"
344 		"jmp resume_userspace"
345 		: /* no outputs */
346 		:"r" (&info->regs), "r" (task_thread_info(tsk)), "r" (0));
347 	/* we never return here */
348 }
349 
350 static inline void return_to_32bit(struct kernel_vm86_regs * regs16, int retval)
351 {
352 	struct pt_regs * regs32;
353 
354 	regs32 = save_v86_state(regs16);
355 	regs32->eax = retval;
356 	__asm__ __volatile__("movl %0,%%esp\n\t"
357 		"movl %1,%%ebp\n\t"
358 		"jmp resume_userspace"
359 		: : "r" (regs32), "r" (current_thread_info()));
360 }
361 
362 static inline void set_IF(struct kernel_vm86_regs * regs)
363 {
364 	VEFLAGS |= VIF_MASK;
365 	if (VEFLAGS & VIP_MASK)
366 		return_to_32bit(regs, VM86_STI);
367 }
368 
369 static inline void clear_IF(struct kernel_vm86_regs * regs)
370 {
371 	VEFLAGS &= ~VIF_MASK;
372 }
373 
374 static inline void clear_TF(struct kernel_vm86_regs * regs)
375 {
376 	regs->pt.eflags &= ~TF_MASK;
377 }
378 
379 static inline void clear_AC(struct kernel_vm86_regs * regs)
380 {
381 	regs->pt.eflags &= ~AC_MASK;
382 }
383 
384 /* It is correct to call set_IF(regs) from the set_vflags_*
385  * functions. However someone forgot to call clear_IF(regs)
386  * in the opposite case.
387  * After the command sequence CLI PUSHF STI POPF you should
388  * end up with interrups disabled, but you ended up with
389  * interrupts enabled.
390  *  ( I was testing my own changes, but the only bug I
391  *    could find was in a function I had not changed. )
392  * [KD]
393  */
394 
395 static inline void set_vflags_long(unsigned long eflags, struct kernel_vm86_regs * regs)
396 {
397 	set_flags(VEFLAGS, eflags, current->thread.v86mask);
398 	set_flags(regs->pt.eflags, eflags, SAFE_MASK);
399 	if (eflags & IF_MASK)
400 		set_IF(regs);
401 	else
402 		clear_IF(regs);
403 }
404 
405 static inline void set_vflags_short(unsigned short flags, struct kernel_vm86_regs * regs)
406 {
407 	set_flags(VFLAGS, flags, current->thread.v86mask);
408 	set_flags(regs->pt.eflags, flags, SAFE_MASK);
409 	if (flags & IF_MASK)
410 		set_IF(regs);
411 	else
412 		clear_IF(regs);
413 }
414 
415 static inline unsigned long get_vflags(struct kernel_vm86_regs * regs)
416 {
417 	unsigned long flags = regs->pt.eflags & RETURN_MASK;
418 
419 	if (VEFLAGS & VIF_MASK)
420 		flags |= IF_MASK;
421 	flags |= IOPL_MASK;
422 	return flags | (VEFLAGS & current->thread.v86mask);
423 }
424 
425 static inline int is_revectored(int nr, struct revectored_struct * bitmap)
426 {
427 	__asm__ __volatile__("btl %2,%1\n\tsbbl %0,%0"
428 		:"=r" (nr)
429 		:"m" (*bitmap),"r" (nr));
430 	return nr;
431 }
432 
433 #define val_byte(val, n) (((__u8 *)&val)[n])
434 
435 #define pushb(base, ptr, val, err_label) \
436 	do { \
437 		__u8 __val = val; \
438 		ptr--; \
439 		if (put_user(__val, base + ptr) < 0) \
440 			goto err_label; \
441 	} while(0)
442 
443 #define pushw(base, ptr, val, err_label) \
444 	do { \
445 		__u16 __val = val; \
446 		ptr--; \
447 		if (put_user(val_byte(__val, 1), base + ptr) < 0) \
448 			goto err_label; \
449 		ptr--; \
450 		if (put_user(val_byte(__val, 0), base + ptr) < 0) \
451 			goto err_label; \
452 	} while(0)
453 
454 #define pushl(base, ptr, val, err_label) \
455 	do { \
456 		__u32 __val = val; \
457 		ptr--; \
458 		if (put_user(val_byte(__val, 3), base + ptr) < 0) \
459 			goto err_label; \
460 		ptr--; \
461 		if (put_user(val_byte(__val, 2), base + ptr) < 0) \
462 			goto err_label; \
463 		ptr--; \
464 		if (put_user(val_byte(__val, 1), base + ptr) < 0) \
465 			goto err_label; \
466 		ptr--; \
467 		if (put_user(val_byte(__val, 0), base + ptr) < 0) \
468 			goto err_label; \
469 	} while(0)
470 
471 #define popb(base, ptr, err_label) \
472 	({ \
473 		__u8 __res; \
474 		if (get_user(__res, base + ptr) < 0) \
475 			goto err_label; \
476 		ptr++; \
477 		__res; \
478 	})
479 
480 #define popw(base, ptr, err_label) \
481 	({ \
482 		__u16 __res; \
483 		if (get_user(val_byte(__res, 0), base + ptr) < 0) \
484 			goto err_label; \
485 		ptr++; \
486 		if (get_user(val_byte(__res, 1), base + ptr) < 0) \
487 			goto err_label; \
488 		ptr++; \
489 		__res; \
490 	})
491 
492 #define popl(base, ptr, err_label) \
493 	({ \
494 		__u32 __res; \
495 		if (get_user(val_byte(__res, 0), base + ptr) < 0) \
496 			goto err_label; \
497 		ptr++; \
498 		if (get_user(val_byte(__res, 1), base + ptr) < 0) \
499 			goto err_label; \
500 		ptr++; \
501 		if (get_user(val_byte(__res, 2), base + ptr) < 0) \
502 			goto err_label; \
503 		ptr++; \
504 		if (get_user(val_byte(__res, 3), base + ptr) < 0) \
505 			goto err_label; \
506 		ptr++; \
507 		__res; \
508 	})
509 
510 /* There are so many possible reasons for this function to return
511  * VM86_INTx, so adding another doesn't bother me. We can expect
512  * userspace programs to be able to handle it. (Getting a problem
513  * in userspace is always better than an Oops anyway.) [KD]
514  */
515 static void do_int(struct kernel_vm86_regs *regs, int i,
516     unsigned char __user * ssp, unsigned short sp)
517 {
518 	unsigned long __user *intr_ptr;
519 	unsigned long segoffs;
520 
521 	if (regs->pt.xcs == BIOSSEG)
522 		goto cannot_handle;
523 	if (is_revectored(i, &KVM86->int_revectored))
524 		goto cannot_handle;
525 	if (i==0x21 && is_revectored(AH(regs),&KVM86->int21_revectored))
526 		goto cannot_handle;
527 	intr_ptr = (unsigned long __user *) (i << 2);
528 	if (get_user(segoffs, intr_ptr))
529 		goto cannot_handle;
530 	if ((segoffs >> 16) == BIOSSEG)
531 		goto cannot_handle;
532 	pushw(ssp, sp, get_vflags(regs), cannot_handle);
533 	pushw(ssp, sp, regs->pt.xcs, cannot_handle);
534 	pushw(ssp, sp, IP(regs), cannot_handle);
535 	regs->pt.xcs = segoffs >> 16;
536 	SP(regs) -= 6;
537 	IP(regs) = segoffs & 0xffff;
538 	clear_TF(regs);
539 	clear_IF(regs);
540 	clear_AC(regs);
541 	return;
542 
543 cannot_handle:
544 	return_to_32bit(regs, VM86_INTx + (i << 8));
545 }
546 
547 int handle_vm86_trap(struct kernel_vm86_regs * regs, long error_code, int trapno)
548 {
549 	if (VMPI.is_vm86pus) {
550 		if ( (trapno==3) || (trapno==1) )
551 			return_to_32bit(regs, VM86_TRAP + (trapno << 8));
552 		do_int(regs, trapno, (unsigned char __user *) (regs->pt.xss << 4), SP(regs));
553 		return 0;
554 	}
555 	if (trapno !=1)
556 		return 1; /* we let this handle by the calling routine */
557 	if (current->ptrace & PT_PTRACED) {
558 		unsigned long flags;
559 		spin_lock_irqsave(&current->sighand->siglock, flags);
560 		sigdelset(&current->blocked, SIGTRAP);
561 		recalc_sigpending();
562 		spin_unlock_irqrestore(&current->sighand->siglock, flags);
563 	}
564 	send_sig(SIGTRAP, current, 1);
565 	current->thread.trap_no = trapno;
566 	current->thread.error_code = error_code;
567 	return 0;
568 }
569 
570 void handle_vm86_fault(struct kernel_vm86_regs * regs, long error_code)
571 {
572 	unsigned char opcode;
573 	unsigned char __user *csp;
574 	unsigned char __user *ssp;
575 	unsigned short ip, sp, orig_flags;
576 	int data32, pref_done;
577 
578 #define CHECK_IF_IN_TRAP \
579 	if (VMPI.vm86dbg_active && VMPI.vm86dbg_TFpendig) \
580 		newflags |= TF_MASK
581 #define VM86_FAULT_RETURN do { \
582 	if (VMPI.force_return_for_pic  && (VEFLAGS & (IF_MASK | VIF_MASK))) \
583 		return_to_32bit(regs, VM86_PICRETURN); \
584 	if (orig_flags & TF_MASK) \
585 		handle_vm86_trap(regs, 0, 1); \
586 	return; } while (0)
587 
588 	orig_flags = *(unsigned short *)&regs->pt.eflags;
589 
590 	csp = (unsigned char __user *) (regs->pt.xcs << 4);
591 	ssp = (unsigned char __user *) (regs->pt.xss << 4);
592 	sp = SP(regs);
593 	ip = IP(regs);
594 
595 	data32 = 0;
596 	pref_done = 0;
597 	do {
598 		switch (opcode = popb(csp, ip, simulate_sigsegv)) {
599 			case 0x66:      /* 32-bit data */     data32=1; break;
600 			case 0x67:      /* 32-bit address */  break;
601 			case 0x2e:      /* CS */              break;
602 			case 0x3e:      /* DS */              break;
603 			case 0x26:      /* ES */              break;
604 			case 0x36:      /* SS */              break;
605 			case 0x65:      /* GS */              break;
606 			case 0x64:      /* FS */              break;
607 			case 0xf2:      /* repnz */       break;
608 			case 0xf3:      /* rep */             break;
609 			default: pref_done = 1;
610 		}
611 	} while (!pref_done);
612 
613 	switch (opcode) {
614 
615 	/* pushf */
616 	case 0x9c:
617 		if (data32) {
618 			pushl(ssp, sp, get_vflags(regs), simulate_sigsegv);
619 			SP(regs) -= 4;
620 		} else {
621 			pushw(ssp, sp, get_vflags(regs), simulate_sigsegv);
622 			SP(regs) -= 2;
623 		}
624 		IP(regs) = ip;
625 		VM86_FAULT_RETURN;
626 
627 	/* popf */
628 	case 0x9d:
629 		{
630 		unsigned long newflags;
631 		if (data32) {
632 			newflags=popl(ssp, sp, simulate_sigsegv);
633 			SP(regs) += 4;
634 		} else {
635 			newflags = popw(ssp, sp, simulate_sigsegv);
636 			SP(regs) += 2;
637 		}
638 		IP(regs) = ip;
639 		CHECK_IF_IN_TRAP;
640 		if (data32) {
641 			set_vflags_long(newflags, regs);
642 		} else {
643 			set_vflags_short(newflags, regs);
644 		}
645 		VM86_FAULT_RETURN;
646 		}
647 
648 	/* int xx */
649 	case 0xcd: {
650 		int intno=popb(csp, ip, simulate_sigsegv);
651 		IP(regs) = ip;
652 		if (VMPI.vm86dbg_active) {
653 			if ( (1 << (intno &7)) & VMPI.vm86dbg_intxxtab[intno >> 3] )
654 				return_to_32bit(regs, VM86_INTx + (intno << 8));
655 		}
656 		do_int(regs, intno, ssp, sp);
657 		return;
658 	}
659 
660 	/* iret */
661 	case 0xcf:
662 		{
663 		unsigned long newip;
664 		unsigned long newcs;
665 		unsigned long newflags;
666 		if (data32) {
667 			newip=popl(ssp, sp, simulate_sigsegv);
668 			newcs=popl(ssp, sp, simulate_sigsegv);
669 			newflags=popl(ssp, sp, simulate_sigsegv);
670 			SP(regs) += 12;
671 		} else {
672 			newip = popw(ssp, sp, simulate_sigsegv);
673 			newcs = popw(ssp, sp, simulate_sigsegv);
674 			newflags = popw(ssp, sp, simulate_sigsegv);
675 			SP(regs) += 6;
676 		}
677 		IP(regs) = newip;
678 		regs->pt.xcs = newcs;
679 		CHECK_IF_IN_TRAP;
680 		if (data32) {
681 			set_vflags_long(newflags, regs);
682 		} else {
683 			set_vflags_short(newflags, regs);
684 		}
685 		VM86_FAULT_RETURN;
686 		}
687 
688 	/* cli */
689 	case 0xfa:
690 		IP(regs) = ip;
691 		clear_IF(regs);
692 		VM86_FAULT_RETURN;
693 
694 	/* sti */
695 	/*
696 	 * Damn. This is incorrect: the 'sti' instruction should actually
697 	 * enable interrupts after the /next/ instruction. Not good.
698 	 *
699 	 * Probably needs some horsing around with the TF flag. Aiee..
700 	 */
701 	case 0xfb:
702 		IP(regs) = ip;
703 		set_IF(regs);
704 		VM86_FAULT_RETURN;
705 
706 	default:
707 		return_to_32bit(regs, VM86_UNKNOWN);
708 	}
709 
710 	return;
711 
712 simulate_sigsegv:
713 	/* FIXME: After a long discussion with Stas we finally
714 	 *        agreed, that this is wrong. Here we should
715 	 *        really send a SIGSEGV to the user program.
716 	 *        But how do we create the correct context? We
717 	 *        are inside a general protection fault handler
718 	 *        and has just returned from a page fault handler.
719 	 *        The correct context for the signal handler
720 	 *        should be a mixture of the two, but how do we
721 	 *        get the information? [KD]
722 	 */
723 	return_to_32bit(regs, VM86_UNKNOWN);
724 }
725 
726 /* ---------------- vm86 special IRQ passing stuff ----------------- */
727 
728 #define VM86_IRQNAME		"vm86irq"
729 
730 static struct vm86_irqs {
731 	struct task_struct *tsk;
732 	int sig;
733 } vm86_irqs[16];
734 
735 static DEFINE_SPINLOCK(irqbits_lock);
736 static int irqbits;
737 
738 #define ALLOWED_SIGS ( 1 /* 0 = don't send a signal */ \
739 	| (1 << SIGUSR1) | (1 << SIGUSR2) | (1 << SIGIO)  | (1 << SIGURG) \
740 	| (1 << SIGUNUSED) )
741 
742 static irqreturn_t irq_handler(int intno, void *dev_id)
743 {
744 	int irq_bit;
745 	unsigned long flags;
746 
747 	spin_lock_irqsave(&irqbits_lock, flags);
748 	irq_bit = 1 << intno;
749 	if ((irqbits & irq_bit) || ! vm86_irqs[intno].tsk)
750 		goto out;
751 	irqbits |= irq_bit;
752 	if (vm86_irqs[intno].sig)
753 		send_sig(vm86_irqs[intno].sig, vm86_irqs[intno].tsk, 1);
754 	/*
755 	 * IRQ will be re-enabled when user asks for the irq (whether
756 	 * polling or as a result of the signal)
757 	 */
758 	disable_irq_nosync(intno);
759 	spin_unlock_irqrestore(&irqbits_lock, flags);
760 	return IRQ_HANDLED;
761 
762 out:
763 	spin_unlock_irqrestore(&irqbits_lock, flags);
764 	return IRQ_NONE;
765 }
766 
767 static inline void free_vm86_irq(int irqnumber)
768 {
769 	unsigned long flags;
770 
771 	free_irq(irqnumber, NULL);
772 	vm86_irqs[irqnumber].tsk = NULL;
773 
774 	spin_lock_irqsave(&irqbits_lock, flags);
775 	irqbits &= ~(1 << irqnumber);
776 	spin_unlock_irqrestore(&irqbits_lock, flags);
777 }
778 
779 void release_vm86_irqs(struct task_struct *task)
780 {
781 	int i;
782 	for (i = FIRST_VM86_IRQ ; i <= LAST_VM86_IRQ; i++)
783 	    if (vm86_irqs[i].tsk == task)
784 		free_vm86_irq(i);
785 }
786 
787 static inline int get_and_reset_irq(int irqnumber)
788 {
789 	int bit;
790 	unsigned long flags;
791 	int ret = 0;
792 
793 	if (invalid_vm86_irq(irqnumber)) return 0;
794 	if (vm86_irqs[irqnumber].tsk != current) return 0;
795 	spin_lock_irqsave(&irqbits_lock, flags);
796 	bit = irqbits & (1 << irqnumber);
797 	irqbits &= ~bit;
798 	if (bit) {
799 		enable_irq(irqnumber);
800 		ret = 1;
801 	}
802 
803 	spin_unlock_irqrestore(&irqbits_lock, flags);
804 	return ret;
805 }
806 
807 
808 static int do_vm86_irq_handling(int subfunction, int irqnumber)
809 {
810 	int ret;
811 	switch (subfunction) {
812 		case VM86_GET_AND_RESET_IRQ: {
813 			return get_and_reset_irq(irqnumber);
814 		}
815 		case VM86_GET_IRQ_BITS: {
816 			return irqbits;
817 		}
818 		case VM86_REQUEST_IRQ: {
819 			int sig = irqnumber >> 8;
820 			int irq = irqnumber & 255;
821 			if (!capable(CAP_SYS_ADMIN)) return -EPERM;
822 			if (!((1 << sig) & ALLOWED_SIGS)) return -EPERM;
823 			if (invalid_vm86_irq(irq)) return -EPERM;
824 			if (vm86_irqs[irq].tsk) return -EPERM;
825 			ret = request_irq(irq, &irq_handler, 0, VM86_IRQNAME, NULL);
826 			if (ret) return ret;
827 			vm86_irqs[irq].sig = sig;
828 			vm86_irqs[irq].tsk = current;
829 			return irq;
830 		}
831 		case  VM86_FREE_IRQ: {
832 			if (invalid_vm86_irq(irqnumber)) return -EPERM;
833 			if (!vm86_irqs[irqnumber].tsk) return 0;
834 			if (vm86_irqs[irqnumber].tsk != current) return -EPERM;
835 			free_vm86_irq(irqnumber);
836 			return 0;
837 		}
838 	}
839 	return -EINVAL;
840 }
841 
842