xref: /linux/arch/x86/kernel/smpboot.c (revision c5d3cdad688ed75fb311a3a671eb30ba7106d7d3)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2  /*
3  *	x86 SMP booting functions
4  *
5  *	(c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
6  *	(c) 1998, 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com>
7  *	Copyright 2001 Andi Kleen, SuSE Labs.
8  *
9  *	Much of the core SMP work is based on previous work by Thomas Radke, to
10  *	whom a great many thanks are extended.
11  *
12  *	Thanks to Intel for making available several different Pentium,
13  *	Pentium Pro and Pentium-II/Xeon MP machines.
14  *	Original development of Linux SMP code supported by Caldera.
15  *
16  *	Fixes
17  *		Felix Koop	:	NR_CPUS used properly
18  *		Jose Renau	:	Handle single CPU case.
19  *		Alan Cox	:	By repeated request 8) - Total BogoMIPS report.
20  *		Greg Wright	:	Fix for kernel stacks panic.
21  *		Erich Boleyn	:	MP v1.4 and additional changes.
22  *	Matthias Sattler	:	Changes for 2.1 kernel map.
23  *	Michel Lespinasse	:	Changes for 2.1 kernel map.
24  *	Michael Chastain	:	Change trampoline.S to gnu as.
25  *		Alan Cox	:	Dumb bug: 'B' step PPro's are fine
26  *		Ingo Molnar	:	Added APIC timers, based on code
27  *					from Jose Renau
28  *		Ingo Molnar	:	various cleanups and rewrites
29  *		Tigran Aivazian	:	fixed "0.00 in /proc/uptime on SMP" bug.
30  *	Maciej W. Rozycki	:	Bits for genuine 82489DX APICs
31  *	Andi Kleen		:	Changed for SMP boot into long mode.
32  *		Martin J. Bligh	: 	Added support for multi-quad systems
33  *		Dave Jones	:	Report invalid combinations of Athlon CPUs.
34  *		Rusty Russell	:	Hacked into shape for new "hotplug" boot process.
35  *      Andi Kleen              :       Converted to new state machine.
36  *	Ashok Raj		: 	CPU hotplug support
37  *	Glauber Costa		:	i386 and x86_64 integration
38  */
39 
40 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
41 
42 #include <linux/init.h>
43 #include <linux/smp.h>
44 #include <linux/export.h>
45 #include <linux/sched.h>
46 #include <linux/sched/topology.h>
47 #include <linux/sched/hotplug.h>
48 #include <linux/sched/task_stack.h>
49 #include <linux/percpu.h>
50 #include <linux/memblock.h>
51 #include <linux/err.h>
52 #include <linux/nmi.h>
53 #include <linux/tboot.h>
54 #include <linux/stackprotector.h>
55 #include <linux/gfp.h>
56 #include <linux/cpuidle.h>
57 #include <linux/numa.h>
58 
59 #include <asm/acpi.h>
60 #include <asm/desc.h>
61 #include <asm/nmi.h>
62 #include <asm/irq.h>
63 #include <asm/realmode.h>
64 #include <asm/cpu.h>
65 #include <asm/numa.h>
66 #include <asm/pgtable.h>
67 #include <asm/tlbflush.h>
68 #include <asm/mtrr.h>
69 #include <asm/mwait.h>
70 #include <asm/apic.h>
71 #include <asm/io_apic.h>
72 #include <asm/fpu/internal.h>
73 #include <asm/setup.h>
74 #include <asm/uv/uv.h>
75 #include <linux/mc146818rtc.h>
76 #include <asm/i8259.h>
77 #include <asm/misc.h>
78 #include <asm/qspinlock.h>
79 #include <asm/intel-family.h>
80 #include <asm/cpu_device_id.h>
81 #include <asm/spec-ctrl.h>
82 #include <asm/hw_irq.h>
83 
84 /* representing HT siblings of each logical CPU */
85 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map);
86 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
87 
88 /* representing HT and core siblings of each logical CPU */
89 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map);
90 EXPORT_PER_CPU_SYMBOL(cpu_core_map);
91 
92 /* representing HT, core, and die siblings of each logical CPU */
93 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_die_map);
94 EXPORT_PER_CPU_SYMBOL(cpu_die_map);
95 
96 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_llc_shared_map);
97 
98 /* Per CPU bogomips and other parameters */
99 DEFINE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
100 EXPORT_PER_CPU_SYMBOL(cpu_info);
101 
102 /* Logical package management. We might want to allocate that dynamically */
103 unsigned int __max_logical_packages __read_mostly;
104 EXPORT_SYMBOL(__max_logical_packages);
105 static unsigned int logical_packages __read_mostly;
106 static unsigned int logical_die __read_mostly;
107 
108 /* Maximum number of SMT threads on any online core */
109 int __read_mostly __max_smt_threads = 1;
110 
111 /* Flag to indicate if a complete sched domain rebuild is required */
112 bool x86_topology_update;
113 
114 int arch_update_cpu_topology(void)
115 {
116 	int retval = x86_topology_update;
117 
118 	x86_topology_update = false;
119 	return retval;
120 }
121 
122 static inline void smpboot_setup_warm_reset_vector(unsigned long start_eip)
123 {
124 	unsigned long flags;
125 
126 	spin_lock_irqsave(&rtc_lock, flags);
127 	CMOS_WRITE(0xa, 0xf);
128 	spin_unlock_irqrestore(&rtc_lock, flags);
129 	*((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_HIGH)) =
130 							start_eip >> 4;
131 	*((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) =
132 							start_eip & 0xf;
133 }
134 
135 static inline void smpboot_restore_warm_reset_vector(void)
136 {
137 	unsigned long flags;
138 
139 	/*
140 	 * Paranoid:  Set warm reset code and vector here back
141 	 * to default values.
142 	 */
143 	spin_lock_irqsave(&rtc_lock, flags);
144 	CMOS_WRITE(0, 0xf);
145 	spin_unlock_irqrestore(&rtc_lock, flags);
146 
147 	*((volatile u32 *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = 0;
148 }
149 
150 static void init_freq_invariance(void);
151 
152 /*
153  * Report back to the Boot Processor during boot time or to the caller processor
154  * during CPU online.
155  */
156 static void smp_callin(void)
157 {
158 	int cpuid;
159 
160 	/*
161 	 * If waken up by an INIT in an 82489DX configuration
162 	 * cpu_callout_mask guarantees we don't get here before
163 	 * an INIT_deassert IPI reaches our local APIC, so it is
164 	 * now safe to touch our local APIC.
165 	 */
166 	cpuid = smp_processor_id();
167 
168 	/*
169 	 * the boot CPU has finished the init stage and is spinning
170 	 * on callin_map until we finish. We are free to set up this
171 	 * CPU, first the APIC. (this is probably redundant on most
172 	 * boards)
173 	 */
174 	apic_ap_setup();
175 
176 	/*
177 	 * Save our processor parameters. Note: this information
178 	 * is needed for clock calibration.
179 	 */
180 	smp_store_cpu_info(cpuid);
181 
182 	/*
183 	 * The topology information must be up to date before
184 	 * calibrate_delay() and notify_cpu_starting().
185 	 */
186 	set_cpu_sibling_map(raw_smp_processor_id());
187 
188 	init_freq_invariance();
189 
190 	/*
191 	 * Get our bogomips.
192 	 * Update loops_per_jiffy in cpu_data. Previous call to
193 	 * smp_store_cpu_info() stored a value that is close but not as
194 	 * accurate as the value just calculated.
195 	 */
196 	calibrate_delay();
197 	cpu_data(cpuid).loops_per_jiffy = loops_per_jiffy;
198 	pr_debug("Stack at about %p\n", &cpuid);
199 
200 	wmb();
201 
202 	notify_cpu_starting(cpuid);
203 
204 	/*
205 	 * Allow the master to continue.
206 	 */
207 	cpumask_set_cpu(cpuid, cpu_callin_mask);
208 }
209 
210 static int cpu0_logical_apicid;
211 static int enable_start_cpu0;
212 /*
213  * Activate a secondary processor.
214  */
215 static void notrace start_secondary(void *unused)
216 {
217 	/*
218 	 * Don't put *anything* except direct CPU state initialization
219 	 * before cpu_init(), SMP booting is too fragile that we want to
220 	 * limit the things done here to the most necessary things.
221 	 */
222 	cr4_init();
223 
224 #ifdef CONFIG_X86_32
225 	/* switch away from the initial page table */
226 	load_cr3(swapper_pg_dir);
227 	__flush_tlb_all();
228 #endif
229 	load_current_idt();
230 	cpu_init();
231 	x86_cpuinit.early_percpu_clock_init();
232 	preempt_disable();
233 	smp_callin();
234 
235 	enable_start_cpu0 = 0;
236 
237 	/* otherwise gcc will move up smp_processor_id before the cpu_init */
238 	barrier();
239 	/*
240 	 * Check TSC synchronization with the boot CPU:
241 	 */
242 	check_tsc_sync_target();
243 
244 	speculative_store_bypass_ht_init();
245 
246 	/*
247 	 * Lock vector_lock, set CPU online and bring the vector
248 	 * allocator online. Online must be set with vector_lock held
249 	 * to prevent a concurrent irq setup/teardown from seeing a
250 	 * half valid vector space.
251 	 */
252 	lock_vector_lock();
253 	set_cpu_online(smp_processor_id(), true);
254 	lapic_online();
255 	unlock_vector_lock();
256 	cpu_set_state_online(smp_processor_id());
257 	x86_platform.nmi_init();
258 
259 	/* enable local interrupts */
260 	local_irq_enable();
261 
262 	/* to prevent fake stack check failure in clock setup */
263 	boot_init_stack_canary();
264 
265 	x86_cpuinit.setup_percpu_clockev();
266 
267 	wmb();
268 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
269 }
270 
271 /**
272  * topology_is_primary_thread - Check whether CPU is the primary SMT thread
273  * @cpu:	CPU to check
274  */
275 bool topology_is_primary_thread(unsigned int cpu)
276 {
277 	return apic_id_is_primary_thread(per_cpu(x86_cpu_to_apicid, cpu));
278 }
279 
280 /**
281  * topology_smt_supported - Check whether SMT is supported by the CPUs
282  */
283 bool topology_smt_supported(void)
284 {
285 	return smp_num_siblings > 1;
286 }
287 
288 /**
289  * topology_phys_to_logical_pkg - Map a physical package id to a logical
290  *
291  * Returns logical package id or -1 if not found
292  */
293 int topology_phys_to_logical_pkg(unsigned int phys_pkg)
294 {
295 	int cpu;
296 
297 	for_each_possible_cpu(cpu) {
298 		struct cpuinfo_x86 *c = &cpu_data(cpu);
299 
300 		if (c->initialized && c->phys_proc_id == phys_pkg)
301 			return c->logical_proc_id;
302 	}
303 	return -1;
304 }
305 EXPORT_SYMBOL(topology_phys_to_logical_pkg);
306 /**
307  * topology_phys_to_logical_die - Map a physical die id to logical
308  *
309  * Returns logical die id or -1 if not found
310  */
311 int topology_phys_to_logical_die(unsigned int die_id, unsigned int cur_cpu)
312 {
313 	int cpu;
314 	int proc_id = cpu_data(cur_cpu).phys_proc_id;
315 
316 	for_each_possible_cpu(cpu) {
317 		struct cpuinfo_x86 *c = &cpu_data(cpu);
318 
319 		if (c->initialized && c->cpu_die_id == die_id &&
320 		    c->phys_proc_id == proc_id)
321 			return c->logical_die_id;
322 	}
323 	return -1;
324 }
325 EXPORT_SYMBOL(topology_phys_to_logical_die);
326 
327 /**
328  * topology_update_package_map - Update the physical to logical package map
329  * @pkg:	The physical package id as retrieved via CPUID
330  * @cpu:	The cpu for which this is updated
331  */
332 int topology_update_package_map(unsigned int pkg, unsigned int cpu)
333 {
334 	int new;
335 
336 	/* Already available somewhere? */
337 	new = topology_phys_to_logical_pkg(pkg);
338 	if (new >= 0)
339 		goto found;
340 
341 	new = logical_packages++;
342 	if (new != pkg) {
343 		pr_info("CPU %u Converting physical %u to logical package %u\n",
344 			cpu, pkg, new);
345 	}
346 found:
347 	cpu_data(cpu).logical_proc_id = new;
348 	return 0;
349 }
350 /**
351  * topology_update_die_map - Update the physical to logical die map
352  * @die:	The die id as retrieved via CPUID
353  * @cpu:	The cpu for which this is updated
354  */
355 int topology_update_die_map(unsigned int die, unsigned int cpu)
356 {
357 	int new;
358 
359 	/* Already available somewhere? */
360 	new = topology_phys_to_logical_die(die, cpu);
361 	if (new >= 0)
362 		goto found;
363 
364 	new = logical_die++;
365 	if (new != die) {
366 		pr_info("CPU %u Converting physical %u to logical die %u\n",
367 			cpu, die, new);
368 	}
369 found:
370 	cpu_data(cpu).logical_die_id = new;
371 	return 0;
372 }
373 
374 void __init smp_store_boot_cpu_info(void)
375 {
376 	int id = 0; /* CPU 0 */
377 	struct cpuinfo_x86 *c = &cpu_data(id);
378 
379 	*c = boot_cpu_data;
380 	c->cpu_index = id;
381 	topology_update_package_map(c->phys_proc_id, id);
382 	topology_update_die_map(c->cpu_die_id, id);
383 	c->initialized = true;
384 }
385 
386 /*
387  * The bootstrap kernel entry code has set these up. Save them for
388  * a given CPU
389  */
390 void smp_store_cpu_info(int id)
391 {
392 	struct cpuinfo_x86 *c = &cpu_data(id);
393 
394 	/* Copy boot_cpu_data only on the first bringup */
395 	if (!c->initialized)
396 		*c = boot_cpu_data;
397 	c->cpu_index = id;
398 	/*
399 	 * During boot time, CPU0 has this setup already. Save the info when
400 	 * bringing up AP or offlined CPU0.
401 	 */
402 	identify_secondary_cpu(c);
403 	c->initialized = true;
404 }
405 
406 static bool
407 topology_same_node(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
408 {
409 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
410 
411 	return (cpu_to_node(cpu1) == cpu_to_node(cpu2));
412 }
413 
414 static bool
415 topology_sane(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o, const char *name)
416 {
417 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
418 
419 	return !WARN_ONCE(!topology_same_node(c, o),
420 		"sched: CPU #%d's %s-sibling CPU #%d is not on the same node! "
421 		"[node: %d != %d]. Ignoring dependency.\n",
422 		cpu1, name, cpu2, cpu_to_node(cpu1), cpu_to_node(cpu2));
423 }
424 
425 #define link_mask(mfunc, c1, c2)					\
426 do {									\
427 	cpumask_set_cpu((c1), mfunc(c2));				\
428 	cpumask_set_cpu((c2), mfunc(c1));				\
429 } while (0)
430 
431 static bool match_smt(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
432 {
433 	if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
434 		int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
435 
436 		if (c->phys_proc_id == o->phys_proc_id &&
437 		    c->cpu_die_id == o->cpu_die_id &&
438 		    per_cpu(cpu_llc_id, cpu1) == per_cpu(cpu_llc_id, cpu2)) {
439 			if (c->cpu_core_id == o->cpu_core_id)
440 				return topology_sane(c, o, "smt");
441 
442 			if ((c->cu_id != 0xff) &&
443 			    (o->cu_id != 0xff) &&
444 			    (c->cu_id == o->cu_id))
445 				return topology_sane(c, o, "smt");
446 		}
447 
448 	} else if (c->phys_proc_id == o->phys_proc_id &&
449 		   c->cpu_die_id == o->cpu_die_id &&
450 		   c->cpu_core_id == o->cpu_core_id) {
451 		return topology_sane(c, o, "smt");
452 	}
453 
454 	return false;
455 }
456 
457 /*
458  * Define snc_cpu[] for SNC (Sub-NUMA Cluster) CPUs.
459  *
460  * These are Intel CPUs that enumerate an LLC that is shared by
461  * multiple NUMA nodes. The LLC on these systems is shared for
462  * off-package data access but private to the NUMA node (half
463  * of the package) for on-package access.
464  *
465  * CPUID (the source of the information about the LLC) can only
466  * enumerate the cache as being shared *or* unshared, but not
467  * this particular configuration. The CPU in this case enumerates
468  * the cache to be shared across the entire package (spanning both
469  * NUMA nodes).
470  */
471 
472 static const struct x86_cpu_id snc_cpu[] = {
473 	X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_X, NULL),
474 	{}
475 };
476 
477 static bool match_llc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
478 {
479 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
480 
481 	/* Do not match if we do not have a valid APICID for cpu: */
482 	if (per_cpu(cpu_llc_id, cpu1) == BAD_APICID)
483 		return false;
484 
485 	/* Do not match if LLC id does not match: */
486 	if (per_cpu(cpu_llc_id, cpu1) != per_cpu(cpu_llc_id, cpu2))
487 		return false;
488 
489 	/*
490 	 * Allow the SNC topology without warning. Return of false
491 	 * means 'c' does not share the LLC of 'o'. This will be
492 	 * reflected to userspace.
493 	 */
494 	if (!topology_same_node(c, o) && x86_match_cpu(snc_cpu))
495 		return false;
496 
497 	return topology_sane(c, o, "llc");
498 }
499 
500 /*
501  * Unlike the other levels, we do not enforce keeping a
502  * multicore group inside a NUMA node.  If this happens, we will
503  * discard the MC level of the topology later.
504  */
505 static bool match_pkg(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
506 {
507 	if (c->phys_proc_id == o->phys_proc_id)
508 		return true;
509 	return false;
510 }
511 
512 static bool match_die(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
513 {
514 	if ((c->phys_proc_id == o->phys_proc_id) &&
515 		(c->cpu_die_id == o->cpu_die_id))
516 		return true;
517 	return false;
518 }
519 
520 
521 #if defined(CONFIG_SCHED_SMT) || defined(CONFIG_SCHED_MC)
522 static inline int x86_sched_itmt_flags(void)
523 {
524 	return sysctl_sched_itmt_enabled ? SD_ASYM_PACKING : 0;
525 }
526 
527 #ifdef CONFIG_SCHED_MC
528 static int x86_core_flags(void)
529 {
530 	return cpu_core_flags() | x86_sched_itmt_flags();
531 }
532 #endif
533 #ifdef CONFIG_SCHED_SMT
534 static int x86_smt_flags(void)
535 {
536 	return cpu_smt_flags() | x86_sched_itmt_flags();
537 }
538 #endif
539 #endif
540 
541 static struct sched_domain_topology_level x86_numa_in_package_topology[] = {
542 #ifdef CONFIG_SCHED_SMT
543 	{ cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) },
544 #endif
545 #ifdef CONFIG_SCHED_MC
546 	{ cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) },
547 #endif
548 	{ NULL, },
549 };
550 
551 static struct sched_domain_topology_level x86_topology[] = {
552 #ifdef CONFIG_SCHED_SMT
553 	{ cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) },
554 #endif
555 #ifdef CONFIG_SCHED_MC
556 	{ cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) },
557 #endif
558 	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
559 	{ NULL, },
560 };
561 
562 /*
563  * Set if a package/die has multiple NUMA nodes inside.
564  * AMD Magny-Cours, Intel Cluster-on-Die, and Intel
565  * Sub-NUMA Clustering have this.
566  */
567 static bool x86_has_numa_in_package;
568 
569 void set_cpu_sibling_map(int cpu)
570 {
571 	bool has_smt = smp_num_siblings > 1;
572 	bool has_mp = has_smt || boot_cpu_data.x86_max_cores > 1;
573 	struct cpuinfo_x86 *c = &cpu_data(cpu);
574 	struct cpuinfo_x86 *o;
575 	int i, threads;
576 
577 	cpumask_set_cpu(cpu, cpu_sibling_setup_mask);
578 
579 	if (!has_mp) {
580 		cpumask_set_cpu(cpu, topology_sibling_cpumask(cpu));
581 		cpumask_set_cpu(cpu, cpu_llc_shared_mask(cpu));
582 		cpumask_set_cpu(cpu, topology_core_cpumask(cpu));
583 		cpumask_set_cpu(cpu, topology_die_cpumask(cpu));
584 		c->booted_cores = 1;
585 		return;
586 	}
587 
588 	for_each_cpu(i, cpu_sibling_setup_mask) {
589 		o = &cpu_data(i);
590 
591 		if ((i == cpu) || (has_smt && match_smt(c, o)))
592 			link_mask(topology_sibling_cpumask, cpu, i);
593 
594 		if ((i == cpu) || (has_mp && match_llc(c, o)))
595 			link_mask(cpu_llc_shared_mask, cpu, i);
596 
597 	}
598 
599 	/*
600 	 * This needs a separate iteration over the cpus because we rely on all
601 	 * topology_sibling_cpumask links to be set-up.
602 	 */
603 	for_each_cpu(i, cpu_sibling_setup_mask) {
604 		o = &cpu_data(i);
605 
606 		if ((i == cpu) || (has_mp && match_pkg(c, o))) {
607 			link_mask(topology_core_cpumask, cpu, i);
608 
609 			/*
610 			 *  Does this new cpu bringup a new core?
611 			 */
612 			if (cpumask_weight(
613 			    topology_sibling_cpumask(cpu)) == 1) {
614 				/*
615 				 * for each core in package, increment
616 				 * the booted_cores for this new cpu
617 				 */
618 				if (cpumask_first(
619 				    topology_sibling_cpumask(i)) == i)
620 					c->booted_cores++;
621 				/*
622 				 * increment the core count for all
623 				 * the other cpus in this package
624 				 */
625 				if (i != cpu)
626 					cpu_data(i).booted_cores++;
627 			} else if (i != cpu && !c->booted_cores)
628 				c->booted_cores = cpu_data(i).booted_cores;
629 		}
630 		if (match_pkg(c, o) && !topology_same_node(c, o))
631 			x86_has_numa_in_package = true;
632 
633 		if ((i == cpu) || (has_mp && match_die(c, o)))
634 			link_mask(topology_die_cpumask, cpu, i);
635 	}
636 
637 	threads = cpumask_weight(topology_sibling_cpumask(cpu));
638 	if (threads > __max_smt_threads)
639 		__max_smt_threads = threads;
640 }
641 
642 /* maps the cpu to the sched domain representing multi-core */
643 const struct cpumask *cpu_coregroup_mask(int cpu)
644 {
645 	return cpu_llc_shared_mask(cpu);
646 }
647 
648 static void impress_friends(void)
649 {
650 	int cpu;
651 	unsigned long bogosum = 0;
652 	/*
653 	 * Allow the user to impress friends.
654 	 */
655 	pr_debug("Before bogomips\n");
656 	for_each_possible_cpu(cpu)
657 		if (cpumask_test_cpu(cpu, cpu_callout_mask))
658 			bogosum += cpu_data(cpu).loops_per_jiffy;
659 	pr_info("Total of %d processors activated (%lu.%02lu BogoMIPS)\n",
660 		num_online_cpus(),
661 		bogosum/(500000/HZ),
662 		(bogosum/(5000/HZ))%100);
663 
664 	pr_debug("Before bogocount - setting activated=1\n");
665 }
666 
667 void __inquire_remote_apic(int apicid)
668 {
669 	unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
670 	const char * const names[] = { "ID", "VERSION", "SPIV" };
671 	int timeout;
672 	u32 status;
673 
674 	pr_info("Inquiring remote APIC 0x%x...\n", apicid);
675 
676 	for (i = 0; i < ARRAY_SIZE(regs); i++) {
677 		pr_info("... APIC 0x%x %s: ", apicid, names[i]);
678 
679 		/*
680 		 * Wait for idle.
681 		 */
682 		status = safe_apic_wait_icr_idle();
683 		if (status)
684 			pr_cont("a previous APIC delivery may have failed\n");
685 
686 		apic_icr_write(APIC_DM_REMRD | regs[i], apicid);
687 
688 		timeout = 0;
689 		do {
690 			udelay(100);
691 			status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
692 		} while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
693 
694 		switch (status) {
695 		case APIC_ICR_RR_VALID:
696 			status = apic_read(APIC_RRR);
697 			pr_cont("%08x\n", status);
698 			break;
699 		default:
700 			pr_cont("failed\n");
701 		}
702 	}
703 }
704 
705 /*
706  * The Multiprocessor Specification 1.4 (1997) example code suggests
707  * that there should be a 10ms delay between the BSP asserting INIT
708  * and de-asserting INIT, when starting a remote processor.
709  * But that slows boot and resume on modern processors, which include
710  * many cores and don't require that delay.
711  *
712  * Cmdline "init_cpu_udelay=" is available to over-ride this delay.
713  * Modern processor families are quirked to remove the delay entirely.
714  */
715 #define UDELAY_10MS_DEFAULT 10000
716 
717 static unsigned int init_udelay = UINT_MAX;
718 
719 static int __init cpu_init_udelay(char *str)
720 {
721 	get_option(&str, &init_udelay);
722 
723 	return 0;
724 }
725 early_param("cpu_init_udelay", cpu_init_udelay);
726 
727 static void __init smp_quirk_init_udelay(void)
728 {
729 	/* if cmdline changed it from default, leave it alone */
730 	if (init_udelay != UINT_MAX)
731 		return;
732 
733 	/* if modern processor, use no delay */
734 	if (((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && (boot_cpu_data.x86 == 6)) ||
735 	    ((boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) && (boot_cpu_data.x86 >= 0x18)) ||
736 	    ((boot_cpu_data.x86_vendor == X86_VENDOR_AMD) && (boot_cpu_data.x86 >= 0xF))) {
737 		init_udelay = 0;
738 		return;
739 	}
740 	/* else, use legacy delay */
741 	init_udelay = UDELAY_10MS_DEFAULT;
742 }
743 
744 /*
745  * Poke the other CPU in the eye via NMI to wake it up. Remember that the normal
746  * INIT, INIT, STARTUP sequence will reset the chip hard for us, and this
747  * won't ... remember to clear down the APIC, etc later.
748  */
749 int
750 wakeup_secondary_cpu_via_nmi(int apicid, unsigned long start_eip)
751 {
752 	unsigned long send_status, accept_status = 0;
753 	int maxlvt;
754 
755 	/* Target chip */
756 	/* Boot on the stack */
757 	/* Kick the second */
758 	apic_icr_write(APIC_DM_NMI | apic->dest_logical, apicid);
759 
760 	pr_debug("Waiting for send to finish...\n");
761 	send_status = safe_apic_wait_icr_idle();
762 
763 	/*
764 	 * Give the other CPU some time to accept the IPI.
765 	 */
766 	udelay(200);
767 	if (APIC_INTEGRATED(boot_cpu_apic_version)) {
768 		maxlvt = lapic_get_maxlvt();
769 		if (maxlvt > 3)			/* Due to the Pentium erratum 3AP.  */
770 			apic_write(APIC_ESR, 0);
771 		accept_status = (apic_read(APIC_ESR) & 0xEF);
772 	}
773 	pr_debug("NMI sent\n");
774 
775 	if (send_status)
776 		pr_err("APIC never delivered???\n");
777 	if (accept_status)
778 		pr_err("APIC delivery error (%lx)\n", accept_status);
779 
780 	return (send_status | accept_status);
781 }
782 
783 static int
784 wakeup_secondary_cpu_via_init(int phys_apicid, unsigned long start_eip)
785 {
786 	unsigned long send_status = 0, accept_status = 0;
787 	int maxlvt, num_starts, j;
788 
789 	maxlvt = lapic_get_maxlvt();
790 
791 	/*
792 	 * Be paranoid about clearing APIC errors.
793 	 */
794 	if (APIC_INTEGRATED(boot_cpu_apic_version)) {
795 		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
796 			apic_write(APIC_ESR, 0);
797 		apic_read(APIC_ESR);
798 	}
799 
800 	pr_debug("Asserting INIT\n");
801 
802 	/*
803 	 * Turn INIT on target chip
804 	 */
805 	/*
806 	 * Send IPI
807 	 */
808 	apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT,
809 		       phys_apicid);
810 
811 	pr_debug("Waiting for send to finish...\n");
812 	send_status = safe_apic_wait_icr_idle();
813 
814 	udelay(init_udelay);
815 
816 	pr_debug("Deasserting INIT\n");
817 
818 	/* Target chip */
819 	/* Send IPI */
820 	apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid);
821 
822 	pr_debug("Waiting for send to finish...\n");
823 	send_status = safe_apic_wait_icr_idle();
824 
825 	mb();
826 
827 	/*
828 	 * Should we send STARTUP IPIs ?
829 	 *
830 	 * Determine this based on the APIC version.
831 	 * If we don't have an integrated APIC, don't send the STARTUP IPIs.
832 	 */
833 	if (APIC_INTEGRATED(boot_cpu_apic_version))
834 		num_starts = 2;
835 	else
836 		num_starts = 0;
837 
838 	/*
839 	 * Run STARTUP IPI loop.
840 	 */
841 	pr_debug("#startup loops: %d\n", num_starts);
842 
843 	for (j = 1; j <= num_starts; j++) {
844 		pr_debug("Sending STARTUP #%d\n", j);
845 		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
846 			apic_write(APIC_ESR, 0);
847 		apic_read(APIC_ESR);
848 		pr_debug("After apic_write\n");
849 
850 		/*
851 		 * STARTUP IPI
852 		 */
853 
854 		/* Target chip */
855 		/* Boot on the stack */
856 		/* Kick the second */
857 		apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12),
858 			       phys_apicid);
859 
860 		/*
861 		 * Give the other CPU some time to accept the IPI.
862 		 */
863 		if (init_udelay == 0)
864 			udelay(10);
865 		else
866 			udelay(300);
867 
868 		pr_debug("Startup point 1\n");
869 
870 		pr_debug("Waiting for send to finish...\n");
871 		send_status = safe_apic_wait_icr_idle();
872 
873 		/*
874 		 * Give the other CPU some time to accept the IPI.
875 		 */
876 		if (init_udelay == 0)
877 			udelay(10);
878 		else
879 			udelay(200);
880 
881 		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
882 			apic_write(APIC_ESR, 0);
883 		accept_status = (apic_read(APIC_ESR) & 0xEF);
884 		if (send_status || accept_status)
885 			break;
886 	}
887 	pr_debug("After Startup\n");
888 
889 	if (send_status)
890 		pr_err("APIC never delivered???\n");
891 	if (accept_status)
892 		pr_err("APIC delivery error (%lx)\n", accept_status);
893 
894 	return (send_status | accept_status);
895 }
896 
897 /* reduce the number of lines printed when booting a large cpu count system */
898 static void announce_cpu(int cpu, int apicid)
899 {
900 	static int current_node = NUMA_NO_NODE;
901 	int node = early_cpu_to_node(cpu);
902 	static int width, node_width;
903 
904 	if (!width)
905 		width = num_digits(num_possible_cpus()) + 1; /* + '#' sign */
906 
907 	if (!node_width)
908 		node_width = num_digits(num_possible_nodes()) + 1; /* + '#' */
909 
910 	if (cpu == 1)
911 		printk(KERN_INFO "x86: Booting SMP configuration:\n");
912 
913 	if (system_state < SYSTEM_RUNNING) {
914 		if (node != current_node) {
915 			if (current_node > (-1))
916 				pr_cont("\n");
917 			current_node = node;
918 
919 			printk(KERN_INFO ".... node %*s#%d, CPUs:  ",
920 			       node_width - num_digits(node), " ", node);
921 		}
922 
923 		/* Add padding for the BSP */
924 		if (cpu == 1)
925 			pr_cont("%*s", width + 1, " ");
926 
927 		pr_cont("%*s#%d", width - num_digits(cpu), " ", cpu);
928 
929 	} else
930 		pr_info("Booting Node %d Processor %d APIC 0x%x\n",
931 			node, cpu, apicid);
932 }
933 
934 static int wakeup_cpu0_nmi(unsigned int cmd, struct pt_regs *regs)
935 {
936 	int cpu;
937 
938 	cpu = smp_processor_id();
939 	if (cpu == 0 && !cpu_online(cpu) && enable_start_cpu0)
940 		return NMI_HANDLED;
941 
942 	return NMI_DONE;
943 }
944 
945 /*
946  * Wake up AP by INIT, INIT, STARTUP sequence.
947  *
948  * Instead of waiting for STARTUP after INITs, BSP will execute the BIOS
949  * boot-strap code which is not a desired behavior for waking up BSP. To
950  * void the boot-strap code, wake up CPU0 by NMI instead.
951  *
952  * This works to wake up soft offlined CPU0 only. If CPU0 is hard offlined
953  * (i.e. physically hot removed and then hot added), NMI won't wake it up.
954  * We'll change this code in the future to wake up hard offlined CPU0 if
955  * real platform and request are available.
956  */
957 static int
958 wakeup_cpu_via_init_nmi(int cpu, unsigned long start_ip, int apicid,
959 	       int *cpu0_nmi_registered)
960 {
961 	int id;
962 	int boot_error;
963 
964 	preempt_disable();
965 
966 	/*
967 	 * Wake up AP by INIT, INIT, STARTUP sequence.
968 	 */
969 	if (cpu) {
970 		boot_error = wakeup_secondary_cpu_via_init(apicid, start_ip);
971 		goto out;
972 	}
973 
974 	/*
975 	 * Wake up BSP by nmi.
976 	 *
977 	 * Register a NMI handler to help wake up CPU0.
978 	 */
979 	boot_error = register_nmi_handler(NMI_LOCAL,
980 					  wakeup_cpu0_nmi, 0, "wake_cpu0");
981 
982 	if (!boot_error) {
983 		enable_start_cpu0 = 1;
984 		*cpu0_nmi_registered = 1;
985 		if (apic->dest_logical == APIC_DEST_LOGICAL)
986 			id = cpu0_logical_apicid;
987 		else
988 			id = apicid;
989 		boot_error = wakeup_secondary_cpu_via_nmi(id, start_ip);
990 	}
991 
992 out:
993 	preempt_enable();
994 
995 	return boot_error;
996 }
997 
998 int common_cpu_up(unsigned int cpu, struct task_struct *idle)
999 {
1000 	int ret;
1001 
1002 	/* Just in case we booted with a single CPU. */
1003 	alternatives_enable_smp();
1004 
1005 	per_cpu(current_task, cpu) = idle;
1006 
1007 	/* Initialize the interrupt stack(s) */
1008 	ret = irq_init_percpu_irqstack(cpu);
1009 	if (ret)
1010 		return ret;
1011 
1012 #ifdef CONFIG_X86_32
1013 	/* Stack for startup_32 can be just as for start_secondary onwards */
1014 	per_cpu(cpu_current_top_of_stack, cpu) = task_top_of_stack(idle);
1015 #else
1016 	initial_gs = per_cpu_offset(cpu);
1017 #endif
1018 	return 0;
1019 }
1020 
1021 /*
1022  * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
1023  * (ie clustered apic addressing mode), this is a LOGICAL apic ID.
1024  * Returns zero if CPU booted OK, else error code from
1025  * ->wakeup_secondary_cpu.
1026  */
1027 static int do_boot_cpu(int apicid, int cpu, struct task_struct *idle,
1028 		       int *cpu0_nmi_registered)
1029 {
1030 	/* start_ip had better be page-aligned! */
1031 	unsigned long start_ip = real_mode_header->trampoline_start;
1032 
1033 	unsigned long boot_error = 0;
1034 	unsigned long timeout;
1035 
1036 	idle->thread.sp = (unsigned long)task_pt_regs(idle);
1037 	early_gdt_descr.address = (unsigned long)get_cpu_gdt_rw(cpu);
1038 	initial_code = (unsigned long)start_secondary;
1039 	initial_stack  = idle->thread.sp;
1040 
1041 	/* Enable the espfix hack for this CPU */
1042 	init_espfix_ap(cpu);
1043 
1044 	/* So we see what's up */
1045 	announce_cpu(cpu, apicid);
1046 
1047 	/*
1048 	 * This grunge runs the startup process for
1049 	 * the targeted processor.
1050 	 */
1051 
1052 	if (x86_platform.legacy.warm_reset) {
1053 
1054 		pr_debug("Setting warm reset code and vector.\n");
1055 
1056 		smpboot_setup_warm_reset_vector(start_ip);
1057 		/*
1058 		 * Be paranoid about clearing APIC errors.
1059 		*/
1060 		if (APIC_INTEGRATED(boot_cpu_apic_version)) {
1061 			apic_write(APIC_ESR, 0);
1062 			apic_read(APIC_ESR);
1063 		}
1064 	}
1065 
1066 	/*
1067 	 * AP might wait on cpu_callout_mask in cpu_init() with
1068 	 * cpu_initialized_mask set if previous attempt to online
1069 	 * it timed-out. Clear cpu_initialized_mask so that after
1070 	 * INIT/SIPI it could start with a clean state.
1071 	 */
1072 	cpumask_clear_cpu(cpu, cpu_initialized_mask);
1073 	smp_mb();
1074 
1075 	/*
1076 	 * Wake up a CPU in difference cases:
1077 	 * - Use the method in the APIC driver if it's defined
1078 	 * Otherwise,
1079 	 * - Use an INIT boot APIC message for APs or NMI for BSP.
1080 	 */
1081 	if (apic->wakeup_secondary_cpu)
1082 		boot_error = apic->wakeup_secondary_cpu(apicid, start_ip);
1083 	else
1084 		boot_error = wakeup_cpu_via_init_nmi(cpu, start_ip, apicid,
1085 						     cpu0_nmi_registered);
1086 
1087 	if (!boot_error) {
1088 		/*
1089 		 * Wait 10s total for first sign of life from AP
1090 		 */
1091 		boot_error = -1;
1092 		timeout = jiffies + 10*HZ;
1093 		while (time_before(jiffies, timeout)) {
1094 			if (cpumask_test_cpu(cpu, cpu_initialized_mask)) {
1095 				/*
1096 				 * Tell AP to proceed with initialization
1097 				 */
1098 				cpumask_set_cpu(cpu, cpu_callout_mask);
1099 				boot_error = 0;
1100 				break;
1101 			}
1102 			schedule();
1103 		}
1104 	}
1105 
1106 	if (!boot_error) {
1107 		/*
1108 		 * Wait till AP completes initial initialization
1109 		 */
1110 		while (!cpumask_test_cpu(cpu, cpu_callin_mask)) {
1111 			/*
1112 			 * Allow other tasks to run while we wait for the
1113 			 * AP to come online. This also gives a chance
1114 			 * for the MTRR work(triggered by the AP coming online)
1115 			 * to be completed in the stop machine context.
1116 			 */
1117 			schedule();
1118 		}
1119 	}
1120 
1121 	if (x86_platform.legacy.warm_reset) {
1122 		/*
1123 		 * Cleanup possible dangling ends...
1124 		 */
1125 		smpboot_restore_warm_reset_vector();
1126 	}
1127 
1128 	return boot_error;
1129 }
1130 
1131 int native_cpu_up(unsigned int cpu, struct task_struct *tidle)
1132 {
1133 	int apicid = apic->cpu_present_to_apicid(cpu);
1134 	int cpu0_nmi_registered = 0;
1135 	unsigned long flags;
1136 	int err, ret = 0;
1137 
1138 	lockdep_assert_irqs_enabled();
1139 
1140 	pr_debug("++++++++++++++++++++=_---CPU UP  %u\n", cpu);
1141 
1142 	if (apicid == BAD_APICID ||
1143 	    !physid_isset(apicid, phys_cpu_present_map) ||
1144 	    !apic->apic_id_valid(apicid)) {
1145 		pr_err("%s: bad cpu %d\n", __func__, cpu);
1146 		return -EINVAL;
1147 	}
1148 
1149 	/*
1150 	 * Already booted CPU?
1151 	 */
1152 	if (cpumask_test_cpu(cpu, cpu_callin_mask)) {
1153 		pr_debug("do_boot_cpu %d Already started\n", cpu);
1154 		return -ENOSYS;
1155 	}
1156 
1157 	/*
1158 	 * Save current MTRR state in case it was changed since early boot
1159 	 * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync:
1160 	 */
1161 	mtrr_save_state();
1162 
1163 	/* x86 CPUs take themselves offline, so delayed offline is OK. */
1164 	err = cpu_check_up_prepare(cpu);
1165 	if (err && err != -EBUSY)
1166 		return err;
1167 
1168 	/* the FPU context is blank, nobody can own it */
1169 	per_cpu(fpu_fpregs_owner_ctx, cpu) = NULL;
1170 
1171 	err = common_cpu_up(cpu, tidle);
1172 	if (err)
1173 		return err;
1174 
1175 	err = do_boot_cpu(apicid, cpu, tidle, &cpu0_nmi_registered);
1176 	if (err) {
1177 		pr_err("do_boot_cpu failed(%d) to wakeup CPU#%u\n", err, cpu);
1178 		ret = -EIO;
1179 		goto unreg_nmi;
1180 	}
1181 
1182 	/*
1183 	 * Check TSC synchronization with the AP (keep irqs disabled
1184 	 * while doing so):
1185 	 */
1186 	local_irq_save(flags);
1187 	check_tsc_sync_source(cpu);
1188 	local_irq_restore(flags);
1189 
1190 	while (!cpu_online(cpu)) {
1191 		cpu_relax();
1192 		touch_nmi_watchdog();
1193 	}
1194 
1195 unreg_nmi:
1196 	/*
1197 	 * Clean up the nmi handler. Do this after the callin and callout sync
1198 	 * to avoid impact of possible long unregister time.
1199 	 */
1200 	if (cpu0_nmi_registered)
1201 		unregister_nmi_handler(NMI_LOCAL, "wake_cpu0");
1202 
1203 	return ret;
1204 }
1205 
1206 /**
1207  * arch_disable_smp_support() - disables SMP support for x86 at runtime
1208  */
1209 void arch_disable_smp_support(void)
1210 {
1211 	disable_ioapic_support();
1212 }
1213 
1214 /*
1215  * Fall back to non SMP mode after errors.
1216  *
1217  * RED-PEN audit/test this more. I bet there is more state messed up here.
1218  */
1219 static __init void disable_smp(void)
1220 {
1221 	pr_info("SMP disabled\n");
1222 
1223 	disable_ioapic_support();
1224 
1225 	init_cpu_present(cpumask_of(0));
1226 	init_cpu_possible(cpumask_of(0));
1227 
1228 	if (smp_found_config)
1229 		physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map);
1230 	else
1231 		physid_set_mask_of_physid(0, &phys_cpu_present_map);
1232 	cpumask_set_cpu(0, topology_sibling_cpumask(0));
1233 	cpumask_set_cpu(0, topology_core_cpumask(0));
1234 	cpumask_set_cpu(0, topology_die_cpumask(0));
1235 }
1236 
1237 /*
1238  * Various sanity checks.
1239  */
1240 static void __init smp_sanity_check(void)
1241 {
1242 	preempt_disable();
1243 
1244 #if !defined(CONFIG_X86_BIGSMP) && defined(CONFIG_X86_32)
1245 	if (def_to_bigsmp && nr_cpu_ids > 8) {
1246 		unsigned int cpu;
1247 		unsigned nr;
1248 
1249 		pr_warn("More than 8 CPUs detected - skipping them\n"
1250 			"Use CONFIG_X86_BIGSMP\n");
1251 
1252 		nr = 0;
1253 		for_each_present_cpu(cpu) {
1254 			if (nr >= 8)
1255 				set_cpu_present(cpu, false);
1256 			nr++;
1257 		}
1258 
1259 		nr = 0;
1260 		for_each_possible_cpu(cpu) {
1261 			if (nr >= 8)
1262 				set_cpu_possible(cpu, false);
1263 			nr++;
1264 		}
1265 
1266 		nr_cpu_ids = 8;
1267 	}
1268 #endif
1269 
1270 	if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) {
1271 		pr_warn("weird, boot CPU (#%d) not listed by the BIOS\n",
1272 			hard_smp_processor_id());
1273 
1274 		physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1275 	}
1276 
1277 	/*
1278 	 * Should not be necessary because the MP table should list the boot
1279 	 * CPU too, but we do it for the sake of robustness anyway.
1280 	 */
1281 	if (!apic->check_phys_apicid_present(boot_cpu_physical_apicid)) {
1282 		pr_notice("weird, boot CPU (#%d) not listed by the BIOS\n",
1283 			  boot_cpu_physical_apicid);
1284 		physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1285 	}
1286 	preempt_enable();
1287 }
1288 
1289 static void __init smp_cpu_index_default(void)
1290 {
1291 	int i;
1292 	struct cpuinfo_x86 *c;
1293 
1294 	for_each_possible_cpu(i) {
1295 		c = &cpu_data(i);
1296 		/* mark all to hotplug */
1297 		c->cpu_index = nr_cpu_ids;
1298 	}
1299 }
1300 
1301 static void __init smp_get_logical_apicid(void)
1302 {
1303 	if (x2apic_mode)
1304 		cpu0_logical_apicid = apic_read(APIC_LDR);
1305 	else
1306 		cpu0_logical_apicid = GET_APIC_LOGICAL_ID(apic_read(APIC_LDR));
1307 }
1308 
1309 /*
1310  * Prepare for SMP bootup.
1311  * @max_cpus: configured maximum number of CPUs, It is a legacy parameter
1312  *            for common interface support.
1313  */
1314 void __init native_smp_prepare_cpus(unsigned int max_cpus)
1315 {
1316 	unsigned int i;
1317 
1318 	smp_cpu_index_default();
1319 
1320 	/*
1321 	 * Setup boot CPU information
1322 	 */
1323 	smp_store_boot_cpu_info(); /* Final full version of the data */
1324 	cpumask_copy(cpu_callin_mask, cpumask_of(0));
1325 	mb();
1326 
1327 	for_each_possible_cpu(i) {
1328 		zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL);
1329 		zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL);
1330 		zalloc_cpumask_var(&per_cpu(cpu_die_map, i), GFP_KERNEL);
1331 		zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL);
1332 	}
1333 
1334 	/*
1335 	 * Set 'default' x86 topology, this matches default_topology() in that
1336 	 * it has NUMA nodes as a topology level. See also
1337 	 * native_smp_cpus_done().
1338 	 *
1339 	 * Must be done before set_cpus_sibling_map() is ran.
1340 	 */
1341 	set_sched_topology(x86_topology);
1342 
1343 	set_cpu_sibling_map(0);
1344 	init_freq_invariance();
1345 	smp_sanity_check();
1346 
1347 	switch (apic_intr_mode) {
1348 	case APIC_PIC:
1349 	case APIC_VIRTUAL_WIRE_NO_CONFIG:
1350 		disable_smp();
1351 		return;
1352 	case APIC_SYMMETRIC_IO_NO_ROUTING:
1353 		disable_smp();
1354 		/* Setup local timer */
1355 		x86_init.timers.setup_percpu_clockev();
1356 		return;
1357 	case APIC_VIRTUAL_WIRE:
1358 	case APIC_SYMMETRIC_IO:
1359 		break;
1360 	}
1361 
1362 	/* Setup local timer */
1363 	x86_init.timers.setup_percpu_clockev();
1364 
1365 	smp_get_logical_apicid();
1366 
1367 	pr_info("CPU0: ");
1368 	print_cpu_info(&cpu_data(0));
1369 
1370 	uv_system_init();
1371 
1372 	set_mtrr_aps_delayed_init();
1373 
1374 	smp_quirk_init_udelay();
1375 
1376 	speculative_store_bypass_ht_init();
1377 }
1378 
1379 void arch_enable_nonboot_cpus_begin(void)
1380 {
1381 	set_mtrr_aps_delayed_init();
1382 }
1383 
1384 void arch_enable_nonboot_cpus_end(void)
1385 {
1386 	mtrr_aps_init();
1387 }
1388 
1389 /*
1390  * Early setup to make printk work.
1391  */
1392 void __init native_smp_prepare_boot_cpu(void)
1393 {
1394 	int me = smp_processor_id();
1395 	switch_to_new_gdt(me);
1396 	/* already set me in cpu_online_mask in boot_cpu_init() */
1397 	cpumask_set_cpu(me, cpu_callout_mask);
1398 	cpu_set_state_online(me);
1399 	native_pv_lock_init();
1400 }
1401 
1402 void __init calculate_max_logical_packages(void)
1403 {
1404 	int ncpus;
1405 
1406 	/*
1407 	 * Today neither Intel nor AMD support heterogenous systems so
1408 	 * extrapolate the boot cpu's data to all packages.
1409 	 */
1410 	ncpus = cpu_data(0).booted_cores * topology_max_smt_threads();
1411 	__max_logical_packages = DIV_ROUND_UP(total_cpus, ncpus);
1412 	pr_info("Max logical packages: %u\n", __max_logical_packages);
1413 }
1414 
1415 void __init native_smp_cpus_done(unsigned int max_cpus)
1416 {
1417 	pr_debug("Boot done\n");
1418 
1419 	calculate_max_logical_packages();
1420 
1421 	if (x86_has_numa_in_package)
1422 		set_sched_topology(x86_numa_in_package_topology);
1423 
1424 	nmi_selftest();
1425 	impress_friends();
1426 	mtrr_aps_init();
1427 }
1428 
1429 static int __initdata setup_possible_cpus = -1;
1430 static int __init _setup_possible_cpus(char *str)
1431 {
1432 	get_option(&str, &setup_possible_cpus);
1433 	return 0;
1434 }
1435 early_param("possible_cpus", _setup_possible_cpus);
1436 
1437 
1438 /*
1439  * cpu_possible_mask should be static, it cannot change as cpu's
1440  * are onlined, or offlined. The reason is per-cpu data-structures
1441  * are allocated by some modules at init time, and don't expect to
1442  * do this dynamically on cpu arrival/departure.
1443  * cpu_present_mask on the other hand can change dynamically.
1444  * In case when cpu_hotplug is not compiled, then we resort to current
1445  * behaviour, which is cpu_possible == cpu_present.
1446  * - Ashok Raj
1447  *
1448  * Three ways to find out the number of additional hotplug CPUs:
1449  * - If the BIOS specified disabled CPUs in ACPI/mptables use that.
1450  * - The user can overwrite it with possible_cpus=NUM
1451  * - Otherwise don't reserve additional CPUs.
1452  * We do this because additional CPUs waste a lot of memory.
1453  * -AK
1454  */
1455 __init void prefill_possible_map(void)
1456 {
1457 	int i, possible;
1458 
1459 	/* No boot processor was found in mptable or ACPI MADT */
1460 	if (!num_processors) {
1461 		if (boot_cpu_has(X86_FEATURE_APIC)) {
1462 			int apicid = boot_cpu_physical_apicid;
1463 			int cpu = hard_smp_processor_id();
1464 
1465 			pr_warn("Boot CPU (id %d) not listed by BIOS\n", cpu);
1466 
1467 			/* Make sure boot cpu is enumerated */
1468 			if (apic->cpu_present_to_apicid(0) == BAD_APICID &&
1469 			    apic->apic_id_valid(apicid))
1470 				generic_processor_info(apicid, boot_cpu_apic_version);
1471 		}
1472 
1473 		if (!num_processors)
1474 			num_processors = 1;
1475 	}
1476 
1477 	i = setup_max_cpus ?: 1;
1478 	if (setup_possible_cpus == -1) {
1479 		possible = num_processors;
1480 #ifdef CONFIG_HOTPLUG_CPU
1481 		if (setup_max_cpus)
1482 			possible += disabled_cpus;
1483 #else
1484 		if (possible > i)
1485 			possible = i;
1486 #endif
1487 	} else
1488 		possible = setup_possible_cpus;
1489 
1490 	total_cpus = max_t(int, possible, num_processors + disabled_cpus);
1491 
1492 	/* nr_cpu_ids could be reduced via nr_cpus= */
1493 	if (possible > nr_cpu_ids) {
1494 		pr_warn("%d Processors exceeds NR_CPUS limit of %u\n",
1495 			possible, nr_cpu_ids);
1496 		possible = nr_cpu_ids;
1497 	}
1498 
1499 #ifdef CONFIG_HOTPLUG_CPU
1500 	if (!setup_max_cpus)
1501 #endif
1502 	if (possible > i) {
1503 		pr_warn("%d Processors exceeds max_cpus limit of %u\n",
1504 			possible, setup_max_cpus);
1505 		possible = i;
1506 	}
1507 
1508 	nr_cpu_ids = possible;
1509 
1510 	pr_info("Allowing %d CPUs, %d hotplug CPUs\n",
1511 		possible, max_t(int, possible - num_processors, 0));
1512 
1513 	reset_cpu_possible_mask();
1514 
1515 	for (i = 0; i < possible; i++)
1516 		set_cpu_possible(i, true);
1517 }
1518 
1519 #ifdef CONFIG_HOTPLUG_CPU
1520 
1521 /* Recompute SMT state for all CPUs on offline */
1522 static void recompute_smt_state(void)
1523 {
1524 	int max_threads, cpu;
1525 
1526 	max_threads = 0;
1527 	for_each_online_cpu (cpu) {
1528 		int threads = cpumask_weight(topology_sibling_cpumask(cpu));
1529 
1530 		if (threads > max_threads)
1531 			max_threads = threads;
1532 	}
1533 	__max_smt_threads = max_threads;
1534 }
1535 
1536 static void remove_siblinginfo(int cpu)
1537 {
1538 	int sibling;
1539 	struct cpuinfo_x86 *c = &cpu_data(cpu);
1540 
1541 	for_each_cpu(sibling, topology_core_cpumask(cpu)) {
1542 		cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
1543 		/*/
1544 		 * last thread sibling in this cpu core going down
1545 		 */
1546 		if (cpumask_weight(topology_sibling_cpumask(cpu)) == 1)
1547 			cpu_data(sibling).booted_cores--;
1548 	}
1549 
1550 	for_each_cpu(sibling, topology_die_cpumask(cpu))
1551 		cpumask_clear_cpu(cpu, topology_die_cpumask(sibling));
1552 	for_each_cpu(sibling, topology_sibling_cpumask(cpu))
1553 		cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
1554 	for_each_cpu(sibling, cpu_llc_shared_mask(cpu))
1555 		cpumask_clear_cpu(cpu, cpu_llc_shared_mask(sibling));
1556 	cpumask_clear(cpu_llc_shared_mask(cpu));
1557 	cpumask_clear(topology_sibling_cpumask(cpu));
1558 	cpumask_clear(topology_core_cpumask(cpu));
1559 	cpumask_clear(topology_die_cpumask(cpu));
1560 	c->cpu_core_id = 0;
1561 	c->booted_cores = 0;
1562 	cpumask_clear_cpu(cpu, cpu_sibling_setup_mask);
1563 	recompute_smt_state();
1564 }
1565 
1566 static void remove_cpu_from_maps(int cpu)
1567 {
1568 	set_cpu_online(cpu, false);
1569 	cpumask_clear_cpu(cpu, cpu_callout_mask);
1570 	cpumask_clear_cpu(cpu, cpu_callin_mask);
1571 	/* was set by cpu_init() */
1572 	cpumask_clear_cpu(cpu, cpu_initialized_mask);
1573 	numa_remove_cpu(cpu);
1574 }
1575 
1576 void cpu_disable_common(void)
1577 {
1578 	int cpu = smp_processor_id();
1579 
1580 	remove_siblinginfo(cpu);
1581 
1582 	/* It's now safe to remove this processor from the online map */
1583 	lock_vector_lock();
1584 	remove_cpu_from_maps(cpu);
1585 	unlock_vector_lock();
1586 	fixup_irqs();
1587 	lapic_offline();
1588 }
1589 
1590 int native_cpu_disable(void)
1591 {
1592 	int ret;
1593 
1594 	ret = lapic_can_unplug_cpu();
1595 	if (ret)
1596 		return ret;
1597 
1598 	/*
1599 	 * Disable the local APIC. Otherwise IPI broadcasts will reach
1600 	 * it. It still responds normally to INIT, NMI, SMI, and SIPI
1601 	 * messages.
1602 	 */
1603 	apic_soft_disable();
1604 	cpu_disable_common();
1605 
1606 	return 0;
1607 }
1608 
1609 int common_cpu_die(unsigned int cpu)
1610 {
1611 	int ret = 0;
1612 
1613 	/* We don't do anything here: idle task is faking death itself. */
1614 
1615 	/* They ack this in play_dead() by setting CPU_DEAD */
1616 	if (cpu_wait_death(cpu, 5)) {
1617 		if (system_state == SYSTEM_RUNNING)
1618 			pr_info("CPU %u is now offline\n", cpu);
1619 	} else {
1620 		pr_err("CPU %u didn't die...\n", cpu);
1621 		ret = -1;
1622 	}
1623 
1624 	return ret;
1625 }
1626 
1627 void native_cpu_die(unsigned int cpu)
1628 {
1629 	common_cpu_die(cpu);
1630 }
1631 
1632 void play_dead_common(void)
1633 {
1634 	idle_task_exit();
1635 
1636 	/* Ack it */
1637 	(void)cpu_report_death();
1638 
1639 	/*
1640 	 * With physical CPU hotplug, we should halt the cpu
1641 	 */
1642 	local_irq_disable();
1643 }
1644 
1645 static bool wakeup_cpu0(void)
1646 {
1647 	if (smp_processor_id() == 0 && enable_start_cpu0)
1648 		return true;
1649 
1650 	return false;
1651 }
1652 
1653 /*
1654  * We need to flush the caches before going to sleep, lest we have
1655  * dirty data in our caches when we come back up.
1656  */
1657 static inline void mwait_play_dead(void)
1658 {
1659 	unsigned int eax, ebx, ecx, edx;
1660 	unsigned int highest_cstate = 0;
1661 	unsigned int highest_subcstate = 0;
1662 	void *mwait_ptr;
1663 	int i;
1664 
1665 	if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1666 	    boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
1667 		return;
1668 	if (!this_cpu_has(X86_FEATURE_MWAIT))
1669 		return;
1670 	if (!this_cpu_has(X86_FEATURE_CLFLUSH))
1671 		return;
1672 	if (__this_cpu_read(cpu_info.cpuid_level) < CPUID_MWAIT_LEAF)
1673 		return;
1674 
1675 	eax = CPUID_MWAIT_LEAF;
1676 	ecx = 0;
1677 	native_cpuid(&eax, &ebx, &ecx, &edx);
1678 
1679 	/*
1680 	 * eax will be 0 if EDX enumeration is not valid.
1681 	 * Initialized below to cstate, sub_cstate value when EDX is valid.
1682 	 */
1683 	if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) {
1684 		eax = 0;
1685 	} else {
1686 		edx >>= MWAIT_SUBSTATE_SIZE;
1687 		for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
1688 			if (edx & MWAIT_SUBSTATE_MASK) {
1689 				highest_cstate = i;
1690 				highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
1691 			}
1692 		}
1693 		eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
1694 			(highest_subcstate - 1);
1695 	}
1696 
1697 	/*
1698 	 * This should be a memory location in a cache line which is
1699 	 * unlikely to be touched by other processors.  The actual
1700 	 * content is immaterial as it is not actually modified in any way.
1701 	 */
1702 	mwait_ptr = &current_thread_info()->flags;
1703 
1704 	wbinvd();
1705 
1706 	while (1) {
1707 		/*
1708 		 * The CLFLUSH is a workaround for erratum AAI65 for
1709 		 * the Xeon 7400 series.  It's not clear it is actually
1710 		 * needed, but it should be harmless in either case.
1711 		 * The WBINVD is insufficient due to the spurious-wakeup
1712 		 * case where we return around the loop.
1713 		 */
1714 		mb();
1715 		clflush(mwait_ptr);
1716 		mb();
1717 		__monitor(mwait_ptr, 0, 0);
1718 		mb();
1719 		__mwait(eax, 0);
1720 		/*
1721 		 * If NMI wants to wake up CPU0, start CPU0.
1722 		 */
1723 		if (wakeup_cpu0())
1724 			start_cpu0();
1725 	}
1726 }
1727 
1728 void hlt_play_dead(void)
1729 {
1730 	if (__this_cpu_read(cpu_info.x86) >= 4)
1731 		wbinvd();
1732 
1733 	while (1) {
1734 		native_halt();
1735 		/*
1736 		 * If NMI wants to wake up CPU0, start CPU0.
1737 		 */
1738 		if (wakeup_cpu0())
1739 			start_cpu0();
1740 	}
1741 }
1742 
1743 void native_play_dead(void)
1744 {
1745 	play_dead_common();
1746 	tboot_shutdown(TB_SHUTDOWN_WFS);
1747 
1748 	mwait_play_dead();	/* Only returns on failure */
1749 	if (cpuidle_play_dead())
1750 		hlt_play_dead();
1751 }
1752 
1753 #else /* ... !CONFIG_HOTPLUG_CPU */
1754 int native_cpu_disable(void)
1755 {
1756 	return -ENOSYS;
1757 }
1758 
1759 void native_cpu_die(unsigned int cpu)
1760 {
1761 	/* We said "no" in __cpu_disable */
1762 	BUG();
1763 }
1764 
1765 void native_play_dead(void)
1766 {
1767 	BUG();
1768 }
1769 
1770 #endif
1771 
1772 /*
1773  * APERF/MPERF frequency ratio computation.
1774  *
1775  * The scheduler wants to do frequency invariant accounting and needs a <1
1776  * ratio to account for the 'current' frequency, corresponding to
1777  * freq_curr / freq_max.
1778  *
1779  * Since the frequency freq_curr on x86 is controlled by micro-controller and
1780  * our P-state setting is little more than a request/hint, we need to observe
1781  * the effective frequency 'BusyMHz', i.e. the average frequency over a time
1782  * interval after discarding idle time. This is given by:
1783  *
1784  *   BusyMHz = delta_APERF / delta_MPERF * freq_base
1785  *
1786  * where freq_base is the max non-turbo P-state.
1787  *
1788  * The freq_max term has to be set to a somewhat arbitrary value, because we
1789  * can't know which turbo states will be available at a given point in time:
1790  * it all depends on the thermal headroom of the entire package. We set it to
1791  * the turbo level with 4 cores active.
1792  *
1793  * Benchmarks show that's a good compromise between the 1C turbo ratio
1794  * (freq_curr/freq_max would rarely reach 1) and something close to freq_base,
1795  * which would ignore the entire turbo range (a conspicuous part, making
1796  * freq_curr/freq_max always maxed out).
1797  *
1798  * An exception to the heuristic above is the Atom uarch, where we choose the
1799  * highest turbo level for freq_max since Atom's are generally oriented towards
1800  * power efficiency.
1801  *
1802  * Setting freq_max to anything less than the 1C turbo ratio makes the ratio
1803  * freq_curr / freq_max to eventually grow >1, in which case we clip it to 1.
1804  */
1805 
1806 DEFINE_STATIC_KEY_FALSE(arch_scale_freq_key);
1807 
1808 static DEFINE_PER_CPU(u64, arch_prev_aperf);
1809 static DEFINE_PER_CPU(u64, arch_prev_mperf);
1810 static u64 arch_turbo_freq_ratio = SCHED_CAPACITY_SCALE;
1811 static u64 arch_max_freq_ratio = SCHED_CAPACITY_SCALE;
1812 
1813 void arch_set_max_freq_ratio(bool turbo_disabled)
1814 {
1815 	arch_max_freq_ratio = turbo_disabled ? SCHED_CAPACITY_SCALE :
1816 					arch_turbo_freq_ratio;
1817 }
1818 
1819 static bool turbo_disabled(void)
1820 {
1821 	u64 misc_en;
1822 	int err;
1823 
1824 	err = rdmsrl_safe(MSR_IA32_MISC_ENABLE, &misc_en);
1825 	if (err)
1826 		return false;
1827 
1828 	return (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE);
1829 }
1830 
1831 static bool slv_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq)
1832 {
1833 	int err;
1834 
1835 	err = rdmsrl_safe(MSR_ATOM_CORE_RATIOS, base_freq);
1836 	if (err)
1837 		return false;
1838 
1839 	err = rdmsrl_safe(MSR_ATOM_CORE_TURBO_RATIOS, turbo_freq);
1840 	if (err)
1841 		return false;
1842 
1843 	*base_freq = (*base_freq >> 16) & 0x3F;     /* max P state */
1844 	*turbo_freq = *turbo_freq & 0x3F;           /* 1C turbo    */
1845 
1846 	return true;
1847 }
1848 
1849 #include <asm/cpu_device_id.h>
1850 #include <asm/intel-family.h>
1851 
1852 #define ICPU(model) \
1853 	{X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF, 0}
1854 
1855 static const struct x86_cpu_id has_knl_turbo_ratio_limits[] = {
1856 	ICPU(INTEL_FAM6_XEON_PHI_KNL),
1857 	ICPU(INTEL_FAM6_XEON_PHI_KNM),
1858 	{}
1859 };
1860 
1861 static const struct x86_cpu_id has_skx_turbo_ratio_limits[] = {
1862 	ICPU(INTEL_FAM6_SKYLAKE_X),
1863 	{}
1864 };
1865 
1866 static const struct x86_cpu_id has_glm_turbo_ratio_limits[] = {
1867 	ICPU(INTEL_FAM6_ATOM_GOLDMONT),
1868 	ICPU(INTEL_FAM6_ATOM_GOLDMONT_D),
1869 	ICPU(INTEL_FAM6_ATOM_GOLDMONT_PLUS),
1870 	{}
1871 };
1872 
1873 static bool knl_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq,
1874 				int num_delta_fratio)
1875 {
1876 	int fratio, delta_fratio, found;
1877 	int err, i;
1878 	u64 msr;
1879 
1880 	if (!x86_match_cpu(has_knl_turbo_ratio_limits))
1881 		return false;
1882 
1883 	err = rdmsrl_safe(MSR_PLATFORM_INFO, base_freq);
1884 	if (err)
1885 		return false;
1886 
1887 	*base_freq = (*base_freq >> 8) & 0xFF;	    /* max P state */
1888 
1889 	err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT, &msr);
1890 	if (err)
1891 		return false;
1892 
1893 	fratio = (msr >> 8) & 0xFF;
1894 	i = 16;
1895 	found = 0;
1896 	do {
1897 		if (found >= num_delta_fratio) {
1898 			*turbo_freq = fratio;
1899 			return true;
1900 		}
1901 
1902 		delta_fratio = (msr >> (i + 5)) & 0x7;
1903 
1904 		if (delta_fratio) {
1905 			found += 1;
1906 			fratio -= delta_fratio;
1907 		}
1908 
1909 		i += 8;
1910 	} while (i < 64);
1911 
1912 	return true;
1913 }
1914 
1915 static bool skx_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq, int size)
1916 {
1917 	u64 ratios, counts;
1918 	u32 group_size;
1919 	int err, i;
1920 
1921 	err = rdmsrl_safe(MSR_PLATFORM_INFO, base_freq);
1922 	if (err)
1923 		return false;
1924 
1925 	*base_freq = (*base_freq >> 8) & 0xFF;      /* max P state */
1926 
1927 	err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT, &ratios);
1928 	if (err)
1929 		return false;
1930 
1931 	err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT1, &counts);
1932 	if (err)
1933 		return false;
1934 
1935 	for (i = 0; i < 64; i += 8) {
1936 		group_size = (counts >> i) & 0xFF;
1937 		if (group_size >= size) {
1938 			*turbo_freq = (ratios >> i) & 0xFF;
1939 			return true;
1940 		}
1941 	}
1942 
1943 	return false;
1944 }
1945 
1946 static bool core_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq)
1947 {
1948 	int err;
1949 
1950 	err = rdmsrl_safe(MSR_PLATFORM_INFO, base_freq);
1951 	if (err)
1952 		return false;
1953 
1954 	err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT, turbo_freq);
1955 	if (err)
1956 		return false;
1957 
1958 	*base_freq = (*base_freq >> 8) & 0xFF;      /* max P state */
1959 	*turbo_freq = (*turbo_freq >> 24) & 0xFF;   /* 4C turbo    */
1960 
1961 	return true;
1962 }
1963 
1964 static bool intel_set_max_freq_ratio(void)
1965 {
1966 	u64 base_freq, turbo_freq;
1967 
1968 	if (slv_set_max_freq_ratio(&base_freq, &turbo_freq))
1969 		goto out;
1970 
1971 	if (x86_match_cpu(has_glm_turbo_ratio_limits) &&
1972 	    skx_set_max_freq_ratio(&base_freq, &turbo_freq, 1))
1973 		goto out;
1974 
1975 	if (knl_set_max_freq_ratio(&base_freq, &turbo_freq, 1))
1976 		goto out;
1977 
1978 	if (x86_match_cpu(has_skx_turbo_ratio_limits) &&
1979 	    skx_set_max_freq_ratio(&base_freq, &turbo_freq, 4))
1980 		goto out;
1981 
1982 	if (core_set_max_freq_ratio(&base_freq, &turbo_freq))
1983 		goto out;
1984 
1985 	return false;
1986 
1987 out:
1988 	arch_turbo_freq_ratio = div_u64(turbo_freq * SCHED_CAPACITY_SCALE,
1989 					base_freq);
1990 	arch_set_max_freq_ratio(turbo_disabled());
1991 	return true;
1992 }
1993 
1994 static void init_counter_refs(void *arg)
1995 {
1996 	u64 aperf, mperf;
1997 
1998 	rdmsrl(MSR_IA32_APERF, aperf);
1999 	rdmsrl(MSR_IA32_MPERF, mperf);
2000 
2001 	this_cpu_write(arch_prev_aperf, aperf);
2002 	this_cpu_write(arch_prev_mperf, mperf);
2003 }
2004 
2005 static void init_freq_invariance(void)
2006 {
2007 	bool ret = false;
2008 
2009 	if (smp_processor_id() != 0 || !boot_cpu_has(X86_FEATURE_APERFMPERF))
2010 		return;
2011 
2012 	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
2013 		ret = intel_set_max_freq_ratio();
2014 
2015 	if (ret) {
2016 		on_each_cpu(init_counter_refs, NULL, 1);
2017 		static_branch_enable(&arch_scale_freq_key);
2018 	} else {
2019 		pr_debug("Couldn't determine max cpu frequency, necessary for scale-invariant accounting.\n");
2020 	}
2021 }
2022 
2023 DEFINE_PER_CPU(unsigned long, arch_freq_scale) = SCHED_CAPACITY_SCALE;
2024 
2025 void arch_scale_freq_tick(void)
2026 {
2027 	u64 freq_scale;
2028 	u64 aperf, mperf;
2029 	u64 acnt, mcnt;
2030 
2031 	if (!arch_scale_freq_invariant())
2032 		return;
2033 
2034 	rdmsrl(MSR_IA32_APERF, aperf);
2035 	rdmsrl(MSR_IA32_MPERF, mperf);
2036 
2037 	acnt = aperf - this_cpu_read(arch_prev_aperf);
2038 	mcnt = mperf - this_cpu_read(arch_prev_mperf);
2039 	if (!mcnt)
2040 		return;
2041 
2042 	this_cpu_write(arch_prev_aperf, aperf);
2043 	this_cpu_write(arch_prev_mperf, mperf);
2044 
2045 	acnt <<= 2*SCHED_CAPACITY_SHIFT;
2046 	mcnt *= arch_max_freq_ratio;
2047 
2048 	freq_scale = div64_u64(acnt, mcnt);
2049 
2050 	if (freq_scale > SCHED_CAPACITY_SCALE)
2051 		freq_scale = SCHED_CAPACITY_SCALE;
2052 
2053 	this_cpu_write(arch_freq_scale, freq_scale);
2054 }
2055