xref: /linux/arch/x86/events/intel/core.c (revision 9abdb50cda0ffe33bbb2e40cbad97b32fb7ff892)
1 /*
2  * Per core/cpu state
3  *
4  * Used to coordinate shared registers between HT threads or
5  * among events on a single PMU.
6  */
7 
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 
10 #include <linux/stddef.h>
11 #include <linux/types.h>
12 #include <linux/init.h>
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/nmi.h>
16 
17 #include <asm/cpufeature.h>
18 #include <asm/hardirq.h>
19 #include <asm/intel-family.h>
20 #include <asm/apic.h>
21 #include <asm/cpu_device_id.h>
22 
23 #include "../perf_event.h"
24 
25 /*
26  * Intel PerfMon, used on Core and later.
27  */
28 static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
29 {
30 	[PERF_COUNT_HW_CPU_CYCLES]		= 0x003c,
31 	[PERF_COUNT_HW_INSTRUCTIONS]		= 0x00c0,
32 	[PERF_COUNT_HW_CACHE_REFERENCES]	= 0x4f2e,
33 	[PERF_COUNT_HW_CACHE_MISSES]		= 0x412e,
34 	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS]	= 0x00c4,
35 	[PERF_COUNT_HW_BRANCH_MISSES]		= 0x00c5,
36 	[PERF_COUNT_HW_BUS_CYCLES]		= 0x013c,
37 	[PERF_COUNT_HW_REF_CPU_CYCLES]		= 0x0300, /* pseudo-encoding */
38 };
39 
40 static struct event_constraint intel_core_event_constraints[] __read_mostly =
41 {
42 	INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
43 	INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
44 	INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
45 	INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
46 	INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
47 	INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
48 	EVENT_CONSTRAINT_END
49 };
50 
51 static struct event_constraint intel_core2_event_constraints[] __read_mostly =
52 {
53 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
54 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
55 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
56 	INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
57 	INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
58 	INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
59 	INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
60 	INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
61 	INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
62 	INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
63 	INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
64 	INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
65 	INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
66 	EVENT_CONSTRAINT_END
67 };
68 
69 static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
70 {
71 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
72 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
73 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
74 	INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
75 	INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
76 	INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
77 	INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
78 	INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
79 	INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
80 	INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
81 	INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
82 	EVENT_CONSTRAINT_END
83 };
84 
85 static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
86 {
87 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
88 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
89 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
90 	EVENT_EXTRA_END
91 };
92 
93 static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
94 {
95 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
96 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
97 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
98 	INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
99 	INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
100 	INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
101 	INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
102 	EVENT_CONSTRAINT_END
103 };
104 
105 static struct event_constraint intel_snb_event_constraints[] __read_mostly =
106 {
107 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
108 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
109 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
110 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
111 	INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
112 	INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
113 	INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
114 	INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
115 	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
116 	INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
117 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
118 	INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
119 
120 	/*
121 	 * When HT is off these events can only run on the bottom 4 counters
122 	 * When HT is on, they are impacted by the HT bug and require EXCL access
123 	 */
124 	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
125 	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
126 	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
127 	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
128 
129 	EVENT_CONSTRAINT_END
130 };
131 
132 static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
133 {
134 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
135 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
136 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
137 	INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
138 	INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMTPY */
139 	INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
140 	INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
141 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
142 	INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
143 	INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
144 	INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
145 	INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
146 	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
147 
148 	/*
149 	 * When HT is off these events can only run on the bottom 4 counters
150 	 * When HT is on, they are impacted by the HT bug and require EXCL access
151 	 */
152 	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
153 	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
154 	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
155 	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
156 
157 	EVENT_CONSTRAINT_END
158 };
159 
160 static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
161 {
162 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
163 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
164 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
165 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
166 	EVENT_EXTRA_END
167 };
168 
169 static struct event_constraint intel_v1_event_constraints[] __read_mostly =
170 {
171 	EVENT_CONSTRAINT_END
172 };
173 
174 static struct event_constraint intel_gen_event_constraints[] __read_mostly =
175 {
176 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
177 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
178 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
179 	EVENT_CONSTRAINT_END
180 };
181 
182 static struct event_constraint intel_slm_event_constraints[] __read_mostly =
183 {
184 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
185 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
186 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
187 	EVENT_CONSTRAINT_END
188 };
189 
190 static struct event_constraint intel_skl_event_constraints[] = {
191 	FIXED_EVENT_CONSTRAINT(0x00c0, 0),	/* INST_RETIRED.ANY */
192 	FIXED_EVENT_CONSTRAINT(0x003c, 1),	/* CPU_CLK_UNHALTED.CORE */
193 	FIXED_EVENT_CONSTRAINT(0x0300, 2),	/* CPU_CLK_UNHALTED.REF */
194 	INTEL_UEVENT_CONSTRAINT(0x1c0, 0x2),	/* INST_RETIRED.PREC_DIST */
195 
196 	/*
197 	 * when HT is off, these can only run on the bottom 4 counters
198 	 */
199 	INTEL_EVENT_CONSTRAINT(0xd0, 0xf),	/* MEM_INST_RETIRED.* */
200 	INTEL_EVENT_CONSTRAINT(0xd1, 0xf),	/* MEM_LOAD_RETIRED.* */
201 	INTEL_EVENT_CONSTRAINT(0xd2, 0xf),	/* MEM_LOAD_L3_HIT_RETIRED.* */
202 	INTEL_EVENT_CONSTRAINT(0xcd, 0xf),	/* MEM_TRANS_RETIRED.* */
203 	INTEL_EVENT_CONSTRAINT(0xc6, 0xf),	/* FRONTEND_RETIRED.* */
204 
205 	EVENT_CONSTRAINT_END
206 };
207 
208 static struct extra_reg intel_knl_extra_regs[] __read_mostly = {
209 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x799ffbb6e7ull, RSP_0),
210 	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x399ffbffe7ull, RSP_1),
211 	EVENT_EXTRA_END
212 };
213 
214 static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
215 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
216 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
217 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
218 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
219 	EVENT_EXTRA_END
220 };
221 
222 static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
223 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
224 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
225 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
226 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
227 	EVENT_EXTRA_END
228 };
229 
230 static struct extra_reg intel_skl_extra_regs[] __read_mostly = {
231 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
232 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
233 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
234 	/*
235 	 * Note the low 8 bits eventsel code is not a continuous field, containing
236 	 * some #GPing bits. These are masked out.
237 	 */
238 	INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
239 	EVENT_EXTRA_END
240 };
241 
242 EVENT_ATTR_STR(mem-loads,	mem_ld_nhm,	"event=0x0b,umask=0x10,ldlat=3");
243 EVENT_ATTR_STR(mem-loads,	mem_ld_snb,	"event=0xcd,umask=0x1,ldlat=3");
244 EVENT_ATTR_STR(mem-stores,	mem_st_snb,	"event=0xcd,umask=0x2");
245 
246 static struct attribute *nhm_mem_events_attrs[] = {
247 	EVENT_PTR(mem_ld_nhm),
248 	NULL,
249 };
250 
251 /*
252  * topdown events for Intel Core CPUs.
253  *
254  * The events are all in slots, which is a free slot in a 4 wide
255  * pipeline. Some events are already reported in slots, for cycle
256  * events we multiply by the pipeline width (4).
257  *
258  * With Hyper Threading on, topdown metrics are either summed or averaged
259  * between the threads of a core: (count_t0 + count_t1).
260  *
261  * For the average case the metric is always scaled to pipeline width,
262  * so we use factor 2 ((count_t0 + count_t1) / 2 * 4)
263  */
264 
265 EVENT_ATTR_STR_HT(topdown-total-slots, td_total_slots,
266 	"event=0x3c,umask=0x0",			/* cpu_clk_unhalted.thread */
267 	"event=0x3c,umask=0x0,any=1");		/* cpu_clk_unhalted.thread_any */
268 EVENT_ATTR_STR_HT(topdown-total-slots.scale, td_total_slots_scale, "4", "2");
269 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued,
270 	"event=0xe,umask=0x1");			/* uops_issued.any */
271 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired,
272 	"event=0xc2,umask=0x2");		/* uops_retired.retire_slots */
273 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles,
274 	"event=0x9c,umask=0x1");		/* idq_uops_not_delivered_core */
275 EVENT_ATTR_STR_HT(topdown-recovery-bubbles, td_recovery_bubbles,
276 	"event=0xd,umask=0x3,cmask=1",		/* int_misc.recovery_cycles */
277 	"event=0xd,umask=0x3,cmask=1,any=1");	/* int_misc.recovery_cycles_any */
278 EVENT_ATTR_STR_HT(topdown-recovery-bubbles.scale, td_recovery_bubbles_scale,
279 	"4", "2");
280 
281 static struct attribute *snb_events_attrs[] = {
282 	EVENT_PTR(td_slots_issued),
283 	EVENT_PTR(td_slots_retired),
284 	EVENT_PTR(td_fetch_bubbles),
285 	EVENT_PTR(td_total_slots),
286 	EVENT_PTR(td_total_slots_scale),
287 	EVENT_PTR(td_recovery_bubbles),
288 	EVENT_PTR(td_recovery_bubbles_scale),
289 	NULL,
290 };
291 
292 static struct attribute *snb_mem_events_attrs[] = {
293 	EVENT_PTR(mem_ld_snb),
294 	EVENT_PTR(mem_st_snb),
295 	NULL,
296 };
297 
298 static struct event_constraint intel_hsw_event_constraints[] = {
299 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
300 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
301 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
302 	INTEL_UEVENT_CONSTRAINT(0x148, 0x4),	/* L1D_PEND_MISS.PENDING */
303 	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
304 	INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
305 	/* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
306 	INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
307 	/* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
308 	INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
309 	/* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
310 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf),
311 
312 	/*
313 	 * When HT is off these events can only run on the bottom 4 counters
314 	 * When HT is on, they are impacted by the HT bug and require EXCL access
315 	 */
316 	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
317 	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
318 	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
319 	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
320 
321 	EVENT_CONSTRAINT_END
322 };
323 
324 static struct event_constraint intel_bdw_event_constraints[] = {
325 	FIXED_EVENT_CONSTRAINT(0x00c0, 0),	/* INST_RETIRED.ANY */
326 	FIXED_EVENT_CONSTRAINT(0x003c, 1),	/* CPU_CLK_UNHALTED.CORE */
327 	FIXED_EVENT_CONSTRAINT(0x0300, 2),	/* CPU_CLK_UNHALTED.REF */
328 	INTEL_UEVENT_CONSTRAINT(0x148, 0x4),	/* L1D_PEND_MISS.PENDING */
329 	INTEL_UBIT_EVENT_CONSTRAINT(0x8a3, 0x4),	/* CYCLE_ACTIVITY.CYCLES_L1D_MISS */
330 	/*
331 	 * when HT is off, these can only run on the bottom 4 counters
332 	 */
333 	INTEL_EVENT_CONSTRAINT(0xd0, 0xf),	/* MEM_INST_RETIRED.* */
334 	INTEL_EVENT_CONSTRAINT(0xd1, 0xf),	/* MEM_LOAD_RETIRED.* */
335 	INTEL_EVENT_CONSTRAINT(0xd2, 0xf),	/* MEM_LOAD_L3_HIT_RETIRED.* */
336 	INTEL_EVENT_CONSTRAINT(0xcd, 0xf),	/* MEM_TRANS_RETIRED.* */
337 	EVENT_CONSTRAINT_END
338 };
339 
340 static u64 intel_pmu_event_map(int hw_event)
341 {
342 	return intel_perfmon_event_map[hw_event];
343 }
344 
345 /*
346  * Notes on the events:
347  * - data reads do not include code reads (comparable to earlier tables)
348  * - data counts include speculative execution (except L1 write, dtlb, bpu)
349  * - remote node access includes remote memory, remote cache, remote mmio.
350  * - prefetches are not included in the counts.
351  * - icache miss does not include decoded icache
352  */
353 
354 #define SKL_DEMAND_DATA_RD		BIT_ULL(0)
355 #define SKL_DEMAND_RFO			BIT_ULL(1)
356 #define SKL_ANY_RESPONSE		BIT_ULL(16)
357 #define SKL_SUPPLIER_NONE		BIT_ULL(17)
358 #define SKL_L3_MISS_LOCAL_DRAM		BIT_ULL(26)
359 #define SKL_L3_MISS_REMOTE_HOP0_DRAM	BIT_ULL(27)
360 #define SKL_L3_MISS_REMOTE_HOP1_DRAM	BIT_ULL(28)
361 #define SKL_L3_MISS_REMOTE_HOP2P_DRAM	BIT_ULL(29)
362 #define SKL_L3_MISS			(SKL_L3_MISS_LOCAL_DRAM| \
363 					 SKL_L3_MISS_REMOTE_HOP0_DRAM| \
364 					 SKL_L3_MISS_REMOTE_HOP1_DRAM| \
365 					 SKL_L3_MISS_REMOTE_HOP2P_DRAM)
366 #define SKL_SPL_HIT			BIT_ULL(30)
367 #define SKL_SNOOP_NONE			BIT_ULL(31)
368 #define SKL_SNOOP_NOT_NEEDED		BIT_ULL(32)
369 #define SKL_SNOOP_MISS			BIT_ULL(33)
370 #define SKL_SNOOP_HIT_NO_FWD		BIT_ULL(34)
371 #define SKL_SNOOP_HIT_WITH_FWD		BIT_ULL(35)
372 #define SKL_SNOOP_HITM			BIT_ULL(36)
373 #define SKL_SNOOP_NON_DRAM		BIT_ULL(37)
374 #define SKL_ANY_SNOOP			(SKL_SPL_HIT|SKL_SNOOP_NONE| \
375 					 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
376 					 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
377 					 SKL_SNOOP_HITM|SKL_SNOOP_NON_DRAM)
378 #define SKL_DEMAND_READ			SKL_DEMAND_DATA_RD
379 #define SKL_SNOOP_DRAM			(SKL_SNOOP_NONE| \
380 					 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
381 					 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
382 					 SKL_SNOOP_HITM|SKL_SPL_HIT)
383 #define SKL_DEMAND_WRITE		SKL_DEMAND_RFO
384 #define SKL_LLC_ACCESS			SKL_ANY_RESPONSE
385 #define SKL_L3_MISS_REMOTE		(SKL_L3_MISS_REMOTE_HOP0_DRAM| \
386 					 SKL_L3_MISS_REMOTE_HOP1_DRAM| \
387 					 SKL_L3_MISS_REMOTE_HOP2P_DRAM)
388 
389 static __initconst const u64 skl_hw_cache_event_ids
390 				[PERF_COUNT_HW_CACHE_MAX]
391 				[PERF_COUNT_HW_CACHE_OP_MAX]
392 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
393 {
394  [ C(L1D ) ] = {
395 	[ C(OP_READ) ] = {
396 		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_INST_RETIRED.ALL_LOADS */
397 		[ C(RESULT_MISS)   ] = 0x151,	/* L1D.REPLACEMENT */
398 	},
399 	[ C(OP_WRITE) ] = {
400 		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_INST_RETIRED.ALL_STORES */
401 		[ C(RESULT_MISS)   ] = 0x0,
402 	},
403 	[ C(OP_PREFETCH) ] = {
404 		[ C(RESULT_ACCESS) ] = 0x0,
405 		[ C(RESULT_MISS)   ] = 0x0,
406 	},
407  },
408  [ C(L1I ) ] = {
409 	[ C(OP_READ) ] = {
410 		[ C(RESULT_ACCESS) ] = 0x0,
411 		[ C(RESULT_MISS)   ] = 0x283,	/* ICACHE_64B.MISS */
412 	},
413 	[ C(OP_WRITE) ] = {
414 		[ C(RESULT_ACCESS) ] = -1,
415 		[ C(RESULT_MISS)   ] = -1,
416 	},
417 	[ C(OP_PREFETCH) ] = {
418 		[ C(RESULT_ACCESS) ] = 0x0,
419 		[ C(RESULT_MISS)   ] = 0x0,
420 	},
421  },
422  [ C(LL  ) ] = {
423 	[ C(OP_READ) ] = {
424 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
425 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
426 	},
427 	[ C(OP_WRITE) ] = {
428 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
429 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
430 	},
431 	[ C(OP_PREFETCH) ] = {
432 		[ C(RESULT_ACCESS) ] = 0x0,
433 		[ C(RESULT_MISS)   ] = 0x0,
434 	},
435  },
436  [ C(DTLB) ] = {
437 	[ C(OP_READ) ] = {
438 		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_INST_RETIRED.ALL_LOADS */
439 		[ C(RESULT_MISS)   ] = 0xe08,	/* DTLB_LOAD_MISSES.WALK_COMPLETED */
440 	},
441 	[ C(OP_WRITE) ] = {
442 		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_INST_RETIRED.ALL_STORES */
443 		[ C(RESULT_MISS)   ] = 0xe49,	/* DTLB_STORE_MISSES.WALK_COMPLETED */
444 	},
445 	[ C(OP_PREFETCH) ] = {
446 		[ C(RESULT_ACCESS) ] = 0x0,
447 		[ C(RESULT_MISS)   ] = 0x0,
448 	},
449  },
450  [ C(ITLB) ] = {
451 	[ C(OP_READ) ] = {
452 		[ C(RESULT_ACCESS) ] = 0x2085,	/* ITLB_MISSES.STLB_HIT */
453 		[ C(RESULT_MISS)   ] = 0xe85,	/* ITLB_MISSES.WALK_COMPLETED */
454 	},
455 	[ C(OP_WRITE) ] = {
456 		[ C(RESULT_ACCESS) ] = -1,
457 		[ C(RESULT_MISS)   ] = -1,
458 	},
459 	[ C(OP_PREFETCH) ] = {
460 		[ C(RESULT_ACCESS) ] = -1,
461 		[ C(RESULT_MISS)   ] = -1,
462 	},
463  },
464  [ C(BPU ) ] = {
465 	[ C(OP_READ) ] = {
466 		[ C(RESULT_ACCESS) ] = 0xc4,	/* BR_INST_RETIRED.ALL_BRANCHES */
467 		[ C(RESULT_MISS)   ] = 0xc5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
468 	},
469 	[ C(OP_WRITE) ] = {
470 		[ C(RESULT_ACCESS) ] = -1,
471 		[ C(RESULT_MISS)   ] = -1,
472 	},
473 	[ C(OP_PREFETCH) ] = {
474 		[ C(RESULT_ACCESS) ] = -1,
475 		[ C(RESULT_MISS)   ] = -1,
476 	},
477  },
478  [ C(NODE) ] = {
479 	[ C(OP_READ) ] = {
480 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
481 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
482 	},
483 	[ C(OP_WRITE) ] = {
484 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
485 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
486 	},
487 	[ C(OP_PREFETCH) ] = {
488 		[ C(RESULT_ACCESS) ] = 0x0,
489 		[ C(RESULT_MISS)   ] = 0x0,
490 	},
491  },
492 };
493 
494 static __initconst const u64 skl_hw_cache_extra_regs
495 				[PERF_COUNT_HW_CACHE_MAX]
496 				[PERF_COUNT_HW_CACHE_OP_MAX]
497 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
498 {
499  [ C(LL  ) ] = {
500 	[ C(OP_READ) ] = {
501 		[ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
502 				       SKL_LLC_ACCESS|SKL_ANY_SNOOP,
503 		[ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
504 				       SKL_L3_MISS|SKL_ANY_SNOOP|
505 				       SKL_SUPPLIER_NONE,
506 	},
507 	[ C(OP_WRITE) ] = {
508 		[ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
509 				       SKL_LLC_ACCESS|SKL_ANY_SNOOP,
510 		[ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
511 				       SKL_L3_MISS|SKL_ANY_SNOOP|
512 				       SKL_SUPPLIER_NONE,
513 	},
514 	[ C(OP_PREFETCH) ] = {
515 		[ C(RESULT_ACCESS) ] = 0x0,
516 		[ C(RESULT_MISS)   ] = 0x0,
517 	},
518  },
519  [ C(NODE) ] = {
520 	[ C(OP_READ) ] = {
521 		[ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
522 				       SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
523 		[ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
524 				       SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
525 	},
526 	[ C(OP_WRITE) ] = {
527 		[ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
528 				       SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
529 		[ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
530 				       SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
531 	},
532 	[ C(OP_PREFETCH) ] = {
533 		[ C(RESULT_ACCESS) ] = 0x0,
534 		[ C(RESULT_MISS)   ] = 0x0,
535 	},
536  },
537 };
538 
539 #define SNB_DMND_DATA_RD	(1ULL << 0)
540 #define SNB_DMND_RFO		(1ULL << 1)
541 #define SNB_DMND_IFETCH		(1ULL << 2)
542 #define SNB_DMND_WB		(1ULL << 3)
543 #define SNB_PF_DATA_RD		(1ULL << 4)
544 #define SNB_PF_RFO		(1ULL << 5)
545 #define SNB_PF_IFETCH		(1ULL << 6)
546 #define SNB_LLC_DATA_RD		(1ULL << 7)
547 #define SNB_LLC_RFO		(1ULL << 8)
548 #define SNB_LLC_IFETCH		(1ULL << 9)
549 #define SNB_BUS_LOCKS		(1ULL << 10)
550 #define SNB_STRM_ST		(1ULL << 11)
551 #define SNB_OTHER		(1ULL << 15)
552 #define SNB_RESP_ANY		(1ULL << 16)
553 #define SNB_NO_SUPP		(1ULL << 17)
554 #define SNB_LLC_HITM		(1ULL << 18)
555 #define SNB_LLC_HITE		(1ULL << 19)
556 #define SNB_LLC_HITS		(1ULL << 20)
557 #define SNB_LLC_HITF		(1ULL << 21)
558 #define SNB_LOCAL		(1ULL << 22)
559 #define SNB_REMOTE		(0xffULL << 23)
560 #define SNB_SNP_NONE		(1ULL << 31)
561 #define SNB_SNP_NOT_NEEDED	(1ULL << 32)
562 #define SNB_SNP_MISS		(1ULL << 33)
563 #define SNB_NO_FWD		(1ULL << 34)
564 #define SNB_SNP_FWD		(1ULL << 35)
565 #define SNB_HITM		(1ULL << 36)
566 #define SNB_NON_DRAM		(1ULL << 37)
567 
568 #define SNB_DMND_READ		(SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
569 #define SNB_DMND_WRITE		(SNB_DMND_RFO|SNB_LLC_RFO)
570 #define SNB_DMND_PREFETCH	(SNB_PF_DATA_RD|SNB_PF_RFO)
571 
572 #define SNB_SNP_ANY		(SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
573 				 SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
574 				 SNB_HITM)
575 
576 #define SNB_DRAM_ANY		(SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
577 #define SNB_DRAM_REMOTE		(SNB_REMOTE|SNB_SNP_ANY)
578 
579 #define SNB_L3_ACCESS		SNB_RESP_ANY
580 #define SNB_L3_MISS		(SNB_DRAM_ANY|SNB_NON_DRAM)
581 
582 static __initconst const u64 snb_hw_cache_extra_regs
583 				[PERF_COUNT_HW_CACHE_MAX]
584 				[PERF_COUNT_HW_CACHE_OP_MAX]
585 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
586 {
587  [ C(LL  ) ] = {
588 	[ C(OP_READ) ] = {
589 		[ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
590 		[ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_L3_MISS,
591 	},
592 	[ C(OP_WRITE) ] = {
593 		[ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
594 		[ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_L3_MISS,
595 	},
596 	[ C(OP_PREFETCH) ] = {
597 		[ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
598 		[ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
599 	},
600  },
601  [ C(NODE) ] = {
602 	[ C(OP_READ) ] = {
603 		[ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
604 		[ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
605 	},
606 	[ C(OP_WRITE) ] = {
607 		[ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
608 		[ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
609 	},
610 	[ C(OP_PREFETCH) ] = {
611 		[ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
612 		[ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
613 	},
614  },
615 };
616 
617 static __initconst const u64 snb_hw_cache_event_ids
618 				[PERF_COUNT_HW_CACHE_MAX]
619 				[PERF_COUNT_HW_CACHE_OP_MAX]
620 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
621 {
622  [ C(L1D) ] = {
623 	[ C(OP_READ) ] = {
624 		[ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS        */
625 		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPLACEMENT              */
626 	},
627 	[ C(OP_WRITE) ] = {
628 		[ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES       */
629 		[ C(RESULT_MISS)   ] = 0x0851, /* L1D.ALL_M_REPLACEMENT        */
630 	},
631 	[ C(OP_PREFETCH) ] = {
632 		[ C(RESULT_ACCESS) ] = 0x0,
633 		[ C(RESULT_MISS)   ] = 0x024e, /* HW_PRE_REQ.DL1_MISS          */
634 	},
635  },
636  [ C(L1I ) ] = {
637 	[ C(OP_READ) ] = {
638 		[ C(RESULT_ACCESS) ] = 0x0,
639 		[ C(RESULT_MISS)   ] = 0x0280, /* ICACHE.MISSES */
640 	},
641 	[ C(OP_WRITE) ] = {
642 		[ C(RESULT_ACCESS) ] = -1,
643 		[ C(RESULT_MISS)   ] = -1,
644 	},
645 	[ C(OP_PREFETCH) ] = {
646 		[ C(RESULT_ACCESS) ] = 0x0,
647 		[ C(RESULT_MISS)   ] = 0x0,
648 	},
649  },
650  [ C(LL  ) ] = {
651 	[ C(OP_READ) ] = {
652 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
653 		[ C(RESULT_ACCESS) ] = 0x01b7,
654 		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
655 		[ C(RESULT_MISS)   ] = 0x01b7,
656 	},
657 	[ C(OP_WRITE) ] = {
658 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
659 		[ C(RESULT_ACCESS) ] = 0x01b7,
660 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
661 		[ C(RESULT_MISS)   ] = 0x01b7,
662 	},
663 	[ C(OP_PREFETCH) ] = {
664 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
665 		[ C(RESULT_ACCESS) ] = 0x01b7,
666 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
667 		[ C(RESULT_MISS)   ] = 0x01b7,
668 	},
669  },
670  [ C(DTLB) ] = {
671 	[ C(OP_READ) ] = {
672 		[ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
673 		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
674 	},
675 	[ C(OP_WRITE) ] = {
676 		[ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
677 		[ C(RESULT_MISS)   ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
678 	},
679 	[ C(OP_PREFETCH) ] = {
680 		[ C(RESULT_ACCESS) ] = 0x0,
681 		[ C(RESULT_MISS)   ] = 0x0,
682 	},
683  },
684  [ C(ITLB) ] = {
685 	[ C(OP_READ) ] = {
686 		[ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT         */
687 		[ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK    */
688 	},
689 	[ C(OP_WRITE) ] = {
690 		[ C(RESULT_ACCESS) ] = -1,
691 		[ C(RESULT_MISS)   ] = -1,
692 	},
693 	[ C(OP_PREFETCH) ] = {
694 		[ C(RESULT_ACCESS) ] = -1,
695 		[ C(RESULT_MISS)   ] = -1,
696 	},
697  },
698  [ C(BPU ) ] = {
699 	[ C(OP_READ) ] = {
700 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
701 		[ C(RESULT_MISS)   ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
702 	},
703 	[ C(OP_WRITE) ] = {
704 		[ C(RESULT_ACCESS) ] = -1,
705 		[ C(RESULT_MISS)   ] = -1,
706 	},
707 	[ C(OP_PREFETCH) ] = {
708 		[ C(RESULT_ACCESS) ] = -1,
709 		[ C(RESULT_MISS)   ] = -1,
710 	},
711  },
712  [ C(NODE) ] = {
713 	[ C(OP_READ) ] = {
714 		[ C(RESULT_ACCESS) ] = 0x01b7,
715 		[ C(RESULT_MISS)   ] = 0x01b7,
716 	},
717 	[ C(OP_WRITE) ] = {
718 		[ C(RESULT_ACCESS) ] = 0x01b7,
719 		[ C(RESULT_MISS)   ] = 0x01b7,
720 	},
721 	[ C(OP_PREFETCH) ] = {
722 		[ C(RESULT_ACCESS) ] = 0x01b7,
723 		[ C(RESULT_MISS)   ] = 0x01b7,
724 	},
725  },
726 
727 };
728 
729 /*
730  * Notes on the events:
731  * - data reads do not include code reads (comparable to earlier tables)
732  * - data counts include speculative execution (except L1 write, dtlb, bpu)
733  * - remote node access includes remote memory, remote cache, remote mmio.
734  * - prefetches are not included in the counts because they are not
735  *   reliably counted.
736  */
737 
738 #define HSW_DEMAND_DATA_RD		BIT_ULL(0)
739 #define HSW_DEMAND_RFO			BIT_ULL(1)
740 #define HSW_ANY_RESPONSE		BIT_ULL(16)
741 #define HSW_SUPPLIER_NONE		BIT_ULL(17)
742 #define HSW_L3_MISS_LOCAL_DRAM		BIT_ULL(22)
743 #define HSW_L3_MISS_REMOTE_HOP0		BIT_ULL(27)
744 #define HSW_L3_MISS_REMOTE_HOP1		BIT_ULL(28)
745 #define HSW_L3_MISS_REMOTE_HOP2P	BIT_ULL(29)
746 #define HSW_L3_MISS			(HSW_L3_MISS_LOCAL_DRAM| \
747 					 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
748 					 HSW_L3_MISS_REMOTE_HOP2P)
749 #define HSW_SNOOP_NONE			BIT_ULL(31)
750 #define HSW_SNOOP_NOT_NEEDED		BIT_ULL(32)
751 #define HSW_SNOOP_MISS			BIT_ULL(33)
752 #define HSW_SNOOP_HIT_NO_FWD		BIT_ULL(34)
753 #define HSW_SNOOP_HIT_WITH_FWD		BIT_ULL(35)
754 #define HSW_SNOOP_HITM			BIT_ULL(36)
755 #define HSW_SNOOP_NON_DRAM		BIT_ULL(37)
756 #define HSW_ANY_SNOOP			(HSW_SNOOP_NONE| \
757 					 HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \
758 					 HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \
759 					 HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM)
760 #define HSW_SNOOP_DRAM			(HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM)
761 #define HSW_DEMAND_READ			HSW_DEMAND_DATA_RD
762 #define HSW_DEMAND_WRITE		HSW_DEMAND_RFO
763 #define HSW_L3_MISS_REMOTE		(HSW_L3_MISS_REMOTE_HOP0|\
764 					 HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P)
765 #define HSW_LLC_ACCESS			HSW_ANY_RESPONSE
766 
767 #define BDW_L3_MISS_LOCAL		BIT(26)
768 #define BDW_L3_MISS			(BDW_L3_MISS_LOCAL| \
769 					 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
770 					 HSW_L3_MISS_REMOTE_HOP2P)
771 
772 
773 static __initconst const u64 hsw_hw_cache_event_ids
774 				[PERF_COUNT_HW_CACHE_MAX]
775 				[PERF_COUNT_HW_CACHE_OP_MAX]
776 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
777 {
778  [ C(L1D ) ] = {
779 	[ C(OP_READ) ] = {
780 		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
781 		[ C(RESULT_MISS)   ] = 0x151,	/* L1D.REPLACEMENT */
782 	},
783 	[ C(OP_WRITE) ] = {
784 		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
785 		[ C(RESULT_MISS)   ] = 0x0,
786 	},
787 	[ C(OP_PREFETCH) ] = {
788 		[ C(RESULT_ACCESS) ] = 0x0,
789 		[ C(RESULT_MISS)   ] = 0x0,
790 	},
791  },
792  [ C(L1I ) ] = {
793 	[ C(OP_READ) ] = {
794 		[ C(RESULT_ACCESS) ] = 0x0,
795 		[ C(RESULT_MISS)   ] = 0x280,	/* ICACHE.MISSES */
796 	},
797 	[ C(OP_WRITE) ] = {
798 		[ C(RESULT_ACCESS) ] = -1,
799 		[ C(RESULT_MISS)   ] = -1,
800 	},
801 	[ C(OP_PREFETCH) ] = {
802 		[ C(RESULT_ACCESS) ] = 0x0,
803 		[ C(RESULT_MISS)   ] = 0x0,
804 	},
805  },
806  [ C(LL  ) ] = {
807 	[ C(OP_READ) ] = {
808 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
809 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
810 	},
811 	[ C(OP_WRITE) ] = {
812 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
813 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
814 	},
815 	[ C(OP_PREFETCH) ] = {
816 		[ C(RESULT_ACCESS) ] = 0x0,
817 		[ C(RESULT_MISS)   ] = 0x0,
818 	},
819  },
820  [ C(DTLB) ] = {
821 	[ C(OP_READ) ] = {
822 		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
823 		[ C(RESULT_MISS)   ] = 0x108,	/* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */
824 	},
825 	[ C(OP_WRITE) ] = {
826 		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
827 		[ C(RESULT_MISS)   ] = 0x149,	/* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
828 	},
829 	[ C(OP_PREFETCH) ] = {
830 		[ C(RESULT_ACCESS) ] = 0x0,
831 		[ C(RESULT_MISS)   ] = 0x0,
832 	},
833  },
834  [ C(ITLB) ] = {
835 	[ C(OP_READ) ] = {
836 		[ C(RESULT_ACCESS) ] = 0x6085,	/* ITLB_MISSES.STLB_HIT */
837 		[ C(RESULT_MISS)   ] = 0x185,	/* ITLB_MISSES.MISS_CAUSES_A_WALK */
838 	},
839 	[ C(OP_WRITE) ] = {
840 		[ C(RESULT_ACCESS) ] = -1,
841 		[ C(RESULT_MISS)   ] = -1,
842 	},
843 	[ C(OP_PREFETCH) ] = {
844 		[ C(RESULT_ACCESS) ] = -1,
845 		[ C(RESULT_MISS)   ] = -1,
846 	},
847  },
848  [ C(BPU ) ] = {
849 	[ C(OP_READ) ] = {
850 		[ C(RESULT_ACCESS) ] = 0xc4,	/* BR_INST_RETIRED.ALL_BRANCHES */
851 		[ C(RESULT_MISS)   ] = 0xc5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
852 	},
853 	[ C(OP_WRITE) ] = {
854 		[ C(RESULT_ACCESS) ] = -1,
855 		[ C(RESULT_MISS)   ] = -1,
856 	},
857 	[ C(OP_PREFETCH) ] = {
858 		[ C(RESULT_ACCESS) ] = -1,
859 		[ C(RESULT_MISS)   ] = -1,
860 	},
861  },
862  [ C(NODE) ] = {
863 	[ C(OP_READ) ] = {
864 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
865 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
866 	},
867 	[ C(OP_WRITE) ] = {
868 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
869 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
870 	},
871 	[ C(OP_PREFETCH) ] = {
872 		[ C(RESULT_ACCESS) ] = 0x0,
873 		[ C(RESULT_MISS)   ] = 0x0,
874 	},
875  },
876 };
877 
878 static __initconst const u64 hsw_hw_cache_extra_regs
879 				[PERF_COUNT_HW_CACHE_MAX]
880 				[PERF_COUNT_HW_CACHE_OP_MAX]
881 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
882 {
883  [ C(LL  ) ] = {
884 	[ C(OP_READ) ] = {
885 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
886 				       HSW_LLC_ACCESS,
887 		[ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
888 				       HSW_L3_MISS|HSW_ANY_SNOOP,
889 	},
890 	[ C(OP_WRITE) ] = {
891 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
892 				       HSW_LLC_ACCESS,
893 		[ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
894 				       HSW_L3_MISS|HSW_ANY_SNOOP,
895 	},
896 	[ C(OP_PREFETCH) ] = {
897 		[ C(RESULT_ACCESS) ] = 0x0,
898 		[ C(RESULT_MISS)   ] = 0x0,
899 	},
900  },
901  [ C(NODE) ] = {
902 	[ C(OP_READ) ] = {
903 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
904 				       HSW_L3_MISS_LOCAL_DRAM|
905 				       HSW_SNOOP_DRAM,
906 		[ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
907 				       HSW_L3_MISS_REMOTE|
908 				       HSW_SNOOP_DRAM,
909 	},
910 	[ C(OP_WRITE) ] = {
911 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
912 				       HSW_L3_MISS_LOCAL_DRAM|
913 				       HSW_SNOOP_DRAM,
914 		[ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
915 				       HSW_L3_MISS_REMOTE|
916 				       HSW_SNOOP_DRAM,
917 	},
918 	[ C(OP_PREFETCH) ] = {
919 		[ C(RESULT_ACCESS) ] = 0x0,
920 		[ C(RESULT_MISS)   ] = 0x0,
921 	},
922  },
923 };
924 
925 static __initconst const u64 westmere_hw_cache_event_ids
926 				[PERF_COUNT_HW_CACHE_MAX]
927 				[PERF_COUNT_HW_CACHE_OP_MAX]
928 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
929 {
930  [ C(L1D) ] = {
931 	[ C(OP_READ) ] = {
932 		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
933 		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
934 	},
935 	[ C(OP_WRITE) ] = {
936 		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
937 		[ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
938 	},
939 	[ C(OP_PREFETCH) ] = {
940 		[ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
941 		[ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
942 	},
943  },
944  [ C(L1I ) ] = {
945 	[ C(OP_READ) ] = {
946 		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
947 		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
948 	},
949 	[ C(OP_WRITE) ] = {
950 		[ C(RESULT_ACCESS) ] = -1,
951 		[ C(RESULT_MISS)   ] = -1,
952 	},
953 	[ C(OP_PREFETCH) ] = {
954 		[ C(RESULT_ACCESS) ] = 0x0,
955 		[ C(RESULT_MISS)   ] = 0x0,
956 	},
957  },
958  [ C(LL  ) ] = {
959 	[ C(OP_READ) ] = {
960 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
961 		[ C(RESULT_ACCESS) ] = 0x01b7,
962 		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
963 		[ C(RESULT_MISS)   ] = 0x01b7,
964 	},
965 	/*
966 	 * Use RFO, not WRITEBACK, because a write miss would typically occur
967 	 * on RFO.
968 	 */
969 	[ C(OP_WRITE) ] = {
970 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
971 		[ C(RESULT_ACCESS) ] = 0x01b7,
972 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
973 		[ C(RESULT_MISS)   ] = 0x01b7,
974 	},
975 	[ C(OP_PREFETCH) ] = {
976 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
977 		[ C(RESULT_ACCESS) ] = 0x01b7,
978 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
979 		[ C(RESULT_MISS)   ] = 0x01b7,
980 	},
981  },
982  [ C(DTLB) ] = {
983 	[ C(OP_READ) ] = {
984 		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
985 		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
986 	},
987 	[ C(OP_WRITE) ] = {
988 		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
989 		[ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
990 	},
991 	[ C(OP_PREFETCH) ] = {
992 		[ C(RESULT_ACCESS) ] = 0x0,
993 		[ C(RESULT_MISS)   ] = 0x0,
994 	},
995  },
996  [ C(ITLB) ] = {
997 	[ C(OP_READ) ] = {
998 		[ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
999 		[ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.ANY              */
1000 	},
1001 	[ C(OP_WRITE) ] = {
1002 		[ C(RESULT_ACCESS) ] = -1,
1003 		[ C(RESULT_MISS)   ] = -1,
1004 	},
1005 	[ C(OP_PREFETCH) ] = {
1006 		[ C(RESULT_ACCESS) ] = -1,
1007 		[ C(RESULT_MISS)   ] = -1,
1008 	},
1009  },
1010  [ C(BPU ) ] = {
1011 	[ C(OP_READ) ] = {
1012 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1013 		[ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
1014 	},
1015 	[ C(OP_WRITE) ] = {
1016 		[ C(RESULT_ACCESS) ] = -1,
1017 		[ C(RESULT_MISS)   ] = -1,
1018 	},
1019 	[ C(OP_PREFETCH) ] = {
1020 		[ C(RESULT_ACCESS) ] = -1,
1021 		[ C(RESULT_MISS)   ] = -1,
1022 	},
1023  },
1024  [ C(NODE) ] = {
1025 	[ C(OP_READ) ] = {
1026 		[ C(RESULT_ACCESS) ] = 0x01b7,
1027 		[ C(RESULT_MISS)   ] = 0x01b7,
1028 	},
1029 	[ C(OP_WRITE) ] = {
1030 		[ C(RESULT_ACCESS) ] = 0x01b7,
1031 		[ C(RESULT_MISS)   ] = 0x01b7,
1032 	},
1033 	[ C(OP_PREFETCH) ] = {
1034 		[ C(RESULT_ACCESS) ] = 0x01b7,
1035 		[ C(RESULT_MISS)   ] = 0x01b7,
1036 	},
1037  },
1038 };
1039 
1040 /*
1041  * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
1042  * See IA32 SDM Vol 3B 30.6.1.3
1043  */
1044 
1045 #define NHM_DMND_DATA_RD	(1 << 0)
1046 #define NHM_DMND_RFO		(1 << 1)
1047 #define NHM_DMND_IFETCH		(1 << 2)
1048 #define NHM_DMND_WB		(1 << 3)
1049 #define NHM_PF_DATA_RD		(1 << 4)
1050 #define NHM_PF_DATA_RFO		(1 << 5)
1051 #define NHM_PF_IFETCH		(1 << 6)
1052 #define NHM_OFFCORE_OTHER	(1 << 7)
1053 #define NHM_UNCORE_HIT		(1 << 8)
1054 #define NHM_OTHER_CORE_HIT_SNP	(1 << 9)
1055 #define NHM_OTHER_CORE_HITM	(1 << 10)
1056         			/* reserved */
1057 #define NHM_REMOTE_CACHE_FWD	(1 << 12)
1058 #define NHM_REMOTE_DRAM		(1 << 13)
1059 #define NHM_LOCAL_DRAM		(1 << 14)
1060 #define NHM_NON_DRAM		(1 << 15)
1061 
1062 #define NHM_LOCAL		(NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
1063 #define NHM_REMOTE		(NHM_REMOTE_DRAM)
1064 
1065 #define NHM_DMND_READ		(NHM_DMND_DATA_RD)
1066 #define NHM_DMND_WRITE		(NHM_DMND_RFO|NHM_DMND_WB)
1067 #define NHM_DMND_PREFETCH	(NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
1068 
1069 #define NHM_L3_HIT	(NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
1070 #define NHM_L3_MISS	(NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
1071 #define NHM_L3_ACCESS	(NHM_L3_HIT|NHM_L3_MISS)
1072 
1073 static __initconst const u64 nehalem_hw_cache_extra_regs
1074 				[PERF_COUNT_HW_CACHE_MAX]
1075 				[PERF_COUNT_HW_CACHE_OP_MAX]
1076 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1077 {
1078  [ C(LL  ) ] = {
1079 	[ C(OP_READ) ] = {
1080 		[ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
1081 		[ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_L3_MISS,
1082 	},
1083 	[ C(OP_WRITE) ] = {
1084 		[ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
1085 		[ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_L3_MISS,
1086 	},
1087 	[ C(OP_PREFETCH) ] = {
1088 		[ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
1089 		[ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
1090 	},
1091  },
1092  [ C(NODE) ] = {
1093 	[ C(OP_READ) ] = {
1094 		[ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
1095 		[ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_REMOTE,
1096 	},
1097 	[ C(OP_WRITE) ] = {
1098 		[ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
1099 		[ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_REMOTE,
1100 	},
1101 	[ C(OP_PREFETCH) ] = {
1102 		[ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
1103 		[ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_REMOTE,
1104 	},
1105  },
1106 };
1107 
1108 static __initconst const u64 nehalem_hw_cache_event_ids
1109 				[PERF_COUNT_HW_CACHE_MAX]
1110 				[PERF_COUNT_HW_CACHE_OP_MAX]
1111 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1112 {
1113  [ C(L1D) ] = {
1114 	[ C(OP_READ) ] = {
1115 		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1116 		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
1117 	},
1118 	[ C(OP_WRITE) ] = {
1119 		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1120 		[ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
1121 	},
1122 	[ C(OP_PREFETCH) ] = {
1123 		[ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
1124 		[ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
1125 	},
1126  },
1127  [ C(L1I ) ] = {
1128 	[ C(OP_READ) ] = {
1129 		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
1130 		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
1131 	},
1132 	[ C(OP_WRITE) ] = {
1133 		[ C(RESULT_ACCESS) ] = -1,
1134 		[ C(RESULT_MISS)   ] = -1,
1135 	},
1136 	[ C(OP_PREFETCH) ] = {
1137 		[ C(RESULT_ACCESS) ] = 0x0,
1138 		[ C(RESULT_MISS)   ] = 0x0,
1139 	},
1140  },
1141  [ C(LL  ) ] = {
1142 	[ C(OP_READ) ] = {
1143 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1144 		[ C(RESULT_ACCESS) ] = 0x01b7,
1145 		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1146 		[ C(RESULT_MISS)   ] = 0x01b7,
1147 	},
1148 	/*
1149 	 * Use RFO, not WRITEBACK, because a write miss would typically occur
1150 	 * on RFO.
1151 	 */
1152 	[ C(OP_WRITE) ] = {
1153 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1154 		[ C(RESULT_ACCESS) ] = 0x01b7,
1155 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1156 		[ C(RESULT_MISS)   ] = 0x01b7,
1157 	},
1158 	[ C(OP_PREFETCH) ] = {
1159 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1160 		[ C(RESULT_ACCESS) ] = 0x01b7,
1161 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1162 		[ C(RESULT_MISS)   ] = 0x01b7,
1163 	},
1164  },
1165  [ C(DTLB) ] = {
1166 	[ C(OP_READ) ] = {
1167 		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI   (alias)  */
1168 		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
1169 	},
1170 	[ C(OP_WRITE) ] = {
1171 		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI   (alias)  */
1172 		[ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
1173 	},
1174 	[ C(OP_PREFETCH) ] = {
1175 		[ C(RESULT_ACCESS) ] = 0x0,
1176 		[ C(RESULT_MISS)   ] = 0x0,
1177 	},
1178  },
1179  [ C(ITLB) ] = {
1180 	[ C(OP_READ) ] = {
1181 		[ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
1182 		[ C(RESULT_MISS)   ] = 0x20c8, /* ITLB_MISS_RETIRED            */
1183 	},
1184 	[ C(OP_WRITE) ] = {
1185 		[ C(RESULT_ACCESS) ] = -1,
1186 		[ C(RESULT_MISS)   ] = -1,
1187 	},
1188 	[ C(OP_PREFETCH) ] = {
1189 		[ C(RESULT_ACCESS) ] = -1,
1190 		[ C(RESULT_MISS)   ] = -1,
1191 	},
1192  },
1193  [ C(BPU ) ] = {
1194 	[ C(OP_READ) ] = {
1195 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1196 		[ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
1197 	},
1198 	[ C(OP_WRITE) ] = {
1199 		[ C(RESULT_ACCESS) ] = -1,
1200 		[ C(RESULT_MISS)   ] = -1,
1201 	},
1202 	[ C(OP_PREFETCH) ] = {
1203 		[ C(RESULT_ACCESS) ] = -1,
1204 		[ C(RESULT_MISS)   ] = -1,
1205 	},
1206  },
1207  [ C(NODE) ] = {
1208 	[ C(OP_READ) ] = {
1209 		[ C(RESULT_ACCESS) ] = 0x01b7,
1210 		[ C(RESULT_MISS)   ] = 0x01b7,
1211 	},
1212 	[ C(OP_WRITE) ] = {
1213 		[ C(RESULT_ACCESS) ] = 0x01b7,
1214 		[ C(RESULT_MISS)   ] = 0x01b7,
1215 	},
1216 	[ C(OP_PREFETCH) ] = {
1217 		[ C(RESULT_ACCESS) ] = 0x01b7,
1218 		[ C(RESULT_MISS)   ] = 0x01b7,
1219 	},
1220  },
1221 };
1222 
1223 static __initconst const u64 core2_hw_cache_event_ids
1224 				[PERF_COUNT_HW_CACHE_MAX]
1225 				[PERF_COUNT_HW_CACHE_OP_MAX]
1226 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1227 {
1228  [ C(L1D) ] = {
1229 	[ C(OP_READ) ] = {
1230 		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI          */
1231 		[ C(RESULT_MISS)   ] = 0x0140, /* L1D_CACHE_LD.I_STATE       */
1232 	},
1233 	[ C(OP_WRITE) ] = {
1234 		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI          */
1235 		[ C(RESULT_MISS)   ] = 0x0141, /* L1D_CACHE_ST.I_STATE       */
1236 	},
1237 	[ C(OP_PREFETCH) ] = {
1238 		[ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS      */
1239 		[ C(RESULT_MISS)   ] = 0,
1240 	},
1241  },
1242  [ C(L1I ) ] = {
1243 	[ C(OP_READ) ] = {
1244 		[ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS                  */
1245 		[ C(RESULT_MISS)   ] = 0x0081, /* L1I.MISSES                 */
1246 	},
1247 	[ C(OP_WRITE) ] = {
1248 		[ C(RESULT_ACCESS) ] = -1,
1249 		[ C(RESULT_MISS)   ] = -1,
1250 	},
1251 	[ C(OP_PREFETCH) ] = {
1252 		[ C(RESULT_ACCESS) ] = 0,
1253 		[ C(RESULT_MISS)   ] = 0,
1254 	},
1255  },
1256  [ C(LL  ) ] = {
1257 	[ C(OP_READ) ] = {
1258 		[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1259 		[ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1260 	},
1261 	[ C(OP_WRITE) ] = {
1262 		[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1263 		[ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1264 	},
1265 	[ C(OP_PREFETCH) ] = {
1266 		[ C(RESULT_ACCESS) ] = 0,
1267 		[ C(RESULT_MISS)   ] = 0,
1268 	},
1269  },
1270  [ C(DTLB) ] = {
1271 	[ C(OP_READ) ] = {
1272 		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI  (alias) */
1273 		[ C(RESULT_MISS)   ] = 0x0208, /* DTLB_MISSES.MISS_LD        */
1274 	},
1275 	[ C(OP_WRITE) ] = {
1276 		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI  (alias) */
1277 		[ C(RESULT_MISS)   ] = 0x0808, /* DTLB_MISSES.MISS_ST        */
1278 	},
1279 	[ C(OP_PREFETCH) ] = {
1280 		[ C(RESULT_ACCESS) ] = 0,
1281 		[ C(RESULT_MISS)   ] = 0,
1282 	},
1283  },
1284  [ C(ITLB) ] = {
1285 	[ C(OP_READ) ] = {
1286 		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1287 		[ C(RESULT_MISS)   ] = 0x1282, /* ITLBMISSES                 */
1288 	},
1289 	[ C(OP_WRITE) ] = {
1290 		[ C(RESULT_ACCESS) ] = -1,
1291 		[ C(RESULT_MISS)   ] = -1,
1292 	},
1293 	[ C(OP_PREFETCH) ] = {
1294 		[ C(RESULT_ACCESS) ] = -1,
1295 		[ C(RESULT_MISS)   ] = -1,
1296 	},
1297  },
1298  [ C(BPU ) ] = {
1299 	[ C(OP_READ) ] = {
1300 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1301 		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1302 	},
1303 	[ C(OP_WRITE) ] = {
1304 		[ C(RESULT_ACCESS) ] = -1,
1305 		[ C(RESULT_MISS)   ] = -1,
1306 	},
1307 	[ C(OP_PREFETCH) ] = {
1308 		[ C(RESULT_ACCESS) ] = -1,
1309 		[ C(RESULT_MISS)   ] = -1,
1310 	},
1311  },
1312 };
1313 
1314 static __initconst const u64 atom_hw_cache_event_ids
1315 				[PERF_COUNT_HW_CACHE_MAX]
1316 				[PERF_COUNT_HW_CACHE_OP_MAX]
1317 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1318 {
1319  [ C(L1D) ] = {
1320 	[ C(OP_READ) ] = {
1321 		[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD               */
1322 		[ C(RESULT_MISS)   ] = 0,
1323 	},
1324 	[ C(OP_WRITE) ] = {
1325 		[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST               */
1326 		[ C(RESULT_MISS)   ] = 0,
1327 	},
1328 	[ C(OP_PREFETCH) ] = {
1329 		[ C(RESULT_ACCESS) ] = 0x0,
1330 		[ C(RESULT_MISS)   ] = 0,
1331 	},
1332  },
1333  [ C(L1I ) ] = {
1334 	[ C(OP_READ) ] = {
1335 		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                  */
1336 		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                 */
1337 	},
1338 	[ C(OP_WRITE) ] = {
1339 		[ C(RESULT_ACCESS) ] = -1,
1340 		[ C(RESULT_MISS)   ] = -1,
1341 	},
1342 	[ C(OP_PREFETCH) ] = {
1343 		[ C(RESULT_ACCESS) ] = 0,
1344 		[ C(RESULT_MISS)   ] = 0,
1345 	},
1346  },
1347  [ C(LL  ) ] = {
1348 	[ C(OP_READ) ] = {
1349 		[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1350 		[ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1351 	},
1352 	[ C(OP_WRITE) ] = {
1353 		[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1354 		[ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1355 	},
1356 	[ C(OP_PREFETCH) ] = {
1357 		[ C(RESULT_ACCESS) ] = 0,
1358 		[ C(RESULT_MISS)   ] = 0,
1359 	},
1360  },
1361  [ C(DTLB) ] = {
1362 	[ C(OP_READ) ] = {
1363 		[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI  (alias) */
1364 		[ C(RESULT_MISS)   ] = 0x0508, /* DTLB_MISSES.MISS_LD        */
1365 	},
1366 	[ C(OP_WRITE) ] = {
1367 		[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI  (alias) */
1368 		[ C(RESULT_MISS)   ] = 0x0608, /* DTLB_MISSES.MISS_ST        */
1369 	},
1370 	[ C(OP_PREFETCH) ] = {
1371 		[ C(RESULT_ACCESS) ] = 0,
1372 		[ C(RESULT_MISS)   ] = 0,
1373 	},
1374  },
1375  [ C(ITLB) ] = {
1376 	[ C(OP_READ) ] = {
1377 		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1378 		[ C(RESULT_MISS)   ] = 0x0282, /* ITLB.MISSES                */
1379 	},
1380 	[ C(OP_WRITE) ] = {
1381 		[ C(RESULT_ACCESS) ] = -1,
1382 		[ C(RESULT_MISS)   ] = -1,
1383 	},
1384 	[ C(OP_PREFETCH) ] = {
1385 		[ C(RESULT_ACCESS) ] = -1,
1386 		[ C(RESULT_MISS)   ] = -1,
1387 	},
1388  },
1389  [ C(BPU ) ] = {
1390 	[ C(OP_READ) ] = {
1391 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1392 		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1393 	},
1394 	[ C(OP_WRITE) ] = {
1395 		[ C(RESULT_ACCESS) ] = -1,
1396 		[ C(RESULT_MISS)   ] = -1,
1397 	},
1398 	[ C(OP_PREFETCH) ] = {
1399 		[ C(RESULT_ACCESS) ] = -1,
1400 		[ C(RESULT_MISS)   ] = -1,
1401 	},
1402  },
1403 };
1404 
1405 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_slm, "event=0x3c");
1406 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_slm, "2");
1407 /* no_alloc_cycles.not_delivered */
1408 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_slm,
1409 	       "event=0xca,umask=0x50");
1410 EVENT_ATTR_STR(topdown-fetch-bubbles.scale, td_fetch_bubbles_scale_slm, "2");
1411 /* uops_retired.all */
1412 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_slm,
1413 	       "event=0xc2,umask=0x10");
1414 /* uops_retired.all */
1415 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_slm,
1416 	       "event=0xc2,umask=0x10");
1417 
1418 static struct attribute *slm_events_attrs[] = {
1419 	EVENT_PTR(td_total_slots_slm),
1420 	EVENT_PTR(td_total_slots_scale_slm),
1421 	EVENT_PTR(td_fetch_bubbles_slm),
1422 	EVENT_PTR(td_fetch_bubbles_scale_slm),
1423 	EVENT_PTR(td_slots_issued_slm),
1424 	EVENT_PTR(td_slots_retired_slm),
1425 	NULL
1426 };
1427 
1428 static struct extra_reg intel_slm_extra_regs[] __read_mostly =
1429 {
1430 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1431 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0),
1432 	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x368005ffffull, RSP_1),
1433 	EVENT_EXTRA_END
1434 };
1435 
1436 #define SLM_DMND_READ		SNB_DMND_DATA_RD
1437 #define SLM_DMND_WRITE		SNB_DMND_RFO
1438 #define SLM_DMND_PREFETCH	(SNB_PF_DATA_RD|SNB_PF_RFO)
1439 
1440 #define SLM_SNP_ANY		(SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
1441 #define SLM_LLC_ACCESS		SNB_RESP_ANY
1442 #define SLM_LLC_MISS		(SLM_SNP_ANY|SNB_NON_DRAM)
1443 
1444 static __initconst const u64 slm_hw_cache_extra_regs
1445 				[PERF_COUNT_HW_CACHE_MAX]
1446 				[PERF_COUNT_HW_CACHE_OP_MAX]
1447 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1448 {
1449  [ C(LL  ) ] = {
1450 	[ C(OP_READ) ] = {
1451 		[ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS,
1452 		[ C(RESULT_MISS)   ] = 0,
1453 	},
1454 	[ C(OP_WRITE) ] = {
1455 		[ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS,
1456 		[ C(RESULT_MISS)   ] = SLM_DMND_WRITE|SLM_LLC_MISS,
1457 	},
1458 	[ C(OP_PREFETCH) ] = {
1459 		[ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS,
1460 		[ C(RESULT_MISS)   ] = SLM_DMND_PREFETCH|SLM_LLC_MISS,
1461 	},
1462  },
1463 };
1464 
1465 static __initconst const u64 slm_hw_cache_event_ids
1466 				[PERF_COUNT_HW_CACHE_MAX]
1467 				[PERF_COUNT_HW_CACHE_OP_MAX]
1468 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1469 {
1470  [ C(L1D) ] = {
1471 	[ C(OP_READ) ] = {
1472 		[ C(RESULT_ACCESS) ] = 0,
1473 		[ C(RESULT_MISS)   ] = 0x0104, /* LD_DCU_MISS */
1474 	},
1475 	[ C(OP_WRITE) ] = {
1476 		[ C(RESULT_ACCESS) ] = 0,
1477 		[ C(RESULT_MISS)   ] = 0,
1478 	},
1479 	[ C(OP_PREFETCH) ] = {
1480 		[ C(RESULT_ACCESS) ] = 0,
1481 		[ C(RESULT_MISS)   ] = 0,
1482 	},
1483  },
1484  [ C(L1I ) ] = {
1485 	[ C(OP_READ) ] = {
1486 		[ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */
1487 		[ C(RESULT_MISS)   ] = 0x0280, /* ICACGE.MISSES */
1488 	},
1489 	[ C(OP_WRITE) ] = {
1490 		[ C(RESULT_ACCESS) ] = -1,
1491 		[ C(RESULT_MISS)   ] = -1,
1492 	},
1493 	[ C(OP_PREFETCH) ] = {
1494 		[ C(RESULT_ACCESS) ] = 0,
1495 		[ C(RESULT_MISS)   ] = 0,
1496 	},
1497  },
1498  [ C(LL  ) ] = {
1499 	[ C(OP_READ) ] = {
1500 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1501 		[ C(RESULT_ACCESS) ] = 0x01b7,
1502 		[ C(RESULT_MISS)   ] = 0,
1503 	},
1504 	[ C(OP_WRITE) ] = {
1505 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1506 		[ C(RESULT_ACCESS) ] = 0x01b7,
1507 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1508 		[ C(RESULT_MISS)   ] = 0x01b7,
1509 	},
1510 	[ C(OP_PREFETCH) ] = {
1511 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1512 		[ C(RESULT_ACCESS) ] = 0x01b7,
1513 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1514 		[ C(RESULT_MISS)   ] = 0x01b7,
1515 	},
1516  },
1517  [ C(DTLB) ] = {
1518 	[ C(OP_READ) ] = {
1519 		[ C(RESULT_ACCESS) ] = 0,
1520 		[ C(RESULT_MISS)   ] = 0x0804, /* LD_DTLB_MISS */
1521 	},
1522 	[ C(OP_WRITE) ] = {
1523 		[ C(RESULT_ACCESS) ] = 0,
1524 		[ C(RESULT_MISS)   ] = 0,
1525 	},
1526 	[ C(OP_PREFETCH) ] = {
1527 		[ C(RESULT_ACCESS) ] = 0,
1528 		[ C(RESULT_MISS)   ] = 0,
1529 	},
1530  },
1531  [ C(ITLB) ] = {
1532 	[ C(OP_READ) ] = {
1533 		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1534 		[ C(RESULT_MISS)   ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */
1535 	},
1536 	[ C(OP_WRITE) ] = {
1537 		[ C(RESULT_ACCESS) ] = -1,
1538 		[ C(RESULT_MISS)   ] = -1,
1539 	},
1540 	[ C(OP_PREFETCH) ] = {
1541 		[ C(RESULT_ACCESS) ] = -1,
1542 		[ C(RESULT_MISS)   ] = -1,
1543 	},
1544  },
1545  [ C(BPU ) ] = {
1546 	[ C(OP_READ) ] = {
1547 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1548 		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1549 	},
1550 	[ C(OP_WRITE) ] = {
1551 		[ C(RESULT_ACCESS) ] = -1,
1552 		[ C(RESULT_MISS)   ] = -1,
1553 	},
1554 	[ C(OP_PREFETCH) ] = {
1555 		[ C(RESULT_ACCESS) ] = -1,
1556 		[ C(RESULT_MISS)   ] = -1,
1557 	},
1558  },
1559 };
1560 
1561 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_glm, "event=0x3c");
1562 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_glm, "3");
1563 /* UOPS_NOT_DELIVERED.ANY */
1564 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_glm, "event=0x9c");
1565 /* ISSUE_SLOTS_NOT_CONSUMED.RECOVERY */
1566 EVENT_ATTR_STR(topdown-recovery-bubbles, td_recovery_bubbles_glm, "event=0xca,umask=0x02");
1567 /* UOPS_RETIRED.ANY */
1568 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_glm, "event=0xc2");
1569 /* UOPS_ISSUED.ANY */
1570 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_glm, "event=0x0e");
1571 
1572 static struct attribute *glm_events_attrs[] = {
1573 	EVENT_PTR(td_total_slots_glm),
1574 	EVENT_PTR(td_total_slots_scale_glm),
1575 	EVENT_PTR(td_fetch_bubbles_glm),
1576 	EVENT_PTR(td_recovery_bubbles_glm),
1577 	EVENT_PTR(td_slots_issued_glm),
1578 	EVENT_PTR(td_slots_retired_glm),
1579 	NULL
1580 };
1581 
1582 static struct extra_reg intel_glm_extra_regs[] __read_mostly = {
1583 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1584 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x760005ffbfull, RSP_0),
1585 	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x360005ffbfull, RSP_1),
1586 	EVENT_EXTRA_END
1587 };
1588 
1589 #define GLM_DEMAND_DATA_RD		BIT_ULL(0)
1590 #define GLM_DEMAND_RFO			BIT_ULL(1)
1591 #define GLM_ANY_RESPONSE		BIT_ULL(16)
1592 #define GLM_SNP_NONE_OR_MISS		BIT_ULL(33)
1593 #define GLM_DEMAND_READ			GLM_DEMAND_DATA_RD
1594 #define GLM_DEMAND_WRITE		GLM_DEMAND_RFO
1595 #define GLM_DEMAND_PREFETCH		(SNB_PF_DATA_RD|SNB_PF_RFO)
1596 #define GLM_LLC_ACCESS			GLM_ANY_RESPONSE
1597 #define GLM_SNP_ANY			(GLM_SNP_NONE_OR_MISS|SNB_NO_FWD|SNB_HITM)
1598 #define GLM_LLC_MISS			(GLM_SNP_ANY|SNB_NON_DRAM)
1599 
1600 static __initconst const u64 glm_hw_cache_event_ids
1601 				[PERF_COUNT_HW_CACHE_MAX]
1602 				[PERF_COUNT_HW_CACHE_OP_MAX]
1603 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1604 	[C(L1D)] = {
1605 		[C(OP_READ)] = {
1606 			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
1607 			[C(RESULT_MISS)]	= 0x0,
1608 		},
1609 		[C(OP_WRITE)] = {
1610 			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
1611 			[C(RESULT_MISS)]	= 0x0,
1612 		},
1613 		[C(OP_PREFETCH)] = {
1614 			[C(RESULT_ACCESS)]	= 0x0,
1615 			[C(RESULT_MISS)]	= 0x0,
1616 		},
1617 	},
1618 	[C(L1I)] = {
1619 		[C(OP_READ)] = {
1620 			[C(RESULT_ACCESS)]	= 0x0380,	/* ICACHE.ACCESSES */
1621 			[C(RESULT_MISS)]	= 0x0280,	/* ICACHE.MISSES */
1622 		},
1623 		[C(OP_WRITE)] = {
1624 			[C(RESULT_ACCESS)]	= -1,
1625 			[C(RESULT_MISS)]	= -1,
1626 		},
1627 		[C(OP_PREFETCH)] = {
1628 			[C(RESULT_ACCESS)]	= 0x0,
1629 			[C(RESULT_MISS)]	= 0x0,
1630 		},
1631 	},
1632 	[C(LL)] = {
1633 		[C(OP_READ)] = {
1634 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1635 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1636 		},
1637 		[C(OP_WRITE)] = {
1638 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1639 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1640 		},
1641 		[C(OP_PREFETCH)] = {
1642 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1643 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1644 		},
1645 	},
1646 	[C(DTLB)] = {
1647 		[C(OP_READ)] = {
1648 			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
1649 			[C(RESULT_MISS)]	= 0x0,
1650 		},
1651 		[C(OP_WRITE)] = {
1652 			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
1653 			[C(RESULT_MISS)]	= 0x0,
1654 		},
1655 		[C(OP_PREFETCH)] = {
1656 			[C(RESULT_ACCESS)]	= 0x0,
1657 			[C(RESULT_MISS)]	= 0x0,
1658 		},
1659 	},
1660 	[C(ITLB)] = {
1661 		[C(OP_READ)] = {
1662 			[C(RESULT_ACCESS)]	= 0x00c0,	/* INST_RETIRED.ANY_P */
1663 			[C(RESULT_MISS)]	= 0x0481,	/* ITLB.MISS */
1664 		},
1665 		[C(OP_WRITE)] = {
1666 			[C(RESULT_ACCESS)]	= -1,
1667 			[C(RESULT_MISS)]	= -1,
1668 		},
1669 		[C(OP_PREFETCH)] = {
1670 			[C(RESULT_ACCESS)]	= -1,
1671 			[C(RESULT_MISS)]	= -1,
1672 		},
1673 	},
1674 	[C(BPU)] = {
1675 		[C(OP_READ)] = {
1676 			[C(RESULT_ACCESS)]	= 0x00c4,	/* BR_INST_RETIRED.ALL_BRANCHES */
1677 			[C(RESULT_MISS)]	= 0x00c5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
1678 		},
1679 		[C(OP_WRITE)] = {
1680 			[C(RESULT_ACCESS)]	= -1,
1681 			[C(RESULT_MISS)]	= -1,
1682 		},
1683 		[C(OP_PREFETCH)] = {
1684 			[C(RESULT_ACCESS)]	= -1,
1685 			[C(RESULT_MISS)]	= -1,
1686 		},
1687 	},
1688 };
1689 
1690 static __initconst const u64 glm_hw_cache_extra_regs
1691 				[PERF_COUNT_HW_CACHE_MAX]
1692 				[PERF_COUNT_HW_CACHE_OP_MAX]
1693 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1694 	[C(LL)] = {
1695 		[C(OP_READ)] = {
1696 			[C(RESULT_ACCESS)]	= GLM_DEMAND_READ|
1697 						  GLM_LLC_ACCESS,
1698 			[C(RESULT_MISS)]	= GLM_DEMAND_READ|
1699 						  GLM_LLC_MISS,
1700 		},
1701 		[C(OP_WRITE)] = {
1702 			[C(RESULT_ACCESS)]	= GLM_DEMAND_WRITE|
1703 						  GLM_LLC_ACCESS,
1704 			[C(RESULT_MISS)]	= GLM_DEMAND_WRITE|
1705 						  GLM_LLC_MISS,
1706 		},
1707 		[C(OP_PREFETCH)] = {
1708 			[C(RESULT_ACCESS)]	= GLM_DEMAND_PREFETCH|
1709 						  GLM_LLC_ACCESS,
1710 			[C(RESULT_MISS)]	= GLM_DEMAND_PREFETCH|
1711 						  GLM_LLC_MISS,
1712 		},
1713 	},
1714 };
1715 
1716 static __initconst const u64 glp_hw_cache_event_ids
1717 				[PERF_COUNT_HW_CACHE_MAX]
1718 				[PERF_COUNT_HW_CACHE_OP_MAX]
1719 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1720 	[C(L1D)] = {
1721 		[C(OP_READ)] = {
1722 			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
1723 			[C(RESULT_MISS)]	= 0x0,
1724 		},
1725 		[C(OP_WRITE)] = {
1726 			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
1727 			[C(RESULT_MISS)]	= 0x0,
1728 		},
1729 		[C(OP_PREFETCH)] = {
1730 			[C(RESULT_ACCESS)]	= 0x0,
1731 			[C(RESULT_MISS)]	= 0x0,
1732 		},
1733 	},
1734 	[C(L1I)] = {
1735 		[C(OP_READ)] = {
1736 			[C(RESULT_ACCESS)]	= 0x0380,	/* ICACHE.ACCESSES */
1737 			[C(RESULT_MISS)]	= 0x0280,	/* ICACHE.MISSES */
1738 		},
1739 		[C(OP_WRITE)] = {
1740 			[C(RESULT_ACCESS)]	= -1,
1741 			[C(RESULT_MISS)]	= -1,
1742 		},
1743 		[C(OP_PREFETCH)] = {
1744 			[C(RESULT_ACCESS)]	= 0x0,
1745 			[C(RESULT_MISS)]	= 0x0,
1746 		},
1747 	},
1748 	[C(LL)] = {
1749 		[C(OP_READ)] = {
1750 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1751 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1752 		},
1753 		[C(OP_WRITE)] = {
1754 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1755 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1756 		},
1757 		[C(OP_PREFETCH)] = {
1758 			[C(RESULT_ACCESS)]	= 0x0,
1759 			[C(RESULT_MISS)]	= 0x0,
1760 		},
1761 	},
1762 	[C(DTLB)] = {
1763 		[C(OP_READ)] = {
1764 			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
1765 			[C(RESULT_MISS)]	= 0xe08,	/* DTLB_LOAD_MISSES.WALK_COMPLETED */
1766 		},
1767 		[C(OP_WRITE)] = {
1768 			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
1769 			[C(RESULT_MISS)]	= 0xe49,	/* DTLB_STORE_MISSES.WALK_COMPLETED */
1770 		},
1771 		[C(OP_PREFETCH)] = {
1772 			[C(RESULT_ACCESS)]	= 0x0,
1773 			[C(RESULT_MISS)]	= 0x0,
1774 		},
1775 	},
1776 	[C(ITLB)] = {
1777 		[C(OP_READ)] = {
1778 			[C(RESULT_ACCESS)]	= 0x00c0,	/* INST_RETIRED.ANY_P */
1779 			[C(RESULT_MISS)]	= 0x0481,	/* ITLB.MISS */
1780 		},
1781 		[C(OP_WRITE)] = {
1782 			[C(RESULT_ACCESS)]	= -1,
1783 			[C(RESULT_MISS)]	= -1,
1784 		},
1785 		[C(OP_PREFETCH)] = {
1786 			[C(RESULT_ACCESS)]	= -1,
1787 			[C(RESULT_MISS)]	= -1,
1788 		},
1789 	},
1790 	[C(BPU)] = {
1791 		[C(OP_READ)] = {
1792 			[C(RESULT_ACCESS)]	= 0x00c4,	/* BR_INST_RETIRED.ALL_BRANCHES */
1793 			[C(RESULT_MISS)]	= 0x00c5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
1794 		},
1795 		[C(OP_WRITE)] = {
1796 			[C(RESULT_ACCESS)]	= -1,
1797 			[C(RESULT_MISS)]	= -1,
1798 		},
1799 		[C(OP_PREFETCH)] = {
1800 			[C(RESULT_ACCESS)]	= -1,
1801 			[C(RESULT_MISS)]	= -1,
1802 		},
1803 	},
1804 };
1805 
1806 static __initconst const u64 glp_hw_cache_extra_regs
1807 				[PERF_COUNT_HW_CACHE_MAX]
1808 				[PERF_COUNT_HW_CACHE_OP_MAX]
1809 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1810 	[C(LL)] = {
1811 		[C(OP_READ)] = {
1812 			[C(RESULT_ACCESS)]	= GLM_DEMAND_READ|
1813 						  GLM_LLC_ACCESS,
1814 			[C(RESULT_MISS)]	= GLM_DEMAND_READ|
1815 						  GLM_LLC_MISS,
1816 		},
1817 		[C(OP_WRITE)] = {
1818 			[C(RESULT_ACCESS)]	= GLM_DEMAND_WRITE|
1819 						  GLM_LLC_ACCESS,
1820 			[C(RESULT_MISS)]	= GLM_DEMAND_WRITE|
1821 						  GLM_LLC_MISS,
1822 		},
1823 		[C(OP_PREFETCH)] = {
1824 			[C(RESULT_ACCESS)]	= 0x0,
1825 			[C(RESULT_MISS)]	= 0x0,
1826 		},
1827 	},
1828 };
1829 
1830 #define KNL_OT_L2_HITE		BIT_ULL(19) /* Other Tile L2 Hit */
1831 #define KNL_OT_L2_HITF		BIT_ULL(20) /* Other Tile L2 Hit */
1832 #define KNL_MCDRAM_LOCAL	BIT_ULL(21)
1833 #define KNL_MCDRAM_FAR		BIT_ULL(22)
1834 #define KNL_DDR_LOCAL		BIT_ULL(23)
1835 #define KNL_DDR_FAR		BIT_ULL(24)
1836 #define KNL_DRAM_ANY		(KNL_MCDRAM_LOCAL | KNL_MCDRAM_FAR | \
1837 				    KNL_DDR_LOCAL | KNL_DDR_FAR)
1838 #define KNL_L2_READ		SLM_DMND_READ
1839 #define KNL_L2_WRITE		SLM_DMND_WRITE
1840 #define KNL_L2_PREFETCH		SLM_DMND_PREFETCH
1841 #define KNL_L2_ACCESS		SLM_LLC_ACCESS
1842 #define KNL_L2_MISS		(KNL_OT_L2_HITE | KNL_OT_L2_HITF | \
1843 				   KNL_DRAM_ANY | SNB_SNP_ANY | \
1844 						  SNB_NON_DRAM)
1845 
1846 static __initconst const u64 knl_hw_cache_extra_regs
1847 				[PERF_COUNT_HW_CACHE_MAX]
1848 				[PERF_COUNT_HW_CACHE_OP_MAX]
1849 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1850 	[C(LL)] = {
1851 		[C(OP_READ)] = {
1852 			[C(RESULT_ACCESS)] = KNL_L2_READ | KNL_L2_ACCESS,
1853 			[C(RESULT_MISS)]   = 0,
1854 		},
1855 		[C(OP_WRITE)] = {
1856 			[C(RESULT_ACCESS)] = KNL_L2_WRITE | KNL_L2_ACCESS,
1857 			[C(RESULT_MISS)]   = KNL_L2_WRITE | KNL_L2_MISS,
1858 		},
1859 		[C(OP_PREFETCH)] = {
1860 			[C(RESULT_ACCESS)] = KNL_L2_PREFETCH | KNL_L2_ACCESS,
1861 			[C(RESULT_MISS)]   = KNL_L2_PREFETCH | KNL_L2_MISS,
1862 		},
1863 	},
1864 };
1865 
1866 /*
1867  * Used from PMIs where the LBRs are already disabled.
1868  *
1869  * This function could be called consecutively. It is required to remain in
1870  * disabled state if called consecutively.
1871  *
1872  * During consecutive calls, the same disable value will be written to related
1873  * registers, so the PMU state remains unchanged.
1874  *
1875  * intel_bts events don't coexist with intel PMU's BTS events because of
1876  * x86_add_exclusive(x86_lbr_exclusive_lbr); there's no need to keep them
1877  * disabled around intel PMU's event batching etc, only inside the PMI handler.
1878  */
1879 static void __intel_pmu_disable_all(void)
1880 {
1881 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1882 
1883 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
1884 
1885 	if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
1886 		intel_pmu_disable_bts();
1887 
1888 	intel_pmu_pebs_disable_all();
1889 }
1890 
1891 static void intel_pmu_disable_all(void)
1892 {
1893 	__intel_pmu_disable_all();
1894 	intel_pmu_lbr_disable_all();
1895 }
1896 
1897 static void __intel_pmu_enable_all(int added, bool pmi)
1898 {
1899 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1900 
1901 	intel_pmu_pebs_enable_all();
1902 	intel_pmu_lbr_enable_all(pmi);
1903 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
1904 			x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
1905 
1906 	if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
1907 		struct perf_event *event =
1908 			cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
1909 
1910 		if (WARN_ON_ONCE(!event))
1911 			return;
1912 
1913 		intel_pmu_enable_bts(event->hw.config);
1914 	}
1915 }
1916 
1917 static void intel_pmu_enable_all(int added)
1918 {
1919 	__intel_pmu_enable_all(added, false);
1920 }
1921 
1922 /*
1923  * Workaround for:
1924  *   Intel Errata AAK100 (model 26)
1925  *   Intel Errata AAP53  (model 30)
1926  *   Intel Errata BD53   (model 44)
1927  *
1928  * The official story:
1929  *   These chips need to be 'reset' when adding counters by programming the
1930  *   magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
1931  *   in sequence on the same PMC or on different PMCs.
1932  *
1933  * In practise it appears some of these events do in fact count, and
1934  * we need to program all 4 events.
1935  */
1936 static void intel_pmu_nhm_workaround(void)
1937 {
1938 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1939 	static const unsigned long nhm_magic[4] = {
1940 		0x4300B5,
1941 		0x4300D2,
1942 		0x4300B1,
1943 		0x4300B1
1944 	};
1945 	struct perf_event *event;
1946 	int i;
1947 
1948 	/*
1949 	 * The Errata requires below steps:
1950 	 * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
1951 	 * 2) Configure 4 PERFEVTSELx with the magic events and clear
1952 	 *    the corresponding PMCx;
1953 	 * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
1954 	 * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
1955 	 * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
1956 	 */
1957 
1958 	/*
1959 	 * The real steps we choose are a little different from above.
1960 	 * A) To reduce MSR operations, we don't run step 1) as they
1961 	 *    are already cleared before this function is called;
1962 	 * B) Call x86_perf_event_update to save PMCx before configuring
1963 	 *    PERFEVTSELx with magic number;
1964 	 * C) With step 5), we do clear only when the PERFEVTSELx is
1965 	 *    not used currently.
1966 	 * D) Call x86_perf_event_set_period to restore PMCx;
1967 	 */
1968 
1969 	/* We always operate 4 pairs of PERF Counters */
1970 	for (i = 0; i < 4; i++) {
1971 		event = cpuc->events[i];
1972 		if (event)
1973 			x86_perf_event_update(event);
1974 	}
1975 
1976 	for (i = 0; i < 4; i++) {
1977 		wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
1978 		wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
1979 	}
1980 
1981 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
1982 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
1983 
1984 	for (i = 0; i < 4; i++) {
1985 		event = cpuc->events[i];
1986 
1987 		if (event) {
1988 			x86_perf_event_set_period(event);
1989 			__x86_pmu_enable_event(&event->hw,
1990 					ARCH_PERFMON_EVENTSEL_ENABLE);
1991 		} else
1992 			wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
1993 	}
1994 }
1995 
1996 static void intel_pmu_nhm_enable_all(int added)
1997 {
1998 	if (added)
1999 		intel_pmu_nhm_workaround();
2000 	intel_pmu_enable_all(added);
2001 }
2002 
2003 static void enable_counter_freeze(void)
2004 {
2005 	update_debugctlmsr(get_debugctlmsr() |
2006 			DEBUGCTLMSR_FREEZE_PERFMON_ON_PMI);
2007 }
2008 
2009 static void disable_counter_freeze(void)
2010 {
2011 	update_debugctlmsr(get_debugctlmsr() &
2012 			~DEBUGCTLMSR_FREEZE_PERFMON_ON_PMI);
2013 }
2014 
2015 static inline u64 intel_pmu_get_status(void)
2016 {
2017 	u64 status;
2018 
2019 	rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
2020 
2021 	return status;
2022 }
2023 
2024 static inline void intel_pmu_ack_status(u64 ack)
2025 {
2026 	wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
2027 }
2028 
2029 static void intel_pmu_disable_fixed(struct hw_perf_event *hwc)
2030 {
2031 	int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
2032 	u64 ctrl_val, mask;
2033 
2034 	mask = 0xfULL << (idx * 4);
2035 
2036 	rdmsrl(hwc->config_base, ctrl_val);
2037 	ctrl_val &= ~mask;
2038 	wrmsrl(hwc->config_base, ctrl_val);
2039 }
2040 
2041 static inline bool event_is_checkpointed(struct perf_event *event)
2042 {
2043 	return (event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0;
2044 }
2045 
2046 static void intel_pmu_disable_event(struct perf_event *event)
2047 {
2048 	struct hw_perf_event *hwc = &event->hw;
2049 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2050 
2051 	if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
2052 		intel_pmu_disable_bts();
2053 		intel_pmu_drain_bts_buffer();
2054 		return;
2055 	}
2056 
2057 	cpuc->intel_ctrl_guest_mask &= ~(1ull << hwc->idx);
2058 	cpuc->intel_ctrl_host_mask &= ~(1ull << hwc->idx);
2059 	cpuc->intel_cp_status &= ~(1ull << hwc->idx);
2060 
2061 	if (unlikely(event->attr.precise_ip))
2062 		intel_pmu_pebs_disable(event);
2063 
2064 	if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
2065 		intel_pmu_disable_fixed(hwc);
2066 		return;
2067 	}
2068 
2069 	x86_pmu_disable_event(event);
2070 }
2071 
2072 static void intel_pmu_del_event(struct perf_event *event)
2073 {
2074 	if (needs_branch_stack(event))
2075 		intel_pmu_lbr_del(event);
2076 	if (event->attr.precise_ip)
2077 		intel_pmu_pebs_del(event);
2078 }
2079 
2080 static void intel_pmu_read_event(struct perf_event *event)
2081 {
2082 	if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
2083 		intel_pmu_auto_reload_read(event);
2084 	else
2085 		x86_perf_event_update(event);
2086 }
2087 
2088 static void intel_pmu_enable_fixed(struct perf_event *event)
2089 {
2090 	struct hw_perf_event *hwc = &event->hw;
2091 	int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
2092 	u64 ctrl_val, mask, bits = 0;
2093 
2094 	/*
2095 	 * Enable IRQ generation (0x8), if not PEBS,
2096 	 * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
2097 	 * if requested:
2098 	 */
2099 	if (!event->attr.precise_ip)
2100 		bits |= 0x8;
2101 	if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
2102 		bits |= 0x2;
2103 	if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
2104 		bits |= 0x1;
2105 
2106 	/*
2107 	 * ANY bit is supported in v3 and up
2108 	 */
2109 	if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
2110 		bits |= 0x4;
2111 
2112 	bits <<= (idx * 4);
2113 	mask = 0xfULL << (idx * 4);
2114 
2115 	rdmsrl(hwc->config_base, ctrl_val);
2116 	ctrl_val &= ~mask;
2117 	ctrl_val |= bits;
2118 	wrmsrl(hwc->config_base, ctrl_val);
2119 }
2120 
2121 static void intel_pmu_enable_event(struct perf_event *event)
2122 {
2123 	struct hw_perf_event *hwc = &event->hw;
2124 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2125 
2126 	if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
2127 		if (!__this_cpu_read(cpu_hw_events.enabled))
2128 			return;
2129 
2130 		intel_pmu_enable_bts(hwc->config);
2131 		return;
2132 	}
2133 
2134 	if (event->attr.exclude_host)
2135 		cpuc->intel_ctrl_guest_mask |= (1ull << hwc->idx);
2136 	if (event->attr.exclude_guest)
2137 		cpuc->intel_ctrl_host_mask |= (1ull << hwc->idx);
2138 
2139 	if (unlikely(event_is_checkpointed(event)))
2140 		cpuc->intel_cp_status |= (1ull << hwc->idx);
2141 
2142 	if (unlikely(event->attr.precise_ip))
2143 		intel_pmu_pebs_enable(event);
2144 
2145 	if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
2146 		intel_pmu_enable_fixed(event);
2147 		return;
2148 	}
2149 
2150 	__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
2151 }
2152 
2153 static void intel_pmu_add_event(struct perf_event *event)
2154 {
2155 	if (event->attr.precise_ip)
2156 		intel_pmu_pebs_add(event);
2157 	if (needs_branch_stack(event))
2158 		intel_pmu_lbr_add(event);
2159 }
2160 
2161 /*
2162  * Save and restart an expired event. Called by NMI contexts,
2163  * so it has to be careful about preempting normal event ops:
2164  */
2165 int intel_pmu_save_and_restart(struct perf_event *event)
2166 {
2167 	x86_perf_event_update(event);
2168 	/*
2169 	 * For a checkpointed counter always reset back to 0.  This
2170 	 * avoids a situation where the counter overflows, aborts the
2171 	 * transaction and is then set back to shortly before the
2172 	 * overflow, and overflows and aborts again.
2173 	 */
2174 	if (unlikely(event_is_checkpointed(event))) {
2175 		/* No race with NMIs because the counter should not be armed */
2176 		wrmsrl(event->hw.event_base, 0);
2177 		local64_set(&event->hw.prev_count, 0);
2178 	}
2179 	return x86_perf_event_set_period(event);
2180 }
2181 
2182 static void intel_pmu_reset(void)
2183 {
2184 	struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
2185 	unsigned long flags;
2186 	int idx;
2187 
2188 	if (!x86_pmu.num_counters)
2189 		return;
2190 
2191 	local_irq_save(flags);
2192 
2193 	pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
2194 
2195 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
2196 		wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
2197 		wrmsrl_safe(x86_pmu_event_addr(idx),  0ull);
2198 	}
2199 	for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++)
2200 		wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
2201 
2202 	if (ds)
2203 		ds->bts_index = ds->bts_buffer_base;
2204 
2205 	/* Ack all overflows and disable fixed counters */
2206 	if (x86_pmu.version >= 2) {
2207 		intel_pmu_ack_status(intel_pmu_get_status());
2208 		wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
2209 	}
2210 
2211 	/* Reset LBRs and LBR freezing */
2212 	if (x86_pmu.lbr_nr) {
2213 		update_debugctlmsr(get_debugctlmsr() &
2214 			~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI|DEBUGCTLMSR_LBR));
2215 	}
2216 
2217 	local_irq_restore(flags);
2218 }
2219 
2220 static int handle_pmi_common(struct pt_regs *regs, u64 status)
2221 {
2222 	struct perf_sample_data data;
2223 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2224 	int bit;
2225 	int handled = 0;
2226 
2227 	inc_irq_stat(apic_perf_irqs);
2228 
2229 	/*
2230 	 * Ignore a range of extra bits in status that do not indicate
2231 	 * overflow by themselves.
2232 	 */
2233 	status &= ~(GLOBAL_STATUS_COND_CHG |
2234 		    GLOBAL_STATUS_ASIF |
2235 		    GLOBAL_STATUS_LBRS_FROZEN);
2236 	if (!status)
2237 		return 0;
2238 	/*
2239 	 * In case multiple PEBS events are sampled at the same time,
2240 	 * it is possible to have GLOBAL_STATUS bit 62 set indicating
2241 	 * PEBS buffer overflow and also seeing at most 3 PEBS counters
2242 	 * having their bits set in the status register. This is a sign
2243 	 * that there was at least one PEBS record pending at the time
2244 	 * of the PMU interrupt. PEBS counters must only be processed
2245 	 * via the drain_pebs() calls and not via the regular sample
2246 	 * processing loop coming after that the function, otherwise
2247 	 * phony regular samples may be generated in the sampling buffer
2248 	 * not marked with the EXACT tag. Another possibility is to have
2249 	 * one PEBS event and at least one non-PEBS event whic hoverflows
2250 	 * while PEBS has armed. In this case, bit 62 of GLOBAL_STATUS will
2251 	 * not be set, yet the overflow status bit for the PEBS counter will
2252 	 * be on Skylake.
2253 	 *
2254 	 * To avoid this problem, we systematically ignore the PEBS-enabled
2255 	 * counters from the GLOBAL_STATUS mask and we always process PEBS
2256 	 * events via drain_pebs().
2257 	 */
2258 	if (x86_pmu.flags & PMU_FL_PEBS_ALL)
2259 		status &= ~cpuc->pebs_enabled;
2260 	else
2261 		status &= ~(cpuc->pebs_enabled & PEBS_COUNTER_MASK);
2262 
2263 	/*
2264 	 * PEBS overflow sets bit 62 in the global status register
2265 	 */
2266 	if (__test_and_clear_bit(62, (unsigned long *)&status)) {
2267 		handled++;
2268 		x86_pmu.drain_pebs(regs);
2269 		status &= x86_pmu.intel_ctrl | GLOBAL_STATUS_TRACE_TOPAPMI;
2270 	}
2271 
2272 	/*
2273 	 * Intel PT
2274 	 */
2275 	if (__test_and_clear_bit(55, (unsigned long *)&status)) {
2276 		handled++;
2277 		intel_pt_interrupt();
2278 	}
2279 
2280 	/*
2281 	 * Checkpointed counters can lead to 'spurious' PMIs because the
2282 	 * rollback caused by the PMI will have cleared the overflow status
2283 	 * bit. Therefore always force probe these counters.
2284 	 */
2285 	status |= cpuc->intel_cp_status;
2286 
2287 	for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
2288 		struct perf_event *event = cpuc->events[bit];
2289 
2290 		handled++;
2291 
2292 		if (!test_bit(bit, cpuc->active_mask))
2293 			continue;
2294 
2295 		if (!intel_pmu_save_and_restart(event))
2296 			continue;
2297 
2298 		perf_sample_data_init(&data, 0, event->hw.last_period);
2299 
2300 		if (has_branch_stack(event))
2301 			data.br_stack = &cpuc->lbr_stack;
2302 
2303 		if (perf_event_overflow(event, &data, regs))
2304 			x86_pmu_stop(event, 0);
2305 	}
2306 
2307 	return handled;
2308 }
2309 
2310 static bool disable_counter_freezing = true;
2311 static int __init intel_perf_counter_freezing_setup(char *s)
2312 {
2313 	bool res;
2314 
2315 	if (kstrtobool(s, &res))
2316 		return -EINVAL;
2317 
2318 	disable_counter_freezing = !res;
2319 	return 1;
2320 }
2321 __setup("perf_v4_pmi=", intel_perf_counter_freezing_setup);
2322 
2323 /*
2324  * Simplified handler for Arch Perfmon v4:
2325  * - We rely on counter freezing/unfreezing to enable/disable the PMU.
2326  * This is done automatically on PMU ack.
2327  * - Ack the PMU only after the APIC.
2328  */
2329 
2330 static int intel_pmu_handle_irq_v4(struct pt_regs *regs)
2331 {
2332 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2333 	int handled = 0;
2334 	bool bts = false;
2335 	u64 status;
2336 	int pmu_enabled = cpuc->enabled;
2337 	int loops = 0;
2338 
2339 	/* PMU has been disabled because of counter freezing */
2340 	cpuc->enabled = 0;
2341 	if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
2342 		bts = true;
2343 		intel_bts_disable_local();
2344 		handled = intel_pmu_drain_bts_buffer();
2345 		handled += intel_bts_interrupt();
2346 	}
2347 	status = intel_pmu_get_status();
2348 	if (!status)
2349 		goto done;
2350 again:
2351 	intel_pmu_lbr_read();
2352 	if (++loops > 100) {
2353 		static bool warned;
2354 
2355 		if (!warned) {
2356 			WARN(1, "perfevents: irq loop stuck!\n");
2357 			perf_event_print_debug();
2358 			warned = true;
2359 		}
2360 		intel_pmu_reset();
2361 		goto done;
2362 	}
2363 
2364 
2365 	handled += handle_pmi_common(regs, status);
2366 done:
2367 	/* Ack the PMI in the APIC */
2368 	apic_write(APIC_LVTPC, APIC_DM_NMI);
2369 
2370 	/*
2371 	 * The counters start counting immediately while ack the status.
2372 	 * Make it as close as possible to IRET. This avoids bogus
2373 	 * freezing on Skylake CPUs.
2374 	 */
2375 	if (status) {
2376 		intel_pmu_ack_status(status);
2377 	} else {
2378 		/*
2379 		 * CPU may issues two PMIs very close to each other.
2380 		 * When the PMI handler services the first one, the
2381 		 * GLOBAL_STATUS is already updated to reflect both.
2382 		 * When it IRETs, the second PMI is immediately
2383 		 * handled and it sees clear status. At the meantime,
2384 		 * there may be a third PMI, because the freezing bit
2385 		 * isn't set since the ack in first PMI handlers.
2386 		 * Double check if there is more work to be done.
2387 		 */
2388 		status = intel_pmu_get_status();
2389 		if (status)
2390 			goto again;
2391 	}
2392 
2393 	if (bts)
2394 		intel_bts_enable_local();
2395 	cpuc->enabled = pmu_enabled;
2396 	return handled;
2397 }
2398 
2399 /*
2400  * This handler is triggered by the local APIC, so the APIC IRQ handling
2401  * rules apply:
2402  */
2403 static int intel_pmu_handle_irq(struct pt_regs *regs)
2404 {
2405 	struct cpu_hw_events *cpuc;
2406 	int loops;
2407 	u64 status;
2408 	int handled;
2409 	int pmu_enabled;
2410 
2411 	cpuc = this_cpu_ptr(&cpu_hw_events);
2412 
2413 	/*
2414 	 * Save the PMU state.
2415 	 * It needs to be restored when leaving the handler.
2416 	 */
2417 	pmu_enabled = cpuc->enabled;
2418 	/*
2419 	 * No known reason to not always do late ACK,
2420 	 * but just in case do it opt-in.
2421 	 */
2422 	if (!x86_pmu.late_ack)
2423 		apic_write(APIC_LVTPC, APIC_DM_NMI);
2424 	intel_bts_disable_local();
2425 	cpuc->enabled = 0;
2426 	__intel_pmu_disable_all();
2427 	handled = intel_pmu_drain_bts_buffer();
2428 	handled += intel_bts_interrupt();
2429 	status = intel_pmu_get_status();
2430 	if (!status)
2431 		goto done;
2432 
2433 	loops = 0;
2434 again:
2435 	intel_pmu_lbr_read();
2436 	intel_pmu_ack_status(status);
2437 	if (++loops > 100) {
2438 		static bool warned;
2439 
2440 		if (!warned) {
2441 			WARN(1, "perfevents: irq loop stuck!\n");
2442 			perf_event_print_debug();
2443 			warned = true;
2444 		}
2445 		intel_pmu_reset();
2446 		goto done;
2447 	}
2448 
2449 	handled += handle_pmi_common(regs, status);
2450 
2451 	/*
2452 	 * Repeat if there is more work to be done:
2453 	 */
2454 	status = intel_pmu_get_status();
2455 	if (status)
2456 		goto again;
2457 
2458 done:
2459 	/* Only restore PMU state when it's active. See x86_pmu_disable(). */
2460 	cpuc->enabled = pmu_enabled;
2461 	if (pmu_enabled)
2462 		__intel_pmu_enable_all(0, true);
2463 	intel_bts_enable_local();
2464 
2465 	/*
2466 	 * Only unmask the NMI after the overflow counters
2467 	 * have been reset. This avoids spurious NMIs on
2468 	 * Haswell CPUs.
2469 	 */
2470 	if (x86_pmu.late_ack)
2471 		apic_write(APIC_LVTPC, APIC_DM_NMI);
2472 	return handled;
2473 }
2474 
2475 static struct event_constraint *
2476 intel_bts_constraints(struct perf_event *event)
2477 {
2478 	if (unlikely(intel_pmu_has_bts(event)))
2479 		return &bts_constraint;
2480 
2481 	return NULL;
2482 }
2483 
2484 static int intel_alt_er(int idx, u64 config)
2485 {
2486 	int alt_idx = idx;
2487 
2488 	if (!(x86_pmu.flags & PMU_FL_HAS_RSP_1))
2489 		return idx;
2490 
2491 	if (idx == EXTRA_REG_RSP_0)
2492 		alt_idx = EXTRA_REG_RSP_1;
2493 
2494 	if (idx == EXTRA_REG_RSP_1)
2495 		alt_idx = EXTRA_REG_RSP_0;
2496 
2497 	if (config & ~x86_pmu.extra_regs[alt_idx].valid_mask)
2498 		return idx;
2499 
2500 	return alt_idx;
2501 }
2502 
2503 static void intel_fixup_er(struct perf_event *event, int idx)
2504 {
2505 	event->hw.extra_reg.idx = idx;
2506 
2507 	if (idx == EXTRA_REG_RSP_0) {
2508 		event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
2509 		event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_0].event;
2510 		event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
2511 	} else if (idx == EXTRA_REG_RSP_1) {
2512 		event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
2513 		event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_1].event;
2514 		event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
2515 	}
2516 }
2517 
2518 /*
2519  * manage allocation of shared extra msr for certain events
2520  *
2521  * sharing can be:
2522  * per-cpu: to be shared between the various events on a single PMU
2523  * per-core: per-cpu + shared by HT threads
2524  */
2525 static struct event_constraint *
2526 __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
2527 				   struct perf_event *event,
2528 				   struct hw_perf_event_extra *reg)
2529 {
2530 	struct event_constraint *c = &emptyconstraint;
2531 	struct er_account *era;
2532 	unsigned long flags;
2533 	int idx = reg->idx;
2534 
2535 	/*
2536 	 * reg->alloc can be set due to existing state, so for fake cpuc we
2537 	 * need to ignore this, otherwise we might fail to allocate proper fake
2538 	 * state for this extra reg constraint. Also see the comment below.
2539 	 */
2540 	if (reg->alloc && !cpuc->is_fake)
2541 		return NULL; /* call x86_get_event_constraint() */
2542 
2543 again:
2544 	era = &cpuc->shared_regs->regs[idx];
2545 	/*
2546 	 * we use spin_lock_irqsave() to avoid lockdep issues when
2547 	 * passing a fake cpuc
2548 	 */
2549 	raw_spin_lock_irqsave(&era->lock, flags);
2550 
2551 	if (!atomic_read(&era->ref) || era->config == reg->config) {
2552 
2553 		/*
2554 		 * If its a fake cpuc -- as per validate_{group,event}() we
2555 		 * shouldn't touch event state and we can avoid doing so
2556 		 * since both will only call get_event_constraints() once
2557 		 * on each event, this avoids the need for reg->alloc.
2558 		 *
2559 		 * Not doing the ER fixup will only result in era->reg being
2560 		 * wrong, but since we won't actually try and program hardware
2561 		 * this isn't a problem either.
2562 		 */
2563 		if (!cpuc->is_fake) {
2564 			if (idx != reg->idx)
2565 				intel_fixup_er(event, idx);
2566 
2567 			/*
2568 			 * x86_schedule_events() can call get_event_constraints()
2569 			 * multiple times on events in the case of incremental
2570 			 * scheduling(). reg->alloc ensures we only do the ER
2571 			 * allocation once.
2572 			 */
2573 			reg->alloc = 1;
2574 		}
2575 
2576 		/* lock in msr value */
2577 		era->config = reg->config;
2578 		era->reg = reg->reg;
2579 
2580 		/* one more user */
2581 		atomic_inc(&era->ref);
2582 
2583 		/*
2584 		 * need to call x86_get_event_constraint()
2585 		 * to check if associated event has constraints
2586 		 */
2587 		c = NULL;
2588 	} else {
2589 		idx = intel_alt_er(idx, reg->config);
2590 		if (idx != reg->idx) {
2591 			raw_spin_unlock_irqrestore(&era->lock, flags);
2592 			goto again;
2593 		}
2594 	}
2595 	raw_spin_unlock_irqrestore(&era->lock, flags);
2596 
2597 	return c;
2598 }
2599 
2600 static void
2601 __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
2602 				   struct hw_perf_event_extra *reg)
2603 {
2604 	struct er_account *era;
2605 
2606 	/*
2607 	 * Only put constraint if extra reg was actually allocated. Also takes
2608 	 * care of event which do not use an extra shared reg.
2609 	 *
2610 	 * Also, if this is a fake cpuc we shouldn't touch any event state
2611 	 * (reg->alloc) and we don't care about leaving inconsistent cpuc state
2612 	 * either since it'll be thrown out.
2613 	 */
2614 	if (!reg->alloc || cpuc->is_fake)
2615 		return;
2616 
2617 	era = &cpuc->shared_regs->regs[reg->idx];
2618 
2619 	/* one fewer user */
2620 	atomic_dec(&era->ref);
2621 
2622 	/* allocate again next time */
2623 	reg->alloc = 0;
2624 }
2625 
2626 static struct event_constraint *
2627 intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
2628 			      struct perf_event *event)
2629 {
2630 	struct event_constraint *c = NULL, *d;
2631 	struct hw_perf_event_extra *xreg, *breg;
2632 
2633 	xreg = &event->hw.extra_reg;
2634 	if (xreg->idx != EXTRA_REG_NONE) {
2635 		c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
2636 		if (c == &emptyconstraint)
2637 			return c;
2638 	}
2639 	breg = &event->hw.branch_reg;
2640 	if (breg->idx != EXTRA_REG_NONE) {
2641 		d = __intel_shared_reg_get_constraints(cpuc, event, breg);
2642 		if (d == &emptyconstraint) {
2643 			__intel_shared_reg_put_constraints(cpuc, xreg);
2644 			c = d;
2645 		}
2646 	}
2647 	return c;
2648 }
2649 
2650 struct event_constraint *
2651 x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2652 			  struct perf_event *event)
2653 {
2654 	struct event_constraint *c;
2655 
2656 	if (x86_pmu.event_constraints) {
2657 		for_each_event_constraint(c, x86_pmu.event_constraints) {
2658 			if ((event->hw.config & c->cmask) == c->code) {
2659 				event->hw.flags |= c->flags;
2660 				return c;
2661 			}
2662 		}
2663 	}
2664 
2665 	return &unconstrained;
2666 }
2667 
2668 static struct event_constraint *
2669 __intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2670 			    struct perf_event *event)
2671 {
2672 	struct event_constraint *c;
2673 
2674 	c = intel_bts_constraints(event);
2675 	if (c)
2676 		return c;
2677 
2678 	c = intel_shared_regs_constraints(cpuc, event);
2679 	if (c)
2680 		return c;
2681 
2682 	c = intel_pebs_constraints(event);
2683 	if (c)
2684 		return c;
2685 
2686 	return x86_get_event_constraints(cpuc, idx, event);
2687 }
2688 
2689 static void
2690 intel_start_scheduling(struct cpu_hw_events *cpuc)
2691 {
2692 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2693 	struct intel_excl_states *xl;
2694 	int tid = cpuc->excl_thread_id;
2695 
2696 	/*
2697 	 * nothing needed if in group validation mode
2698 	 */
2699 	if (cpuc->is_fake || !is_ht_workaround_enabled())
2700 		return;
2701 
2702 	/*
2703 	 * no exclusion needed
2704 	 */
2705 	if (WARN_ON_ONCE(!excl_cntrs))
2706 		return;
2707 
2708 	xl = &excl_cntrs->states[tid];
2709 
2710 	xl->sched_started = true;
2711 	/*
2712 	 * lock shared state until we are done scheduling
2713 	 * in stop_event_scheduling()
2714 	 * makes scheduling appear as a transaction
2715 	 */
2716 	raw_spin_lock(&excl_cntrs->lock);
2717 }
2718 
2719 static void intel_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
2720 {
2721 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2722 	struct event_constraint *c = cpuc->event_constraint[idx];
2723 	struct intel_excl_states *xl;
2724 	int tid = cpuc->excl_thread_id;
2725 
2726 	if (cpuc->is_fake || !is_ht_workaround_enabled())
2727 		return;
2728 
2729 	if (WARN_ON_ONCE(!excl_cntrs))
2730 		return;
2731 
2732 	if (!(c->flags & PERF_X86_EVENT_DYNAMIC))
2733 		return;
2734 
2735 	xl = &excl_cntrs->states[tid];
2736 
2737 	lockdep_assert_held(&excl_cntrs->lock);
2738 
2739 	if (c->flags & PERF_X86_EVENT_EXCL)
2740 		xl->state[cntr] = INTEL_EXCL_EXCLUSIVE;
2741 	else
2742 		xl->state[cntr] = INTEL_EXCL_SHARED;
2743 }
2744 
2745 static void
2746 intel_stop_scheduling(struct cpu_hw_events *cpuc)
2747 {
2748 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2749 	struct intel_excl_states *xl;
2750 	int tid = cpuc->excl_thread_id;
2751 
2752 	/*
2753 	 * nothing needed if in group validation mode
2754 	 */
2755 	if (cpuc->is_fake || !is_ht_workaround_enabled())
2756 		return;
2757 	/*
2758 	 * no exclusion needed
2759 	 */
2760 	if (WARN_ON_ONCE(!excl_cntrs))
2761 		return;
2762 
2763 	xl = &excl_cntrs->states[tid];
2764 
2765 	xl->sched_started = false;
2766 	/*
2767 	 * release shared state lock (acquired in intel_start_scheduling())
2768 	 */
2769 	raw_spin_unlock(&excl_cntrs->lock);
2770 }
2771 
2772 static struct event_constraint *
2773 intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
2774 			   int idx, struct event_constraint *c)
2775 {
2776 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2777 	struct intel_excl_states *xlo;
2778 	int tid = cpuc->excl_thread_id;
2779 	int is_excl, i;
2780 
2781 	/*
2782 	 * validating a group does not require
2783 	 * enforcing cross-thread  exclusion
2784 	 */
2785 	if (cpuc->is_fake || !is_ht_workaround_enabled())
2786 		return c;
2787 
2788 	/*
2789 	 * no exclusion needed
2790 	 */
2791 	if (WARN_ON_ONCE(!excl_cntrs))
2792 		return c;
2793 
2794 	/*
2795 	 * because we modify the constraint, we need
2796 	 * to make a copy. Static constraints come
2797 	 * from static const tables.
2798 	 *
2799 	 * only needed when constraint has not yet
2800 	 * been cloned (marked dynamic)
2801 	 */
2802 	if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) {
2803 		struct event_constraint *cx;
2804 
2805 		/*
2806 		 * grab pre-allocated constraint entry
2807 		 */
2808 		cx = &cpuc->constraint_list[idx];
2809 
2810 		/*
2811 		 * initialize dynamic constraint
2812 		 * with static constraint
2813 		 */
2814 		*cx = *c;
2815 
2816 		/*
2817 		 * mark constraint as dynamic, so we
2818 		 * can free it later on
2819 		 */
2820 		cx->flags |= PERF_X86_EVENT_DYNAMIC;
2821 		c = cx;
2822 	}
2823 
2824 	/*
2825 	 * From here on, the constraint is dynamic.
2826 	 * Either it was just allocated above, or it
2827 	 * was allocated during a earlier invocation
2828 	 * of this function
2829 	 */
2830 
2831 	/*
2832 	 * state of sibling HT
2833 	 */
2834 	xlo = &excl_cntrs->states[tid ^ 1];
2835 
2836 	/*
2837 	 * event requires exclusive counter access
2838 	 * across HT threads
2839 	 */
2840 	is_excl = c->flags & PERF_X86_EVENT_EXCL;
2841 	if (is_excl && !(event->hw.flags & PERF_X86_EVENT_EXCL_ACCT)) {
2842 		event->hw.flags |= PERF_X86_EVENT_EXCL_ACCT;
2843 		if (!cpuc->n_excl++)
2844 			WRITE_ONCE(excl_cntrs->has_exclusive[tid], 1);
2845 	}
2846 
2847 	/*
2848 	 * Modify static constraint with current dynamic
2849 	 * state of thread
2850 	 *
2851 	 * EXCLUSIVE: sibling counter measuring exclusive event
2852 	 * SHARED   : sibling counter measuring non-exclusive event
2853 	 * UNUSED   : sibling counter unused
2854 	 */
2855 	for_each_set_bit(i, c->idxmsk, X86_PMC_IDX_MAX) {
2856 		/*
2857 		 * exclusive event in sibling counter
2858 		 * our corresponding counter cannot be used
2859 		 * regardless of our event
2860 		 */
2861 		if (xlo->state[i] == INTEL_EXCL_EXCLUSIVE)
2862 			__clear_bit(i, c->idxmsk);
2863 		/*
2864 		 * if measuring an exclusive event, sibling
2865 		 * measuring non-exclusive, then counter cannot
2866 		 * be used
2867 		 */
2868 		if (is_excl && xlo->state[i] == INTEL_EXCL_SHARED)
2869 			__clear_bit(i, c->idxmsk);
2870 	}
2871 
2872 	/*
2873 	 * recompute actual bit weight for scheduling algorithm
2874 	 */
2875 	c->weight = hweight64(c->idxmsk64);
2876 
2877 	/*
2878 	 * if we return an empty mask, then switch
2879 	 * back to static empty constraint to avoid
2880 	 * the cost of freeing later on
2881 	 */
2882 	if (c->weight == 0)
2883 		c = &emptyconstraint;
2884 
2885 	return c;
2886 }
2887 
2888 static struct event_constraint *
2889 intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2890 			    struct perf_event *event)
2891 {
2892 	struct event_constraint *c1 = NULL;
2893 	struct event_constraint *c2;
2894 
2895 	if (idx >= 0) /* fake does < 0 */
2896 		c1 = cpuc->event_constraint[idx];
2897 
2898 	/*
2899 	 * first time only
2900 	 * - static constraint: no change across incremental scheduling calls
2901 	 * - dynamic constraint: handled by intel_get_excl_constraints()
2902 	 */
2903 	c2 = __intel_get_event_constraints(cpuc, idx, event);
2904 	if (c1 && (c1->flags & PERF_X86_EVENT_DYNAMIC)) {
2905 		bitmap_copy(c1->idxmsk, c2->idxmsk, X86_PMC_IDX_MAX);
2906 		c1->weight = c2->weight;
2907 		c2 = c1;
2908 	}
2909 
2910 	if (cpuc->excl_cntrs)
2911 		return intel_get_excl_constraints(cpuc, event, idx, c2);
2912 
2913 	return c2;
2914 }
2915 
2916 static void intel_put_excl_constraints(struct cpu_hw_events *cpuc,
2917 		struct perf_event *event)
2918 {
2919 	struct hw_perf_event *hwc = &event->hw;
2920 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2921 	int tid = cpuc->excl_thread_id;
2922 	struct intel_excl_states *xl;
2923 
2924 	/*
2925 	 * nothing needed if in group validation mode
2926 	 */
2927 	if (cpuc->is_fake)
2928 		return;
2929 
2930 	if (WARN_ON_ONCE(!excl_cntrs))
2931 		return;
2932 
2933 	if (hwc->flags & PERF_X86_EVENT_EXCL_ACCT) {
2934 		hwc->flags &= ~PERF_X86_EVENT_EXCL_ACCT;
2935 		if (!--cpuc->n_excl)
2936 			WRITE_ONCE(excl_cntrs->has_exclusive[tid], 0);
2937 	}
2938 
2939 	/*
2940 	 * If event was actually assigned, then mark the counter state as
2941 	 * unused now.
2942 	 */
2943 	if (hwc->idx >= 0) {
2944 		xl = &excl_cntrs->states[tid];
2945 
2946 		/*
2947 		 * put_constraint may be called from x86_schedule_events()
2948 		 * which already has the lock held so here make locking
2949 		 * conditional.
2950 		 */
2951 		if (!xl->sched_started)
2952 			raw_spin_lock(&excl_cntrs->lock);
2953 
2954 		xl->state[hwc->idx] = INTEL_EXCL_UNUSED;
2955 
2956 		if (!xl->sched_started)
2957 			raw_spin_unlock(&excl_cntrs->lock);
2958 	}
2959 }
2960 
2961 static void
2962 intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
2963 					struct perf_event *event)
2964 {
2965 	struct hw_perf_event_extra *reg;
2966 
2967 	reg = &event->hw.extra_reg;
2968 	if (reg->idx != EXTRA_REG_NONE)
2969 		__intel_shared_reg_put_constraints(cpuc, reg);
2970 
2971 	reg = &event->hw.branch_reg;
2972 	if (reg->idx != EXTRA_REG_NONE)
2973 		__intel_shared_reg_put_constraints(cpuc, reg);
2974 }
2975 
2976 static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
2977 					struct perf_event *event)
2978 {
2979 	intel_put_shared_regs_event_constraints(cpuc, event);
2980 
2981 	/*
2982 	 * is PMU has exclusive counter restrictions, then
2983 	 * all events are subject to and must call the
2984 	 * put_excl_constraints() routine
2985 	 */
2986 	if (cpuc->excl_cntrs)
2987 		intel_put_excl_constraints(cpuc, event);
2988 }
2989 
2990 static void intel_pebs_aliases_core2(struct perf_event *event)
2991 {
2992 	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
2993 		/*
2994 		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
2995 		 * (0x003c) so that we can use it with PEBS.
2996 		 *
2997 		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
2998 		 * PEBS capable. However we can use INST_RETIRED.ANY_P
2999 		 * (0x00c0), which is a PEBS capable event, to get the same
3000 		 * count.
3001 		 *
3002 		 * INST_RETIRED.ANY_P counts the number of cycles that retires
3003 		 * CNTMASK instructions. By setting CNTMASK to a value (16)
3004 		 * larger than the maximum number of instructions that can be
3005 		 * retired per cycle (4) and then inverting the condition, we
3006 		 * count all cycles that retire 16 or less instructions, which
3007 		 * is every cycle.
3008 		 *
3009 		 * Thereby we gain a PEBS capable cycle counter.
3010 		 */
3011 		u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
3012 
3013 		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3014 		event->hw.config = alt_config;
3015 	}
3016 }
3017 
3018 static void intel_pebs_aliases_snb(struct perf_event *event)
3019 {
3020 	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3021 		/*
3022 		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3023 		 * (0x003c) so that we can use it with PEBS.
3024 		 *
3025 		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3026 		 * PEBS capable. However we can use UOPS_RETIRED.ALL
3027 		 * (0x01c2), which is a PEBS capable event, to get the same
3028 		 * count.
3029 		 *
3030 		 * UOPS_RETIRED.ALL counts the number of cycles that retires
3031 		 * CNTMASK micro-ops. By setting CNTMASK to a value (16)
3032 		 * larger than the maximum number of micro-ops that can be
3033 		 * retired per cycle (4) and then inverting the condition, we
3034 		 * count all cycles that retire 16 or less micro-ops, which
3035 		 * is every cycle.
3036 		 *
3037 		 * Thereby we gain a PEBS capable cycle counter.
3038 		 */
3039 		u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
3040 
3041 		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3042 		event->hw.config = alt_config;
3043 	}
3044 }
3045 
3046 static void intel_pebs_aliases_precdist(struct perf_event *event)
3047 {
3048 	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3049 		/*
3050 		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3051 		 * (0x003c) so that we can use it with PEBS.
3052 		 *
3053 		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3054 		 * PEBS capable. However we can use INST_RETIRED.PREC_DIST
3055 		 * (0x01c0), which is a PEBS capable event, to get the same
3056 		 * count.
3057 		 *
3058 		 * The PREC_DIST event has special support to minimize sample
3059 		 * shadowing effects. One drawback is that it can be
3060 		 * only programmed on counter 1, but that seems like an
3061 		 * acceptable trade off.
3062 		 */
3063 		u64 alt_config = X86_CONFIG(.event=0xc0, .umask=0x01, .inv=1, .cmask=16);
3064 
3065 		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3066 		event->hw.config = alt_config;
3067 	}
3068 }
3069 
3070 static void intel_pebs_aliases_ivb(struct perf_event *event)
3071 {
3072 	if (event->attr.precise_ip < 3)
3073 		return intel_pebs_aliases_snb(event);
3074 	return intel_pebs_aliases_precdist(event);
3075 }
3076 
3077 static void intel_pebs_aliases_skl(struct perf_event *event)
3078 {
3079 	if (event->attr.precise_ip < 3)
3080 		return intel_pebs_aliases_core2(event);
3081 	return intel_pebs_aliases_precdist(event);
3082 }
3083 
3084 static unsigned long intel_pmu_large_pebs_flags(struct perf_event *event)
3085 {
3086 	unsigned long flags = x86_pmu.large_pebs_flags;
3087 
3088 	if (event->attr.use_clockid)
3089 		flags &= ~PERF_SAMPLE_TIME;
3090 	if (!event->attr.exclude_kernel)
3091 		flags &= ~PERF_SAMPLE_REGS_USER;
3092 	if (event->attr.sample_regs_user & ~PEBS_REGS)
3093 		flags &= ~(PERF_SAMPLE_REGS_USER | PERF_SAMPLE_REGS_INTR);
3094 	return flags;
3095 }
3096 
3097 static int intel_pmu_bts_config(struct perf_event *event)
3098 {
3099 	struct perf_event_attr *attr = &event->attr;
3100 
3101 	if (unlikely(intel_pmu_has_bts(event))) {
3102 		/* BTS is not supported by this architecture. */
3103 		if (!x86_pmu.bts_active)
3104 			return -EOPNOTSUPP;
3105 
3106 		/* BTS is currently only allowed for user-mode. */
3107 		if (!attr->exclude_kernel)
3108 			return -EOPNOTSUPP;
3109 
3110 		/* BTS is not allowed for precise events. */
3111 		if (attr->precise_ip)
3112 			return -EOPNOTSUPP;
3113 
3114 		/* disallow bts if conflicting events are present */
3115 		if (x86_add_exclusive(x86_lbr_exclusive_lbr))
3116 			return -EBUSY;
3117 
3118 		event->destroy = hw_perf_lbr_event_destroy;
3119 	}
3120 
3121 	return 0;
3122 }
3123 
3124 static int core_pmu_hw_config(struct perf_event *event)
3125 {
3126 	int ret = x86_pmu_hw_config(event);
3127 
3128 	if (ret)
3129 		return ret;
3130 
3131 	return intel_pmu_bts_config(event);
3132 }
3133 
3134 static int intel_pmu_hw_config(struct perf_event *event)
3135 {
3136 	int ret = x86_pmu_hw_config(event);
3137 
3138 	if (ret)
3139 		return ret;
3140 
3141 	ret = intel_pmu_bts_config(event);
3142 	if (ret)
3143 		return ret;
3144 
3145 	if (event->attr.precise_ip) {
3146 		if (!event->attr.freq) {
3147 			event->hw.flags |= PERF_X86_EVENT_AUTO_RELOAD;
3148 			if (!(event->attr.sample_type &
3149 			      ~intel_pmu_large_pebs_flags(event)))
3150 				event->hw.flags |= PERF_X86_EVENT_LARGE_PEBS;
3151 		}
3152 		if (x86_pmu.pebs_aliases)
3153 			x86_pmu.pebs_aliases(event);
3154 
3155 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3156 			event->attr.sample_type |= __PERF_SAMPLE_CALLCHAIN_EARLY;
3157 	}
3158 
3159 	if (needs_branch_stack(event)) {
3160 		ret = intel_pmu_setup_lbr_filter(event);
3161 		if (ret)
3162 			return ret;
3163 
3164 		/*
3165 		 * BTS is set up earlier in this path, so don't account twice
3166 		 */
3167 		if (!unlikely(intel_pmu_has_bts(event))) {
3168 			/* disallow lbr if conflicting events are present */
3169 			if (x86_add_exclusive(x86_lbr_exclusive_lbr))
3170 				return -EBUSY;
3171 
3172 			event->destroy = hw_perf_lbr_event_destroy;
3173 		}
3174 	}
3175 
3176 	if (event->attr.type != PERF_TYPE_RAW)
3177 		return 0;
3178 
3179 	if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
3180 		return 0;
3181 
3182 	if (x86_pmu.version < 3)
3183 		return -EINVAL;
3184 
3185 	if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3186 		return -EACCES;
3187 
3188 	event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
3189 
3190 	return 0;
3191 }
3192 
3193 struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr)
3194 {
3195 	if (x86_pmu.guest_get_msrs)
3196 		return x86_pmu.guest_get_msrs(nr);
3197 	*nr = 0;
3198 	return NULL;
3199 }
3200 EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
3201 
3202 static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr)
3203 {
3204 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3205 	struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
3206 
3207 	arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL;
3208 	arr[0].host = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask;
3209 	arr[0].guest = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_host_mask;
3210 	if (x86_pmu.flags & PMU_FL_PEBS_ALL)
3211 		arr[0].guest &= ~cpuc->pebs_enabled;
3212 	else
3213 		arr[0].guest &= ~(cpuc->pebs_enabled & PEBS_COUNTER_MASK);
3214 	*nr = 1;
3215 
3216 	if (x86_pmu.pebs && x86_pmu.pebs_no_isolation) {
3217 		/*
3218 		 * If PMU counter has PEBS enabled it is not enough to
3219 		 * disable counter on a guest entry since PEBS memory
3220 		 * write can overshoot guest entry and corrupt guest
3221 		 * memory. Disabling PEBS solves the problem.
3222 		 *
3223 		 * Don't do this if the CPU already enforces it.
3224 		 */
3225 		arr[1].msr = MSR_IA32_PEBS_ENABLE;
3226 		arr[1].host = cpuc->pebs_enabled;
3227 		arr[1].guest = 0;
3228 		*nr = 2;
3229 	}
3230 
3231 	return arr;
3232 }
3233 
3234 static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr)
3235 {
3236 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3237 	struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
3238 	int idx;
3239 
3240 	for (idx = 0; idx < x86_pmu.num_counters; idx++)  {
3241 		struct perf_event *event = cpuc->events[idx];
3242 
3243 		arr[idx].msr = x86_pmu_config_addr(idx);
3244 		arr[idx].host = arr[idx].guest = 0;
3245 
3246 		if (!test_bit(idx, cpuc->active_mask))
3247 			continue;
3248 
3249 		arr[idx].host = arr[idx].guest =
3250 			event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
3251 
3252 		if (event->attr.exclude_host)
3253 			arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
3254 		else if (event->attr.exclude_guest)
3255 			arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
3256 	}
3257 
3258 	*nr = x86_pmu.num_counters;
3259 	return arr;
3260 }
3261 
3262 static void core_pmu_enable_event(struct perf_event *event)
3263 {
3264 	if (!event->attr.exclude_host)
3265 		x86_pmu_enable_event(event);
3266 }
3267 
3268 static void core_pmu_enable_all(int added)
3269 {
3270 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3271 	int idx;
3272 
3273 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
3274 		struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
3275 
3276 		if (!test_bit(idx, cpuc->active_mask) ||
3277 				cpuc->events[idx]->attr.exclude_host)
3278 			continue;
3279 
3280 		__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
3281 	}
3282 }
3283 
3284 static int hsw_hw_config(struct perf_event *event)
3285 {
3286 	int ret = intel_pmu_hw_config(event);
3287 
3288 	if (ret)
3289 		return ret;
3290 	if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE))
3291 		return 0;
3292 	event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);
3293 
3294 	/*
3295 	 * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
3296 	 * PEBS or in ANY thread mode. Since the results are non-sensical forbid
3297 	 * this combination.
3298 	 */
3299 	if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) &&
3300 	     ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) ||
3301 	      event->attr.precise_ip > 0))
3302 		return -EOPNOTSUPP;
3303 
3304 	if (event_is_checkpointed(event)) {
3305 		/*
3306 		 * Sampling of checkpointed events can cause situations where
3307 		 * the CPU constantly aborts because of a overflow, which is
3308 		 * then checkpointed back and ignored. Forbid checkpointing
3309 		 * for sampling.
3310 		 *
3311 		 * But still allow a long sampling period, so that perf stat
3312 		 * from KVM works.
3313 		 */
3314 		if (event->attr.sample_period > 0 &&
3315 		    event->attr.sample_period < 0x7fffffff)
3316 			return -EOPNOTSUPP;
3317 	}
3318 	return 0;
3319 }
3320 
3321 static struct event_constraint counter0_constraint =
3322 			INTEL_ALL_EVENT_CONSTRAINT(0, 0x1);
3323 
3324 static struct event_constraint counter2_constraint =
3325 			EVENT_CONSTRAINT(0, 0x4, 0);
3326 
3327 static struct event_constraint *
3328 hsw_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3329 			  struct perf_event *event)
3330 {
3331 	struct event_constraint *c;
3332 
3333 	c = intel_get_event_constraints(cpuc, idx, event);
3334 
3335 	/* Handle special quirk on in_tx_checkpointed only in counter 2 */
3336 	if (event->hw.config & HSW_IN_TX_CHECKPOINTED) {
3337 		if (c->idxmsk64 & (1U << 2))
3338 			return &counter2_constraint;
3339 		return &emptyconstraint;
3340 	}
3341 
3342 	return c;
3343 }
3344 
3345 static struct event_constraint *
3346 glp_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3347 			  struct perf_event *event)
3348 {
3349 	struct event_constraint *c;
3350 
3351 	/* :ppp means to do reduced skid PEBS which is PMC0 only. */
3352 	if (event->attr.precise_ip == 3)
3353 		return &counter0_constraint;
3354 
3355 	c = intel_get_event_constraints(cpuc, idx, event);
3356 
3357 	return c;
3358 }
3359 
3360 /*
3361  * Broadwell:
3362  *
3363  * The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared
3364  * (BDM55) and it must not use a period smaller than 100 (BDM11). We combine
3365  * the two to enforce a minimum period of 128 (the smallest value that has bits
3366  * 0-5 cleared and >= 100).
3367  *
3368  * Because of how the code in x86_perf_event_set_period() works, the truncation
3369  * of the lower 6 bits is 'harmless' as we'll occasionally add a longer period
3370  * to make up for the 'lost' events due to carrying the 'error' in period_left.
3371  *
3372  * Therefore the effective (average) period matches the requested period,
3373  * despite coarser hardware granularity.
3374  */
3375 static u64 bdw_limit_period(struct perf_event *event, u64 left)
3376 {
3377 	if ((event->hw.config & INTEL_ARCH_EVENT_MASK) ==
3378 			X86_CONFIG(.event=0xc0, .umask=0x01)) {
3379 		if (left < 128)
3380 			left = 128;
3381 		left &= ~0x3fULL;
3382 	}
3383 	return left;
3384 }
3385 
3386 PMU_FORMAT_ATTR(event,	"config:0-7"	);
3387 PMU_FORMAT_ATTR(umask,	"config:8-15"	);
3388 PMU_FORMAT_ATTR(edge,	"config:18"	);
3389 PMU_FORMAT_ATTR(pc,	"config:19"	);
3390 PMU_FORMAT_ATTR(any,	"config:21"	); /* v3 + */
3391 PMU_FORMAT_ATTR(inv,	"config:23"	);
3392 PMU_FORMAT_ATTR(cmask,	"config:24-31"	);
3393 PMU_FORMAT_ATTR(in_tx,  "config:32");
3394 PMU_FORMAT_ATTR(in_tx_cp, "config:33");
3395 
3396 static struct attribute *intel_arch_formats_attr[] = {
3397 	&format_attr_event.attr,
3398 	&format_attr_umask.attr,
3399 	&format_attr_edge.attr,
3400 	&format_attr_pc.attr,
3401 	&format_attr_inv.attr,
3402 	&format_attr_cmask.attr,
3403 	NULL,
3404 };
3405 
3406 ssize_t intel_event_sysfs_show(char *page, u64 config)
3407 {
3408 	u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);
3409 
3410 	return x86_event_sysfs_show(page, config, event);
3411 }
3412 
3413 struct intel_shared_regs *allocate_shared_regs(int cpu)
3414 {
3415 	struct intel_shared_regs *regs;
3416 	int i;
3417 
3418 	regs = kzalloc_node(sizeof(struct intel_shared_regs),
3419 			    GFP_KERNEL, cpu_to_node(cpu));
3420 	if (regs) {
3421 		/*
3422 		 * initialize the locks to keep lockdep happy
3423 		 */
3424 		for (i = 0; i < EXTRA_REG_MAX; i++)
3425 			raw_spin_lock_init(&regs->regs[i].lock);
3426 
3427 		regs->core_id = -1;
3428 	}
3429 	return regs;
3430 }
3431 
3432 static struct intel_excl_cntrs *allocate_excl_cntrs(int cpu)
3433 {
3434 	struct intel_excl_cntrs *c;
3435 
3436 	c = kzalloc_node(sizeof(struct intel_excl_cntrs),
3437 			 GFP_KERNEL, cpu_to_node(cpu));
3438 	if (c) {
3439 		raw_spin_lock_init(&c->lock);
3440 		c->core_id = -1;
3441 	}
3442 	return c;
3443 }
3444 
3445 static int intel_pmu_cpu_prepare(int cpu)
3446 {
3447 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
3448 
3449 	if (x86_pmu.extra_regs || x86_pmu.lbr_sel_map) {
3450 		cpuc->shared_regs = allocate_shared_regs(cpu);
3451 		if (!cpuc->shared_regs)
3452 			goto err;
3453 	}
3454 
3455 	if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
3456 		size_t sz = X86_PMC_IDX_MAX * sizeof(struct event_constraint);
3457 
3458 		cpuc->constraint_list = kzalloc(sz, GFP_KERNEL);
3459 		if (!cpuc->constraint_list)
3460 			goto err_shared_regs;
3461 
3462 		cpuc->excl_cntrs = allocate_excl_cntrs(cpu);
3463 		if (!cpuc->excl_cntrs)
3464 			goto err_constraint_list;
3465 
3466 		cpuc->excl_thread_id = 0;
3467 	}
3468 
3469 	return 0;
3470 
3471 err_constraint_list:
3472 	kfree(cpuc->constraint_list);
3473 	cpuc->constraint_list = NULL;
3474 
3475 err_shared_regs:
3476 	kfree(cpuc->shared_regs);
3477 	cpuc->shared_regs = NULL;
3478 
3479 err:
3480 	return -ENOMEM;
3481 }
3482 
3483 static void flip_smm_bit(void *data)
3484 {
3485 	unsigned long set = *(unsigned long *)data;
3486 
3487 	if (set > 0) {
3488 		msr_set_bit(MSR_IA32_DEBUGCTLMSR,
3489 			    DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
3490 	} else {
3491 		msr_clear_bit(MSR_IA32_DEBUGCTLMSR,
3492 			      DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
3493 	}
3494 }
3495 
3496 static void intel_pmu_cpu_starting(int cpu)
3497 {
3498 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
3499 	int core_id = topology_core_id(cpu);
3500 	int i;
3501 
3502 	init_debug_store_on_cpu(cpu);
3503 	/*
3504 	 * Deal with CPUs that don't clear their LBRs on power-up.
3505 	 */
3506 	intel_pmu_lbr_reset();
3507 
3508 	cpuc->lbr_sel = NULL;
3509 
3510 	if (x86_pmu.version > 1)
3511 		flip_smm_bit(&x86_pmu.attr_freeze_on_smi);
3512 
3513 	if (x86_pmu.counter_freezing)
3514 		enable_counter_freeze();
3515 
3516 	if (!cpuc->shared_regs)
3517 		return;
3518 
3519 	if (!(x86_pmu.flags & PMU_FL_NO_HT_SHARING)) {
3520 		for_each_cpu(i, topology_sibling_cpumask(cpu)) {
3521 			struct intel_shared_regs *pc;
3522 
3523 			pc = per_cpu(cpu_hw_events, i).shared_regs;
3524 			if (pc && pc->core_id == core_id) {
3525 				cpuc->kfree_on_online[0] = cpuc->shared_regs;
3526 				cpuc->shared_regs = pc;
3527 				break;
3528 			}
3529 		}
3530 		cpuc->shared_regs->core_id = core_id;
3531 		cpuc->shared_regs->refcnt++;
3532 	}
3533 
3534 	if (x86_pmu.lbr_sel_map)
3535 		cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
3536 
3537 	if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
3538 		for_each_cpu(i, topology_sibling_cpumask(cpu)) {
3539 			struct cpu_hw_events *sibling;
3540 			struct intel_excl_cntrs *c;
3541 
3542 			sibling = &per_cpu(cpu_hw_events, i);
3543 			c = sibling->excl_cntrs;
3544 			if (c && c->core_id == core_id) {
3545 				cpuc->kfree_on_online[1] = cpuc->excl_cntrs;
3546 				cpuc->excl_cntrs = c;
3547 				if (!sibling->excl_thread_id)
3548 					cpuc->excl_thread_id = 1;
3549 				break;
3550 			}
3551 		}
3552 		cpuc->excl_cntrs->core_id = core_id;
3553 		cpuc->excl_cntrs->refcnt++;
3554 	}
3555 }
3556 
3557 static void free_excl_cntrs(int cpu)
3558 {
3559 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
3560 	struct intel_excl_cntrs *c;
3561 
3562 	c = cpuc->excl_cntrs;
3563 	if (c) {
3564 		if (c->core_id == -1 || --c->refcnt == 0)
3565 			kfree(c);
3566 		cpuc->excl_cntrs = NULL;
3567 		kfree(cpuc->constraint_list);
3568 		cpuc->constraint_list = NULL;
3569 	}
3570 }
3571 
3572 static void intel_pmu_cpu_dying(int cpu)
3573 {
3574 	fini_debug_store_on_cpu(cpu);
3575 
3576 	if (x86_pmu.counter_freezing)
3577 		disable_counter_freeze();
3578 }
3579 
3580 static void intel_pmu_cpu_dead(int cpu)
3581 {
3582 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
3583 	struct intel_shared_regs *pc;
3584 
3585 	pc = cpuc->shared_regs;
3586 	if (pc) {
3587 		if (pc->core_id == -1 || --pc->refcnt == 0)
3588 			kfree(pc);
3589 		cpuc->shared_regs = NULL;
3590 	}
3591 
3592 	free_excl_cntrs(cpu);
3593 }
3594 
3595 static void intel_pmu_sched_task(struct perf_event_context *ctx,
3596 				 bool sched_in)
3597 {
3598 	intel_pmu_pebs_sched_task(ctx, sched_in);
3599 	intel_pmu_lbr_sched_task(ctx, sched_in);
3600 }
3601 
3602 static int intel_pmu_check_period(struct perf_event *event, u64 value)
3603 {
3604 	return intel_pmu_has_bts_period(event, value) ? -EINVAL : 0;
3605 }
3606 
3607 PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
3608 
3609 PMU_FORMAT_ATTR(ldlat, "config1:0-15");
3610 
3611 PMU_FORMAT_ATTR(frontend, "config1:0-23");
3612 
3613 static struct attribute *intel_arch3_formats_attr[] = {
3614 	&format_attr_event.attr,
3615 	&format_attr_umask.attr,
3616 	&format_attr_edge.attr,
3617 	&format_attr_pc.attr,
3618 	&format_attr_any.attr,
3619 	&format_attr_inv.attr,
3620 	&format_attr_cmask.attr,
3621 	NULL,
3622 };
3623 
3624 static struct attribute *hsw_format_attr[] = {
3625 	&format_attr_in_tx.attr,
3626 	&format_attr_in_tx_cp.attr,
3627 	&format_attr_offcore_rsp.attr,
3628 	&format_attr_ldlat.attr,
3629 	NULL
3630 };
3631 
3632 static struct attribute *nhm_format_attr[] = {
3633 	&format_attr_offcore_rsp.attr,
3634 	&format_attr_ldlat.attr,
3635 	NULL
3636 };
3637 
3638 static struct attribute *slm_format_attr[] = {
3639 	&format_attr_offcore_rsp.attr,
3640 	NULL
3641 };
3642 
3643 static struct attribute *skl_format_attr[] = {
3644 	&format_attr_frontend.attr,
3645 	NULL,
3646 };
3647 
3648 static __initconst const struct x86_pmu core_pmu = {
3649 	.name			= "core",
3650 	.handle_irq		= x86_pmu_handle_irq,
3651 	.disable_all		= x86_pmu_disable_all,
3652 	.enable_all		= core_pmu_enable_all,
3653 	.enable			= core_pmu_enable_event,
3654 	.disable		= x86_pmu_disable_event,
3655 	.hw_config		= core_pmu_hw_config,
3656 	.schedule_events	= x86_schedule_events,
3657 	.eventsel		= MSR_ARCH_PERFMON_EVENTSEL0,
3658 	.perfctr		= MSR_ARCH_PERFMON_PERFCTR0,
3659 	.event_map		= intel_pmu_event_map,
3660 	.max_events		= ARRAY_SIZE(intel_perfmon_event_map),
3661 	.apic			= 1,
3662 	.large_pebs_flags	= LARGE_PEBS_FLAGS,
3663 
3664 	/*
3665 	 * Intel PMCs cannot be accessed sanely above 32-bit width,
3666 	 * so we install an artificial 1<<31 period regardless of
3667 	 * the generic event period:
3668 	 */
3669 	.max_period		= (1ULL<<31) - 1,
3670 	.get_event_constraints	= intel_get_event_constraints,
3671 	.put_event_constraints	= intel_put_event_constraints,
3672 	.event_constraints	= intel_core_event_constraints,
3673 	.guest_get_msrs		= core_guest_get_msrs,
3674 	.format_attrs		= intel_arch_formats_attr,
3675 	.events_sysfs_show	= intel_event_sysfs_show,
3676 
3677 	/*
3678 	 * Virtual (or funny metal) CPU can define x86_pmu.extra_regs
3679 	 * together with PMU version 1 and thus be using core_pmu with
3680 	 * shared_regs. We need following callbacks here to allocate
3681 	 * it properly.
3682 	 */
3683 	.cpu_prepare		= intel_pmu_cpu_prepare,
3684 	.cpu_starting		= intel_pmu_cpu_starting,
3685 	.cpu_dying		= intel_pmu_cpu_dying,
3686 	.cpu_dead		= intel_pmu_cpu_dead,
3687 
3688 	.check_period		= intel_pmu_check_period,
3689 };
3690 
3691 static struct attribute *intel_pmu_attrs[];
3692 
3693 static __initconst const struct x86_pmu intel_pmu = {
3694 	.name			= "Intel",
3695 	.handle_irq		= intel_pmu_handle_irq,
3696 	.disable_all		= intel_pmu_disable_all,
3697 	.enable_all		= intel_pmu_enable_all,
3698 	.enable			= intel_pmu_enable_event,
3699 	.disable		= intel_pmu_disable_event,
3700 	.add			= intel_pmu_add_event,
3701 	.del			= intel_pmu_del_event,
3702 	.read			= intel_pmu_read_event,
3703 	.hw_config		= intel_pmu_hw_config,
3704 	.schedule_events	= x86_schedule_events,
3705 	.eventsel		= MSR_ARCH_PERFMON_EVENTSEL0,
3706 	.perfctr		= MSR_ARCH_PERFMON_PERFCTR0,
3707 	.event_map		= intel_pmu_event_map,
3708 	.max_events		= ARRAY_SIZE(intel_perfmon_event_map),
3709 	.apic			= 1,
3710 	.large_pebs_flags	= LARGE_PEBS_FLAGS,
3711 	/*
3712 	 * Intel PMCs cannot be accessed sanely above 32 bit width,
3713 	 * so we install an artificial 1<<31 period regardless of
3714 	 * the generic event period:
3715 	 */
3716 	.max_period		= (1ULL << 31) - 1,
3717 	.get_event_constraints	= intel_get_event_constraints,
3718 	.put_event_constraints	= intel_put_event_constraints,
3719 	.pebs_aliases		= intel_pebs_aliases_core2,
3720 
3721 	.format_attrs		= intel_arch3_formats_attr,
3722 	.events_sysfs_show	= intel_event_sysfs_show,
3723 
3724 	.attrs			= intel_pmu_attrs,
3725 
3726 	.cpu_prepare		= intel_pmu_cpu_prepare,
3727 	.cpu_starting		= intel_pmu_cpu_starting,
3728 	.cpu_dying		= intel_pmu_cpu_dying,
3729 	.cpu_dead		= intel_pmu_cpu_dead,
3730 
3731 	.guest_get_msrs		= intel_guest_get_msrs,
3732 	.sched_task		= intel_pmu_sched_task,
3733 
3734 	.check_period		= intel_pmu_check_period,
3735 };
3736 
3737 static __init void intel_clovertown_quirk(void)
3738 {
3739 	/*
3740 	 * PEBS is unreliable due to:
3741 	 *
3742 	 *   AJ67  - PEBS may experience CPL leaks
3743 	 *   AJ68  - PEBS PMI may be delayed by one event
3744 	 *   AJ69  - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
3745 	 *   AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
3746 	 *
3747 	 * AJ67 could be worked around by restricting the OS/USR flags.
3748 	 * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
3749 	 *
3750 	 * AJ106 could possibly be worked around by not allowing LBR
3751 	 *       usage from PEBS, including the fixup.
3752 	 * AJ68  could possibly be worked around by always programming
3753 	 *	 a pebs_event_reset[0] value and coping with the lost events.
3754 	 *
3755 	 * But taken together it might just make sense to not enable PEBS on
3756 	 * these chips.
3757 	 */
3758 	pr_warn("PEBS disabled due to CPU errata\n");
3759 	x86_pmu.pebs = 0;
3760 	x86_pmu.pebs_constraints = NULL;
3761 }
3762 
3763 static const struct x86_cpu_desc isolation_ucodes[] = {
3764 	INTEL_CPU_DESC(INTEL_FAM6_HASWELL_CORE,		 3, 0x0000001f),
3765 	INTEL_CPU_DESC(INTEL_FAM6_HASWELL_ULT,		 1, 0x0000001e),
3766 	INTEL_CPU_DESC(INTEL_FAM6_HASWELL_GT3E,		 1, 0x00000015),
3767 	INTEL_CPU_DESC(INTEL_FAM6_HASWELL_X,		 2, 0x00000037),
3768 	INTEL_CPU_DESC(INTEL_FAM6_HASWELL_X,		 4, 0x0000000a),
3769 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_CORE,	 4, 0x00000023),
3770 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_GT3E,	 1, 0x00000014),
3771 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_XEON_D,	 2, 0x00000010),
3772 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_XEON_D,	 3, 0x07000009),
3773 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_XEON_D,	 4, 0x0f000009),
3774 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_XEON_D,	 5, 0x0e000002),
3775 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_X,		 2, 0x0b000014),
3776 	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,		 3, 0x00000021),
3777 	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,		 4, 0x00000000),
3778 	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_MOBILE,	 3, 0x0000007c),
3779 	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_DESKTOP,	 3, 0x0000007c),
3780 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_DESKTOP,	 9, 0x0000004e),
3781 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_MOBILE,	 9, 0x0000004e),
3782 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_MOBILE,	10, 0x0000004e),
3783 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_MOBILE,	11, 0x0000004e),
3784 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_MOBILE,	12, 0x0000004e),
3785 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_DESKTOP,	10, 0x0000004e),
3786 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_DESKTOP,	11, 0x0000004e),
3787 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_DESKTOP,	12, 0x0000004e),
3788 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_DESKTOP,	13, 0x0000004e),
3789 	{}
3790 };
3791 
3792 static void intel_check_pebs_isolation(void)
3793 {
3794 	x86_pmu.pebs_no_isolation = !x86_cpu_has_min_microcode_rev(isolation_ucodes);
3795 }
3796 
3797 static __init void intel_pebs_isolation_quirk(void)
3798 {
3799 	WARN_ON_ONCE(x86_pmu.check_microcode);
3800 	x86_pmu.check_microcode = intel_check_pebs_isolation;
3801 	intel_check_pebs_isolation();
3802 }
3803 
3804 static const struct x86_cpu_desc pebs_ucodes[] = {
3805 	INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE,		7, 0x00000028),
3806 	INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE_X,	6, 0x00000618),
3807 	INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE_X,	7, 0x0000070c),
3808 	{}
3809 };
3810 
3811 static bool intel_snb_pebs_broken(void)
3812 {
3813 	return !x86_cpu_has_min_microcode_rev(pebs_ucodes);
3814 }
3815 
3816 static void intel_snb_check_microcode(void)
3817 {
3818 	if (intel_snb_pebs_broken() == x86_pmu.pebs_broken)
3819 		return;
3820 
3821 	/*
3822 	 * Serialized by the microcode lock..
3823 	 */
3824 	if (x86_pmu.pebs_broken) {
3825 		pr_info("PEBS enabled due to microcode update\n");
3826 		x86_pmu.pebs_broken = 0;
3827 	} else {
3828 		pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
3829 		x86_pmu.pebs_broken = 1;
3830 	}
3831 }
3832 
3833 static bool is_lbr_from(unsigned long msr)
3834 {
3835 	unsigned long lbr_from_nr = x86_pmu.lbr_from + x86_pmu.lbr_nr;
3836 
3837 	return x86_pmu.lbr_from <= msr && msr < lbr_from_nr;
3838 }
3839 
3840 /*
3841  * Under certain circumstances, access certain MSR may cause #GP.
3842  * The function tests if the input MSR can be safely accessed.
3843  */
3844 static bool check_msr(unsigned long msr, u64 mask)
3845 {
3846 	u64 val_old, val_new, val_tmp;
3847 
3848 	/*
3849 	 * Read the current value, change it and read it back to see if it
3850 	 * matches, this is needed to detect certain hardware emulators
3851 	 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
3852 	 */
3853 	if (rdmsrl_safe(msr, &val_old))
3854 		return false;
3855 
3856 	/*
3857 	 * Only change the bits which can be updated by wrmsrl.
3858 	 */
3859 	val_tmp = val_old ^ mask;
3860 
3861 	if (is_lbr_from(msr))
3862 		val_tmp = lbr_from_signext_quirk_wr(val_tmp);
3863 
3864 	if (wrmsrl_safe(msr, val_tmp) ||
3865 	    rdmsrl_safe(msr, &val_new))
3866 		return false;
3867 
3868 	/*
3869 	 * Quirk only affects validation in wrmsr(), so wrmsrl()'s value
3870 	 * should equal rdmsrl()'s even with the quirk.
3871 	 */
3872 	if (val_new != val_tmp)
3873 		return false;
3874 
3875 	if (is_lbr_from(msr))
3876 		val_old = lbr_from_signext_quirk_wr(val_old);
3877 
3878 	/* Here it's sure that the MSR can be safely accessed.
3879 	 * Restore the old value and return.
3880 	 */
3881 	wrmsrl(msr, val_old);
3882 
3883 	return true;
3884 }
3885 
3886 static __init void intel_sandybridge_quirk(void)
3887 {
3888 	x86_pmu.check_microcode = intel_snb_check_microcode;
3889 	cpus_read_lock();
3890 	intel_snb_check_microcode();
3891 	cpus_read_unlock();
3892 }
3893 
3894 static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
3895 	{ PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
3896 	{ PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
3897 	{ PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
3898 	{ PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
3899 	{ PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
3900 	{ PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
3901 	{ PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
3902 };
3903 
3904 static __init void intel_arch_events_quirk(void)
3905 {
3906 	int bit;
3907 
3908 	/* disable event that reported as not presend by cpuid */
3909 	for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
3910 		intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
3911 		pr_warn("CPUID marked event: \'%s\' unavailable\n",
3912 			intel_arch_events_map[bit].name);
3913 	}
3914 }
3915 
3916 static __init void intel_nehalem_quirk(void)
3917 {
3918 	union cpuid10_ebx ebx;
3919 
3920 	ebx.full = x86_pmu.events_maskl;
3921 	if (ebx.split.no_branch_misses_retired) {
3922 		/*
3923 		 * Erratum AAJ80 detected, we work it around by using
3924 		 * the BR_MISP_EXEC.ANY event. This will over-count
3925 		 * branch-misses, but it's still much better than the
3926 		 * architectural event which is often completely bogus:
3927 		 */
3928 		intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
3929 		ebx.split.no_branch_misses_retired = 0;
3930 		x86_pmu.events_maskl = ebx.full;
3931 		pr_info("CPU erratum AAJ80 worked around\n");
3932 	}
3933 }
3934 
3935 static const struct x86_cpu_desc counter_freezing_ucodes[] = {
3936 	INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT,	 2, 0x0000000e),
3937 	INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT,	 9, 0x0000002e),
3938 	INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT,	10, 0x00000008),
3939 	INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT_X,	 1, 0x00000028),
3940 	INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT_PLUS,	 1, 0x00000028),
3941 	INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT_PLUS,	 8, 0x00000006),
3942 	{}
3943 };
3944 
3945 static bool intel_counter_freezing_broken(void)
3946 {
3947 	return !x86_cpu_has_min_microcode_rev(counter_freezing_ucodes);
3948 }
3949 
3950 static __init void intel_counter_freezing_quirk(void)
3951 {
3952 	/* Check if it's already disabled */
3953 	if (disable_counter_freezing)
3954 		return;
3955 
3956 	/*
3957 	 * If the system starts with the wrong ucode, leave the
3958 	 * counter-freezing feature permanently disabled.
3959 	 */
3960 	if (intel_counter_freezing_broken()) {
3961 		pr_info("PMU counter freezing disabled due to CPU errata,"
3962 			"please upgrade microcode\n");
3963 		x86_pmu.counter_freezing = false;
3964 		x86_pmu.handle_irq = intel_pmu_handle_irq;
3965 	}
3966 }
3967 
3968 /*
3969  * enable software workaround for errata:
3970  * SNB: BJ122
3971  * IVB: BV98
3972  * HSW: HSD29
3973  *
3974  * Only needed when HT is enabled. However detecting
3975  * if HT is enabled is difficult (model specific). So instead,
3976  * we enable the workaround in the early boot, and verify if
3977  * it is needed in a later initcall phase once we have valid
3978  * topology information to check if HT is actually enabled
3979  */
3980 static __init void intel_ht_bug(void)
3981 {
3982 	x86_pmu.flags |= PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED;
3983 
3984 	x86_pmu.start_scheduling = intel_start_scheduling;
3985 	x86_pmu.commit_scheduling = intel_commit_scheduling;
3986 	x86_pmu.stop_scheduling = intel_stop_scheduling;
3987 }
3988 
3989 EVENT_ATTR_STR(mem-loads,	mem_ld_hsw,	"event=0xcd,umask=0x1,ldlat=3");
3990 EVENT_ATTR_STR(mem-stores,	mem_st_hsw,	"event=0xd0,umask=0x82")
3991 
3992 /* Haswell special events */
3993 EVENT_ATTR_STR(tx-start,	tx_start,	"event=0xc9,umask=0x1");
3994 EVENT_ATTR_STR(tx-commit,	tx_commit,	"event=0xc9,umask=0x2");
3995 EVENT_ATTR_STR(tx-abort,	tx_abort,	"event=0xc9,umask=0x4");
3996 EVENT_ATTR_STR(tx-capacity,	tx_capacity,	"event=0x54,umask=0x2");
3997 EVENT_ATTR_STR(tx-conflict,	tx_conflict,	"event=0x54,umask=0x1");
3998 EVENT_ATTR_STR(el-start,	el_start,	"event=0xc8,umask=0x1");
3999 EVENT_ATTR_STR(el-commit,	el_commit,	"event=0xc8,umask=0x2");
4000 EVENT_ATTR_STR(el-abort,	el_abort,	"event=0xc8,umask=0x4");
4001 EVENT_ATTR_STR(el-capacity,	el_capacity,	"event=0x54,umask=0x2");
4002 EVENT_ATTR_STR(el-conflict,	el_conflict,	"event=0x54,umask=0x1");
4003 EVENT_ATTR_STR(cycles-t,	cycles_t,	"event=0x3c,in_tx=1");
4004 EVENT_ATTR_STR(cycles-ct,	cycles_ct,	"event=0x3c,in_tx=1,in_tx_cp=1");
4005 
4006 static struct attribute *hsw_events_attrs[] = {
4007 	EVENT_PTR(td_slots_issued),
4008 	EVENT_PTR(td_slots_retired),
4009 	EVENT_PTR(td_fetch_bubbles),
4010 	EVENT_PTR(td_total_slots),
4011 	EVENT_PTR(td_total_slots_scale),
4012 	EVENT_PTR(td_recovery_bubbles),
4013 	EVENT_PTR(td_recovery_bubbles_scale),
4014 	NULL
4015 };
4016 
4017 static struct attribute *hsw_mem_events_attrs[] = {
4018 	EVENT_PTR(mem_ld_hsw),
4019 	EVENT_PTR(mem_st_hsw),
4020 	NULL,
4021 };
4022 
4023 static struct attribute *hsw_tsx_events_attrs[] = {
4024 	EVENT_PTR(tx_start),
4025 	EVENT_PTR(tx_commit),
4026 	EVENT_PTR(tx_abort),
4027 	EVENT_PTR(tx_capacity),
4028 	EVENT_PTR(tx_conflict),
4029 	EVENT_PTR(el_start),
4030 	EVENT_PTR(el_commit),
4031 	EVENT_PTR(el_abort),
4032 	EVENT_PTR(el_capacity),
4033 	EVENT_PTR(el_conflict),
4034 	EVENT_PTR(cycles_t),
4035 	EVENT_PTR(cycles_ct),
4036 	NULL
4037 };
4038 
4039 static ssize_t freeze_on_smi_show(struct device *cdev,
4040 				  struct device_attribute *attr,
4041 				  char *buf)
4042 {
4043 	return sprintf(buf, "%lu\n", x86_pmu.attr_freeze_on_smi);
4044 }
4045 
4046 static DEFINE_MUTEX(freeze_on_smi_mutex);
4047 
4048 static ssize_t freeze_on_smi_store(struct device *cdev,
4049 				   struct device_attribute *attr,
4050 				   const char *buf, size_t count)
4051 {
4052 	unsigned long val;
4053 	ssize_t ret;
4054 
4055 	ret = kstrtoul(buf, 0, &val);
4056 	if (ret)
4057 		return ret;
4058 
4059 	if (val > 1)
4060 		return -EINVAL;
4061 
4062 	mutex_lock(&freeze_on_smi_mutex);
4063 
4064 	if (x86_pmu.attr_freeze_on_smi == val)
4065 		goto done;
4066 
4067 	x86_pmu.attr_freeze_on_smi = val;
4068 
4069 	get_online_cpus();
4070 	on_each_cpu(flip_smm_bit, &val, 1);
4071 	put_online_cpus();
4072 done:
4073 	mutex_unlock(&freeze_on_smi_mutex);
4074 
4075 	return count;
4076 }
4077 
4078 static DEVICE_ATTR_RW(freeze_on_smi);
4079 
4080 static ssize_t branches_show(struct device *cdev,
4081 			     struct device_attribute *attr,
4082 			     char *buf)
4083 {
4084 	return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu.lbr_nr);
4085 }
4086 
4087 static DEVICE_ATTR_RO(branches);
4088 
4089 static struct attribute *lbr_attrs[] = {
4090 	&dev_attr_branches.attr,
4091 	NULL
4092 };
4093 
4094 static char pmu_name_str[30];
4095 
4096 static ssize_t pmu_name_show(struct device *cdev,
4097 			     struct device_attribute *attr,
4098 			     char *buf)
4099 {
4100 	return snprintf(buf, PAGE_SIZE, "%s\n", pmu_name_str);
4101 }
4102 
4103 static DEVICE_ATTR_RO(pmu_name);
4104 
4105 static struct attribute *intel_pmu_caps_attrs[] = {
4106        &dev_attr_pmu_name.attr,
4107        NULL
4108 };
4109 
4110 static struct attribute *intel_pmu_attrs[] = {
4111 	&dev_attr_freeze_on_smi.attr,
4112 	NULL,
4113 };
4114 
4115 static __init struct attribute **
4116 get_events_attrs(struct attribute **base,
4117 		 struct attribute **mem,
4118 		 struct attribute **tsx)
4119 {
4120 	struct attribute **attrs = base;
4121 	struct attribute **old;
4122 
4123 	if (mem && x86_pmu.pebs)
4124 		attrs = merge_attr(attrs, mem);
4125 
4126 	if (tsx && boot_cpu_has(X86_FEATURE_RTM)) {
4127 		old = attrs;
4128 		attrs = merge_attr(attrs, tsx);
4129 		if (old != base)
4130 			kfree(old);
4131 	}
4132 
4133 	return attrs;
4134 }
4135 
4136 __init int intel_pmu_init(void)
4137 {
4138 	struct attribute **extra_attr = NULL;
4139 	struct attribute **mem_attr = NULL;
4140 	struct attribute **tsx_attr = NULL;
4141 	struct attribute **to_free = NULL;
4142 	union cpuid10_edx edx;
4143 	union cpuid10_eax eax;
4144 	union cpuid10_ebx ebx;
4145 	struct event_constraint *c;
4146 	unsigned int unused;
4147 	struct extra_reg *er;
4148 	int version, i;
4149 	char *name;
4150 
4151 	if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
4152 		switch (boot_cpu_data.x86) {
4153 		case 0x6:
4154 			return p6_pmu_init();
4155 		case 0xb:
4156 			return knc_pmu_init();
4157 		case 0xf:
4158 			return p4_pmu_init();
4159 		}
4160 		return -ENODEV;
4161 	}
4162 
4163 	/*
4164 	 * Check whether the Architectural PerfMon supports
4165 	 * Branch Misses Retired hw_event or not.
4166 	 */
4167 	cpuid(10, &eax.full, &ebx.full, &unused, &edx.full);
4168 	if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
4169 		return -ENODEV;
4170 
4171 	version = eax.split.version_id;
4172 	if (version < 2)
4173 		x86_pmu = core_pmu;
4174 	else
4175 		x86_pmu = intel_pmu;
4176 
4177 	x86_pmu.version			= version;
4178 	x86_pmu.num_counters		= eax.split.num_counters;
4179 	x86_pmu.cntval_bits		= eax.split.bit_width;
4180 	x86_pmu.cntval_mask		= (1ULL << eax.split.bit_width) - 1;
4181 
4182 	x86_pmu.events_maskl		= ebx.full;
4183 	x86_pmu.events_mask_len		= eax.split.mask_length;
4184 
4185 	x86_pmu.max_pebs_events		= min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);
4186 
4187 	/*
4188 	 * Quirk: v2 perfmon does not report fixed-purpose events, so
4189 	 * assume at least 3 events, when not running in a hypervisor:
4190 	 */
4191 	if (version > 1) {
4192 		int assume = 3 * !boot_cpu_has(X86_FEATURE_HYPERVISOR);
4193 
4194 		x86_pmu.num_counters_fixed =
4195 			max((int)edx.split.num_counters_fixed, assume);
4196 	}
4197 
4198 	if (version >= 4)
4199 		x86_pmu.counter_freezing = !disable_counter_freezing;
4200 
4201 	if (boot_cpu_has(X86_FEATURE_PDCM)) {
4202 		u64 capabilities;
4203 
4204 		rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
4205 		x86_pmu.intel_cap.capabilities = capabilities;
4206 	}
4207 
4208 	intel_ds_init();
4209 
4210 	x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
4211 
4212 	/*
4213 	 * Install the hw-cache-events table:
4214 	 */
4215 	switch (boot_cpu_data.x86_model) {
4216 	case INTEL_FAM6_CORE_YONAH:
4217 		pr_cont("Core events, ");
4218 		name = "core";
4219 		break;
4220 
4221 	case INTEL_FAM6_CORE2_MEROM:
4222 		x86_add_quirk(intel_clovertown_quirk);
4223 	case INTEL_FAM6_CORE2_MEROM_L:
4224 	case INTEL_FAM6_CORE2_PENRYN:
4225 	case INTEL_FAM6_CORE2_DUNNINGTON:
4226 		memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
4227 		       sizeof(hw_cache_event_ids));
4228 
4229 		intel_pmu_lbr_init_core();
4230 
4231 		x86_pmu.event_constraints = intel_core2_event_constraints;
4232 		x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
4233 		pr_cont("Core2 events, ");
4234 		name = "core2";
4235 		break;
4236 
4237 	case INTEL_FAM6_NEHALEM:
4238 	case INTEL_FAM6_NEHALEM_EP:
4239 	case INTEL_FAM6_NEHALEM_EX:
4240 		memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
4241 		       sizeof(hw_cache_event_ids));
4242 		memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
4243 		       sizeof(hw_cache_extra_regs));
4244 
4245 		intel_pmu_lbr_init_nhm();
4246 
4247 		x86_pmu.event_constraints = intel_nehalem_event_constraints;
4248 		x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
4249 		x86_pmu.enable_all = intel_pmu_nhm_enable_all;
4250 		x86_pmu.extra_regs = intel_nehalem_extra_regs;
4251 
4252 		mem_attr = nhm_mem_events_attrs;
4253 
4254 		/* UOPS_ISSUED.STALLED_CYCLES */
4255 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
4256 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
4257 		/* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
4258 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
4259 			X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
4260 
4261 		intel_pmu_pebs_data_source_nhm();
4262 		x86_add_quirk(intel_nehalem_quirk);
4263 		x86_pmu.pebs_no_tlb = 1;
4264 		extra_attr = nhm_format_attr;
4265 
4266 		pr_cont("Nehalem events, ");
4267 		name = "nehalem";
4268 		break;
4269 
4270 	case INTEL_FAM6_ATOM_BONNELL:
4271 	case INTEL_FAM6_ATOM_BONNELL_MID:
4272 	case INTEL_FAM6_ATOM_SALTWELL:
4273 	case INTEL_FAM6_ATOM_SALTWELL_MID:
4274 	case INTEL_FAM6_ATOM_SALTWELL_TABLET:
4275 		memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
4276 		       sizeof(hw_cache_event_ids));
4277 
4278 		intel_pmu_lbr_init_atom();
4279 
4280 		x86_pmu.event_constraints = intel_gen_event_constraints;
4281 		x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
4282 		x86_pmu.pebs_aliases = intel_pebs_aliases_core2;
4283 		pr_cont("Atom events, ");
4284 		name = "bonnell";
4285 		break;
4286 
4287 	case INTEL_FAM6_ATOM_SILVERMONT:
4288 	case INTEL_FAM6_ATOM_SILVERMONT_X:
4289 	case INTEL_FAM6_ATOM_SILVERMONT_MID:
4290 	case INTEL_FAM6_ATOM_AIRMONT:
4291 	case INTEL_FAM6_ATOM_AIRMONT_MID:
4292 		memcpy(hw_cache_event_ids, slm_hw_cache_event_ids,
4293 			sizeof(hw_cache_event_ids));
4294 		memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs,
4295 		       sizeof(hw_cache_extra_regs));
4296 
4297 		intel_pmu_lbr_init_slm();
4298 
4299 		x86_pmu.event_constraints = intel_slm_event_constraints;
4300 		x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
4301 		x86_pmu.extra_regs = intel_slm_extra_regs;
4302 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4303 		x86_pmu.cpu_events = slm_events_attrs;
4304 		extra_attr = slm_format_attr;
4305 		pr_cont("Silvermont events, ");
4306 		name = "silvermont";
4307 		break;
4308 
4309 	case INTEL_FAM6_ATOM_GOLDMONT:
4310 	case INTEL_FAM6_ATOM_GOLDMONT_X:
4311 		x86_add_quirk(intel_counter_freezing_quirk);
4312 		memcpy(hw_cache_event_ids, glm_hw_cache_event_ids,
4313 		       sizeof(hw_cache_event_ids));
4314 		memcpy(hw_cache_extra_regs, glm_hw_cache_extra_regs,
4315 		       sizeof(hw_cache_extra_regs));
4316 
4317 		intel_pmu_lbr_init_skl();
4318 
4319 		x86_pmu.event_constraints = intel_slm_event_constraints;
4320 		x86_pmu.pebs_constraints = intel_glm_pebs_event_constraints;
4321 		x86_pmu.extra_regs = intel_glm_extra_regs;
4322 		/*
4323 		 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
4324 		 * for precise cycles.
4325 		 * :pp is identical to :ppp
4326 		 */
4327 		x86_pmu.pebs_aliases = NULL;
4328 		x86_pmu.pebs_prec_dist = true;
4329 		x86_pmu.lbr_pt_coexist = true;
4330 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4331 		x86_pmu.cpu_events = glm_events_attrs;
4332 		extra_attr = slm_format_attr;
4333 		pr_cont("Goldmont events, ");
4334 		name = "goldmont";
4335 		break;
4336 
4337 	case INTEL_FAM6_ATOM_GOLDMONT_PLUS:
4338 		x86_add_quirk(intel_counter_freezing_quirk);
4339 		memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
4340 		       sizeof(hw_cache_event_ids));
4341 		memcpy(hw_cache_extra_regs, glp_hw_cache_extra_regs,
4342 		       sizeof(hw_cache_extra_regs));
4343 
4344 		intel_pmu_lbr_init_skl();
4345 
4346 		x86_pmu.event_constraints = intel_slm_event_constraints;
4347 		x86_pmu.extra_regs = intel_glm_extra_regs;
4348 		/*
4349 		 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
4350 		 * for precise cycles.
4351 		 */
4352 		x86_pmu.pebs_aliases = NULL;
4353 		x86_pmu.pebs_prec_dist = true;
4354 		x86_pmu.lbr_pt_coexist = true;
4355 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4356 		x86_pmu.flags |= PMU_FL_PEBS_ALL;
4357 		x86_pmu.get_event_constraints = glp_get_event_constraints;
4358 		x86_pmu.cpu_events = glm_events_attrs;
4359 		/* Goldmont Plus has 4-wide pipeline */
4360 		event_attr_td_total_slots_scale_glm.event_str = "4";
4361 		extra_attr = slm_format_attr;
4362 		pr_cont("Goldmont plus events, ");
4363 		name = "goldmont_plus";
4364 		break;
4365 
4366 	case INTEL_FAM6_WESTMERE:
4367 	case INTEL_FAM6_WESTMERE_EP:
4368 	case INTEL_FAM6_WESTMERE_EX:
4369 		memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
4370 		       sizeof(hw_cache_event_ids));
4371 		memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
4372 		       sizeof(hw_cache_extra_regs));
4373 
4374 		intel_pmu_lbr_init_nhm();
4375 
4376 		x86_pmu.event_constraints = intel_westmere_event_constraints;
4377 		x86_pmu.enable_all = intel_pmu_nhm_enable_all;
4378 		x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
4379 		x86_pmu.extra_regs = intel_westmere_extra_regs;
4380 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4381 
4382 		mem_attr = nhm_mem_events_attrs;
4383 
4384 		/* UOPS_ISSUED.STALLED_CYCLES */
4385 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
4386 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
4387 		/* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
4388 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
4389 			X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
4390 
4391 		intel_pmu_pebs_data_source_nhm();
4392 		extra_attr = nhm_format_attr;
4393 		pr_cont("Westmere events, ");
4394 		name = "westmere";
4395 		break;
4396 
4397 	case INTEL_FAM6_SANDYBRIDGE:
4398 	case INTEL_FAM6_SANDYBRIDGE_X:
4399 		x86_add_quirk(intel_sandybridge_quirk);
4400 		x86_add_quirk(intel_ht_bug);
4401 		memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
4402 		       sizeof(hw_cache_event_ids));
4403 		memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
4404 		       sizeof(hw_cache_extra_regs));
4405 
4406 		intel_pmu_lbr_init_snb();
4407 
4408 		x86_pmu.event_constraints = intel_snb_event_constraints;
4409 		x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
4410 		x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
4411 		if (boot_cpu_data.x86_model == INTEL_FAM6_SANDYBRIDGE_X)
4412 			x86_pmu.extra_regs = intel_snbep_extra_regs;
4413 		else
4414 			x86_pmu.extra_regs = intel_snb_extra_regs;
4415 
4416 
4417 		/* all extra regs are per-cpu when HT is on */
4418 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4419 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4420 
4421 		x86_pmu.cpu_events = snb_events_attrs;
4422 		mem_attr = snb_mem_events_attrs;
4423 
4424 		/* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
4425 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
4426 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
4427 		/* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
4428 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
4429 			X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
4430 
4431 		extra_attr = nhm_format_attr;
4432 
4433 		pr_cont("SandyBridge events, ");
4434 		name = "sandybridge";
4435 		break;
4436 
4437 	case INTEL_FAM6_IVYBRIDGE:
4438 	case INTEL_FAM6_IVYBRIDGE_X:
4439 		x86_add_quirk(intel_ht_bug);
4440 		memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
4441 		       sizeof(hw_cache_event_ids));
4442 		/* dTLB-load-misses on IVB is different than SNB */
4443 		hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */
4444 
4445 		memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
4446 		       sizeof(hw_cache_extra_regs));
4447 
4448 		intel_pmu_lbr_init_snb();
4449 
4450 		x86_pmu.event_constraints = intel_ivb_event_constraints;
4451 		x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
4452 		x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
4453 		x86_pmu.pebs_prec_dist = true;
4454 		if (boot_cpu_data.x86_model == INTEL_FAM6_IVYBRIDGE_X)
4455 			x86_pmu.extra_regs = intel_snbep_extra_regs;
4456 		else
4457 			x86_pmu.extra_regs = intel_snb_extra_regs;
4458 		/* all extra regs are per-cpu when HT is on */
4459 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4460 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4461 
4462 		x86_pmu.cpu_events = snb_events_attrs;
4463 		mem_attr = snb_mem_events_attrs;
4464 
4465 		/* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
4466 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
4467 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
4468 
4469 		extra_attr = nhm_format_attr;
4470 
4471 		pr_cont("IvyBridge events, ");
4472 		name = "ivybridge";
4473 		break;
4474 
4475 
4476 	case INTEL_FAM6_HASWELL_CORE:
4477 	case INTEL_FAM6_HASWELL_X:
4478 	case INTEL_FAM6_HASWELL_ULT:
4479 	case INTEL_FAM6_HASWELL_GT3E:
4480 		x86_add_quirk(intel_ht_bug);
4481 		x86_add_quirk(intel_pebs_isolation_quirk);
4482 		x86_pmu.late_ack = true;
4483 		memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
4484 		memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
4485 
4486 		intel_pmu_lbr_init_hsw();
4487 
4488 		x86_pmu.event_constraints = intel_hsw_event_constraints;
4489 		x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
4490 		x86_pmu.extra_regs = intel_snbep_extra_regs;
4491 		x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
4492 		x86_pmu.pebs_prec_dist = true;
4493 		/* all extra regs are per-cpu when HT is on */
4494 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4495 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4496 
4497 		x86_pmu.hw_config = hsw_hw_config;
4498 		x86_pmu.get_event_constraints = hsw_get_event_constraints;
4499 		x86_pmu.cpu_events = hsw_events_attrs;
4500 		x86_pmu.lbr_double_abort = true;
4501 		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
4502 			hsw_format_attr : nhm_format_attr;
4503 		mem_attr = hsw_mem_events_attrs;
4504 		tsx_attr = hsw_tsx_events_attrs;
4505 		pr_cont("Haswell events, ");
4506 		name = "haswell";
4507 		break;
4508 
4509 	case INTEL_FAM6_BROADWELL_CORE:
4510 	case INTEL_FAM6_BROADWELL_XEON_D:
4511 	case INTEL_FAM6_BROADWELL_GT3E:
4512 	case INTEL_FAM6_BROADWELL_X:
4513 		x86_add_quirk(intel_pebs_isolation_quirk);
4514 		x86_pmu.late_ack = true;
4515 		memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
4516 		memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
4517 
4518 		/* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */
4519 		hw_cache_extra_regs[C(LL)][C(OP_READ)][C(RESULT_MISS)] = HSW_DEMAND_READ |
4520 									 BDW_L3_MISS|HSW_SNOOP_DRAM;
4521 		hw_cache_extra_regs[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = HSW_DEMAND_WRITE|BDW_L3_MISS|
4522 									  HSW_SNOOP_DRAM;
4523 		hw_cache_extra_regs[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = HSW_DEMAND_READ|
4524 									     BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
4525 		hw_cache_extra_regs[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = HSW_DEMAND_WRITE|
4526 									      BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
4527 
4528 		intel_pmu_lbr_init_hsw();
4529 
4530 		x86_pmu.event_constraints = intel_bdw_event_constraints;
4531 		x86_pmu.pebs_constraints = intel_bdw_pebs_event_constraints;
4532 		x86_pmu.extra_regs = intel_snbep_extra_regs;
4533 		x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
4534 		x86_pmu.pebs_prec_dist = true;
4535 		/* all extra regs are per-cpu when HT is on */
4536 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4537 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4538 
4539 		x86_pmu.hw_config = hsw_hw_config;
4540 		x86_pmu.get_event_constraints = hsw_get_event_constraints;
4541 		x86_pmu.cpu_events = hsw_events_attrs;
4542 		x86_pmu.limit_period = bdw_limit_period;
4543 		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
4544 			hsw_format_attr : nhm_format_attr;
4545 		mem_attr = hsw_mem_events_attrs;
4546 		tsx_attr = hsw_tsx_events_attrs;
4547 		pr_cont("Broadwell events, ");
4548 		name = "broadwell";
4549 		break;
4550 
4551 	case INTEL_FAM6_XEON_PHI_KNL:
4552 	case INTEL_FAM6_XEON_PHI_KNM:
4553 		memcpy(hw_cache_event_ids,
4554 		       slm_hw_cache_event_ids, sizeof(hw_cache_event_ids));
4555 		memcpy(hw_cache_extra_regs,
4556 		       knl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
4557 		intel_pmu_lbr_init_knl();
4558 
4559 		x86_pmu.event_constraints = intel_slm_event_constraints;
4560 		x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
4561 		x86_pmu.extra_regs = intel_knl_extra_regs;
4562 
4563 		/* all extra regs are per-cpu when HT is on */
4564 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4565 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4566 		extra_attr = slm_format_attr;
4567 		pr_cont("Knights Landing/Mill events, ");
4568 		name = "knights-landing";
4569 		break;
4570 
4571 	case INTEL_FAM6_SKYLAKE_MOBILE:
4572 	case INTEL_FAM6_SKYLAKE_DESKTOP:
4573 	case INTEL_FAM6_SKYLAKE_X:
4574 	case INTEL_FAM6_KABYLAKE_MOBILE:
4575 	case INTEL_FAM6_KABYLAKE_DESKTOP:
4576 		x86_add_quirk(intel_pebs_isolation_quirk);
4577 		x86_pmu.late_ack = true;
4578 		memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
4579 		memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
4580 		intel_pmu_lbr_init_skl();
4581 
4582 		/* INT_MISC.RECOVERY_CYCLES has umask 1 in Skylake */
4583 		event_attr_td_recovery_bubbles.event_str_noht =
4584 			"event=0xd,umask=0x1,cmask=1";
4585 		event_attr_td_recovery_bubbles.event_str_ht =
4586 			"event=0xd,umask=0x1,cmask=1,any=1";
4587 
4588 		x86_pmu.event_constraints = intel_skl_event_constraints;
4589 		x86_pmu.pebs_constraints = intel_skl_pebs_event_constraints;
4590 		x86_pmu.extra_regs = intel_skl_extra_regs;
4591 		x86_pmu.pebs_aliases = intel_pebs_aliases_skl;
4592 		x86_pmu.pebs_prec_dist = true;
4593 		/* all extra regs are per-cpu when HT is on */
4594 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4595 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4596 
4597 		x86_pmu.hw_config = hsw_hw_config;
4598 		x86_pmu.get_event_constraints = hsw_get_event_constraints;
4599 		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
4600 			hsw_format_attr : nhm_format_attr;
4601 		extra_attr = merge_attr(extra_attr, skl_format_attr);
4602 		to_free = extra_attr;
4603 		x86_pmu.cpu_events = hsw_events_attrs;
4604 		mem_attr = hsw_mem_events_attrs;
4605 		tsx_attr = hsw_tsx_events_attrs;
4606 		intel_pmu_pebs_data_source_skl(
4607 			boot_cpu_data.x86_model == INTEL_FAM6_SKYLAKE_X);
4608 		pr_cont("Skylake events, ");
4609 		name = "skylake";
4610 		break;
4611 
4612 	default:
4613 		switch (x86_pmu.version) {
4614 		case 1:
4615 			x86_pmu.event_constraints = intel_v1_event_constraints;
4616 			pr_cont("generic architected perfmon v1, ");
4617 			name = "generic_arch_v1";
4618 			break;
4619 		default:
4620 			/*
4621 			 * default constraints for v2 and up
4622 			 */
4623 			x86_pmu.event_constraints = intel_gen_event_constraints;
4624 			pr_cont("generic architected perfmon, ");
4625 			name = "generic_arch_v2+";
4626 			break;
4627 		}
4628 	}
4629 
4630 	snprintf(pmu_name_str, sizeof(pmu_name_str), "%s", name);
4631 
4632 	if (version >= 2 && extra_attr) {
4633 		x86_pmu.format_attrs = merge_attr(intel_arch3_formats_attr,
4634 						  extra_attr);
4635 		WARN_ON(!x86_pmu.format_attrs);
4636 	}
4637 
4638 	x86_pmu.cpu_events = get_events_attrs(x86_pmu.cpu_events,
4639 					      mem_attr, tsx_attr);
4640 
4641 	if (x86_pmu.num_counters > INTEL_PMC_MAX_GENERIC) {
4642 		WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
4643 		     x86_pmu.num_counters, INTEL_PMC_MAX_GENERIC);
4644 		x86_pmu.num_counters = INTEL_PMC_MAX_GENERIC;
4645 	}
4646 	x86_pmu.intel_ctrl = (1ULL << x86_pmu.num_counters) - 1;
4647 
4648 	if (x86_pmu.num_counters_fixed > INTEL_PMC_MAX_FIXED) {
4649 		WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
4650 		     x86_pmu.num_counters_fixed, INTEL_PMC_MAX_FIXED);
4651 		x86_pmu.num_counters_fixed = INTEL_PMC_MAX_FIXED;
4652 	}
4653 
4654 	x86_pmu.intel_ctrl |=
4655 		((1LL << x86_pmu.num_counters_fixed)-1) << INTEL_PMC_IDX_FIXED;
4656 
4657 	if (x86_pmu.event_constraints) {
4658 		/*
4659 		 * event on fixed counter2 (REF_CYCLES) only works on this
4660 		 * counter, so do not extend mask to generic counters
4661 		 */
4662 		for_each_event_constraint(c, x86_pmu.event_constraints) {
4663 			if (c->cmask == FIXED_EVENT_FLAGS
4664 			    && c->idxmsk64 != INTEL_PMC_MSK_FIXED_REF_CYCLES) {
4665 				c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
4666 			}
4667 			c->idxmsk64 &=
4668 				~(~0ULL << (INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed));
4669 			c->weight = hweight64(c->idxmsk64);
4670 		}
4671 	}
4672 
4673 	/*
4674 	 * Access LBR MSR may cause #GP under certain circumstances.
4675 	 * E.g. KVM doesn't support LBR MSR
4676 	 * Check all LBT MSR here.
4677 	 * Disable LBR access if any LBR MSRs can not be accessed.
4678 	 */
4679 	if (x86_pmu.lbr_nr && !check_msr(x86_pmu.lbr_tos, 0x3UL))
4680 		x86_pmu.lbr_nr = 0;
4681 	for (i = 0; i < x86_pmu.lbr_nr; i++) {
4682 		if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) &&
4683 		      check_msr(x86_pmu.lbr_to + i, 0xffffUL)))
4684 			x86_pmu.lbr_nr = 0;
4685 	}
4686 
4687 	x86_pmu.caps_attrs = intel_pmu_caps_attrs;
4688 
4689 	if (x86_pmu.lbr_nr) {
4690 		x86_pmu.caps_attrs = merge_attr(x86_pmu.caps_attrs, lbr_attrs);
4691 		pr_cont("%d-deep LBR, ", x86_pmu.lbr_nr);
4692 	}
4693 
4694 	/*
4695 	 * Access extra MSR may cause #GP under certain circumstances.
4696 	 * E.g. KVM doesn't support offcore event
4697 	 * Check all extra_regs here.
4698 	 */
4699 	if (x86_pmu.extra_regs) {
4700 		for (er = x86_pmu.extra_regs; er->msr; er++) {
4701 			er->extra_msr_access = check_msr(er->msr, 0x11UL);
4702 			/* Disable LBR select mapping */
4703 			if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access)
4704 				x86_pmu.lbr_sel_map = NULL;
4705 		}
4706 	}
4707 
4708 	/* Support full width counters using alternative MSR range */
4709 	if (x86_pmu.intel_cap.full_width_write) {
4710 		x86_pmu.max_period = x86_pmu.cntval_mask >> 1;
4711 		x86_pmu.perfctr = MSR_IA32_PMC0;
4712 		pr_cont("full-width counters, ");
4713 	}
4714 
4715 	/*
4716 	 * For arch perfmon 4 use counter freezing to avoid
4717 	 * several MSR accesses in the PMI.
4718 	 */
4719 	if (x86_pmu.counter_freezing)
4720 		x86_pmu.handle_irq = intel_pmu_handle_irq_v4;
4721 
4722 	kfree(to_free);
4723 	return 0;
4724 }
4725 
4726 /*
4727  * HT bug: phase 2 init
4728  * Called once we have valid topology information to check
4729  * whether or not HT is enabled
4730  * If HT is off, then we disable the workaround
4731  */
4732 static __init int fixup_ht_bug(void)
4733 {
4734 	int c;
4735 	/*
4736 	 * problem not present on this CPU model, nothing to do
4737 	 */
4738 	if (!(x86_pmu.flags & PMU_FL_EXCL_ENABLED))
4739 		return 0;
4740 
4741 	if (topology_max_smt_threads() > 1) {
4742 		pr_info("PMU erratum BJ122, BV98, HSD29 worked around, HT is on\n");
4743 		return 0;
4744 	}
4745 
4746 	cpus_read_lock();
4747 
4748 	hardlockup_detector_perf_stop();
4749 
4750 	x86_pmu.flags &= ~(PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED);
4751 
4752 	x86_pmu.start_scheduling = NULL;
4753 	x86_pmu.commit_scheduling = NULL;
4754 	x86_pmu.stop_scheduling = NULL;
4755 
4756 	hardlockup_detector_perf_restart();
4757 
4758 	for_each_online_cpu(c)
4759 		free_excl_cntrs(c);
4760 
4761 	cpus_read_unlock();
4762 	pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n");
4763 	return 0;
4764 }
4765 subsys_initcall(fixup_ht_bug)
4766