xref: /linux/arch/x86/kernel/smpboot.c (revision e9246c8726312aae36202b9e50c7e76a8609b712)
1  /*
2  *	x86 SMP booting functions
3  *
4  *	(c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
5  *	(c) 1998, 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com>
6  *	Copyright 2001 Andi Kleen, SuSE Labs.
7  *
8  *	Much of the core SMP work is based on previous work by Thomas Radke, to
9  *	whom a great many thanks are extended.
10  *
11  *	Thanks to Intel for making available several different Pentium,
12  *	Pentium Pro and Pentium-II/Xeon MP machines.
13  *	Original development of Linux SMP code supported by Caldera.
14  *
15  *	This code is released under the GNU General Public License version 2 or
16  *	later.
17  *
18  *	Fixes
19  *		Felix Koop	:	NR_CPUS used properly
20  *		Jose Renau	:	Handle single CPU case.
21  *		Alan Cox	:	By repeated request 8) - Total BogoMIPS report.
22  *		Greg Wright	:	Fix for kernel stacks panic.
23  *		Erich Boleyn	:	MP v1.4 and additional changes.
24  *	Matthias Sattler	:	Changes for 2.1 kernel map.
25  *	Michel Lespinasse	:	Changes for 2.1 kernel map.
26  *	Michael Chastain	:	Change trampoline.S to gnu as.
27  *		Alan Cox	:	Dumb bug: 'B' step PPro's are fine
28  *		Ingo Molnar	:	Added APIC timers, based on code
29  *					from Jose Renau
30  *		Ingo Molnar	:	various cleanups and rewrites
31  *		Tigran Aivazian	:	fixed "0.00 in /proc/uptime on SMP" bug.
32  *	Maciej W. Rozycki	:	Bits for genuine 82489DX APICs
33  *	Andi Kleen		:	Changed for SMP boot into long mode.
34  *		Martin J. Bligh	: 	Added support for multi-quad systems
35  *		Dave Jones	:	Report invalid combinations of Athlon CPUs.
36  *		Rusty Russell	:	Hacked into shape for new "hotplug" boot process.
37  *      Andi Kleen              :       Converted to new state machine.
38  *	Ashok Raj		: 	CPU hotplug support
39  *	Glauber Costa		:	i386 and x86_64 integration
40  */
41 
42 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
43 
44 #include <linux/init.h>
45 #include <linux/smp.h>
46 #include <linux/module.h>
47 #include <linux/sched.h>
48 #include <linux/percpu.h>
49 #include <linux/bootmem.h>
50 #include <linux/err.h>
51 #include <linux/nmi.h>
52 #include <linux/tboot.h>
53 #include <linux/stackprotector.h>
54 #include <linux/gfp.h>
55 #include <linux/cpuidle.h>
56 
57 #include <asm/acpi.h>
58 #include <asm/desc.h>
59 #include <asm/nmi.h>
60 #include <asm/irq.h>
61 #include <asm/idle.h>
62 #include <asm/realmode.h>
63 #include <asm/cpu.h>
64 #include <asm/numa.h>
65 #include <asm/pgtable.h>
66 #include <asm/tlbflush.h>
67 #include <asm/mtrr.h>
68 #include <asm/mwait.h>
69 #include <asm/apic.h>
70 #include <asm/io_apic.h>
71 #include <asm/i387.h>
72 #include <asm/fpu-internal.h>
73 #include <asm/setup.h>
74 #include <asm/uv/uv.h>
75 #include <linux/mc146818rtc.h>
76 #include <asm/smpboot_hooks.h>
77 #include <asm/i8259.h>
78 #include <asm/realmode.h>
79 #include <asm/misc.h>
80 
81 /* State of each CPU */
82 DEFINE_PER_CPU(int, cpu_state) = { 0 };
83 
84 /* Number of siblings per CPU package */
85 int smp_num_siblings = 1;
86 EXPORT_SYMBOL(smp_num_siblings);
87 
88 /* Last level cache ID of each logical CPU */
89 DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id) = BAD_APICID;
90 
91 /* representing HT siblings of each logical CPU */
92 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map);
93 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
94 
95 /* representing HT and core siblings of each logical CPU */
96 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map);
97 EXPORT_PER_CPU_SYMBOL(cpu_core_map);
98 
99 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_llc_shared_map);
100 
101 /* Per CPU bogomips and other parameters */
102 DEFINE_PER_CPU_SHARED_ALIGNED(struct cpuinfo_x86, cpu_info);
103 EXPORT_PER_CPU_SYMBOL(cpu_info);
104 
105 static DEFINE_PER_CPU(struct completion, die_complete);
106 
107 atomic_t init_deasserted;
108 
109 /*
110  * Report back to the Boot Processor during boot time or to the caller processor
111  * during CPU online.
112  */
113 static void smp_callin(void)
114 {
115 	int cpuid, phys_id;
116 
117 	/*
118 	 * If waken up by an INIT in an 82489DX configuration
119 	 * we may get here before an INIT-deassert IPI reaches
120 	 * our local APIC.  We have to wait for the IPI or we'll
121 	 * lock up on an APIC access.
122 	 *
123 	 * Since CPU0 is not wakened up by INIT, it doesn't wait for the IPI.
124 	 */
125 	cpuid = smp_processor_id();
126 	if (apic->wait_for_init_deassert && cpuid)
127 		while (!atomic_read(&init_deasserted))
128 			cpu_relax();
129 
130 	/*
131 	 * (This works even if the APIC is not enabled.)
132 	 */
133 	phys_id = read_apic_id();
134 
135 	/*
136 	 * the boot CPU has finished the init stage and is spinning
137 	 * on callin_map until we finish. We are free to set up this
138 	 * CPU, first the APIC. (this is probably redundant on most
139 	 * boards)
140 	 */
141 	setup_local_APIC();
142 	end_local_APIC_setup();
143 
144 	/*
145 	 * Need to setup vector mappings before we enable interrupts.
146 	 */
147 	setup_vector_irq(smp_processor_id());
148 
149 	/*
150 	 * Save our processor parameters. Note: this information
151 	 * is needed for clock calibration.
152 	 */
153 	smp_store_cpu_info(cpuid);
154 
155 	/*
156 	 * Get our bogomips.
157 	 * Update loops_per_jiffy in cpu_data. Previous call to
158 	 * smp_store_cpu_info() stored a value that is close but not as
159 	 * accurate as the value just calculated.
160 	 */
161 	calibrate_delay();
162 	cpu_data(cpuid).loops_per_jiffy = loops_per_jiffy;
163 	pr_debug("Stack at about %p\n", &cpuid);
164 
165 	/*
166 	 * This must be done before setting cpu_online_mask
167 	 * or calling notify_cpu_starting.
168 	 */
169 	set_cpu_sibling_map(raw_smp_processor_id());
170 	wmb();
171 
172 	notify_cpu_starting(cpuid);
173 
174 	/*
175 	 * Allow the master to continue.
176 	 */
177 	cpumask_set_cpu(cpuid, cpu_callin_mask);
178 }
179 
180 static int cpu0_logical_apicid;
181 static int enable_start_cpu0;
182 /*
183  * Activate a secondary processor.
184  */
185 static void notrace start_secondary(void *unused)
186 {
187 	/*
188 	 * Don't put *anything* before cpu_init(), SMP booting is too
189 	 * fragile that we want to limit the things done here to the
190 	 * most necessary things.
191 	 */
192 	cpu_init();
193 	x86_cpuinit.early_percpu_clock_init();
194 	preempt_disable();
195 	smp_callin();
196 
197 	enable_start_cpu0 = 0;
198 
199 #ifdef CONFIG_X86_32
200 	/* switch away from the initial page table */
201 	load_cr3(swapper_pg_dir);
202 	__flush_tlb_all();
203 #endif
204 
205 	/* otherwise gcc will move up smp_processor_id before the cpu_init */
206 	barrier();
207 	/*
208 	 * Check TSC synchronization with the BP:
209 	 */
210 	check_tsc_sync_target();
211 
212 	/*
213 	 * Enable the espfix hack for this CPU
214 	 */
215 #ifdef CONFIG_X86_ESPFIX64
216 	init_espfix_ap();
217 #endif
218 
219 	/*
220 	 * We need to hold vector_lock so there the set of online cpus
221 	 * does not change while we are assigning vectors to cpus.  Holding
222 	 * this lock ensures we don't half assign or remove an irq from a cpu.
223 	 */
224 	lock_vector_lock();
225 	set_cpu_online(smp_processor_id(), true);
226 	unlock_vector_lock();
227 	per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
228 	x86_platform.nmi_init();
229 
230 	/* enable local interrupts */
231 	local_irq_enable();
232 
233 	/* to prevent fake stack check failure in clock setup */
234 	boot_init_stack_canary();
235 
236 	x86_cpuinit.setup_percpu_clockev();
237 
238 	wmb();
239 	cpu_startup_entry(CPUHP_ONLINE);
240 }
241 
242 void __init smp_store_boot_cpu_info(void)
243 {
244 	int id = 0; /* CPU 0 */
245 	struct cpuinfo_x86 *c = &cpu_data(id);
246 
247 	*c = boot_cpu_data;
248 	c->cpu_index = id;
249 }
250 
251 /*
252  * The bootstrap kernel entry code has set these up. Save them for
253  * a given CPU
254  */
255 void smp_store_cpu_info(int id)
256 {
257 	struct cpuinfo_x86 *c = &cpu_data(id);
258 
259 	*c = boot_cpu_data;
260 	c->cpu_index = id;
261 	/*
262 	 * During boot time, CPU0 has this setup already. Save the info when
263 	 * bringing up AP or offlined CPU0.
264 	 */
265 	identify_secondary_cpu(c);
266 }
267 
268 static bool
269 topology_same_node(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
270 {
271 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
272 
273 	return (cpu_to_node(cpu1) == cpu_to_node(cpu2));
274 }
275 
276 static bool
277 topology_sane(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o, const char *name)
278 {
279 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
280 
281 	return !WARN_ONCE(!topology_same_node(c, o),
282 		"sched: CPU #%d's %s-sibling CPU #%d is not on the same node! "
283 		"[node: %d != %d]. Ignoring dependency.\n",
284 		cpu1, name, cpu2, cpu_to_node(cpu1), cpu_to_node(cpu2));
285 }
286 
287 #define link_mask(_m, c1, c2)						\
288 do {									\
289 	cpumask_set_cpu((c1), cpu_##_m##_mask(c2));			\
290 	cpumask_set_cpu((c2), cpu_##_m##_mask(c1));			\
291 } while (0)
292 
293 static bool match_smt(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
294 {
295 	if (cpu_has_topoext) {
296 		int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
297 
298 		if (c->phys_proc_id == o->phys_proc_id &&
299 		    per_cpu(cpu_llc_id, cpu1) == per_cpu(cpu_llc_id, cpu2) &&
300 		    c->compute_unit_id == o->compute_unit_id)
301 			return topology_sane(c, o, "smt");
302 
303 	} else if (c->phys_proc_id == o->phys_proc_id &&
304 		   c->cpu_core_id == o->cpu_core_id) {
305 		return topology_sane(c, o, "smt");
306 	}
307 
308 	return false;
309 }
310 
311 static bool match_llc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
312 {
313 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
314 
315 	if (per_cpu(cpu_llc_id, cpu1) != BAD_APICID &&
316 	    per_cpu(cpu_llc_id, cpu1) == per_cpu(cpu_llc_id, cpu2))
317 		return topology_sane(c, o, "llc");
318 
319 	return false;
320 }
321 
322 /*
323  * Unlike the other levels, we do not enforce keeping a
324  * multicore group inside a NUMA node.  If this happens, we will
325  * discard the MC level of the topology later.
326  */
327 static bool match_die(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
328 {
329 	if (c->phys_proc_id == o->phys_proc_id)
330 		return true;
331 	return false;
332 }
333 
334 static struct sched_domain_topology_level numa_inside_package_topology[] = {
335 #ifdef CONFIG_SCHED_SMT
336 	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
337 #endif
338 #ifdef CONFIG_SCHED_MC
339 	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
340 #endif
341 	{ NULL, },
342 };
343 /*
344  * set_sched_topology() sets the topology internal to a CPU.  The
345  * NUMA topologies are layered on top of it to build the full
346  * system topology.
347  *
348  * If NUMA nodes are observed to occur within a CPU package, this
349  * function should be called.  It forces the sched domain code to
350  * only use the SMT level for the CPU portion of the topology.
351  * This essentially falls back to relying on NUMA information
352  * from the SRAT table to describe the entire system topology
353  * (except for hyperthreads).
354  */
355 static void primarily_use_numa_for_topology(void)
356 {
357 	set_sched_topology(numa_inside_package_topology);
358 }
359 
360 void set_cpu_sibling_map(int cpu)
361 {
362 	bool has_smt = smp_num_siblings > 1;
363 	bool has_mp = has_smt || boot_cpu_data.x86_max_cores > 1;
364 	struct cpuinfo_x86 *c = &cpu_data(cpu);
365 	struct cpuinfo_x86 *o;
366 	int i;
367 
368 	cpumask_set_cpu(cpu, cpu_sibling_setup_mask);
369 
370 	if (!has_mp) {
371 		cpumask_set_cpu(cpu, cpu_sibling_mask(cpu));
372 		cpumask_set_cpu(cpu, cpu_llc_shared_mask(cpu));
373 		cpumask_set_cpu(cpu, cpu_core_mask(cpu));
374 		c->booted_cores = 1;
375 		return;
376 	}
377 
378 	for_each_cpu(i, cpu_sibling_setup_mask) {
379 		o = &cpu_data(i);
380 
381 		if ((i == cpu) || (has_smt && match_smt(c, o)))
382 			link_mask(sibling, cpu, i);
383 
384 		if ((i == cpu) || (has_mp && match_llc(c, o)))
385 			link_mask(llc_shared, cpu, i);
386 
387 	}
388 
389 	/*
390 	 * This needs a separate iteration over the cpus because we rely on all
391 	 * cpu_sibling_mask links to be set-up.
392 	 */
393 	for_each_cpu(i, cpu_sibling_setup_mask) {
394 		o = &cpu_data(i);
395 
396 		if ((i == cpu) || (has_mp && match_die(c, o))) {
397 			link_mask(core, cpu, i);
398 
399 			/*
400 			 *  Does this new cpu bringup a new core?
401 			 */
402 			if (cpumask_weight(cpu_sibling_mask(cpu)) == 1) {
403 				/*
404 				 * for each core in package, increment
405 				 * the booted_cores for this new cpu
406 				 */
407 				if (cpumask_first(cpu_sibling_mask(i)) == i)
408 					c->booted_cores++;
409 				/*
410 				 * increment the core count for all
411 				 * the other cpus in this package
412 				 */
413 				if (i != cpu)
414 					cpu_data(i).booted_cores++;
415 			} else if (i != cpu && !c->booted_cores)
416 				c->booted_cores = cpu_data(i).booted_cores;
417 		}
418 		if (match_die(c, o) && !topology_same_node(c, o))
419 			primarily_use_numa_for_topology();
420 	}
421 }
422 
423 /* maps the cpu to the sched domain representing multi-core */
424 const struct cpumask *cpu_coregroup_mask(int cpu)
425 {
426 	return cpu_llc_shared_mask(cpu);
427 }
428 
429 static void impress_friends(void)
430 {
431 	int cpu;
432 	unsigned long bogosum = 0;
433 	/*
434 	 * Allow the user to impress friends.
435 	 */
436 	pr_debug("Before bogomips\n");
437 	for_each_possible_cpu(cpu)
438 		if (cpumask_test_cpu(cpu, cpu_callout_mask))
439 			bogosum += cpu_data(cpu).loops_per_jiffy;
440 	pr_info("Total of %d processors activated (%lu.%02lu BogoMIPS)\n",
441 		num_online_cpus(),
442 		bogosum/(500000/HZ),
443 		(bogosum/(5000/HZ))%100);
444 
445 	pr_debug("Before bogocount - setting activated=1\n");
446 }
447 
448 void __inquire_remote_apic(int apicid)
449 {
450 	unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
451 	const char * const names[] = { "ID", "VERSION", "SPIV" };
452 	int timeout;
453 	u32 status;
454 
455 	pr_info("Inquiring remote APIC 0x%x...\n", apicid);
456 
457 	for (i = 0; i < ARRAY_SIZE(regs); i++) {
458 		pr_info("... APIC 0x%x %s: ", apicid, names[i]);
459 
460 		/*
461 		 * Wait for idle.
462 		 */
463 		status = safe_apic_wait_icr_idle();
464 		if (status)
465 			pr_cont("a previous APIC delivery may have failed\n");
466 
467 		apic_icr_write(APIC_DM_REMRD | regs[i], apicid);
468 
469 		timeout = 0;
470 		do {
471 			udelay(100);
472 			status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
473 		} while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
474 
475 		switch (status) {
476 		case APIC_ICR_RR_VALID:
477 			status = apic_read(APIC_RRR);
478 			pr_cont("%08x\n", status);
479 			break;
480 		default:
481 			pr_cont("failed\n");
482 		}
483 	}
484 }
485 
486 /*
487  * Poke the other CPU in the eye via NMI to wake it up. Remember that the normal
488  * INIT, INIT, STARTUP sequence will reset the chip hard for us, and this
489  * won't ... remember to clear down the APIC, etc later.
490  */
491 int
492 wakeup_secondary_cpu_via_nmi(int apicid, unsigned long start_eip)
493 {
494 	unsigned long send_status, accept_status = 0;
495 	int maxlvt;
496 
497 	/* Target chip */
498 	/* Boot on the stack */
499 	/* Kick the second */
500 	apic_icr_write(APIC_DM_NMI | apic->dest_logical, apicid);
501 
502 	pr_debug("Waiting for send to finish...\n");
503 	send_status = safe_apic_wait_icr_idle();
504 
505 	/*
506 	 * Give the other CPU some time to accept the IPI.
507 	 */
508 	udelay(200);
509 	if (APIC_INTEGRATED(apic_version[boot_cpu_physical_apicid])) {
510 		maxlvt = lapic_get_maxlvt();
511 		if (maxlvt > 3)			/* Due to the Pentium erratum 3AP.  */
512 			apic_write(APIC_ESR, 0);
513 		accept_status = (apic_read(APIC_ESR) & 0xEF);
514 	}
515 	pr_debug("NMI sent\n");
516 
517 	if (send_status)
518 		pr_err("APIC never delivered???\n");
519 	if (accept_status)
520 		pr_err("APIC delivery error (%lx)\n", accept_status);
521 
522 	return (send_status | accept_status);
523 }
524 
525 static int
526 wakeup_secondary_cpu_via_init(int phys_apicid, unsigned long start_eip)
527 {
528 	unsigned long send_status, accept_status = 0;
529 	int maxlvt, num_starts, j;
530 
531 	maxlvt = lapic_get_maxlvt();
532 
533 	/*
534 	 * Be paranoid about clearing APIC errors.
535 	 */
536 	if (APIC_INTEGRATED(apic_version[phys_apicid])) {
537 		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
538 			apic_write(APIC_ESR, 0);
539 		apic_read(APIC_ESR);
540 	}
541 
542 	pr_debug("Asserting INIT\n");
543 
544 	/*
545 	 * Turn INIT on target chip
546 	 */
547 	/*
548 	 * Send IPI
549 	 */
550 	apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT,
551 		       phys_apicid);
552 
553 	pr_debug("Waiting for send to finish...\n");
554 	send_status = safe_apic_wait_icr_idle();
555 
556 	mdelay(10);
557 
558 	pr_debug("Deasserting INIT\n");
559 
560 	/* Target chip */
561 	/* Send IPI */
562 	apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid);
563 
564 	pr_debug("Waiting for send to finish...\n");
565 	send_status = safe_apic_wait_icr_idle();
566 
567 	mb();
568 	atomic_set(&init_deasserted, 1);
569 
570 	/*
571 	 * Should we send STARTUP IPIs ?
572 	 *
573 	 * Determine this based on the APIC version.
574 	 * If we don't have an integrated APIC, don't send the STARTUP IPIs.
575 	 */
576 	if (APIC_INTEGRATED(apic_version[phys_apicid]))
577 		num_starts = 2;
578 	else
579 		num_starts = 0;
580 
581 	/*
582 	 * Paravirt / VMI wants a startup IPI hook here to set up the
583 	 * target processor state.
584 	 */
585 	startup_ipi_hook(phys_apicid, (unsigned long) start_secondary,
586 			 stack_start);
587 
588 	/*
589 	 * Run STARTUP IPI loop.
590 	 */
591 	pr_debug("#startup loops: %d\n", num_starts);
592 
593 	for (j = 1; j <= num_starts; j++) {
594 		pr_debug("Sending STARTUP #%d\n", j);
595 		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
596 			apic_write(APIC_ESR, 0);
597 		apic_read(APIC_ESR);
598 		pr_debug("After apic_write\n");
599 
600 		/*
601 		 * STARTUP IPI
602 		 */
603 
604 		/* Target chip */
605 		/* Boot on the stack */
606 		/* Kick the second */
607 		apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12),
608 			       phys_apicid);
609 
610 		/*
611 		 * Give the other CPU some time to accept the IPI.
612 		 */
613 		udelay(300);
614 
615 		pr_debug("Startup point 1\n");
616 
617 		pr_debug("Waiting for send to finish...\n");
618 		send_status = safe_apic_wait_icr_idle();
619 
620 		/*
621 		 * Give the other CPU some time to accept the IPI.
622 		 */
623 		udelay(200);
624 		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
625 			apic_write(APIC_ESR, 0);
626 		accept_status = (apic_read(APIC_ESR) & 0xEF);
627 		if (send_status || accept_status)
628 			break;
629 	}
630 	pr_debug("After Startup\n");
631 
632 	if (send_status)
633 		pr_err("APIC never delivered???\n");
634 	if (accept_status)
635 		pr_err("APIC delivery error (%lx)\n", accept_status);
636 
637 	return (send_status | accept_status);
638 }
639 
640 void smp_announce(void)
641 {
642 	int num_nodes = num_online_nodes();
643 
644 	printk(KERN_INFO "x86: Booted up %d node%s, %d CPUs\n",
645 	       num_nodes, (num_nodes > 1 ? "s" : ""), num_online_cpus());
646 }
647 
648 /* reduce the number of lines printed when booting a large cpu count system */
649 static void announce_cpu(int cpu, int apicid)
650 {
651 	static int current_node = -1;
652 	int node = early_cpu_to_node(cpu);
653 	static int width, node_width;
654 
655 	if (!width)
656 		width = num_digits(num_possible_cpus()) + 1; /* + '#' sign */
657 
658 	if (!node_width)
659 		node_width = num_digits(num_possible_nodes()) + 1; /* + '#' */
660 
661 	if (cpu == 1)
662 		printk(KERN_INFO "x86: Booting SMP configuration:\n");
663 
664 	if (system_state == SYSTEM_BOOTING) {
665 		if (node != current_node) {
666 			if (current_node > (-1))
667 				pr_cont("\n");
668 			current_node = node;
669 
670 			printk(KERN_INFO ".... node %*s#%d, CPUs:  ",
671 			       node_width - num_digits(node), " ", node);
672 		}
673 
674 		/* Add padding for the BSP */
675 		if (cpu == 1)
676 			pr_cont("%*s", width + 1, " ");
677 
678 		pr_cont("%*s#%d", width - num_digits(cpu), " ", cpu);
679 
680 	} else
681 		pr_info("Booting Node %d Processor %d APIC 0x%x\n",
682 			node, cpu, apicid);
683 }
684 
685 static int wakeup_cpu0_nmi(unsigned int cmd, struct pt_regs *regs)
686 {
687 	int cpu;
688 
689 	cpu = smp_processor_id();
690 	if (cpu == 0 && !cpu_online(cpu) && enable_start_cpu0)
691 		return NMI_HANDLED;
692 
693 	return NMI_DONE;
694 }
695 
696 /*
697  * Wake up AP by INIT, INIT, STARTUP sequence.
698  *
699  * Instead of waiting for STARTUP after INITs, BSP will execute the BIOS
700  * boot-strap code which is not a desired behavior for waking up BSP. To
701  * void the boot-strap code, wake up CPU0 by NMI instead.
702  *
703  * This works to wake up soft offlined CPU0 only. If CPU0 is hard offlined
704  * (i.e. physically hot removed and then hot added), NMI won't wake it up.
705  * We'll change this code in the future to wake up hard offlined CPU0 if
706  * real platform and request are available.
707  */
708 static int
709 wakeup_cpu_via_init_nmi(int cpu, unsigned long start_ip, int apicid,
710 	       int *cpu0_nmi_registered)
711 {
712 	int id;
713 	int boot_error;
714 
715 	preempt_disable();
716 
717 	/*
718 	 * Wake up AP by INIT, INIT, STARTUP sequence.
719 	 */
720 	if (cpu) {
721 		boot_error = wakeup_secondary_cpu_via_init(apicid, start_ip);
722 		goto out;
723 	}
724 
725 	/*
726 	 * Wake up BSP by nmi.
727 	 *
728 	 * Register a NMI handler to help wake up CPU0.
729 	 */
730 	boot_error = register_nmi_handler(NMI_LOCAL,
731 					  wakeup_cpu0_nmi, 0, "wake_cpu0");
732 
733 	if (!boot_error) {
734 		enable_start_cpu0 = 1;
735 		*cpu0_nmi_registered = 1;
736 		if (apic->dest_logical == APIC_DEST_LOGICAL)
737 			id = cpu0_logical_apicid;
738 		else
739 			id = apicid;
740 		boot_error = wakeup_secondary_cpu_via_nmi(id, start_ip);
741 	}
742 
743 out:
744 	preempt_enable();
745 
746 	return boot_error;
747 }
748 
749 /*
750  * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
751  * (ie clustered apic addressing mode), this is a LOGICAL apic ID.
752  * Returns zero if CPU booted OK, else error code from
753  * ->wakeup_secondary_cpu.
754  */
755 static int do_boot_cpu(int apicid, int cpu, struct task_struct *idle)
756 {
757 	volatile u32 *trampoline_status =
758 		(volatile u32 *) __va(real_mode_header->trampoline_status);
759 	/* start_ip had better be page-aligned! */
760 	unsigned long start_ip = real_mode_header->trampoline_start;
761 
762 	unsigned long boot_error = 0;
763 	int cpu0_nmi_registered = 0;
764 	unsigned long timeout;
765 
766 	/* Just in case we booted with a single CPU. */
767 	alternatives_enable_smp();
768 
769 	idle->thread.sp = (unsigned long) (((struct pt_regs *)
770 			  (THREAD_SIZE +  task_stack_page(idle))) - 1);
771 	per_cpu(current_task, cpu) = idle;
772 
773 #ifdef CONFIG_X86_32
774 	/* Stack for startup_32 can be just as for start_secondary onwards */
775 	irq_ctx_init(cpu);
776 #else
777 	clear_tsk_thread_flag(idle, TIF_FORK);
778 	initial_gs = per_cpu_offset(cpu);
779 #endif
780 	per_cpu(kernel_stack, cpu) =
781 		(unsigned long)task_stack_page(idle) -
782 		KERNEL_STACK_OFFSET + THREAD_SIZE;
783 	early_gdt_descr.address = (unsigned long)get_cpu_gdt_table(cpu);
784 	initial_code = (unsigned long)start_secondary;
785 	stack_start  = idle->thread.sp;
786 
787 	/* So we see what's up */
788 	announce_cpu(cpu, apicid);
789 
790 	/*
791 	 * This grunge runs the startup process for
792 	 * the targeted processor.
793 	 */
794 
795 	atomic_set(&init_deasserted, 0);
796 
797 	if (get_uv_system_type() != UV_NON_UNIQUE_APIC) {
798 
799 		pr_debug("Setting warm reset code and vector.\n");
800 
801 		smpboot_setup_warm_reset_vector(start_ip);
802 		/*
803 		 * Be paranoid about clearing APIC errors.
804 		*/
805 		if (APIC_INTEGRATED(apic_version[boot_cpu_physical_apicid])) {
806 			apic_write(APIC_ESR, 0);
807 			apic_read(APIC_ESR);
808 		}
809 	}
810 
811 	/*
812 	 * AP might wait on cpu_callout_mask in cpu_init() with
813 	 * cpu_initialized_mask set if previous attempt to online
814 	 * it timed-out. Clear cpu_initialized_mask so that after
815 	 * INIT/SIPI it could start with a clean state.
816 	 */
817 	cpumask_clear_cpu(cpu, cpu_initialized_mask);
818 	smp_mb();
819 
820 	/*
821 	 * Wake up a CPU in difference cases:
822 	 * - Use the method in the APIC driver if it's defined
823 	 * Otherwise,
824 	 * - Use an INIT boot APIC message for APs or NMI for BSP.
825 	 */
826 	if (apic->wakeup_secondary_cpu)
827 		boot_error = apic->wakeup_secondary_cpu(apicid, start_ip);
828 	else
829 		boot_error = wakeup_cpu_via_init_nmi(cpu, start_ip, apicid,
830 						     &cpu0_nmi_registered);
831 
832 	if (!boot_error) {
833 		/*
834 		 * Wait 10s total for a response from AP
835 		 */
836 		boot_error = -1;
837 		timeout = jiffies + 10*HZ;
838 		while (time_before(jiffies, timeout)) {
839 			if (cpumask_test_cpu(cpu, cpu_initialized_mask)) {
840 				/*
841 				 * Tell AP to proceed with initialization
842 				 */
843 				cpumask_set_cpu(cpu, cpu_callout_mask);
844 				boot_error = 0;
845 				break;
846 			}
847 			udelay(100);
848 			schedule();
849 		}
850 	}
851 
852 	if (!boot_error) {
853 		/*
854 		 * Wait till AP completes initial initialization
855 		 */
856 		while (!cpumask_test_cpu(cpu, cpu_callin_mask)) {
857 			/*
858 			 * Allow other tasks to run while we wait for the
859 			 * AP to come online. This also gives a chance
860 			 * for the MTRR work(triggered by the AP coming online)
861 			 * to be completed in the stop machine context.
862 			 */
863 			udelay(100);
864 			schedule();
865 		}
866 	}
867 
868 	/* mark "stuck" area as not stuck */
869 	*trampoline_status = 0;
870 
871 	if (get_uv_system_type() != UV_NON_UNIQUE_APIC) {
872 		/*
873 		 * Cleanup possible dangling ends...
874 		 */
875 		smpboot_restore_warm_reset_vector();
876 	}
877 	/*
878 	 * Clean up the nmi handler. Do this after the callin and callout sync
879 	 * to avoid impact of possible long unregister time.
880 	 */
881 	if (cpu0_nmi_registered)
882 		unregister_nmi_handler(NMI_LOCAL, "wake_cpu0");
883 
884 	return boot_error;
885 }
886 
887 int native_cpu_up(unsigned int cpu, struct task_struct *tidle)
888 {
889 	int apicid = apic->cpu_present_to_apicid(cpu);
890 	unsigned long flags;
891 	int err;
892 
893 	WARN_ON(irqs_disabled());
894 
895 	pr_debug("++++++++++++++++++++=_---CPU UP  %u\n", cpu);
896 
897 	if (apicid == BAD_APICID ||
898 	    !physid_isset(apicid, phys_cpu_present_map) ||
899 	    !apic->apic_id_valid(apicid)) {
900 		pr_err("%s: bad cpu %d\n", __func__, cpu);
901 		return -EINVAL;
902 	}
903 
904 	/*
905 	 * Already booted CPU?
906 	 */
907 	if (cpumask_test_cpu(cpu, cpu_callin_mask)) {
908 		pr_debug("do_boot_cpu %d Already started\n", cpu);
909 		return -ENOSYS;
910 	}
911 
912 	/*
913 	 * Save current MTRR state in case it was changed since early boot
914 	 * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync:
915 	 */
916 	mtrr_save_state();
917 
918 	per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
919 
920 	/* the FPU context is blank, nobody can own it */
921 	__cpu_disable_lazy_restore(cpu);
922 
923 	err = do_boot_cpu(apicid, cpu, tidle);
924 	if (err) {
925 		pr_err("do_boot_cpu failed(%d) to wakeup CPU#%u\n", err, cpu);
926 		return -EIO;
927 	}
928 
929 	/*
930 	 * Check TSC synchronization with the AP (keep irqs disabled
931 	 * while doing so):
932 	 */
933 	local_irq_save(flags);
934 	check_tsc_sync_source(cpu);
935 	local_irq_restore(flags);
936 
937 	while (!cpu_online(cpu)) {
938 		cpu_relax();
939 		touch_nmi_watchdog();
940 	}
941 
942 	return 0;
943 }
944 
945 /**
946  * arch_disable_smp_support() - disables SMP support for x86 at runtime
947  */
948 void arch_disable_smp_support(void)
949 {
950 	disable_ioapic_support();
951 }
952 
953 /*
954  * Fall back to non SMP mode after errors.
955  *
956  * RED-PEN audit/test this more. I bet there is more state messed up here.
957  */
958 static __init void disable_smp(void)
959 {
960 	init_cpu_present(cpumask_of(0));
961 	init_cpu_possible(cpumask_of(0));
962 	smpboot_clear_io_apic_irqs();
963 
964 	if (smp_found_config)
965 		physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map);
966 	else
967 		physid_set_mask_of_physid(0, &phys_cpu_present_map);
968 	cpumask_set_cpu(0, cpu_sibling_mask(0));
969 	cpumask_set_cpu(0, cpu_core_mask(0));
970 }
971 
972 /*
973  * Various sanity checks.
974  */
975 static int __init smp_sanity_check(unsigned max_cpus)
976 {
977 	preempt_disable();
978 
979 #if !defined(CONFIG_X86_BIGSMP) && defined(CONFIG_X86_32)
980 	if (def_to_bigsmp && nr_cpu_ids > 8) {
981 		unsigned int cpu;
982 		unsigned nr;
983 
984 		pr_warn("More than 8 CPUs detected - skipping them\n"
985 			"Use CONFIG_X86_BIGSMP\n");
986 
987 		nr = 0;
988 		for_each_present_cpu(cpu) {
989 			if (nr >= 8)
990 				set_cpu_present(cpu, false);
991 			nr++;
992 		}
993 
994 		nr = 0;
995 		for_each_possible_cpu(cpu) {
996 			if (nr >= 8)
997 				set_cpu_possible(cpu, false);
998 			nr++;
999 		}
1000 
1001 		nr_cpu_ids = 8;
1002 	}
1003 #endif
1004 
1005 	if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) {
1006 		pr_warn("weird, boot CPU (#%d) not listed by the BIOS\n",
1007 			hard_smp_processor_id());
1008 
1009 		physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1010 	}
1011 
1012 	/*
1013 	 * If we couldn't find an SMP configuration at boot time,
1014 	 * get out of here now!
1015 	 */
1016 	if (!smp_found_config && !acpi_lapic) {
1017 		preempt_enable();
1018 		pr_notice("SMP motherboard not detected\n");
1019 		disable_smp();
1020 		if (APIC_init_uniprocessor())
1021 			pr_notice("Local APIC not detected. Using dummy APIC emulation.\n");
1022 		return -1;
1023 	}
1024 
1025 	/*
1026 	 * Should not be necessary because the MP table should list the boot
1027 	 * CPU too, but we do it for the sake of robustness anyway.
1028 	 */
1029 	if (!apic->check_phys_apicid_present(boot_cpu_physical_apicid)) {
1030 		pr_notice("weird, boot CPU (#%d) not listed by the BIOS\n",
1031 			  boot_cpu_physical_apicid);
1032 		physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1033 	}
1034 	preempt_enable();
1035 
1036 	/*
1037 	 * If we couldn't find a local APIC, then get out of here now!
1038 	 */
1039 	if (APIC_INTEGRATED(apic_version[boot_cpu_physical_apicid]) &&
1040 	    !cpu_has_apic) {
1041 		if (!disable_apic) {
1042 			pr_err("BIOS bug, local APIC #%d not detected!...\n",
1043 				boot_cpu_physical_apicid);
1044 			pr_err("... forcing use of dummy APIC emulation (tell your hw vendor)\n");
1045 		}
1046 		smpboot_clear_io_apic();
1047 		disable_ioapic_support();
1048 		return -1;
1049 	}
1050 
1051 	verify_local_APIC();
1052 
1053 	/*
1054 	 * If SMP should be disabled, then really disable it!
1055 	 */
1056 	if (!max_cpus) {
1057 		pr_info("SMP mode deactivated\n");
1058 		smpboot_clear_io_apic();
1059 
1060 		connect_bsp_APIC();
1061 		setup_local_APIC();
1062 		bsp_end_local_APIC_setup();
1063 		return -1;
1064 	}
1065 
1066 	return 0;
1067 }
1068 
1069 static void __init smp_cpu_index_default(void)
1070 {
1071 	int i;
1072 	struct cpuinfo_x86 *c;
1073 
1074 	for_each_possible_cpu(i) {
1075 		c = &cpu_data(i);
1076 		/* mark all to hotplug */
1077 		c->cpu_index = nr_cpu_ids;
1078 	}
1079 }
1080 
1081 /*
1082  * Prepare for SMP bootup.  The MP table or ACPI has been read
1083  * earlier.  Just do some sanity checking here and enable APIC mode.
1084  */
1085 void __init native_smp_prepare_cpus(unsigned int max_cpus)
1086 {
1087 	unsigned int i;
1088 
1089 	preempt_disable();
1090 	smp_cpu_index_default();
1091 
1092 	/*
1093 	 * Setup boot CPU information
1094 	 */
1095 	smp_store_boot_cpu_info(); /* Final full version of the data */
1096 	cpumask_copy(cpu_callin_mask, cpumask_of(0));
1097 	mb();
1098 
1099 	current_thread_info()->cpu = 0;  /* needed? */
1100 	for_each_possible_cpu(i) {
1101 		zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL);
1102 		zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL);
1103 		zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL);
1104 	}
1105 	set_cpu_sibling_map(0);
1106 
1107 
1108 	if (smp_sanity_check(max_cpus) < 0) {
1109 		pr_info("SMP disabled\n");
1110 		disable_smp();
1111 		goto out;
1112 	}
1113 
1114 	default_setup_apic_routing();
1115 
1116 	preempt_disable();
1117 	if (read_apic_id() != boot_cpu_physical_apicid) {
1118 		panic("Boot APIC ID in local APIC unexpected (%d vs %d)",
1119 		     read_apic_id(), boot_cpu_physical_apicid);
1120 		/* Or can we switch back to PIC here? */
1121 	}
1122 	preempt_enable();
1123 
1124 	connect_bsp_APIC();
1125 
1126 	/*
1127 	 * Switch from PIC to APIC mode.
1128 	 */
1129 	setup_local_APIC();
1130 
1131 	if (x2apic_mode)
1132 		cpu0_logical_apicid = apic_read(APIC_LDR);
1133 	else
1134 		cpu0_logical_apicid = GET_APIC_LOGICAL_ID(apic_read(APIC_LDR));
1135 
1136 	/*
1137 	 * Enable IO APIC before setting up error vector
1138 	 */
1139 	if (!skip_ioapic_setup && nr_ioapics)
1140 		enable_IO_APIC();
1141 
1142 	bsp_end_local_APIC_setup();
1143 	smpboot_setup_io_apic();
1144 	/*
1145 	 * Set up local APIC timer on boot CPU.
1146 	 */
1147 
1148 	pr_info("CPU%d: ", 0);
1149 	print_cpu_info(&cpu_data(0));
1150 	x86_init.timers.setup_percpu_clockev();
1151 
1152 	if (is_uv_system())
1153 		uv_system_init();
1154 
1155 	set_mtrr_aps_delayed_init();
1156 out:
1157 	preempt_enable();
1158 }
1159 
1160 void arch_enable_nonboot_cpus_begin(void)
1161 {
1162 	set_mtrr_aps_delayed_init();
1163 }
1164 
1165 void arch_enable_nonboot_cpus_end(void)
1166 {
1167 	mtrr_aps_init();
1168 }
1169 
1170 /*
1171  * Early setup to make printk work.
1172  */
1173 void __init native_smp_prepare_boot_cpu(void)
1174 {
1175 	int me = smp_processor_id();
1176 	switch_to_new_gdt(me);
1177 	/* already set me in cpu_online_mask in boot_cpu_init() */
1178 	cpumask_set_cpu(me, cpu_callout_mask);
1179 	per_cpu(cpu_state, me) = CPU_ONLINE;
1180 }
1181 
1182 void __init native_smp_cpus_done(unsigned int max_cpus)
1183 {
1184 	pr_debug("Boot done\n");
1185 
1186 	nmi_selftest();
1187 	impress_friends();
1188 #ifdef CONFIG_X86_IO_APIC
1189 	setup_ioapic_dest();
1190 #endif
1191 	mtrr_aps_init();
1192 }
1193 
1194 static int __initdata setup_possible_cpus = -1;
1195 static int __init _setup_possible_cpus(char *str)
1196 {
1197 	get_option(&str, &setup_possible_cpus);
1198 	return 0;
1199 }
1200 early_param("possible_cpus", _setup_possible_cpus);
1201 
1202 
1203 /*
1204  * cpu_possible_mask should be static, it cannot change as cpu's
1205  * are onlined, or offlined. The reason is per-cpu data-structures
1206  * are allocated by some modules at init time, and dont expect to
1207  * do this dynamically on cpu arrival/departure.
1208  * cpu_present_mask on the other hand can change dynamically.
1209  * In case when cpu_hotplug is not compiled, then we resort to current
1210  * behaviour, which is cpu_possible == cpu_present.
1211  * - Ashok Raj
1212  *
1213  * Three ways to find out the number of additional hotplug CPUs:
1214  * - If the BIOS specified disabled CPUs in ACPI/mptables use that.
1215  * - The user can overwrite it with possible_cpus=NUM
1216  * - Otherwise don't reserve additional CPUs.
1217  * We do this because additional CPUs waste a lot of memory.
1218  * -AK
1219  */
1220 __init void prefill_possible_map(void)
1221 {
1222 	int i, possible;
1223 
1224 	/* no processor from mptable or madt */
1225 	if (!num_processors)
1226 		num_processors = 1;
1227 
1228 	i = setup_max_cpus ?: 1;
1229 	if (setup_possible_cpus == -1) {
1230 		possible = num_processors;
1231 #ifdef CONFIG_HOTPLUG_CPU
1232 		if (setup_max_cpus)
1233 			possible += disabled_cpus;
1234 #else
1235 		if (possible > i)
1236 			possible = i;
1237 #endif
1238 	} else
1239 		possible = setup_possible_cpus;
1240 
1241 	total_cpus = max_t(int, possible, num_processors + disabled_cpus);
1242 
1243 	/* nr_cpu_ids could be reduced via nr_cpus= */
1244 	if (possible > nr_cpu_ids) {
1245 		pr_warn("%d Processors exceeds NR_CPUS limit of %d\n",
1246 			possible, nr_cpu_ids);
1247 		possible = nr_cpu_ids;
1248 	}
1249 
1250 #ifdef CONFIG_HOTPLUG_CPU
1251 	if (!setup_max_cpus)
1252 #endif
1253 	if (possible > i) {
1254 		pr_warn("%d Processors exceeds max_cpus limit of %u\n",
1255 			possible, setup_max_cpus);
1256 		possible = i;
1257 	}
1258 
1259 	pr_info("Allowing %d CPUs, %d hotplug CPUs\n",
1260 		possible, max_t(int, possible - num_processors, 0));
1261 
1262 	for (i = 0; i < possible; i++)
1263 		set_cpu_possible(i, true);
1264 	for (; i < NR_CPUS; i++)
1265 		set_cpu_possible(i, false);
1266 
1267 	nr_cpu_ids = possible;
1268 }
1269 
1270 #ifdef CONFIG_HOTPLUG_CPU
1271 
1272 static void remove_siblinginfo(int cpu)
1273 {
1274 	int sibling;
1275 	struct cpuinfo_x86 *c = &cpu_data(cpu);
1276 
1277 	for_each_cpu(sibling, cpu_core_mask(cpu)) {
1278 		cpumask_clear_cpu(cpu, cpu_core_mask(sibling));
1279 		/*/
1280 		 * last thread sibling in this cpu core going down
1281 		 */
1282 		if (cpumask_weight(cpu_sibling_mask(cpu)) == 1)
1283 			cpu_data(sibling).booted_cores--;
1284 	}
1285 
1286 	for_each_cpu(sibling, cpu_sibling_mask(cpu))
1287 		cpumask_clear_cpu(cpu, cpu_sibling_mask(sibling));
1288 	for_each_cpu(sibling, cpu_llc_shared_mask(cpu))
1289 		cpumask_clear_cpu(cpu, cpu_llc_shared_mask(sibling));
1290 	cpumask_clear(cpu_llc_shared_mask(cpu));
1291 	cpumask_clear(cpu_sibling_mask(cpu));
1292 	cpumask_clear(cpu_core_mask(cpu));
1293 	c->phys_proc_id = 0;
1294 	c->cpu_core_id = 0;
1295 	cpumask_clear_cpu(cpu, cpu_sibling_setup_mask);
1296 }
1297 
1298 static void __ref remove_cpu_from_maps(int cpu)
1299 {
1300 	set_cpu_online(cpu, false);
1301 	cpumask_clear_cpu(cpu, cpu_callout_mask);
1302 	cpumask_clear_cpu(cpu, cpu_callin_mask);
1303 	/* was set by cpu_init() */
1304 	cpumask_clear_cpu(cpu, cpu_initialized_mask);
1305 	numa_remove_cpu(cpu);
1306 }
1307 
1308 void cpu_disable_common(void)
1309 {
1310 	int cpu = smp_processor_id();
1311 
1312 	remove_siblinginfo(cpu);
1313 
1314 	/* It's now safe to remove this processor from the online map */
1315 	lock_vector_lock();
1316 	remove_cpu_from_maps(cpu);
1317 	unlock_vector_lock();
1318 	fixup_irqs();
1319 }
1320 
1321 int native_cpu_disable(void)
1322 {
1323 	int ret;
1324 
1325 	ret = check_irq_vectors_for_cpu_disable();
1326 	if (ret)
1327 		return ret;
1328 
1329 	clear_local_APIC();
1330 	init_completion(&per_cpu(die_complete, smp_processor_id()));
1331 	cpu_disable_common();
1332 
1333 	return 0;
1334 }
1335 
1336 void native_cpu_die(unsigned int cpu)
1337 {
1338 	/* We don't do anything here: idle task is faking death itself. */
1339 	wait_for_completion_timeout(&per_cpu(die_complete, cpu), HZ);
1340 
1341 	/* They ack this in play_dead() by setting CPU_DEAD */
1342 	if (per_cpu(cpu_state, cpu) == CPU_DEAD) {
1343 		if (system_state == SYSTEM_RUNNING)
1344 			pr_info("CPU %u is now offline\n", cpu);
1345 	} else {
1346 		pr_err("CPU %u didn't die...\n", cpu);
1347 	}
1348 }
1349 
1350 void play_dead_common(void)
1351 {
1352 	idle_task_exit();
1353 	reset_lazy_tlbstate();
1354 	amd_e400_remove_cpu(raw_smp_processor_id());
1355 
1356 	mb();
1357 	/* Ack it */
1358 	__this_cpu_write(cpu_state, CPU_DEAD);
1359 	complete(&per_cpu(die_complete, smp_processor_id()));
1360 
1361 	/*
1362 	 * With physical CPU hotplug, we should halt the cpu
1363 	 */
1364 	local_irq_disable();
1365 }
1366 
1367 static bool wakeup_cpu0(void)
1368 {
1369 	if (smp_processor_id() == 0 && enable_start_cpu0)
1370 		return true;
1371 
1372 	return false;
1373 }
1374 
1375 /*
1376  * We need to flush the caches before going to sleep, lest we have
1377  * dirty data in our caches when we come back up.
1378  */
1379 static inline void mwait_play_dead(void)
1380 {
1381 	unsigned int eax, ebx, ecx, edx;
1382 	unsigned int highest_cstate = 0;
1383 	unsigned int highest_subcstate = 0;
1384 	void *mwait_ptr;
1385 	int i;
1386 
1387 	if (!this_cpu_has(X86_FEATURE_MWAIT))
1388 		return;
1389 	if (!this_cpu_has(X86_FEATURE_CLFLUSH))
1390 		return;
1391 	if (__this_cpu_read(cpu_info.cpuid_level) < CPUID_MWAIT_LEAF)
1392 		return;
1393 
1394 	eax = CPUID_MWAIT_LEAF;
1395 	ecx = 0;
1396 	native_cpuid(&eax, &ebx, &ecx, &edx);
1397 
1398 	/*
1399 	 * eax will be 0 if EDX enumeration is not valid.
1400 	 * Initialized below to cstate, sub_cstate value when EDX is valid.
1401 	 */
1402 	if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) {
1403 		eax = 0;
1404 	} else {
1405 		edx >>= MWAIT_SUBSTATE_SIZE;
1406 		for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
1407 			if (edx & MWAIT_SUBSTATE_MASK) {
1408 				highest_cstate = i;
1409 				highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
1410 			}
1411 		}
1412 		eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
1413 			(highest_subcstate - 1);
1414 	}
1415 
1416 	/*
1417 	 * This should be a memory location in a cache line which is
1418 	 * unlikely to be touched by other processors.  The actual
1419 	 * content is immaterial as it is not actually modified in any way.
1420 	 */
1421 	mwait_ptr = &current_thread_info()->flags;
1422 
1423 	wbinvd();
1424 
1425 	while (1) {
1426 		/*
1427 		 * The CLFLUSH is a workaround for erratum AAI65 for
1428 		 * the Xeon 7400 series.  It's not clear it is actually
1429 		 * needed, but it should be harmless in either case.
1430 		 * The WBINVD is insufficient due to the spurious-wakeup
1431 		 * case where we return around the loop.
1432 		 */
1433 		mb();
1434 		clflush(mwait_ptr);
1435 		mb();
1436 		__monitor(mwait_ptr, 0, 0);
1437 		mb();
1438 		__mwait(eax, 0);
1439 		/*
1440 		 * If NMI wants to wake up CPU0, start CPU0.
1441 		 */
1442 		if (wakeup_cpu0())
1443 			start_cpu0();
1444 	}
1445 }
1446 
1447 static inline void hlt_play_dead(void)
1448 {
1449 	if (__this_cpu_read(cpu_info.x86) >= 4)
1450 		wbinvd();
1451 
1452 	while (1) {
1453 		native_halt();
1454 		/*
1455 		 * If NMI wants to wake up CPU0, start CPU0.
1456 		 */
1457 		if (wakeup_cpu0())
1458 			start_cpu0();
1459 	}
1460 }
1461 
1462 void native_play_dead(void)
1463 {
1464 	play_dead_common();
1465 	tboot_shutdown(TB_SHUTDOWN_WFS);
1466 
1467 	mwait_play_dead();	/* Only returns on failure */
1468 	if (cpuidle_play_dead())
1469 		hlt_play_dead();
1470 }
1471 
1472 #else /* ... !CONFIG_HOTPLUG_CPU */
1473 int native_cpu_disable(void)
1474 {
1475 	return -ENOSYS;
1476 }
1477 
1478 void native_cpu_die(unsigned int cpu)
1479 {
1480 	/* We said "no" in __cpu_disable */
1481 	BUG();
1482 }
1483 
1484 void native_play_dead(void)
1485 {
1486 	BUG();
1487 }
1488 
1489 #endif
1490