1 // SPDX-License-Identifier: GPL-2.0-only 2 #define pr_fmt(fmt) "SMP alternatives: " fmt 3 4 #include <linux/mmu_context.h> 5 #include <linux/perf_event.h> 6 #include <linux/vmalloc.h> 7 #include <linux/memory.h> 8 #include <linux/execmem.h> 9 10 #include <asm/text-patching.h> 11 #include <asm/insn.h> 12 #include <asm/ibt.h> 13 #include <asm/set_memory.h> 14 #include <asm/nmi.h> 15 16 int __read_mostly alternatives_patched; 17 18 EXPORT_SYMBOL_GPL(alternatives_patched); 19 20 #define MAX_PATCH_LEN (255-1) 21 22 #define DA_ALL (~0) 23 #define DA_ALT 0x01 24 #define DA_RET 0x02 25 #define DA_RETPOLINE 0x04 26 #define DA_ENDBR 0x08 27 #define DA_SMP 0x10 28 29 static unsigned int debug_alternative; 30 31 static int __init debug_alt(char *str) 32 { 33 if (str && *str == '=') 34 str++; 35 36 if (!str || kstrtouint(str, 0, &debug_alternative)) 37 debug_alternative = DA_ALL; 38 39 return 1; 40 } 41 __setup("debug-alternative", debug_alt); 42 43 static int noreplace_smp; 44 45 static int __init setup_noreplace_smp(char *str) 46 { 47 noreplace_smp = 1; 48 return 1; 49 } 50 __setup("noreplace-smp", setup_noreplace_smp); 51 52 #define DPRINTK(type, fmt, args...) \ 53 do { \ 54 if (debug_alternative & DA_##type) \ 55 printk(KERN_DEBUG pr_fmt(fmt) "\n", ##args); \ 56 } while (0) 57 58 #define DUMP_BYTES(type, buf, len, fmt, args...) \ 59 do { \ 60 if (unlikely(debug_alternative & DA_##type)) { \ 61 int j; \ 62 \ 63 if (!(len)) \ 64 break; \ 65 \ 66 printk(KERN_DEBUG pr_fmt(fmt), ##args); \ 67 for (j = 0; j < (len) - 1; j++) \ 68 printk(KERN_CONT "%02hhx ", buf[j]); \ 69 printk(KERN_CONT "%02hhx\n", buf[j]); \ 70 } \ 71 } while (0) 72 73 static const unsigned char x86nops[] = 74 { 75 BYTES_NOP1, 76 BYTES_NOP2, 77 BYTES_NOP3, 78 BYTES_NOP4, 79 BYTES_NOP5, 80 BYTES_NOP6, 81 BYTES_NOP7, 82 BYTES_NOP8, 83 #ifdef CONFIG_64BIT 84 BYTES_NOP9, 85 BYTES_NOP10, 86 BYTES_NOP11, 87 #endif 88 }; 89 90 const unsigned char * const x86_nops[ASM_NOP_MAX+1] = 91 { 92 NULL, 93 x86nops, 94 x86nops + 1, 95 x86nops + 1 + 2, 96 x86nops + 1 + 2 + 3, 97 x86nops + 1 + 2 + 3 + 4, 98 x86nops + 1 + 2 + 3 + 4 + 5, 99 x86nops + 1 + 2 + 3 + 4 + 5 + 6, 100 x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7, 101 #ifdef CONFIG_64BIT 102 x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8, 103 x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9, 104 x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10, 105 #endif 106 }; 107 108 #ifdef CONFIG_FINEIBT 109 static bool cfi_paranoid __ro_after_init; 110 #endif 111 112 #ifdef CONFIG_MITIGATION_ITS 113 114 #ifdef CONFIG_MODULES 115 static struct module *its_mod; 116 #endif 117 static void *its_page; 118 static unsigned int its_offset; 119 struct its_array its_pages; 120 121 static void *__its_alloc(struct its_array *pages) 122 { 123 void *page __free(execmem) = execmem_alloc(EXECMEM_MODULE_TEXT, PAGE_SIZE); 124 if (!page) 125 return NULL; 126 127 void *tmp = krealloc(pages->pages, (pages->num+1) * sizeof(void *), 128 GFP_KERNEL); 129 if (!tmp) 130 return NULL; 131 132 pages->pages = tmp; 133 pages->pages[pages->num++] = page; 134 135 return no_free_ptr(page); 136 } 137 138 /* Initialize a thunk with the "jmp *reg; int3" instructions. */ 139 static void *its_init_thunk(void *thunk, int reg) 140 { 141 u8 *bytes = thunk; 142 int offset = 0; 143 int i = 0; 144 145 #ifdef CONFIG_FINEIBT 146 if (cfi_paranoid) { 147 /* 148 * When ITS uses indirect branch thunk the fineibt_paranoid 149 * caller sequence doesn't fit in the caller site. So put the 150 * remaining part of the sequence (<ea> + JNE) into the ITS 151 * thunk. 152 */ 153 bytes[i++] = 0xea; /* invalid instruction */ 154 bytes[i++] = 0x75; /* JNE */ 155 bytes[i++] = 0xfd; 156 157 offset = 1; 158 } 159 #endif 160 161 if (reg >= 8) { 162 bytes[i++] = 0x41; /* REX.B prefix */ 163 reg -= 8; 164 } 165 bytes[i++] = 0xff; 166 bytes[i++] = 0xe0 + reg; /* jmp *reg */ 167 bytes[i++] = 0xcc; 168 169 return thunk + offset; 170 } 171 172 static void its_pages_protect(struct its_array *pages) 173 { 174 for (int i = 0; i < pages->num; i++) { 175 void *page = pages->pages[i]; 176 execmem_restore_rox(page, PAGE_SIZE); 177 } 178 } 179 180 static void its_fini_core(void) 181 { 182 if (IS_ENABLED(CONFIG_STRICT_KERNEL_RWX)) 183 its_pages_protect(&its_pages); 184 kfree(its_pages.pages); 185 } 186 187 #ifdef CONFIG_MODULES 188 void its_init_mod(struct module *mod) 189 { 190 if (!cpu_feature_enabled(X86_FEATURE_INDIRECT_THUNK_ITS)) 191 return; 192 193 mutex_lock(&text_mutex); 194 its_mod = mod; 195 its_page = NULL; 196 } 197 198 void its_fini_mod(struct module *mod) 199 { 200 if (!cpu_feature_enabled(X86_FEATURE_INDIRECT_THUNK_ITS)) 201 return; 202 203 WARN_ON_ONCE(its_mod != mod); 204 205 its_mod = NULL; 206 its_page = NULL; 207 mutex_unlock(&text_mutex); 208 209 if (IS_ENABLED(CONFIG_STRICT_MODULE_RWX)) 210 its_pages_protect(&mod->arch.its_pages); 211 } 212 213 void its_free_mod(struct module *mod) 214 { 215 if (!cpu_feature_enabled(X86_FEATURE_INDIRECT_THUNK_ITS)) 216 return; 217 218 for (int i = 0; i < mod->arch.its_pages.num; i++) { 219 void *page = mod->arch.its_pages.pages[i]; 220 execmem_free(page); 221 } 222 kfree(mod->arch.its_pages.pages); 223 } 224 #endif /* CONFIG_MODULES */ 225 226 static void *its_alloc(void) 227 { 228 struct its_array *pages = &its_pages; 229 void *page; 230 231 #ifdef CONFIG_MODULES 232 if (its_mod) 233 pages = &its_mod->arch.its_pages; 234 #endif 235 236 page = __its_alloc(pages); 237 if (!page) 238 return NULL; 239 240 execmem_make_temp_rw(page, PAGE_SIZE); 241 if (pages == &its_pages) 242 set_memory_x((unsigned long)page, 1); 243 244 return page; 245 } 246 247 static void *its_allocate_thunk(int reg) 248 { 249 int size = 3 + (reg / 8); 250 void *thunk; 251 252 #ifdef CONFIG_FINEIBT 253 /* 254 * The ITS thunk contains an indirect jump and an int3 instruction so 255 * its size is 3 or 4 bytes depending on the register used. If CFI 256 * paranoid is used then 3 extra bytes are added in the ITS thunk to 257 * complete the fineibt_paranoid caller sequence. 258 */ 259 if (cfi_paranoid) 260 size += 3; 261 #endif 262 263 if (!its_page || (its_offset + size - 1) >= PAGE_SIZE) { 264 its_page = its_alloc(); 265 if (!its_page) { 266 pr_err("ITS page allocation failed\n"); 267 return NULL; 268 } 269 memset(its_page, INT3_INSN_OPCODE, PAGE_SIZE); 270 its_offset = 32; 271 } 272 273 /* 274 * If the indirect branch instruction will be in the lower half 275 * of a cacheline, then update the offset to reach the upper half. 276 */ 277 if ((its_offset + size - 1) % 64 < 32) 278 its_offset = ((its_offset - 1) | 0x3F) + 33; 279 280 thunk = its_page + its_offset; 281 its_offset += size; 282 283 return its_init_thunk(thunk, reg); 284 } 285 286 u8 *its_static_thunk(int reg) 287 { 288 u8 *thunk = __x86_indirect_its_thunk_array[reg]; 289 290 #ifdef CONFIG_FINEIBT 291 /* Paranoid thunk starts 2 bytes before */ 292 if (cfi_paranoid) 293 return thunk - 2; 294 #endif 295 return thunk; 296 } 297 298 #else 299 static inline void its_fini_core(void) {} 300 #endif /* CONFIG_MITIGATION_ITS */ 301 302 /* 303 * Nomenclature for variable names to simplify and clarify this code and ease 304 * any potential staring at it: 305 * 306 * @instr: source address of the original instructions in the kernel text as 307 * generated by the compiler. 308 * 309 * @buf: temporary buffer on which the patching operates. This buffer is 310 * eventually text-poked into the kernel image. 311 * 312 * @replacement/@repl: pointer to the opcodes which are replacing @instr, located 313 * in the .altinstr_replacement section. 314 */ 315 316 /* 317 * Fill the buffer with a single effective instruction of size @len. 318 * 319 * In order not to issue an ORC stack depth tracking CFI entry (Call Frame Info) 320 * for every single-byte NOP, try to generate the maximally available NOP of 321 * size <= ASM_NOP_MAX such that only a single CFI entry is generated (vs one for 322 * each single-byte NOPs). If @len to fill out is > ASM_NOP_MAX, pad with INT3 and 323 * *jump* over instead of executing long and daft NOPs. 324 */ 325 static void add_nop(u8 *buf, unsigned int len) 326 { 327 u8 *target = buf + len; 328 329 if (!len) 330 return; 331 332 if (len <= ASM_NOP_MAX) { 333 memcpy(buf, x86_nops[len], len); 334 return; 335 } 336 337 if (len < 128) { 338 __text_gen_insn(buf, JMP8_INSN_OPCODE, buf, target, JMP8_INSN_SIZE); 339 buf += JMP8_INSN_SIZE; 340 } else { 341 __text_gen_insn(buf, JMP32_INSN_OPCODE, buf, target, JMP32_INSN_SIZE); 342 buf += JMP32_INSN_SIZE; 343 } 344 345 for (;buf < target; buf++) 346 *buf = INT3_INSN_OPCODE; 347 } 348 349 /* 350 * Matches NOP and NOPL, not any of the other possible NOPs. 351 */ 352 static bool insn_is_nop(struct insn *insn) 353 { 354 /* Anything NOP, but no REP NOP */ 355 if (insn->opcode.bytes[0] == 0x90 && 356 (!insn->prefixes.nbytes || insn->prefixes.bytes[0] != 0xF3)) 357 return true; 358 359 /* NOPL */ 360 if (insn->opcode.bytes[0] == 0x0F && insn->opcode.bytes[1] == 0x1F) 361 return true; 362 363 /* TODO: more nops */ 364 365 return false; 366 } 367 368 /* 369 * Find the offset of the first non-NOP instruction starting at @offset 370 * but no further than @len. 371 */ 372 static int skip_nops(u8 *buf, int offset, int len) 373 { 374 struct insn insn; 375 376 for (; offset < len; offset += insn.length) { 377 if (insn_decode_kernel(&insn, &buf[offset])) 378 break; 379 380 if (!insn_is_nop(&insn)) 381 break; 382 } 383 384 return offset; 385 } 386 387 /* 388 * "noinline" to cause control flow change and thus invalidate I$ and 389 * cause refetch after modification. 390 */ 391 static void noinline optimize_nops(const u8 * const instr, u8 *buf, size_t len) 392 { 393 for (int next, i = 0; i < len; i = next) { 394 struct insn insn; 395 396 if (insn_decode_kernel(&insn, &buf[i])) 397 return; 398 399 next = i + insn.length; 400 401 if (insn_is_nop(&insn)) { 402 int nop = i; 403 404 /* Has the NOP already been optimized? */ 405 if (i + insn.length == len) 406 return; 407 408 next = skip_nops(buf, next, len); 409 410 add_nop(buf + nop, next - nop); 411 DUMP_BYTES(ALT, buf, len, "%px: [%d:%d) optimized NOPs: ", instr, nop, next); 412 } 413 } 414 } 415 416 /* 417 * In this context, "source" is where the instructions are placed in the 418 * section .altinstr_replacement, for example during kernel build by the 419 * toolchain. 420 * "Destination" is where the instructions are being patched in by this 421 * machinery. 422 * 423 * The source offset is: 424 * 425 * src_imm = target - src_next_ip (1) 426 * 427 * and the target offset is: 428 * 429 * dst_imm = target - dst_next_ip (2) 430 * 431 * so rework (1) as an expression for target like: 432 * 433 * target = src_imm + src_next_ip (1a) 434 * 435 * and substitute in (2) to get: 436 * 437 * dst_imm = (src_imm + src_next_ip) - dst_next_ip (3) 438 * 439 * Now, since the instruction stream is 'identical' at src and dst (it 440 * is being copied after all) it can be stated that: 441 * 442 * src_next_ip = src + ip_offset 443 * dst_next_ip = dst + ip_offset (4) 444 * 445 * Substitute (4) in (3) and observe ip_offset being cancelled out to 446 * obtain: 447 * 448 * dst_imm = src_imm + (src + ip_offset) - (dst + ip_offset) 449 * = src_imm + src - dst + ip_offset - ip_offset 450 * = src_imm + src - dst (5) 451 * 452 * IOW, only the relative displacement of the code block matters. 453 */ 454 455 #define apply_reloc_n(n_, p_, d_) \ 456 do { \ 457 s32 v = *(s##n_ *)(p_); \ 458 v += (d_); \ 459 BUG_ON((v >> 31) != (v >> (n_-1))); \ 460 *(s##n_ *)(p_) = (s##n_)v; \ 461 } while (0) 462 463 464 static __always_inline 465 void apply_reloc(int n, void *ptr, uintptr_t diff) 466 { 467 switch (n) { 468 case 1: apply_reloc_n(8, ptr, diff); break; 469 case 2: apply_reloc_n(16, ptr, diff); break; 470 case 4: apply_reloc_n(32, ptr, diff); break; 471 default: BUG(); 472 } 473 } 474 475 static __always_inline 476 bool need_reloc(unsigned long offset, u8 *src, size_t src_len) 477 { 478 u8 *target = src + offset; 479 /* 480 * If the target is inside the patched block, it's relative to the 481 * block itself and does not need relocation. 482 */ 483 return (target < src || target > src + src_len); 484 } 485 486 static void __apply_relocation(u8 *buf, const u8 * const instr, size_t instrlen, u8 *repl, size_t repl_len) 487 { 488 for (int next, i = 0; i < instrlen; i = next) { 489 struct insn insn; 490 491 if (WARN_ON_ONCE(insn_decode_kernel(&insn, &buf[i]))) 492 return; 493 494 next = i + insn.length; 495 496 switch (insn.opcode.bytes[0]) { 497 case 0x0f: 498 if (insn.opcode.bytes[1] < 0x80 || 499 insn.opcode.bytes[1] > 0x8f) 500 break; 501 502 fallthrough; /* Jcc.d32 */ 503 case 0x70 ... 0x7f: /* Jcc.d8 */ 504 case JMP8_INSN_OPCODE: 505 case JMP32_INSN_OPCODE: 506 case CALL_INSN_OPCODE: 507 if (need_reloc(next + insn.immediate.value, repl, repl_len)) { 508 apply_reloc(insn.immediate.nbytes, 509 buf + i + insn_offset_immediate(&insn), 510 repl - instr); 511 } 512 513 /* 514 * Where possible, convert JMP.d32 into JMP.d8. 515 */ 516 if (insn.opcode.bytes[0] == JMP32_INSN_OPCODE) { 517 s32 imm = insn.immediate.value; 518 imm += repl - instr; 519 imm += JMP32_INSN_SIZE - JMP8_INSN_SIZE; 520 if ((imm >> 31) == (imm >> 7)) { 521 buf[i+0] = JMP8_INSN_OPCODE; 522 buf[i+1] = (s8)imm; 523 524 memset(&buf[i+2], INT3_INSN_OPCODE, insn.length - 2); 525 } 526 } 527 break; 528 } 529 530 if (insn_rip_relative(&insn)) { 531 if (need_reloc(next + insn.displacement.value, repl, repl_len)) { 532 apply_reloc(insn.displacement.nbytes, 533 buf + i + insn_offset_displacement(&insn), 534 repl - instr); 535 } 536 } 537 } 538 } 539 540 void text_poke_apply_relocation(u8 *buf, const u8 * const instr, size_t instrlen, u8 *repl, size_t repl_len) 541 { 542 __apply_relocation(buf, instr, instrlen, repl, repl_len); 543 optimize_nops(instr, buf, instrlen); 544 } 545 546 /* Low-level backend functions usable from alternative code replacements. */ 547 DEFINE_ASM_FUNC(nop_func, "", .entry.text); 548 EXPORT_SYMBOL_GPL(nop_func); 549 550 noinstr void BUG_func(void) 551 { 552 BUG(); 553 } 554 EXPORT_SYMBOL(BUG_func); 555 556 #define CALL_RIP_REL_OPCODE 0xff 557 #define CALL_RIP_REL_MODRM 0x15 558 559 /* 560 * Rewrite the "call BUG_func" replacement to point to the target of the 561 * indirect pv_ops call "call *disp(%ip)". 562 */ 563 static int alt_replace_call(u8 *instr, u8 *insn_buff, struct alt_instr *a) 564 { 565 void *target, *bug = &BUG_func; 566 s32 disp; 567 568 if (a->replacementlen != 5 || insn_buff[0] != CALL_INSN_OPCODE) { 569 pr_err("ALT_FLAG_DIRECT_CALL set for a non-call replacement instruction\n"); 570 BUG(); 571 } 572 573 if (a->instrlen != 6 || 574 instr[0] != CALL_RIP_REL_OPCODE || 575 instr[1] != CALL_RIP_REL_MODRM) { 576 pr_err("ALT_FLAG_DIRECT_CALL set for unrecognized indirect call\n"); 577 BUG(); 578 } 579 580 /* Skip CALL_RIP_REL_OPCODE and CALL_RIP_REL_MODRM */ 581 disp = *(s32 *)(instr + 2); 582 #ifdef CONFIG_X86_64 583 /* ff 15 00 00 00 00 call *0x0(%rip) */ 584 /* target address is stored at "next instruction + disp". */ 585 target = *(void **)(instr + a->instrlen + disp); 586 #else 587 /* ff 15 00 00 00 00 call *0x0 */ 588 /* target address is stored at disp. */ 589 target = *(void **)disp; 590 #endif 591 if (!target) 592 target = bug; 593 594 /* (BUG_func - .) + (target - BUG_func) := target - . */ 595 *(s32 *)(insn_buff + 1) += target - bug; 596 597 if (target == &nop_func) 598 return 0; 599 600 return 5; 601 } 602 603 static inline u8 * instr_va(struct alt_instr *i) 604 { 605 return (u8 *)&i->instr_offset + i->instr_offset; 606 } 607 608 /* 609 * Replace instructions with better alternatives for this CPU type. This runs 610 * before SMP is initialized to avoid SMP problems with self modifying code. 611 * This implies that asymmetric systems where APs have less capabilities than 612 * the boot processor are not handled. Tough. Make sure you disable such 613 * features by hand. 614 * 615 * Marked "noinline" to cause control flow change and thus insn cache 616 * to refetch changed I$ lines. 617 */ 618 void __init_or_module noinline apply_alternatives(struct alt_instr *start, 619 struct alt_instr *end) 620 { 621 u8 insn_buff[MAX_PATCH_LEN]; 622 u8 *instr, *replacement; 623 struct alt_instr *a, *b; 624 625 DPRINTK(ALT, "alt table %px, -> %px", start, end); 626 627 /* 628 * KASAN_SHADOW_START is defined using 629 * cpu_feature_enabled(X86_FEATURE_LA57) and is therefore patched here. 630 * During the process, KASAN becomes confused seeing partial LA57 631 * conversion and triggers a false-positive out-of-bound report. 632 * 633 * Disable KASAN until the patching is complete. 634 */ 635 kasan_disable_current(); 636 637 /* 638 * The scan order should be from start to end. A later scanned 639 * alternative code can overwrite previously scanned alternative code. 640 * Some kernel functions (e.g. memcpy, memset, etc) use this order to 641 * patch code. 642 * 643 * So be careful if you want to change the scan order to any other 644 * order. 645 */ 646 for (a = start; a < end; a++) { 647 int insn_buff_sz = 0; 648 649 /* 650 * In case of nested ALTERNATIVE()s the outer alternative might 651 * add more padding. To ensure consistent patching find the max 652 * padding for all alt_instr entries for this site (nested 653 * alternatives result in consecutive entries). 654 */ 655 for (b = a+1; b < end && instr_va(b) == instr_va(a); b++) { 656 u8 len = max(a->instrlen, b->instrlen); 657 a->instrlen = b->instrlen = len; 658 } 659 660 instr = instr_va(a); 661 replacement = (u8 *)&a->repl_offset + a->repl_offset; 662 BUG_ON(a->instrlen > sizeof(insn_buff)); 663 BUG_ON(a->cpuid >= (NCAPINTS + NBUGINTS) * 32); 664 665 /* 666 * Patch if either: 667 * - feature is present 668 * - feature not present but ALT_FLAG_NOT is set to mean, 669 * patch if feature is *NOT* present. 670 */ 671 if (!boot_cpu_has(a->cpuid) == !(a->flags & ALT_FLAG_NOT)) { 672 memcpy(insn_buff, instr, a->instrlen); 673 optimize_nops(instr, insn_buff, a->instrlen); 674 text_poke_early(instr, insn_buff, a->instrlen); 675 continue; 676 } 677 678 DPRINTK(ALT, "feat: %d*32+%d, old: (%pS (%px) len: %d), repl: (%px, len: %d) flags: 0x%x", 679 a->cpuid >> 5, 680 a->cpuid & 0x1f, 681 instr, instr, a->instrlen, 682 replacement, a->replacementlen, a->flags); 683 684 memcpy(insn_buff, replacement, a->replacementlen); 685 insn_buff_sz = a->replacementlen; 686 687 if (a->flags & ALT_FLAG_DIRECT_CALL) { 688 insn_buff_sz = alt_replace_call(instr, insn_buff, a); 689 if (insn_buff_sz < 0) 690 continue; 691 } 692 693 for (; insn_buff_sz < a->instrlen; insn_buff_sz++) 694 insn_buff[insn_buff_sz] = 0x90; 695 696 text_poke_apply_relocation(insn_buff, instr, a->instrlen, replacement, a->replacementlen); 697 698 DUMP_BYTES(ALT, instr, a->instrlen, "%px: old_insn: ", instr); 699 DUMP_BYTES(ALT, replacement, a->replacementlen, "%px: rpl_insn: ", replacement); 700 DUMP_BYTES(ALT, insn_buff, insn_buff_sz, "%px: final_insn: ", instr); 701 702 text_poke_early(instr, insn_buff, insn_buff_sz); 703 } 704 705 kasan_enable_current(); 706 } 707 708 static inline bool is_jcc32(struct insn *insn) 709 { 710 /* Jcc.d32 second opcode byte is in the range: 0x80-0x8f */ 711 return insn->opcode.bytes[0] == 0x0f && (insn->opcode.bytes[1] & 0xf0) == 0x80; 712 } 713 714 #if defined(CONFIG_MITIGATION_RETPOLINE) && defined(CONFIG_OBJTOOL) 715 716 /* 717 * CALL/JMP *%\reg 718 */ 719 static int emit_indirect(int op, int reg, u8 *bytes) 720 { 721 int i = 0; 722 u8 modrm; 723 724 switch (op) { 725 case CALL_INSN_OPCODE: 726 modrm = 0x10; /* Reg = 2; CALL r/m */ 727 break; 728 729 case JMP32_INSN_OPCODE: 730 modrm = 0x20; /* Reg = 4; JMP r/m */ 731 break; 732 733 default: 734 WARN_ON_ONCE(1); 735 return -1; 736 } 737 738 if (reg >= 8) { 739 bytes[i++] = 0x41; /* REX.B prefix */ 740 reg -= 8; 741 } 742 743 modrm |= 0xc0; /* Mod = 3 */ 744 modrm += reg; 745 746 bytes[i++] = 0xff; /* opcode */ 747 bytes[i++] = modrm; 748 749 return i; 750 } 751 752 static int __emit_trampoline(void *addr, struct insn *insn, u8 *bytes, 753 void *call_dest, void *jmp_dest) 754 { 755 u8 op = insn->opcode.bytes[0]; 756 int i = 0; 757 758 /* 759 * Clang does 'weird' Jcc __x86_indirect_thunk_r11 conditional 760 * tail-calls. Deal with them. 761 */ 762 if (is_jcc32(insn)) { 763 bytes[i++] = op; 764 op = insn->opcode.bytes[1]; 765 goto clang_jcc; 766 } 767 768 if (insn->length == 6) 769 bytes[i++] = 0x2e; /* CS-prefix */ 770 771 switch (op) { 772 case CALL_INSN_OPCODE: 773 __text_gen_insn(bytes+i, op, addr+i, 774 call_dest, 775 CALL_INSN_SIZE); 776 i += CALL_INSN_SIZE; 777 break; 778 779 case JMP32_INSN_OPCODE: 780 clang_jcc: 781 __text_gen_insn(bytes+i, op, addr+i, 782 jmp_dest, 783 JMP32_INSN_SIZE); 784 i += JMP32_INSN_SIZE; 785 break; 786 787 default: 788 WARN(1, "%pS %px %*ph\n", addr, addr, 6, addr); 789 return -1; 790 } 791 792 WARN_ON_ONCE(i != insn->length); 793 794 return i; 795 } 796 797 static int emit_call_track_retpoline(void *addr, struct insn *insn, int reg, u8 *bytes) 798 { 799 return __emit_trampoline(addr, insn, bytes, 800 __x86_indirect_call_thunk_array[reg], 801 __x86_indirect_jump_thunk_array[reg]); 802 } 803 804 #ifdef CONFIG_MITIGATION_ITS 805 static int emit_its_trampoline(void *addr, struct insn *insn, int reg, u8 *bytes) 806 { 807 u8 *thunk = __x86_indirect_its_thunk_array[reg]; 808 u8 *tmp = its_allocate_thunk(reg); 809 810 if (tmp) 811 thunk = tmp; 812 813 return __emit_trampoline(addr, insn, bytes, thunk, thunk); 814 } 815 816 /* Check if an indirect branch is at ITS-unsafe address */ 817 static bool cpu_wants_indirect_its_thunk_at(unsigned long addr, int reg) 818 { 819 if (!cpu_feature_enabled(X86_FEATURE_INDIRECT_THUNK_ITS)) 820 return false; 821 822 /* Indirect branch opcode is 2 or 3 bytes depending on reg */ 823 addr += 1 + reg / 8; 824 825 /* Lower-half of the cacheline? */ 826 return !(addr & 0x20); 827 } 828 #else /* CONFIG_MITIGATION_ITS */ 829 830 #ifdef CONFIG_FINEIBT 831 static bool cpu_wants_indirect_its_thunk_at(unsigned long addr, int reg) 832 { 833 return false; 834 } 835 #endif 836 837 #endif /* CONFIG_MITIGATION_ITS */ 838 839 /* 840 * Rewrite the compiler generated retpoline thunk calls. 841 * 842 * For spectre_v2=off (!X86_FEATURE_RETPOLINE), rewrite them into immediate 843 * indirect instructions, avoiding the extra indirection. 844 * 845 * For example, convert: 846 * 847 * CALL __x86_indirect_thunk_\reg 848 * 849 * into: 850 * 851 * CALL *%\reg 852 * 853 * It also tries to inline spectre_v2=retpoline,lfence when size permits. 854 */ 855 static int patch_retpoline(void *addr, struct insn *insn, u8 *bytes) 856 { 857 retpoline_thunk_t *target; 858 int reg, ret, i = 0; 859 u8 op, cc; 860 861 target = addr + insn->length + insn->immediate.value; 862 reg = target - __x86_indirect_thunk_array; 863 864 if (WARN_ON_ONCE(reg & ~0xf)) 865 return -1; 866 867 /* If anyone ever does: CALL/JMP *%rsp, we're in deep trouble. */ 868 BUG_ON(reg == 4); 869 870 if (cpu_feature_enabled(X86_FEATURE_RETPOLINE) && 871 !cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE)) { 872 if (cpu_feature_enabled(X86_FEATURE_CALL_DEPTH)) 873 return emit_call_track_retpoline(addr, insn, reg, bytes); 874 875 return -1; 876 } 877 878 op = insn->opcode.bytes[0]; 879 880 /* 881 * Convert: 882 * 883 * Jcc.d32 __x86_indirect_thunk_\reg 884 * 885 * into: 886 * 887 * Jncc.d8 1f 888 * [ LFENCE ] 889 * JMP *%\reg 890 * [ NOP ] 891 * 1: 892 */ 893 if (is_jcc32(insn)) { 894 cc = insn->opcode.bytes[1] & 0xf; 895 cc ^= 1; /* invert condition */ 896 897 bytes[i++] = 0x70 + cc; /* Jcc.d8 */ 898 bytes[i++] = insn->length - 2; /* sizeof(Jcc.d8) == 2 */ 899 900 /* Continue as if: JMP.d32 __x86_indirect_thunk_\reg */ 901 op = JMP32_INSN_OPCODE; 902 } 903 904 /* 905 * For RETPOLINE_LFENCE: prepend the indirect CALL/JMP with an LFENCE. 906 */ 907 if (cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE)) { 908 bytes[i++] = 0x0f; 909 bytes[i++] = 0xae; 910 bytes[i++] = 0xe8; /* LFENCE */ 911 } 912 913 #ifdef CONFIG_MITIGATION_ITS 914 /* 915 * Check if the address of last byte of emitted-indirect is in 916 * lower-half of the cacheline. Such branches need ITS mitigation. 917 */ 918 if (cpu_wants_indirect_its_thunk_at((unsigned long)addr + i, reg)) 919 return emit_its_trampoline(addr, insn, reg, bytes); 920 #endif 921 922 ret = emit_indirect(op, reg, bytes + i); 923 if (ret < 0) 924 return ret; 925 i += ret; 926 927 /* 928 * The compiler is supposed to EMIT an INT3 after every unconditional 929 * JMP instruction due to AMD BTC. However, if the compiler is too old 930 * or MITIGATION_SLS isn't enabled, we still need an INT3 after 931 * indirect JMPs even on Intel. 932 */ 933 if (op == JMP32_INSN_OPCODE && i < insn->length) 934 bytes[i++] = INT3_INSN_OPCODE; 935 936 for (; i < insn->length;) 937 bytes[i++] = BYTES_NOP1; 938 939 return i; 940 } 941 942 /* 943 * Generated by 'objtool --retpoline'. 944 */ 945 void __init_or_module noinline apply_retpolines(s32 *start, s32 *end) 946 { 947 s32 *s; 948 949 for (s = start; s < end; s++) { 950 void *addr = (void *)s + *s; 951 struct insn insn; 952 int len, ret; 953 u8 bytes[16]; 954 u8 op1, op2; 955 u8 *dest; 956 957 ret = insn_decode_kernel(&insn, addr); 958 if (WARN_ON_ONCE(ret < 0)) 959 continue; 960 961 op1 = insn.opcode.bytes[0]; 962 op2 = insn.opcode.bytes[1]; 963 964 switch (op1) { 965 case 0x70 ... 0x7f: /* Jcc.d8 */ 966 /* See cfi_paranoid. */ 967 WARN_ON_ONCE(cfi_mode != CFI_FINEIBT); 968 continue; 969 970 case CALL_INSN_OPCODE: 971 case JMP32_INSN_OPCODE: 972 /* Check for cfi_paranoid + ITS */ 973 dest = addr + insn.length + insn.immediate.value; 974 if (dest[-1] == 0xea && (dest[0] & 0xf0) == 0x70) { 975 WARN_ON_ONCE(cfi_mode != CFI_FINEIBT); 976 continue; 977 } 978 break; 979 980 case 0x0f: /* escape */ 981 if (op2 >= 0x80 && op2 <= 0x8f) 982 break; 983 fallthrough; 984 default: 985 WARN_ON_ONCE(1); 986 continue; 987 } 988 989 DPRINTK(RETPOLINE, "retpoline at: %pS (%px) len: %d to: %pS", 990 addr, addr, insn.length, 991 addr + insn.length + insn.immediate.value); 992 993 len = patch_retpoline(addr, &insn, bytes); 994 if (len == insn.length) { 995 optimize_nops(addr, bytes, len); 996 DUMP_BYTES(RETPOLINE, ((u8*)addr), len, "%px: orig: ", addr); 997 DUMP_BYTES(RETPOLINE, ((u8*)bytes), len, "%px: repl: ", addr); 998 text_poke_early(addr, bytes, len); 999 } 1000 } 1001 } 1002 1003 #ifdef CONFIG_MITIGATION_RETHUNK 1004 1005 bool cpu_wants_rethunk(void) 1006 { 1007 return cpu_feature_enabled(X86_FEATURE_RETHUNK); 1008 } 1009 1010 bool cpu_wants_rethunk_at(void *addr) 1011 { 1012 if (!cpu_feature_enabled(X86_FEATURE_RETHUNK)) 1013 return false; 1014 if (x86_return_thunk != its_return_thunk) 1015 return true; 1016 1017 return !((unsigned long)addr & 0x20); 1018 } 1019 1020 /* 1021 * Rewrite the compiler generated return thunk tail-calls. 1022 * 1023 * For example, convert: 1024 * 1025 * JMP __x86_return_thunk 1026 * 1027 * into: 1028 * 1029 * RET 1030 */ 1031 static int patch_return(void *addr, struct insn *insn, u8 *bytes) 1032 { 1033 int i = 0; 1034 1035 /* Patch the custom return thunks... */ 1036 if (cpu_wants_rethunk_at(addr)) { 1037 i = JMP32_INSN_SIZE; 1038 __text_gen_insn(bytes, JMP32_INSN_OPCODE, addr, x86_return_thunk, i); 1039 } else { 1040 /* ... or patch them out if not needed. */ 1041 bytes[i++] = RET_INSN_OPCODE; 1042 } 1043 1044 for (; i < insn->length;) 1045 bytes[i++] = INT3_INSN_OPCODE; 1046 return i; 1047 } 1048 1049 void __init_or_module noinline apply_returns(s32 *start, s32 *end) 1050 { 1051 s32 *s; 1052 1053 if (cpu_wants_rethunk()) 1054 static_call_force_reinit(); 1055 1056 for (s = start; s < end; s++) { 1057 void *dest = NULL, *addr = (void *)s + *s; 1058 struct insn insn; 1059 int len, ret; 1060 u8 bytes[16]; 1061 u8 op; 1062 1063 ret = insn_decode_kernel(&insn, addr); 1064 if (WARN_ON_ONCE(ret < 0)) 1065 continue; 1066 1067 op = insn.opcode.bytes[0]; 1068 if (op == JMP32_INSN_OPCODE) 1069 dest = addr + insn.length + insn.immediate.value; 1070 1071 if (__static_call_fixup(addr, op, dest) || 1072 WARN_ONCE(dest != &__x86_return_thunk, 1073 "missing return thunk: %pS-%pS: %*ph", 1074 addr, dest, 5, addr)) 1075 continue; 1076 1077 DPRINTK(RET, "return thunk at: %pS (%px) len: %d to: %pS", 1078 addr, addr, insn.length, 1079 addr + insn.length + insn.immediate.value); 1080 1081 len = patch_return(addr, &insn, bytes); 1082 if (len == insn.length) { 1083 DUMP_BYTES(RET, ((u8*)addr), len, "%px: orig: ", addr); 1084 DUMP_BYTES(RET, ((u8*)bytes), len, "%px: repl: ", addr); 1085 text_poke_early(addr, bytes, len); 1086 } 1087 } 1088 } 1089 #else /* !CONFIG_MITIGATION_RETHUNK: */ 1090 void __init_or_module noinline apply_returns(s32 *start, s32 *end) { } 1091 #endif /* !CONFIG_MITIGATION_RETHUNK */ 1092 1093 #else /* !CONFIG_MITIGATION_RETPOLINE || !CONFIG_OBJTOOL */ 1094 1095 void __init_or_module noinline apply_retpolines(s32 *start, s32 *end) { } 1096 void __init_or_module noinline apply_returns(s32 *start, s32 *end) { } 1097 1098 #endif /* !CONFIG_MITIGATION_RETPOLINE || !CONFIG_OBJTOOL */ 1099 1100 #ifdef CONFIG_X86_KERNEL_IBT 1101 1102 __noendbr bool is_endbr(u32 *val) 1103 { 1104 u32 endbr; 1105 1106 __get_kernel_nofault(&endbr, val, u32, Efault); 1107 return __is_endbr(endbr); 1108 1109 Efault: 1110 return false; 1111 } 1112 1113 #ifdef CONFIG_FINEIBT 1114 1115 static __noendbr bool exact_endbr(u32 *val) 1116 { 1117 u32 endbr; 1118 1119 __get_kernel_nofault(&endbr, val, u32, Efault); 1120 return endbr == gen_endbr(); 1121 1122 Efault: 1123 return false; 1124 } 1125 1126 #endif 1127 1128 static void poison_cfi(void *addr); 1129 1130 static void __init_or_module poison_endbr(void *addr) 1131 { 1132 u32 poison = gen_endbr_poison(); 1133 1134 if (WARN_ON_ONCE(!is_endbr(addr))) 1135 return; 1136 1137 DPRINTK(ENDBR, "ENDBR at: %pS (%px)", addr, addr); 1138 1139 /* 1140 * When we have IBT, the lack of ENDBR will trigger #CP 1141 */ 1142 DUMP_BYTES(ENDBR, ((u8*)addr), 4, "%px: orig: ", addr); 1143 DUMP_BYTES(ENDBR, ((u8*)&poison), 4, "%px: repl: ", addr); 1144 text_poke_early(addr, &poison, 4); 1145 } 1146 1147 /* 1148 * Generated by: objtool --ibt 1149 * 1150 * Seal the functions for indirect calls by clobbering the ENDBR instructions 1151 * and the kCFI hash value. 1152 */ 1153 void __init_or_module noinline apply_seal_endbr(s32 *start, s32 *end) 1154 { 1155 s32 *s; 1156 1157 for (s = start; s < end; s++) { 1158 void *addr = (void *)s + *s; 1159 1160 poison_endbr(addr); 1161 if (IS_ENABLED(CONFIG_FINEIBT)) 1162 poison_cfi(addr - 16); 1163 } 1164 } 1165 1166 #else /* !CONFIG_X86_KERNEL_IBT: */ 1167 1168 void __init_or_module apply_seal_endbr(s32 *start, s32 *end) { } 1169 1170 #endif /* !CONFIG_X86_KERNEL_IBT */ 1171 1172 #ifdef CONFIG_CFI_AUTO_DEFAULT 1173 # define __CFI_DEFAULT CFI_AUTO 1174 #elif defined(CONFIG_CFI_CLANG) 1175 # define __CFI_DEFAULT CFI_KCFI 1176 #else 1177 # define __CFI_DEFAULT CFI_OFF 1178 #endif 1179 1180 enum cfi_mode cfi_mode __ro_after_init = __CFI_DEFAULT; 1181 1182 #ifdef CONFIG_FINEIBT_BHI 1183 bool cfi_bhi __ro_after_init = false; 1184 #endif 1185 1186 #ifdef CONFIG_CFI_CLANG 1187 u32 cfi_get_func_hash(void *func) 1188 { 1189 u32 hash; 1190 1191 func -= cfi_get_offset(); 1192 switch (cfi_mode) { 1193 case CFI_FINEIBT: 1194 func += 7; 1195 break; 1196 case CFI_KCFI: 1197 func += 1; 1198 break; 1199 default: 1200 return 0; 1201 } 1202 1203 if (get_kernel_nofault(hash, func)) 1204 return 0; 1205 1206 return hash; 1207 } 1208 1209 int cfi_get_func_arity(void *func) 1210 { 1211 bhi_thunk *target; 1212 s32 disp; 1213 1214 if (cfi_mode != CFI_FINEIBT && !cfi_bhi) 1215 return 0; 1216 1217 if (get_kernel_nofault(disp, func - 4)) 1218 return 0; 1219 1220 target = func + disp; 1221 return target - __bhi_args; 1222 } 1223 #endif 1224 1225 #ifdef CONFIG_FINEIBT 1226 1227 static bool cfi_rand __ro_after_init = true; 1228 static u32 cfi_seed __ro_after_init; 1229 1230 /* 1231 * Re-hash the CFI hash with a boot-time seed while making sure the result is 1232 * not a valid ENDBR instruction. 1233 */ 1234 static u32 cfi_rehash(u32 hash) 1235 { 1236 hash ^= cfi_seed; 1237 while (unlikely(__is_endbr(hash) || __is_endbr(-hash))) { 1238 bool lsb = hash & 1; 1239 hash >>= 1; 1240 if (lsb) 1241 hash ^= 0x80200003; 1242 } 1243 return hash; 1244 } 1245 1246 static __init int cfi_parse_cmdline(char *str) 1247 { 1248 if (!str) 1249 return -EINVAL; 1250 1251 while (str) { 1252 char *next = strchr(str, ','); 1253 if (next) { 1254 *next = 0; 1255 next++; 1256 } 1257 1258 if (!strcmp(str, "auto")) { 1259 cfi_mode = CFI_AUTO; 1260 } else if (!strcmp(str, "off")) { 1261 cfi_mode = CFI_OFF; 1262 cfi_rand = false; 1263 } else if (!strcmp(str, "kcfi")) { 1264 cfi_mode = CFI_KCFI; 1265 } else if (!strcmp(str, "fineibt")) { 1266 cfi_mode = CFI_FINEIBT; 1267 } else if (!strcmp(str, "norand")) { 1268 cfi_rand = false; 1269 } else if (!strcmp(str, "warn")) { 1270 pr_alert("CFI mismatch non-fatal!\n"); 1271 cfi_warn = true; 1272 } else if (!strcmp(str, "paranoid")) { 1273 if (cfi_mode == CFI_FINEIBT) { 1274 cfi_paranoid = true; 1275 } else { 1276 pr_err("Ignoring paranoid; depends on fineibt.\n"); 1277 } 1278 } else if (!strcmp(str, "bhi")) { 1279 #ifdef CONFIG_FINEIBT_BHI 1280 if (cfi_mode == CFI_FINEIBT) { 1281 cfi_bhi = true; 1282 } else { 1283 pr_err("Ignoring bhi; depends on fineibt.\n"); 1284 } 1285 #else 1286 pr_err("Ignoring bhi; depends on FINEIBT_BHI=y.\n"); 1287 #endif 1288 } else { 1289 pr_err("Ignoring unknown cfi option (%s).", str); 1290 } 1291 1292 str = next; 1293 } 1294 1295 return 0; 1296 } 1297 early_param("cfi", cfi_parse_cmdline); 1298 1299 /* 1300 * kCFI FineIBT 1301 * 1302 * __cfi_\func: __cfi_\func: 1303 * movl $0x12345678,%eax // 5 endbr64 // 4 1304 * nop subl $0x12345678,%r10d // 7 1305 * nop jne __cfi_\func+6 // 2 1306 * nop nop3 // 3 1307 * nop 1308 * nop 1309 * nop 1310 * nop 1311 * nop 1312 * nop 1313 * nop 1314 * nop 1315 * 1316 * 1317 * caller: caller: 1318 * movl $(-0x12345678),%r10d // 6 movl $0x12345678,%r10d // 6 1319 * addl $-15(%r11),%r10d // 4 lea -0x10(%r11),%r11 // 4 1320 * je 1f // 2 nop4 // 4 1321 * ud2 // 2 1322 * 1: cs call __x86_indirect_thunk_r11 // 6 call *%r11; nop3; // 6 1323 * 1324 */ 1325 1326 /* 1327 * <fineibt_preamble_start>: 1328 * 0: f3 0f 1e fa endbr64 1329 * 4: 41 81 <ea> 78 56 34 12 sub $0x12345678, %r10d 1330 * b: 75 f9 jne 6 <fineibt_preamble_start+0x6> 1331 * d: 0f 1f 00 nopl (%rax) 1332 * 1333 * Note that the JNE target is the 0xEA byte inside the SUB, this decodes as 1334 * (bad) on x86_64 and raises #UD. 1335 */ 1336 asm( ".pushsection .rodata \n" 1337 "fineibt_preamble_start: \n" 1338 " endbr64 \n" 1339 " subl $0x12345678, %r10d \n" 1340 "fineibt_preamble_bhi: \n" 1341 " jne fineibt_preamble_start+6 \n" 1342 ASM_NOP3 1343 "fineibt_preamble_end: \n" 1344 ".popsection\n" 1345 ); 1346 1347 extern u8 fineibt_preamble_start[]; 1348 extern u8 fineibt_preamble_bhi[]; 1349 extern u8 fineibt_preamble_end[]; 1350 1351 #define fineibt_preamble_size (fineibt_preamble_end - fineibt_preamble_start) 1352 #define fineibt_preamble_bhi (fineibt_preamble_bhi - fineibt_preamble_start) 1353 #define fineibt_preamble_ud 6 1354 #define fineibt_preamble_hash 7 1355 1356 /* 1357 * <fineibt_caller_start>: 1358 * 0: 41 ba 78 56 34 12 mov $0x12345678, %r10d 1359 * 6: 4d 8d 5b f0 lea -0x10(%r11), %r11 1360 * a: 0f 1f 40 00 nopl 0x0(%rax) 1361 */ 1362 asm( ".pushsection .rodata \n" 1363 "fineibt_caller_start: \n" 1364 " movl $0x12345678, %r10d \n" 1365 " lea -0x10(%r11), %r11 \n" 1366 ASM_NOP4 1367 "fineibt_caller_end: \n" 1368 ".popsection \n" 1369 ); 1370 1371 extern u8 fineibt_caller_start[]; 1372 extern u8 fineibt_caller_end[]; 1373 1374 #define fineibt_caller_size (fineibt_caller_end - fineibt_caller_start) 1375 #define fineibt_caller_hash 2 1376 1377 #define fineibt_caller_jmp (fineibt_caller_size - 2) 1378 1379 /* 1380 * Since FineIBT does hash validation on the callee side it is prone to 1381 * circumvention attacks where a 'naked' ENDBR instruction exists that 1382 * is not part of the fineibt_preamble sequence. 1383 * 1384 * Notably the x86 entry points must be ENDBR and equally cannot be 1385 * fineibt_preamble. 1386 * 1387 * The fineibt_paranoid caller sequence adds additional caller side 1388 * hash validation. This stops such circumvention attacks dead, but at the cost 1389 * of adding a load. 1390 * 1391 * <fineibt_paranoid_start>: 1392 * 0: 41 ba 78 56 34 12 mov $0x12345678, %r10d 1393 * 6: 45 3b 53 f7 cmp -0x9(%r11), %r10d 1394 * a: 4d 8d 5b <f0> lea -0x10(%r11), %r11 1395 * e: 75 fd jne d <fineibt_paranoid_start+0xd> 1396 * 10: 41 ff d3 call *%r11 1397 * 13: 90 nop 1398 * 1399 * Notably LEA does not modify flags and can be reordered with the CMP, 1400 * avoiding a dependency. Again, using a non-taken (backwards) branch 1401 * for the failure case, abusing LEA's immediate 0xf0 as LOCK prefix for the 1402 * Jcc.d8, causing #UD. 1403 */ 1404 asm( ".pushsection .rodata \n" 1405 "fineibt_paranoid_start: \n" 1406 " movl $0x12345678, %r10d \n" 1407 " cmpl -9(%r11), %r10d \n" 1408 " lea -0x10(%r11), %r11 \n" 1409 " jne fineibt_paranoid_start+0xd \n" 1410 "fineibt_paranoid_ind: \n" 1411 " call *%r11 \n" 1412 " nop \n" 1413 "fineibt_paranoid_end: \n" 1414 ".popsection \n" 1415 ); 1416 1417 extern u8 fineibt_paranoid_start[]; 1418 extern u8 fineibt_paranoid_ind[]; 1419 extern u8 fineibt_paranoid_end[]; 1420 1421 #define fineibt_paranoid_size (fineibt_paranoid_end - fineibt_paranoid_start) 1422 #define fineibt_paranoid_ind (fineibt_paranoid_ind - fineibt_paranoid_start) 1423 #define fineibt_paranoid_ud 0xd 1424 1425 static u32 decode_preamble_hash(void *addr, int *reg) 1426 { 1427 u8 *p = addr; 1428 1429 /* b8+reg 78 56 34 12 movl $0x12345678,\reg */ 1430 if (p[0] >= 0xb8 && p[0] < 0xc0) { 1431 if (reg) 1432 *reg = p[0] - 0xb8; 1433 return *(u32 *)(addr + 1); 1434 } 1435 1436 return 0; /* invalid hash value */ 1437 } 1438 1439 static u32 decode_caller_hash(void *addr) 1440 { 1441 u8 *p = addr; 1442 1443 /* 41 ba 88 a9 cb ed mov $(-0x12345678),%r10d */ 1444 if (p[0] == 0x41 && p[1] == 0xba) 1445 return -*(u32 *)(addr + 2); 1446 1447 /* e8 0c 88 a9 cb ed jmp.d8 +12 */ 1448 if (p[0] == JMP8_INSN_OPCODE && p[1] == fineibt_caller_jmp) 1449 return -*(u32 *)(addr + 2); 1450 1451 return 0; /* invalid hash value */ 1452 } 1453 1454 /* .retpoline_sites */ 1455 static int cfi_disable_callers(s32 *start, s32 *end) 1456 { 1457 /* 1458 * Disable kCFI by patching in a JMP.d8, this leaves the hash immediate 1459 * in tact for later usage. Also see decode_caller_hash() and 1460 * cfi_rewrite_callers(). 1461 */ 1462 const u8 jmp[] = { JMP8_INSN_OPCODE, fineibt_caller_jmp }; 1463 s32 *s; 1464 1465 for (s = start; s < end; s++) { 1466 void *addr = (void *)s + *s; 1467 u32 hash; 1468 1469 addr -= fineibt_caller_size; 1470 hash = decode_caller_hash(addr); 1471 if (!hash) /* nocfi callers */ 1472 continue; 1473 1474 text_poke_early(addr, jmp, 2); 1475 } 1476 1477 return 0; 1478 } 1479 1480 static int cfi_enable_callers(s32 *start, s32 *end) 1481 { 1482 /* 1483 * Re-enable kCFI, undo what cfi_disable_callers() did. 1484 */ 1485 const u8 mov[] = { 0x41, 0xba }; 1486 s32 *s; 1487 1488 for (s = start; s < end; s++) { 1489 void *addr = (void *)s + *s; 1490 u32 hash; 1491 1492 addr -= fineibt_caller_size; 1493 hash = decode_caller_hash(addr); 1494 if (!hash) /* nocfi callers */ 1495 continue; 1496 1497 text_poke_early(addr, mov, 2); 1498 } 1499 1500 return 0; 1501 } 1502 1503 /* .cfi_sites */ 1504 static int cfi_rand_preamble(s32 *start, s32 *end) 1505 { 1506 s32 *s; 1507 1508 for (s = start; s < end; s++) { 1509 void *addr = (void *)s + *s; 1510 u32 hash; 1511 1512 hash = decode_preamble_hash(addr, NULL); 1513 if (WARN(!hash, "no CFI hash found at: %pS %px %*ph\n", 1514 addr, addr, 5, addr)) 1515 return -EINVAL; 1516 1517 hash = cfi_rehash(hash); 1518 text_poke_early(addr + 1, &hash, 4); 1519 } 1520 1521 return 0; 1522 } 1523 1524 static void cfi_fineibt_bhi_preamble(void *addr, int arity) 1525 { 1526 if (!arity) 1527 return; 1528 1529 if (!cfi_warn && arity == 1) { 1530 /* 1531 * Crazy scheme to allow arity-1 inline: 1532 * 1533 * __cfi_foo: 1534 * 0: f3 0f 1e fa endbr64 1535 * 4: 41 81 <ea> 78 56 34 12 sub 0x12345678, %r10d 1536 * b: 49 0f 45 fa cmovne %r10, %rdi 1537 * f: 75 f5 jne __cfi_foo+6 1538 * 11: 0f 1f 00 nopl (%rax) 1539 * 1540 * Code that direct calls to foo()+0, decodes the tail end as: 1541 * 1542 * foo: 1543 * 0: f5 cmc 1544 * 1: 0f 1f 00 nopl (%rax) 1545 * 1546 * which clobbers CF, but does not affect anything ABI 1547 * wise. 1548 * 1549 * Notably, this scheme is incompatible with permissive CFI 1550 * because the CMOVcc is unconditional and RDI will have been 1551 * clobbered. 1552 */ 1553 const u8 magic[9] = { 1554 0x49, 0x0f, 0x45, 0xfa, 1555 0x75, 0xf5, 1556 BYTES_NOP3, 1557 }; 1558 1559 text_poke_early(addr + fineibt_preamble_bhi, magic, 9); 1560 1561 return; 1562 } 1563 1564 text_poke_early(addr + fineibt_preamble_bhi, 1565 text_gen_insn(CALL_INSN_OPCODE, 1566 addr + fineibt_preamble_bhi, 1567 __bhi_args[arity]), 1568 CALL_INSN_SIZE); 1569 } 1570 1571 static int cfi_rewrite_preamble(s32 *start, s32 *end) 1572 { 1573 s32 *s; 1574 1575 for (s = start; s < end; s++) { 1576 void *addr = (void *)s + *s; 1577 int arity; 1578 u32 hash; 1579 1580 /* 1581 * When the function doesn't start with ENDBR the compiler will 1582 * have determined there are no indirect calls to it and we 1583 * don't need no CFI either. 1584 */ 1585 if (!is_endbr(addr + 16)) 1586 continue; 1587 1588 hash = decode_preamble_hash(addr, &arity); 1589 if (WARN(!hash, "no CFI hash found at: %pS %px %*ph\n", 1590 addr, addr, 5, addr)) 1591 return -EINVAL; 1592 1593 text_poke_early(addr, fineibt_preamble_start, fineibt_preamble_size); 1594 WARN_ON(*(u32 *)(addr + fineibt_preamble_hash) != 0x12345678); 1595 text_poke_early(addr + fineibt_preamble_hash, &hash, 4); 1596 1597 WARN_ONCE(!IS_ENABLED(CONFIG_FINEIBT_BHI) && arity, 1598 "kCFI preamble has wrong register at: %pS %*ph\n", 1599 addr, 5, addr); 1600 1601 if (cfi_bhi) 1602 cfi_fineibt_bhi_preamble(addr, arity); 1603 } 1604 1605 return 0; 1606 } 1607 1608 static void cfi_rewrite_endbr(s32 *start, s32 *end) 1609 { 1610 s32 *s; 1611 1612 for (s = start; s < end; s++) { 1613 void *addr = (void *)s + *s; 1614 1615 if (!exact_endbr(addr + 16)) 1616 continue; 1617 1618 poison_endbr(addr + 16); 1619 } 1620 } 1621 1622 /* .retpoline_sites */ 1623 static int cfi_rand_callers(s32 *start, s32 *end) 1624 { 1625 s32 *s; 1626 1627 for (s = start; s < end; s++) { 1628 void *addr = (void *)s + *s; 1629 u32 hash; 1630 1631 addr -= fineibt_caller_size; 1632 hash = decode_caller_hash(addr); 1633 if (hash) { 1634 hash = -cfi_rehash(hash); 1635 text_poke_early(addr + 2, &hash, 4); 1636 } 1637 } 1638 1639 return 0; 1640 } 1641 1642 static int emit_paranoid_trampoline(void *addr, struct insn *insn, int reg, u8 *bytes) 1643 { 1644 u8 *thunk = (void *)__x86_indirect_its_thunk_array[reg] - 2; 1645 1646 #ifdef CONFIG_MITIGATION_ITS 1647 u8 *tmp = its_allocate_thunk(reg); 1648 if (tmp) 1649 thunk = tmp; 1650 #endif 1651 1652 return __emit_trampoline(addr, insn, bytes, thunk, thunk); 1653 } 1654 1655 static int cfi_rewrite_callers(s32 *start, s32 *end) 1656 { 1657 s32 *s; 1658 1659 BUG_ON(fineibt_paranoid_size != 20); 1660 1661 for (s = start; s < end; s++) { 1662 void *addr = (void *)s + *s; 1663 struct insn insn; 1664 u8 bytes[20]; 1665 u32 hash; 1666 int ret; 1667 u8 op; 1668 1669 addr -= fineibt_caller_size; 1670 hash = decode_caller_hash(addr); 1671 if (!hash) 1672 continue; 1673 1674 if (!cfi_paranoid) { 1675 text_poke_early(addr, fineibt_caller_start, fineibt_caller_size); 1676 WARN_ON(*(u32 *)(addr + fineibt_caller_hash) != 0x12345678); 1677 text_poke_early(addr + fineibt_caller_hash, &hash, 4); 1678 /* rely on apply_retpolines() */ 1679 continue; 1680 } 1681 1682 /* cfi_paranoid */ 1683 ret = insn_decode_kernel(&insn, addr + fineibt_caller_size); 1684 if (WARN_ON_ONCE(ret < 0)) 1685 continue; 1686 1687 op = insn.opcode.bytes[0]; 1688 if (op != CALL_INSN_OPCODE && op != JMP32_INSN_OPCODE) { 1689 WARN_ON_ONCE(1); 1690 continue; 1691 } 1692 1693 memcpy(bytes, fineibt_paranoid_start, fineibt_paranoid_size); 1694 memcpy(bytes + fineibt_caller_hash, &hash, 4); 1695 1696 if (cpu_wants_indirect_its_thunk_at((unsigned long)addr + fineibt_paranoid_ind, 11)) { 1697 emit_paranoid_trampoline(addr + fineibt_caller_size, 1698 &insn, 11, bytes + fineibt_caller_size); 1699 } else { 1700 ret = emit_indirect(op, 11, bytes + fineibt_paranoid_ind); 1701 if (WARN_ON_ONCE(ret != 3)) 1702 continue; 1703 } 1704 1705 text_poke_early(addr, bytes, fineibt_paranoid_size); 1706 } 1707 1708 return 0; 1709 } 1710 1711 static void __apply_fineibt(s32 *start_retpoline, s32 *end_retpoline, 1712 s32 *start_cfi, s32 *end_cfi, bool builtin) 1713 { 1714 int ret; 1715 1716 if (WARN_ONCE(fineibt_preamble_size != 16, 1717 "FineIBT preamble wrong size: %ld", fineibt_preamble_size)) 1718 return; 1719 1720 if (cfi_mode == CFI_AUTO) { 1721 cfi_mode = CFI_KCFI; 1722 if (HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT)) { 1723 /* 1724 * FRED has much saner context on exception entry and 1725 * is less easy to take advantage of. 1726 */ 1727 if (!cpu_feature_enabled(X86_FEATURE_FRED)) 1728 cfi_paranoid = true; 1729 cfi_mode = CFI_FINEIBT; 1730 } 1731 } 1732 1733 /* 1734 * Rewrite the callers to not use the __cfi_ stubs, such that we might 1735 * rewrite them. This disables all CFI. If this succeeds but any of the 1736 * later stages fails, we're without CFI. 1737 */ 1738 ret = cfi_disable_callers(start_retpoline, end_retpoline); 1739 if (ret) 1740 goto err; 1741 1742 if (cfi_rand) { 1743 if (builtin) { 1744 cfi_seed = get_random_u32(); 1745 cfi_bpf_hash = cfi_rehash(cfi_bpf_hash); 1746 cfi_bpf_subprog_hash = cfi_rehash(cfi_bpf_subprog_hash); 1747 } 1748 1749 ret = cfi_rand_preamble(start_cfi, end_cfi); 1750 if (ret) 1751 goto err; 1752 1753 ret = cfi_rand_callers(start_retpoline, end_retpoline); 1754 if (ret) 1755 goto err; 1756 } 1757 1758 switch (cfi_mode) { 1759 case CFI_OFF: 1760 if (builtin) 1761 pr_info("Disabling CFI\n"); 1762 return; 1763 1764 case CFI_KCFI: 1765 ret = cfi_enable_callers(start_retpoline, end_retpoline); 1766 if (ret) 1767 goto err; 1768 1769 if (builtin) 1770 pr_info("Using kCFI\n"); 1771 return; 1772 1773 case CFI_FINEIBT: 1774 /* place the FineIBT preamble at func()-16 */ 1775 ret = cfi_rewrite_preamble(start_cfi, end_cfi); 1776 if (ret) 1777 goto err; 1778 1779 /* rewrite the callers to target func()-16 */ 1780 ret = cfi_rewrite_callers(start_retpoline, end_retpoline); 1781 if (ret) 1782 goto err; 1783 1784 /* now that nobody targets func()+0, remove ENDBR there */ 1785 cfi_rewrite_endbr(start_cfi, end_cfi); 1786 1787 if (builtin) { 1788 pr_info("Using %sFineIBT%s CFI\n", 1789 cfi_paranoid ? "paranoid " : "", 1790 cfi_bhi ? "+BHI" : ""); 1791 } 1792 return; 1793 1794 default: 1795 break; 1796 } 1797 1798 err: 1799 pr_err("Something went horribly wrong trying to rewrite the CFI implementation.\n"); 1800 } 1801 1802 static inline void poison_hash(void *addr) 1803 { 1804 *(u32 *)addr = 0; 1805 } 1806 1807 static void poison_cfi(void *addr) 1808 { 1809 /* 1810 * Compilers manage to be inconsistent with ENDBR vs __cfi prefixes, 1811 * some (static) functions for which they can determine the address 1812 * is never taken do not get a __cfi prefix, but *DO* get an ENDBR. 1813 * 1814 * As such, these functions will get sealed, but we need to be careful 1815 * to not unconditionally scribble the previous function. 1816 */ 1817 switch (cfi_mode) { 1818 case CFI_FINEIBT: 1819 /* 1820 * FineIBT prefix should start with an ENDBR. 1821 */ 1822 if (!is_endbr(addr)) 1823 break; 1824 1825 /* 1826 * __cfi_\func: 1827 * osp nopl (%rax) 1828 * subl $0, %r10d 1829 * jz 1f 1830 * ud2 1831 * 1: nop 1832 */ 1833 poison_endbr(addr); 1834 poison_hash(addr + fineibt_preamble_hash); 1835 break; 1836 1837 case CFI_KCFI: 1838 /* 1839 * kCFI prefix should start with a valid hash. 1840 */ 1841 if (!decode_preamble_hash(addr, NULL)) 1842 break; 1843 1844 /* 1845 * __cfi_\func: 1846 * movl $0, %eax 1847 * .skip 11, 0x90 1848 */ 1849 poison_hash(addr + 1); 1850 break; 1851 1852 default: 1853 break; 1854 } 1855 } 1856 1857 /* 1858 * When regs->ip points to a 0xEA byte in the FineIBT preamble, 1859 * return true and fill out target and type. 1860 * 1861 * We check the preamble by checking for the ENDBR instruction relative to the 1862 * 0xEA instruction. 1863 */ 1864 static bool decode_fineibt_preamble(struct pt_regs *regs, unsigned long *target, u32 *type) 1865 { 1866 unsigned long addr = regs->ip - fineibt_preamble_ud; 1867 u32 hash; 1868 1869 if (!exact_endbr((void *)addr)) 1870 return false; 1871 1872 *target = addr + fineibt_preamble_size; 1873 1874 __get_kernel_nofault(&hash, addr + fineibt_preamble_hash, u32, Efault); 1875 *type = (u32)regs->r10 + hash; 1876 1877 /* 1878 * Since regs->ip points to the middle of an instruction; it cannot 1879 * continue with the normal fixup. 1880 */ 1881 regs->ip = *target; 1882 1883 return true; 1884 1885 Efault: 1886 return false; 1887 } 1888 1889 /* 1890 * regs->ip points to one of the UD2 in __bhi_args[]. 1891 */ 1892 static bool decode_fineibt_bhi(struct pt_regs *regs, unsigned long *target, u32 *type) 1893 { 1894 unsigned long addr; 1895 u32 hash; 1896 1897 if (!cfi_bhi) 1898 return false; 1899 1900 if (regs->ip < (unsigned long)__bhi_args || 1901 regs->ip >= (unsigned long)__bhi_args_end) 1902 return false; 1903 1904 /* 1905 * Fetch the return address from the stack, this points to the 1906 * FineIBT preamble. Since the CALL instruction is in the 5 last 1907 * bytes of the preamble, the return address is in fact the target 1908 * address. 1909 */ 1910 __get_kernel_nofault(&addr, regs->sp, unsigned long, Efault); 1911 *target = addr; 1912 1913 addr -= fineibt_preamble_size; 1914 if (!exact_endbr((void *)addr)) 1915 return false; 1916 1917 __get_kernel_nofault(&hash, addr + fineibt_preamble_hash, u32, Efault); 1918 *type = (u32)regs->r10 + hash; 1919 1920 /* 1921 * The UD2 sites are constructed with a RET immediately following, 1922 * as such the non-fatal case can use the regular fixup. 1923 */ 1924 return true; 1925 1926 Efault: 1927 return false; 1928 } 1929 1930 static bool is_paranoid_thunk(unsigned long addr) 1931 { 1932 u32 thunk; 1933 1934 __get_kernel_nofault(&thunk, (u32 *)addr, u32, Efault); 1935 return (thunk & 0x00FFFFFF) == 0xfd75ea; 1936 1937 Efault: 1938 return false; 1939 } 1940 1941 /* 1942 * regs->ip points to a LOCK Jcc.d8 instruction from the fineibt_paranoid_start[] 1943 * sequence, or to an invalid instruction (0xea) + Jcc.d8 for cfi_paranoid + ITS 1944 * thunk. 1945 */ 1946 static bool decode_fineibt_paranoid(struct pt_regs *regs, unsigned long *target, u32 *type) 1947 { 1948 unsigned long addr = regs->ip - fineibt_paranoid_ud; 1949 1950 if (!cfi_paranoid) 1951 return false; 1952 1953 if (is_cfi_trap(addr + fineibt_caller_size - LEN_UD2)) { 1954 *target = regs->r11 + fineibt_preamble_size; 1955 *type = regs->r10; 1956 1957 /* 1958 * Since the trapping instruction is the exact, but LOCK prefixed, 1959 * Jcc.d8 that got us here, the normal fixup will work. 1960 */ 1961 return true; 1962 } 1963 1964 /* 1965 * The cfi_paranoid + ITS thunk combination results in: 1966 * 1967 * 0: 41 ba 78 56 34 12 mov $0x12345678, %r10d 1968 * 6: 45 3b 53 f7 cmp -0x9(%r11), %r10d 1969 * a: 4d 8d 5b f0 lea -0x10(%r11), %r11 1970 * e: 2e e8 XX XX XX XX cs call __x86_indirect_paranoid_thunk_r11 1971 * 1972 * Where the paranoid_thunk looks like: 1973 * 1974 * 1d: <ea> (bad) 1975 * __x86_indirect_paranoid_thunk_r11: 1976 * 1e: 75 fd jne 1d 1977 * __x86_indirect_its_thunk_r11: 1978 * 20: 41 ff eb jmp *%r11 1979 * 23: cc int3 1980 * 1981 */ 1982 if (is_paranoid_thunk(regs->ip)) { 1983 *target = regs->r11 + fineibt_preamble_size; 1984 *type = regs->r10; 1985 1986 regs->ip = *target; 1987 return true; 1988 } 1989 1990 return false; 1991 } 1992 1993 bool decode_fineibt_insn(struct pt_regs *regs, unsigned long *target, u32 *type) 1994 { 1995 if (decode_fineibt_paranoid(regs, target, type)) 1996 return true; 1997 1998 if (decode_fineibt_bhi(regs, target, type)) 1999 return true; 2000 2001 return decode_fineibt_preamble(regs, target, type); 2002 } 2003 2004 #else /* !CONFIG_FINEIBT: */ 2005 2006 static void __apply_fineibt(s32 *start_retpoline, s32 *end_retpoline, 2007 s32 *start_cfi, s32 *end_cfi, bool builtin) 2008 { 2009 } 2010 2011 #ifdef CONFIG_X86_KERNEL_IBT 2012 static void poison_cfi(void *addr) { } 2013 #endif 2014 2015 #endif /* !CONFIG_FINEIBT */ 2016 2017 void apply_fineibt(s32 *start_retpoline, s32 *end_retpoline, 2018 s32 *start_cfi, s32 *end_cfi) 2019 { 2020 return __apply_fineibt(start_retpoline, end_retpoline, 2021 start_cfi, end_cfi, 2022 /* .builtin = */ false); 2023 } 2024 2025 #ifdef CONFIG_SMP 2026 static void alternatives_smp_lock(const s32 *start, const s32 *end, 2027 u8 *text, u8 *text_end) 2028 { 2029 const s32 *poff; 2030 2031 for (poff = start; poff < end; poff++) { 2032 u8 *ptr = (u8 *)poff + *poff; 2033 2034 if (!*poff || ptr < text || ptr >= text_end) 2035 continue; 2036 /* turn DS segment override prefix into lock prefix */ 2037 if (*ptr == 0x3e) 2038 text_poke(ptr, ((unsigned char []){0xf0}), 1); 2039 } 2040 } 2041 2042 static void alternatives_smp_unlock(const s32 *start, const s32 *end, 2043 u8 *text, u8 *text_end) 2044 { 2045 const s32 *poff; 2046 2047 for (poff = start; poff < end; poff++) { 2048 u8 *ptr = (u8 *)poff + *poff; 2049 2050 if (!*poff || ptr < text || ptr >= text_end) 2051 continue; 2052 /* turn lock prefix into DS segment override prefix */ 2053 if (*ptr == 0xf0) 2054 text_poke(ptr, ((unsigned char []){0x3E}), 1); 2055 } 2056 } 2057 2058 struct smp_alt_module { 2059 /* what is this ??? */ 2060 struct module *mod; 2061 char *name; 2062 2063 /* ptrs to lock prefixes */ 2064 const s32 *locks; 2065 const s32 *locks_end; 2066 2067 /* .text segment, needed to avoid patching init code ;) */ 2068 u8 *text; 2069 u8 *text_end; 2070 2071 struct list_head next; 2072 }; 2073 static LIST_HEAD(smp_alt_modules); 2074 static bool uniproc_patched = false; /* protected by text_mutex */ 2075 2076 void __init_or_module alternatives_smp_module_add(struct module *mod, 2077 char *name, 2078 void *locks, void *locks_end, 2079 void *text, void *text_end) 2080 { 2081 struct smp_alt_module *smp; 2082 2083 mutex_lock(&text_mutex); 2084 if (!uniproc_patched) 2085 goto unlock; 2086 2087 if (num_possible_cpus() == 1) 2088 /* Don't bother remembering, we'll never have to undo it. */ 2089 goto smp_unlock; 2090 2091 smp = kzalloc(sizeof(*smp), GFP_KERNEL); 2092 if (NULL == smp) 2093 /* we'll run the (safe but slow) SMP code then ... */ 2094 goto unlock; 2095 2096 smp->mod = mod; 2097 smp->name = name; 2098 smp->locks = locks; 2099 smp->locks_end = locks_end; 2100 smp->text = text; 2101 smp->text_end = text_end; 2102 DPRINTK(SMP, "locks %p -> %p, text %p -> %p, name %s\n", 2103 smp->locks, smp->locks_end, 2104 smp->text, smp->text_end, smp->name); 2105 2106 list_add_tail(&smp->next, &smp_alt_modules); 2107 smp_unlock: 2108 alternatives_smp_unlock(locks, locks_end, text, text_end); 2109 unlock: 2110 mutex_unlock(&text_mutex); 2111 } 2112 2113 void __init_or_module alternatives_smp_module_del(struct module *mod) 2114 { 2115 struct smp_alt_module *item; 2116 2117 mutex_lock(&text_mutex); 2118 list_for_each_entry(item, &smp_alt_modules, next) { 2119 if (mod != item->mod) 2120 continue; 2121 list_del(&item->next); 2122 kfree(item); 2123 break; 2124 } 2125 mutex_unlock(&text_mutex); 2126 } 2127 2128 void alternatives_enable_smp(void) 2129 { 2130 struct smp_alt_module *mod; 2131 2132 /* Why bother if there are no other CPUs? */ 2133 BUG_ON(num_possible_cpus() == 1); 2134 2135 mutex_lock(&text_mutex); 2136 2137 if (uniproc_patched) { 2138 pr_info("switching to SMP code\n"); 2139 BUG_ON(num_online_cpus() != 1); 2140 clear_cpu_cap(&boot_cpu_data, X86_FEATURE_UP); 2141 clear_cpu_cap(&cpu_data(0), X86_FEATURE_UP); 2142 list_for_each_entry(mod, &smp_alt_modules, next) 2143 alternatives_smp_lock(mod->locks, mod->locks_end, 2144 mod->text, mod->text_end); 2145 uniproc_patched = false; 2146 } 2147 mutex_unlock(&text_mutex); 2148 } 2149 2150 /* 2151 * Return 1 if the address range is reserved for SMP-alternatives. 2152 * Must hold text_mutex. 2153 */ 2154 int alternatives_text_reserved(void *start, void *end) 2155 { 2156 struct smp_alt_module *mod; 2157 const s32 *poff; 2158 u8 *text_start = start; 2159 u8 *text_end = end; 2160 2161 lockdep_assert_held(&text_mutex); 2162 2163 list_for_each_entry(mod, &smp_alt_modules, next) { 2164 if (mod->text > text_end || mod->text_end < text_start) 2165 continue; 2166 for (poff = mod->locks; poff < mod->locks_end; poff++) { 2167 const u8 *ptr = (const u8 *)poff + *poff; 2168 2169 if (text_start <= ptr && text_end > ptr) 2170 return 1; 2171 } 2172 } 2173 2174 return 0; 2175 } 2176 #endif /* CONFIG_SMP */ 2177 2178 /* 2179 * Self-test for the INT3 based CALL emulation code. 2180 * 2181 * This exercises int3_emulate_call() to make sure INT3 pt_regs are set up 2182 * properly and that there is a stack gap between the INT3 frame and the 2183 * previous context. Without this gap doing a virtual PUSH on the interrupted 2184 * stack would corrupt the INT3 IRET frame. 2185 * 2186 * See entry_{32,64}.S for more details. 2187 */ 2188 2189 /* 2190 * We define the int3_magic() function in assembly to control the calling 2191 * convention such that we can 'call' it from assembly. 2192 */ 2193 2194 extern void int3_magic(unsigned int *ptr); /* defined in asm */ 2195 2196 asm ( 2197 " .pushsection .init.text, \"ax\", @progbits\n" 2198 " .type int3_magic, @function\n" 2199 "int3_magic:\n" 2200 ANNOTATE_NOENDBR 2201 " movl $1, (%" _ASM_ARG1 ")\n" 2202 ASM_RET 2203 " .size int3_magic, .-int3_magic\n" 2204 " .popsection\n" 2205 ); 2206 2207 extern void int3_selftest_ip(void); /* defined in asm below */ 2208 2209 static int __init 2210 int3_exception_notify(struct notifier_block *self, unsigned long val, void *data) 2211 { 2212 unsigned long selftest = (unsigned long)&int3_selftest_ip; 2213 struct die_args *args = data; 2214 struct pt_regs *regs = args->regs; 2215 2216 OPTIMIZER_HIDE_VAR(selftest); 2217 2218 if (!regs || user_mode(regs)) 2219 return NOTIFY_DONE; 2220 2221 if (val != DIE_INT3) 2222 return NOTIFY_DONE; 2223 2224 if (regs->ip - INT3_INSN_SIZE != selftest) 2225 return NOTIFY_DONE; 2226 2227 int3_emulate_call(regs, (unsigned long)&int3_magic); 2228 return NOTIFY_STOP; 2229 } 2230 2231 /* Must be noinline to ensure uniqueness of int3_selftest_ip. */ 2232 static noinline void __init int3_selftest(void) 2233 { 2234 static __initdata struct notifier_block int3_exception_nb = { 2235 .notifier_call = int3_exception_notify, 2236 .priority = INT_MAX-1, /* last */ 2237 }; 2238 unsigned int val = 0; 2239 2240 BUG_ON(register_die_notifier(&int3_exception_nb)); 2241 2242 /* 2243 * Basically: int3_magic(&val); but really complicated :-) 2244 * 2245 * INT3 padded with NOP to CALL_INSN_SIZE. The int3_exception_nb 2246 * notifier above will emulate CALL for us. 2247 */ 2248 asm volatile ("int3_selftest_ip:\n\t" 2249 ANNOTATE_NOENDBR 2250 " int3; nop; nop; nop; nop\n\t" 2251 : ASM_CALL_CONSTRAINT 2252 : __ASM_SEL_RAW(a, D) (&val) 2253 : "memory"); 2254 2255 BUG_ON(val != 1); 2256 2257 unregister_die_notifier(&int3_exception_nb); 2258 } 2259 2260 static __initdata int __alt_reloc_selftest_addr; 2261 2262 extern void __init __alt_reloc_selftest(void *arg); 2263 __visible noinline void __init __alt_reloc_selftest(void *arg) 2264 { 2265 WARN_ON(arg != &__alt_reloc_selftest_addr); 2266 } 2267 2268 static noinline void __init alt_reloc_selftest(void) 2269 { 2270 /* 2271 * Tests text_poke_apply_relocation(). 2272 * 2273 * This has a relative immediate (CALL) in a place other than the first 2274 * instruction and additionally on x86_64 we get a RIP-relative LEA: 2275 * 2276 * lea 0x0(%rip),%rdi # 5d0: R_X86_64_PC32 .init.data+0x5566c 2277 * call +0 # 5d5: R_X86_64_PLT32 __alt_reloc_selftest-0x4 2278 * 2279 * Getting this wrong will either crash and burn or tickle the WARN 2280 * above. 2281 */ 2282 asm_inline volatile ( 2283 ALTERNATIVE("", "lea %[mem], %%" _ASM_ARG1 "; call __alt_reloc_selftest;", X86_FEATURE_ALWAYS) 2284 : ASM_CALL_CONSTRAINT 2285 : [mem] "m" (__alt_reloc_selftest_addr) 2286 : _ASM_ARG1 2287 ); 2288 } 2289 2290 void __init alternative_instructions(void) 2291 { 2292 u64 ibt; 2293 2294 int3_selftest(); 2295 2296 /* 2297 * The patching is not fully atomic, so try to avoid local 2298 * interruptions that might execute the to be patched code. 2299 * Other CPUs are not running. 2300 */ 2301 stop_nmi(); 2302 2303 /* 2304 * Don't stop machine check exceptions while patching. 2305 * MCEs only happen when something got corrupted and in this 2306 * case we must do something about the corruption. 2307 * Ignoring it is worse than an unlikely patching race. 2308 * Also machine checks tend to be broadcast and if one CPU 2309 * goes into machine check the others follow quickly, so we don't 2310 * expect a machine check to cause undue problems during to code 2311 * patching. 2312 */ 2313 2314 /* 2315 * Make sure to set (artificial) features depending on used paravirt 2316 * functions which can later influence alternative patching. 2317 */ 2318 paravirt_set_cap(); 2319 2320 /* Keep CET-IBT disabled until caller/callee are patched */ 2321 ibt = ibt_save(/*disable*/ true); 2322 2323 __apply_fineibt(__retpoline_sites, __retpoline_sites_end, 2324 __cfi_sites, __cfi_sites_end, true); 2325 2326 /* 2327 * Rewrite the retpolines, must be done before alternatives since 2328 * those can rewrite the retpoline thunks. 2329 */ 2330 apply_retpolines(__retpoline_sites, __retpoline_sites_end); 2331 apply_returns(__return_sites, __return_sites_end); 2332 2333 its_fini_core(); 2334 2335 /* 2336 * Adjust all CALL instructions to point to func()-10, including 2337 * those in .altinstr_replacement. 2338 */ 2339 callthunks_patch_builtin_calls(); 2340 2341 apply_alternatives(__alt_instructions, __alt_instructions_end); 2342 2343 /* 2344 * Seal all functions that do not have their address taken. 2345 */ 2346 apply_seal_endbr(__ibt_endbr_seal, __ibt_endbr_seal_end); 2347 2348 ibt_restore(ibt); 2349 2350 #ifdef CONFIG_SMP 2351 /* Patch to UP if other cpus not imminent. */ 2352 if (!noreplace_smp && (num_present_cpus() == 1 || setup_max_cpus <= 1)) { 2353 uniproc_patched = true; 2354 alternatives_smp_module_add(NULL, "core kernel", 2355 __smp_locks, __smp_locks_end, 2356 _text, _etext); 2357 } 2358 2359 if (!uniproc_patched || num_possible_cpus() == 1) { 2360 free_init_pages("SMP alternatives", 2361 (unsigned long)__smp_locks, 2362 (unsigned long)__smp_locks_end); 2363 } 2364 #endif 2365 2366 restart_nmi(); 2367 alternatives_patched = 1; 2368 2369 alt_reloc_selftest(); 2370 } 2371 2372 /** 2373 * text_poke_early - Update instructions on a live kernel at boot time 2374 * @addr: address to modify 2375 * @opcode: source of the copy 2376 * @len: length to copy 2377 * 2378 * When you use this code to patch more than one byte of an instruction 2379 * you need to make sure that other CPUs cannot execute this code in parallel. 2380 * Also no thread must be currently preempted in the middle of these 2381 * instructions. And on the local CPU you need to be protected against NMI or 2382 * MCE handlers seeing an inconsistent instruction while you patch. 2383 */ 2384 void __init_or_module text_poke_early(void *addr, const void *opcode, 2385 size_t len) 2386 { 2387 unsigned long flags; 2388 2389 if (boot_cpu_has(X86_FEATURE_NX) && 2390 is_module_text_address((unsigned long)addr)) { 2391 /* 2392 * Modules text is marked initially as non-executable, so the 2393 * code cannot be running and speculative code-fetches are 2394 * prevented. Just change the code. 2395 */ 2396 memcpy(addr, opcode, len); 2397 } else { 2398 local_irq_save(flags); 2399 memcpy(addr, opcode, len); 2400 sync_core(); 2401 local_irq_restore(flags); 2402 2403 /* 2404 * Could also do a CLFLUSH here to speed up CPU recovery; but 2405 * that causes hangs on some VIA CPUs. 2406 */ 2407 } 2408 } 2409 2410 __ro_after_init struct mm_struct *text_poke_mm; 2411 __ro_after_init unsigned long text_poke_mm_addr; 2412 2413 static void text_poke_memcpy(void *dst, const void *src, size_t len) 2414 { 2415 memcpy(dst, src, len); 2416 } 2417 2418 static void text_poke_memset(void *dst, const void *src, size_t len) 2419 { 2420 int c = *(const int *)src; 2421 2422 memset(dst, c, len); 2423 } 2424 2425 typedef void text_poke_f(void *dst, const void *src, size_t len); 2426 2427 static void *__text_poke(text_poke_f func, void *addr, const void *src, size_t len) 2428 { 2429 bool cross_page_boundary = offset_in_page(addr) + len > PAGE_SIZE; 2430 struct page *pages[2] = {NULL}; 2431 struct mm_struct *prev_mm; 2432 unsigned long flags; 2433 pte_t pte, *ptep; 2434 spinlock_t *ptl; 2435 pgprot_t pgprot; 2436 2437 /* 2438 * While boot memory allocator is running we cannot use struct pages as 2439 * they are not yet initialized. There is no way to recover. 2440 */ 2441 BUG_ON(!after_bootmem); 2442 2443 if (!core_kernel_text((unsigned long)addr)) { 2444 pages[0] = vmalloc_to_page(addr); 2445 if (cross_page_boundary) 2446 pages[1] = vmalloc_to_page(addr + PAGE_SIZE); 2447 } else { 2448 pages[0] = virt_to_page(addr); 2449 WARN_ON(!PageReserved(pages[0])); 2450 if (cross_page_boundary) 2451 pages[1] = virt_to_page(addr + PAGE_SIZE); 2452 } 2453 /* 2454 * If something went wrong, crash and burn since recovery paths are not 2455 * implemented. 2456 */ 2457 BUG_ON(!pages[0] || (cross_page_boundary && !pages[1])); 2458 2459 /* 2460 * Map the page without the global bit, as TLB flushing is done with 2461 * flush_tlb_mm_range(), which is intended for non-global PTEs. 2462 */ 2463 pgprot = __pgprot(pgprot_val(PAGE_KERNEL) & ~_PAGE_GLOBAL); 2464 2465 /* 2466 * The lock is not really needed, but this allows to avoid open-coding. 2467 */ 2468 ptep = get_locked_pte(text_poke_mm, text_poke_mm_addr, &ptl); 2469 2470 /* 2471 * This must not fail; preallocated in poking_init(). 2472 */ 2473 VM_BUG_ON(!ptep); 2474 2475 local_irq_save(flags); 2476 2477 pte = mk_pte(pages[0], pgprot); 2478 set_pte_at(text_poke_mm, text_poke_mm_addr, ptep, pte); 2479 2480 if (cross_page_boundary) { 2481 pte = mk_pte(pages[1], pgprot); 2482 set_pte_at(text_poke_mm, text_poke_mm_addr + PAGE_SIZE, ptep + 1, pte); 2483 } 2484 2485 /* 2486 * Loading the temporary mm behaves as a compiler barrier, which 2487 * guarantees that the PTE will be set at the time memcpy() is done. 2488 */ 2489 prev_mm = use_temporary_mm(text_poke_mm); 2490 2491 kasan_disable_current(); 2492 func((u8 *)text_poke_mm_addr + offset_in_page(addr), src, len); 2493 kasan_enable_current(); 2494 2495 /* 2496 * Ensure that the PTE is only cleared after the instructions of memcpy 2497 * were issued by using a compiler barrier. 2498 */ 2499 barrier(); 2500 2501 pte_clear(text_poke_mm, text_poke_mm_addr, ptep); 2502 if (cross_page_boundary) 2503 pte_clear(text_poke_mm, text_poke_mm_addr + PAGE_SIZE, ptep + 1); 2504 2505 /* 2506 * Loading the previous page-table hierarchy requires a serializing 2507 * instruction that already allows the core to see the updated version. 2508 * Xen-PV is assumed to serialize execution in a similar manner. 2509 */ 2510 unuse_temporary_mm(prev_mm); 2511 2512 /* 2513 * Flushing the TLB might involve IPIs, which would require enabled 2514 * IRQs, but not if the mm is not used, as it is in this point. 2515 */ 2516 flush_tlb_mm_range(text_poke_mm, text_poke_mm_addr, text_poke_mm_addr + 2517 (cross_page_boundary ? 2 : 1) * PAGE_SIZE, 2518 PAGE_SHIFT, false); 2519 2520 if (func == text_poke_memcpy) { 2521 /* 2522 * If the text does not match what we just wrote then something is 2523 * fundamentally screwy; there's nothing we can really do about that. 2524 */ 2525 BUG_ON(memcmp(addr, src, len)); 2526 } 2527 2528 local_irq_restore(flags); 2529 pte_unmap_unlock(ptep, ptl); 2530 return addr; 2531 } 2532 2533 /** 2534 * text_poke - Update instructions on a live kernel 2535 * @addr: address to modify 2536 * @opcode: source of the copy 2537 * @len: length to copy 2538 * 2539 * Only atomic text poke/set should be allowed when not doing early patching. 2540 * It means the size must be writable atomically and the address must be aligned 2541 * in a way that permits an atomic write. It also makes sure we fit on a single 2542 * page. 2543 * 2544 * Note that the caller must ensure that if the modified code is part of a 2545 * module, the module would not be removed during poking. This can be achieved 2546 * by registering a module notifier, and ordering module removal and patching 2547 * through a mutex. 2548 */ 2549 void *text_poke(void *addr, const void *opcode, size_t len) 2550 { 2551 lockdep_assert_held(&text_mutex); 2552 2553 return __text_poke(text_poke_memcpy, addr, opcode, len); 2554 } 2555 2556 /** 2557 * text_poke_kgdb - Update instructions on a live kernel by kgdb 2558 * @addr: address to modify 2559 * @opcode: source of the copy 2560 * @len: length to copy 2561 * 2562 * Only atomic text poke/set should be allowed when not doing early patching. 2563 * It means the size must be writable atomically and the address must be aligned 2564 * in a way that permits an atomic write. It also makes sure we fit on a single 2565 * page. 2566 * 2567 * Context: should only be used by kgdb, which ensures no other core is running, 2568 * despite the fact it does not hold the text_mutex. 2569 */ 2570 void *text_poke_kgdb(void *addr, const void *opcode, size_t len) 2571 { 2572 return __text_poke(text_poke_memcpy, addr, opcode, len); 2573 } 2574 2575 void *text_poke_copy_locked(void *addr, const void *opcode, size_t len, 2576 bool core_ok) 2577 { 2578 unsigned long start = (unsigned long)addr; 2579 size_t patched = 0; 2580 2581 if (WARN_ON_ONCE(!core_ok && core_kernel_text(start))) 2582 return NULL; 2583 2584 while (patched < len) { 2585 unsigned long ptr = start + patched; 2586 size_t s; 2587 2588 s = min_t(size_t, PAGE_SIZE * 2 - offset_in_page(ptr), len - patched); 2589 2590 __text_poke(text_poke_memcpy, (void *)ptr, opcode + patched, s); 2591 patched += s; 2592 } 2593 return addr; 2594 } 2595 2596 /** 2597 * text_poke_copy - Copy instructions into (an unused part of) RX memory 2598 * @addr: address to modify 2599 * @opcode: source of the copy 2600 * @len: length to copy, could be more than 2x PAGE_SIZE 2601 * 2602 * Not safe against concurrent execution; useful for JITs to dump 2603 * new code blocks into unused regions of RX memory. Can be used in 2604 * conjunction with synchronize_rcu_tasks() to wait for existing 2605 * execution to quiesce after having made sure no existing functions 2606 * pointers are live. 2607 */ 2608 void *text_poke_copy(void *addr, const void *opcode, size_t len) 2609 { 2610 mutex_lock(&text_mutex); 2611 addr = text_poke_copy_locked(addr, opcode, len, false); 2612 mutex_unlock(&text_mutex); 2613 return addr; 2614 } 2615 2616 /** 2617 * text_poke_set - memset into (an unused part of) RX memory 2618 * @addr: address to modify 2619 * @c: the byte to fill the area with 2620 * @len: length to copy, could be more than 2x PAGE_SIZE 2621 * 2622 * This is useful to overwrite unused regions of RX memory with illegal 2623 * instructions. 2624 */ 2625 void *text_poke_set(void *addr, int c, size_t len) 2626 { 2627 unsigned long start = (unsigned long)addr; 2628 size_t patched = 0; 2629 2630 if (WARN_ON_ONCE(core_kernel_text(start))) 2631 return NULL; 2632 2633 mutex_lock(&text_mutex); 2634 while (patched < len) { 2635 unsigned long ptr = start + patched; 2636 size_t s; 2637 2638 s = min_t(size_t, PAGE_SIZE * 2 - offset_in_page(ptr), len - patched); 2639 2640 __text_poke(text_poke_memset, (void *)ptr, (void *)&c, s); 2641 patched += s; 2642 } 2643 mutex_unlock(&text_mutex); 2644 return addr; 2645 } 2646 2647 static void do_sync_core(void *info) 2648 { 2649 sync_core(); 2650 } 2651 2652 void smp_text_poke_sync_each_cpu(void) 2653 { 2654 on_each_cpu(do_sync_core, NULL, 1); 2655 } 2656 2657 /* 2658 * NOTE: crazy scheme to allow patching Jcc.d32 but not increase the size of 2659 * this thing. When len == 6 everything is prefixed with 0x0f and we map 2660 * opcode to Jcc.d8, using len to distinguish. 2661 */ 2662 struct smp_text_poke_loc { 2663 /* addr := _stext + rel_addr */ 2664 s32 rel_addr; 2665 s32 disp; 2666 u8 len; 2667 u8 opcode; 2668 const u8 text[TEXT_POKE_MAX_OPCODE_SIZE]; 2669 /* see smp_text_poke_batch_finish() */ 2670 u8 old; 2671 }; 2672 2673 #define TEXT_POKE_ARRAY_MAX (PAGE_SIZE / sizeof(struct smp_text_poke_loc)) 2674 2675 static struct smp_text_poke_array { 2676 struct smp_text_poke_loc vec[TEXT_POKE_ARRAY_MAX]; 2677 int nr_entries; 2678 } text_poke_array; 2679 2680 static DEFINE_PER_CPU(atomic_t, text_poke_array_refs); 2681 2682 /* 2683 * These four __always_inline annotations imply noinstr, necessary 2684 * due to smp_text_poke_int3_handler() being noinstr: 2685 */ 2686 2687 static __always_inline bool try_get_text_poke_array(void) 2688 { 2689 atomic_t *refs = this_cpu_ptr(&text_poke_array_refs); 2690 2691 if (!raw_atomic_inc_not_zero(refs)) 2692 return false; 2693 2694 return true; 2695 } 2696 2697 static __always_inline void put_text_poke_array(void) 2698 { 2699 atomic_t *refs = this_cpu_ptr(&text_poke_array_refs); 2700 2701 smp_mb__before_atomic(); 2702 raw_atomic_dec(refs); 2703 } 2704 2705 static __always_inline void *text_poke_addr(const struct smp_text_poke_loc *tpl) 2706 { 2707 return _stext + tpl->rel_addr; 2708 } 2709 2710 static __always_inline int patch_cmp(const void *tpl_a, const void *tpl_b) 2711 { 2712 if (tpl_a < text_poke_addr(tpl_b)) 2713 return -1; 2714 if (tpl_a > text_poke_addr(tpl_b)) 2715 return 1; 2716 return 0; 2717 } 2718 2719 noinstr int smp_text_poke_int3_handler(struct pt_regs *regs) 2720 { 2721 struct smp_text_poke_loc *tpl; 2722 int ret = 0; 2723 void *ip; 2724 2725 if (user_mode(regs)) 2726 return 0; 2727 2728 /* 2729 * Having observed our INT3 instruction, we now must observe 2730 * text_poke_array with non-zero refcount: 2731 * 2732 * text_poke_array_refs = 1 INT3 2733 * WMB RMB 2734 * write INT3 if (text_poke_array_refs != 0) 2735 */ 2736 smp_rmb(); 2737 2738 if (!try_get_text_poke_array()) 2739 return 0; 2740 2741 /* 2742 * Discount the INT3. See smp_text_poke_batch_finish(). 2743 */ 2744 ip = (void *) regs->ip - INT3_INSN_SIZE; 2745 2746 /* 2747 * Skip the binary search if there is a single member in the vector. 2748 */ 2749 if (unlikely(text_poke_array.nr_entries > 1)) { 2750 tpl = __inline_bsearch(ip, text_poke_array.vec, text_poke_array.nr_entries, 2751 sizeof(struct smp_text_poke_loc), 2752 patch_cmp); 2753 if (!tpl) 2754 goto out_put; 2755 } else { 2756 tpl = text_poke_array.vec; 2757 if (text_poke_addr(tpl) != ip) 2758 goto out_put; 2759 } 2760 2761 ip += tpl->len; 2762 2763 switch (tpl->opcode) { 2764 case INT3_INSN_OPCODE: 2765 /* 2766 * Someone poked an explicit INT3, they'll want to handle it, 2767 * do not consume. 2768 */ 2769 goto out_put; 2770 2771 case RET_INSN_OPCODE: 2772 int3_emulate_ret(regs); 2773 break; 2774 2775 case CALL_INSN_OPCODE: 2776 int3_emulate_call(regs, (long)ip + tpl->disp); 2777 break; 2778 2779 case JMP32_INSN_OPCODE: 2780 case JMP8_INSN_OPCODE: 2781 int3_emulate_jmp(regs, (long)ip + tpl->disp); 2782 break; 2783 2784 case 0x70 ... 0x7f: /* Jcc */ 2785 int3_emulate_jcc(regs, tpl->opcode & 0xf, (long)ip, tpl->disp); 2786 break; 2787 2788 default: 2789 BUG(); 2790 } 2791 2792 ret = 1; 2793 2794 out_put: 2795 put_text_poke_array(); 2796 return ret; 2797 } 2798 2799 /** 2800 * smp_text_poke_batch_finish() -- update instructions on live kernel on SMP 2801 * 2802 * Input state: 2803 * text_poke_array.vec: vector of instructions to patch 2804 * text_poke_array.nr_entries: number of entries in the vector 2805 * 2806 * Modify multi-byte instructions by using INT3 breakpoints on SMP. 2807 * We completely avoid using stop_machine() here, and achieve the 2808 * synchronization using INT3 breakpoints and SMP cross-calls. 2809 * 2810 * The way it is done: 2811 * - For each entry in the vector: 2812 * - add an INT3 trap to the address that will be patched 2813 * - SMP sync all CPUs 2814 * - For each entry in the vector: 2815 * - update all but the first byte of the patched range 2816 * - SMP sync all CPUs 2817 * - For each entry in the vector: 2818 * - replace the first byte (INT3) by the first byte of the 2819 * replacing opcode 2820 * - SMP sync all CPUs 2821 */ 2822 void smp_text_poke_batch_finish(void) 2823 { 2824 unsigned char int3 = INT3_INSN_OPCODE; 2825 unsigned int i; 2826 int do_sync; 2827 2828 if (!text_poke_array.nr_entries) 2829 return; 2830 2831 lockdep_assert_held(&text_mutex); 2832 2833 /* 2834 * Corresponds to the implicit memory barrier in try_get_text_poke_array() to 2835 * ensure reading a non-zero refcount provides up to date text_poke_array data. 2836 */ 2837 for_each_possible_cpu(i) 2838 atomic_set_release(per_cpu_ptr(&text_poke_array_refs, i), 1); 2839 2840 /* 2841 * Function tracing can enable thousands of places that need to be 2842 * updated. This can take quite some time, and with full kernel debugging 2843 * enabled, this could cause the softlockup watchdog to trigger. 2844 * This function gets called every 256 entries added to be patched. 2845 * Call cond_resched() here to make sure that other tasks can get scheduled 2846 * while processing all the functions being patched. 2847 */ 2848 cond_resched(); 2849 2850 /* 2851 * Corresponding read barrier in INT3 notifier for making sure the 2852 * text_poke_array.nr_entries and handler are correctly ordered wrt. patching. 2853 */ 2854 smp_wmb(); 2855 2856 /* 2857 * First step: add a INT3 trap to the address that will be patched. 2858 */ 2859 for (i = 0; i < text_poke_array.nr_entries; i++) { 2860 text_poke_array.vec[i].old = *(u8 *)text_poke_addr(&text_poke_array.vec[i]); 2861 text_poke(text_poke_addr(&text_poke_array.vec[i]), &int3, INT3_INSN_SIZE); 2862 } 2863 2864 smp_text_poke_sync_each_cpu(); 2865 2866 /* 2867 * Second step: update all but the first byte of the patched range. 2868 */ 2869 for (do_sync = 0, i = 0; i < text_poke_array.nr_entries; i++) { 2870 u8 old[TEXT_POKE_MAX_OPCODE_SIZE+1] = { text_poke_array.vec[i].old, }; 2871 u8 _new[TEXT_POKE_MAX_OPCODE_SIZE+1]; 2872 const u8 *new = text_poke_array.vec[i].text; 2873 int len = text_poke_array.vec[i].len; 2874 2875 if (len - INT3_INSN_SIZE > 0) { 2876 memcpy(old + INT3_INSN_SIZE, 2877 text_poke_addr(&text_poke_array.vec[i]) + INT3_INSN_SIZE, 2878 len - INT3_INSN_SIZE); 2879 2880 if (len == 6) { 2881 _new[0] = 0x0f; 2882 memcpy(_new + 1, new, 5); 2883 new = _new; 2884 } 2885 2886 text_poke(text_poke_addr(&text_poke_array.vec[i]) + INT3_INSN_SIZE, 2887 new + INT3_INSN_SIZE, 2888 len - INT3_INSN_SIZE); 2889 2890 do_sync++; 2891 } 2892 2893 /* 2894 * Emit a perf event to record the text poke, primarily to 2895 * support Intel PT decoding which must walk the executable code 2896 * to reconstruct the trace. The flow up to here is: 2897 * - write INT3 byte 2898 * - IPI-SYNC 2899 * - write instruction tail 2900 * At this point the actual control flow will be through the 2901 * INT3 and handler and not hit the old or new instruction. 2902 * Intel PT outputs FUP/TIP packets for the INT3, so the flow 2903 * can still be decoded. Subsequently: 2904 * - emit RECORD_TEXT_POKE with the new instruction 2905 * - IPI-SYNC 2906 * - write first byte 2907 * - IPI-SYNC 2908 * So before the text poke event timestamp, the decoder will see 2909 * either the old instruction flow or FUP/TIP of INT3. After the 2910 * text poke event timestamp, the decoder will see either the 2911 * new instruction flow or FUP/TIP of INT3. Thus decoders can 2912 * use the timestamp as the point at which to modify the 2913 * executable code. 2914 * The old instruction is recorded so that the event can be 2915 * processed forwards or backwards. 2916 */ 2917 perf_event_text_poke(text_poke_addr(&text_poke_array.vec[i]), old, len, new, len); 2918 } 2919 2920 if (do_sync) { 2921 /* 2922 * According to Intel, this core syncing is very likely 2923 * not necessary and we'd be safe even without it. But 2924 * better safe than sorry (plus there's not only Intel). 2925 */ 2926 smp_text_poke_sync_each_cpu(); 2927 } 2928 2929 /* 2930 * Third step: replace the first byte (INT3) by the first byte of the 2931 * replacing opcode. 2932 */ 2933 for (do_sync = 0, i = 0; i < text_poke_array.nr_entries; i++) { 2934 u8 byte = text_poke_array.vec[i].text[0]; 2935 2936 if (text_poke_array.vec[i].len == 6) 2937 byte = 0x0f; 2938 2939 if (byte == INT3_INSN_OPCODE) 2940 continue; 2941 2942 text_poke(text_poke_addr(&text_poke_array.vec[i]), &byte, INT3_INSN_SIZE); 2943 do_sync++; 2944 } 2945 2946 if (do_sync) 2947 smp_text_poke_sync_each_cpu(); 2948 2949 /* 2950 * Remove and wait for refs to be zero. 2951 * 2952 * Notably, if after step-3 above the INT3 got removed, then the 2953 * smp_text_poke_sync_each_cpu() will have serialized against any running INT3 2954 * handlers and the below spin-wait will not happen. 2955 * 2956 * IOW. unless the replacement instruction is INT3, this case goes 2957 * unused. 2958 */ 2959 for_each_possible_cpu(i) { 2960 atomic_t *refs = per_cpu_ptr(&text_poke_array_refs, i); 2961 2962 if (unlikely(!atomic_dec_and_test(refs))) 2963 atomic_cond_read_acquire(refs, !VAL); 2964 } 2965 2966 /* They are all completed: */ 2967 text_poke_array.nr_entries = 0; 2968 } 2969 2970 static void __smp_text_poke_batch_add(void *addr, const void *opcode, size_t len, const void *emulate) 2971 { 2972 struct smp_text_poke_loc *tpl; 2973 struct insn insn; 2974 int ret, i = 0; 2975 2976 tpl = &text_poke_array.vec[text_poke_array.nr_entries++]; 2977 2978 if (len == 6) 2979 i = 1; 2980 memcpy((void *)tpl->text, opcode+i, len-i); 2981 if (!emulate) 2982 emulate = opcode; 2983 2984 ret = insn_decode_kernel(&insn, emulate); 2985 BUG_ON(ret < 0); 2986 2987 tpl->rel_addr = addr - (void *)_stext; 2988 tpl->len = len; 2989 tpl->opcode = insn.opcode.bytes[0]; 2990 2991 if (is_jcc32(&insn)) { 2992 /* 2993 * Map Jcc.d32 onto Jcc.d8 and use len to distinguish. 2994 */ 2995 tpl->opcode = insn.opcode.bytes[1] - 0x10; 2996 } 2997 2998 switch (tpl->opcode) { 2999 case RET_INSN_OPCODE: 3000 case JMP32_INSN_OPCODE: 3001 case JMP8_INSN_OPCODE: 3002 /* 3003 * Control flow instructions without implied execution of the 3004 * next instruction can be padded with INT3. 3005 */ 3006 for (i = insn.length; i < len; i++) 3007 BUG_ON(tpl->text[i] != INT3_INSN_OPCODE); 3008 break; 3009 3010 default: 3011 BUG_ON(len != insn.length); 3012 } 3013 3014 switch (tpl->opcode) { 3015 case INT3_INSN_OPCODE: 3016 case RET_INSN_OPCODE: 3017 break; 3018 3019 case CALL_INSN_OPCODE: 3020 case JMP32_INSN_OPCODE: 3021 case JMP8_INSN_OPCODE: 3022 case 0x70 ... 0x7f: /* Jcc */ 3023 tpl->disp = insn.immediate.value; 3024 break; 3025 3026 default: /* assume NOP */ 3027 switch (len) { 3028 case 2: /* NOP2 -- emulate as JMP8+0 */ 3029 BUG_ON(memcmp(emulate, x86_nops[len], len)); 3030 tpl->opcode = JMP8_INSN_OPCODE; 3031 tpl->disp = 0; 3032 break; 3033 3034 case 5: /* NOP5 -- emulate as JMP32+0 */ 3035 BUG_ON(memcmp(emulate, x86_nops[len], len)); 3036 tpl->opcode = JMP32_INSN_OPCODE; 3037 tpl->disp = 0; 3038 break; 3039 3040 default: /* unknown instruction */ 3041 BUG(); 3042 } 3043 break; 3044 } 3045 } 3046 3047 /* 3048 * We hard rely on the text_poke_array.vec being ordered; ensure this is so by flushing 3049 * early if needed. 3050 */ 3051 static bool text_poke_addr_ordered(void *addr) 3052 { 3053 WARN_ON_ONCE(!addr); 3054 3055 if (!text_poke_array.nr_entries) 3056 return true; 3057 3058 /* 3059 * If the last current entry's address is higher than the 3060 * new entry's address we'd like to add, then ordering 3061 * is violated and we must first flush all pending patching 3062 * requests: 3063 */ 3064 if (text_poke_addr(text_poke_array.vec + text_poke_array.nr_entries-1) > addr) 3065 return false; 3066 3067 return true; 3068 } 3069 3070 /** 3071 * smp_text_poke_batch_add() -- update instruction on live kernel on SMP, batched 3072 * @addr: address to patch 3073 * @opcode: opcode of new instruction 3074 * @len: length to copy 3075 * @emulate: instruction to be emulated 3076 * 3077 * Add a new instruction to the current queue of to-be-patched instructions 3078 * the kernel maintains. The patching request will not be executed immediately, 3079 * but becomes part of an array of patching requests, optimized for batched 3080 * execution. All pending patching requests will be executed on the next 3081 * smp_text_poke_batch_finish() call. 3082 */ 3083 void __ref smp_text_poke_batch_add(void *addr, const void *opcode, size_t len, const void *emulate) 3084 { 3085 if (text_poke_array.nr_entries == TEXT_POKE_ARRAY_MAX || !text_poke_addr_ordered(addr)) 3086 smp_text_poke_batch_finish(); 3087 __smp_text_poke_batch_add(addr, opcode, len, emulate); 3088 } 3089 3090 /** 3091 * smp_text_poke_single() -- update instruction on live kernel on SMP immediately 3092 * @addr: address to patch 3093 * @opcode: opcode of new instruction 3094 * @len: length to copy 3095 * @emulate: instruction to be emulated 3096 * 3097 * Update a single instruction with the vector in the stack, avoiding 3098 * dynamically allocated memory. This function should be used when it is 3099 * not possible to allocate memory for a vector. The single instruction 3100 * is patched in immediately. 3101 */ 3102 void __ref smp_text_poke_single(void *addr, const void *opcode, size_t len, const void *emulate) 3103 { 3104 smp_text_poke_batch_add(addr, opcode, len, emulate); 3105 smp_text_poke_batch_finish(); 3106 } 3107