1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This header defines architecture specific interfaces, x86 version 6 */ 7 8 #ifndef _ASM_X86_KVM_HOST_H 9 #define _ASM_X86_KVM_HOST_H 10 11 #include <linux/types.h> 12 #include <linux/mm.h> 13 #include <linux/mmu_notifier.h> 14 #include <linux/tracepoint.h> 15 #include <linux/cpumask.h> 16 #include <linux/irq_work.h> 17 #include <linux/irq.h> 18 #include <linux/workqueue.h> 19 20 #include <linux/kvm.h> 21 #include <linux/kvm_para.h> 22 #include <linux/kvm_types.h> 23 #include <linux/perf_event.h> 24 #include <linux/pvclock_gtod.h> 25 #include <linux/clocksource.h> 26 #include <linux/irqbypass.h> 27 #include <linux/kfifo.h> 28 #include <linux/sched/vhost_task.h> 29 #include <linux/call_once.h> 30 #include <linux/atomic.h> 31 32 #include <asm/apic.h> 33 #include <asm/pvclock-abi.h> 34 #include <asm/desc.h> 35 #include <asm/mtrr.h> 36 #include <asm/msr-index.h> 37 #include <asm/msr.h> 38 #include <asm/asm.h> 39 #include <asm/irq_remapping.h> 40 #include <asm/kvm_page_track.h> 41 #include <asm/kvm_vcpu_regs.h> 42 #include <asm/reboot.h> 43 #include <hyperv/hvhdk.h> 44 45 #define __KVM_HAVE_ARCH_VCPU_DEBUGFS 46 47 /* 48 * CONFIG_KVM_MAX_NR_VCPUS is defined iff CONFIG_KVM!=n, provide a dummy max if 49 * KVM is disabled (arbitrarily use the default from CONFIG_KVM_MAX_NR_VCPUS). 50 */ 51 #ifdef CONFIG_KVM_MAX_NR_VCPUS 52 #define KVM_MAX_VCPUS CONFIG_KVM_MAX_NR_VCPUS 53 #else 54 #define KVM_MAX_VCPUS 1024 55 #endif 56 57 /* 58 * In x86, the VCPU ID corresponds to the APIC ID, and APIC IDs 59 * might be larger than the actual number of VCPUs because the 60 * APIC ID encodes CPU topology information. 61 * 62 * In the worst case, we'll need less than one extra bit for the 63 * Core ID, and less than one extra bit for the Package (Die) ID, 64 * so ratio of 4 should be enough. 65 */ 66 #define KVM_VCPU_ID_RATIO 4 67 #define KVM_MAX_VCPU_IDS (KVM_MAX_VCPUS * KVM_VCPU_ID_RATIO) 68 69 /* memory slots that are not exposed to userspace */ 70 #define KVM_INTERNAL_MEM_SLOTS 3 71 72 #define KVM_HALT_POLL_NS_DEFAULT 200000 73 74 #define KVM_IRQCHIP_NUM_PINS KVM_IOAPIC_NUM_PINS 75 76 #define KVM_DIRTY_LOG_MANUAL_CAPS (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \ 77 KVM_DIRTY_LOG_INITIALLY_SET) 78 79 #define KVM_BUS_LOCK_DETECTION_VALID_MODE (KVM_BUS_LOCK_DETECTION_OFF | \ 80 KVM_BUS_LOCK_DETECTION_EXIT) 81 82 #define KVM_X86_NOTIFY_VMEXIT_VALID_BITS (KVM_X86_NOTIFY_VMEXIT_ENABLED | \ 83 KVM_X86_NOTIFY_VMEXIT_USER) 84 85 /* x86-specific vcpu->requests bit members */ 86 #define KVM_REQ_MIGRATE_TIMER KVM_ARCH_REQ(0) 87 #define KVM_REQ_REPORT_TPR_ACCESS KVM_ARCH_REQ(1) 88 #define KVM_REQ_TRIPLE_FAULT KVM_ARCH_REQ(2) 89 #define KVM_REQ_MMU_SYNC KVM_ARCH_REQ(3) 90 #define KVM_REQ_CLOCK_UPDATE KVM_ARCH_REQ(4) 91 #define KVM_REQ_LOAD_MMU_PGD KVM_ARCH_REQ(5) 92 #define KVM_REQ_EVENT KVM_ARCH_REQ(6) 93 #define KVM_REQ_APF_HALT KVM_ARCH_REQ(7) 94 #define KVM_REQ_STEAL_UPDATE KVM_ARCH_REQ(8) 95 #define KVM_REQ_NMI KVM_ARCH_REQ(9) 96 #define KVM_REQ_PMU KVM_ARCH_REQ(10) 97 #define KVM_REQ_PMI KVM_ARCH_REQ(11) 98 #ifdef CONFIG_KVM_SMM 99 #define KVM_REQ_SMI KVM_ARCH_REQ(12) 100 #endif 101 #define KVM_REQ_MASTERCLOCK_UPDATE KVM_ARCH_REQ(13) 102 #define KVM_REQ_MCLOCK_INPROGRESS \ 103 KVM_ARCH_REQ_FLAGS(14, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 104 #define KVM_REQ_SCAN_IOAPIC \ 105 KVM_ARCH_REQ_FLAGS(15, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 106 #define KVM_REQ_GLOBAL_CLOCK_UPDATE KVM_ARCH_REQ(16) 107 #define KVM_REQ_APIC_PAGE_RELOAD \ 108 KVM_ARCH_REQ_FLAGS(17, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 109 #define KVM_REQ_HV_CRASH KVM_ARCH_REQ(18) 110 #define KVM_REQ_IOAPIC_EOI_EXIT KVM_ARCH_REQ(19) 111 #define KVM_REQ_HV_RESET KVM_ARCH_REQ(20) 112 #define KVM_REQ_HV_EXIT KVM_ARCH_REQ(21) 113 #define KVM_REQ_HV_STIMER KVM_ARCH_REQ(22) 114 #define KVM_REQ_LOAD_EOI_EXITMAP KVM_ARCH_REQ(23) 115 #define KVM_REQ_GET_NESTED_STATE_PAGES KVM_ARCH_REQ(24) 116 #define KVM_REQ_APICV_UPDATE \ 117 KVM_ARCH_REQ_FLAGS(25, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 118 #define KVM_REQ_TLB_FLUSH_CURRENT KVM_ARCH_REQ(26) 119 #define KVM_REQ_TLB_FLUSH_GUEST \ 120 KVM_ARCH_REQ_FLAGS(27, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 121 #define KVM_REQ_APF_READY KVM_ARCH_REQ(28) 122 #define KVM_REQ_MSR_FILTER_CHANGED KVM_ARCH_REQ(29) 123 #define KVM_REQ_UPDATE_CPU_DIRTY_LOGGING \ 124 KVM_ARCH_REQ_FLAGS(30, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 125 #define KVM_REQ_MMU_FREE_OBSOLETE_ROOTS \ 126 KVM_ARCH_REQ_FLAGS(31, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 127 #define KVM_REQ_HV_TLB_FLUSH \ 128 KVM_ARCH_REQ_FLAGS(32, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 129 #define KVM_REQ_UPDATE_PROTECTED_GUEST_STATE KVM_ARCH_REQ(34) 130 131 #define CR0_RESERVED_BITS \ 132 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \ 133 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \ 134 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG)) 135 136 #define CR4_RESERVED_BITS \ 137 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\ 138 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \ 139 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR | X86_CR4_PCIDE \ 140 | X86_CR4_OSXSAVE | X86_CR4_SMEP | X86_CR4_FSGSBASE \ 141 | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_VMXE \ 142 | X86_CR4_SMAP | X86_CR4_PKE | X86_CR4_UMIP \ 143 | X86_CR4_LAM_SUP)) 144 145 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR) 146 147 148 149 #define INVALID_PAGE (~(hpa_t)0) 150 #define VALID_PAGE(x) ((x) != INVALID_PAGE) 151 152 /* KVM Hugepage definitions for x86 */ 153 #define KVM_MAX_HUGEPAGE_LEVEL PG_LEVEL_1G 154 #define KVM_NR_PAGE_SIZES (KVM_MAX_HUGEPAGE_LEVEL - PG_LEVEL_4K + 1) 155 #define KVM_HPAGE_GFN_SHIFT(x) (((x) - 1) * 9) 156 #define KVM_HPAGE_SHIFT(x) (PAGE_SHIFT + KVM_HPAGE_GFN_SHIFT(x)) 157 #define KVM_HPAGE_SIZE(x) (1UL << KVM_HPAGE_SHIFT(x)) 158 #define KVM_HPAGE_MASK(x) (~(KVM_HPAGE_SIZE(x) - 1)) 159 #define KVM_PAGES_PER_HPAGE(x) (KVM_HPAGE_SIZE(x) / PAGE_SIZE) 160 161 #define KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO 50 162 #define KVM_MIN_ALLOC_MMU_PAGES 64UL 163 #define KVM_MMU_HASH_SHIFT 12 164 #define KVM_NUM_MMU_PAGES (1 << KVM_MMU_HASH_SHIFT) 165 #define KVM_MIN_FREE_MMU_PAGES 5 166 #define KVM_REFILL_PAGES 25 167 #define KVM_MAX_CPUID_ENTRIES 256 168 #define KVM_NR_VAR_MTRR 8 169 170 #define ASYNC_PF_PER_VCPU 64 171 172 enum kvm_reg { 173 VCPU_REGS_RAX = __VCPU_REGS_RAX, 174 VCPU_REGS_RCX = __VCPU_REGS_RCX, 175 VCPU_REGS_RDX = __VCPU_REGS_RDX, 176 VCPU_REGS_RBX = __VCPU_REGS_RBX, 177 VCPU_REGS_RSP = __VCPU_REGS_RSP, 178 VCPU_REGS_RBP = __VCPU_REGS_RBP, 179 VCPU_REGS_RSI = __VCPU_REGS_RSI, 180 VCPU_REGS_RDI = __VCPU_REGS_RDI, 181 #ifdef CONFIG_X86_64 182 VCPU_REGS_R8 = __VCPU_REGS_R8, 183 VCPU_REGS_R9 = __VCPU_REGS_R9, 184 VCPU_REGS_R10 = __VCPU_REGS_R10, 185 VCPU_REGS_R11 = __VCPU_REGS_R11, 186 VCPU_REGS_R12 = __VCPU_REGS_R12, 187 VCPU_REGS_R13 = __VCPU_REGS_R13, 188 VCPU_REGS_R14 = __VCPU_REGS_R14, 189 VCPU_REGS_R15 = __VCPU_REGS_R15, 190 #endif 191 VCPU_REGS_RIP, 192 NR_VCPU_REGS, 193 194 VCPU_EXREG_PDPTR = NR_VCPU_REGS, 195 VCPU_EXREG_CR0, 196 VCPU_EXREG_CR3, 197 VCPU_EXREG_CR4, 198 VCPU_EXREG_RFLAGS, 199 VCPU_EXREG_SEGMENTS, 200 VCPU_EXREG_EXIT_INFO_1, 201 VCPU_EXREG_EXIT_INFO_2, 202 }; 203 204 enum { 205 VCPU_SREG_ES, 206 VCPU_SREG_CS, 207 VCPU_SREG_SS, 208 VCPU_SREG_DS, 209 VCPU_SREG_FS, 210 VCPU_SREG_GS, 211 VCPU_SREG_TR, 212 VCPU_SREG_LDTR, 213 }; 214 215 enum exit_fastpath_completion { 216 EXIT_FASTPATH_NONE, 217 EXIT_FASTPATH_REENTER_GUEST, 218 EXIT_FASTPATH_EXIT_HANDLED, 219 EXIT_FASTPATH_EXIT_USERSPACE, 220 }; 221 typedef enum exit_fastpath_completion fastpath_t; 222 223 struct x86_emulate_ctxt; 224 struct x86_exception; 225 union kvm_smram; 226 enum x86_intercept; 227 enum x86_intercept_stage; 228 229 #define KVM_NR_DB_REGS 4 230 231 #define DR6_BUS_LOCK (1 << 11) 232 #define DR6_BD (1 << 13) 233 #define DR6_BS (1 << 14) 234 #define DR6_BT (1 << 15) 235 #define DR6_RTM (1 << 16) 236 /* 237 * DR6_ACTIVE_LOW combines fixed-1 and active-low bits. 238 * We can regard all the bits in DR6_FIXED_1 as active_low bits; 239 * they will never be 0 for now, but when they are defined 240 * in the future it will require no code change. 241 * 242 * DR6_ACTIVE_LOW is also used as the init/reset value for DR6. 243 */ 244 #define DR6_ACTIVE_LOW 0xffff0ff0 245 #define DR6_VOLATILE 0x0001e80f 246 #define DR6_FIXED_1 (DR6_ACTIVE_LOW & ~DR6_VOLATILE) 247 248 #define DR7_BP_EN_MASK 0x000000ff 249 #define DR7_GE (1 << 9) 250 #define DR7_GD (1 << 13) 251 #define DR7_FIXED_1 0x00000400 252 #define DR7_VOLATILE 0xffff2bff 253 254 #define KVM_GUESTDBG_VALID_MASK \ 255 (KVM_GUESTDBG_ENABLE | \ 256 KVM_GUESTDBG_SINGLESTEP | \ 257 KVM_GUESTDBG_USE_HW_BP | \ 258 KVM_GUESTDBG_USE_SW_BP | \ 259 KVM_GUESTDBG_INJECT_BP | \ 260 KVM_GUESTDBG_INJECT_DB | \ 261 KVM_GUESTDBG_BLOCKIRQ) 262 263 #define PFERR_PRESENT_MASK BIT(0) 264 #define PFERR_WRITE_MASK BIT(1) 265 #define PFERR_USER_MASK BIT(2) 266 #define PFERR_RSVD_MASK BIT(3) 267 #define PFERR_FETCH_MASK BIT(4) 268 #define PFERR_PK_MASK BIT(5) 269 #define PFERR_SGX_MASK BIT(15) 270 #define PFERR_GUEST_RMP_MASK BIT_ULL(31) 271 #define PFERR_GUEST_FINAL_MASK BIT_ULL(32) 272 #define PFERR_GUEST_PAGE_MASK BIT_ULL(33) 273 #define PFERR_GUEST_ENC_MASK BIT_ULL(34) 274 #define PFERR_GUEST_SIZEM_MASK BIT_ULL(35) 275 #define PFERR_GUEST_VMPL_MASK BIT_ULL(36) 276 277 /* 278 * IMPLICIT_ACCESS is a KVM-defined flag used to correctly perform SMAP checks 279 * when emulating instructions that triggers implicit access. 280 */ 281 #define PFERR_IMPLICIT_ACCESS BIT_ULL(48) 282 /* 283 * PRIVATE_ACCESS is a KVM-defined flag us to indicate that a fault occurred 284 * when the guest was accessing private memory. 285 */ 286 #define PFERR_PRIVATE_ACCESS BIT_ULL(49) 287 #define PFERR_SYNTHETIC_MASK (PFERR_IMPLICIT_ACCESS | PFERR_PRIVATE_ACCESS) 288 289 /* apic attention bits */ 290 #define KVM_APIC_CHECK_VAPIC 0 291 /* 292 * The following bit is set with PV-EOI, unset on EOI. 293 * We detect PV-EOI changes by guest by comparing 294 * this bit with PV-EOI in guest memory. 295 * See the implementation in apic_update_pv_eoi. 296 */ 297 #define KVM_APIC_PV_EOI_PENDING 1 298 299 struct kvm_kernel_irq_routing_entry; 300 301 /* 302 * kvm_mmu_page_role tracks the properties of a shadow page (where shadow page 303 * also includes TDP pages) to determine whether or not a page can be used in 304 * the given MMU context. This is a subset of the overall kvm_cpu_role to 305 * minimize the size of kvm_memory_slot.arch.gfn_write_track, i.e. allows 306 * allocating 2 bytes per gfn instead of 4 bytes per gfn. 307 * 308 * Upper-level shadow pages having gptes are tracked for write-protection via 309 * gfn_write_track. As above, gfn_write_track is a 16 bit counter, so KVM must 310 * not create more than 2^16-1 upper-level shadow pages at a single gfn, 311 * otherwise gfn_write_track will overflow and explosions will ensue. 312 * 313 * A unique shadow page (SP) for a gfn is created if and only if an existing SP 314 * cannot be reused. The ability to reuse a SP is tracked by its role, which 315 * incorporates various mode bits and properties of the SP. Roughly speaking, 316 * the number of unique SPs that can theoretically be created is 2^n, where n 317 * is the number of bits that are used to compute the role. 318 * 319 * But, even though there are 20 bits in the mask below, not all combinations 320 * of modes and flags are possible: 321 * 322 * - invalid shadow pages are not accounted, mirror pages are not shadowed, 323 * so the bits are effectively 18. 324 * 325 * - quadrant will only be used if has_4_byte_gpte=1 (non-PAE paging); 326 * execonly and ad_disabled are only used for nested EPT which has 327 * has_4_byte_gpte=0. Therefore, 2 bits are always unused. 328 * 329 * - the 4 bits of level are effectively limited to the values 2/3/4/5, 330 * as 4k SPs are not tracked (allowed to go unsync). In addition non-PAE 331 * paging has exactly one upper level, making level completely redundant 332 * when has_4_byte_gpte=1. 333 * 334 * - on top of this, smep_andnot_wp and smap_andnot_wp are only set if 335 * cr0_wp=0, therefore these three bits only give rise to 5 possibilities. 336 * 337 * Therefore, the maximum number of possible upper-level shadow pages for a 338 * single gfn is a bit less than 2^13. 339 */ 340 union kvm_mmu_page_role { 341 u32 word; 342 struct { 343 unsigned level:4; 344 unsigned has_4_byte_gpte:1; 345 unsigned quadrant:2; 346 unsigned direct:1; 347 unsigned access:3; 348 unsigned invalid:1; 349 unsigned efer_nx:1; 350 unsigned cr0_wp:1; 351 unsigned smep_andnot_wp:1; 352 unsigned smap_andnot_wp:1; 353 unsigned ad_disabled:1; 354 unsigned guest_mode:1; 355 unsigned passthrough:1; 356 unsigned is_mirror:1; 357 unsigned :4; 358 359 /* 360 * This is left at the top of the word so that 361 * kvm_memslots_for_spte_role can extract it with a 362 * simple shift. While there is room, give it a whole 363 * byte so it is also faster to load it from memory. 364 */ 365 unsigned smm:8; 366 }; 367 }; 368 369 /* 370 * kvm_mmu_extended_role complements kvm_mmu_page_role, tracking properties 371 * relevant to the current MMU configuration. When loading CR0, CR4, or EFER, 372 * including on nested transitions, if nothing in the full role changes then 373 * MMU re-configuration can be skipped. @valid bit is set on first usage so we 374 * don't treat all-zero structure as valid data. 375 * 376 * The properties that are tracked in the extended role but not the page role 377 * are for things that either (a) do not affect the validity of the shadow page 378 * or (b) are indirectly reflected in the shadow page's role. For example, 379 * CR4.PKE only affects permission checks for software walks of the guest page 380 * tables (because KVM doesn't support Protection Keys with shadow paging), and 381 * CR0.PG, CR4.PAE, and CR4.PSE are indirectly reflected in role.level. 382 * 383 * Note, SMEP and SMAP are not redundant with sm*p_andnot_wp in the page role. 384 * If CR0.WP=1, KVM can reuse shadow pages for the guest regardless of SMEP and 385 * SMAP, but the MMU's permission checks for software walks need to be SMEP and 386 * SMAP aware regardless of CR0.WP. 387 */ 388 union kvm_mmu_extended_role { 389 u32 word; 390 struct { 391 unsigned int valid:1; 392 unsigned int execonly:1; 393 unsigned int cr4_pse:1; 394 unsigned int cr4_pke:1; 395 unsigned int cr4_smap:1; 396 unsigned int cr4_smep:1; 397 unsigned int cr4_la57:1; 398 unsigned int efer_lma:1; 399 }; 400 }; 401 402 union kvm_cpu_role { 403 u64 as_u64; 404 struct { 405 union kvm_mmu_page_role base; 406 union kvm_mmu_extended_role ext; 407 }; 408 }; 409 410 struct kvm_rmap_head { 411 atomic_long_t val; 412 }; 413 414 struct kvm_pio_request { 415 unsigned long linear_rip; 416 unsigned long count; 417 int in; 418 int port; 419 int size; 420 }; 421 422 #define PT64_ROOT_MAX_LEVEL 5 423 424 struct rsvd_bits_validate { 425 u64 rsvd_bits_mask[2][PT64_ROOT_MAX_LEVEL]; 426 u64 bad_mt_xwr; 427 }; 428 429 struct kvm_mmu_root_info { 430 gpa_t pgd; 431 hpa_t hpa; 432 }; 433 434 #define KVM_MMU_ROOT_INFO_INVALID \ 435 ((struct kvm_mmu_root_info) { .pgd = INVALID_PAGE, .hpa = INVALID_PAGE }) 436 437 #define KVM_MMU_NUM_PREV_ROOTS 3 438 439 #define KVM_MMU_ROOT_CURRENT BIT(0) 440 #define KVM_MMU_ROOT_PREVIOUS(i) BIT(1+i) 441 #define KVM_MMU_ROOTS_ALL (BIT(1 + KVM_MMU_NUM_PREV_ROOTS) - 1) 442 443 #define KVM_HAVE_MMU_RWLOCK 444 445 struct kvm_mmu_page; 446 struct kvm_page_fault; 447 448 /* 449 * x86 supports 4 paging modes (5-level 64-bit, 4-level 64-bit, 3-level 32-bit, 450 * and 2-level 32-bit). The kvm_mmu structure abstracts the details of the 451 * current mmu mode. 452 */ 453 struct kvm_mmu { 454 unsigned long (*get_guest_pgd)(struct kvm_vcpu *vcpu); 455 u64 (*get_pdptr)(struct kvm_vcpu *vcpu, int index); 456 int (*page_fault)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault); 457 void (*inject_page_fault)(struct kvm_vcpu *vcpu, 458 struct x86_exception *fault); 459 gpa_t (*gva_to_gpa)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 460 gpa_t gva_or_gpa, u64 access, 461 struct x86_exception *exception); 462 int (*sync_spte)(struct kvm_vcpu *vcpu, 463 struct kvm_mmu_page *sp, int i); 464 struct kvm_mmu_root_info root; 465 hpa_t mirror_root_hpa; 466 union kvm_cpu_role cpu_role; 467 union kvm_mmu_page_role root_role; 468 469 /* 470 * The pkru_mask indicates if protection key checks are needed. It 471 * consists of 16 domains indexed by page fault error code bits [4:1], 472 * with PFEC.RSVD replaced by ACC_USER_MASK from the page tables. 473 * Each domain has 2 bits which are ANDed with AD and WD from PKRU. 474 */ 475 u32 pkru_mask; 476 477 struct kvm_mmu_root_info prev_roots[KVM_MMU_NUM_PREV_ROOTS]; 478 479 /* 480 * Bitmap; bit set = permission fault 481 * Byte index: page fault error code [4:1] 482 * Bit index: pte permissions in ACC_* format 483 */ 484 u8 permissions[16]; 485 486 u64 *pae_root; 487 u64 *pml4_root; 488 u64 *pml5_root; 489 490 /* 491 * check zero bits on shadow page table entries, these 492 * bits include not only hardware reserved bits but also 493 * the bits spte never used. 494 */ 495 struct rsvd_bits_validate shadow_zero_check; 496 497 struct rsvd_bits_validate guest_rsvd_check; 498 499 u64 pdptrs[4]; /* pae */ 500 }; 501 502 enum pmc_type { 503 KVM_PMC_GP = 0, 504 KVM_PMC_FIXED, 505 }; 506 507 struct kvm_pmc { 508 enum pmc_type type; 509 u8 idx; 510 bool is_paused; 511 bool intr; 512 /* 513 * Base value of the PMC counter, relative to the *consumed* count in 514 * the associated perf_event. This value includes counter updates from 515 * the perf_event and emulated_count since the last time the counter 516 * was reprogrammed, but it is *not* the current value as seen by the 517 * guest or userspace. 518 * 519 * The count is relative to the associated perf_event so that KVM 520 * doesn't need to reprogram the perf_event every time the guest writes 521 * to the counter. 522 */ 523 u64 counter; 524 /* 525 * PMC events triggered by KVM emulation that haven't been fully 526 * processed, i.e. haven't undergone overflow detection. 527 */ 528 u64 emulated_counter; 529 u64 eventsel; 530 struct perf_event *perf_event; 531 struct kvm_vcpu *vcpu; 532 /* 533 * only for creating or reusing perf_event, 534 * eventsel value for general purpose counters, 535 * ctrl value for fixed counters. 536 */ 537 u64 current_config; 538 }; 539 540 /* More counters may conflict with other existing Architectural MSRs */ 541 #define KVM_MAX(a, b) ((a) >= (b) ? (a) : (b)) 542 #define KVM_MAX_NR_INTEL_GP_COUNTERS 8 543 #define KVM_MAX_NR_AMD_GP_COUNTERS 6 544 #define KVM_MAX_NR_GP_COUNTERS KVM_MAX(KVM_MAX_NR_INTEL_GP_COUNTERS, \ 545 KVM_MAX_NR_AMD_GP_COUNTERS) 546 547 #define KVM_MAX_NR_INTEL_FIXED_COUTNERS 3 548 #define KVM_MAX_NR_AMD_FIXED_COUTNERS 0 549 #define KVM_MAX_NR_FIXED_COUNTERS KVM_MAX(KVM_MAX_NR_INTEL_FIXED_COUTNERS, \ 550 KVM_MAX_NR_AMD_FIXED_COUTNERS) 551 552 struct kvm_pmu { 553 u8 version; 554 unsigned nr_arch_gp_counters; 555 unsigned nr_arch_fixed_counters; 556 unsigned available_event_types; 557 u64 fixed_ctr_ctrl; 558 u64 fixed_ctr_ctrl_rsvd; 559 u64 global_ctrl; 560 u64 global_status; 561 u64 counter_bitmask[2]; 562 u64 global_ctrl_rsvd; 563 u64 global_status_rsvd; 564 u64 reserved_bits; 565 u64 raw_event_mask; 566 struct kvm_pmc gp_counters[KVM_MAX_NR_GP_COUNTERS]; 567 struct kvm_pmc fixed_counters[KVM_MAX_NR_FIXED_COUNTERS]; 568 569 /* 570 * Overlay the bitmap with a 64-bit atomic so that all bits can be 571 * set in a single access, e.g. to reprogram all counters when the PMU 572 * filter changes. 573 */ 574 union { 575 DECLARE_BITMAP(reprogram_pmi, X86_PMC_IDX_MAX); 576 atomic64_t __reprogram_pmi; 577 }; 578 DECLARE_BITMAP(all_valid_pmc_idx, X86_PMC_IDX_MAX); 579 DECLARE_BITMAP(pmc_in_use, X86_PMC_IDX_MAX); 580 581 u64 ds_area; 582 u64 pebs_enable; 583 u64 pebs_enable_rsvd; 584 u64 pebs_data_cfg; 585 u64 pebs_data_cfg_rsvd; 586 587 /* 588 * If a guest counter is cross-mapped to host counter with different 589 * index, its PEBS capability will be temporarily disabled. 590 * 591 * The user should make sure that this mask is updated 592 * after disabling interrupts and before perf_guest_get_msrs(); 593 */ 594 u64 host_cross_mapped_mask; 595 596 /* 597 * The gate to release perf_events not marked in 598 * pmc_in_use only once in a vcpu time slice. 599 */ 600 bool need_cleanup; 601 602 /* 603 * The total number of programmed perf_events and it helps to avoid 604 * redundant check before cleanup if guest don't use vPMU at all. 605 */ 606 u8 event_count; 607 }; 608 609 struct kvm_pmu_ops; 610 611 enum { 612 KVM_DEBUGREG_BP_ENABLED = BIT(0), 613 KVM_DEBUGREG_WONT_EXIT = BIT(1), 614 /* 615 * Guest debug registers (DR0-3, DR6 and DR7) are saved/restored by 616 * hardware on exit from or enter to guest. KVM needn't switch them. 617 * DR0-3, DR6 and DR7 are set to their architectural INIT value on VM 618 * exit, host values need to be restored. 619 */ 620 KVM_DEBUGREG_AUTO_SWITCH = BIT(2), 621 }; 622 623 struct kvm_mtrr { 624 u64 var[KVM_NR_VAR_MTRR * 2]; 625 u64 fixed_64k; 626 u64 fixed_16k[2]; 627 u64 fixed_4k[8]; 628 u64 deftype; 629 }; 630 631 /* Hyper-V SynIC timer */ 632 struct kvm_vcpu_hv_stimer { 633 struct hrtimer timer; 634 int index; 635 union hv_stimer_config config; 636 u64 count; 637 u64 exp_time; 638 struct hv_message msg; 639 bool msg_pending; 640 }; 641 642 /* Hyper-V synthetic interrupt controller (SynIC)*/ 643 struct kvm_vcpu_hv_synic { 644 u64 version; 645 u64 control; 646 u64 msg_page; 647 u64 evt_page; 648 atomic64_t sint[HV_SYNIC_SINT_COUNT]; 649 atomic_t sint_to_gsi[HV_SYNIC_SINT_COUNT]; 650 DECLARE_BITMAP(auto_eoi_bitmap, 256); 651 DECLARE_BITMAP(vec_bitmap, 256); 652 bool active; 653 bool dont_zero_synic_pages; 654 }; 655 656 /* The maximum number of entries on the TLB flush fifo. */ 657 #define KVM_HV_TLB_FLUSH_FIFO_SIZE (16) 658 /* 659 * Note: the following 'magic' entry is made up by KVM to avoid putting 660 * anything besides GVA on the TLB flush fifo. It is theoretically possible 661 * to observe a request to flush 4095 PFNs starting from 0xfffffffffffff000 662 * which will look identical. KVM's action to 'flush everything' instead of 663 * flushing these particular addresses is, however, fully legitimate as 664 * flushing more than requested is always OK. 665 */ 666 #define KVM_HV_TLB_FLUSHALL_ENTRY ((u64)-1) 667 668 enum hv_tlb_flush_fifos { 669 HV_L1_TLB_FLUSH_FIFO, 670 HV_L2_TLB_FLUSH_FIFO, 671 HV_NR_TLB_FLUSH_FIFOS, 672 }; 673 674 struct kvm_vcpu_hv_tlb_flush_fifo { 675 spinlock_t write_lock; 676 DECLARE_KFIFO(entries, u64, KVM_HV_TLB_FLUSH_FIFO_SIZE); 677 }; 678 679 /* Hyper-V per vcpu emulation context */ 680 struct kvm_vcpu_hv { 681 struct kvm_vcpu *vcpu; 682 u32 vp_index; 683 u64 hv_vapic; 684 s64 runtime_offset; 685 struct kvm_vcpu_hv_synic synic; 686 struct kvm_hyperv_exit exit; 687 struct kvm_vcpu_hv_stimer stimer[HV_SYNIC_STIMER_COUNT]; 688 DECLARE_BITMAP(stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT); 689 bool enforce_cpuid; 690 struct { 691 u32 features_eax; /* HYPERV_CPUID_FEATURES.EAX */ 692 u32 features_ebx; /* HYPERV_CPUID_FEATURES.EBX */ 693 u32 features_edx; /* HYPERV_CPUID_FEATURES.EDX */ 694 u32 enlightenments_eax; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EAX */ 695 u32 enlightenments_ebx; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EBX */ 696 u32 syndbg_cap_eax; /* HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES.EAX */ 697 u32 nested_eax; /* HYPERV_CPUID_NESTED_FEATURES.EAX */ 698 u32 nested_ebx; /* HYPERV_CPUID_NESTED_FEATURES.EBX */ 699 } cpuid_cache; 700 701 struct kvm_vcpu_hv_tlb_flush_fifo tlb_flush_fifo[HV_NR_TLB_FLUSH_FIFOS]; 702 703 /* Preallocated buffer for handling hypercalls passing sparse vCPU set */ 704 u64 sparse_banks[HV_MAX_SPARSE_VCPU_BANKS]; 705 706 struct hv_vp_assist_page vp_assist_page; 707 708 struct { 709 u64 pa_page_gpa; 710 u64 vm_id; 711 u32 vp_id; 712 } nested; 713 }; 714 715 struct kvm_hypervisor_cpuid { 716 u32 base; 717 u32 limit; 718 }; 719 720 #ifdef CONFIG_KVM_XEN 721 /* Xen HVM per vcpu emulation context */ 722 struct kvm_vcpu_xen { 723 u64 hypercall_rip; 724 u32 current_runstate; 725 u8 upcall_vector; 726 struct gfn_to_pfn_cache vcpu_info_cache; 727 struct gfn_to_pfn_cache vcpu_time_info_cache; 728 struct gfn_to_pfn_cache runstate_cache; 729 struct gfn_to_pfn_cache runstate2_cache; 730 u64 last_steal; 731 u64 runstate_entry_time; 732 u64 runstate_times[4]; 733 unsigned long evtchn_pending_sel; 734 u32 vcpu_id; /* The Xen / ACPI vCPU ID */ 735 u32 timer_virq; 736 u64 timer_expires; /* In guest epoch */ 737 atomic_t timer_pending; 738 struct hrtimer timer; 739 int poll_evtchn; 740 struct timer_list poll_timer; 741 struct kvm_hypervisor_cpuid cpuid; 742 }; 743 #endif 744 745 struct kvm_queued_exception { 746 bool pending; 747 bool injected; 748 bool has_error_code; 749 u8 vector; 750 u32 error_code; 751 unsigned long payload; 752 bool has_payload; 753 }; 754 755 /* 756 * Hardware-defined CPUID leafs that are either scattered by the kernel or are 757 * unknown to the kernel, but need to be directly used by KVM. Note, these 758 * word values conflict with the kernel's "bug" caps, but KVM doesn't use those. 759 */ 760 enum kvm_only_cpuid_leafs { 761 CPUID_12_EAX = NCAPINTS, 762 CPUID_7_1_EDX, 763 CPUID_8000_0007_EDX, 764 CPUID_8000_0022_EAX, 765 CPUID_7_2_EDX, 766 CPUID_24_0_EBX, 767 NR_KVM_CPU_CAPS, 768 769 NKVMCAPINTS = NR_KVM_CPU_CAPS - NCAPINTS, 770 }; 771 772 struct kvm_vcpu_arch { 773 /* 774 * rip and regs accesses must go through 775 * kvm_{register,rip}_{read,write} functions. 776 */ 777 unsigned long regs[NR_VCPU_REGS]; 778 u32 regs_avail; 779 u32 regs_dirty; 780 781 unsigned long cr0; 782 unsigned long cr0_guest_owned_bits; 783 unsigned long cr2; 784 unsigned long cr3; 785 unsigned long cr4; 786 unsigned long cr4_guest_owned_bits; 787 unsigned long cr4_guest_rsvd_bits; 788 unsigned long cr8; 789 u32 host_pkru; 790 u32 pkru; 791 u32 hflags; 792 u64 efer; 793 u64 host_debugctl; 794 u64 apic_base; 795 struct kvm_lapic *apic; /* kernel irqchip context */ 796 bool load_eoi_exitmap_pending; 797 DECLARE_BITMAP(ioapic_handled_vectors, 256); 798 unsigned long apic_attention; 799 int32_t apic_arb_prio; 800 int mp_state; 801 u64 ia32_misc_enable_msr; 802 u64 smbase; 803 u64 smi_count; 804 bool at_instruction_boundary; 805 bool tpr_access_reporting; 806 bool xfd_no_write_intercept; 807 u64 ia32_xss; 808 u64 microcode_version; 809 u64 arch_capabilities; 810 u64 perf_capabilities; 811 812 /* 813 * Paging state of the vcpu 814 * 815 * If the vcpu runs in guest mode with two level paging this still saves 816 * the paging mode of the l1 guest. This context is always used to 817 * handle faults. 818 */ 819 struct kvm_mmu *mmu; 820 821 /* Non-nested MMU for L1 */ 822 struct kvm_mmu root_mmu; 823 824 /* L1 MMU when running nested */ 825 struct kvm_mmu guest_mmu; 826 827 /* 828 * Paging state of an L2 guest (used for nested npt) 829 * 830 * This context will save all necessary information to walk page tables 831 * of an L2 guest. This context is only initialized for page table 832 * walking and not for faulting since we never handle l2 page faults on 833 * the host. 834 */ 835 struct kvm_mmu nested_mmu; 836 837 /* 838 * Pointer to the mmu context currently used for 839 * gva_to_gpa translations. 840 */ 841 struct kvm_mmu *walk_mmu; 842 843 struct kvm_mmu_memory_cache mmu_pte_list_desc_cache; 844 struct kvm_mmu_memory_cache mmu_shadow_page_cache; 845 struct kvm_mmu_memory_cache mmu_shadowed_info_cache; 846 struct kvm_mmu_memory_cache mmu_page_header_cache; 847 /* 848 * This cache is to allocate external page table. E.g. private EPT used 849 * by the TDX module. 850 */ 851 struct kvm_mmu_memory_cache mmu_external_spt_cache; 852 853 /* 854 * QEMU userspace and the guest each have their own FPU state. 855 * In vcpu_run, we switch between the user and guest FPU contexts. 856 * While running a VCPU, the VCPU thread will have the guest FPU 857 * context. 858 * 859 * Note that while the PKRU state lives inside the fpu registers, 860 * it is switched out separately at VMENTER and VMEXIT time. The 861 * "guest_fpstate" state here contains the guest FPU context, with the 862 * host PRKU bits. 863 */ 864 struct fpu_guest guest_fpu; 865 866 u64 xcr0; 867 u64 guest_supported_xcr0; 868 869 struct kvm_pio_request pio; 870 void *pio_data; 871 void *sev_pio_data; 872 unsigned sev_pio_count; 873 874 u8 event_exit_inst_len; 875 876 bool exception_from_userspace; 877 878 /* Exceptions to be injected to the guest. */ 879 struct kvm_queued_exception exception; 880 /* Exception VM-Exits to be synthesized to L1. */ 881 struct kvm_queued_exception exception_vmexit; 882 883 struct kvm_queued_interrupt { 884 bool injected; 885 bool soft; 886 u8 nr; 887 } interrupt; 888 889 int halt_request; /* real mode on Intel only */ 890 891 int cpuid_nent; 892 struct kvm_cpuid_entry2 *cpuid_entries; 893 bool cpuid_dynamic_bits_dirty; 894 bool is_amd_compatible; 895 896 /* 897 * cpu_caps holds the effective guest capabilities, i.e. the features 898 * the vCPU is allowed to use. Typically, but not always, features can 899 * be used by the guest if and only if both KVM and userspace want to 900 * expose the feature to the guest. 901 * 902 * A common exception is for virtualization holes, i.e. when KVM can't 903 * prevent the guest from using a feature, in which case the vCPU "has" 904 * the feature regardless of what KVM or userspace desires. 905 * 906 * Note, features that don't require KVM involvement in any way are 907 * NOT enforced/sanitized by KVM, i.e. are taken verbatim from the 908 * guest CPUID provided by userspace. 909 */ 910 u32 cpu_caps[NR_KVM_CPU_CAPS]; 911 912 u64 reserved_gpa_bits; 913 int maxphyaddr; 914 915 /* emulate context */ 916 917 struct x86_emulate_ctxt *emulate_ctxt; 918 bool emulate_regs_need_sync_to_vcpu; 919 bool emulate_regs_need_sync_from_vcpu; 920 int (*complete_userspace_io)(struct kvm_vcpu *vcpu); 921 922 gpa_t time; 923 s8 pvclock_tsc_shift; 924 u32 pvclock_tsc_mul; 925 unsigned int hw_tsc_khz; 926 struct gfn_to_pfn_cache pv_time; 927 /* set guest stopped flag in pvclock flags field */ 928 bool pvclock_set_guest_stopped_request; 929 930 struct { 931 u8 preempted; 932 u64 msr_val; 933 u64 last_steal; 934 struct gfn_to_hva_cache cache; 935 } st; 936 937 u64 l1_tsc_offset; 938 u64 tsc_offset; /* current tsc offset */ 939 u64 last_guest_tsc; 940 u64 last_host_tsc; 941 u64 tsc_offset_adjustment; 942 u64 this_tsc_nsec; 943 u64 this_tsc_write; 944 u64 this_tsc_generation; 945 bool tsc_catchup; 946 bool tsc_always_catchup; 947 s8 virtual_tsc_shift; 948 u32 virtual_tsc_mult; 949 u32 virtual_tsc_khz; 950 s64 ia32_tsc_adjust_msr; 951 u64 msr_ia32_power_ctl; 952 u64 l1_tsc_scaling_ratio; 953 u64 tsc_scaling_ratio; /* current scaling ratio */ 954 955 atomic_t nmi_queued; /* unprocessed asynchronous NMIs */ 956 /* Number of NMIs pending injection, not including hardware vNMIs. */ 957 unsigned int nmi_pending; 958 bool nmi_injected; /* Trying to inject an NMI this entry */ 959 bool smi_pending; /* SMI queued after currently running handler */ 960 u8 handling_intr_from_guest; 961 962 struct kvm_mtrr mtrr_state; 963 u64 pat; 964 965 unsigned switch_db_regs; 966 unsigned long db[KVM_NR_DB_REGS]; 967 unsigned long dr6; 968 unsigned long dr7; 969 unsigned long eff_db[KVM_NR_DB_REGS]; 970 unsigned long guest_debug_dr7; 971 u64 msr_platform_info; 972 u64 msr_misc_features_enables; 973 974 u64 mcg_cap; 975 u64 mcg_status; 976 u64 mcg_ctl; 977 u64 mcg_ext_ctl; 978 u64 *mce_banks; 979 u64 *mci_ctl2_banks; 980 981 /* Cache MMIO info */ 982 u64 mmio_gva; 983 unsigned mmio_access; 984 gfn_t mmio_gfn; 985 u64 mmio_gen; 986 987 struct kvm_pmu pmu; 988 989 /* used for guest single stepping over the given code position */ 990 unsigned long singlestep_rip; 991 992 #ifdef CONFIG_KVM_HYPERV 993 bool hyperv_enabled; 994 struct kvm_vcpu_hv *hyperv; 995 #endif 996 #ifdef CONFIG_KVM_XEN 997 struct kvm_vcpu_xen xen; 998 #endif 999 cpumask_var_t wbinvd_dirty_mask; 1000 1001 unsigned long last_retry_eip; 1002 unsigned long last_retry_addr; 1003 1004 struct { 1005 bool halted; 1006 gfn_t gfns[ASYNC_PF_PER_VCPU]; 1007 struct gfn_to_hva_cache data; 1008 u64 msr_en_val; /* MSR_KVM_ASYNC_PF_EN */ 1009 u64 msr_int_val; /* MSR_KVM_ASYNC_PF_INT */ 1010 u16 vec; 1011 u32 id; 1012 u32 host_apf_flags; 1013 bool send_always; 1014 bool delivery_as_pf_vmexit; 1015 bool pageready_pending; 1016 } apf; 1017 1018 /* OSVW MSRs (AMD only) */ 1019 struct { 1020 u64 length; 1021 u64 status; 1022 } osvw; 1023 1024 struct { 1025 u64 msr_val; 1026 struct gfn_to_hva_cache data; 1027 } pv_eoi; 1028 1029 u64 msr_kvm_poll_control; 1030 1031 /* pv related host specific info */ 1032 struct { 1033 bool pv_unhalted; 1034 } pv; 1035 1036 int pending_ioapic_eoi; 1037 int pending_external_vector; 1038 1039 /* be preempted when it's in kernel-mode(cpl=0) */ 1040 bool preempted_in_kernel; 1041 1042 /* Flush the L1 Data cache for L1TF mitigation on VMENTER */ 1043 bool l1tf_flush_l1d; 1044 1045 /* Host CPU on which VM-entry was most recently attempted */ 1046 int last_vmentry_cpu; 1047 1048 /* AMD MSRC001_0015 Hardware Configuration */ 1049 u64 msr_hwcr; 1050 1051 /* pv related cpuid info */ 1052 struct { 1053 /* 1054 * value of the eax register in the KVM_CPUID_FEATURES CPUID 1055 * leaf. 1056 */ 1057 u32 features; 1058 1059 /* 1060 * indicates whether pv emulation should be disabled if features 1061 * are not present in the guest's cpuid 1062 */ 1063 bool enforce; 1064 } pv_cpuid; 1065 1066 /* Protected Guests */ 1067 bool guest_state_protected; 1068 bool guest_tsc_protected; 1069 1070 /* 1071 * Set when PDPTS were loaded directly by the userspace without 1072 * reading the guest memory 1073 */ 1074 bool pdptrs_from_userspace; 1075 1076 #if IS_ENABLED(CONFIG_HYPERV) 1077 hpa_t hv_root_tdp; 1078 #endif 1079 }; 1080 1081 struct kvm_lpage_info { 1082 int disallow_lpage; 1083 }; 1084 1085 struct kvm_arch_memory_slot { 1086 struct kvm_rmap_head *rmap[KVM_NR_PAGE_SIZES]; 1087 struct kvm_lpage_info *lpage_info[KVM_NR_PAGE_SIZES - 1]; 1088 unsigned short *gfn_write_track; 1089 }; 1090 1091 /* 1092 * Track the mode of the optimized logical map, as the rules for decoding the 1093 * destination vary per mode. Enabling the optimized logical map requires all 1094 * software-enabled local APIs to be in the same mode, each addressable APIC to 1095 * be mapped to only one MDA, and each MDA to map to at most one APIC. 1096 */ 1097 enum kvm_apic_logical_mode { 1098 /* All local APICs are software disabled. */ 1099 KVM_APIC_MODE_SW_DISABLED, 1100 /* All software enabled local APICs in xAPIC cluster addressing mode. */ 1101 KVM_APIC_MODE_XAPIC_CLUSTER, 1102 /* All software enabled local APICs in xAPIC flat addressing mode. */ 1103 KVM_APIC_MODE_XAPIC_FLAT, 1104 /* All software enabled local APICs in x2APIC mode. */ 1105 KVM_APIC_MODE_X2APIC, 1106 /* 1107 * Optimized map disabled, e.g. not all local APICs in the same logical 1108 * mode, same logical ID assigned to multiple APICs, etc. 1109 */ 1110 KVM_APIC_MODE_MAP_DISABLED, 1111 }; 1112 1113 struct kvm_apic_map { 1114 struct rcu_head rcu; 1115 enum kvm_apic_logical_mode logical_mode; 1116 u32 max_apic_id; 1117 union { 1118 struct kvm_lapic *xapic_flat_map[8]; 1119 struct kvm_lapic *xapic_cluster_map[16][4]; 1120 }; 1121 struct kvm_lapic *phys_map[]; 1122 }; 1123 1124 /* Hyper-V synthetic debugger (SynDbg)*/ 1125 struct kvm_hv_syndbg { 1126 struct { 1127 u64 control; 1128 u64 status; 1129 u64 send_page; 1130 u64 recv_page; 1131 u64 pending_page; 1132 } control; 1133 u64 options; 1134 }; 1135 1136 /* Current state of Hyper-V TSC page clocksource */ 1137 enum hv_tsc_page_status { 1138 /* TSC page was not set up or disabled */ 1139 HV_TSC_PAGE_UNSET = 0, 1140 /* TSC page MSR was written by the guest, update pending */ 1141 HV_TSC_PAGE_GUEST_CHANGED, 1142 /* TSC page update was triggered from the host side */ 1143 HV_TSC_PAGE_HOST_CHANGED, 1144 /* TSC page was properly set up and is currently active */ 1145 HV_TSC_PAGE_SET, 1146 /* TSC page was set up with an inaccessible GPA */ 1147 HV_TSC_PAGE_BROKEN, 1148 }; 1149 1150 #ifdef CONFIG_KVM_HYPERV 1151 /* Hyper-V emulation context */ 1152 struct kvm_hv { 1153 struct mutex hv_lock; 1154 u64 hv_guest_os_id; 1155 u64 hv_hypercall; 1156 u64 hv_tsc_page; 1157 enum hv_tsc_page_status hv_tsc_page_status; 1158 1159 /* Hyper-v based guest crash (NT kernel bugcheck) parameters */ 1160 u64 hv_crash_param[HV_X64_MSR_CRASH_PARAMS]; 1161 u64 hv_crash_ctl; 1162 1163 struct ms_hyperv_tsc_page tsc_ref; 1164 1165 struct idr conn_to_evt; 1166 1167 u64 hv_reenlightenment_control; 1168 u64 hv_tsc_emulation_control; 1169 u64 hv_tsc_emulation_status; 1170 u64 hv_invtsc_control; 1171 1172 /* How many vCPUs have VP index != vCPU index */ 1173 atomic_t num_mismatched_vp_indexes; 1174 1175 /* 1176 * How many SynICs use 'AutoEOI' feature 1177 * (protected by arch.apicv_update_lock) 1178 */ 1179 unsigned int synic_auto_eoi_used; 1180 1181 struct kvm_hv_syndbg hv_syndbg; 1182 1183 bool xsaves_xsavec_checked; 1184 }; 1185 #endif 1186 1187 struct msr_bitmap_range { 1188 u32 flags; 1189 u32 nmsrs; 1190 u32 base; 1191 unsigned long *bitmap; 1192 }; 1193 1194 #ifdef CONFIG_KVM_XEN 1195 /* Xen emulation context */ 1196 struct kvm_xen { 1197 struct mutex xen_lock; 1198 u32 xen_version; 1199 bool long_mode; 1200 bool runstate_update_flag; 1201 u8 upcall_vector; 1202 struct gfn_to_pfn_cache shinfo_cache; 1203 struct idr evtchn_ports; 1204 unsigned long poll_mask[BITS_TO_LONGS(KVM_MAX_VCPUS)]; 1205 1206 struct kvm_xen_hvm_config hvm_config; 1207 }; 1208 #endif 1209 1210 enum kvm_irqchip_mode { 1211 KVM_IRQCHIP_NONE, 1212 KVM_IRQCHIP_KERNEL, /* created with KVM_CREATE_IRQCHIP */ 1213 KVM_IRQCHIP_SPLIT, /* created with KVM_CAP_SPLIT_IRQCHIP */ 1214 }; 1215 1216 struct kvm_x86_msr_filter { 1217 u8 count; 1218 bool default_allow:1; 1219 struct msr_bitmap_range ranges[16]; 1220 }; 1221 1222 struct kvm_x86_pmu_event_filter { 1223 __u32 action; 1224 __u32 nevents; 1225 __u32 fixed_counter_bitmap; 1226 __u32 flags; 1227 __u32 nr_includes; 1228 __u32 nr_excludes; 1229 __u64 *includes; 1230 __u64 *excludes; 1231 __u64 events[]; 1232 }; 1233 1234 enum kvm_apicv_inhibit { 1235 1236 /********************************************************************/ 1237 /* INHIBITs that are relevant to both Intel's APICv and AMD's AVIC. */ 1238 /********************************************************************/ 1239 1240 /* 1241 * APIC acceleration is disabled by a module parameter 1242 * and/or not supported in hardware. 1243 */ 1244 APICV_INHIBIT_REASON_DISABLED, 1245 1246 /* 1247 * APIC acceleration is inhibited because AutoEOI feature is 1248 * being used by a HyperV guest. 1249 */ 1250 APICV_INHIBIT_REASON_HYPERV, 1251 1252 /* 1253 * APIC acceleration is inhibited because the userspace didn't yet 1254 * enable the kernel/split irqchip. 1255 */ 1256 APICV_INHIBIT_REASON_ABSENT, 1257 1258 /* APIC acceleration is inhibited because KVM_GUESTDBG_BLOCKIRQ 1259 * (out of band, debug measure of blocking all interrupts on this vCPU) 1260 * was enabled, to avoid AVIC/APICv bypassing it. 1261 */ 1262 APICV_INHIBIT_REASON_BLOCKIRQ, 1263 1264 /* 1265 * APICv is disabled because not all vCPUs have a 1:1 mapping between 1266 * APIC ID and vCPU, _and_ KVM is not applying its x2APIC hotplug hack. 1267 */ 1268 APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED, 1269 1270 /* 1271 * For simplicity, the APIC acceleration is inhibited 1272 * first time either APIC ID or APIC base are changed by the guest 1273 * from their reset values. 1274 */ 1275 APICV_INHIBIT_REASON_APIC_ID_MODIFIED, 1276 APICV_INHIBIT_REASON_APIC_BASE_MODIFIED, 1277 1278 /******************************************************/ 1279 /* INHIBITs that are relevant only to the AMD's AVIC. */ 1280 /******************************************************/ 1281 1282 /* 1283 * AVIC is inhibited on a vCPU because it runs a nested guest. 1284 * 1285 * This is needed because unlike APICv, the peers of this vCPU 1286 * cannot use the doorbell mechanism to signal interrupts via AVIC when 1287 * a vCPU runs nested. 1288 */ 1289 APICV_INHIBIT_REASON_NESTED, 1290 1291 /* 1292 * On SVM, the wait for the IRQ window is implemented with pending vIRQ, 1293 * which cannot be injected when the AVIC is enabled, thus AVIC 1294 * is inhibited while KVM waits for IRQ window. 1295 */ 1296 APICV_INHIBIT_REASON_IRQWIN, 1297 1298 /* 1299 * PIT (i8254) 're-inject' mode, relies on EOI intercept, 1300 * which AVIC doesn't support for edge triggered interrupts. 1301 */ 1302 APICV_INHIBIT_REASON_PIT_REINJ, 1303 1304 /* 1305 * AVIC is disabled because SEV doesn't support it. 1306 */ 1307 APICV_INHIBIT_REASON_SEV, 1308 1309 /* 1310 * AVIC is disabled because not all vCPUs with a valid LDR have a 1:1 1311 * mapping between logical ID and vCPU. 1312 */ 1313 APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED, 1314 1315 NR_APICV_INHIBIT_REASONS, 1316 }; 1317 1318 #define __APICV_INHIBIT_REASON(reason) \ 1319 { BIT(APICV_INHIBIT_REASON_##reason), #reason } 1320 1321 #define APICV_INHIBIT_REASONS \ 1322 __APICV_INHIBIT_REASON(DISABLED), \ 1323 __APICV_INHIBIT_REASON(HYPERV), \ 1324 __APICV_INHIBIT_REASON(ABSENT), \ 1325 __APICV_INHIBIT_REASON(BLOCKIRQ), \ 1326 __APICV_INHIBIT_REASON(PHYSICAL_ID_ALIASED), \ 1327 __APICV_INHIBIT_REASON(APIC_ID_MODIFIED), \ 1328 __APICV_INHIBIT_REASON(APIC_BASE_MODIFIED), \ 1329 __APICV_INHIBIT_REASON(NESTED), \ 1330 __APICV_INHIBIT_REASON(IRQWIN), \ 1331 __APICV_INHIBIT_REASON(PIT_REINJ), \ 1332 __APICV_INHIBIT_REASON(SEV), \ 1333 __APICV_INHIBIT_REASON(LOGICAL_ID_ALIASED) 1334 1335 struct kvm_arch { 1336 unsigned long n_used_mmu_pages; 1337 unsigned long n_requested_mmu_pages; 1338 unsigned long n_max_mmu_pages; 1339 unsigned int indirect_shadow_pages; 1340 u8 mmu_valid_gen; 1341 u8 vm_type; 1342 bool has_private_mem; 1343 bool has_protected_state; 1344 bool pre_fault_allowed; 1345 struct hlist_head mmu_page_hash[KVM_NUM_MMU_PAGES]; 1346 struct list_head active_mmu_pages; 1347 /* 1348 * A list of kvm_mmu_page structs that, if zapped, could possibly be 1349 * replaced by an NX huge page. A shadow page is on this list if its 1350 * existence disallows an NX huge page (nx_huge_page_disallowed is set) 1351 * and there are no other conditions that prevent a huge page, e.g. 1352 * the backing host page is huge, dirtly logging is not enabled for its 1353 * memslot, etc... Note, zapping shadow pages on this list doesn't 1354 * guarantee an NX huge page will be created in its stead, e.g. if the 1355 * guest attempts to execute from the region then KVM obviously can't 1356 * create an NX huge page (without hanging the guest). 1357 */ 1358 struct list_head possible_nx_huge_pages; 1359 #ifdef CONFIG_KVM_EXTERNAL_WRITE_TRACKING 1360 struct kvm_page_track_notifier_head track_notifier_head; 1361 #endif 1362 /* 1363 * Protects marking pages unsync during page faults, as TDP MMU page 1364 * faults only take mmu_lock for read. For simplicity, the unsync 1365 * pages lock is always taken when marking pages unsync regardless of 1366 * whether mmu_lock is held for read or write. 1367 */ 1368 spinlock_t mmu_unsync_pages_lock; 1369 1370 u64 shadow_mmio_value; 1371 1372 #define __KVM_HAVE_ARCH_NONCOHERENT_DMA 1373 atomic_t noncoherent_dma_count; 1374 #define __KVM_HAVE_ARCH_ASSIGNED_DEVICE 1375 atomic_t assigned_device_count; 1376 struct kvm_pic *vpic; 1377 struct kvm_ioapic *vioapic; 1378 struct kvm_pit *vpit; 1379 atomic_t vapics_in_nmi_mode; 1380 struct mutex apic_map_lock; 1381 struct kvm_apic_map __rcu *apic_map; 1382 atomic_t apic_map_dirty; 1383 1384 bool apic_access_memslot_enabled; 1385 bool apic_access_memslot_inhibited; 1386 1387 /* Protects apicv_inhibit_reasons */ 1388 struct rw_semaphore apicv_update_lock; 1389 unsigned long apicv_inhibit_reasons; 1390 1391 gpa_t wall_clock; 1392 1393 bool mwait_in_guest; 1394 bool hlt_in_guest; 1395 bool pause_in_guest; 1396 bool cstate_in_guest; 1397 1398 unsigned long irq_sources_bitmap; 1399 s64 kvmclock_offset; 1400 1401 /* 1402 * This also protects nr_vcpus_matched_tsc which is read from a 1403 * preemption-disabled region, so it must be a raw spinlock. 1404 */ 1405 raw_spinlock_t tsc_write_lock; 1406 u64 last_tsc_nsec; 1407 u64 last_tsc_write; 1408 u32 last_tsc_khz; 1409 u64 last_tsc_offset; 1410 u64 cur_tsc_nsec; 1411 u64 cur_tsc_write; 1412 u64 cur_tsc_offset; 1413 u64 cur_tsc_generation; 1414 int nr_vcpus_matched_tsc; 1415 1416 u32 default_tsc_khz; 1417 bool user_set_tsc; 1418 u64 apic_bus_cycle_ns; 1419 1420 seqcount_raw_spinlock_t pvclock_sc; 1421 bool use_master_clock; 1422 u64 master_kernel_ns; 1423 u64 master_cycle_now; 1424 struct delayed_work kvmclock_update_work; 1425 struct delayed_work kvmclock_sync_work; 1426 1427 /* reads protected by irq_srcu, writes by irq_lock */ 1428 struct hlist_head mask_notifier_list; 1429 1430 #ifdef CONFIG_KVM_HYPERV 1431 struct kvm_hv hyperv; 1432 #endif 1433 1434 #ifdef CONFIG_KVM_XEN 1435 struct kvm_xen xen; 1436 #endif 1437 1438 bool backwards_tsc_observed; 1439 bool boot_vcpu_runs_old_kvmclock; 1440 u32 bsp_vcpu_id; 1441 1442 u64 disabled_quirks; 1443 1444 enum kvm_irqchip_mode irqchip_mode; 1445 u8 nr_reserved_ioapic_pins; 1446 1447 bool disabled_lapic_found; 1448 1449 bool x2apic_format; 1450 bool x2apic_broadcast_quirk_disabled; 1451 1452 bool guest_can_read_msr_platform_info; 1453 bool exception_payload_enabled; 1454 1455 bool triple_fault_event; 1456 1457 bool bus_lock_detection_enabled; 1458 bool enable_pmu; 1459 1460 u32 notify_window; 1461 u32 notify_vmexit_flags; 1462 /* 1463 * If exit_on_emulation_error is set, and the in-kernel instruction 1464 * emulator fails to emulate an instruction, allow userspace 1465 * the opportunity to look at it. 1466 */ 1467 bool exit_on_emulation_error; 1468 1469 /* Deflect RDMSR and WRMSR to user space when they trigger a #GP */ 1470 u32 user_space_msr_mask; 1471 struct kvm_x86_msr_filter __rcu *msr_filter; 1472 1473 u32 hypercall_exit_enabled; 1474 1475 /* Guest can access the SGX PROVISIONKEY. */ 1476 bool sgx_provisioning_allowed; 1477 1478 struct kvm_x86_pmu_event_filter __rcu *pmu_event_filter; 1479 struct vhost_task *nx_huge_page_recovery_thread; 1480 u64 nx_huge_page_last; 1481 struct once nx_once; 1482 1483 #ifdef CONFIG_X86_64 1484 #ifdef CONFIG_KVM_PROVE_MMU 1485 /* 1486 * The number of TDP MMU pages across all roots. Used only to sanity 1487 * check that KVM isn't leaking TDP MMU pages. 1488 */ 1489 atomic64_t tdp_mmu_pages; 1490 #endif 1491 1492 /* 1493 * List of struct kvm_mmu_pages being used as roots. 1494 * All struct kvm_mmu_pages in the list should have 1495 * tdp_mmu_page set. 1496 * 1497 * For reads, this list is protected by: 1498 * RCU alone or 1499 * the MMU lock in read mode + RCU or 1500 * the MMU lock in write mode 1501 * 1502 * For writes, this list is protected by tdp_mmu_pages_lock; see 1503 * below for the details. 1504 * 1505 * Roots will remain in the list until their tdp_mmu_root_count 1506 * drops to zero, at which point the thread that decremented the 1507 * count to zero should removed the root from the list and clean 1508 * it up, freeing the root after an RCU grace period. 1509 */ 1510 struct list_head tdp_mmu_roots; 1511 1512 /* 1513 * Protects accesses to the following fields when the MMU lock 1514 * is held in read mode: 1515 * - tdp_mmu_roots (above) 1516 * - the link field of kvm_mmu_page structs used by the TDP MMU 1517 * - possible_nx_huge_pages; 1518 * - the possible_nx_huge_page_link field of kvm_mmu_page structs used 1519 * by the TDP MMU 1520 * Because the lock is only taken within the MMU lock, strictly 1521 * speaking it is redundant to acquire this lock when the thread 1522 * holds the MMU lock in write mode. However it often simplifies 1523 * the code to do so. 1524 */ 1525 spinlock_t tdp_mmu_pages_lock; 1526 #endif /* CONFIG_X86_64 */ 1527 1528 /* 1529 * If set, at least one shadow root has been allocated. This flag 1530 * is used as one input when determining whether certain memslot 1531 * related allocations are necessary. 1532 */ 1533 bool shadow_root_allocated; 1534 1535 #ifdef CONFIG_KVM_EXTERNAL_WRITE_TRACKING 1536 /* 1537 * If set, the VM has (or had) an external write tracking user, and 1538 * thus all write tracking metadata has been allocated, even if KVM 1539 * itself isn't using write tracking. 1540 */ 1541 bool external_write_tracking_enabled; 1542 #endif 1543 1544 #if IS_ENABLED(CONFIG_HYPERV) 1545 hpa_t hv_root_tdp; 1546 spinlock_t hv_root_tdp_lock; 1547 struct hv_partition_assist_pg *hv_pa_pg; 1548 #endif 1549 /* 1550 * VM-scope maximum vCPU ID. Used to determine the size of structures 1551 * that increase along with the maximum vCPU ID, in which case, using 1552 * the global KVM_MAX_VCPU_IDS may lead to significant memory waste. 1553 */ 1554 u32 max_vcpu_ids; 1555 1556 bool disable_nx_huge_pages; 1557 1558 /* 1559 * Memory caches used to allocate shadow pages when performing eager 1560 * page splitting. No need for a shadowed_info_cache since eager page 1561 * splitting only allocates direct shadow pages. 1562 * 1563 * Protected by kvm->slots_lock. 1564 */ 1565 struct kvm_mmu_memory_cache split_shadow_page_cache; 1566 struct kvm_mmu_memory_cache split_page_header_cache; 1567 1568 /* 1569 * Memory cache used to allocate pte_list_desc structs while splitting 1570 * huge pages. In the worst case, to split one huge page, 512 1571 * pte_list_desc structs are needed to add each lower level leaf sptep 1572 * to the rmap plus 1 to extend the parent_ptes rmap of the lower level 1573 * page table. 1574 * 1575 * Protected by kvm->slots_lock. 1576 */ 1577 #define SPLIT_DESC_CACHE_MIN_NR_OBJECTS (SPTE_ENT_PER_PAGE + 1) 1578 struct kvm_mmu_memory_cache split_desc_cache; 1579 1580 gfn_t gfn_direct_bits; 1581 1582 /* 1583 * Size of the CPU's dirty log buffer, i.e. VMX's PML buffer. A Zero 1584 * value indicates CPU dirty logging is unsupported or disabled in 1585 * current VM. 1586 */ 1587 int cpu_dirty_log_size; 1588 }; 1589 1590 struct kvm_vm_stat { 1591 struct kvm_vm_stat_generic generic; 1592 u64 mmu_shadow_zapped; 1593 u64 mmu_pte_write; 1594 u64 mmu_pde_zapped; 1595 u64 mmu_flooded; 1596 u64 mmu_recycled; 1597 u64 mmu_cache_miss; 1598 u64 mmu_unsync; 1599 union { 1600 struct { 1601 atomic64_t pages_4k; 1602 atomic64_t pages_2m; 1603 atomic64_t pages_1g; 1604 }; 1605 atomic64_t pages[KVM_NR_PAGE_SIZES]; 1606 }; 1607 u64 nx_lpage_splits; 1608 u64 max_mmu_page_hash_collisions; 1609 u64 max_mmu_rmap_size; 1610 }; 1611 1612 struct kvm_vcpu_stat { 1613 struct kvm_vcpu_stat_generic generic; 1614 u64 pf_taken; 1615 u64 pf_fixed; 1616 u64 pf_emulate; 1617 u64 pf_spurious; 1618 u64 pf_fast; 1619 u64 pf_mmio_spte_created; 1620 u64 pf_guest; 1621 u64 tlb_flush; 1622 u64 invlpg; 1623 1624 u64 exits; 1625 u64 io_exits; 1626 u64 mmio_exits; 1627 u64 signal_exits; 1628 u64 irq_window_exits; 1629 u64 nmi_window_exits; 1630 u64 l1d_flush; 1631 u64 halt_exits; 1632 u64 request_irq_exits; 1633 u64 irq_exits; 1634 u64 host_state_reload; 1635 u64 fpu_reload; 1636 u64 insn_emulation; 1637 u64 insn_emulation_fail; 1638 u64 hypercalls; 1639 u64 irq_injections; 1640 u64 nmi_injections; 1641 u64 req_event; 1642 u64 nested_run; 1643 u64 directed_yield_attempted; 1644 u64 directed_yield_successful; 1645 u64 preemption_reported; 1646 u64 preemption_other; 1647 u64 guest_mode; 1648 u64 notify_window_exits; 1649 }; 1650 1651 struct x86_instruction_info; 1652 1653 struct msr_data { 1654 bool host_initiated; 1655 u32 index; 1656 u64 data; 1657 }; 1658 1659 struct kvm_lapic_irq { 1660 u32 vector; 1661 u16 delivery_mode; 1662 u16 dest_mode; 1663 bool level; 1664 u16 trig_mode; 1665 u32 shorthand; 1666 u32 dest_id; 1667 bool msi_redir_hint; 1668 }; 1669 1670 static inline u16 kvm_lapic_irq_dest_mode(bool dest_mode_logical) 1671 { 1672 return dest_mode_logical ? APIC_DEST_LOGICAL : APIC_DEST_PHYSICAL; 1673 } 1674 1675 struct kvm_x86_ops { 1676 const char *name; 1677 1678 int (*check_processor_compatibility)(void); 1679 1680 int (*enable_virtualization_cpu)(void); 1681 void (*disable_virtualization_cpu)(void); 1682 cpu_emergency_virt_cb *emergency_disable_virtualization_cpu; 1683 1684 void (*hardware_unsetup)(void); 1685 bool (*has_emulated_msr)(struct kvm *kvm, u32 index); 1686 void (*vcpu_after_set_cpuid)(struct kvm_vcpu *vcpu); 1687 1688 unsigned int vm_size; 1689 int (*vm_init)(struct kvm *kvm); 1690 void (*vm_destroy)(struct kvm *kvm); 1691 void (*vm_pre_destroy)(struct kvm *kvm); 1692 1693 /* Create, but do not attach this VCPU */ 1694 int (*vcpu_precreate)(struct kvm *kvm); 1695 int (*vcpu_create)(struct kvm_vcpu *vcpu); 1696 void (*vcpu_free)(struct kvm_vcpu *vcpu); 1697 void (*vcpu_reset)(struct kvm_vcpu *vcpu, bool init_event); 1698 1699 void (*prepare_switch_to_guest)(struct kvm_vcpu *vcpu); 1700 void (*vcpu_load)(struct kvm_vcpu *vcpu, int cpu); 1701 void (*vcpu_put)(struct kvm_vcpu *vcpu); 1702 1703 void (*update_exception_bitmap)(struct kvm_vcpu *vcpu); 1704 int (*get_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr); 1705 int (*set_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr); 1706 u64 (*get_segment_base)(struct kvm_vcpu *vcpu, int seg); 1707 void (*get_segment)(struct kvm_vcpu *vcpu, 1708 struct kvm_segment *var, int seg); 1709 int (*get_cpl)(struct kvm_vcpu *vcpu); 1710 int (*get_cpl_no_cache)(struct kvm_vcpu *vcpu); 1711 void (*set_segment)(struct kvm_vcpu *vcpu, 1712 struct kvm_segment *var, int seg); 1713 void (*get_cs_db_l_bits)(struct kvm_vcpu *vcpu, int *db, int *l); 1714 bool (*is_valid_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0); 1715 void (*set_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0); 1716 void (*post_set_cr3)(struct kvm_vcpu *vcpu, unsigned long cr3); 1717 bool (*is_valid_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4); 1718 void (*set_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4); 1719 int (*set_efer)(struct kvm_vcpu *vcpu, u64 efer); 1720 void (*get_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); 1721 void (*set_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); 1722 void (*get_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); 1723 void (*set_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); 1724 void (*sync_dirty_debug_regs)(struct kvm_vcpu *vcpu); 1725 void (*set_dr6)(struct kvm_vcpu *vcpu, unsigned long value); 1726 void (*set_dr7)(struct kvm_vcpu *vcpu, unsigned long value); 1727 void (*cache_reg)(struct kvm_vcpu *vcpu, enum kvm_reg reg); 1728 unsigned long (*get_rflags)(struct kvm_vcpu *vcpu); 1729 void (*set_rflags)(struct kvm_vcpu *vcpu, unsigned long rflags); 1730 bool (*get_if_flag)(struct kvm_vcpu *vcpu); 1731 1732 void (*flush_tlb_all)(struct kvm_vcpu *vcpu); 1733 void (*flush_tlb_current)(struct kvm_vcpu *vcpu); 1734 #if IS_ENABLED(CONFIG_HYPERV) 1735 int (*flush_remote_tlbs)(struct kvm *kvm); 1736 int (*flush_remote_tlbs_range)(struct kvm *kvm, gfn_t gfn, 1737 gfn_t nr_pages); 1738 #endif 1739 1740 /* 1741 * Flush any TLB entries associated with the given GVA. 1742 * Does not need to flush GPA->HPA mappings. 1743 * Can potentially get non-canonical addresses through INVLPGs, which 1744 * the implementation may choose to ignore if appropriate. 1745 */ 1746 void (*flush_tlb_gva)(struct kvm_vcpu *vcpu, gva_t addr); 1747 1748 /* 1749 * Flush any TLB entries created by the guest. Like tlb_flush_gva(), 1750 * does not need to flush GPA->HPA mappings. 1751 */ 1752 void (*flush_tlb_guest)(struct kvm_vcpu *vcpu); 1753 1754 int (*vcpu_pre_run)(struct kvm_vcpu *vcpu); 1755 enum exit_fastpath_completion (*vcpu_run)(struct kvm_vcpu *vcpu, 1756 bool force_immediate_exit); 1757 int (*handle_exit)(struct kvm_vcpu *vcpu, 1758 enum exit_fastpath_completion exit_fastpath); 1759 int (*skip_emulated_instruction)(struct kvm_vcpu *vcpu); 1760 void (*update_emulated_instruction)(struct kvm_vcpu *vcpu); 1761 void (*set_interrupt_shadow)(struct kvm_vcpu *vcpu, int mask); 1762 u32 (*get_interrupt_shadow)(struct kvm_vcpu *vcpu); 1763 void (*patch_hypercall)(struct kvm_vcpu *vcpu, 1764 unsigned char *hypercall_addr); 1765 void (*inject_irq)(struct kvm_vcpu *vcpu, bool reinjected); 1766 void (*inject_nmi)(struct kvm_vcpu *vcpu); 1767 void (*inject_exception)(struct kvm_vcpu *vcpu); 1768 void (*cancel_injection)(struct kvm_vcpu *vcpu); 1769 int (*interrupt_allowed)(struct kvm_vcpu *vcpu, bool for_injection); 1770 int (*nmi_allowed)(struct kvm_vcpu *vcpu, bool for_injection); 1771 bool (*get_nmi_mask)(struct kvm_vcpu *vcpu); 1772 void (*set_nmi_mask)(struct kvm_vcpu *vcpu, bool masked); 1773 /* Whether or not a virtual NMI is pending in hardware. */ 1774 bool (*is_vnmi_pending)(struct kvm_vcpu *vcpu); 1775 /* 1776 * Attempt to pend a virtual NMI in hardware. Returns %true on success 1777 * to allow using static_call_ret0 as the fallback. 1778 */ 1779 bool (*set_vnmi_pending)(struct kvm_vcpu *vcpu); 1780 void (*enable_nmi_window)(struct kvm_vcpu *vcpu); 1781 void (*enable_irq_window)(struct kvm_vcpu *vcpu); 1782 void (*update_cr8_intercept)(struct kvm_vcpu *vcpu, int tpr, int irr); 1783 1784 const bool x2apic_icr_is_split; 1785 const unsigned long required_apicv_inhibits; 1786 bool allow_apicv_in_x2apic_without_x2apic_virtualization; 1787 void (*refresh_apicv_exec_ctrl)(struct kvm_vcpu *vcpu); 1788 void (*hwapic_isr_update)(struct kvm_vcpu *vcpu, int isr); 1789 void (*load_eoi_exitmap)(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap); 1790 void (*set_virtual_apic_mode)(struct kvm_vcpu *vcpu); 1791 void (*set_apic_access_page_addr)(struct kvm_vcpu *vcpu); 1792 void (*deliver_interrupt)(struct kvm_lapic *apic, int delivery_mode, 1793 int trig_mode, int vector); 1794 int (*sync_pir_to_irr)(struct kvm_vcpu *vcpu); 1795 int (*set_tss_addr)(struct kvm *kvm, unsigned int addr); 1796 int (*set_identity_map_addr)(struct kvm *kvm, u64 ident_addr); 1797 u8 (*get_mt_mask)(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio); 1798 1799 void (*load_mmu_pgd)(struct kvm_vcpu *vcpu, hpa_t root_hpa, 1800 int root_level); 1801 1802 /* Update external mapping with page table link. */ 1803 int (*link_external_spt)(struct kvm *kvm, gfn_t gfn, enum pg_level level, 1804 void *external_spt); 1805 /* Update the external page table from spte getting set. */ 1806 int (*set_external_spte)(struct kvm *kvm, gfn_t gfn, enum pg_level level, 1807 kvm_pfn_t pfn_for_gfn); 1808 1809 /* Update external page tables for page table about to be freed. */ 1810 int (*free_external_spt)(struct kvm *kvm, gfn_t gfn, enum pg_level level, 1811 void *external_spt); 1812 1813 /* Update external page table from spte getting removed, and flush TLB. */ 1814 int (*remove_external_spte)(struct kvm *kvm, gfn_t gfn, enum pg_level level, 1815 kvm_pfn_t pfn_for_gfn); 1816 1817 bool (*has_wbinvd_exit)(void); 1818 1819 u64 (*get_l2_tsc_offset)(struct kvm_vcpu *vcpu); 1820 u64 (*get_l2_tsc_multiplier)(struct kvm_vcpu *vcpu); 1821 void (*write_tsc_offset)(struct kvm_vcpu *vcpu); 1822 void (*write_tsc_multiplier)(struct kvm_vcpu *vcpu); 1823 1824 /* 1825 * Retrieve somewhat arbitrary exit/entry information. Intended to 1826 * be used only from within tracepoints or error paths. 1827 */ 1828 void (*get_exit_info)(struct kvm_vcpu *vcpu, u32 *reason, 1829 u64 *info1, u64 *info2, 1830 u32 *intr_info, u32 *error_code); 1831 1832 void (*get_entry_info)(struct kvm_vcpu *vcpu, 1833 u32 *intr_info, u32 *error_code); 1834 1835 int (*check_intercept)(struct kvm_vcpu *vcpu, 1836 struct x86_instruction_info *info, 1837 enum x86_intercept_stage stage, 1838 struct x86_exception *exception); 1839 void (*handle_exit_irqoff)(struct kvm_vcpu *vcpu); 1840 1841 void (*update_cpu_dirty_logging)(struct kvm_vcpu *vcpu); 1842 1843 const struct kvm_x86_nested_ops *nested_ops; 1844 1845 void (*vcpu_blocking)(struct kvm_vcpu *vcpu); 1846 void (*vcpu_unblocking)(struct kvm_vcpu *vcpu); 1847 1848 int (*pi_update_irte)(struct kvm *kvm, unsigned int host_irq, 1849 uint32_t guest_irq, bool set); 1850 void (*pi_start_assignment)(struct kvm *kvm); 1851 void (*apicv_pre_state_restore)(struct kvm_vcpu *vcpu); 1852 void (*apicv_post_state_restore)(struct kvm_vcpu *vcpu); 1853 bool (*dy_apicv_has_pending_interrupt)(struct kvm_vcpu *vcpu); 1854 bool (*protected_apic_has_interrupt)(struct kvm_vcpu *vcpu); 1855 1856 int (*set_hv_timer)(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc, 1857 bool *expired); 1858 void (*cancel_hv_timer)(struct kvm_vcpu *vcpu); 1859 1860 void (*setup_mce)(struct kvm_vcpu *vcpu); 1861 1862 #ifdef CONFIG_KVM_SMM 1863 int (*smi_allowed)(struct kvm_vcpu *vcpu, bool for_injection); 1864 int (*enter_smm)(struct kvm_vcpu *vcpu, union kvm_smram *smram); 1865 int (*leave_smm)(struct kvm_vcpu *vcpu, const union kvm_smram *smram); 1866 void (*enable_smi_window)(struct kvm_vcpu *vcpu); 1867 #endif 1868 1869 int (*dev_get_attr)(u32 group, u64 attr, u64 *val); 1870 int (*mem_enc_ioctl)(struct kvm *kvm, void __user *argp); 1871 int (*vcpu_mem_enc_ioctl)(struct kvm_vcpu *vcpu, void __user *argp); 1872 int (*mem_enc_register_region)(struct kvm *kvm, struct kvm_enc_region *argp); 1873 int (*mem_enc_unregister_region)(struct kvm *kvm, struct kvm_enc_region *argp); 1874 int (*vm_copy_enc_context_from)(struct kvm *kvm, unsigned int source_fd); 1875 int (*vm_move_enc_context_from)(struct kvm *kvm, unsigned int source_fd); 1876 void (*guest_memory_reclaimed)(struct kvm *kvm); 1877 1878 int (*get_feature_msr)(u32 msr, u64 *data); 1879 1880 int (*check_emulate_instruction)(struct kvm_vcpu *vcpu, int emul_type, 1881 void *insn, int insn_len); 1882 1883 bool (*apic_init_signal_blocked)(struct kvm_vcpu *vcpu); 1884 int (*enable_l2_tlb_flush)(struct kvm_vcpu *vcpu); 1885 1886 void (*migrate_timers)(struct kvm_vcpu *vcpu); 1887 void (*msr_filter_changed)(struct kvm_vcpu *vcpu); 1888 int (*complete_emulated_msr)(struct kvm_vcpu *vcpu, int err); 1889 1890 void (*vcpu_deliver_sipi_vector)(struct kvm_vcpu *vcpu, u8 vector); 1891 1892 /* 1893 * Returns vCPU specific APICv inhibit reasons 1894 */ 1895 unsigned long (*vcpu_get_apicv_inhibit_reasons)(struct kvm_vcpu *vcpu); 1896 1897 gva_t (*get_untagged_addr)(struct kvm_vcpu *vcpu, gva_t gva, unsigned int flags); 1898 void *(*alloc_apic_backing_page)(struct kvm_vcpu *vcpu); 1899 int (*gmem_prepare)(struct kvm *kvm, kvm_pfn_t pfn, gfn_t gfn, int max_order); 1900 void (*gmem_invalidate)(kvm_pfn_t start, kvm_pfn_t end); 1901 int (*private_max_mapping_level)(struct kvm *kvm, kvm_pfn_t pfn); 1902 }; 1903 1904 struct kvm_x86_nested_ops { 1905 void (*leave_nested)(struct kvm_vcpu *vcpu); 1906 bool (*is_exception_vmexit)(struct kvm_vcpu *vcpu, u8 vector, 1907 u32 error_code); 1908 int (*check_events)(struct kvm_vcpu *vcpu); 1909 bool (*has_events)(struct kvm_vcpu *vcpu, bool for_injection); 1910 void (*triple_fault)(struct kvm_vcpu *vcpu); 1911 int (*get_state)(struct kvm_vcpu *vcpu, 1912 struct kvm_nested_state __user *user_kvm_nested_state, 1913 unsigned user_data_size); 1914 int (*set_state)(struct kvm_vcpu *vcpu, 1915 struct kvm_nested_state __user *user_kvm_nested_state, 1916 struct kvm_nested_state *kvm_state); 1917 bool (*get_nested_state_pages)(struct kvm_vcpu *vcpu); 1918 int (*write_log_dirty)(struct kvm_vcpu *vcpu, gpa_t l2_gpa); 1919 1920 int (*enable_evmcs)(struct kvm_vcpu *vcpu, 1921 uint16_t *vmcs_version); 1922 uint16_t (*get_evmcs_version)(struct kvm_vcpu *vcpu); 1923 void (*hv_inject_synthetic_vmexit_post_tlb_flush)(struct kvm_vcpu *vcpu); 1924 }; 1925 1926 struct kvm_x86_init_ops { 1927 int (*hardware_setup)(void); 1928 unsigned int (*handle_intel_pt_intr)(void); 1929 1930 struct kvm_x86_ops *runtime_ops; 1931 struct kvm_pmu_ops *pmu_ops; 1932 }; 1933 1934 struct kvm_arch_async_pf { 1935 u32 token; 1936 gfn_t gfn; 1937 unsigned long cr3; 1938 bool direct_map; 1939 u64 error_code; 1940 }; 1941 1942 extern u32 __read_mostly kvm_nr_uret_msrs; 1943 extern bool __read_mostly allow_smaller_maxphyaddr; 1944 extern bool __read_mostly enable_apicv; 1945 extern struct kvm_x86_ops kvm_x86_ops; 1946 1947 #define kvm_x86_call(func) static_call(kvm_x86_##func) 1948 #define kvm_pmu_call(func) static_call(kvm_x86_pmu_##func) 1949 1950 #define KVM_X86_OP(func) \ 1951 DECLARE_STATIC_CALL(kvm_x86_##func, *(((struct kvm_x86_ops *)0)->func)); 1952 #define KVM_X86_OP_OPTIONAL KVM_X86_OP 1953 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP 1954 #include <asm/kvm-x86-ops.h> 1955 1956 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops); 1957 void kvm_x86_vendor_exit(void); 1958 1959 #define __KVM_HAVE_ARCH_VM_ALLOC 1960 static inline struct kvm *kvm_arch_alloc_vm(void) 1961 { 1962 return __vmalloc(kvm_x86_ops.vm_size, GFP_KERNEL_ACCOUNT | __GFP_ZERO); 1963 } 1964 1965 #define __KVM_HAVE_ARCH_VM_FREE 1966 void kvm_arch_free_vm(struct kvm *kvm); 1967 1968 #if IS_ENABLED(CONFIG_HYPERV) 1969 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS 1970 static inline int kvm_arch_flush_remote_tlbs(struct kvm *kvm) 1971 { 1972 if (kvm_x86_ops.flush_remote_tlbs && 1973 !kvm_x86_call(flush_remote_tlbs)(kvm)) 1974 return 0; 1975 else 1976 return -ENOTSUPP; 1977 } 1978 1979 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE 1980 static inline int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, 1981 u64 nr_pages) 1982 { 1983 if (!kvm_x86_ops.flush_remote_tlbs_range) 1984 return -EOPNOTSUPP; 1985 1986 return kvm_x86_call(flush_remote_tlbs_range)(kvm, gfn, nr_pages); 1987 } 1988 #endif /* CONFIG_HYPERV */ 1989 1990 enum kvm_intr_type { 1991 /* Values are arbitrary, but must be non-zero. */ 1992 KVM_HANDLING_IRQ = 1, 1993 KVM_HANDLING_NMI, 1994 }; 1995 1996 /* Enable perf NMI and timer modes to work, and minimise false positives. */ 1997 #define kvm_arch_pmi_in_guest(vcpu) \ 1998 ((vcpu) && (vcpu)->arch.handling_intr_from_guest && \ 1999 (!!in_nmi() == ((vcpu)->arch.handling_intr_from_guest == KVM_HANDLING_NMI))) 2000 2001 void __init kvm_mmu_x86_module_init(void); 2002 int kvm_mmu_vendor_module_init(void); 2003 void kvm_mmu_vendor_module_exit(void); 2004 2005 void kvm_mmu_destroy(struct kvm_vcpu *vcpu); 2006 int kvm_mmu_create(struct kvm_vcpu *vcpu); 2007 void kvm_mmu_init_vm(struct kvm *kvm); 2008 void kvm_mmu_uninit_vm(struct kvm *kvm); 2009 2010 void kvm_mmu_init_memslot_memory_attributes(struct kvm *kvm, 2011 struct kvm_memory_slot *slot); 2012 2013 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu); 2014 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu); 2015 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, 2016 const struct kvm_memory_slot *memslot, 2017 int start_level); 2018 void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm, 2019 const struct kvm_memory_slot *memslot, 2020 int target_level); 2021 void kvm_mmu_try_split_huge_pages(struct kvm *kvm, 2022 const struct kvm_memory_slot *memslot, 2023 u64 start, u64 end, 2024 int target_level); 2025 void kvm_mmu_recover_huge_pages(struct kvm *kvm, 2026 const struct kvm_memory_slot *memslot); 2027 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm, 2028 const struct kvm_memory_slot *memslot); 2029 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen); 2030 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long kvm_nr_mmu_pages); 2031 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end); 2032 2033 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3); 2034 2035 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 2036 const void *val, int bytes); 2037 2038 struct kvm_irq_mask_notifier { 2039 void (*func)(struct kvm_irq_mask_notifier *kimn, bool masked); 2040 int irq; 2041 struct hlist_node link; 2042 }; 2043 2044 void kvm_register_irq_mask_notifier(struct kvm *kvm, int irq, 2045 struct kvm_irq_mask_notifier *kimn); 2046 void kvm_unregister_irq_mask_notifier(struct kvm *kvm, int irq, 2047 struct kvm_irq_mask_notifier *kimn); 2048 void kvm_fire_mask_notifiers(struct kvm *kvm, unsigned irqchip, unsigned pin, 2049 bool mask); 2050 2051 extern bool tdp_enabled; 2052 2053 u64 vcpu_tsc_khz(struct kvm_vcpu *vcpu); 2054 2055 /* 2056 * EMULTYPE_NO_DECODE - Set when re-emulating an instruction (after completing 2057 * userspace I/O) to indicate that the emulation context 2058 * should be reused as is, i.e. skip initialization of 2059 * emulation context, instruction fetch and decode. 2060 * 2061 * EMULTYPE_TRAP_UD - Set when emulating an intercepted #UD from hardware. 2062 * Indicates that only select instructions (tagged with 2063 * EmulateOnUD) should be emulated (to minimize the emulator 2064 * attack surface). See also EMULTYPE_TRAP_UD_FORCED. 2065 * 2066 * EMULTYPE_SKIP - Set when emulating solely to skip an instruction, i.e. to 2067 * decode the instruction length. For use *only* by 2068 * kvm_x86_ops.skip_emulated_instruction() implementations if 2069 * EMULTYPE_COMPLETE_USER_EXIT is not set. 2070 * 2071 * EMULTYPE_ALLOW_RETRY_PF - Set when the emulator should resume the guest to 2072 * retry native execution under certain conditions, 2073 * Can only be set in conjunction with EMULTYPE_PF. 2074 * 2075 * EMULTYPE_TRAP_UD_FORCED - Set when emulating an intercepted #UD that was 2076 * triggered by KVM's magic "force emulation" prefix, 2077 * which is opt in via module param (off by default). 2078 * Bypasses EmulateOnUD restriction despite emulating 2079 * due to an intercepted #UD (see EMULTYPE_TRAP_UD). 2080 * Used to test the full emulator from userspace. 2081 * 2082 * EMULTYPE_VMWARE_GP - Set when emulating an intercepted #GP for VMware 2083 * backdoor emulation, which is opt in via module param. 2084 * VMware backdoor emulation handles select instructions 2085 * and reinjects the #GP for all other cases. 2086 * 2087 * EMULTYPE_PF - Set when an intercepted #PF triggers the emulation, in which case 2088 * the CR2/GPA value pass on the stack is valid. 2089 * 2090 * EMULTYPE_COMPLETE_USER_EXIT - Set when the emulator should update interruptibility 2091 * state and inject single-step #DBs after skipping 2092 * an instruction (after completing userspace I/O). 2093 * 2094 * EMULTYPE_WRITE_PF_TO_SP - Set when emulating an intercepted page fault that 2095 * is attempting to write a gfn that contains one or 2096 * more of the PTEs used to translate the write itself, 2097 * and the owning page table is being shadowed by KVM. 2098 * If emulation of the faulting instruction fails and 2099 * this flag is set, KVM will exit to userspace instead 2100 * of retrying emulation as KVM cannot make forward 2101 * progress. 2102 * 2103 * If emulation fails for a write to guest page tables, 2104 * KVM unprotects (zaps) the shadow page for the target 2105 * gfn and resumes the guest to retry the non-emulatable 2106 * instruction (on hardware). Unprotecting the gfn 2107 * doesn't allow forward progress for a self-changing 2108 * access because doing so also zaps the translation for 2109 * the gfn, i.e. retrying the instruction will hit a 2110 * !PRESENT fault, which results in a new shadow page 2111 * and sends KVM back to square one. 2112 */ 2113 #define EMULTYPE_NO_DECODE (1 << 0) 2114 #define EMULTYPE_TRAP_UD (1 << 1) 2115 #define EMULTYPE_SKIP (1 << 2) 2116 #define EMULTYPE_ALLOW_RETRY_PF (1 << 3) 2117 #define EMULTYPE_TRAP_UD_FORCED (1 << 4) 2118 #define EMULTYPE_VMWARE_GP (1 << 5) 2119 #define EMULTYPE_PF (1 << 6) 2120 #define EMULTYPE_COMPLETE_USER_EXIT (1 << 7) 2121 #define EMULTYPE_WRITE_PF_TO_SP (1 << 8) 2122 2123 static inline bool kvm_can_emulate_event_vectoring(int emul_type) 2124 { 2125 return !(emul_type & EMULTYPE_PF); 2126 } 2127 2128 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type); 2129 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu, 2130 void *insn, int insn_len); 2131 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, 2132 u64 *data, u8 ndata); 2133 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu); 2134 2135 void kvm_prepare_event_vectoring_exit(struct kvm_vcpu *vcpu, gpa_t gpa); 2136 2137 void kvm_enable_efer_bits(u64); 2138 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer); 2139 int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data); 2140 int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data); 2141 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, bool host_initiated); 2142 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data); 2143 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data); 2144 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu); 2145 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu); 2146 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu); 2147 int kvm_emulate_invd(struct kvm_vcpu *vcpu); 2148 int kvm_emulate_mwait(struct kvm_vcpu *vcpu); 2149 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu); 2150 int kvm_emulate_monitor(struct kvm_vcpu *vcpu); 2151 2152 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in); 2153 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu); 2154 int kvm_emulate_halt(struct kvm_vcpu *vcpu); 2155 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu); 2156 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu); 2157 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu); 2158 2159 void kvm_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg); 2160 void kvm_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg); 2161 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector, int seg); 2162 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector); 2163 2164 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 2165 int reason, bool has_error_code, u32 error_code); 2166 2167 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0); 2168 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4); 2169 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0); 2170 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3); 2171 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4); 2172 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8); 2173 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val); 2174 unsigned long kvm_get_dr(struct kvm_vcpu *vcpu, int dr); 2175 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu); 2176 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw); 2177 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu); 2178 2179 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr); 2180 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr); 2181 2182 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu); 2183 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); 2184 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu); 2185 2186 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr); 2187 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code); 2188 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, unsigned long payload); 2189 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned int nr, 2190 bool has_error_code, u32 error_code); 2191 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault); 2192 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu, 2193 struct x86_exception *fault); 2194 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl); 2195 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr); 2196 2197 static inline int __kvm_irq_line_state(unsigned long *irq_state, 2198 int irq_source_id, int level) 2199 { 2200 /* Logical OR for level trig interrupt */ 2201 if (level) 2202 __set_bit(irq_source_id, irq_state); 2203 else 2204 __clear_bit(irq_source_id, irq_state); 2205 2206 return !!(*irq_state); 2207 } 2208 2209 int kvm_pic_set_irq(struct kvm_pic *pic, int irq, int irq_source_id, int level); 2210 void kvm_pic_clear_all(struct kvm_pic *pic, int irq_source_id); 2211 2212 void kvm_inject_nmi(struct kvm_vcpu *vcpu); 2213 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu); 2214 2215 void kvm_update_dr7(struct kvm_vcpu *vcpu); 2216 2217 bool __kvm_mmu_unprotect_gfn_and_retry(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 2218 bool always_retry); 2219 2220 static inline bool kvm_mmu_unprotect_gfn_and_retry(struct kvm_vcpu *vcpu, 2221 gpa_t cr2_or_gpa) 2222 { 2223 return __kvm_mmu_unprotect_gfn_and_retry(vcpu, cr2_or_gpa, false); 2224 } 2225 2226 void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu, 2227 ulong roots_to_free); 2228 void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu); 2229 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 2230 struct x86_exception *exception); 2231 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 2232 struct x86_exception *exception); 2233 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 2234 struct x86_exception *exception); 2235 2236 bool kvm_apicv_activated(struct kvm *kvm); 2237 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu); 2238 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu); 2239 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 2240 enum kvm_apicv_inhibit reason, bool set); 2241 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 2242 enum kvm_apicv_inhibit reason, bool set); 2243 2244 static inline void kvm_set_apicv_inhibit(struct kvm *kvm, 2245 enum kvm_apicv_inhibit reason) 2246 { 2247 kvm_set_or_clear_apicv_inhibit(kvm, reason, true); 2248 } 2249 2250 static inline void kvm_clear_apicv_inhibit(struct kvm *kvm, 2251 enum kvm_apicv_inhibit reason) 2252 { 2253 kvm_set_or_clear_apicv_inhibit(kvm, reason, false); 2254 } 2255 2256 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code, 2257 void *insn, int insn_len); 2258 void kvm_mmu_print_sptes(struct kvm_vcpu *vcpu, gpa_t gpa, const char *msg); 2259 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva); 2260 void kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 2261 u64 addr, unsigned long roots); 2262 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid); 2263 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd); 2264 2265 void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level, 2266 int tdp_max_root_level, int tdp_huge_page_level); 2267 2268 2269 #ifdef CONFIG_KVM_PRIVATE_MEM 2270 #define kvm_arch_has_private_mem(kvm) ((kvm)->arch.has_private_mem) 2271 #else 2272 #define kvm_arch_has_private_mem(kvm) false 2273 #endif 2274 2275 #define kvm_arch_has_readonly_mem(kvm) (!(kvm)->arch.has_protected_state) 2276 2277 static inline u16 kvm_read_ldt(void) 2278 { 2279 u16 ldt; 2280 asm("sldt %0" : "=g"(ldt)); 2281 return ldt; 2282 } 2283 2284 static inline void kvm_load_ldt(u16 sel) 2285 { 2286 asm("lldt %0" : : "rm"(sel)); 2287 } 2288 2289 #ifdef CONFIG_X86_64 2290 static inline unsigned long read_msr(unsigned long msr) 2291 { 2292 u64 value; 2293 2294 rdmsrq(msr, value); 2295 return value; 2296 } 2297 #endif 2298 2299 static inline void kvm_inject_gp(struct kvm_vcpu *vcpu, u32 error_code) 2300 { 2301 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); 2302 } 2303 2304 #define TSS_IOPB_BASE_OFFSET 0x66 2305 #define TSS_BASE_SIZE 0x68 2306 #define TSS_IOPB_SIZE (65536 / 8) 2307 #define TSS_REDIRECTION_SIZE (256 / 8) 2308 #define RMODE_TSS_SIZE \ 2309 (TSS_BASE_SIZE + TSS_REDIRECTION_SIZE + TSS_IOPB_SIZE + 1) 2310 2311 enum { 2312 TASK_SWITCH_CALL = 0, 2313 TASK_SWITCH_IRET = 1, 2314 TASK_SWITCH_JMP = 2, 2315 TASK_SWITCH_GATE = 3, 2316 }; 2317 2318 #define HF_GUEST_MASK (1 << 0) /* VCPU is in guest-mode */ 2319 2320 #ifdef CONFIG_KVM_SMM 2321 #define HF_SMM_MASK (1 << 1) 2322 #define HF_SMM_INSIDE_NMI_MASK (1 << 2) 2323 2324 # define KVM_MAX_NR_ADDRESS_SPACES 2 2325 /* SMM is currently unsupported for guests with private memory. */ 2326 # define kvm_arch_nr_memslot_as_ids(kvm) (kvm_arch_has_private_mem(kvm) ? 1 : 2) 2327 # define kvm_arch_vcpu_memslots_id(vcpu) ((vcpu)->arch.hflags & HF_SMM_MASK ? 1 : 0) 2328 # define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, (role).smm) 2329 #else 2330 # define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, 0) 2331 #endif 2332 2333 int kvm_cpu_has_injectable_intr(struct kvm_vcpu *v); 2334 int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu); 2335 int kvm_cpu_has_extint(struct kvm_vcpu *v); 2336 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu); 2337 int kvm_cpu_get_extint(struct kvm_vcpu *v); 2338 int kvm_cpu_get_interrupt(struct kvm_vcpu *v); 2339 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event); 2340 2341 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low, 2342 unsigned long ipi_bitmap_high, u32 min, 2343 unsigned long icr, int op_64_bit); 2344 2345 int kvm_add_user_return_msr(u32 msr); 2346 int kvm_find_user_return_msr(u32 msr); 2347 int kvm_set_user_return_msr(unsigned index, u64 val, u64 mask); 2348 void kvm_user_return_msr_update_cache(unsigned int index, u64 val); 2349 2350 static inline bool kvm_is_supported_user_return_msr(u32 msr) 2351 { 2352 return kvm_find_user_return_msr(msr) >= 0; 2353 } 2354 2355 u64 kvm_scale_tsc(u64 tsc, u64 ratio); 2356 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc); 2357 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier); 2358 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier); 2359 2360 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu); 2361 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip); 2362 2363 void kvm_make_scan_ioapic_request(struct kvm *kvm); 2364 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm, 2365 unsigned long *vcpu_bitmap); 2366 2367 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 2368 struct kvm_async_pf *work); 2369 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 2370 struct kvm_async_pf *work); 2371 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, 2372 struct kvm_async_pf *work); 2373 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu); 2374 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu); 2375 extern bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn); 2376 2377 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu); 2378 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err); 2379 2380 void __user *__x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, 2381 u32 size); 2382 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu); 2383 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu); 2384 2385 bool kvm_intr_is_single_vcpu(struct kvm *kvm, struct kvm_lapic_irq *irq, 2386 struct kvm_vcpu **dest_vcpu); 2387 2388 void kvm_set_msi_irq(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e, 2389 struct kvm_lapic_irq *irq); 2390 2391 static inline bool kvm_irq_is_postable(struct kvm_lapic_irq *irq) 2392 { 2393 /* We can only post Fixed and LowPrio IRQs */ 2394 return (irq->delivery_mode == APIC_DM_FIXED || 2395 irq->delivery_mode == APIC_DM_LOWEST); 2396 } 2397 2398 static inline void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu) 2399 { 2400 kvm_x86_call(vcpu_blocking)(vcpu); 2401 } 2402 2403 static inline void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu) 2404 { 2405 kvm_x86_call(vcpu_unblocking)(vcpu); 2406 } 2407 2408 static inline int kvm_cpu_get_apicid(int mps_cpu) 2409 { 2410 #ifdef CONFIG_X86_LOCAL_APIC 2411 return default_cpu_present_to_apicid(mps_cpu); 2412 #else 2413 WARN_ON_ONCE(1); 2414 return BAD_APICID; 2415 #endif 2416 } 2417 2418 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages); 2419 2420 #define KVM_CLOCK_VALID_FLAGS \ 2421 (KVM_CLOCK_TSC_STABLE | KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC) 2422 2423 #define KVM_X86_VALID_QUIRKS \ 2424 (KVM_X86_QUIRK_LINT0_REENABLED | \ 2425 KVM_X86_QUIRK_CD_NW_CLEARED | \ 2426 KVM_X86_QUIRK_LAPIC_MMIO_HOLE | \ 2427 KVM_X86_QUIRK_OUT_7E_INC_RIP | \ 2428 KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT | \ 2429 KVM_X86_QUIRK_FIX_HYPERCALL_INSN | \ 2430 KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS | \ 2431 KVM_X86_QUIRK_SLOT_ZAP_ALL | \ 2432 KVM_X86_QUIRK_STUFF_FEATURE_MSRS | \ 2433 KVM_X86_QUIRK_IGNORE_GUEST_PAT) 2434 2435 #define KVM_X86_CONDITIONAL_QUIRKS \ 2436 (KVM_X86_QUIRK_CD_NW_CLEARED | \ 2437 KVM_X86_QUIRK_IGNORE_GUEST_PAT) 2438 2439 /* 2440 * KVM previously used a u32 field in kvm_run to indicate the hypercall was 2441 * initiated from long mode. KVM now sets bit 0 to indicate long mode, but the 2442 * remaining 31 lower bits must be 0 to preserve ABI. 2443 */ 2444 #define KVM_EXIT_HYPERCALL_MBZ GENMASK_ULL(31, 1) 2445 2446 static inline bool kvm_arch_has_irq_bypass(void) 2447 { 2448 return enable_apicv && irq_remapping_cap(IRQ_POSTING_CAP); 2449 } 2450 2451 #endif /* _ASM_X86_KVM_HOST_H */ 2452