xref: /linux/arch/x86/kernel/smpboot.c (revision 3b812ecce736432e6b55e77028ea387eb1517d24)
1  /*
2  *	x86 SMP booting functions
3  *
4  *	(c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
5  *	(c) 1998, 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com>
6  *	Copyright 2001 Andi Kleen, SuSE Labs.
7  *
8  *	Much of the core SMP work is based on previous work by Thomas Radke, to
9  *	whom a great many thanks are extended.
10  *
11  *	Thanks to Intel for making available several different Pentium,
12  *	Pentium Pro and Pentium-II/Xeon MP machines.
13  *	Original development of Linux SMP code supported by Caldera.
14  *
15  *	This code is released under the GNU General Public License version 2 or
16  *	later.
17  *
18  *	Fixes
19  *		Felix Koop	:	NR_CPUS used properly
20  *		Jose Renau	:	Handle single CPU case.
21  *		Alan Cox	:	By repeated request 8) - Total BogoMIPS report.
22  *		Greg Wright	:	Fix for kernel stacks panic.
23  *		Erich Boleyn	:	MP v1.4 and additional changes.
24  *	Matthias Sattler	:	Changes for 2.1 kernel map.
25  *	Michel Lespinasse	:	Changes for 2.1 kernel map.
26  *	Michael Chastain	:	Change trampoline.S to gnu as.
27  *		Alan Cox	:	Dumb bug: 'B' step PPro's are fine
28  *		Ingo Molnar	:	Added APIC timers, based on code
29  *					from Jose Renau
30  *		Ingo Molnar	:	various cleanups and rewrites
31  *		Tigran Aivazian	:	fixed "0.00 in /proc/uptime on SMP" bug.
32  *	Maciej W. Rozycki	:	Bits for genuine 82489DX APICs
33  *	Andi Kleen		:	Changed for SMP boot into long mode.
34  *		Martin J. Bligh	: 	Added support for multi-quad systems
35  *		Dave Jones	:	Report invalid combinations of Athlon CPUs.
36  *		Rusty Russell	:	Hacked into shape for new "hotplug" boot process.
37  *      Andi Kleen              :       Converted to new state machine.
38  *	Ashok Raj		: 	CPU hotplug support
39  *	Glauber Costa		:	i386 and x86_64 integration
40  */
41 
42 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
43 
44 #include <linux/init.h>
45 #include <linux/smp.h>
46 #include <linux/module.h>
47 #include <linux/sched.h>
48 #include <linux/percpu.h>
49 #include <linux/bootmem.h>
50 #include <linux/err.h>
51 #include <linux/nmi.h>
52 #include <linux/tboot.h>
53 #include <linux/stackprotector.h>
54 #include <linux/gfp.h>
55 #include <linux/cpuidle.h>
56 
57 #include <asm/acpi.h>
58 #include <asm/desc.h>
59 #include <asm/nmi.h>
60 #include <asm/irq.h>
61 #include <asm/idle.h>
62 #include <asm/realmode.h>
63 #include <asm/cpu.h>
64 #include <asm/numa.h>
65 #include <asm/pgtable.h>
66 #include <asm/tlbflush.h>
67 #include <asm/mtrr.h>
68 #include <asm/mwait.h>
69 #include <asm/apic.h>
70 #include <asm/io_apic.h>
71 #include <asm/fpu/internal.h>
72 #include <asm/setup.h>
73 #include <asm/uv/uv.h>
74 #include <linux/mc146818rtc.h>
75 #include <asm/i8259.h>
76 #include <asm/realmode.h>
77 #include <asm/misc.h>
78 
79 /* Number of siblings per CPU package */
80 int smp_num_siblings = 1;
81 EXPORT_SYMBOL(smp_num_siblings);
82 
83 /* Last level cache ID of each logical CPU */
84 DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id) = BAD_APICID;
85 
86 /* representing HT siblings of each logical CPU */
87 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map);
88 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
89 
90 /* representing HT and core siblings of each logical CPU */
91 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map);
92 EXPORT_PER_CPU_SYMBOL(cpu_core_map);
93 
94 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_llc_shared_map);
95 
96 /* Per CPU bogomips and other parameters */
97 DEFINE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
98 EXPORT_PER_CPU_SYMBOL(cpu_info);
99 
100 /* Logical package management. We might want to allocate that dynamically */
101 static int *physical_to_logical_pkg __read_mostly;
102 static unsigned long *physical_package_map __read_mostly;;
103 static unsigned long *logical_package_map  __read_mostly;
104 static unsigned int max_physical_pkg_id __read_mostly;
105 unsigned int __max_logical_packages __read_mostly;
106 EXPORT_SYMBOL(__max_logical_packages);
107 
108 static inline void smpboot_setup_warm_reset_vector(unsigned long start_eip)
109 {
110 	unsigned long flags;
111 
112 	spin_lock_irqsave(&rtc_lock, flags);
113 	CMOS_WRITE(0xa, 0xf);
114 	spin_unlock_irqrestore(&rtc_lock, flags);
115 	local_flush_tlb();
116 	pr_debug("1.\n");
117 	*((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_HIGH)) =
118 							start_eip >> 4;
119 	pr_debug("2.\n");
120 	*((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) =
121 							start_eip & 0xf;
122 	pr_debug("3.\n");
123 }
124 
125 static inline void smpboot_restore_warm_reset_vector(void)
126 {
127 	unsigned long flags;
128 
129 	/*
130 	 * Install writable page 0 entry to set BIOS data area.
131 	 */
132 	local_flush_tlb();
133 
134 	/*
135 	 * Paranoid:  Set warm reset code and vector here back
136 	 * to default values.
137 	 */
138 	spin_lock_irqsave(&rtc_lock, flags);
139 	CMOS_WRITE(0, 0xf);
140 	spin_unlock_irqrestore(&rtc_lock, flags);
141 
142 	*((volatile u32 *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = 0;
143 }
144 
145 /*
146  * Report back to the Boot Processor during boot time or to the caller processor
147  * during CPU online.
148  */
149 static void smp_callin(void)
150 {
151 	int cpuid, phys_id;
152 
153 	/*
154 	 * If waken up by an INIT in an 82489DX configuration
155 	 * cpu_callout_mask guarantees we don't get here before
156 	 * an INIT_deassert IPI reaches our local APIC, so it is
157 	 * now safe to touch our local APIC.
158 	 */
159 	cpuid = smp_processor_id();
160 
161 	/*
162 	 * (This works even if the APIC is not enabled.)
163 	 */
164 	phys_id = read_apic_id();
165 
166 	/*
167 	 * the boot CPU has finished the init stage and is spinning
168 	 * on callin_map until we finish. We are free to set up this
169 	 * CPU, first the APIC. (this is probably redundant on most
170 	 * boards)
171 	 */
172 	apic_ap_setup();
173 
174 	/*
175 	 * Save our processor parameters. Note: this information
176 	 * is needed for clock calibration.
177 	 */
178 	smp_store_cpu_info(cpuid);
179 
180 	/*
181 	 * Get our bogomips.
182 	 * Update loops_per_jiffy in cpu_data. Previous call to
183 	 * smp_store_cpu_info() stored a value that is close but not as
184 	 * accurate as the value just calculated.
185 	 */
186 	calibrate_delay();
187 	cpu_data(cpuid).loops_per_jiffy = loops_per_jiffy;
188 	pr_debug("Stack at about %p\n", &cpuid);
189 
190 	/*
191 	 * This must be done before setting cpu_online_mask
192 	 * or calling notify_cpu_starting.
193 	 */
194 	set_cpu_sibling_map(raw_smp_processor_id());
195 	wmb();
196 
197 	notify_cpu_starting(cpuid);
198 
199 	/*
200 	 * Allow the master to continue.
201 	 */
202 	cpumask_set_cpu(cpuid, cpu_callin_mask);
203 }
204 
205 static int cpu0_logical_apicid;
206 static int enable_start_cpu0;
207 /*
208  * Activate a secondary processor.
209  */
210 static void notrace start_secondary(void *unused)
211 {
212 	/*
213 	 * Don't put *anything* before cpu_init(), SMP booting is too
214 	 * fragile that we want to limit the things done here to the
215 	 * most necessary things.
216 	 */
217 	cpu_init();
218 	x86_cpuinit.early_percpu_clock_init();
219 	preempt_disable();
220 	smp_callin();
221 
222 	enable_start_cpu0 = 0;
223 
224 #ifdef CONFIG_X86_32
225 	/* switch away from the initial page table */
226 	load_cr3(swapper_pg_dir);
227 	__flush_tlb_all();
228 #endif
229 
230 	/* otherwise gcc will move up smp_processor_id before the cpu_init */
231 	barrier();
232 	/*
233 	 * Check TSC synchronization with the BP:
234 	 */
235 	check_tsc_sync_target();
236 
237 	/*
238 	 * Lock vector_lock and initialize the vectors on this cpu
239 	 * before setting the cpu online. We must set it online with
240 	 * vector_lock held to prevent a concurrent setup/teardown
241 	 * from seeing a half valid vector space.
242 	 */
243 	lock_vector_lock();
244 	setup_vector_irq(smp_processor_id());
245 	set_cpu_online(smp_processor_id(), true);
246 	unlock_vector_lock();
247 	cpu_set_state_online(smp_processor_id());
248 	x86_platform.nmi_init();
249 
250 	/* enable local interrupts */
251 	local_irq_enable();
252 
253 	/* to prevent fake stack check failure in clock setup */
254 	boot_init_stack_canary();
255 
256 	x86_cpuinit.setup_percpu_clockev();
257 
258 	wmb();
259 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
260 }
261 
262 int topology_update_package_map(unsigned int apicid, unsigned int cpu)
263 {
264 	unsigned int new, pkg = apicid >> boot_cpu_data.x86_coreid_bits;
265 
266 	/* Called from early boot ? */
267 	if (!physical_package_map)
268 		return 0;
269 
270 	if (pkg >= max_physical_pkg_id)
271 		return -EINVAL;
272 
273 	/* Set the logical package id */
274 	if (test_and_set_bit(pkg, physical_package_map))
275 		goto found;
276 
277 	if (pkg < __max_logical_packages) {
278 		set_bit(pkg, logical_package_map);
279 		physical_to_logical_pkg[pkg] = pkg;
280 		goto found;
281 	}
282 	new = find_first_zero_bit(logical_package_map, __max_logical_packages);
283 	if (new >= __max_logical_packages) {
284 		physical_to_logical_pkg[pkg] = -1;
285 		pr_warn("APIC(%x) Package %u exceeds logical package map\n",
286 			apicid, pkg);
287 		return -ENOSPC;
288 	}
289 	set_bit(new, logical_package_map);
290 	pr_info("APIC(%x) Converting physical %u to logical package %u\n",
291 		apicid, pkg, new);
292 	physical_to_logical_pkg[pkg] = new;
293 
294 found:
295 	cpu_data(cpu).logical_proc_id = physical_to_logical_pkg[pkg];
296 	return 0;
297 }
298 
299 /**
300  * topology_phys_to_logical_pkg - Map a physical package id to a logical
301  *
302  * Returns logical package id or -1 if not found
303  */
304 int topology_phys_to_logical_pkg(unsigned int phys_pkg)
305 {
306 	if (phys_pkg >= max_physical_pkg_id)
307 		return -1;
308 	return physical_to_logical_pkg[phys_pkg];
309 }
310 EXPORT_SYMBOL(topology_phys_to_logical_pkg);
311 
312 static void __init smp_init_package_map(void)
313 {
314 	unsigned int ncpus, cpu;
315 	size_t size;
316 
317 	/*
318 	 * Today neither Intel nor AMD support heterogenous systems. That
319 	 * might change in the future....
320 	 */
321 	ncpus = boot_cpu_data.x86_max_cores * smp_num_siblings;
322 	__max_logical_packages = DIV_ROUND_UP(nr_cpu_ids, ncpus);
323 
324 	/*
325 	 * Possibly larger than what we need as the number of apic ids per
326 	 * package can be smaller than the actual used apic ids.
327 	 */
328 	max_physical_pkg_id = DIV_ROUND_UP(MAX_LOCAL_APIC, ncpus);
329 	size = max_physical_pkg_id * sizeof(unsigned int);
330 	physical_to_logical_pkg = kmalloc(size, GFP_KERNEL);
331 	memset(physical_to_logical_pkg, 0xff, size);
332 	size = BITS_TO_LONGS(max_physical_pkg_id) * sizeof(unsigned long);
333 	physical_package_map = kzalloc(size, GFP_KERNEL);
334 	size = BITS_TO_LONGS(__max_logical_packages) * sizeof(unsigned long);
335 	logical_package_map = kzalloc(size, GFP_KERNEL);
336 
337 	pr_info("Max logical packages: %u\n", __max_logical_packages);
338 
339 	for_each_present_cpu(cpu) {
340 		unsigned int apicid = apic->cpu_present_to_apicid(cpu);
341 
342 		if (apicid == BAD_APICID || !apic->apic_id_valid(apicid))
343 			continue;
344 		if (!topology_update_package_map(apicid, cpu))
345 			continue;
346 		pr_warn("CPU %u APICId %x disabled\n", cpu, apicid);
347 		per_cpu(x86_bios_cpu_apicid, cpu) = BAD_APICID;
348 		set_cpu_possible(cpu, false);
349 		set_cpu_present(cpu, false);
350 	}
351 }
352 
353 void __init smp_store_boot_cpu_info(void)
354 {
355 	int id = 0; /* CPU 0 */
356 	struct cpuinfo_x86 *c = &cpu_data(id);
357 
358 	*c = boot_cpu_data;
359 	c->cpu_index = id;
360 	smp_init_package_map();
361 }
362 
363 /*
364  * The bootstrap kernel entry code has set these up. Save them for
365  * a given CPU
366  */
367 void smp_store_cpu_info(int id)
368 {
369 	struct cpuinfo_x86 *c = &cpu_data(id);
370 
371 	*c = boot_cpu_data;
372 	c->cpu_index = id;
373 	/*
374 	 * During boot time, CPU0 has this setup already. Save the info when
375 	 * bringing up AP or offlined CPU0.
376 	 */
377 	identify_secondary_cpu(c);
378 }
379 
380 static bool
381 topology_same_node(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
382 {
383 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
384 
385 	return (cpu_to_node(cpu1) == cpu_to_node(cpu2));
386 }
387 
388 static bool
389 topology_sane(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o, const char *name)
390 {
391 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
392 
393 	return !WARN_ONCE(!topology_same_node(c, o),
394 		"sched: CPU #%d's %s-sibling CPU #%d is not on the same node! "
395 		"[node: %d != %d]. Ignoring dependency.\n",
396 		cpu1, name, cpu2, cpu_to_node(cpu1), cpu_to_node(cpu2));
397 }
398 
399 #define link_mask(mfunc, c1, c2)					\
400 do {									\
401 	cpumask_set_cpu((c1), mfunc(c2));				\
402 	cpumask_set_cpu((c2), mfunc(c1));				\
403 } while (0)
404 
405 static bool match_smt(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
406 {
407 	if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
408 		int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
409 
410 		if (c->phys_proc_id == o->phys_proc_id &&
411 		    per_cpu(cpu_llc_id, cpu1) == per_cpu(cpu_llc_id, cpu2) &&
412 		    c->compute_unit_id == o->compute_unit_id)
413 			return topology_sane(c, o, "smt");
414 
415 	} else if (c->phys_proc_id == o->phys_proc_id &&
416 		   c->cpu_core_id == o->cpu_core_id) {
417 		return topology_sane(c, o, "smt");
418 	}
419 
420 	return false;
421 }
422 
423 static bool match_llc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
424 {
425 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
426 
427 	if (per_cpu(cpu_llc_id, cpu1) != BAD_APICID &&
428 	    per_cpu(cpu_llc_id, cpu1) == per_cpu(cpu_llc_id, cpu2))
429 		return topology_sane(c, o, "llc");
430 
431 	return false;
432 }
433 
434 /*
435  * Unlike the other levels, we do not enforce keeping a
436  * multicore group inside a NUMA node.  If this happens, we will
437  * discard the MC level of the topology later.
438  */
439 static bool match_die(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
440 {
441 	if (c->phys_proc_id == o->phys_proc_id)
442 		return true;
443 	return false;
444 }
445 
446 static struct sched_domain_topology_level numa_inside_package_topology[] = {
447 #ifdef CONFIG_SCHED_SMT
448 	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
449 #endif
450 #ifdef CONFIG_SCHED_MC
451 	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
452 #endif
453 	{ NULL, },
454 };
455 /*
456  * set_sched_topology() sets the topology internal to a CPU.  The
457  * NUMA topologies are layered on top of it to build the full
458  * system topology.
459  *
460  * If NUMA nodes are observed to occur within a CPU package, this
461  * function should be called.  It forces the sched domain code to
462  * only use the SMT level for the CPU portion of the topology.
463  * This essentially falls back to relying on NUMA information
464  * from the SRAT table to describe the entire system topology
465  * (except for hyperthreads).
466  */
467 static void primarily_use_numa_for_topology(void)
468 {
469 	set_sched_topology(numa_inside_package_topology);
470 }
471 
472 void set_cpu_sibling_map(int cpu)
473 {
474 	bool has_smt = smp_num_siblings > 1;
475 	bool has_mp = has_smt || boot_cpu_data.x86_max_cores > 1;
476 	struct cpuinfo_x86 *c = &cpu_data(cpu);
477 	struct cpuinfo_x86 *o;
478 	int i;
479 
480 	cpumask_set_cpu(cpu, cpu_sibling_setup_mask);
481 
482 	if (!has_mp) {
483 		cpumask_set_cpu(cpu, topology_sibling_cpumask(cpu));
484 		cpumask_set_cpu(cpu, cpu_llc_shared_mask(cpu));
485 		cpumask_set_cpu(cpu, topology_core_cpumask(cpu));
486 		c->booted_cores = 1;
487 		return;
488 	}
489 
490 	for_each_cpu(i, cpu_sibling_setup_mask) {
491 		o = &cpu_data(i);
492 
493 		if ((i == cpu) || (has_smt && match_smt(c, o)))
494 			link_mask(topology_sibling_cpumask, cpu, i);
495 
496 		if ((i == cpu) || (has_mp && match_llc(c, o)))
497 			link_mask(cpu_llc_shared_mask, cpu, i);
498 
499 	}
500 
501 	/*
502 	 * This needs a separate iteration over the cpus because we rely on all
503 	 * topology_sibling_cpumask links to be set-up.
504 	 */
505 	for_each_cpu(i, cpu_sibling_setup_mask) {
506 		o = &cpu_data(i);
507 
508 		if ((i == cpu) || (has_mp && match_die(c, o))) {
509 			link_mask(topology_core_cpumask, cpu, i);
510 
511 			/*
512 			 *  Does this new cpu bringup a new core?
513 			 */
514 			if (cpumask_weight(
515 			    topology_sibling_cpumask(cpu)) == 1) {
516 				/*
517 				 * for each core in package, increment
518 				 * the booted_cores for this new cpu
519 				 */
520 				if (cpumask_first(
521 				    topology_sibling_cpumask(i)) == i)
522 					c->booted_cores++;
523 				/*
524 				 * increment the core count for all
525 				 * the other cpus in this package
526 				 */
527 				if (i != cpu)
528 					cpu_data(i).booted_cores++;
529 			} else if (i != cpu && !c->booted_cores)
530 				c->booted_cores = cpu_data(i).booted_cores;
531 		}
532 		if (match_die(c, o) && !topology_same_node(c, o))
533 			primarily_use_numa_for_topology();
534 	}
535 }
536 
537 /* maps the cpu to the sched domain representing multi-core */
538 const struct cpumask *cpu_coregroup_mask(int cpu)
539 {
540 	return cpu_llc_shared_mask(cpu);
541 }
542 
543 static void impress_friends(void)
544 {
545 	int cpu;
546 	unsigned long bogosum = 0;
547 	/*
548 	 * Allow the user to impress friends.
549 	 */
550 	pr_debug("Before bogomips\n");
551 	for_each_possible_cpu(cpu)
552 		if (cpumask_test_cpu(cpu, cpu_callout_mask))
553 			bogosum += cpu_data(cpu).loops_per_jiffy;
554 	pr_info("Total of %d processors activated (%lu.%02lu BogoMIPS)\n",
555 		num_online_cpus(),
556 		bogosum/(500000/HZ),
557 		(bogosum/(5000/HZ))%100);
558 
559 	pr_debug("Before bogocount - setting activated=1\n");
560 }
561 
562 void __inquire_remote_apic(int apicid)
563 {
564 	unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
565 	const char * const names[] = { "ID", "VERSION", "SPIV" };
566 	int timeout;
567 	u32 status;
568 
569 	pr_info("Inquiring remote APIC 0x%x...\n", apicid);
570 
571 	for (i = 0; i < ARRAY_SIZE(regs); i++) {
572 		pr_info("... APIC 0x%x %s: ", apicid, names[i]);
573 
574 		/*
575 		 * Wait for idle.
576 		 */
577 		status = safe_apic_wait_icr_idle();
578 		if (status)
579 			pr_cont("a previous APIC delivery may have failed\n");
580 
581 		apic_icr_write(APIC_DM_REMRD | regs[i], apicid);
582 
583 		timeout = 0;
584 		do {
585 			udelay(100);
586 			status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
587 		} while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
588 
589 		switch (status) {
590 		case APIC_ICR_RR_VALID:
591 			status = apic_read(APIC_RRR);
592 			pr_cont("%08x\n", status);
593 			break;
594 		default:
595 			pr_cont("failed\n");
596 		}
597 	}
598 }
599 
600 /*
601  * The Multiprocessor Specification 1.4 (1997) example code suggests
602  * that there should be a 10ms delay between the BSP asserting INIT
603  * and de-asserting INIT, when starting a remote processor.
604  * But that slows boot and resume on modern processors, which include
605  * many cores and don't require that delay.
606  *
607  * Cmdline "init_cpu_udelay=" is available to over-ride this delay.
608  * Modern processor families are quirked to remove the delay entirely.
609  */
610 #define UDELAY_10MS_DEFAULT 10000
611 
612 static unsigned int init_udelay = UINT_MAX;
613 
614 static int __init cpu_init_udelay(char *str)
615 {
616 	get_option(&str, &init_udelay);
617 
618 	return 0;
619 }
620 early_param("cpu_init_udelay", cpu_init_udelay);
621 
622 static void __init smp_quirk_init_udelay(void)
623 {
624 	/* if cmdline changed it from default, leave it alone */
625 	if (init_udelay != UINT_MAX)
626 		return;
627 
628 	/* if modern processor, use no delay */
629 	if (((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && (boot_cpu_data.x86 == 6)) ||
630 	    ((boot_cpu_data.x86_vendor == X86_VENDOR_AMD) && (boot_cpu_data.x86 >= 0xF))) {
631 		init_udelay = 0;
632 		return;
633 	}
634 	/* else, use legacy delay */
635 	init_udelay = UDELAY_10MS_DEFAULT;
636 }
637 
638 /*
639  * Poke the other CPU in the eye via NMI to wake it up. Remember that the normal
640  * INIT, INIT, STARTUP sequence will reset the chip hard for us, and this
641  * won't ... remember to clear down the APIC, etc later.
642  */
643 int
644 wakeup_secondary_cpu_via_nmi(int apicid, unsigned long start_eip)
645 {
646 	unsigned long send_status, accept_status = 0;
647 	int maxlvt;
648 
649 	/* Target chip */
650 	/* Boot on the stack */
651 	/* Kick the second */
652 	apic_icr_write(APIC_DM_NMI | apic->dest_logical, apicid);
653 
654 	pr_debug("Waiting for send to finish...\n");
655 	send_status = safe_apic_wait_icr_idle();
656 
657 	/*
658 	 * Give the other CPU some time to accept the IPI.
659 	 */
660 	udelay(200);
661 	if (APIC_INTEGRATED(apic_version[boot_cpu_physical_apicid])) {
662 		maxlvt = lapic_get_maxlvt();
663 		if (maxlvt > 3)			/* Due to the Pentium erratum 3AP.  */
664 			apic_write(APIC_ESR, 0);
665 		accept_status = (apic_read(APIC_ESR) & 0xEF);
666 	}
667 	pr_debug("NMI sent\n");
668 
669 	if (send_status)
670 		pr_err("APIC never delivered???\n");
671 	if (accept_status)
672 		pr_err("APIC delivery error (%lx)\n", accept_status);
673 
674 	return (send_status | accept_status);
675 }
676 
677 static int
678 wakeup_secondary_cpu_via_init(int phys_apicid, unsigned long start_eip)
679 {
680 	unsigned long send_status = 0, accept_status = 0;
681 	int maxlvt, num_starts, j;
682 
683 	maxlvt = lapic_get_maxlvt();
684 
685 	/*
686 	 * Be paranoid about clearing APIC errors.
687 	 */
688 	if (APIC_INTEGRATED(apic_version[phys_apicid])) {
689 		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
690 			apic_write(APIC_ESR, 0);
691 		apic_read(APIC_ESR);
692 	}
693 
694 	pr_debug("Asserting INIT\n");
695 
696 	/*
697 	 * Turn INIT on target chip
698 	 */
699 	/*
700 	 * Send IPI
701 	 */
702 	apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT,
703 		       phys_apicid);
704 
705 	pr_debug("Waiting for send to finish...\n");
706 	send_status = safe_apic_wait_icr_idle();
707 
708 	udelay(init_udelay);
709 
710 	pr_debug("Deasserting INIT\n");
711 
712 	/* Target chip */
713 	/* Send IPI */
714 	apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid);
715 
716 	pr_debug("Waiting for send to finish...\n");
717 	send_status = safe_apic_wait_icr_idle();
718 
719 	mb();
720 
721 	/*
722 	 * Should we send STARTUP IPIs ?
723 	 *
724 	 * Determine this based on the APIC version.
725 	 * If we don't have an integrated APIC, don't send the STARTUP IPIs.
726 	 */
727 	if (APIC_INTEGRATED(apic_version[phys_apicid]))
728 		num_starts = 2;
729 	else
730 		num_starts = 0;
731 
732 	/*
733 	 * Run STARTUP IPI loop.
734 	 */
735 	pr_debug("#startup loops: %d\n", num_starts);
736 
737 	for (j = 1; j <= num_starts; j++) {
738 		pr_debug("Sending STARTUP #%d\n", j);
739 		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
740 			apic_write(APIC_ESR, 0);
741 		apic_read(APIC_ESR);
742 		pr_debug("After apic_write\n");
743 
744 		/*
745 		 * STARTUP IPI
746 		 */
747 
748 		/* Target chip */
749 		/* Boot on the stack */
750 		/* Kick the second */
751 		apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12),
752 			       phys_apicid);
753 
754 		/*
755 		 * Give the other CPU some time to accept the IPI.
756 		 */
757 		if (init_udelay == 0)
758 			udelay(10);
759 		else
760 			udelay(300);
761 
762 		pr_debug("Startup point 1\n");
763 
764 		pr_debug("Waiting for send to finish...\n");
765 		send_status = safe_apic_wait_icr_idle();
766 
767 		/*
768 		 * Give the other CPU some time to accept the IPI.
769 		 */
770 		if (init_udelay == 0)
771 			udelay(10);
772 		else
773 			udelay(200);
774 
775 		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
776 			apic_write(APIC_ESR, 0);
777 		accept_status = (apic_read(APIC_ESR) & 0xEF);
778 		if (send_status || accept_status)
779 			break;
780 	}
781 	pr_debug("After Startup\n");
782 
783 	if (send_status)
784 		pr_err("APIC never delivered???\n");
785 	if (accept_status)
786 		pr_err("APIC delivery error (%lx)\n", accept_status);
787 
788 	return (send_status | accept_status);
789 }
790 
791 void smp_announce(void)
792 {
793 	int num_nodes = num_online_nodes();
794 
795 	printk(KERN_INFO "x86: Booted up %d node%s, %d CPUs\n",
796 	       num_nodes, (num_nodes > 1 ? "s" : ""), num_online_cpus());
797 }
798 
799 /* reduce the number of lines printed when booting a large cpu count system */
800 static void announce_cpu(int cpu, int apicid)
801 {
802 	static int current_node = -1;
803 	int node = early_cpu_to_node(cpu);
804 	static int width, node_width;
805 
806 	if (!width)
807 		width = num_digits(num_possible_cpus()) + 1; /* + '#' sign */
808 
809 	if (!node_width)
810 		node_width = num_digits(num_possible_nodes()) + 1; /* + '#' */
811 
812 	if (cpu == 1)
813 		printk(KERN_INFO "x86: Booting SMP configuration:\n");
814 
815 	if (system_state == SYSTEM_BOOTING) {
816 		if (node != current_node) {
817 			if (current_node > (-1))
818 				pr_cont("\n");
819 			current_node = node;
820 
821 			printk(KERN_INFO ".... node %*s#%d, CPUs:  ",
822 			       node_width - num_digits(node), " ", node);
823 		}
824 
825 		/* Add padding for the BSP */
826 		if (cpu == 1)
827 			pr_cont("%*s", width + 1, " ");
828 
829 		pr_cont("%*s#%d", width - num_digits(cpu), " ", cpu);
830 
831 	} else
832 		pr_info("Booting Node %d Processor %d APIC 0x%x\n",
833 			node, cpu, apicid);
834 }
835 
836 static int wakeup_cpu0_nmi(unsigned int cmd, struct pt_regs *regs)
837 {
838 	int cpu;
839 
840 	cpu = smp_processor_id();
841 	if (cpu == 0 && !cpu_online(cpu) && enable_start_cpu0)
842 		return NMI_HANDLED;
843 
844 	return NMI_DONE;
845 }
846 
847 /*
848  * Wake up AP by INIT, INIT, STARTUP sequence.
849  *
850  * Instead of waiting for STARTUP after INITs, BSP will execute the BIOS
851  * boot-strap code which is not a desired behavior for waking up BSP. To
852  * void the boot-strap code, wake up CPU0 by NMI instead.
853  *
854  * This works to wake up soft offlined CPU0 only. If CPU0 is hard offlined
855  * (i.e. physically hot removed and then hot added), NMI won't wake it up.
856  * We'll change this code in the future to wake up hard offlined CPU0 if
857  * real platform and request are available.
858  */
859 static int
860 wakeup_cpu_via_init_nmi(int cpu, unsigned long start_ip, int apicid,
861 	       int *cpu0_nmi_registered)
862 {
863 	int id;
864 	int boot_error;
865 
866 	preempt_disable();
867 
868 	/*
869 	 * Wake up AP by INIT, INIT, STARTUP sequence.
870 	 */
871 	if (cpu) {
872 		boot_error = wakeup_secondary_cpu_via_init(apicid, start_ip);
873 		goto out;
874 	}
875 
876 	/*
877 	 * Wake up BSP by nmi.
878 	 *
879 	 * Register a NMI handler to help wake up CPU0.
880 	 */
881 	boot_error = register_nmi_handler(NMI_LOCAL,
882 					  wakeup_cpu0_nmi, 0, "wake_cpu0");
883 
884 	if (!boot_error) {
885 		enable_start_cpu0 = 1;
886 		*cpu0_nmi_registered = 1;
887 		if (apic->dest_logical == APIC_DEST_LOGICAL)
888 			id = cpu0_logical_apicid;
889 		else
890 			id = apicid;
891 		boot_error = wakeup_secondary_cpu_via_nmi(id, start_ip);
892 	}
893 
894 out:
895 	preempt_enable();
896 
897 	return boot_error;
898 }
899 
900 void common_cpu_up(unsigned int cpu, struct task_struct *idle)
901 {
902 	/* Just in case we booted with a single CPU. */
903 	alternatives_enable_smp();
904 
905 	per_cpu(current_task, cpu) = idle;
906 
907 #ifdef CONFIG_X86_32
908 	/* Stack for startup_32 can be just as for start_secondary onwards */
909 	irq_ctx_init(cpu);
910 	per_cpu(cpu_current_top_of_stack, cpu) =
911 		(unsigned long)task_stack_page(idle) + THREAD_SIZE;
912 #else
913 	clear_tsk_thread_flag(idle, TIF_FORK);
914 	initial_gs = per_cpu_offset(cpu);
915 #endif
916 }
917 
918 /*
919  * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
920  * (ie clustered apic addressing mode), this is a LOGICAL apic ID.
921  * Returns zero if CPU booted OK, else error code from
922  * ->wakeup_secondary_cpu.
923  */
924 static int do_boot_cpu(int apicid, int cpu, struct task_struct *idle)
925 {
926 	volatile u32 *trampoline_status =
927 		(volatile u32 *) __va(real_mode_header->trampoline_status);
928 	/* start_ip had better be page-aligned! */
929 	unsigned long start_ip = real_mode_header->trampoline_start;
930 
931 	unsigned long boot_error = 0;
932 	int cpu0_nmi_registered = 0;
933 	unsigned long timeout;
934 
935 	idle->thread.sp = (unsigned long) (((struct pt_regs *)
936 			  (THREAD_SIZE +  task_stack_page(idle))) - 1);
937 
938 	early_gdt_descr.address = (unsigned long)get_cpu_gdt_table(cpu);
939 	initial_code = (unsigned long)start_secondary;
940 	stack_start  = idle->thread.sp;
941 
942 	/*
943 	 * Enable the espfix hack for this CPU
944 	*/
945 #ifdef CONFIG_X86_ESPFIX64
946 	init_espfix_ap(cpu);
947 #endif
948 
949 	/* So we see what's up */
950 	announce_cpu(cpu, apicid);
951 
952 	/*
953 	 * This grunge runs the startup process for
954 	 * the targeted processor.
955 	 */
956 
957 	if (get_uv_system_type() != UV_NON_UNIQUE_APIC) {
958 
959 		pr_debug("Setting warm reset code and vector.\n");
960 
961 		smpboot_setup_warm_reset_vector(start_ip);
962 		/*
963 		 * Be paranoid about clearing APIC errors.
964 		*/
965 		if (APIC_INTEGRATED(apic_version[boot_cpu_physical_apicid])) {
966 			apic_write(APIC_ESR, 0);
967 			apic_read(APIC_ESR);
968 		}
969 	}
970 
971 	/*
972 	 * AP might wait on cpu_callout_mask in cpu_init() with
973 	 * cpu_initialized_mask set if previous attempt to online
974 	 * it timed-out. Clear cpu_initialized_mask so that after
975 	 * INIT/SIPI it could start with a clean state.
976 	 */
977 	cpumask_clear_cpu(cpu, cpu_initialized_mask);
978 	smp_mb();
979 
980 	/*
981 	 * Wake up a CPU in difference cases:
982 	 * - Use the method in the APIC driver if it's defined
983 	 * Otherwise,
984 	 * - Use an INIT boot APIC message for APs or NMI for BSP.
985 	 */
986 	if (apic->wakeup_secondary_cpu)
987 		boot_error = apic->wakeup_secondary_cpu(apicid, start_ip);
988 	else
989 		boot_error = wakeup_cpu_via_init_nmi(cpu, start_ip, apicid,
990 						     &cpu0_nmi_registered);
991 
992 	if (!boot_error) {
993 		/*
994 		 * Wait 10s total for first sign of life from AP
995 		 */
996 		boot_error = -1;
997 		timeout = jiffies + 10*HZ;
998 		while (time_before(jiffies, timeout)) {
999 			if (cpumask_test_cpu(cpu, cpu_initialized_mask)) {
1000 				/*
1001 				 * Tell AP to proceed with initialization
1002 				 */
1003 				cpumask_set_cpu(cpu, cpu_callout_mask);
1004 				boot_error = 0;
1005 				break;
1006 			}
1007 			schedule();
1008 		}
1009 	}
1010 
1011 	if (!boot_error) {
1012 		/*
1013 		 * Wait till AP completes initial initialization
1014 		 */
1015 		while (!cpumask_test_cpu(cpu, cpu_callin_mask)) {
1016 			/*
1017 			 * Allow other tasks to run while we wait for the
1018 			 * AP to come online. This also gives a chance
1019 			 * for the MTRR work(triggered by the AP coming online)
1020 			 * to be completed in the stop machine context.
1021 			 */
1022 			schedule();
1023 		}
1024 	}
1025 
1026 	/* mark "stuck" area as not stuck */
1027 	*trampoline_status = 0;
1028 
1029 	if (get_uv_system_type() != UV_NON_UNIQUE_APIC) {
1030 		/*
1031 		 * Cleanup possible dangling ends...
1032 		 */
1033 		smpboot_restore_warm_reset_vector();
1034 	}
1035 	/*
1036 	 * Clean up the nmi handler. Do this after the callin and callout sync
1037 	 * to avoid impact of possible long unregister time.
1038 	 */
1039 	if (cpu0_nmi_registered)
1040 		unregister_nmi_handler(NMI_LOCAL, "wake_cpu0");
1041 
1042 	return boot_error;
1043 }
1044 
1045 int native_cpu_up(unsigned int cpu, struct task_struct *tidle)
1046 {
1047 	int apicid = apic->cpu_present_to_apicid(cpu);
1048 	unsigned long flags;
1049 	int err;
1050 
1051 	WARN_ON(irqs_disabled());
1052 
1053 	pr_debug("++++++++++++++++++++=_---CPU UP  %u\n", cpu);
1054 
1055 	if (apicid == BAD_APICID ||
1056 	    !physid_isset(apicid, phys_cpu_present_map) ||
1057 	    !apic->apic_id_valid(apicid)) {
1058 		pr_err("%s: bad cpu %d\n", __func__, cpu);
1059 		return -EINVAL;
1060 	}
1061 
1062 	/*
1063 	 * Already booted CPU?
1064 	 */
1065 	if (cpumask_test_cpu(cpu, cpu_callin_mask)) {
1066 		pr_debug("do_boot_cpu %d Already started\n", cpu);
1067 		return -ENOSYS;
1068 	}
1069 
1070 	/*
1071 	 * Save current MTRR state in case it was changed since early boot
1072 	 * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync:
1073 	 */
1074 	mtrr_save_state();
1075 
1076 	/* x86 CPUs take themselves offline, so delayed offline is OK. */
1077 	err = cpu_check_up_prepare(cpu);
1078 	if (err && err != -EBUSY)
1079 		return err;
1080 
1081 	/* the FPU context is blank, nobody can own it */
1082 	__cpu_disable_lazy_restore(cpu);
1083 
1084 	common_cpu_up(cpu, tidle);
1085 
1086 	/*
1087 	 * We have to walk the irq descriptors to setup the vector
1088 	 * space for the cpu which comes online.  Prevent irq
1089 	 * alloc/free across the bringup.
1090 	 */
1091 	irq_lock_sparse();
1092 
1093 	err = do_boot_cpu(apicid, cpu, tidle);
1094 
1095 	if (err) {
1096 		irq_unlock_sparse();
1097 		pr_err("do_boot_cpu failed(%d) to wakeup CPU#%u\n", err, cpu);
1098 		return -EIO;
1099 	}
1100 
1101 	/*
1102 	 * Check TSC synchronization with the AP (keep irqs disabled
1103 	 * while doing so):
1104 	 */
1105 	local_irq_save(flags);
1106 	check_tsc_sync_source(cpu);
1107 	local_irq_restore(flags);
1108 
1109 	while (!cpu_online(cpu)) {
1110 		cpu_relax();
1111 		touch_nmi_watchdog();
1112 	}
1113 
1114 	irq_unlock_sparse();
1115 
1116 	return 0;
1117 }
1118 
1119 /**
1120  * arch_disable_smp_support() - disables SMP support for x86 at runtime
1121  */
1122 void arch_disable_smp_support(void)
1123 {
1124 	disable_ioapic_support();
1125 }
1126 
1127 /*
1128  * Fall back to non SMP mode after errors.
1129  *
1130  * RED-PEN audit/test this more. I bet there is more state messed up here.
1131  */
1132 static __init void disable_smp(void)
1133 {
1134 	pr_info("SMP disabled\n");
1135 
1136 	disable_ioapic_support();
1137 
1138 	init_cpu_present(cpumask_of(0));
1139 	init_cpu_possible(cpumask_of(0));
1140 
1141 	if (smp_found_config)
1142 		physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map);
1143 	else
1144 		physid_set_mask_of_physid(0, &phys_cpu_present_map);
1145 	cpumask_set_cpu(0, topology_sibling_cpumask(0));
1146 	cpumask_set_cpu(0, topology_core_cpumask(0));
1147 }
1148 
1149 enum {
1150 	SMP_OK,
1151 	SMP_NO_CONFIG,
1152 	SMP_NO_APIC,
1153 	SMP_FORCE_UP,
1154 };
1155 
1156 /*
1157  * Various sanity checks.
1158  */
1159 static int __init smp_sanity_check(unsigned max_cpus)
1160 {
1161 	preempt_disable();
1162 
1163 #if !defined(CONFIG_X86_BIGSMP) && defined(CONFIG_X86_32)
1164 	if (def_to_bigsmp && nr_cpu_ids > 8) {
1165 		unsigned int cpu;
1166 		unsigned nr;
1167 
1168 		pr_warn("More than 8 CPUs detected - skipping them\n"
1169 			"Use CONFIG_X86_BIGSMP\n");
1170 
1171 		nr = 0;
1172 		for_each_present_cpu(cpu) {
1173 			if (nr >= 8)
1174 				set_cpu_present(cpu, false);
1175 			nr++;
1176 		}
1177 
1178 		nr = 0;
1179 		for_each_possible_cpu(cpu) {
1180 			if (nr >= 8)
1181 				set_cpu_possible(cpu, false);
1182 			nr++;
1183 		}
1184 
1185 		nr_cpu_ids = 8;
1186 	}
1187 #endif
1188 
1189 	if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) {
1190 		pr_warn("weird, boot CPU (#%d) not listed by the BIOS\n",
1191 			hard_smp_processor_id());
1192 
1193 		physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1194 	}
1195 
1196 	/*
1197 	 * If we couldn't find an SMP configuration at boot time,
1198 	 * get out of here now!
1199 	 */
1200 	if (!smp_found_config && !acpi_lapic) {
1201 		preempt_enable();
1202 		pr_notice("SMP motherboard not detected\n");
1203 		return SMP_NO_CONFIG;
1204 	}
1205 
1206 	/*
1207 	 * Should not be necessary because the MP table should list the boot
1208 	 * CPU too, but we do it for the sake of robustness anyway.
1209 	 */
1210 	if (!apic->check_phys_apicid_present(boot_cpu_physical_apicid)) {
1211 		pr_notice("weird, boot CPU (#%d) not listed by the BIOS\n",
1212 			  boot_cpu_physical_apicid);
1213 		physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1214 	}
1215 	preempt_enable();
1216 
1217 	/*
1218 	 * If we couldn't find a local APIC, then get out of here now!
1219 	 */
1220 	if (APIC_INTEGRATED(apic_version[boot_cpu_physical_apicid]) &&
1221 	    !cpu_has_apic) {
1222 		if (!disable_apic) {
1223 			pr_err("BIOS bug, local APIC #%d not detected!...\n",
1224 				boot_cpu_physical_apicid);
1225 			pr_err("... forcing use of dummy APIC emulation (tell your hw vendor)\n");
1226 		}
1227 		return SMP_NO_APIC;
1228 	}
1229 
1230 	/*
1231 	 * If SMP should be disabled, then really disable it!
1232 	 */
1233 	if (!max_cpus) {
1234 		pr_info("SMP mode deactivated\n");
1235 		return SMP_FORCE_UP;
1236 	}
1237 
1238 	return SMP_OK;
1239 }
1240 
1241 static void __init smp_cpu_index_default(void)
1242 {
1243 	int i;
1244 	struct cpuinfo_x86 *c;
1245 
1246 	for_each_possible_cpu(i) {
1247 		c = &cpu_data(i);
1248 		/* mark all to hotplug */
1249 		c->cpu_index = nr_cpu_ids;
1250 	}
1251 }
1252 
1253 /*
1254  * Prepare for SMP bootup.  The MP table or ACPI has been read
1255  * earlier.  Just do some sanity checking here and enable APIC mode.
1256  */
1257 void __init native_smp_prepare_cpus(unsigned int max_cpus)
1258 {
1259 	unsigned int i;
1260 
1261 	smp_cpu_index_default();
1262 
1263 	/*
1264 	 * Setup boot CPU information
1265 	 */
1266 	smp_store_boot_cpu_info(); /* Final full version of the data */
1267 	cpumask_copy(cpu_callin_mask, cpumask_of(0));
1268 	mb();
1269 
1270 	current_thread_info()->cpu = 0;  /* needed? */
1271 	for_each_possible_cpu(i) {
1272 		zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL);
1273 		zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL);
1274 		zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL);
1275 	}
1276 	set_cpu_sibling_map(0);
1277 
1278 	switch (smp_sanity_check(max_cpus)) {
1279 	case SMP_NO_CONFIG:
1280 		disable_smp();
1281 		if (APIC_init_uniprocessor())
1282 			pr_notice("Local APIC not detected. Using dummy APIC emulation.\n");
1283 		return;
1284 	case SMP_NO_APIC:
1285 		disable_smp();
1286 		return;
1287 	case SMP_FORCE_UP:
1288 		disable_smp();
1289 		apic_bsp_setup(false);
1290 		return;
1291 	case SMP_OK:
1292 		break;
1293 	}
1294 
1295 	default_setup_apic_routing();
1296 
1297 	if (read_apic_id() != boot_cpu_physical_apicid) {
1298 		panic("Boot APIC ID in local APIC unexpected (%d vs %d)",
1299 		     read_apic_id(), boot_cpu_physical_apicid);
1300 		/* Or can we switch back to PIC here? */
1301 	}
1302 
1303 	cpu0_logical_apicid = apic_bsp_setup(false);
1304 
1305 	pr_info("CPU%d: ", 0);
1306 	print_cpu_info(&cpu_data(0));
1307 
1308 	if (is_uv_system())
1309 		uv_system_init();
1310 
1311 	set_mtrr_aps_delayed_init();
1312 
1313 	smp_quirk_init_udelay();
1314 }
1315 
1316 void arch_enable_nonboot_cpus_begin(void)
1317 {
1318 	set_mtrr_aps_delayed_init();
1319 }
1320 
1321 void arch_enable_nonboot_cpus_end(void)
1322 {
1323 	mtrr_aps_init();
1324 }
1325 
1326 /*
1327  * Early setup to make printk work.
1328  */
1329 void __init native_smp_prepare_boot_cpu(void)
1330 {
1331 	int me = smp_processor_id();
1332 	switch_to_new_gdt(me);
1333 	/* already set me in cpu_online_mask in boot_cpu_init() */
1334 	cpumask_set_cpu(me, cpu_callout_mask);
1335 	cpu_set_state_online(me);
1336 }
1337 
1338 void __init native_smp_cpus_done(unsigned int max_cpus)
1339 {
1340 	pr_debug("Boot done\n");
1341 
1342 	nmi_selftest();
1343 	impress_friends();
1344 	setup_ioapic_dest();
1345 	mtrr_aps_init();
1346 }
1347 
1348 static int __initdata setup_possible_cpus = -1;
1349 static int __init _setup_possible_cpus(char *str)
1350 {
1351 	get_option(&str, &setup_possible_cpus);
1352 	return 0;
1353 }
1354 early_param("possible_cpus", _setup_possible_cpus);
1355 
1356 
1357 /*
1358  * cpu_possible_mask should be static, it cannot change as cpu's
1359  * are onlined, or offlined. The reason is per-cpu data-structures
1360  * are allocated by some modules at init time, and dont expect to
1361  * do this dynamically on cpu arrival/departure.
1362  * cpu_present_mask on the other hand can change dynamically.
1363  * In case when cpu_hotplug is not compiled, then we resort to current
1364  * behaviour, which is cpu_possible == cpu_present.
1365  * - Ashok Raj
1366  *
1367  * Three ways to find out the number of additional hotplug CPUs:
1368  * - If the BIOS specified disabled CPUs in ACPI/mptables use that.
1369  * - The user can overwrite it with possible_cpus=NUM
1370  * - Otherwise don't reserve additional CPUs.
1371  * We do this because additional CPUs waste a lot of memory.
1372  * -AK
1373  */
1374 __init void prefill_possible_map(void)
1375 {
1376 	int i, possible;
1377 
1378 	/* no processor from mptable or madt */
1379 	if (!num_processors)
1380 		num_processors = 1;
1381 
1382 	i = setup_max_cpus ?: 1;
1383 	if (setup_possible_cpus == -1) {
1384 		possible = num_processors;
1385 #ifdef CONFIG_HOTPLUG_CPU
1386 		if (setup_max_cpus)
1387 			possible += disabled_cpus;
1388 #else
1389 		if (possible > i)
1390 			possible = i;
1391 #endif
1392 	} else
1393 		possible = setup_possible_cpus;
1394 
1395 	total_cpus = max_t(int, possible, num_processors + disabled_cpus);
1396 
1397 	/* nr_cpu_ids could be reduced via nr_cpus= */
1398 	if (possible > nr_cpu_ids) {
1399 		pr_warn("%d Processors exceeds NR_CPUS limit of %d\n",
1400 			possible, nr_cpu_ids);
1401 		possible = nr_cpu_ids;
1402 	}
1403 
1404 #ifdef CONFIG_HOTPLUG_CPU
1405 	if (!setup_max_cpus)
1406 #endif
1407 	if (possible > i) {
1408 		pr_warn("%d Processors exceeds max_cpus limit of %u\n",
1409 			possible, setup_max_cpus);
1410 		possible = i;
1411 	}
1412 
1413 	pr_info("Allowing %d CPUs, %d hotplug CPUs\n",
1414 		possible, max_t(int, possible - num_processors, 0));
1415 
1416 	for (i = 0; i < possible; i++)
1417 		set_cpu_possible(i, true);
1418 	for (; i < NR_CPUS; i++)
1419 		set_cpu_possible(i, false);
1420 
1421 	nr_cpu_ids = possible;
1422 }
1423 
1424 #ifdef CONFIG_HOTPLUG_CPU
1425 
1426 static void remove_siblinginfo(int cpu)
1427 {
1428 	int sibling;
1429 	struct cpuinfo_x86 *c = &cpu_data(cpu);
1430 
1431 	for_each_cpu(sibling, topology_core_cpumask(cpu)) {
1432 		cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
1433 		/*/
1434 		 * last thread sibling in this cpu core going down
1435 		 */
1436 		if (cpumask_weight(topology_sibling_cpumask(cpu)) == 1)
1437 			cpu_data(sibling).booted_cores--;
1438 	}
1439 
1440 	for_each_cpu(sibling, topology_sibling_cpumask(cpu))
1441 		cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
1442 	for_each_cpu(sibling, cpu_llc_shared_mask(cpu))
1443 		cpumask_clear_cpu(cpu, cpu_llc_shared_mask(sibling));
1444 	cpumask_clear(cpu_llc_shared_mask(cpu));
1445 	cpumask_clear(topology_sibling_cpumask(cpu));
1446 	cpumask_clear(topology_core_cpumask(cpu));
1447 	c->phys_proc_id = 0;
1448 	c->cpu_core_id = 0;
1449 	cpumask_clear_cpu(cpu, cpu_sibling_setup_mask);
1450 }
1451 
1452 static void remove_cpu_from_maps(int cpu)
1453 {
1454 	set_cpu_online(cpu, false);
1455 	cpumask_clear_cpu(cpu, cpu_callout_mask);
1456 	cpumask_clear_cpu(cpu, cpu_callin_mask);
1457 	/* was set by cpu_init() */
1458 	cpumask_clear_cpu(cpu, cpu_initialized_mask);
1459 	numa_remove_cpu(cpu);
1460 }
1461 
1462 void cpu_disable_common(void)
1463 {
1464 	int cpu = smp_processor_id();
1465 
1466 	remove_siblinginfo(cpu);
1467 
1468 	/* It's now safe to remove this processor from the online map */
1469 	lock_vector_lock();
1470 	remove_cpu_from_maps(cpu);
1471 	unlock_vector_lock();
1472 	fixup_irqs();
1473 }
1474 
1475 int native_cpu_disable(void)
1476 {
1477 	int ret;
1478 
1479 	ret = check_irq_vectors_for_cpu_disable();
1480 	if (ret)
1481 		return ret;
1482 
1483 	clear_local_APIC();
1484 	cpu_disable_common();
1485 
1486 	return 0;
1487 }
1488 
1489 int common_cpu_die(unsigned int cpu)
1490 {
1491 	int ret = 0;
1492 
1493 	/* We don't do anything here: idle task is faking death itself. */
1494 
1495 	/* They ack this in play_dead() by setting CPU_DEAD */
1496 	if (cpu_wait_death(cpu, 5)) {
1497 		if (system_state == SYSTEM_RUNNING)
1498 			pr_info("CPU %u is now offline\n", cpu);
1499 	} else {
1500 		pr_err("CPU %u didn't die...\n", cpu);
1501 		ret = -1;
1502 	}
1503 
1504 	return ret;
1505 }
1506 
1507 void native_cpu_die(unsigned int cpu)
1508 {
1509 	common_cpu_die(cpu);
1510 }
1511 
1512 void play_dead_common(void)
1513 {
1514 	idle_task_exit();
1515 	reset_lazy_tlbstate();
1516 	amd_e400_remove_cpu(raw_smp_processor_id());
1517 
1518 	/* Ack it */
1519 	(void)cpu_report_death();
1520 
1521 	/*
1522 	 * With physical CPU hotplug, we should halt the cpu
1523 	 */
1524 	local_irq_disable();
1525 }
1526 
1527 static bool wakeup_cpu0(void)
1528 {
1529 	if (smp_processor_id() == 0 && enable_start_cpu0)
1530 		return true;
1531 
1532 	return false;
1533 }
1534 
1535 /*
1536  * We need to flush the caches before going to sleep, lest we have
1537  * dirty data in our caches when we come back up.
1538  */
1539 static inline void mwait_play_dead(void)
1540 {
1541 	unsigned int eax, ebx, ecx, edx;
1542 	unsigned int highest_cstate = 0;
1543 	unsigned int highest_subcstate = 0;
1544 	void *mwait_ptr;
1545 	int i;
1546 
1547 	if (!this_cpu_has(X86_FEATURE_MWAIT))
1548 		return;
1549 	if (!this_cpu_has(X86_FEATURE_CLFLUSH))
1550 		return;
1551 	if (__this_cpu_read(cpu_info.cpuid_level) < CPUID_MWAIT_LEAF)
1552 		return;
1553 
1554 	eax = CPUID_MWAIT_LEAF;
1555 	ecx = 0;
1556 	native_cpuid(&eax, &ebx, &ecx, &edx);
1557 
1558 	/*
1559 	 * eax will be 0 if EDX enumeration is not valid.
1560 	 * Initialized below to cstate, sub_cstate value when EDX is valid.
1561 	 */
1562 	if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) {
1563 		eax = 0;
1564 	} else {
1565 		edx >>= MWAIT_SUBSTATE_SIZE;
1566 		for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
1567 			if (edx & MWAIT_SUBSTATE_MASK) {
1568 				highest_cstate = i;
1569 				highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
1570 			}
1571 		}
1572 		eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
1573 			(highest_subcstate - 1);
1574 	}
1575 
1576 	/*
1577 	 * This should be a memory location in a cache line which is
1578 	 * unlikely to be touched by other processors.  The actual
1579 	 * content is immaterial as it is not actually modified in any way.
1580 	 */
1581 	mwait_ptr = &current_thread_info()->flags;
1582 
1583 	wbinvd();
1584 
1585 	while (1) {
1586 		/*
1587 		 * The CLFLUSH is a workaround for erratum AAI65 for
1588 		 * the Xeon 7400 series.  It's not clear it is actually
1589 		 * needed, but it should be harmless in either case.
1590 		 * The WBINVD is insufficient due to the spurious-wakeup
1591 		 * case where we return around the loop.
1592 		 */
1593 		mb();
1594 		clflush(mwait_ptr);
1595 		mb();
1596 		__monitor(mwait_ptr, 0, 0);
1597 		mb();
1598 		__mwait(eax, 0);
1599 		/*
1600 		 * If NMI wants to wake up CPU0, start CPU0.
1601 		 */
1602 		if (wakeup_cpu0())
1603 			start_cpu0();
1604 	}
1605 }
1606 
1607 static inline void hlt_play_dead(void)
1608 {
1609 	if (__this_cpu_read(cpu_info.x86) >= 4)
1610 		wbinvd();
1611 
1612 	while (1) {
1613 		native_halt();
1614 		/*
1615 		 * If NMI wants to wake up CPU0, start CPU0.
1616 		 */
1617 		if (wakeup_cpu0())
1618 			start_cpu0();
1619 	}
1620 }
1621 
1622 void native_play_dead(void)
1623 {
1624 	play_dead_common();
1625 	tboot_shutdown(TB_SHUTDOWN_WFS);
1626 
1627 	mwait_play_dead();	/* Only returns on failure */
1628 	if (cpuidle_play_dead())
1629 		hlt_play_dead();
1630 }
1631 
1632 #else /* ... !CONFIG_HOTPLUG_CPU */
1633 int native_cpu_disable(void)
1634 {
1635 	return -ENOSYS;
1636 }
1637 
1638 void native_cpu_die(unsigned int cpu)
1639 {
1640 	/* We said "no" in __cpu_disable */
1641 	BUG();
1642 }
1643 
1644 void native_play_dead(void)
1645 {
1646 	BUG();
1647 }
1648 
1649 #endif
1650