xref: /linux/arch/x86/kernel/irq_32.c (revision 2b8232ce512105e28453f301d1510de8363bccd1)
1 /*
2  *	linux/arch/i386/kernel/irq.c
3  *
4  *	Copyright (C) 1992, 1998 Linus Torvalds, Ingo Molnar
5  *
6  * This file contains the lowest level x86-specific interrupt
7  * entry, irq-stacks and irq statistics code. All the remaining
8  * irq logic is done by the generic kernel/irq/ code and
9  * by the x86-specific irq controller code. (e.g. i8259.c and
10  * io_apic.c.)
11  */
12 
13 #include <linux/module.h>
14 #include <linux/seq_file.h>
15 #include <linux/interrupt.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/notifier.h>
18 #include <linux/cpu.h>
19 #include <linux/delay.h>
20 
21 #include <asm/apic.h>
22 #include <asm/uaccess.h>
23 
24 DEFINE_PER_CPU_SHARED_ALIGNED(irq_cpustat_t, irq_stat);
25 EXPORT_PER_CPU_SYMBOL(irq_stat);
26 
27 DEFINE_PER_CPU(struct pt_regs *, irq_regs);
28 EXPORT_PER_CPU_SYMBOL(irq_regs);
29 
30 /*
31  * 'what should we do if we get a hw irq event on an illegal vector'.
32  * each architecture has to answer this themselves.
33  */
34 void ack_bad_irq(unsigned int irq)
35 {
36 	printk(KERN_ERR "unexpected IRQ trap at vector %02x\n", irq);
37 
38 #ifdef CONFIG_X86_LOCAL_APIC
39 	/*
40 	 * Currently unexpected vectors happen only on SMP and APIC.
41 	 * We _must_ ack these because every local APIC has only N
42 	 * irq slots per priority level, and a 'hanging, unacked' IRQ
43 	 * holds up an irq slot - in excessive cases (when multiple
44 	 * unexpected vectors occur) that might lock up the APIC
45 	 * completely.
46 	 * But only ack when the APIC is enabled -AK
47 	 */
48 	if (cpu_has_apic)
49 		ack_APIC_irq();
50 #endif
51 }
52 
53 #ifdef CONFIG_4KSTACKS
54 /*
55  * per-CPU IRQ handling contexts (thread information and stack)
56  */
57 union irq_ctx {
58 	struct thread_info      tinfo;
59 	u32                     stack[THREAD_SIZE/sizeof(u32)];
60 };
61 
62 static union irq_ctx *hardirq_ctx[NR_CPUS] __read_mostly;
63 static union irq_ctx *softirq_ctx[NR_CPUS] __read_mostly;
64 #endif
65 
66 /*
67  * do_IRQ handles all normal device IRQ's (the special
68  * SMP cross-CPU interrupts have their own specific
69  * handlers).
70  */
71 fastcall unsigned int do_IRQ(struct pt_regs *regs)
72 {
73 	struct pt_regs *old_regs;
74 	/* high bit used in ret_from_ code */
75 	int irq = ~regs->orig_eax;
76 	struct irq_desc *desc = irq_desc + irq;
77 #ifdef CONFIG_4KSTACKS
78 	union irq_ctx *curctx, *irqctx;
79 	u32 *isp;
80 #endif
81 
82 	if (unlikely((unsigned)irq >= NR_IRQS)) {
83 		printk(KERN_EMERG "%s: cannot handle IRQ %d\n",
84 					__FUNCTION__, irq);
85 		BUG();
86 	}
87 
88 	old_regs = set_irq_regs(regs);
89 	irq_enter();
90 #ifdef CONFIG_DEBUG_STACKOVERFLOW
91 	/* Debugging check for stack overflow: is there less than 1KB free? */
92 	{
93 		long esp;
94 
95 		__asm__ __volatile__("andl %%esp,%0" :
96 					"=r" (esp) : "0" (THREAD_SIZE - 1));
97 		if (unlikely(esp < (sizeof(struct thread_info) + STACK_WARN))) {
98 			printk("do_IRQ: stack overflow: %ld\n",
99 				esp - sizeof(struct thread_info));
100 			dump_stack();
101 		}
102 	}
103 #endif
104 
105 #ifdef CONFIG_4KSTACKS
106 
107 	curctx = (union irq_ctx *) current_thread_info();
108 	irqctx = hardirq_ctx[smp_processor_id()];
109 
110 	/*
111 	 * this is where we switch to the IRQ stack. However, if we are
112 	 * already using the IRQ stack (because we interrupted a hardirq
113 	 * handler) we can't do that and just have to keep using the
114 	 * current stack (which is the irq stack already after all)
115 	 */
116 	if (curctx != irqctx) {
117 		int arg1, arg2, ebx;
118 
119 		/* build the stack frame on the IRQ stack */
120 		isp = (u32*) ((char*)irqctx + sizeof(*irqctx));
121 		irqctx->tinfo.task = curctx->tinfo.task;
122 		irqctx->tinfo.previous_esp = current_stack_pointer;
123 
124 		/*
125 		 * Copy the softirq bits in preempt_count so that the
126 		 * softirq checks work in the hardirq context.
127 		 */
128 		irqctx->tinfo.preempt_count =
129 			(irqctx->tinfo.preempt_count & ~SOFTIRQ_MASK) |
130 			(curctx->tinfo.preempt_count & SOFTIRQ_MASK);
131 
132 		asm volatile(
133 			"       xchgl  %%ebx,%%esp      \n"
134 			"       call   *%%edi           \n"
135 			"       movl   %%ebx,%%esp      \n"
136 			: "=a" (arg1), "=d" (arg2), "=b" (ebx)
137 			:  "0" (irq),   "1" (desc),  "2" (isp),
138 			   "D" (desc->handle_irq)
139 			: "memory", "cc"
140 		);
141 	} else
142 #endif
143 		desc->handle_irq(irq, desc);
144 
145 	irq_exit();
146 	set_irq_regs(old_regs);
147 	return 1;
148 }
149 
150 #ifdef CONFIG_4KSTACKS
151 
152 static char softirq_stack[NR_CPUS * THREAD_SIZE]
153 		__attribute__((__section__(".bss.page_aligned")));
154 
155 static char hardirq_stack[NR_CPUS * THREAD_SIZE]
156 		__attribute__((__section__(".bss.page_aligned")));
157 
158 /*
159  * allocate per-cpu stacks for hardirq and for softirq processing
160  */
161 void irq_ctx_init(int cpu)
162 {
163 	union irq_ctx *irqctx;
164 
165 	if (hardirq_ctx[cpu])
166 		return;
167 
168 	irqctx = (union irq_ctx*) &hardirq_stack[cpu*THREAD_SIZE];
169 	irqctx->tinfo.task              = NULL;
170 	irqctx->tinfo.exec_domain       = NULL;
171 	irqctx->tinfo.cpu               = cpu;
172 	irqctx->tinfo.preempt_count     = HARDIRQ_OFFSET;
173 	irqctx->tinfo.addr_limit        = MAKE_MM_SEG(0);
174 
175 	hardirq_ctx[cpu] = irqctx;
176 
177 	irqctx = (union irq_ctx*) &softirq_stack[cpu*THREAD_SIZE];
178 	irqctx->tinfo.task              = NULL;
179 	irqctx->tinfo.exec_domain       = NULL;
180 	irqctx->tinfo.cpu               = cpu;
181 	irqctx->tinfo.preempt_count     = 0;
182 	irqctx->tinfo.addr_limit        = MAKE_MM_SEG(0);
183 
184 	softirq_ctx[cpu] = irqctx;
185 
186 	printk("CPU %u irqstacks, hard=%p soft=%p\n",
187 		cpu,hardirq_ctx[cpu],softirq_ctx[cpu]);
188 }
189 
190 void irq_ctx_exit(int cpu)
191 {
192 	hardirq_ctx[cpu] = NULL;
193 }
194 
195 extern asmlinkage void __do_softirq(void);
196 
197 asmlinkage void do_softirq(void)
198 {
199 	unsigned long flags;
200 	struct thread_info *curctx;
201 	union irq_ctx *irqctx;
202 	u32 *isp;
203 
204 	if (in_interrupt())
205 		return;
206 
207 	local_irq_save(flags);
208 
209 	if (local_softirq_pending()) {
210 		curctx = current_thread_info();
211 		irqctx = softirq_ctx[smp_processor_id()];
212 		irqctx->tinfo.task = curctx->task;
213 		irqctx->tinfo.previous_esp = current_stack_pointer;
214 
215 		/* build the stack frame on the softirq stack */
216 		isp = (u32*) ((char*)irqctx + sizeof(*irqctx));
217 
218 		asm volatile(
219 			"       xchgl   %%ebx,%%esp     \n"
220 			"       call    __do_softirq    \n"
221 			"       movl    %%ebx,%%esp     \n"
222 			: "=b"(isp)
223 			: "0"(isp)
224 			: "memory", "cc", "edx", "ecx", "eax"
225 		);
226 		/*
227 		 * Shouldnt happen, we returned above if in_interrupt():
228 	 	 */
229 		WARN_ON_ONCE(softirq_count());
230 	}
231 
232 	local_irq_restore(flags);
233 }
234 #endif
235 
236 /*
237  * Interrupt statistics:
238  */
239 
240 atomic_t irq_err_count;
241 
242 /*
243  * /proc/interrupts printing:
244  */
245 
246 int show_interrupts(struct seq_file *p, void *v)
247 {
248 	int i = *(loff_t *) v, j;
249 	struct irqaction * action;
250 	unsigned long flags;
251 
252 	if (i == 0) {
253 		seq_printf(p, "           ");
254 		for_each_online_cpu(j)
255 			seq_printf(p, "CPU%-8d",j);
256 		seq_putc(p, '\n');
257 	}
258 
259 	if (i < NR_IRQS) {
260 		spin_lock_irqsave(&irq_desc[i].lock, flags);
261 		action = irq_desc[i].action;
262 		if (!action)
263 			goto skip;
264 		seq_printf(p, "%3d: ",i);
265 #ifndef CONFIG_SMP
266 		seq_printf(p, "%10u ", kstat_irqs(i));
267 #else
268 		for_each_online_cpu(j)
269 			seq_printf(p, "%10u ", kstat_cpu(j).irqs[i]);
270 #endif
271 		seq_printf(p, " %8s", irq_desc[i].chip->name);
272 		seq_printf(p, "-%-8s", irq_desc[i].name);
273 		seq_printf(p, "  %s", action->name);
274 
275 		for (action=action->next; action; action = action->next)
276 			seq_printf(p, ", %s", action->name);
277 
278 		seq_putc(p, '\n');
279 skip:
280 		spin_unlock_irqrestore(&irq_desc[i].lock, flags);
281 	} else if (i == NR_IRQS) {
282 		seq_printf(p, "NMI: ");
283 		for_each_online_cpu(j)
284 			seq_printf(p, "%10u ", nmi_count(j));
285 		seq_putc(p, '\n');
286 #ifdef CONFIG_X86_LOCAL_APIC
287 		seq_printf(p, "LOC: ");
288 		for_each_online_cpu(j)
289 			seq_printf(p, "%10u ",
290 				per_cpu(irq_stat,j).apic_timer_irqs);
291 		seq_putc(p, '\n');
292 #endif
293 		seq_printf(p, "ERR: %10u\n", atomic_read(&irq_err_count));
294 #if defined(CONFIG_X86_IO_APIC)
295 		seq_printf(p, "MIS: %10u\n", atomic_read(&irq_mis_count));
296 #endif
297 	}
298 	return 0;
299 }
300 
301 #ifdef CONFIG_HOTPLUG_CPU
302 #include <mach_apic.h>
303 
304 void fixup_irqs(cpumask_t map)
305 {
306 	unsigned int irq;
307 	static int warned;
308 
309 	for (irq = 0; irq < NR_IRQS; irq++) {
310 		cpumask_t mask;
311 		if (irq == 2)
312 			continue;
313 
314 		cpus_and(mask, irq_desc[irq].affinity, map);
315 		if (any_online_cpu(mask) == NR_CPUS) {
316 			printk("Breaking affinity for irq %i\n", irq);
317 			mask = map;
318 		}
319 		if (irq_desc[irq].chip->set_affinity)
320 			irq_desc[irq].chip->set_affinity(irq, mask);
321 		else if (irq_desc[irq].action && !(warned++))
322 			printk("Cannot set affinity for irq %i\n", irq);
323 	}
324 
325 #if 0
326 	barrier();
327 	/* Ingo Molnar says: "after the IO-APIC masks have been redirected
328 	   [note the nop - the interrupt-enable boundary on x86 is two
329 	   instructions from sti] - to flush out pending hardirqs and
330 	   IPIs. After this point nothing is supposed to reach this CPU." */
331 	__asm__ __volatile__("sti; nop; cli");
332 	barrier();
333 #else
334 	/* That doesn't seem sufficient.  Give it 1ms. */
335 	local_irq_enable();
336 	mdelay(1);
337 	local_irq_disable();
338 #endif
339 }
340 #endif
341 
342