xref: /linux/arch/x86/include/asm/kvm_host.h (revision dee264c16a6334dcdbea5c186f5ff35f98b1df42)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This header defines architecture specific interfaces, x86 version
6  */
7 
8 #ifndef _ASM_X86_KVM_HOST_H
9 #define _ASM_X86_KVM_HOST_H
10 
11 #include <linux/types.h>
12 #include <linux/mm.h>
13 #include <linux/mmu_notifier.h>
14 #include <linux/tracepoint.h>
15 #include <linux/cpumask.h>
16 #include <linux/irq_work.h>
17 #include <linux/irq.h>
18 #include <linux/workqueue.h>
19 
20 #include <linux/kvm.h>
21 #include <linux/kvm_para.h>
22 #include <linux/kvm_types.h>
23 #include <linux/perf_event.h>
24 #include <linux/pvclock_gtod.h>
25 #include <linux/clocksource.h>
26 #include <linux/irqbypass.h>
27 #include <linux/kfifo.h>
28 #include <linux/sched/vhost_task.h>
29 #include <linux/call_once.h>
30 #include <linux/atomic.h>
31 
32 #include <asm/apic.h>
33 #include <asm/pvclock-abi.h>
34 #include <asm/desc.h>
35 #include <asm/mtrr.h>
36 #include <asm/msr-index.h>
37 #include <asm/msr.h>
38 #include <asm/asm.h>
39 #include <asm/irq_remapping.h>
40 #include <asm/kvm_page_track.h>
41 #include <asm/kvm_vcpu_regs.h>
42 #include <asm/reboot.h>
43 #include <hyperv/hvhdk.h>
44 
45 #define __KVM_HAVE_ARCH_VCPU_DEBUGFS
46 
47 /*
48  * CONFIG_KVM_MAX_NR_VCPUS is defined iff CONFIG_KVM!=n, provide a dummy max if
49  * KVM is disabled (arbitrarily use the default from CONFIG_KVM_MAX_NR_VCPUS).
50  */
51 #ifdef CONFIG_KVM_MAX_NR_VCPUS
52 #define KVM_MAX_VCPUS CONFIG_KVM_MAX_NR_VCPUS
53 #else
54 #define KVM_MAX_VCPUS 1024
55 #endif
56 
57 /*
58  * In x86, the VCPU ID corresponds to the APIC ID, and APIC IDs
59  * might be larger than the actual number of VCPUs because the
60  * APIC ID encodes CPU topology information.
61  *
62  * In the worst case, we'll need less than one extra bit for the
63  * Core ID, and less than one extra bit for the Package (Die) ID,
64  * so ratio of 4 should be enough.
65  */
66 #define KVM_VCPU_ID_RATIO 4
67 #define KVM_MAX_VCPU_IDS (KVM_MAX_VCPUS * KVM_VCPU_ID_RATIO)
68 
69 /* memory slots that are not exposed to userspace */
70 #define KVM_INTERNAL_MEM_SLOTS 3
71 
72 #define KVM_HALT_POLL_NS_DEFAULT 200000
73 
74 #define KVM_IRQCHIP_NUM_PINS  KVM_IOAPIC_NUM_PINS
75 
76 #define KVM_DIRTY_LOG_MANUAL_CAPS   (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \
77 					KVM_DIRTY_LOG_INITIALLY_SET)
78 
79 #define KVM_BUS_LOCK_DETECTION_VALID_MODE	(KVM_BUS_LOCK_DETECTION_OFF | \
80 						 KVM_BUS_LOCK_DETECTION_EXIT)
81 
82 #define KVM_X86_NOTIFY_VMEXIT_VALID_BITS	(KVM_X86_NOTIFY_VMEXIT_ENABLED | \
83 						 KVM_X86_NOTIFY_VMEXIT_USER)
84 
85 /* x86-specific vcpu->requests bit members */
86 #define KVM_REQ_MIGRATE_TIMER		KVM_ARCH_REQ(0)
87 #define KVM_REQ_REPORT_TPR_ACCESS	KVM_ARCH_REQ(1)
88 #define KVM_REQ_TRIPLE_FAULT		KVM_ARCH_REQ(2)
89 #define KVM_REQ_MMU_SYNC		KVM_ARCH_REQ(3)
90 #define KVM_REQ_CLOCK_UPDATE		KVM_ARCH_REQ(4)
91 #define KVM_REQ_LOAD_MMU_PGD		KVM_ARCH_REQ(5)
92 #define KVM_REQ_EVENT			KVM_ARCH_REQ(6)
93 #define KVM_REQ_APF_HALT		KVM_ARCH_REQ(7)
94 #define KVM_REQ_STEAL_UPDATE		KVM_ARCH_REQ(8)
95 #define KVM_REQ_NMI			KVM_ARCH_REQ(9)
96 #define KVM_REQ_PMU			KVM_ARCH_REQ(10)
97 #define KVM_REQ_PMI			KVM_ARCH_REQ(11)
98 #ifdef CONFIG_KVM_SMM
99 #define KVM_REQ_SMI			KVM_ARCH_REQ(12)
100 #endif
101 #define KVM_REQ_MASTERCLOCK_UPDATE	KVM_ARCH_REQ(13)
102 #define KVM_REQ_MCLOCK_INPROGRESS \
103 	KVM_ARCH_REQ_FLAGS(14, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
104 #define KVM_REQ_SCAN_IOAPIC \
105 	KVM_ARCH_REQ_FLAGS(15, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
106 #define KVM_REQ_GLOBAL_CLOCK_UPDATE	KVM_ARCH_REQ(16)
107 #define KVM_REQ_APIC_PAGE_RELOAD \
108 	KVM_ARCH_REQ_FLAGS(17, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
109 #define KVM_REQ_HV_CRASH		KVM_ARCH_REQ(18)
110 #define KVM_REQ_IOAPIC_EOI_EXIT		KVM_ARCH_REQ(19)
111 #define KVM_REQ_HV_RESET		KVM_ARCH_REQ(20)
112 #define KVM_REQ_HV_EXIT			KVM_ARCH_REQ(21)
113 #define KVM_REQ_HV_STIMER		KVM_ARCH_REQ(22)
114 #define KVM_REQ_LOAD_EOI_EXITMAP	KVM_ARCH_REQ(23)
115 #define KVM_REQ_GET_NESTED_STATE_PAGES	KVM_ARCH_REQ(24)
116 #define KVM_REQ_APICV_UPDATE \
117 	KVM_ARCH_REQ_FLAGS(25, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
118 #define KVM_REQ_TLB_FLUSH_CURRENT	KVM_ARCH_REQ(26)
119 #define KVM_REQ_TLB_FLUSH_GUEST \
120 	KVM_ARCH_REQ_FLAGS(27, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
121 #define KVM_REQ_APF_READY		KVM_ARCH_REQ(28)
122 #define KVM_REQ_MSR_FILTER_CHANGED	KVM_ARCH_REQ(29)
123 #define KVM_REQ_UPDATE_CPU_DIRTY_LOGGING \
124 	KVM_ARCH_REQ_FLAGS(30, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
125 #define KVM_REQ_MMU_FREE_OBSOLETE_ROOTS \
126 	KVM_ARCH_REQ_FLAGS(31, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
127 #define KVM_REQ_HV_TLB_FLUSH \
128 	KVM_ARCH_REQ_FLAGS(32, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
129 #define KVM_REQ_UPDATE_PROTECTED_GUEST_STATE	KVM_ARCH_REQ(34)
130 
131 #define CR0_RESERVED_BITS                                               \
132 	(~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
133 			  | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
134 			  | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
135 
136 #define CR4_RESERVED_BITS                                               \
137 	(~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
138 			  | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE     \
139 			  | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR | X86_CR4_PCIDE \
140 			  | X86_CR4_OSXSAVE | X86_CR4_SMEP | X86_CR4_FSGSBASE \
141 			  | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_VMXE \
142 			  | X86_CR4_SMAP | X86_CR4_PKE | X86_CR4_UMIP \
143 			  | X86_CR4_LAM_SUP))
144 
145 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
146 
147 
148 
149 #define INVALID_PAGE (~(hpa_t)0)
150 #define VALID_PAGE(x) ((x) != INVALID_PAGE)
151 
152 /* KVM Hugepage definitions for x86 */
153 #define KVM_MAX_HUGEPAGE_LEVEL	PG_LEVEL_1G
154 #define KVM_NR_PAGE_SIZES	(KVM_MAX_HUGEPAGE_LEVEL - PG_LEVEL_4K + 1)
155 #define KVM_HPAGE_GFN_SHIFT(x)	(((x) - 1) * 9)
156 #define KVM_HPAGE_SHIFT(x)	(PAGE_SHIFT + KVM_HPAGE_GFN_SHIFT(x))
157 #define KVM_HPAGE_SIZE(x)	(1UL << KVM_HPAGE_SHIFT(x))
158 #define KVM_HPAGE_MASK(x)	(~(KVM_HPAGE_SIZE(x) - 1))
159 #define KVM_PAGES_PER_HPAGE(x)	(KVM_HPAGE_SIZE(x) / PAGE_SIZE)
160 
161 #define KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO 50
162 #define KVM_MIN_ALLOC_MMU_PAGES 64UL
163 #define KVM_MMU_HASH_SHIFT 12
164 #define KVM_NUM_MMU_PAGES (1 << KVM_MMU_HASH_SHIFT)
165 #define KVM_MIN_FREE_MMU_PAGES 5
166 #define KVM_REFILL_PAGES 25
167 #define KVM_MAX_CPUID_ENTRIES 256
168 #define KVM_NR_VAR_MTRR 8
169 
170 #define ASYNC_PF_PER_VCPU 64
171 
172 enum kvm_reg {
173 	VCPU_REGS_RAX = __VCPU_REGS_RAX,
174 	VCPU_REGS_RCX = __VCPU_REGS_RCX,
175 	VCPU_REGS_RDX = __VCPU_REGS_RDX,
176 	VCPU_REGS_RBX = __VCPU_REGS_RBX,
177 	VCPU_REGS_RSP = __VCPU_REGS_RSP,
178 	VCPU_REGS_RBP = __VCPU_REGS_RBP,
179 	VCPU_REGS_RSI = __VCPU_REGS_RSI,
180 	VCPU_REGS_RDI = __VCPU_REGS_RDI,
181 #ifdef CONFIG_X86_64
182 	VCPU_REGS_R8  = __VCPU_REGS_R8,
183 	VCPU_REGS_R9  = __VCPU_REGS_R9,
184 	VCPU_REGS_R10 = __VCPU_REGS_R10,
185 	VCPU_REGS_R11 = __VCPU_REGS_R11,
186 	VCPU_REGS_R12 = __VCPU_REGS_R12,
187 	VCPU_REGS_R13 = __VCPU_REGS_R13,
188 	VCPU_REGS_R14 = __VCPU_REGS_R14,
189 	VCPU_REGS_R15 = __VCPU_REGS_R15,
190 #endif
191 	VCPU_REGS_RIP,
192 	NR_VCPU_REGS,
193 
194 	VCPU_EXREG_PDPTR = NR_VCPU_REGS,
195 	VCPU_EXREG_CR0,
196 	VCPU_EXREG_CR3,
197 	VCPU_EXREG_CR4,
198 	VCPU_EXREG_RFLAGS,
199 	VCPU_EXREG_SEGMENTS,
200 	VCPU_EXREG_EXIT_INFO_1,
201 	VCPU_EXREG_EXIT_INFO_2,
202 };
203 
204 enum {
205 	VCPU_SREG_ES,
206 	VCPU_SREG_CS,
207 	VCPU_SREG_SS,
208 	VCPU_SREG_DS,
209 	VCPU_SREG_FS,
210 	VCPU_SREG_GS,
211 	VCPU_SREG_TR,
212 	VCPU_SREG_LDTR,
213 };
214 
215 enum exit_fastpath_completion {
216 	EXIT_FASTPATH_NONE,
217 	EXIT_FASTPATH_REENTER_GUEST,
218 	EXIT_FASTPATH_EXIT_HANDLED,
219 	EXIT_FASTPATH_EXIT_USERSPACE,
220 };
221 typedef enum exit_fastpath_completion fastpath_t;
222 
223 struct x86_emulate_ctxt;
224 struct x86_exception;
225 union kvm_smram;
226 enum x86_intercept;
227 enum x86_intercept_stage;
228 
229 #define KVM_NR_DB_REGS	4
230 
231 #define DR6_BUS_LOCK   (1 << 11)
232 #define DR6_BD		(1 << 13)
233 #define DR6_BS		(1 << 14)
234 #define DR6_BT		(1 << 15)
235 #define DR6_RTM		(1 << 16)
236 /*
237  * DR6_ACTIVE_LOW combines fixed-1 and active-low bits.
238  * We can regard all the bits in DR6_FIXED_1 as active_low bits;
239  * they will never be 0 for now, but when they are defined
240  * in the future it will require no code change.
241  *
242  * DR6_ACTIVE_LOW is also used as the init/reset value for DR6.
243  */
244 #define DR6_ACTIVE_LOW	0xffff0ff0
245 #define DR6_VOLATILE	0x0001e80f
246 #define DR6_FIXED_1	(DR6_ACTIVE_LOW & ~DR6_VOLATILE)
247 
248 #define DR7_BP_EN_MASK	0x000000ff
249 #define DR7_GE		(1 << 9)
250 #define DR7_GD		(1 << 13)
251 #define DR7_FIXED_1	0x00000400
252 #define DR7_VOLATILE	0xffff2bff
253 
254 #define KVM_GUESTDBG_VALID_MASK \
255 	(KVM_GUESTDBG_ENABLE | \
256 	KVM_GUESTDBG_SINGLESTEP | \
257 	KVM_GUESTDBG_USE_HW_BP | \
258 	KVM_GUESTDBG_USE_SW_BP | \
259 	KVM_GUESTDBG_INJECT_BP | \
260 	KVM_GUESTDBG_INJECT_DB | \
261 	KVM_GUESTDBG_BLOCKIRQ)
262 
263 #define PFERR_PRESENT_MASK	BIT(0)
264 #define PFERR_WRITE_MASK	BIT(1)
265 #define PFERR_USER_MASK		BIT(2)
266 #define PFERR_RSVD_MASK		BIT(3)
267 #define PFERR_FETCH_MASK	BIT(4)
268 #define PFERR_PK_MASK		BIT(5)
269 #define PFERR_SGX_MASK		BIT(15)
270 #define PFERR_GUEST_RMP_MASK	BIT_ULL(31)
271 #define PFERR_GUEST_FINAL_MASK	BIT_ULL(32)
272 #define PFERR_GUEST_PAGE_MASK	BIT_ULL(33)
273 #define PFERR_GUEST_ENC_MASK	BIT_ULL(34)
274 #define PFERR_GUEST_SIZEM_MASK	BIT_ULL(35)
275 #define PFERR_GUEST_VMPL_MASK	BIT_ULL(36)
276 
277 /*
278  * IMPLICIT_ACCESS is a KVM-defined flag used to correctly perform SMAP checks
279  * when emulating instructions that triggers implicit access.
280  */
281 #define PFERR_IMPLICIT_ACCESS	BIT_ULL(48)
282 /*
283  * PRIVATE_ACCESS is a KVM-defined flag us to indicate that a fault occurred
284  * when the guest was accessing private memory.
285  */
286 #define PFERR_PRIVATE_ACCESS   BIT_ULL(49)
287 #define PFERR_SYNTHETIC_MASK   (PFERR_IMPLICIT_ACCESS | PFERR_PRIVATE_ACCESS)
288 
289 /* apic attention bits */
290 #define KVM_APIC_CHECK_VAPIC	0
291 /*
292  * The following bit is set with PV-EOI, unset on EOI.
293  * We detect PV-EOI changes by guest by comparing
294  * this bit with PV-EOI in guest memory.
295  * See the implementation in apic_update_pv_eoi.
296  */
297 #define KVM_APIC_PV_EOI_PENDING	1
298 
299 struct kvm_kernel_irq_routing_entry;
300 
301 /*
302  * kvm_mmu_page_role tracks the properties of a shadow page (where shadow page
303  * also includes TDP pages) to determine whether or not a page can be used in
304  * the given MMU context.  This is a subset of the overall kvm_cpu_role to
305  * minimize the size of kvm_memory_slot.arch.gfn_write_track, i.e. allows
306  * allocating 2 bytes per gfn instead of 4 bytes per gfn.
307  *
308  * Upper-level shadow pages having gptes are tracked for write-protection via
309  * gfn_write_track.  As above, gfn_write_track is a 16 bit counter, so KVM must
310  * not create more than 2^16-1 upper-level shadow pages at a single gfn,
311  * otherwise gfn_write_track will overflow and explosions will ensue.
312  *
313  * A unique shadow page (SP) for a gfn is created if and only if an existing SP
314  * cannot be reused.  The ability to reuse a SP is tracked by its role, which
315  * incorporates various mode bits and properties of the SP.  Roughly speaking,
316  * the number of unique SPs that can theoretically be created is 2^n, where n
317  * is the number of bits that are used to compute the role.
318  *
319  * But, even though there are 20 bits in the mask below, not all combinations
320  * of modes and flags are possible:
321  *
322  *   - invalid shadow pages are not accounted, mirror pages are not shadowed,
323  *     so the bits are effectively 18.
324  *
325  *   - quadrant will only be used if has_4_byte_gpte=1 (non-PAE paging);
326  *     execonly and ad_disabled are only used for nested EPT which has
327  *     has_4_byte_gpte=0.  Therefore, 2 bits are always unused.
328  *
329  *   - the 4 bits of level are effectively limited to the values 2/3/4/5,
330  *     as 4k SPs are not tracked (allowed to go unsync).  In addition non-PAE
331  *     paging has exactly one upper level, making level completely redundant
332  *     when has_4_byte_gpte=1.
333  *
334  *   - on top of this, smep_andnot_wp and smap_andnot_wp are only set if
335  *     cr0_wp=0, therefore these three bits only give rise to 5 possibilities.
336  *
337  * Therefore, the maximum number of possible upper-level shadow pages for a
338  * single gfn is a bit less than 2^13.
339  */
340 union kvm_mmu_page_role {
341 	u32 word;
342 	struct {
343 		unsigned level:4;
344 		unsigned has_4_byte_gpte:1;
345 		unsigned quadrant:2;
346 		unsigned direct:1;
347 		unsigned access:3;
348 		unsigned invalid:1;
349 		unsigned efer_nx:1;
350 		unsigned cr0_wp:1;
351 		unsigned smep_andnot_wp:1;
352 		unsigned smap_andnot_wp:1;
353 		unsigned ad_disabled:1;
354 		unsigned guest_mode:1;
355 		unsigned passthrough:1;
356 		unsigned is_mirror:1;
357 		unsigned :4;
358 
359 		/*
360 		 * This is left at the top of the word so that
361 		 * kvm_memslots_for_spte_role can extract it with a
362 		 * simple shift.  While there is room, give it a whole
363 		 * byte so it is also faster to load it from memory.
364 		 */
365 		unsigned smm:8;
366 	};
367 };
368 
369 /*
370  * kvm_mmu_extended_role complements kvm_mmu_page_role, tracking properties
371  * relevant to the current MMU configuration.   When loading CR0, CR4, or EFER,
372  * including on nested transitions, if nothing in the full role changes then
373  * MMU re-configuration can be skipped. @valid bit is set on first usage so we
374  * don't treat all-zero structure as valid data.
375  *
376  * The properties that are tracked in the extended role but not the page role
377  * are for things that either (a) do not affect the validity of the shadow page
378  * or (b) are indirectly reflected in the shadow page's role.  For example,
379  * CR4.PKE only affects permission checks for software walks of the guest page
380  * tables (because KVM doesn't support Protection Keys with shadow paging), and
381  * CR0.PG, CR4.PAE, and CR4.PSE are indirectly reflected in role.level.
382  *
383  * Note, SMEP and SMAP are not redundant with sm*p_andnot_wp in the page role.
384  * If CR0.WP=1, KVM can reuse shadow pages for the guest regardless of SMEP and
385  * SMAP, but the MMU's permission checks for software walks need to be SMEP and
386  * SMAP aware regardless of CR0.WP.
387  */
388 union kvm_mmu_extended_role {
389 	u32 word;
390 	struct {
391 		unsigned int valid:1;
392 		unsigned int execonly:1;
393 		unsigned int cr4_pse:1;
394 		unsigned int cr4_pke:1;
395 		unsigned int cr4_smap:1;
396 		unsigned int cr4_smep:1;
397 		unsigned int cr4_la57:1;
398 		unsigned int efer_lma:1;
399 	};
400 };
401 
402 union kvm_cpu_role {
403 	u64 as_u64;
404 	struct {
405 		union kvm_mmu_page_role base;
406 		union kvm_mmu_extended_role ext;
407 	};
408 };
409 
410 struct kvm_rmap_head {
411 	atomic_long_t val;
412 };
413 
414 struct kvm_pio_request {
415 	unsigned long linear_rip;
416 	unsigned long count;
417 	int in;
418 	int port;
419 	int size;
420 };
421 
422 #define PT64_ROOT_MAX_LEVEL 5
423 
424 struct rsvd_bits_validate {
425 	u64 rsvd_bits_mask[2][PT64_ROOT_MAX_LEVEL];
426 	u64 bad_mt_xwr;
427 };
428 
429 struct kvm_mmu_root_info {
430 	gpa_t pgd;
431 	hpa_t hpa;
432 };
433 
434 #define KVM_MMU_ROOT_INFO_INVALID \
435 	((struct kvm_mmu_root_info) { .pgd = INVALID_PAGE, .hpa = INVALID_PAGE })
436 
437 #define KVM_MMU_NUM_PREV_ROOTS 3
438 
439 #define KVM_MMU_ROOT_CURRENT		BIT(0)
440 #define KVM_MMU_ROOT_PREVIOUS(i)	BIT(1+i)
441 #define KVM_MMU_ROOTS_ALL		(BIT(1 + KVM_MMU_NUM_PREV_ROOTS) - 1)
442 
443 #define KVM_HAVE_MMU_RWLOCK
444 
445 struct kvm_mmu_page;
446 struct kvm_page_fault;
447 
448 /*
449  * x86 supports 4 paging modes (5-level 64-bit, 4-level 64-bit, 3-level 32-bit,
450  * and 2-level 32-bit).  The kvm_mmu structure abstracts the details of the
451  * current mmu mode.
452  */
453 struct kvm_mmu {
454 	unsigned long (*get_guest_pgd)(struct kvm_vcpu *vcpu);
455 	u64 (*get_pdptr)(struct kvm_vcpu *vcpu, int index);
456 	int (*page_fault)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault);
457 	void (*inject_page_fault)(struct kvm_vcpu *vcpu,
458 				  struct x86_exception *fault);
459 	gpa_t (*gva_to_gpa)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
460 			    gpa_t gva_or_gpa, u64 access,
461 			    struct x86_exception *exception);
462 	int (*sync_spte)(struct kvm_vcpu *vcpu,
463 			 struct kvm_mmu_page *sp, int i);
464 	struct kvm_mmu_root_info root;
465 	hpa_t mirror_root_hpa;
466 	union kvm_cpu_role cpu_role;
467 	union kvm_mmu_page_role root_role;
468 
469 	/*
470 	* The pkru_mask indicates if protection key checks are needed.  It
471 	* consists of 16 domains indexed by page fault error code bits [4:1],
472 	* with PFEC.RSVD replaced by ACC_USER_MASK from the page tables.
473 	* Each domain has 2 bits which are ANDed with AD and WD from PKRU.
474 	*/
475 	u32 pkru_mask;
476 
477 	struct kvm_mmu_root_info prev_roots[KVM_MMU_NUM_PREV_ROOTS];
478 
479 	/*
480 	 * Bitmap; bit set = permission fault
481 	 * Byte index: page fault error code [4:1]
482 	 * Bit index: pte permissions in ACC_* format
483 	 */
484 	u8 permissions[16];
485 
486 	u64 *pae_root;
487 	u64 *pml4_root;
488 	u64 *pml5_root;
489 
490 	/*
491 	 * check zero bits on shadow page table entries, these
492 	 * bits include not only hardware reserved bits but also
493 	 * the bits spte never used.
494 	 */
495 	struct rsvd_bits_validate shadow_zero_check;
496 
497 	struct rsvd_bits_validate guest_rsvd_check;
498 
499 	u64 pdptrs[4]; /* pae */
500 };
501 
502 enum pmc_type {
503 	KVM_PMC_GP = 0,
504 	KVM_PMC_FIXED,
505 };
506 
507 struct kvm_pmc {
508 	enum pmc_type type;
509 	u8 idx;
510 	bool is_paused;
511 	bool intr;
512 	/*
513 	 * Base value of the PMC counter, relative to the *consumed* count in
514 	 * the associated perf_event.  This value includes counter updates from
515 	 * the perf_event and emulated_count since the last time the counter
516 	 * was reprogrammed, but it is *not* the current value as seen by the
517 	 * guest or userspace.
518 	 *
519 	 * The count is relative to the associated perf_event so that KVM
520 	 * doesn't need to reprogram the perf_event every time the guest writes
521 	 * to the counter.
522 	 */
523 	u64 counter;
524 	/*
525 	 * PMC events triggered by KVM emulation that haven't been fully
526 	 * processed, i.e. haven't undergone overflow detection.
527 	 */
528 	u64 emulated_counter;
529 	u64 eventsel;
530 	struct perf_event *perf_event;
531 	struct kvm_vcpu *vcpu;
532 	/*
533 	 * only for creating or reusing perf_event,
534 	 * eventsel value for general purpose counters,
535 	 * ctrl value for fixed counters.
536 	 */
537 	u64 current_config;
538 };
539 
540 /* More counters may conflict with other existing Architectural MSRs */
541 #define KVM_MAX(a, b)	((a) >= (b) ? (a) : (b))
542 #define KVM_MAX_NR_INTEL_GP_COUNTERS	8
543 #define KVM_MAX_NR_AMD_GP_COUNTERS	6
544 #define KVM_MAX_NR_GP_COUNTERS		KVM_MAX(KVM_MAX_NR_INTEL_GP_COUNTERS, \
545 						KVM_MAX_NR_AMD_GP_COUNTERS)
546 
547 #define KVM_MAX_NR_INTEL_FIXED_COUTNERS	3
548 #define KVM_MAX_NR_AMD_FIXED_COUTNERS	0
549 #define KVM_MAX_NR_FIXED_COUNTERS	KVM_MAX(KVM_MAX_NR_INTEL_FIXED_COUTNERS, \
550 						KVM_MAX_NR_AMD_FIXED_COUTNERS)
551 
552 struct kvm_pmu {
553 	u8 version;
554 	unsigned nr_arch_gp_counters;
555 	unsigned nr_arch_fixed_counters;
556 	unsigned available_event_types;
557 	u64 fixed_ctr_ctrl;
558 	u64 fixed_ctr_ctrl_rsvd;
559 	u64 global_ctrl;
560 	u64 global_status;
561 	u64 counter_bitmask[2];
562 	u64 global_ctrl_rsvd;
563 	u64 global_status_rsvd;
564 	u64 reserved_bits;
565 	u64 raw_event_mask;
566 	struct kvm_pmc gp_counters[KVM_MAX_NR_GP_COUNTERS];
567 	struct kvm_pmc fixed_counters[KVM_MAX_NR_FIXED_COUNTERS];
568 
569 	/*
570 	 * Overlay the bitmap with a 64-bit atomic so that all bits can be
571 	 * set in a single access, e.g. to reprogram all counters when the PMU
572 	 * filter changes.
573 	 */
574 	union {
575 		DECLARE_BITMAP(reprogram_pmi, X86_PMC_IDX_MAX);
576 		atomic64_t __reprogram_pmi;
577 	};
578 	DECLARE_BITMAP(all_valid_pmc_idx, X86_PMC_IDX_MAX);
579 	DECLARE_BITMAP(pmc_in_use, X86_PMC_IDX_MAX);
580 
581 	u64 ds_area;
582 	u64 pebs_enable;
583 	u64 pebs_enable_rsvd;
584 	u64 pebs_data_cfg;
585 	u64 pebs_data_cfg_rsvd;
586 
587 	/*
588 	 * If a guest counter is cross-mapped to host counter with different
589 	 * index, its PEBS capability will be temporarily disabled.
590 	 *
591 	 * The user should make sure that this mask is updated
592 	 * after disabling interrupts and before perf_guest_get_msrs();
593 	 */
594 	u64 host_cross_mapped_mask;
595 
596 	/*
597 	 * The gate to release perf_events not marked in
598 	 * pmc_in_use only once in a vcpu time slice.
599 	 */
600 	bool need_cleanup;
601 
602 	/*
603 	 * The total number of programmed perf_events and it helps to avoid
604 	 * redundant check before cleanup if guest don't use vPMU at all.
605 	 */
606 	u8 event_count;
607 };
608 
609 struct kvm_pmu_ops;
610 
611 enum {
612 	KVM_DEBUGREG_BP_ENABLED		= BIT(0),
613 	KVM_DEBUGREG_WONT_EXIT		= BIT(1),
614 	/*
615 	 * Guest debug registers (DR0-3, DR6 and DR7) are saved/restored by
616 	 * hardware on exit from or enter to guest. KVM needn't switch them.
617 	 * DR0-3, DR6 and DR7 are set to their architectural INIT value on VM
618 	 * exit, host values need to be restored.
619 	 */
620 	KVM_DEBUGREG_AUTO_SWITCH	= BIT(2),
621 };
622 
623 struct kvm_mtrr {
624 	u64 var[KVM_NR_VAR_MTRR * 2];
625 	u64 fixed_64k;
626 	u64 fixed_16k[2];
627 	u64 fixed_4k[8];
628 	u64 deftype;
629 };
630 
631 /* Hyper-V SynIC timer */
632 struct kvm_vcpu_hv_stimer {
633 	struct hrtimer timer;
634 	int index;
635 	union hv_stimer_config config;
636 	u64 count;
637 	u64 exp_time;
638 	struct hv_message msg;
639 	bool msg_pending;
640 };
641 
642 /* Hyper-V synthetic interrupt controller (SynIC)*/
643 struct kvm_vcpu_hv_synic {
644 	u64 version;
645 	u64 control;
646 	u64 msg_page;
647 	u64 evt_page;
648 	atomic64_t sint[HV_SYNIC_SINT_COUNT];
649 	atomic_t sint_to_gsi[HV_SYNIC_SINT_COUNT];
650 	DECLARE_BITMAP(auto_eoi_bitmap, 256);
651 	DECLARE_BITMAP(vec_bitmap, 256);
652 	bool active;
653 	bool dont_zero_synic_pages;
654 };
655 
656 /* The maximum number of entries on the TLB flush fifo. */
657 #define KVM_HV_TLB_FLUSH_FIFO_SIZE (16)
658 /*
659  * Note: the following 'magic' entry is made up by KVM to avoid putting
660  * anything besides GVA on the TLB flush fifo. It is theoretically possible
661  * to observe a request to flush 4095 PFNs starting from 0xfffffffffffff000
662  * which will look identical. KVM's action to 'flush everything' instead of
663  * flushing these particular addresses is, however, fully legitimate as
664  * flushing more than requested is always OK.
665  */
666 #define KVM_HV_TLB_FLUSHALL_ENTRY  ((u64)-1)
667 
668 enum hv_tlb_flush_fifos {
669 	HV_L1_TLB_FLUSH_FIFO,
670 	HV_L2_TLB_FLUSH_FIFO,
671 	HV_NR_TLB_FLUSH_FIFOS,
672 };
673 
674 struct kvm_vcpu_hv_tlb_flush_fifo {
675 	spinlock_t write_lock;
676 	DECLARE_KFIFO(entries, u64, KVM_HV_TLB_FLUSH_FIFO_SIZE);
677 };
678 
679 /* Hyper-V per vcpu emulation context */
680 struct kvm_vcpu_hv {
681 	struct kvm_vcpu *vcpu;
682 	u32 vp_index;
683 	u64 hv_vapic;
684 	s64 runtime_offset;
685 	struct kvm_vcpu_hv_synic synic;
686 	struct kvm_hyperv_exit exit;
687 	struct kvm_vcpu_hv_stimer stimer[HV_SYNIC_STIMER_COUNT];
688 	DECLARE_BITMAP(stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT);
689 	bool enforce_cpuid;
690 	struct {
691 		u32 features_eax; /* HYPERV_CPUID_FEATURES.EAX */
692 		u32 features_ebx; /* HYPERV_CPUID_FEATURES.EBX */
693 		u32 features_edx; /* HYPERV_CPUID_FEATURES.EDX */
694 		u32 enlightenments_eax; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EAX */
695 		u32 enlightenments_ebx; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EBX */
696 		u32 syndbg_cap_eax; /* HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES.EAX */
697 		u32 nested_eax; /* HYPERV_CPUID_NESTED_FEATURES.EAX */
698 		u32 nested_ebx; /* HYPERV_CPUID_NESTED_FEATURES.EBX */
699 	} cpuid_cache;
700 
701 	struct kvm_vcpu_hv_tlb_flush_fifo tlb_flush_fifo[HV_NR_TLB_FLUSH_FIFOS];
702 
703 	/* Preallocated buffer for handling hypercalls passing sparse vCPU set */
704 	u64 sparse_banks[HV_MAX_SPARSE_VCPU_BANKS];
705 
706 	struct hv_vp_assist_page vp_assist_page;
707 
708 	struct {
709 		u64 pa_page_gpa;
710 		u64 vm_id;
711 		u32 vp_id;
712 	} nested;
713 };
714 
715 struct kvm_hypervisor_cpuid {
716 	u32 base;
717 	u32 limit;
718 };
719 
720 #ifdef CONFIG_KVM_XEN
721 /* Xen HVM per vcpu emulation context */
722 struct kvm_vcpu_xen {
723 	u64 hypercall_rip;
724 	u32 current_runstate;
725 	u8 upcall_vector;
726 	struct gfn_to_pfn_cache vcpu_info_cache;
727 	struct gfn_to_pfn_cache vcpu_time_info_cache;
728 	struct gfn_to_pfn_cache runstate_cache;
729 	struct gfn_to_pfn_cache runstate2_cache;
730 	u64 last_steal;
731 	u64 runstate_entry_time;
732 	u64 runstate_times[4];
733 	unsigned long evtchn_pending_sel;
734 	u32 vcpu_id; /* The Xen / ACPI vCPU ID */
735 	u32 timer_virq;
736 	u64 timer_expires; /* In guest epoch */
737 	atomic_t timer_pending;
738 	struct hrtimer timer;
739 	int poll_evtchn;
740 	struct timer_list poll_timer;
741 	struct kvm_hypervisor_cpuid cpuid;
742 };
743 #endif
744 
745 struct kvm_queued_exception {
746 	bool pending;
747 	bool injected;
748 	bool has_error_code;
749 	u8 vector;
750 	u32 error_code;
751 	unsigned long payload;
752 	bool has_payload;
753 };
754 
755 /*
756  * Hardware-defined CPUID leafs that are either scattered by the kernel or are
757  * unknown to the kernel, but need to be directly used by KVM.  Note, these
758  * word values conflict with the kernel's "bug" caps, but KVM doesn't use those.
759  */
760 enum kvm_only_cpuid_leafs {
761 	CPUID_12_EAX	 = NCAPINTS,
762 	CPUID_7_1_EDX,
763 	CPUID_8000_0007_EDX,
764 	CPUID_8000_0022_EAX,
765 	CPUID_7_2_EDX,
766 	CPUID_24_0_EBX,
767 	NR_KVM_CPU_CAPS,
768 
769 	NKVMCAPINTS = NR_KVM_CPU_CAPS - NCAPINTS,
770 };
771 
772 struct kvm_vcpu_arch {
773 	/*
774 	 * rip and regs accesses must go through
775 	 * kvm_{register,rip}_{read,write} functions.
776 	 */
777 	unsigned long regs[NR_VCPU_REGS];
778 	u32 regs_avail;
779 	u32 regs_dirty;
780 
781 	unsigned long cr0;
782 	unsigned long cr0_guest_owned_bits;
783 	unsigned long cr2;
784 	unsigned long cr3;
785 	unsigned long cr4;
786 	unsigned long cr4_guest_owned_bits;
787 	unsigned long cr4_guest_rsvd_bits;
788 	unsigned long cr8;
789 	u32 host_pkru;
790 	u32 pkru;
791 	u32 hflags;
792 	u64 efer;
793 	u64 host_debugctl;
794 	u64 apic_base;
795 	struct kvm_lapic *apic;    /* kernel irqchip context */
796 	bool load_eoi_exitmap_pending;
797 	DECLARE_BITMAP(ioapic_handled_vectors, 256);
798 	unsigned long apic_attention;
799 	int32_t apic_arb_prio;
800 	int mp_state;
801 	u64 ia32_misc_enable_msr;
802 	u64 smbase;
803 	u64 smi_count;
804 	bool at_instruction_boundary;
805 	bool tpr_access_reporting;
806 	bool xfd_no_write_intercept;
807 	u64 ia32_xss;
808 	u64 microcode_version;
809 	u64 arch_capabilities;
810 	u64 perf_capabilities;
811 
812 	/*
813 	 * Paging state of the vcpu
814 	 *
815 	 * If the vcpu runs in guest mode with two level paging this still saves
816 	 * the paging mode of the l1 guest. This context is always used to
817 	 * handle faults.
818 	 */
819 	struct kvm_mmu *mmu;
820 
821 	/* Non-nested MMU for L1 */
822 	struct kvm_mmu root_mmu;
823 
824 	/* L1 MMU when running nested */
825 	struct kvm_mmu guest_mmu;
826 
827 	/*
828 	 * Paging state of an L2 guest (used for nested npt)
829 	 *
830 	 * This context will save all necessary information to walk page tables
831 	 * of an L2 guest. This context is only initialized for page table
832 	 * walking and not for faulting since we never handle l2 page faults on
833 	 * the host.
834 	 */
835 	struct kvm_mmu nested_mmu;
836 
837 	/*
838 	 * Pointer to the mmu context currently used for
839 	 * gva_to_gpa translations.
840 	 */
841 	struct kvm_mmu *walk_mmu;
842 
843 	struct kvm_mmu_memory_cache mmu_pte_list_desc_cache;
844 	struct kvm_mmu_memory_cache mmu_shadow_page_cache;
845 	struct kvm_mmu_memory_cache mmu_shadowed_info_cache;
846 	struct kvm_mmu_memory_cache mmu_page_header_cache;
847 	/*
848 	 * This cache is to allocate external page table. E.g. private EPT used
849 	 * by the TDX module.
850 	 */
851 	struct kvm_mmu_memory_cache mmu_external_spt_cache;
852 
853 	/*
854 	 * QEMU userspace and the guest each have their own FPU state.
855 	 * In vcpu_run, we switch between the user and guest FPU contexts.
856 	 * While running a VCPU, the VCPU thread will have the guest FPU
857 	 * context.
858 	 *
859 	 * Note that while the PKRU state lives inside the fpu registers,
860 	 * it is switched out separately at VMENTER and VMEXIT time. The
861 	 * "guest_fpstate" state here contains the guest FPU context, with the
862 	 * host PRKU bits.
863 	 */
864 	struct fpu_guest guest_fpu;
865 
866 	u64 xcr0;
867 	u64 guest_supported_xcr0;
868 
869 	struct kvm_pio_request pio;
870 	void *pio_data;
871 	void *sev_pio_data;
872 	unsigned sev_pio_count;
873 
874 	u8 event_exit_inst_len;
875 
876 	bool exception_from_userspace;
877 
878 	/* Exceptions to be injected to the guest. */
879 	struct kvm_queued_exception exception;
880 	/* Exception VM-Exits to be synthesized to L1. */
881 	struct kvm_queued_exception exception_vmexit;
882 
883 	struct kvm_queued_interrupt {
884 		bool injected;
885 		bool soft;
886 		u8 nr;
887 	} interrupt;
888 
889 	int halt_request; /* real mode on Intel only */
890 
891 	int cpuid_nent;
892 	struct kvm_cpuid_entry2 *cpuid_entries;
893 	bool cpuid_dynamic_bits_dirty;
894 	bool is_amd_compatible;
895 
896 	/*
897 	 * cpu_caps holds the effective guest capabilities, i.e. the features
898 	 * the vCPU is allowed to use.  Typically, but not always, features can
899 	 * be used by the guest if and only if both KVM and userspace want to
900 	 * expose the feature to the guest.
901 	 *
902 	 * A common exception is for virtualization holes, i.e. when KVM can't
903 	 * prevent the guest from using a feature, in which case the vCPU "has"
904 	 * the feature regardless of what KVM or userspace desires.
905 	 *
906 	 * Note, features that don't require KVM involvement in any way are
907 	 * NOT enforced/sanitized by KVM, i.e. are taken verbatim from the
908 	 * guest CPUID provided by userspace.
909 	 */
910 	u32 cpu_caps[NR_KVM_CPU_CAPS];
911 
912 	u64 reserved_gpa_bits;
913 	int maxphyaddr;
914 
915 	/* emulate context */
916 
917 	struct x86_emulate_ctxt *emulate_ctxt;
918 	bool emulate_regs_need_sync_to_vcpu;
919 	bool emulate_regs_need_sync_from_vcpu;
920 	int (*complete_userspace_io)(struct kvm_vcpu *vcpu);
921 
922 	gpa_t time;
923 	s8  pvclock_tsc_shift;
924 	u32 pvclock_tsc_mul;
925 	unsigned int hw_tsc_khz;
926 	struct gfn_to_pfn_cache pv_time;
927 	/* set guest stopped flag in pvclock flags field */
928 	bool pvclock_set_guest_stopped_request;
929 
930 	struct {
931 		u8 preempted;
932 		u64 msr_val;
933 		u64 last_steal;
934 		struct gfn_to_hva_cache cache;
935 	} st;
936 
937 	u64 l1_tsc_offset;
938 	u64 tsc_offset; /* current tsc offset */
939 	u64 last_guest_tsc;
940 	u64 last_host_tsc;
941 	u64 tsc_offset_adjustment;
942 	u64 this_tsc_nsec;
943 	u64 this_tsc_write;
944 	u64 this_tsc_generation;
945 	bool tsc_catchup;
946 	bool tsc_always_catchup;
947 	s8 virtual_tsc_shift;
948 	u32 virtual_tsc_mult;
949 	u32 virtual_tsc_khz;
950 	s64 ia32_tsc_adjust_msr;
951 	u64 msr_ia32_power_ctl;
952 	u64 l1_tsc_scaling_ratio;
953 	u64 tsc_scaling_ratio; /* current scaling ratio */
954 
955 	atomic_t nmi_queued;  /* unprocessed asynchronous NMIs */
956 	/* Number of NMIs pending injection, not including hardware vNMIs. */
957 	unsigned int nmi_pending;
958 	bool nmi_injected;    /* Trying to inject an NMI this entry */
959 	bool smi_pending;    /* SMI queued after currently running handler */
960 	u8 handling_intr_from_guest;
961 
962 	struct kvm_mtrr mtrr_state;
963 	u64 pat;
964 
965 	unsigned switch_db_regs;
966 	unsigned long db[KVM_NR_DB_REGS];
967 	unsigned long dr6;
968 	unsigned long dr7;
969 	unsigned long eff_db[KVM_NR_DB_REGS];
970 	unsigned long guest_debug_dr7;
971 	u64 msr_platform_info;
972 	u64 msr_misc_features_enables;
973 
974 	u64 mcg_cap;
975 	u64 mcg_status;
976 	u64 mcg_ctl;
977 	u64 mcg_ext_ctl;
978 	u64 *mce_banks;
979 	u64 *mci_ctl2_banks;
980 
981 	/* Cache MMIO info */
982 	u64 mmio_gva;
983 	unsigned mmio_access;
984 	gfn_t mmio_gfn;
985 	u64 mmio_gen;
986 
987 	struct kvm_pmu pmu;
988 
989 	/* used for guest single stepping over the given code position */
990 	unsigned long singlestep_rip;
991 
992 #ifdef CONFIG_KVM_HYPERV
993 	bool hyperv_enabled;
994 	struct kvm_vcpu_hv *hyperv;
995 #endif
996 #ifdef CONFIG_KVM_XEN
997 	struct kvm_vcpu_xen xen;
998 #endif
999 	cpumask_var_t wbinvd_dirty_mask;
1000 
1001 	unsigned long last_retry_eip;
1002 	unsigned long last_retry_addr;
1003 
1004 	struct {
1005 		bool halted;
1006 		gfn_t gfns[ASYNC_PF_PER_VCPU];
1007 		struct gfn_to_hva_cache data;
1008 		u64 msr_en_val; /* MSR_KVM_ASYNC_PF_EN */
1009 		u64 msr_int_val; /* MSR_KVM_ASYNC_PF_INT */
1010 		u16 vec;
1011 		u32 id;
1012 		u32 host_apf_flags;
1013 		bool send_always;
1014 		bool delivery_as_pf_vmexit;
1015 		bool pageready_pending;
1016 	} apf;
1017 
1018 	/* OSVW MSRs (AMD only) */
1019 	struct {
1020 		u64 length;
1021 		u64 status;
1022 	} osvw;
1023 
1024 	struct {
1025 		u64 msr_val;
1026 		struct gfn_to_hva_cache data;
1027 	} pv_eoi;
1028 
1029 	u64 msr_kvm_poll_control;
1030 
1031 	/* pv related host specific info */
1032 	struct {
1033 		bool pv_unhalted;
1034 	} pv;
1035 
1036 	int pending_ioapic_eoi;
1037 	int pending_external_vector;
1038 
1039 	/* be preempted when it's in kernel-mode(cpl=0) */
1040 	bool preempted_in_kernel;
1041 
1042 	/* Flush the L1 Data cache for L1TF mitigation on VMENTER */
1043 	bool l1tf_flush_l1d;
1044 
1045 	/* Host CPU on which VM-entry was most recently attempted */
1046 	int last_vmentry_cpu;
1047 
1048 	/* AMD MSRC001_0015 Hardware Configuration */
1049 	u64 msr_hwcr;
1050 
1051 	/* pv related cpuid info */
1052 	struct {
1053 		/*
1054 		 * value of the eax register in the KVM_CPUID_FEATURES CPUID
1055 		 * leaf.
1056 		 */
1057 		u32 features;
1058 
1059 		/*
1060 		 * indicates whether pv emulation should be disabled if features
1061 		 * are not present in the guest's cpuid
1062 		 */
1063 		bool enforce;
1064 	} pv_cpuid;
1065 
1066 	/* Protected Guests */
1067 	bool guest_state_protected;
1068 	bool guest_tsc_protected;
1069 
1070 	/*
1071 	 * Set when PDPTS were loaded directly by the userspace without
1072 	 * reading the guest memory
1073 	 */
1074 	bool pdptrs_from_userspace;
1075 
1076 #if IS_ENABLED(CONFIG_HYPERV)
1077 	hpa_t hv_root_tdp;
1078 #endif
1079 };
1080 
1081 struct kvm_lpage_info {
1082 	int disallow_lpage;
1083 };
1084 
1085 struct kvm_arch_memory_slot {
1086 	struct kvm_rmap_head *rmap[KVM_NR_PAGE_SIZES];
1087 	struct kvm_lpage_info *lpage_info[KVM_NR_PAGE_SIZES - 1];
1088 	unsigned short *gfn_write_track;
1089 };
1090 
1091 /*
1092  * Track the mode of the optimized logical map, as the rules for decoding the
1093  * destination vary per mode.  Enabling the optimized logical map requires all
1094  * software-enabled local APIs to be in the same mode, each addressable APIC to
1095  * be mapped to only one MDA, and each MDA to map to at most one APIC.
1096  */
1097 enum kvm_apic_logical_mode {
1098 	/* All local APICs are software disabled. */
1099 	KVM_APIC_MODE_SW_DISABLED,
1100 	/* All software enabled local APICs in xAPIC cluster addressing mode. */
1101 	KVM_APIC_MODE_XAPIC_CLUSTER,
1102 	/* All software enabled local APICs in xAPIC flat addressing mode. */
1103 	KVM_APIC_MODE_XAPIC_FLAT,
1104 	/* All software enabled local APICs in x2APIC mode. */
1105 	KVM_APIC_MODE_X2APIC,
1106 	/*
1107 	 * Optimized map disabled, e.g. not all local APICs in the same logical
1108 	 * mode, same logical ID assigned to multiple APICs, etc.
1109 	 */
1110 	KVM_APIC_MODE_MAP_DISABLED,
1111 };
1112 
1113 struct kvm_apic_map {
1114 	struct rcu_head rcu;
1115 	enum kvm_apic_logical_mode logical_mode;
1116 	u32 max_apic_id;
1117 	union {
1118 		struct kvm_lapic *xapic_flat_map[8];
1119 		struct kvm_lapic *xapic_cluster_map[16][4];
1120 	};
1121 	struct kvm_lapic *phys_map[];
1122 };
1123 
1124 /* Hyper-V synthetic debugger (SynDbg)*/
1125 struct kvm_hv_syndbg {
1126 	struct {
1127 		u64 control;
1128 		u64 status;
1129 		u64 send_page;
1130 		u64 recv_page;
1131 		u64 pending_page;
1132 	} control;
1133 	u64 options;
1134 };
1135 
1136 /* Current state of Hyper-V TSC page clocksource */
1137 enum hv_tsc_page_status {
1138 	/* TSC page was not set up or disabled */
1139 	HV_TSC_PAGE_UNSET = 0,
1140 	/* TSC page MSR was written by the guest, update pending */
1141 	HV_TSC_PAGE_GUEST_CHANGED,
1142 	/* TSC page update was triggered from the host side */
1143 	HV_TSC_PAGE_HOST_CHANGED,
1144 	/* TSC page was properly set up and is currently active  */
1145 	HV_TSC_PAGE_SET,
1146 	/* TSC page was set up with an inaccessible GPA */
1147 	HV_TSC_PAGE_BROKEN,
1148 };
1149 
1150 #ifdef CONFIG_KVM_HYPERV
1151 /* Hyper-V emulation context */
1152 struct kvm_hv {
1153 	struct mutex hv_lock;
1154 	u64 hv_guest_os_id;
1155 	u64 hv_hypercall;
1156 	u64 hv_tsc_page;
1157 	enum hv_tsc_page_status hv_tsc_page_status;
1158 
1159 	/* Hyper-v based guest crash (NT kernel bugcheck) parameters */
1160 	u64 hv_crash_param[HV_X64_MSR_CRASH_PARAMS];
1161 	u64 hv_crash_ctl;
1162 
1163 	struct ms_hyperv_tsc_page tsc_ref;
1164 
1165 	struct idr conn_to_evt;
1166 
1167 	u64 hv_reenlightenment_control;
1168 	u64 hv_tsc_emulation_control;
1169 	u64 hv_tsc_emulation_status;
1170 	u64 hv_invtsc_control;
1171 
1172 	/* How many vCPUs have VP index != vCPU index */
1173 	atomic_t num_mismatched_vp_indexes;
1174 
1175 	/*
1176 	 * How many SynICs use 'AutoEOI' feature
1177 	 * (protected by arch.apicv_update_lock)
1178 	 */
1179 	unsigned int synic_auto_eoi_used;
1180 
1181 	struct kvm_hv_syndbg hv_syndbg;
1182 
1183 	bool xsaves_xsavec_checked;
1184 };
1185 #endif
1186 
1187 struct msr_bitmap_range {
1188 	u32 flags;
1189 	u32 nmsrs;
1190 	u32 base;
1191 	unsigned long *bitmap;
1192 };
1193 
1194 #ifdef CONFIG_KVM_XEN
1195 /* Xen emulation context */
1196 struct kvm_xen {
1197 	struct mutex xen_lock;
1198 	u32 xen_version;
1199 	bool long_mode;
1200 	bool runstate_update_flag;
1201 	u8 upcall_vector;
1202 	struct gfn_to_pfn_cache shinfo_cache;
1203 	struct idr evtchn_ports;
1204 	unsigned long poll_mask[BITS_TO_LONGS(KVM_MAX_VCPUS)];
1205 
1206 	struct kvm_xen_hvm_config hvm_config;
1207 };
1208 #endif
1209 
1210 enum kvm_irqchip_mode {
1211 	KVM_IRQCHIP_NONE,
1212 	KVM_IRQCHIP_KERNEL,       /* created with KVM_CREATE_IRQCHIP */
1213 	KVM_IRQCHIP_SPLIT,        /* created with KVM_CAP_SPLIT_IRQCHIP */
1214 };
1215 
1216 struct kvm_x86_msr_filter {
1217 	u8 count;
1218 	bool default_allow:1;
1219 	struct msr_bitmap_range ranges[16];
1220 };
1221 
1222 struct kvm_x86_pmu_event_filter {
1223 	__u32 action;
1224 	__u32 nevents;
1225 	__u32 fixed_counter_bitmap;
1226 	__u32 flags;
1227 	__u32 nr_includes;
1228 	__u32 nr_excludes;
1229 	__u64 *includes;
1230 	__u64 *excludes;
1231 	__u64 events[];
1232 };
1233 
1234 enum kvm_apicv_inhibit {
1235 
1236 	/********************************************************************/
1237 	/* INHIBITs that are relevant to both Intel's APICv and AMD's AVIC. */
1238 	/********************************************************************/
1239 
1240 	/*
1241 	 * APIC acceleration is disabled by a module parameter
1242 	 * and/or not supported in hardware.
1243 	 */
1244 	APICV_INHIBIT_REASON_DISABLED,
1245 
1246 	/*
1247 	 * APIC acceleration is inhibited because AutoEOI feature is
1248 	 * being used by a HyperV guest.
1249 	 */
1250 	APICV_INHIBIT_REASON_HYPERV,
1251 
1252 	/*
1253 	 * APIC acceleration is inhibited because the userspace didn't yet
1254 	 * enable the kernel/split irqchip.
1255 	 */
1256 	APICV_INHIBIT_REASON_ABSENT,
1257 
1258 	/* APIC acceleration is inhibited because KVM_GUESTDBG_BLOCKIRQ
1259 	 * (out of band, debug measure of blocking all interrupts on this vCPU)
1260 	 * was enabled, to avoid AVIC/APICv bypassing it.
1261 	 */
1262 	APICV_INHIBIT_REASON_BLOCKIRQ,
1263 
1264 	/*
1265 	 * APICv is disabled because not all vCPUs have a 1:1 mapping between
1266 	 * APIC ID and vCPU, _and_ KVM is not applying its x2APIC hotplug hack.
1267 	 */
1268 	APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED,
1269 
1270 	/*
1271 	 * For simplicity, the APIC acceleration is inhibited
1272 	 * first time either APIC ID or APIC base are changed by the guest
1273 	 * from their reset values.
1274 	 */
1275 	APICV_INHIBIT_REASON_APIC_ID_MODIFIED,
1276 	APICV_INHIBIT_REASON_APIC_BASE_MODIFIED,
1277 
1278 	/******************************************************/
1279 	/* INHIBITs that are relevant only to the AMD's AVIC. */
1280 	/******************************************************/
1281 
1282 	/*
1283 	 * AVIC is inhibited on a vCPU because it runs a nested guest.
1284 	 *
1285 	 * This is needed because unlike APICv, the peers of this vCPU
1286 	 * cannot use the doorbell mechanism to signal interrupts via AVIC when
1287 	 * a vCPU runs nested.
1288 	 */
1289 	APICV_INHIBIT_REASON_NESTED,
1290 
1291 	/*
1292 	 * On SVM, the wait for the IRQ window is implemented with pending vIRQ,
1293 	 * which cannot be injected when the AVIC is enabled, thus AVIC
1294 	 * is inhibited while KVM waits for IRQ window.
1295 	 */
1296 	APICV_INHIBIT_REASON_IRQWIN,
1297 
1298 	/*
1299 	 * PIT (i8254) 're-inject' mode, relies on EOI intercept,
1300 	 * which AVIC doesn't support for edge triggered interrupts.
1301 	 */
1302 	APICV_INHIBIT_REASON_PIT_REINJ,
1303 
1304 	/*
1305 	 * AVIC is disabled because SEV doesn't support it.
1306 	 */
1307 	APICV_INHIBIT_REASON_SEV,
1308 
1309 	/*
1310 	 * AVIC is disabled because not all vCPUs with a valid LDR have a 1:1
1311 	 * mapping between logical ID and vCPU.
1312 	 */
1313 	APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED,
1314 
1315 	NR_APICV_INHIBIT_REASONS,
1316 };
1317 
1318 #define __APICV_INHIBIT_REASON(reason)			\
1319 	{ BIT(APICV_INHIBIT_REASON_##reason), #reason }
1320 
1321 #define APICV_INHIBIT_REASONS				\
1322 	__APICV_INHIBIT_REASON(DISABLED),		\
1323 	__APICV_INHIBIT_REASON(HYPERV),			\
1324 	__APICV_INHIBIT_REASON(ABSENT),			\
1325 	__APICV_INHIBIT_REASON(BLOCKIRQ),		\
1326 	__APICV_INHIBIT_REASON(PHYSICAL_ID_ALIASED),	\
1327 	__APICV_INHIBIT_REASON(APIC_ID_MODIFIED),	\
1328 	__APICV_INHIBIT_REASON(APIC_BASE_MODIFIED),	\
1329 	__APICV_INHIBIT_REASON(NESTED),			\
1330 	__APICV_INHIBIT_REASON(IRQWIN),			\
1331 	__APICV_INHIBIT_REASON(PIT_REINJ),		\
1332 	__APICV_INHIBIT_REASON(SEV),			\
1333 	__APICV_INHIBIT_REASON(LOGICAL_ID_ALIASED)
1334 
1335 struct kvm_arch {
1336 	unsigned long n_used_mmu_pages;
1337 	unsigned long n_requested_mmu_pages;
1338 	unsigned long n_max_mmu_pages;
1339 	unsigned int indirect_shadow_pages;
1340 	u8 mmu_valid_gen;
1341 	u8 vm_type;
1342 	bool has_private_mem;
1343 	bool has_protected_state;
1344 	bool pre_fault_allowed;
1345 	struct hlist_head mmu_page_hash[KVM_NUM_MMU_PAGES];
1346 	struct list_head active_mmu_pages;
1347 	/*
1348 	 * A list of kvm_mmu_page structs that, if zapped, could possibly be
1349 	 * replaced by an NX huge page.  A shadow page is on this list if its
1350 	 * existence disallows an NX huge page (nx_huge_page_disallowed is set)
1351 	 * and there are no other conditions that prevent a huge page, e.g.
1352 	 * the backing host page is huge, dirtly logging is not enabled for its
1353 	 * memslot, etc...  Note, zapping shadow pages on this list doesn't
1354 	 * guarantee an NX huge page will be created in its stead, e.g. if the
1355 	 * guest attempts to execute from the region then KVM obviously can't
1356 	 * create an NX huge page (without hanging the guest).
1357 	 */
1358 	struct list_head possible_nx_huge_pages;
1359 #ifdef CONFIG_KVM_EXTERNAL_WRITE_TRACKING
1360 	struct kvm_page_track_notifier_head track_notifier_head;
1361 #endif
1362 	/*
1363 	 * Protects marking pages unsync during page faults, as TDP MMU page
1364 	 * faults only take mmu_lock for read.  For simplicity, the unsync
1365 	 * pages lock is always taken when marking pages unsync regardless of
1366 	 * whether mmu_lock is held for read or write.
1367 	 */
1368 	spinlock_t mmu_unsync_pages_lock;
1369 
1370 	u64 shadow_mmio_value;
1371 
1372 #define __KVM_HAVE_ARCH_NONCOHERENT_DMA
1373 	atomic_t noncoherent_dma_count;
1374 #define __KVM_HAVE_ARCH_ASSIGNED_DEVICE
1375 	atomic_t assigned_device_count;
1376 	struct kvm_pic *vpic;
1377 	struct kvm_ioapic *vioapic;
1378 	struct kvm_pit *vpit;
1379 	atomic_t vapics_in_nmi_mode;
1380 	struct mutex apic_map_lock;
1381 	struct kvm_apic_map __rcu *apic_map;
1382 	atomic_t apic_map_dirty;
1383 
1384 	bool apic_access_memslot_enabled;
1385 	bool apic_access_memslot_inhibited;
1386 
1387 	/* Protects apicv_inhibit_reasons */
1388 	struct rw_semaphore apicv_update_lock;
1389 	unsigned long apicv_inhibit_reasons;
1390 
1391 	gpa_t wall_clock;
1392 
1393 	bool mwait_in_guest;
1394 	bool hlt_in_guest;
1395 	bool pause_in_guest;
1396 	bool cstate_in_guest;
1397 
1398 	unsigned long irq_sources_bitmap;
1399 	s64 kvmclock_offset;
1400 
1401 	/*
1402 	 * This also protects nr_vcpus_matched_tsc which is read from a
1403 	 * preemption-disabled region, so it must be a raw spinlock.
1404 	 */
1405 	raw_spinlock_t tsc_write_lock;
1406 	u64 last_tsc_nsec;
1407 	u64 last_tsc_write;
1408 	u32 last_tsc_khz;
1409 	u64 last_tsc_offset;
1410 	u64 cur_tsc_nsec;
1411 	u64 cur_tsc_write;
1412 	u64 cur_tsc_offset;
1413 	u64 cur_tsc_generation;
1414 	int nr_vcpus_matched_tsc;
1415 
1416 	u32 default_tsc_khz;
1417 	bool user_set_tsc;
1418 	u64 apic_bus_cycle_ns;
1419 
1420 	seqcount_raw_spinlock_t pvclock_sc;
1421 	bool use_master_clock;
1422 	u64 master_kernel_ns;
1423 	u64 master_cycle_now;
1424 	struct delayed_work kvmclock_update_work;
1425 	struct delayed_work kvmclock_sync_work;
1426 
1427 	/* reads protected by irq_srcu, writes by irq_lock */
1428 	struct hlist_head mask_notifier_list;
1429 
1430 #ifdef CONFIG_KVM_HYPERV
1431 	struct kvm_hv hyperv;
1432 #endif
1433 
1434 #ifdef CONFIG_KVM_XEN
1435 	struct kvm_xen xen;
1436 #endif
1437 
1438 	bool backwards_tsc_observed;
1439 	bool boot_vcpu_runs_old_kvmclock;
1440 	u32 bsp_vcpu_id;
1441 
1442 	u64 disabled_quirks;
1443 
1444 	enum kvm_irqchip_mode irqchip_mode;
1445 	u8 nr_reserved_ioapic_pins;
1446 
1447 	bool disabled_lapic_found;
1448 
1449 	bool x2apic_format;
1450 	bool x2apic_broadcast_quirk_disabled;
1451 
1452 	bool guest_can_read_msr_platform_info;
1453 	bool exception_payload_enabled;
1454 
1455 	bool triple_fault_event;
1456 
1457 	bool bus_lock_detection_enabled;
1458 	bool enable_pmu;
1459 
1460 	u32 notify_window;
1461 	u32 notify_vmexit_flags;
1462 	/*
1463 	 * If exit_on_emulation_error is set, and the in-kernel instruction
1464 	 * emulator fails to emulate an instruction, allow userspace
1465 	 * the opportunity to look at it.
1466 	 */
1467 	bool exit_on_emulation_error;
1468 
1469 	/* Deflect RDMSR and WRMSR to user space when they trigger a #GP */
1470 	u32 user_space_msr_mask;
1471 	struct kvm_x86_msr_filter __rcu *msr_filter;
1472 
1473 	u32 hypercall_exit_enabled;
1474 
1475 	/* Guest can access the SGX PROVISIONKEY. */
1476 	bool sgx_provisioning_allowed;
1477 
1478 	struct kvm_x86_pmu_event_filter __rcu *pmu_event_filter;
1479 	struct vhost_task *nx_huge_page_recovery_thread;
1480 	u64 nx_huge_page_last;
1481 	struct once nx_once;
1482 
1483 #ifdef CONFIG_X86_64
1484 #ifdef CONFIG_KVM_PROVE_MMU
1485 	/*
1486 	 * The number of TDP MMU pages across all roots.  Used only to sanity
1487 	 * check that KVM isn't leaking TDP MMU pages.
1488 	 */
1489 	atomic64_t tdp_mmu_pages;
1490 #endif
1491 
1492 	/*
1493 	 * List of struct kvm_mmu_pages being used as roots.
1494 	 * All struct kvm_mmu_pages in the list should have
1495 	 * tdp_mmu_page set.
1496 	 *
1497 	 * For reads, this list is protected by:
1498 	 *	RCU alone or
1499 	 *	the MMU lock in read mode + RCU or
1500 	 *	the MMU lock in write mode
1501 	 *
1502 	 * For writes, this list is protected by tdp_mmu_pages_lock; see
1503 	 * below for the details.
1504 	 *
1505 	 * Roots will remain in the list until their tdp_mmu_root_count
1506 	 * drops to zero, at which point the thread that decremented the
1507 	 * count to zero should removed the root from the list and clean
1508 	 * it up, freeing the root after an RCU grace period.
1509 	 */
1510 	struct list_head tdp_mmu_roots;
1511 
1512 	/*
1513 	 * Protects accesses to the following fields when the MMU lock
1514 	 * is held in read mode:
1515 	 *  - tdp_mmu_roots (above)
1516 	 *  - the link field of kvm_mmu_page structs used by the TDP MMU
1517 	 *  - possible_nx_huge_pages;
1518 	 *  - the possible_nx_huge_page_link field of kvm_mmu_page structs used
1519 	 *    by the TDP MMU
1520 	 * Because the lock is only taken within the MMU lock, strictly
1521 	 * speaking it is redundant to acquire this lock when the thread
1522 	 * holds the MMU lock in write mode.  However it often simplifies
1523 	 * the code to do so.
1524 	 */
1525 	spinlock_t tdp_mmu_pages_lock;
1526 #endif /* CONFIG_X86_64 */
1527 
1528 	/*
1529 	 * If set, at least one shadow root has been allocated. This flag
1530 	 * is used as one input when determining whether certain memslot
1531 	 * related allocations are necessary.
1532 	 */
1533 	bool shadow_root_allocated;
1534 
1535 #ifdef CONFIG_KVM_EXTERNAL_WRITE_TRACKING
1536 	/*
1537 	 * If set, the VM has (or had) an external write tracking user, and
1538 	 * thus all write tracking metadata has been allocated, even if KVM
1539 	 * itself isn't using write tracking.
1540 	 */
1541 	bool external_write_tracking_enabled;
1542 #endif
1543 
1544 #if IS_ENABLED(CONFIG_HYPERV)
1545 	hpa_t	hv_root_tdp;
1546 	spinlock_t hv_root_tdp_lock;
1547 	struct hv_partition_assist_pg *hv_pa_pg;
1548 #endif
1549 	/*
1550 	 * VM-scope maximum vCPU ID. Used to determine the size of structures
1551 	 * that increase along with the maximum vCPU ID, in which case, using
1552 	 * the global KVM_MAX_VCPU_IDS may lead to significant memory waste.
1553 	 */
1554 	u32 max_vcpu_ids;
1555 
1556 	bool disable_nx_huge_pages;
1557 
1558 	/*
1559 	 * Memory caches used to allocate shadow pages when performing eager
1560 	 * page splitting. No need for a shadowed_info_cache since eager page
1561 	 * splitting only allocates direct shadow pages.
1562 	 *
1563 	 * Protected by kvm->slots_lock.
1564 	 */
1565 	struct kvm_mmu_memory_cache split_shadow_page_cache;
1566 	struct kvm_mmu_memory_cache split_page_header_cache;
1567 
1568 	/*
1569 	 * Memory cache used to allocate pte_list_desc structs while splitting
1570 	 * huge pages. In the worst case, to split one huge page, 512
1571 	 * pte_list_desc structs are needed to add each lower level leaf sptep
1572 	 * to the rmap plus 1 to extend the parent_ptes rmap of the lower level
1573 	 * page table.
1574 	 *
1575 	 * Protected by kvm->slots_lock.
1576 	 */
1577 #define SPLIT_DESC_CACHE_MIN_NR_OBJECTS (SPTE_ENT_PER_PAGE + 1)
1578 	struct kvm_mmu_memory_cache split_desc_cache;
1579 
1580 	gfn_t gfn_direct_bits;
1581 
1582 	/*
1583 	 * Size of the CPU's dirty log buffer, i.e. VMX's PML buffer. A Zero
1584 	 * value indicates CPU dirty logging is unsupported or disabled in
1585 	 * current VM.
1586 	 */
1587 	int cpu_dirty_log_size;
1588 };
1589 
1590 struct kvm_vm_stat {
1591 	struct kvm_vm_stat_generic generic;
1592 	u64 mmu_shadow_zapped;
1593 	u64 mmu_pte_write;
1594 	u64 mmu_pde_zapped;
1595 	u64 mmu_flooded;
1596 	u64 mmu_recycled;
1597 	u64 mmu_cache_miss;
1598 	u64 mmu_unsync;
1599 	union {
1600 		struct {
1601 			atomic64_t pages_4k;
1602 			atomic64_t pages_2m;
1603 			atomic64_t pages_1g;
1604 		};
1605 		atomic64_t pages[KVM_NR_PAGE_SIZES];
1606 	};
1607 	u64 nx_lpage_splits;
1608 	u64 max_mmu_page_hash_collisions;
1609 	u64 max_mmu_rmap_size;
1610 };
1611 
1612 struct kvm_vcpu_stat {
1613 	struct kvm_vcpu_stat_generic generic;
1614 	u64 pf_taken;
1615 	u64 pf_fixed;
1616 	u64 pf_emulate;
1617 	u64 pf_spurious;
1618 	u64 pf_fast;
1619 	u64 pf_mmio_spte_created;
1620 	u64 pf_guest;
1621 	u64 tlb_flush;
1622 	u64 invlpg;
1623 
1624 	u64 exits;
1625 	u64 io_exits;
1626 	u64 mmio_exits;
1627 	u64 signal_exits;
1628 	u64 irq_window_exits;
1629 	u64 nmi_window_exits;
1630 	u64 l1d_flush;
1631 	u64 halt_exits;
1632 	u64 request_irq_exits;
1633 	u64 irq_exits;
1634 	u64 host_state_reload;
1635 	u64 fpu_reload;
1636 	u64 insn_emulation;
1637 	u64 insn_emulation_fail;
1638 	u64 hypercalls;
1639 	u64 irq_injections;
1640 	u64 nmi_injections;
1641 	u64 req_event;
1642 	u64 nested_run;
1643 	u64 directed_yield_attempted;
1644 	u64 directed_yield_successful;
1645 	u64 preemption_reported;
1646 	u64 preemption_other;
1647 	u64 guest_mode;
1648 	u64 notify_window_exits;
1649 };
1650 
1651 struct x86_instruction_info;
1652 
1653 struct msr_data {
1654 	bool host_initiated;
1655 	u32 index;
1656 	u64 data;
1657 };
1658 
1659 struct kvm_lapic_irq {
1660 	u32 vector;
1661 	u16 delivery_mode;
1662 	u16 dest_mode;
1663 	bool level;
1664 	u16 trig_mode;
1665 	u32 shorthand;
1666 	u32 dest_id;
1667 	bool msi_redir_hint;
1668 };
1669 
1670 static inline u16 kvm_lapic_irq_dest_mode(bool dest_mode_logical)
1671 {
1672 	return dest_mode_logical ? APIC_DEST_LOGICAL : APIC_DEST_PHYSICAL;
1673 }
1674 
1675 struct kvm_x86_ops {
1676 	const char *name;
1677 
1678 	int (*check_processor_compatibility)(void);
1679 
1680 	int (*enable_virtualization_cpu)(void);
1681 	void (*disable_virtualization_cpu)(void);
1682 	cpu_emergency_virt_cb *emergency_disable_virtualization_cpu;
1683 
1684 	void (*hardware_unsetup)(void);
1685 	bool (*has_emulated_msr)(struct kvm *kvm, u32 index);
1686 	void (*vcpu_after_set_cpuid)(struct kvm_vcpu *vcpu);
1687 
1688 	unsigned int vm_size;
1689 	int (*vm_init)(struct kvm *kvm);
1690 	void (*vm_destroy)(struct kvm *kvm);
1691 	void (*vm_pre_destroy)(struct kvm *kvm);
1692 
1693 	/* Create, but do not attach this VCPU */
1694 	int (*vcpu_precreate)(struct kvm *kvm);
1695 	int (*vcpu_create)(struct kvm_vcpu *vcpu);
1696 	void (*vcpu_free)(struct kvm_vcpu *vcpu);
1697 	void (*vcpu_reset)(struct kvm_vcpu *vcpu, bool init_event);
1698 
1699 	void (*prepare_switch_to_guest)(struct kvm_vcpu *vcpu);
1700 	void (*vcpu_load)(struct kvm_vcpu *vcpu, int cpu);
1701 	void (*vcpu_put)(struct kvm_vcpu *vcpu);
1702 
1703 	void (*update_exception_bitmap)(struct kvm_vcpu *vcpu);
1704 	int (*get_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr);
1705 	int (*set_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr);
1706 	u64 (*get_segment_base)(struct kvm_vcpu *vcpu, int seg);
1707 	void (*get_segment)(struct kvm_vcpu *vcpu,
1708 			    struct kvm_segment *var, int seg);
1709 	int (*get_cpl)(struct kvm_vcpu *vcpu);
1710 	int (*get_cpl_no_cache)(struct kvm_vcpu *vcpu);
1711 	void (*set_segment)(struct kvm_vcpu *vcpu,
1712 			    struct kvm_segment *var, int seg);
1713 	void (*get_cs_db_l_bits)(struct kvm_vcpu *vcpu, int *db, int *l);
1714 	bool (*is_valid_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0);
1715 	void (*set_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0);
1716 	void (*post_set_cr3)(struct kvm_vcpu *vcpu, unsigned long cr3);
1717 	bool (*is_valid_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4);
1718 	void (*set_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4);
1719 	int (*set_efer)(struct kvm_vcpu *vcpu, u64 efer);
1720 	void (*get_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1721 	void (*set_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1722 	void (*get_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1723 	void (*set_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1724 	void (*sync_dirty_debug_regs)(struct kvm_vcpu *vcpu);
1725 	void (*set_dr6)(struct kvm_vcpu *vcpu, unsigned long value);
1726 	void (*set_dr7)(struct kvm_vcpu *vcpu, unsigned long value);
1727 	void (*cache_reg)(struct kvm_vcpu *vcpu, enum kvm_reg reg);
1728 	unsigned long (*get_rflags)(struct kvm_vcpu *vcpu);
1729 	void (*set_rflags)(struct kvm_vcpu *vcpu, unsigned long rflags);
1730 	bool (*get_if_flag)(struct kvm_vcpu *vcpu);
1731 
1732 	void (*flush_tlb_all)(struct kvm_vcpu *vcpu);
1733 	void (*flush_tlb_current)(struct kvm_vcpu *vcpu);
1734 #if IS_ENABLED(CONFIG_HYPERV)
1735 	int  (*flush_remote_tlbs)(struct kvm *kvm);
1736 	int  (*flush_remote_tlbs_range)(struct kvm *kvm, gfn_t gfn,
1737 					gfn_t nr_pages);
1738 #endif
1739 
1740 	/*
1741 	 * Flush any TLB entries associated with the given GVA.
1742 	 * Does not need to flush GPA->HPA mappings.
1743 	 * Can potentially get non-canonical addresses through INVLPGs, which
1744 	 * the implementation may choose to ignore if appropriate.
1745 	 */
1746 	void (*flush_tlb_gva)(struct kvm_vcpu *vcpu, gva_t addr);
1747 
1748 	/*
1749 	 * Flush any TLB entries created by the guest.  Like tlb_flush_gva(),
1750 	 * does not need to flush GPA->HPA mappings.
1751 	 */
1752 	void (*flush_tlb_guest)(struct kvm_vcpu *vcpu);
1753 
1754 	int (*vcpu_pre_run)(struct kvm_vcpu *vcpu);
1755 	enum exit_fastpath_completion (*vcpu_run)(struct kvm_vcpu *vcpu,
1756 						  bool force_immediate_exit);
1757 	int (*handle_exit)(struct kvm_vcpu *vcpu,
1758 		enum exit_fastpath_completion exit_fastpath);
1759 	int (*skip_emulated_instruction)(struct kvm_vcpu *vcpu);
1760 	void (*update_emulated_instruction)(struct kvm_vcpu *vcpu);
1761 	void (*set_interrupt_shadow)(struct kvm_vcpu *vcpu, int mask);
1762 	u32 (*get_interrupt_shadow)(struct kvm_vcpu *vcpu);
1763 	void (*patch_hypercall)(struct kvm_vcpu *vcpu,
1764 				unsigned char *hypercall_addr);
1765 	void (*inject_irq)(struct kvm_vcpu *vcpu, bool reinjected);
1766 	void (*inject_nmi)(struct kvm_vcpu *vcpu);
1767 	void (*inject_exception)(struct kvm_vcpu *vcpu);
1768 	void (*cancel_injection)(struct kvm_vcpu *vcpu);
1769 	int (*interrupt_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1770 	int (*nmi_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1771 	bool (*get_nmi_mask)(struct kvm_vcpu *vcpu);
1772 	void (*set_nmi_mask)(struct kvm_vcpu *vcpu, bool masked);
1773 	/* Whether or not a virtual NMI is pending in hardware. */
1774 	bool (*is_vnmi_pending)(struct kvm_vcpu *vcpu);
1775 	/*
1776 	 * Attempt to pend a virtual NMI in hardware.  Returns %true on success
1777 	 * to allow using static_call_ret0 as the fallback.
1778 	 */
1779 	bool (*set_vnmi_pending)(struct kvm_vcpu *vcpu);
1780 	void (*enable_nmi_window)(struct kvm_vcpu *vcpu);
1781 	void (*enable_irq_window)(struct kvm_vcpu *vcpu);
1782 	void (*update_cr8_intercept)(struct kvm_vcpu *vcpu, int tpr, int irr);
1783 
1784 	const bool x2apic_icr_is_split;
1785 	const unsigned long required_apicv_inhibits;
1786 	bool allow_apicv_in_x2apic_without_x2apic_virtualization;
1787 	void (*refresh_apicv_exec_ctrl)(struct kvm_vcpu *vcpu);
1788 	void (*hwapic_isr_update)(struct kvm_vcpu *vcpu, int isr);
1789 	void (*load_eoi_exitmap)(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap);
1790 	void (*set_virtual_apic_mode)(struct kvm_vcpu *vcpu);
1791 	void (*set_apic_access_page_addr)(struct kvm_vcpu *vcpu);
1792 	void (*deliver_interrupt)(struct kvm_lapic *apic, int delivery_mode,
1793 				  int trig_mode, int vector);
1794 	int (*sync_pir_to_irr)(struct kvm_vcpu *vcpu);
1795 	int (*set_tss_addr)(struct kvm *kvm, unsigned int addr);
1796 	int (*set_identity_map_addr)(struct kvm *kvm, u64 ident_addr);
1797 	u8 (*get_mt_mask)(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio);
1798 
1799 	void (*load_mmu_pgd)(struct kvm_vcpu *vcpu, hpa_t root_hpa,
1800 			     int root_level);
1801 
1802 	/* Update external mapping with page table link. */
1803 	int (*link_external_spt)(struct kvm *kvm, gfn_t gfn, enum pg_level level,
1804 				void *external_spt);
1805 	/* Update the external page table from spte getting set. */
1806 	int (*set_external_spte)(struct kvm *kvm, gfn_t gfn, enum pg_level level,
1807 				 kvm_pfn_t pfn_for_gfn);
1808 
1809 	/* Update external page tables for page table about to be freed. */
1810 	int (*free_external_spt)(struct kvm *kvm, gfn_t gfn, enum pg_level level,
1811 				 void *external_spt);
1812 
1813 	/* Update external page table from spte getting removed, and flush TLB. */
1814 	int (*remove_external_spte)(struct kvm *kvm, gfn_t gfn, enum pg_level level,
1815 				    kvm_pfn_t pfn_for_gfn);
1816 
1817 	bool (*has_wbinvd_exit)(void);
1818 
1819 	u64 (*get_l2_tsc_offset)(struct kvm_vcpu *vcpu);
1820 	u64 (*get_l2_tsc_multiplier)(struct kvm_vcpu *vcpu);
1821 	void (*write_tsc_offset)(struct kvm_vcpu *vcpu);
1822 	void (*write_tsc_multiplier)(struct kvm_vcpu *vcpu);
1823 
1824 	/*
1825 	 * Retrieve somewhat arbitrary exit/entry information.  Intended to
1826 	 * be used only from within tracepoints or error paths.
1827 	 */
1828 	void (*get_exit_info)(struct kvm_vcpu *vcpu, u32 *reason,
1829 			      u64 *info1, u64 *info2,
1830 			      u32 *intr_info, u32 *error_code);
1831 
1832 	void (*get_entry_info)(struct kvm_vcpu *vcpu,
1833 			       u32 *intr_info, u32 *error_code);
1834 
1835 	int (*check_intercept)(struct kvm_vcpu *vcpu,
1836 			       struct x86_instruction_info *info,
1837 			       enum x86_intercept_stage stage,
1838 			       struct x86_exception *exception);
1839 	void (*handle_exit_irqoff)(struct kvm_vcpu *vcpu);
1840 
1841 	void (*update_cpu_dirty_logging)(struct kvm_vcpu *vcpu);
1842 
1843 	const struct kvm_x86_nested_ops *nested_ops;
1844 
1845 	void (*vcpu_blocking)(struct kvm_vcpu *vcpu);
1846 	void (*vcpu_unblocking)(struct kvm_vcpu *vcpu);
1847 
1848 	int (*pi_update_irte)(struct kvm *kvm, unsigned int host_irq,
1849 			      uint32_t guest_irq, bool set);
1850 	void (*pi_start_assignment)(struct kvm *kvm);
1851 	void (*apicv_pre_state_restore)(struct kvm_vcpu *vcpu);
1852 	void (*apicv_post_state_restore)(struct kvm_vcpu *vcpu);
1853 	bool (*dy_apicv_has_pending_interrupt)(struct kvm_vcpu *vcpu);
1854 	bool (*protected_apic_has_interrupt)(struct kvm_vcpu *vcpu);
1855 
1856 	int (*set_hv_timer)(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
1857 			    bool *expired);
1858 	void (*cancel_hv_timer)(struct kvm_vcpu *vcpu);
1859 
1860 	void (*setup_mce)(struct kvm_vcpu *vcpu);
1861 
1862 #ifdef CONFIG_KVM_SMM
1863 	int (*smi_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1864 	int (*enter_smm)(struct kvm_vcpu *vcpu, union kvm_smram *smram);
1865 	int (*leave_smm)(struct kvm_vcpu *vcpu, const union kvm_smram *smram);
1866 	void (*enable_smi_window)(struct kvm_vcpu *vcpu);
1867 #endif
1868 
1869 	int (*dev_get_attr)(u32 group, u64 attr, u64 *val);
1870 	int (*mem_enc_ioctl)(struct kvm *kvm, void __user *argp);
1871 	int (*vcpu_mem_enc_ioctl)(struct kvm_vcpu *vcpu, void __user *argp);
1872 	int (*mem_enc_register_region)(struct kvm *kvm, struct kvm_enc_region *argp);
1873 	int (*mem_enc_unregister_region)(struct kvm *kvm, struct kvm_enc_region *argp);
1874 	int (*vm_copy_enc_context_from)(struct kvm *kvm, unsigned int source_fd);
1875 	int (*vm_move_enc_context_from)(struct kvm *kvm, unsigned int source_fd);
1876 	void (*guest_memory_reclaimed)(struct kvm *kvm);
1877 
1878 	int (*get_feature_msr)(u32 msr, u64 *data);
1879 
1880 	int (*check_emulate_instruction)(struct kvm_vcpu *vcpu, int emul_type,
1881 					 void *insn, int insn_len);
1882 
1883 	bool (*apic_init_signal_blocked)(struct kvm_vcpu *vcpu);
1884 	int (*enable_l2_tlb_flush)(struct kvm_vcpu *vcpu);
1885 
1886 	void (*migrate_timers)(struct kvm_vcpu *vcpu);
1887 	void (*msr_filter_changed)(struct kvm_vcpu *vcpu);
1888 	int (*complete_emulated_msr)(struct kvm_vcpu *vcpu, int err);
1889 
1890 	void (*vcpu_deliver_sipi_vector)(struct kvm_vcpu *vcpu, u8 vector);
1891 
1892 	/*
1893 	 * Returns vCPU specific APICv inhibit reasons
1894 	 */
1895 	unsigned long (*vcpu_get_apicv_inhibit_reasons)(struct kvm_vcpu *vcpu);
1896 
1897 	gva_t (*get_untagged_addr)(struct kvm_vcpu *vcpu, gva_t gva, unsigned int flags);
1898 	void *(*alloc_apic_backing_page)(struct kvm_vcpu *vcpu);
1899 	int (*gmem_prepare)(struct kvm *kvm, kvm_pfn_t pfn, gfn_t gfn, int max_order);
1900 	void (*gmem_invalidate)(kvm_pfn_t start, kvm_pfn_t end);
1901 	int (*private_max_mapping_level)(struct kvm *kvm, kvm_pfn_t pfn);
1902 };
1903 
1904 struct kvm_x86_nested_ops {
1905 	void (*leave_nested)(struct kvm_vcpu *vcpu);
1906 	bool (*is_exception_vmexit)(struct kvm_vcpu *vcpu, u8 vector,
1907 				    u32 error_code);
1908 	int (*check_events)(struct kvm_vcpu *vcpu);
1909 	bool (*has_events)(struct kvm_vcpu *vcpu, bool for_injection);
1910 	void (*triple_fault)(struct kvm_vcpu *vcpu);
1911 	int (*get_state)(struct kvm_vcpu *vcpu,
1912 			 struct kvm_nested_state __user *user_kvm_nested_state,
1913 			 unsigned user_data_size);
1914 	int (*set_state)(struct kvm_vcpu *vcpu,
1915 			 struct kvm_nested_state __user *user_kvm_nested_state,
1916 			 struct kvm_nested_state *kvm_state);
1917 	bool (*get_nested_state_pages)(struct kvm_vcpu *vcpu);
1918 	int (*write_log_dirty)(struct kvm_vcpu *vcpu, gpa_t l2_gpa);
1919 
1920 	int (*enable_evmcs)(struct kvm_vcpu *vcpu,
1921 			    uint16_t *vmcs_version);
1922 	uint16_t (*get_evmcs_version)(struct kvm_vcpu *vcpu);
1923 	void (*hv_inject_synthetic_vmexit_post_tlb_flush)(struct kvm_vcpu *vcpu);
1924 };
1925 
1926 struct kvm_x86_init_ops {
1927 	int (*hardware_setup)(void);
1928 	unsigned int (*handle_intel_pt_intr)(void);
1929 
1930 	struct kvm_x86_ops *runtime_ops;
1931 	struct kvm_pmu_ops *pmu_ops;
1932 };
1933 
1934 struct kvm_arch_async_pf {
1935 	u32 token;
1936 	gfn_t gfn;
1937 	unsigned long cr3;
1938 	bool direct_map;
1939 	u64 error_code;
1940 };
1941 
1942 extern u32 __read_mostly kvm_nr_uret_msrs;
1943 extern bool __read_mostly allow_smaller_maxphyaddr;
1944 extern bool __read_mostly enable_apicv;
1945 extern struct kvm_x86_ops kvm_x86_ops;
1946 
1947 #define kvm_x86_call(func) static_call(kvm_x86_##func)
1948 #define kvm_pmu_call(func) static_call(kvm_x86_pmu_##func)
1949 
1950 #define KVM_X86_OP(func) \
1951 	DECLARE_STATIC_CALL(kvm_x86_##func, *(((struct kvm_x86_ops *)0)->func));
1952 #define KVM_X86_OP_OPTIONAL KVM_X86_OP
1953 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
1954 #include <asm/kvm-x86-ops.h>
1955 
1956 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops);
1957 void kvm_x86_vendor_exit(void);
1958 
1959 #define __KVM_HAVE_ARCH_VM_ALLOC
1960 static inline struct kvm *kvm_arch_alloc_vm(void)
1961 {
1962 	return __vmalloc(kvm_x86_ops.vm_size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1963 }
1964 
1965 #define __KVM_HAVE_ARCH_VM_FREE
1966 void kvm_arch_free_vm(struct kvm *kvm);
1967 
1968 #if IS_ENABLED(CONFIG_HYPERV)
1969 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS
1970 static inline int kvm_arch_flush_remote_tlbs(struct kvm *kvm)
1971 {
1972 	if (kvm_x86_ops.flush_remote_tlbs &&
1973 	    !kvm_x86_call(flush_remote_tlbs)(kvm))
1974 		return 0;
1975 	else
1976 		return -ENOTSUPP;
1977 }
1978 
1979 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE
1980 static inline int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn,
1981 						   u64 nr_pages)
1982 {
1983 	if (!kvm_x86_ops.flush_remote_tlbs_range)
1984 		return -EOPNOTSUPP;
1985 
1986 	return kvm_x86_call(flush_remote_tlbs_range)(kvm, gfn, nr_pages);
1987 }
1988 #endif /* CONFIG_HYPERV */
1989 
1990 enum kvm_intr_type {
1991 	/* Values are arbitrary, but must be non-zero. */
1992 	KVM_HANDLING_IRQ = 1,
1993 	KVM_HANDLING_NMI,
1994 };
1995 
1996 /* Enable perf NMI and timer modes to work, and minimise false positives. */
1997 #define kvm_arch_pmi_in_guest(vcpu) \
1998 	((vcpu) && (vcpu)->arch.handling_intr_from_guest && \
1999 	 (!!in_nmi() == ((vcpu)->arch.handling_intr_from_guest == KVM_HANDLING_NMI)))
2000 
2001 void __init kvm_mmu_x86_module_init(void);
2002 int kvm_mmu_vendor_module_init(void);
2003 void kvm_mmu_vendor_module_exit(void);
2004 
2005 void kvm_mmu_destroy(struct kvm_vcpu *vcpu);
2006 int kvm_mmu_create(struct kvm_vcpu *vcpu);
2007 void kvm_mmu_init_vm(struct kvm *kvm);
2008 void kvm_mmu_uninit_vm(struct kvm *kvm);
2009 
2010 void kvm_mmu_init_memslot_memory_attributes(struct kvm *kvm,
2011 					    struct kvm_memory_slot *slot);
2012 
2013 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu);
2014 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu);
2015 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
2016 				      const struct kvm_memory_slot *memslot,
2017 				      int start_level);
2018 void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm,
2019 				       const struct kvm_memory_slot *memslot,
2020 				       int target_level);
2021 void kvm_mmu_try_split_huge_pages(struct kvm *kvm,
2022 				  const struct kvm_memory_slot *memslot,
2023 				  u64 start, u64 end,
2024 				  int target_level);
2025 void kvm_mmu_recover_huge_pages(struct kvm *kvm,
2026 				const struct kvm_memory_slot *memslot);
2027 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
2028 				   const struct kvm_memory_slot *memslot);
2029 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen);
2030 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long kvm_nr_mmu_pages);
2031 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end);
2032 
2033 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3);
2034 
2035 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
2036 			  const void *val, int bytes);
2037 
2038 struct kvm_irq_mask_notifier {
2039 	void (*func)(struct kvm_irq_mask_notifier *kimn, bool masked);
2040 	int irq;
2041 	struct hlist_node link;
2042 };
2043 
2044 void kvm_register_irq_mask_notifier(struct kvm *kvm, int irq,
2045 				    struct kvm_irq_mask_notifier *kimn);
2046 void kvm_unregister_irq_mask_notifier(struct kvm *kvm, int irq,
2047 				      struct kvm_irq_mask_notifier *kimn);
2048 void kvm_fire_mask_notifiers(struct kvm *kvm, unsigned irqchip, unsigned pin,
2049 			     bool mask);
2050 
2051 extern bool tdp_enabled;
2052 
2053 u64 vcpu_tsc_khz(struct kvm_vcpu *vcpu);
2054 
2055 /*
2056  * EMULTYPE_NO_DECODE - Set when re-emulating an instruction (after completing
2057  *			userspace I/O) to indicate that the emulation context
2058  *			should be reused as is, i.e. skip initialization of
2059  *			emulation context, instruction fetch and decode.
2060  *
2061  * EMULTYPE_TRAP_UD - Set when emulating an intercepted #UD from hardware.
2062  *		      Indicates that only select instructions (tagged with
2063  *		      EmulateOnUD) should be emulated (to minimize the emulator
2064  *		      attack surface).  See also EMULTYPE_TRAP_UD_FORCED.
2065  *
2066  * EMULTYPE_SKIP - Set when emulating solely to skip an instruction, i.e. to
2067  *		   decode the instruction length.  For use *only* by
2068  *		   kvm_x86_ops.skip_emulated_instruction() implementations if
2069  *		   EMULTYPE_COMPLETE_USER_EXIT is not set.
2070  *
2071  * EMULTYPE_ALLOW_RETRY_PF - Set when the emulator should resume the guest to
2072  *			     retry native execution under certain conditions,
2073  *			     Can only be set in conjunction with EMULTYPE_PF.
2074  *
2075  * EMULTYPE_TRAP_UD_FORCED - Set when emulating an intercepted #UD that was
2076  *			     triggered by KVM's magic "force emulation" prefix,
2077  *			     which is opt in via module param (off by default).
2078  *			     Bypasses EmulateOnUD restriction despite emulating
2079  *			     due to an intercepted #UD (see EMULTYPE_TRAP_UD).
2080  *			     Used to test the full emulator from userspace.
2081  *
2082  * EMULTYPE_VMWARE_GP - Set when emulating an intercepted #GP for VMware
2083  *			backdoor emulation, which is opt in via module param.
2084  *			VMware backdoor emulation handles select instructions
2085  *			and reinjects the #GP for all other cases.
2086  *
2087  * EMULTYPE_PF - Set when an intercepted #PF triggers the emulation, in which case
2088  *		 the CR2/GPA value pass on the stack is valid.
2089  *
2090  * EMULTYPE_COMPLETE_USER_EXIT - Set when the emulator should update interruptibility
2091  *				 state and inject single-step #DBs after skipping
2092  *				 an instruction (after completing userspace I/O).
2093  *
2094  * EMULTYPE_WRITE_PF_TO_SP - Set when emulating an intercepted page fault that
2095  *			     is attempting to write a gfn that contains one or
2096  *			     more of the PTEs used to translate the write itself,
2097  *			     and the owning page table is being shadowed by KVM.
2098  *			     If emulation of the faulting instruction fails and
2099  *			     this flag is set, KVM will exit to userspace instead
2100  *			     of retrying emulation as KVM cannot make forward
2101  *			     progress.
2102  *
2103  *			     If emulation fails for a write to guest page tables,
2104  *			     KVM unprotects (zaps) the shadow page for the target
2105  *			     gfn and resumes the guest to retry the non-emulatable
2106  *			     instruction (on hardware).  Unprotecting the gfn
2107  *			     doesn't allow forward progress for a self-changing
2108  *			     access because doing so also zaps the translation for
2109  *			     the gfn, i.e. retrying the instruction will hit a
2110  *			     !PRESENT fault, which results in a new shadow page
2111  *			     and sends KVM back to square one.
2112  */
2113 #define EMULTYPE_NO_DECODE	    (1 << 0)
2114 #define EMULTYPE_TRAP_UD	    (1 << 1)
2115 #define EMULTYPE_SKIP		    (1 << 2)
2116 #define EMULTYPE_ALLOW_RETRY_PF	    (1 << 3)
2117 #define EMULTYPE_TRAP_UD_FORCED	    (1 << 4)
2118 #define EMULTYPE_VMWARE_GP	    (1 << 5)
2119 #define EMULTYPE_PF		    (1 << 6)
2120 #define EMULTYPE_COMPLETE_USER_EXIT (1 << 7)
2121 #define EMULTYPE_WRITE_PF_TO_SP	    (1 << 8)
2122 
2123 static inline bool kvm_can_emulate_event_vectoring(int emul_type)
2124 {
2125 	return !(emul_type & EMULTYPE_PF);
2126 }
2127 
2128 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type);
2129 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
2130 					void *insn, int insn_len);
2131 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu,
2132 					  u64 *data, u8 ndata);
2133 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu);
2134 
2135 void kvm_prepare_event_vectoring_exit(struct kvm_vcpu *vcpu, gpa_t gpa);
2136 
2137 void kvm_enable_efer_bits(u64);
2138 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer);
2139 int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data);
2140 int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data);
2141 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, bool host_initiated);
2142 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data);
2143 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data);
2144 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu);
2145 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu);
2146 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu);
2147 int kvm_emulate_invd(struct kvm_vcpu *vcpu);
2148 int kvm_emulate_mwait(struct kvm_vcpu *vcpu);
2149 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu);
2150 int kvm_emulate_monitor(struct kvm_vcpu *vcpu);
2151 
2152 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in);
2153 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu);
2154 int kvm_emulate_halt(struct kvm_vcpu *vcpu);
2155 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu);
2156 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu);
2157 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu);
2158 
2159 void kvm_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
2160 void kvm_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
2161 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector, int seg);
2162 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector);
2163 
2164 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
2165 		    int reason, bool has_error_code, u32 error_code);
2166 
2167 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0);
2168 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4);
2169 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
2170 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
2171 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
2172 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8);
2173 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val);
2174 unsigned long kvm_get_dr(struct kvm_vcpu *vcpu, int dr);
2175 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu);
2176 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw);
2177 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu);
2178 
2179 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr);
2180 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr);
2181 
2182 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu);
2183 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
2184 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu);
2185 
2186 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr);
2187 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code);
2188 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, unsigned long payload);
2189 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned int nr,
2190 			   bool has_error_code, u32 error_code);
2191 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault);
2192 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
2193 				    struct x86_exception *fault);
2194 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl);
2195 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr);
2196 
2197 static inline int __kvm_irq_line_state(unsigned long *irq_state,
2198 				       int irq_source_id, int level)
2199 {
2200 	/* Logical OR for level trig interrupt */
2201 	if (level)
2202 		__set_bit(irq_source_id, irq_state);
2203 	else
2204 		__clear_bit(irq_source_id, irq_state);
2205 
2206 	return !!(*irq_state);
2207 }
2208 
2209 int kvm_pic_set_irq(struct kvm_pic *pic, int irq, int irq_source_id, int level);
2210 void kvm_pic_clear_all(struct kvm_pic *pic, int irq_source_id);
2211 
2212 void kvm_inject_nmi(struct kvm_vcpu *vcpu);
2213 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu);
2214 
2215 void kvm_update_dr7(struct kvm_vcpu *vcpu);
2216 
2217 bool __kvm_mmu_unprotect_gfn_and_retry(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
2218 				       bool always_retry);
2219 
2220 static inline bool kvm_mmu_unprotect_gfn_and_retry(struct kvm_vcpu *vcpu,
2221 						   gpa_t cr2_or_gpa)
2222 {
2223 	return __kvm_mmu_unprotect_gfn_and_retry(vcpu, cr2_or_gpa, false);
2224 }
2225 
2226 void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu,
2227 			ulong roots_to_free);
2228 void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu);
2229 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
2230 			      struct x86_exception *exception);
2231 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
2232 			       struct x86_exception *exception);
2233 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
2234 				struct x86_exception *exception);
2235 
2236 bool kvm_apicv_activated(struct kvm *kvm);
2237 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu);
2238 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu);
2239 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
2240 				      enum kvm_apicv_inhibit reason, bool set);
2241 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
2242 				    enum kvm_apicv_inhibit reason, bool set);
2243 
2244 static inline void kvm_set_apicv_inhibit(struct kvm *kvm,
2245 					 enum kvm_apicv_inhibit reason)
2246 {
2247 	kvm_set_or_clear_apicv_inhibit(kvm, reason, true);
2248 }
2249 
2250 static inline void kvm_clear_apicv_inhibit(struct kvm *kvm,
2251 					   enum kvm_apicv_inhibit reason)
2252 {
2253 	kvm_set_or_clear_apicv_inhibit(kvm, reason, false);
2254 }
2255 
2256 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
2257 		       void *insn, int insn_len);
2258 void kvm_mmu_print_sptes(struct kvm_vcpu *vcpu, gpa_t gpa, const char *msg);
2259 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva);
2260 void kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
2261 			     u64 addr, unsigned long roots);
2262 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid);
2263 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd);
2264 
2265 void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level,
2266 		       int tdp_max_root_level, int tdp_huge_page_level);
2267 
2268 
2269 #ifdef CONFIG_KVM_PRIVATE_MEM
2270 #define kvm_arch_has_private_mem(kvm) ((kvm)->arch.has_private_mem)
2271 #else
2272 #define kvm_arch_has_private_mem(kvm) false
2273 #endif
2274 
2275 #define kvm_arch_has_readonly_mem(kvm) (!(kvm)->arch.has_protected_state)
2276 
2277 static inline u16 kvm_read_ldt(void)
2278 {
2279 	u16 ldt;
2280 	asm("sldt %0" : "=g"(ldt));
2281 	return ldt;
2282 }
2283 
2284 static inline void kvm_load_ldt(u16 sel)
2285 {
2286 	asm("lldt %0" : : "rm"(sel));
2287 }
2288 
2289 #ifdef CONFIG_X86_64
2290 static inline unsigned long read_msr(unsigned long msr)
2291 {
2292 	u64 value;
2293 
2294 	rdmsrq(msr, value);
2295 	return value;
2296 }
2297 #endif
2298 
2299 static inline void kvm_inject_gp(struct kvm_vcpu *vcpu, u32 error_code)
2300 {
2301 	kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
2302 }
2303 
2304 #define TSS_IOPB_BASE_OFFSET 0x66
2305 #define TSS_BASE_SIZE 0x68
2306 #define TSS_IOPB_SIZE (65536 / 8)
2307 #define TSS_REDIRECTION_SIZE (256 / 8)
2308 #define RMODE_TSS_SIZE							\
2309 	(TSS_BASE_SIZE + TSS_REDIRECTION_SIZE + TSS_IOPB_SIZE + 1)
2310 
2311 enum {
2312 	TASK_SWITCH_CALL = 0,
2313 	TASK_SWITCH_IRET = 1,
2314 	TASK_SWITCH_JMP = 2,
2315 	TASK_SWITCH_GATE = 3,
2316 };
2317 
2318 #define HF_GUEST_MASK		(1 << 0) /* VCPU is in guest-mode */
2319 
2320 #ifdef CONFIG_KVM_SMM
2321 #define HF_SMM_MASK		(1 << 1)
2322 #define HF_SMM_INSIDE_NMI_MASK	(1 << 2)
2323 
2324 # define KVM_MAX_NR_ADDRESS_SPACES	2
2325 /* SMM is currently unsupported for guests with private memory. */
2326 # define kvm_arch_nr_memslot_as_ids(kvm) (kvm_arch_has_private_mem(kvm) ? 1 : 2)
2327 # define kvm_arch_vcpu_memslots_id(vcpu) ((vcpu)->arch.hflags & HF_SMM_MASK ? 1 : 0)
2328 # define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, (role).smm)
2329 #else
2330 # define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, 0)
2331 #endif
2332 
2333 int kvm_cpu_has_injectable_intr(struct kvm_vcpu *v);
2334 int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu);
2335 int kvm_cpu_has_extint(struct kvm_vcpu *v);
2336 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu);
2337 int kvm_cpu_get_extint(struct kvm_vcpu *v);
2338 int kvm_cpu_get_interrupt(struct kvm_vcpu *v);
2339 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event);
2340 
2341 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low,
2342 		    unsigned long ipi_bitmap_high, u32 min,
2343 		    unsigned long icr, int op_64_bit);
2344 
2345 int kvm_add_user_return_msr(u32 msr);
2346 int kvm_find_user_return_msr(u32 msr);
2347 int kvm_set_user_return_msr(unsigned index, u64 val, u64 mask);
2348 void kvm_user_return_msr_update_cache(unsigned int index, u64 val);
2349 
2350 static inline bool kvm_is_supported_user_return_msr(u32 msr)
2351 {
2352 	return kvm_find_user_return_msr(msr) >= 0;
2353 }
2354 
2355 u64 kvm_scale_tsc(u64 tsc, u64 ratio);
2356 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc);
2357 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier);
2358 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier);
2359 
2360 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu);
2361 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip);
2362 
2363 void kvm_make_scan_ioapic_request(struct kvm *kvm);
2364 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
2365 				       unsigned long *vcpu_bitmap);
2366 
2367 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
2368 				     struct kvm_async_pf *work);
2369 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
2370 				 struct kvm_async_pf *work);
2371 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu,
2372 			       struct kvm_async_pf *work);
2373 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu);
2374 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu);
2375 extern bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
2376 
2377 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu);
2378 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err);
2379 
2380 void __user *__x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
2381 				     u32 size);
2382 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu);
2383 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu);
2384 
2385 bool kvm_intr_is_single_vcpu(struct kvm *kvm, struct kvm_lapic_irq *irq,
2386 			     struct kvm_vcpu **dest_vcpu);
2387 
2388 void kvm_set_msi_irq(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
2389 		     struct kvm_lapic_irq *irq);
2390 
2391 static inline bool kvm_irq_is_postable(struct kvm_lapic_irq *irq)
2392 {
2393 	/* We can only post Fixed and LowPrio IRQs */
2394 	return (irq->delivery_mode == APIC_DM_FIXED ||
2395 		irq->delivery_mode == APIC_DM_LOWEST);
2396 }
2397 
2398 static inline void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
2399 {
2400 	kvm_x86_call(vcpu_blocking)(vcpu);
2401 }
2402 
2403 static inline void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
2404 {
2405 	kvm_x86_call(vcpu_unblocking)(vcpu);
2406 }
2407 
2408 static inline int kvm_cpu_get_apicid(int mps_cpu)
2409 {
2410 #ifdef CONFIG_X86_LOCAL_APIC
2411 	return default_cpu_present_to_apicid(mps_cpu);
2412 #else
2413 	WARN_ON_ONCE(1);
2414 	return BAD_APICID;
2415 #endif
2416 }
2417 
2418 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages);
2419 
2420 #define KVM_CLOCK_VALID_FLAGS						\
2421 	(KVM_CLOCK_TSC_STABLE | KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC)
2422 
2423 #define KVM_X86_VALID_QUIRKS			\
2424 	(KVM_X86_QUIRK_LINT0_REENABLED |	\
2425 	 KVM_X86_QUIRK_CD_NW_CLEARED |		\
2426 	 KVM_X86_QUIRK_LAPIC_MMIO_HOLE |	\
2427 	 KVM_X86_QUIRK_OUT_7E_INC_RIP |		\
2428 	 KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT |	\
2429 	 KVM_X86_QUIRK_FIX_HYPERCALL_INSN |	\
2430 	 KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS |	\
2431 	 KVM_X86_QUIRK_SLOT_ZAP_ALL |		\
2432 	 KVM_X86_QUIRK_STUFF_FEATURE_MSRS |	\
2433 	 KVM_X86_QUIRK_IGNORE_GUEST_PAT)
2434 
2435 #define KVM_X86_CONDITIONAL_QUIRKS		\
2436 	(KVM_X86_QUIRK_CD_NW_CLEARED |		\
2437 	 KVM_X86_QUIRK_IGNORE_GUEST_PAT)
2438 
2439 /*
2440  * KVM previously used a u32 field in kvm_run to indicate the hypercall was
2441  * initiated from long mode. KVM now sets bit 0 to indicate long mode, but the
2442  * remaining 31 lower bits must be 0 to preserve ABI.
2443  */
2444 #define KVM_EXIT_HYPERCALL_MBZ		GENMASK_ULL(31, 1)
2445 
2446 static inline bool kvm_arch_has_irq_bypass(void)
2447 {
2448 	return enable_apicv && irq_remapping_cap(IRQ_POSTING_CAP);
2449 }
2450 
2451 #endif /* _ASM_X86_KVM_HOST_H */
2452