1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 1994 Linus Torvalds 4 * 5 * Pentium III FXSR, SSE support 6 * General FPU state handling cleanups 7 * Gareth Hughes <gareth@valinux.com>, May 2000 8 */ 9 #include <asm/fpu/api.h> 10 #include <asm/fpu/regset.h> 11 #include <asm/fpu/sched.h> 12 #include <asm/fpu/signal.h> 13 #include <asm/fpu/types.h> 14 #include <asm/msr.h> 15 #include <asm/traps.h> 16 #include <asm/irq_regs.h> 17 18 #include <uapi/asm/kvm.h> 19 20 #include <linux/hardirq.h> 21 #include <linux/pkeys.h> 22 #include <linux/vmalloc.h> 23 24 #include "context.h" 25 #include "internal.h" 26 #include "legacy.h" 27 #include "xstate.h" 28 29 #define CREATE_TRACE_POINTS 30 #include <asm/trace/fpu.h> 31 32 #ifdef CONFIG_X86_64 33 DEFINE_STATIC_KEY_FALSE(__fpu_state_size_dynamic); 34 DEFINE_PER_CPU(u64, xfd_state); 35 #endif 36 37 /* The FPU state configuration data for kernel and user space */ 38 struct fpu_state_config fpu_kernel_cfg __ro_after_init; 39 struct fpu_state_config fpu_user_cfg __ro_after_init; 40 41 /* 42 * Represents the initial FPU state. It's mostly (but not completely) zeroes, 43 * depending on the FPU hardware format: 44 */ 45 struct fpstate init_fpstate __ro_after_init; 46 47 /* Track in-kernel FPU usage */ 48 static DEFINE_PER_CPU(bool, in_kernel_fpu); 49 50 /* 51 * Track which context is using the FPU on the CPU: 52 */ 53 DEFINE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx); 54 55 #ifdef CONFIG_X86_DEBUG_FPU 56 struct fpu *x86_task_fpu(struct task_struct *task) 57 { 58 if (WARN_ON_ONCE(task->flags & PF_KTHREAD)) 59 return NULL; 60 61 return (void *)task + sizeof(*task); 62 } 63 #endif 64 65 /* 66 * Can we use the FPU in kernel mode with the 67 * whole "kernel_fpu_begin/end()" sequence? 68 */ 69 bool irq_fpu_usable(void) 70 { 71 if (WARN_ON_ONCE(in_nmi())) 72 return false; 73 74 /* 75 * In kernel FPU usage already active? This detects any explicitly 76 * nested usage in task or softirq context, which is unsupported. It 77 * also detects attempted usage in a hardirq that has interrupted a 78 * kernel-mode FPU section. 79 */ 80 if (this_cpu_read(in_kernel_fpu)) { 81 WARN_ON_FPU(!in_hardirq()); 82 return false; 83 } 84 85 /* 86 * When not in NMI or hard interrupt context, FPU can be used in: 87 * 88 * - Task context except from within fpregs_lock()'ed critical 89 * regions. 90 * 91 * - Soft interrupt processing context which cannot happen 92 * while in a fpregs_lock()'ed critical region. 93 */ 94 if (!in_hardirq()) 95 return true; 96 97 /* 98 * In hard interrupt context it's safe when soft interrupts 99 * are enabled, which means the interrupt did not hit in 100 * a fpregs_lock()'ed critical region. 101 */ 102 return !softirq_count(); 103 } 104 EXPORT_SYMBOL(irq_fpu_usable); 105 106 /* 107 * Track AVX512 state use because it is known to slow the max clock 108 * speed of the core. 109 */ 110 static void update_avx_timestamp(struct fpu *fpu) 111 { 112 113 #define AVX512_TRACKING_MASK (XFEATURE_MASK_ZMM_Hi256 | XFEATURE_MASK_Hi16_ZMM) 114 115 if (fpu->fpstate->regs.xsave.header.xfeatures & AVX512_TRACKING_MASK) 116 fpu->avx512_timestamp = jiffies; 117 } 118 119 /* 120 * Save the FPU register state in fpu->fpstate->regs. The register state is 121 * preserved. 122 * 123 * Must be called with fpregs_lock() held. 124 * 125 * The legacy FNSAVE instruction clears all FPU state unconditionally, so 126 * register state has to be reloaded. That might be a pointless exercise 127 * when the FPU is going to be used by another task right after that. But 128 * this only affects 20+ years old 32bit systems and avoids conditionals all 129 * over the place. 130 * 131 * FXSAVE and all XSAVE variants preserve the FPU register state. 132 */ 133 void save_fpregs_to_fpstate(struct fpu *fpu) 134 { 135 if (likely(use_xsave())) { 136 os_xsave(fpu->fpstate); 137 update_avx_timestamp(fpu); 138 return; 139 } 140 141 if (likely(use_fxsr())) { 142 fxsave(&fpu->fpstate->regs.fxsave); 143 return; 144 } 145 146 /* 147 * Legacy FPU register saving, FNSAVE always clears FPU registers, 148 * so we have to reload them from the memory state. 149 */ 150 asm volatile("fnsave %[fp]; fwait" : [fp] "=m" (fpu->fpstate->regs.fsave)); 151 frstor(&fpu->fpstate->regs.fsave); 152 } 153 154 void restore_fpregs_from_fpstate(struct fpstate *fpstate, u64 mask) 155 { 156 /* 157 * AMD K7/K8 and later CPUs up to Zen don't save/restore 158 * FDP/FIP/FOP unless an exception is pending. Clear the x87 state 159 * here by setting it to fixed values. "m" is a random variable 160 * that should be in L1. 161 */ 162 if (unlikely(static_cpu_has_bug(X86_BUG_FXSAVE_LEAK))) { 163 asm volatile( 164 "fnclex\n\t" 165 "emms\n\t" 166 "fildl %[addr]" /* set F?P to defined value */ 167 : : [addr] "m" (*fpstate)); 168 } 169 170 if (use_xsave()) { 171 /* 172 * Dynamically enabled features are enabled in XCR0, but 173 * usage requires also that the corresponding bits in XFD 174 * are cleared. If the bits are set then using a related 175 * instruction will raise #NM. This allows to do the 176 * allocation of the larger FPU buffer lazy from #NM or if 177 * the task has no permission to kill it which would happen 178 * via #UD if the feature is disabled in XCR0. 179 * 180 * XFD state is following the same life time rules as 181 * XSTATE and to restore state correctly XFD has to be 182 * updated before XRSTORS otherwise the component would 183 * stay in or go into init state even if the bits are set 184 * in fpstate::regs::xsave::xfeatures. 185 */ 186 xfd_update_state(fpstate); 187 188 /* 189 * Restoring state always needs to modify all features 190 * which are in @mask even if the current task cannot use 191 * extended features. 192 * 193 * So fpstate->xfeatures cannot be used here, because then 194 * a feature for which the task has no permission but was 195 * used by the previous task would not go into init state. 196 */ 197 mask = fpu_kernel_cfg.max_features & mask; 198 199 os_xrstor(fpstate, mask); 200 } else { 201 if (use_fxsr()) 202 fxrstor(&fpstate->regs.fxsave); 203 else 204 frstor(&fpstate->regs.fsave); 205 } 206 } 207 208 void fpu_reset_from_exception_fixup(void) 209 { 210 restore_fpregs_from_fpstate(&init_fpstate, XFEATURE_MASK_FPSTATE); 211 } 212 213 #if IS_ENABLED(CONFIG_KVM) 214 static void __fpstate_reset(struct fpstate *fpstate, u64 xfd); 215 216 static void fpu_lock_guest_permissions(void) 217 { 218 struct fpu_state_perm *fpuperm; 219 u64 perm; 220 221 if (!IS_ENABLED(CONFIG_X86_64)) 222 return; 223 224 spin_lock_irq(¤t->sighand->siglock); 225 fpuperm = &x86_task_fpu(current->group_leader)->guest_perm; 226 perm = fpuperm->__state_perm; 227 228 /* First fpstate allocation locks down permissions. */ 229 WRITE_ONCE(fpuperm->__state_perm, perm | FPU_GUEST_PERM_LOCKED); 230 231 spin_unlock_irq(¤t->sighand->siglock); 232 } 233 234 bool fpu_alloc_guest_fpstate(struct fpu_guest *gfpu) 235 { 236 struct fpstate *fpstate; 237 unsigned int size; 238 239 size = fpu_kernel_cfg.default_size + ALIGN(offsetof(struct fpstate, regs), 64); 240 fpstate = vzalloc(size); 241 if (!fpstate) 242 return false; 243 244 /* Leave xfd to 0 (the reset value defined by spec) */ 245 __fpstate_reset(fpstate, 0); 246 fpstate_init_user(fpstate); 247 fpstate->is_valloc = true; 248 fpstate->is_guest = true; 249 250 gfpu->fpstate = fpstate; 251 gfpu->xfeatures = fpu_kernel_cfg.default_features; 252 253 /* 254 * KVM sets the FP+SSE bits in the XSAVE header when copying FPU state 255 * to userspace, even when XSAVE is unsupported, so that restoring FPU 256 * state on a different CPU that does support XSAVE can cleanly load 257 * the incoming state using its natural XSAVE. In other words, KVM's 258 * uABI size may be larger than this host's default size. Conversely, 259 * the default size should never be larger than KVM's base uABI size; 260 * all features that can expand the uABI size must be opt-in. 261 */ 262 gfpu->uabi_size = sizeof(struct kvm_xsave); 263 if (WARN_ON_ONCE(fpu_user_cfg.default_size > gfpu->uabi_size)) 264 gfpu->uabi_size = fpu_user_cfg.default_size; 265 266 fpu_lock_guest_permissions(); 267 268 return true; 269 } 270 EXPORT_SYMBOL_GPL(fpu_alloc_guest_fpstate); 271 272 void fpu_free_guest_fpstate(struct fpu_guest *gfpu) 273 { 274 struct fpstate *fpstate = gfpu->fpstate; 275 276 if (!fpstate) 277 return; 278 279 if (WARN_ON_ONCE(!fpstate->is_valloc || !fpstate->is_guest || fpstate->in_use)) 280 return; 281 282 gfpu->fpstate = NULL; 283 vfree(fpstate); 284 } 285 EXPORT_SYMBOL_GPL(fpu_free_guest_fpstate); 286 287 /* 288 * fpu_enable_guest_xfd_features - Check xfeatures against guest perm and enable 289 * @guest_fpu: Pointer to the guest FPU container 290 * @xfeatures: Features requested by guest CPUID 291 * 292 * Enable all dynamic xfeatures according to guest perm and requested CPUID. 293 * 294 * Return: 0 on success, error code otherwise 295 */ 296 int fpu_enable_guest_xfd_features(struct fpu_guest *guest_fpu, u64 xfeatures) 297 { 298 lockdep_assert_preemption_enabled(); 299 300 /* Nothing to do if all requested features are already enabled. */ 301 xfeatures &= ~guest_fpu->xfeatures; 302 if (!xfeatures) 303 return 0; 304 305 return __xfd_enable_feature(xfeatures, guest_fpu); 306 } 307 EXPORT_SYMBOL_GPL(fpu_enable_guest_xfd_features); 308 309 #ifdef CONFIG_X86_64 310 void fpu_update_guest_xfd(struct fpu_guest *guest_fpu, u64 xfd) 311 { 312 fpregs_lock(); 313 guest_fpu->fpstate->xfd = xfd; 314 if (guest_fpu->fpstate->in_use) 315 xfd_update_state(guest_fpu->fpstate); 316 fpregs_unlock(); 317 } 318 EXPORT_SYMBOL_GPL(fpu_update_guest_xfd); 319 320 /** 321 * fpu_sync_guest_vmexit_xfd_state - Synchronize XFD MSR and software state 322 * 323 * Must be invoked from KVM after a VMEXIT before enabling interrupts when 324 * XFD write emulation is disabled. This is required because the guest can 325 * freely modify XFD and the state at VMEXIT is not guaranteed to be the 326 * same as the state on VMENTER. So software state has to be updated before 327 * any operation which depends on it can take place. 328 * 329 * Note: It can be invoked unconditionally even when write emulation is 330 * enabled for the price of a then pointless MSR read. 331 */ 332 void fpu_sync_guest_vmexit_xfd_state(void) 333 { 334 struct fpstate *fpstate = x86_task_fpu(current)->fpstate; 335 336 lockdep_assert_irqs_disabled(); 337 if (fpu_state_size_dynamic()) { 338 rdmsrq(MSR_IA32_XFD, fpstate->xfd); 339 __this_cpu_write(xfd_state, fpstate->xfd); 340 } 341 } 342 EXPORT_SYMBOL_GPL(fpu_sync_guest_vmexit_xfd_state); 343 #endif /* CONFIG_X86_64 */ 344 345 int fpu_swap_kvm_fpstate(struct fpu_guest *guest_fpu, bool enter_guest) 346 { 347 struct fpstate *guest_fps = guest_fpu->fpstate; 348 struct fpu *fpu = x86_task_fpu(current); 349 struct fpstate *cur_fps = fpu->fpstate; 350 351 fpregs_lock(); 352 if (!cur_fps->is_confidential && !test_thread_flag(TIF_NEED_FPU_LOAD)) 353 save_fpregs_to_fpstate(fpu); 354 355 /* Swap fpstate */ 356 if (enter_guest) { 357 fpu->__task_fpstate = cur_fps; 358 fpu->fpstate = guest_fps; 359 guest_fps->in_use = true; 360 } else { 361 guest_fps->in_use = false; 362 fpu->fpstate = fpu->__task_fpstate; 363 fpu->__task_fpstate = NULL; 364 } 365 366 cur_fps = fpu->fpstate; 367 368 if (!cur_fps->is_confidential) { 369 /* Includes XFD update */ 370 restore_fpregs_from_fpstate(cur_fps, XFEATURE_MASK_FPSTATE); 371 } else { 372 /* 373 * XSTATE is restored by firmware from encrypted 374 * memory. Make sure XFD state is correct while 375 * running with guest fpstate 376 */ 377 xfd_update_state(cur_fps); 378 } 379 380 fpregs_mark_activate(); 381 fpregs_unlock(); 382 return 0; 383 } 384 EXPORT_SYMBOL_GPL(fpu_swap_kvm_fpstate); 385 386 void fpu_copy_guest_fpstate_to_uabi(struct fpu_guest *gfpu, void *buf, 387 unsigned int size, u64 xfeatures, u32 pkru) 388 { 389 struct fpstate *kstate = gfpu->fpstate; 390 union fpregs_state *ustate = buf; 391 struct membuf mb = { .p = buf, .left = size }; 392 393 if (cpu_feature_enabled(X86_FEATURE_XSAVE)) { 394 __copy_xstate_to_uabi_buf(mb, kstate, xfeatures, pkru, 395 XSTATE_COPY_XSAVE); 396 } else { 397 memcpy(&ustate->fxsave, &kstate->regs.fxsave, 398 sizeof(ustate->fxsave)); 399 /* Make it restorable on a XSAVE enabled host */ 400 ustate->xsave.header.xfeatures = XFEATURE_MASK_FPSSE; 401 } 402 } 403 EXPORT_SYMBOL_GPL(fpu_copy_guest_fpstate_to_uabi); 404 405 int fpu_copy_uabi_to_guest_fpstate(struct fpu_guest *gfpu, const void *buf, 406 u64 xcr0, u32 *vpkru) 407 { 408 struct fpstate *kstate = gfpu->fpstate; 409 const union fpregs_state *ustate = buf; 410 411 if (!cpu_feature_enabled(X86_FEATURE_XSAVE)) { 412 if (ustate->xsave.header.xfeatures & ~XFEATURE_MASK_FPSSE) 413 return -EINVAL; 414 if (ustate->fxsave.mxcsr & ~mxcsr_feature_mask) 415 return -EINVAL; 416 memcpy(&kstate->regs.fxsave, &ustate->fxsave, sizeof(ustate->fxsave)); 417 return 0; 418 } 419 420 if (ustate->xsave.header.xfeatures & ~xcr0) 421 return -EINVAL; 422 423 /* 424 * Nullify @vpkru to preserve its current value if PKRU's bit isn't set 425 * in the header. KVM's odd ABI is to leave PKRU untouched in this 426 * case (all other components are eventually re-initialized). 427 */ 428 if (!(ustate->xsave.header.xfeatures & XFEATURE_MASK_PKRU)) 429 vpkru = NULL; 430 431 return copy_uabi_from_kernel_to_xstate(kstate, ustate, vpkru); 432 } 433 EXPORT_SYMBOL_GPL(fpu_copy_uabi_to_guest_fpstate); 434 #endif /* CONFIG_KVM */ 435 436 void kernel_fpu_begin_mask(unsigned int kfpu_mask) 437 { 438 if (!irqs_disabled()) 439 fpregs_lock(); 440 441 WARN_ON_FPU(!irq_fpu_usable()); 442 WARN_ON_FPU(this_cpu_read(in_kernel_fpu)); 443 444 this_cpu_write(in_kernel_fpu, true); 445 446 if (!(current->flags & (PF_KTHREAD | PF_USER_WORKER)) && 447 !test_thread_flag(TIF_NEED_FPU_LOAD)) { 448 set_thread_flag(TIF_NEED_FPU_LOAD); 449 save_fpregs_to_fpstate(x86_task_fpu(current)); 450 } 451 __cpu_invalidate_fpregs_state(); 452 453 /* Put sane initial values into the control registers. */ 454 if (likely(kfpu_mask & KFPU_MXCSR) && boot_cpu_has(X86_FEATURE_XMM)) 455 ldmxcsr(MXCSR_DEFAULT); 456 457 if (unlikely(kfpu_mask & KFPU_387) && boot_cpu_has(X86_FEATURE_FPU)) 458 asm volatile ("fninit"); 459 } 460 EXPORT_SYMBOL_GPL(kernel_fpu_begin_mask); 461 462 void kernel_fpu_end(void) 463 { 464 WARN_ON_FPU(!this_cpu_read(in_kernel_fpu)); 465 466 this_cpu_write(in_kernel_fpu, false); 467 if (!irqs_disabled()) 468 fpregs_unlock(); 469 } 470 EXPORT_SYMBOL_GPL(kernel_fpu_end); 471 472 /* 473 * Sync the FPU register state to current's memory register state when the 474 * current task owns the FPU. The hardware register state is preserved. 475 */ 476 void fpu_sync_fpstate(struct fpu *fpu) 477 { 478 WARN_ON_FPU(fpu != x86_task_fpu(current)); 479 480 fpregs_lock(); 481 trace_x86_fpu_before_save(fpu); 482 483 if (!test_thread_flag(TIF_NEED_FPU_LOAD)) 484 save_fpregs_to_fpstate(fpu); 485 486 trace_x86_fpu_after_save(fpu); 487 fpregs_unlock(); 488 } 489 490 static inline unsigned int init_fpstate_copy_size(void) 491 { 492 if (!use_xsave()) 493 return fpu_kernel_cfg.default_size; 494 495 /* XSAVE(S) just needs the legacy and the xstate header part */ 496 return sizeof(init_fpstate.regs.xsave); 497 } 498 499 static inline void fpstate_init_fxstate(struct fpstate *fpstate) 500 { 501 fpstate->regs.fxsave.cwd = 0x37f; 502 fpstate->regs.fxsave.mxcsr = MXCSR_DEFAULT; 503 } 504 505 /* 506 * Legacy x87 fpstate state init: 507 */ 508 static inline void fpstate_init_fstate(struct fpstate *fpstate) 509 { 510 fpstate->regs.fsave.cwd = 0xffff037fu; 511 fpstate->regs.fsave.swd = 0xffff0000u; 512 fpstate->regs.fsave.twd = 0xffffffffu; 513 fpstate->regs.fsave.fos = 0xffff0000u; 514 } 515 516 /* 517 * Used in two places: 518 * 1) Early boot to setup init_fpstate for non XSAVE systems 519 * 2) fpu_alloc_guest_fpstate() which is invoked from KVM 520 */ 521 void fpstate_init_user(struct fpstate *fpstate) 522 { 523 if (!cpu_feature_enabled(X86_FEATURE_FPU)) { 524 fpstate_init_soft(&fpstate->regs.soft); 525 return; 526 } 527 528 xstate_init_xcomp_bv(&fpstate->regs.xsave, fpstate->xfeatures); 529 530 if (cpu_feature_enabled(X86_FEATURE_FXSR)) 531 fpstate_init_fxstate(fpstate); 532 else 533 fpstate_init_fstate(fpstate); 534 } 535 536 static void __fpstate_reset(struct fpstate *fpstate, u64 xfd) 537 { 538 /* Initialize sizes and feature masks */ 539 fpstate->size = fpu_kernel_cfg.default_size; 540 fpstate->user_size = fpu_user_cfg.default_size; 541 fpstate->xfeatures = fpu_kernel_cfg.default_features; 542 fpstate->user_xfeatures = fpu_user_cfg.default_features; 543 fpstate->xfd = xfd; 544 } 545 546 void fpstate_reset(struct fpu *fpu) 547 { 548 /* Set the fpstate pointer to the default fpstate */ 549 fpu->fpstate = &fpu->__fpstate; 550 __fpstate_reset(fpu->fpstate, init_fpstate.xfd); 551 552 /* Initialize the permission related info in fpu */ 553 fpu->perm.__state_perm = fpu_kernel_cfg.default_features; 554 fpu->perm.__state_size = fpu_kernel_cfg.default_size; 555 fpu->perm.__user_state_size = fpu_user_cfg.default_size; 556 /* Same defaults for guests */ 557 fpu->guest_perm = fpu->perm; 558 } 559 560 static inline void fpu_inherit_perms(struct fpu *dst_fpu) 561 { 562 if (fpu_state_size_dynamic()) { 563 struct fpu *src_fpu = x86_task_fpu(current->group_leader); 564 565 spin_lock_irq(¤t->sighand->siglock); 566 /* Fork also inherits the permissions of the parent */ 567 dst_fpu->perm = src_fpu->perm; 568 dst_fpu->guest_perm = src_fpu->guest_perm; 569 spin_unlock_irq(¤t->sighand->siglock); 570 } 571 } 572 573 /* A passed ssp of zero will not cause any update */ 574 static int update_fpu_shstk(struct task_struct *dst, unsigned long ssp) 575 { 576 #ifdef CONFIG_X86_USER_SHADOW_STACK 577 struct cet_user_state *xstate; 578 579 /* If ssp update is not needed. */ 580 if (!ssp) 581 return 0; 582 583 xstate = get_xsave_addr(&x86_task_fpu(dst)->fpstate->regs.xsave, 584 XFEATURE_CET_USER); 585 586 /* 587 * If there is a non-zero ssp, then 'dst' must be configured with a shadow 588 * stack and the fpu state should be up to date since it was just copied 589 * from the parent in fpu_clone(). So there must be a valid non-init CET 590 * state location in the buffer. 591 */ 592 if (WARN_ON_ONCE(!xstate)) 593 return 1; 594 595 xstate->user_ssp = (u64)ssp; 596 #endif 597 return 0; 598 } 599 600 /* Clone current's FPU state on fork */ 601 int fpu_clone(struct task_struct *dst, unsigned long clone_flags, bool minimal, 602 unsigned long ssp) 603 { 604 /* 605 * We allocate the new FPU structure right after the end of the task struct. 606 * task allocation size already took this into account. 607 * 608 * This is safe because task_struct size is a multiple of cacheline size, 609 * thus x86_task_fpu() will always be cacheline aligned as well. 610 */ 611 struct fpu *dst_fpu = (void *)dst + sizeof(*dst); 612 613 BUILD_BUG_ON(sizeof(*dst) % SMP_CACHE_BYTES != 0); 614 615 /* The new task's FPU state cannot be valid in the hardware. */ 616 dst_fpu->last_cpu = -1; 617 618 fpstate_reset(dst_fpu); 619 620 if (!cpu_feature_enabled(X86_FEATURE_FPU)) 621 return 0; 622 623 /* 624 * Enforce reload for user space tasks and prevent kernel threads 625 * from trying to save the FPU registers on context switch. 626 */ 627 set_tsk_thread_flag(dst, TIF_NEED_FPU_LOAD); 628 629 /* 630 * No FPU state inheritance for kernel threads and IO 631 * worker threads. 632 */ 633 if (minimal) { 634 /* Clear out the minimal state */ 635 memcpy(&dst_fpu->fpstate->regs, &init_fpstate.regs, 636 init_fpstate_copy_size()); 637 return 0; 638 } 639 640 /* 641 * If a new feature is added, ensure all dynamic features are 642 * caller-saved from here! 643 */ 644 BUILD_BUG_ON(XFEATURE_MASK_USER_DYNAMIC != XFEATURE_MASK_XTILE_DATA); 645 646 /* 647 * Save the default portion of the current FPU state into the 648 * clone. Assume all dynamic features to be defined as caller- 649 * saved, which enables skipping both the expansion of fpstate 650 * and the copying of any dynamic state. 651 * 652 * Do not use memcpy() when TIF_NEED_FPU_LOAD is set because 653 * copying is not valid when current uses non-default states. 654 */ 655 fpregs_lock(); 656 if (test_thread_flag(TIF_NEED_FPU_LOAD)) 657 fpregs_restore_userregs(); 658 save_fpregs_to_fpstate(dst_fpu); 659 fpregs_unlock(); 660 if (!(clone_flags & CLONE_THREAD)) 661 fpu_inherit_perms(dst_fpu); 662 663 /* 664 * Children never inherit PASID state. 665 * Force it to have its init value: 666 */ 667 if (use_xsave()) 668 dst_fpu->fpstate->regs.xsave.header.xfeatures &= ~XFEATURE_MASK_PASID; 669 670 /* 671 * Update shadow stack pointer, in case it changed during clone. 672 */ 673 if (update_fpu_shstk(dst, ssp)) 674 return 1; 675 676 trace_x86_fpu_copy_dst(dst_fpu); 677 678 return 0; 679 } 680 681 /* 682 * While struct fpu is no longer part of struct thread_struct, it is still 683 * allocated after struct task_struct in the "task_struct" kmem cache. But 684 * since FPU is expected to be part of struct thread_struct, we have to 685 * adjust for it here. 686 */ 687 void fpu_thread_struct_whitelist(unsigned long *offset, unsigned long *size) 688 { 689 /* The allocation follows struct task_struct. */ 690 *offset = sizeof(struct task_struct) - offsetof(struct task_struct, thread); 691 *offset += offsetof(struct fpu, __fpstate.regs); 692 *size = fpu_kernel_cfg.default_size; 693 } 694 695 /* 696 * Drops current FPU state: deactivates the fpregs and 697 * the fpstate. NOTE: it still leaves previous contents 698 * in the fpregs in the eager-FPU case. 699 * 700 * This function can be used in cases where we know that 701 * a state-restore is coming: either an explicit one, 702 * or a reschedule. 703 */ 704 void fpu__drop(struct task_struct *tsk) 705 { 706 struct fpu *fpu; 707 708 if (test_tsk_thread_flag(tsk, TIF_NEED_FPU_LOAD)) 709 return; 710 711 fpu = x86_task_fpu(tsk); 712 713 preempt_disable(); 714 715 if (fpu == x86_task_fpu(current)) { 716 /* Ignore delayed exceptions from user space */ 717 asm volatile("1: fwait\n" 718 "2:\n" 719 _ASM_EXTABLE(1b, 2b)); 720 fpregs_deactivate(fpu); 721 } 722 723 trace_x86_fpu_dropped(fpu); 724 725 preempt_enable(); 726 } 727 728 /* 729 * Clear FPU registers by setting them up from the init fpstate. 730 * Caller must do fpregs_[un]lock() around it. 731 */ 732 static inline void restore_fpregs_from_init_fpstate(u64 features_mask) 733 { 734 if (use_xsave()) 735 os_xrstor(&init_fpstate, features_mask); 736 else if (use_fxsr()) 737 fxrstor(&init_fpstate.regs.fxsave); 738 else 739 frstor(&init_fpstate.regs.fsave); 740 741 pkru_write_default(); 742 } 743 744 /* 745 * Reset current->fpu memory state to the init values. 746 */ 747 static void fpu_reset_fpstate_regs(void) 748 { 749 struct fpu *fpu = x86_task_fpu(current); 750 751 fpregs_lock(); 752 __fpu_invalidate_fpregs_state(fpu); 753 /* 754 * This does not change the actual hardware registers. It just 755 * resets the memory image and sets TIF_NEED_FPU_LOAD so a 756 * subsequent return to usermode will reload the registers from the 757 * task's memory image. 758 * 759 * Do not use fpstate_init() here. Just copy init_fpstate which has 760 * the correct content already except for PKRU. 761 * 762 * PKRU handling does not rely on the xstate when restoring for 763 * user space as PKRU is eagerly written in switch_to() and 764 * flush_thread(). 765 */ 766 memcpy(&fpu->fpstate->regs, &init_fpstate.regs, init_fpstate_copy_size()); 767 set_thread_flag(TIF_NEED_FPU_LOAD); 768 fpregs_unlock(); 769 } 770 771 /* 772 * Reset current's user FPU states to the init states. current's 773 * supervisor states, if any, are not modified by this function. The 774 * caller guarantees that the XSTATE header in memory is intact. 775 */ 776 void fpu__clear_user_states(struct fpu *fpu) 777 { 778 WARN_ON_FPU(fpu != x86_task_fpu(current)); 779 780 fpregs_lock(); 781 if (!cpu_feature_enabled(X86_FEATURE_FPU)) { 782 fpu_reset_fpstate_regs(); 783 fpregs_unlock(); 784 return; 785 } 786 787 /* 788 * Ensure that current's supervisor states are loaded into their 789 * corresponding registers. 790 */ 791 if (xfeatures_mask_supervisor() && 792 !fpregs_state_valid(fpu, smp_processor_id())) 793 os_xrstor_supervisor(fpu->fpstate); 794 795 /* Reset user states in registers. */ 796 restore_fpregs_from_init_fpstate(XFEATURE_MASK_USER_RESTORE); 797 798 /* 799 * Now all FPU registers have their desired values. Inform the FPU 800 * state machine that current's FPU registers are in the hardware 801 * registers. The memory image does not need to be updated because 802 * any operation relying on it has to save the registers first when 803 * current's FPU is marked active. 804 */ 805 fpregs_mark_activate(); 806 fpregs_unlock(); 807 } 808 809 void fpu_flush_thread(void) 810 { 811 fpstate_reset(x86_task_fpu(current)); 812 fpu_reset_fpstate_regs(); 813 } 814 /* 815 * Load FPU context before returning to userspace. 816 */ 817 void switch_fpu_return(void) 818 { 819 if (!static_cpu_has(X86_FEATURE_FPU)) 820 return; 821 822 fpregs_restore_userregs(); 823 } 824 EXPORT_SYMBOL_GPL(switch_fpu_return); 825 826 void fpregs_lock_and_load(void) 827 { 828 /* 829 * fpregs_lock() only disables preemption (mostly). So modifying state 830 * in an interrupt could screw up some in progress fpregs operation. 831 * Warn about it. 832 */ 833 WARN_ON_ONCE(!irq_fpu_usable()); 834 WARN_ON_ONCE(current->flags & PF_KTHREAD); 835 836 fpregs_lock(); 837 838 fpregs_assert_state_consistent(); 839 840 if (test_thread_flag(TIF_NEED_FPU_LOAD)) 841 fpregs_restore_userregs(); 842 } 843 844 #ifdef CONFIG_X86_DEBUG_FPU 845 /* 846 * If current FPU state according to its tracking (loaded FPU context on this 847 * CPU) is not valid then we must have TIF_NEED_FPU_LOAD set so the context is 848 * loaded on return to userland. 849 */ 850 void fpregs_assert_state_consistent(void) 851 { 852 struct fpu *fpu = x86_task_fpu(current); 853 854 if (test_thread_flag(TIF_NEED_FPU_LOAD)) 855 return; 856 857 WARN_ON_FPU(!fpregs_state_valid(fpu, smp_processor_id())); 858 } 859 EXPORT_SYMBOL_GPL(fpregs_assert_state_consistent); 860 #endif 861 862 void fpregs_mark_activate(void) 863 { 864 struct fpu *fpu = x86_task_fpu(current); 865 866 fpregs_activate(fpu); 867 fpu->last_cpu = smp_processor_id(); 868 clear_thread_flag(TIF_NEED_FPU_LOAD); 869 } 870 871 /* 872 * x87 math exception handling: 873 */ 874 875 int fpu__exception_code(struct fpu *fpu, int trap_nr) 876 { 877 int err; 878 879 if (trap_nr == X86_TRAP_MF) { 880 unsigned short cwd, swd; 881 /* 882 * (~cwd & swd) will mask out exceptions that are not set to unmasked 883 * status. 0x3f is the exception bits in these regs, 0x200 is the 884 * C1 reg you need in case of a stack fault, 0x040 is the stack 885 * fault bit. We should only be taking one exception at a time, 886 * so if this combination doesn't produce any single exception, 887 * then we have a bad program that isn't synchronizing its FPU usage 888 * and it will suffer the consequences since we won't be able to 889 * fully reproduce the context of the exception. 890 */ 891 if (boot_cpu_has(X86_FEATURE_FXSR)) { 892 cwd = fpu->fpstate->regs.fxsave.cwd; 893 swd = fpu->fpstate->regs.fxsave.swd; 894 } else { 895 cwd = (unsigned short)fpu->fpstate->regs.fsave.cwd; 896 swd = (unsigned short)fpu->fpstate->regs.fsave.swd; 897 } 898 899 err = swd & ~cwd; 900 } else { 901 /* 902 * The SIMD FPU exceptions are handled a little differently, as there 903 * is only a single status/control register. Thus, to determine which 904 * unmasked exception was caught we must mask the exception mask bits 905 * at 0x1f80, and then use these to mask the exception bits at 0x3f. 906 */ 907 unsigned short mxcsr = MXCSR_DEFAULT; 908 909 if (boot_cpu_has(X86_FEATURE_XMM)) 910 mxcsr = fpu->fpstate->regs.fxsave.mxcsr; 911 912 err = ~(mxcsr >> 7) & mxcsr; 913 } 914 915 if (err & 0x001) { /* Invalid op */ 916 /* 917 * swd & 0x240 == 0x040: Stack Underflow 918 * swd & 0x240 == 0x240: Stack Overflow 919 * User must clear the SF bit (0x40) if set 920 */ 921 return FPE_FLTINV; 922 } else if (err & 0x004) { /* Divide by Zero */ 923 return FPE_FLTDIV; 924 } else if (err & 0x008) { /* Overflow */ 925 return FPE_FLTOVF; 926 } else if (err & 0x012) { /* Denormal, Underflow */ 927 return FPE_FLTUND; 928 } else if (err & 0x020) { /* Precision */ 929 return FPE_FLTRES; 930 } 931 932 /* 933 * If we're using IRQ 13, or supposedly even some trap 934 * X86_TRAP_MF implementations, it's possible 935 * we get a spurious trap, which is not an error. 936 */ 937 return 0; 938 } 939 940 /* 941 * Initialize register state that may prevent from entering low-power idle. 942 * This function will be invoked from the cpuidle driver only when needed. 943 */ 944 noinstr void fpu_idle_fpregs(void) 945 { 946 /* Note: AMX_TILE being enabled implies XGETBV1 support */ 947 if (cpu_feature_enabled(X86_FEATURE_AMX_TILE) && 948 (xfeatures_in_use() & XFEATURE_MASK_XTILE)) { 949 tile_release(); 950 __this_cpu_write(fpu_fpregs_owner_ctx, NULL); 951 } 952 } 953