xref: /linux/arch/um/kernel/process.c (revision c537b994505099b7197e7d3125b942ecbcc51eb6)
1 /*
2  * Copyright (C) 2000, 2001, 2002 Jeff Dike (jdike@karaya.com)
3  * Copyright 2003 PathScale, Inc.
4  * Licensed under the GPL
5  */
6 
7 #include "linux/kernel.h"
8 #include "linux/sched.h"
9 #include "linux/interrupt.h"
10 #include "linux/string.h"
11 #include "linux/mm.h"
12 #include "linux/slab.h"
13 #include "linux/utsname.h"
14 #include "linux/fs.h"
15 #include "linux/utime.h"
16 #include "linux/smp_lock.h"
17 #include "linux/module.h"
18 #include "linux/init.h"
19 #include "linux/capability.h"
20 #include "linux/vmalloc.h"
21 #include "linux/spinlock.h"
22 #include "linux/proc_fs.h"
23 #include "linux/ptrace.h"
24 #include "linux/random.h"
25 #include "linux/personality.h"
26 #include "asm/unistd.h"
27 #include "asm/mman.h"
28 #include "asm/segment.h"
29 #include "asm/stat.h"
30 #include "asm/pgtable.h"
31 #include "asm/processor.h"
32 #include "asm/tlbflush.h"
33 #include "asm/uaccess.h"
34 #include "asm/user.h"
35 #include "user_util.h"
36 #include "kern_util.h"
37 #include "kern.h"
38 #include "signal_kern.h"
39 #include "init.h"
40 #include "irq_user.h"
41 #include "mem_user.h"
42 #include "tlb.h"
43 #include "frame_kern.h"
44 #include "sigcontext.h"
45 #include "os.h"
46 #include "mode.h"
47 #include "mode_kern.h"
48 #include "choose-mode.h"
49 #include "um_malloc.h"
50 
51 /* This is a per-cpu array.  A processor only modifies its entry and it only
52  * cares about its entry, so it's OK if another processor is modifying its
53  * entry.
54  */
55 struct cpu_task cpu_tasks[NR_CPUS] = { [0 ... NR_CPUS - 1] = { -1, NULL } };
56 
57 int external_pid(void *t)
58 {
59 	struct task_struct *task = t ? t : current;
60 
61 	return(CHOOSE_MODE_PROC(external_pid_tt, external_pid_skas, task));
62 }
63 
64 int pid_to_processor_id(int pid)
65 {
66 	int i;
67 
68 	for(i = 0; i < ncpus; i++){
69 		if(cpu_tasks[i].pid == pid) return(i);
70 	}
71 	return(-1);
72 }
73 
74 void free_stack(unsigned long stack, int order)
75 {
76 	free_pages(stack, order);
77 }
78 
79 unsigned long alloc_stack(int order, int atomic)
80 {
81 	unsigned long page;
82 	gfp_t flags = GFP_KERNEL;
83 
84 	if (atomic)
85 		flags = GFP_ATOMIC;
86 	page = __get_free_pages(flags, order);
87 	if(page == 0)
88 		return(0);
89 	stack_protections(page);
90 	return(page);
91 }
92 
93 int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
94 {
95 	int pid;
96 
97 	current->thread.request.u.thread.proc = fn;
98 	current->thread.request.u.thread.arg = arg;
99 	pid = do_fork(CLONE_VM | CLONE_UNTRACED | flags, 0,
100 		      &current->thread.regs, 0, NULL, NULL);
101 	if(pid < 0)
102 		panic("do_fork failed in kernel_thread, errno = %d", pid);
103 	return(pid);
104 }
105 
106 void set_current(void *t)
107 {
108 	struct task_struct *task = t;
109 
110 	cpu_tasks[task_thread_info(task)->cpu] = ((struct cpu_task)
111 		{ external_pid(task), task });
112 }
113 
114 void *_switch_to(void *prev, void *next, void *last)
115 {
116 	struct task_struct *from = prev;
117 	struct task_struct *to= next;
118 
119 	to->thread.prev_sched = from;
120 	set_current(to);
121 
122 	do {
123 		current->thread.saved_task = NULL ;
124 		CHOOSE_MODE_PROC(switch_to_tt, switch_to_skas, prev, next);
125 		if(current->thread.saved_task)
126 			show_regs(&(current->thread.regs));
127 		next= current->thread.saved_task;
128 		prev= current;
129 	} while(current->thread.saved_task);
130 
131 	return(current->thread.prev_sched);
132 
133 }
134 
135 void interrupt_end(void)
136 {
137 	if(need_resched()) schedule();
138 	if(test_tsk_thread_flag(current, TIF_SIGPENDING)) do_signal();
139 }
140 
141 void release_thread(struct task_struct *task)
142 {
143 	CHOOSE_MODE(release_thread_tt(task), release_thread_skas(task));
144 }
145 
146 void exit_thread(void)
147 {
148 	unprotect_stack((unsigned long) current_thread);
149 }
150 
151 void *get_current(void)
152 {
153 	return(current);
154 }
155 
156 int copy_thread(int nr, unsigned long clone_flags, unsigned long sp,
157 		unsigned long stack_top, struct task_struct * p,
158 		struct pt_regs *regs)
159 {
160 	int ret;
161 
162 	p->thread = (struct thread_struct) INIT_THREAD;
163 	ret = CHOOSE_MODE_PROC(copy_thread_tt, copy_thread_skas, nr,
164 				clone_flags, sp, stack_top, p, regs);
165 
166 	if (ret || !current->thread.forking)
167 		goto out;
168 
169 	clear_flushed_tls(p);
170 
171 	/*
172 	 * Set a new TLS for the child thread?
173 	 */
174 	if (clone_flags & CLONE_SETTLS)
175 		ret = arch_copy_tls(p);
176 
177 out:
178 	return ret;
179 }
180 
181 void initial_thread_cb(void (*proc)(void *), void *arg)
182 {
183 	int save_kmalloc_ok = kmalloc_ok;
184 
185 	kmalloc_ok = 0;
186 	CHOOSE_MODE_PROC(initial_thread_cb_tt, initial_thread_cb_skas, proc,
187 			 arg);
188 	kmalloc_ok = save_kmalloc_ok;
189 }
190 
191 unsigned long stack_sp(unsigned long page)
192 {
193 	return(page + PAGE_SIZE - sizeof(void *));
194 }
195 
196 int current_pid(void)
197 {
198 	return(current->pid);
199 }
200 
201 void default_idle(void)
202 {
203 	CHOOSE_MODE(uml_idle_timer(), (void) 0);
204 
205 	while(1){
206 		/* endless idle loop with no priority at all */
207 
208 		/*
209 		 * although we are an idle CPU, we do not want to
210 		 * get into the scheduler unnecessarily.
211 		 */
212 		if(need_resched())
213 			schedule();
214 
215 		idle_sleep(10);
216 	}
217 }
218 
219 void cpu_idle(void)
220 {
221 	CHOOSE_MODE(init_idle_tt(), init_idle_skas());
222 }
223 
224 int page_size(void)
225 {
226 	return(PAGE_SIZE);
227 }
228 
229 void *um_virt_to_phys(struct task_struct *task, unsigned long addr,
230 		      pte_t *pte_out)
231 {
232 	pgd_t *pgd;
233 	pud_t *pud;
234 	pmd_t *pmd;
235 	pte_t *pte;
236 	pte_t ptent;
237 
238 	if(task->mm == NULL)
239 		return(ERR_PTR(-EINVAL));
240 	pgd = pgd_offset(task->mm, addr);
241 	if(!pgd_present(*pgd))
242 		return(ERR_PTR(-EINVAL));
243 
244 	pud = pud_offset(pgd, addr);
245 	if(!pud_present(*pud))
246 		return(ERR_PTR(-EINVAL));
247 
248 	pmd = pmd_offset(pud, addr);
249 	if(!pmd_present(*pmd))
250 		return(ERR_PTR(-EINVAL));
251 
252 	pte = pte_offset_kernel(pmd, addr);
253 	ptent = *pte;
254 	if(!pte_present(ptent))
255 		return(ERR_PTR(-EINVAL));
256 
257 	if(pte_out != NULL)
258 		*pte_out = ptent;
259 	return((void *) (pte_val(ptent) & PAGE_MASK) + (addr & ~PAGE_MASK));
260 }
261 
262 char *current_cmd(void)
263 {
264 #if defined(CONFIG_SMP) || defined(CONFIG_HIGHMEM)
265 	return("(Unknown)");
266 #else
267 	void *addr = um_virt_to_phys(current, current->mm->arg_start, NULL);
268 	return IS_ERR(addr) ? "(Unknown)": __va((unsigned long) addr);
269 #endif
270 }
271 
272 void force_sigbus(void)
273 {
274 	printk(KERN_ERR "Killing pid %d because of a lack of memory\n",
275 	       current->pid);
276 	lock_kernel();
277 	sigaddset(&current->pending.signal, SIGBUS);
278 	recalc_sigpending();
279 	current->flags |= PF_SIGNALED;
280 	do_exit(SIGBUS | 0x80);
281 }
282 
283 void dump_thread(struct pt_regs *regs, struct user *u)
284 {
285 }
286 
287 void enable_hlt(void)
288 {
289 	panic("enable_hlt");
290 }
291 
292 EXPORT_SYMBOL(enable_hlt);
293 
294 void disable_hlt(void)
295 {
296 	panic("disable_hlt");
297 }
298 
299 EXPORT_SYMBOL(disable_hlt);
300 
301 void *um_kmalloc(int size)
302 {
303 	return kmalloc(size, GFP_KERNEL);
304 }
305 
306 void *um_kmalloc_atomic(int size)
307 {
308 	return kmalloc(size, GFP_ATOMIC);
309 }
310 
311 void *um_vmalloc(int size)
312 {
313 	return vmalloc(size);
314 }
315 
316 void *um_vmalloc_atomic(int size)
317 {
318 	return __vmalloc(size, GFP_ATOMIC | __GFP_HIGHMEM, PAGE_KERNEL);
319 }
320 
321 int __cant_sleep(void) {
322 	return in_atomic() || irqs_disabled() || in_interrupt();
323 	/* Is in_interrupt() really needed? */
324 }
325 
326 unsigned long get_fault_addr(void)
327 {
328 	return((unsigned long) current->thread.fault_addr);
329 }
330 
331 EXPORT_SYMBOL(get_fault_addr);
332 
333 void not_implemented(void)
334 {
335 	printk(KERN_DEBUG "Something isn't implemented in here\n");
336 }
337 
338 EXPORT_SYMBOL(not_implemented);
339 
340 int user_context(unsigned long sp)
341 {
342 	unsigned long stack;
343 
344 	stack = sp & (PAGE_MASK << CONFIG_KERNEL_STACK_ORDER);
345 	return(stack != (unsigned long) current_thread);
346 }
347 
348 extern exitcall_t __uml_exitcall_begin, __uml_exitcall_end;
349 
350 void do_uml_exitcalls(void)
351 {
352 	exitcall_t *call;
353 
354 	call = &__uml_exitcall_end;
355 	while (--call >= &__uml_exitcall_begin)
356 		(*call)();
357 }
358 
359 char *uml_strdup(char *string)
360 {
361 	return kstrdup(string, GFP_KERNEL);
362 }
363 
364 int copy_to_user_proc(void __user *to, void *from, int size)
365 {
366 	return(copy_to_user(to, from, size));
367 }
368 
369 int copy_from_user_proc(void *to, void __user *from, int size)
370 {
371 	return(copy_from_user(to, from, size));
372 }
373 
374 int clear_user_proc(void __user *buf, int size)
375 {
376 	return(clear_user(buf, size));
377 }
378 
379 int strlen_user_proc(char __user *str)
380 {
381 	return(strlen_user(str));
382 }
383 
384 int smp_sigio_handler(void)
385 {
386 #ifdef CONFIG_SMP
387 	int cpu = current_thread->cpu;
388 	IPI_handler(cpu);
389 	if(cpu != 0)
390 		return(1);
391 #endif
392 	return(0);
393 }
394 
395 int cpu(void)
396 {
397 	return(current_thread->cpu);
398 }
399 
400 static atomic_t using_sysemu = ATOMIC_INIT(0);
401 int sysemu_supported;
402 
403 void set_using_sysemu(int value)
404 {
405 	if (value > sysemu_supported)
406 		return;
407 	atomic_set(&using_sysemu, value);
408 }
409 
410 int get_using_sysemu(void)
411 {
412 	return atomic_read(&using_sysemu);
413 }
414 
415 static int proc_read_sysemu(char *buf, char **start, off_t offset, int size,int *eof, void *data)
416 {
417 	if (snprintf(buf, size, "%d\n", get_using_sysemu()) < size) /*No overflow*/
418 		*eof = 1;
419 
420 	return strlen(buf);
421 }
422 
423 static int proc_write_sysemu(struct file *file,const char __user *buf, unsigned long count,void *data)
424 {
425 	char tmp[2];
426 
427 	if (copy_from_user(tmp, buf, 1))
428 		return -EFAULT;
429 
430 	if (tmp[0] >= '0' && tmp[0] <= '2')
431 		set_using_sysemu(tmp[0] - '0');
432 	return count; /*We use the first char, but pretend to write everything*/
433 }
434 
435 int __init make_proc_sysemu(void)
436 {
437 	struct proc_dir_entry *ent;
438 	if (!sysemu_supported)
439 		return 0;
440 
441 	ent = create_proc_entry("sysemu", 0600, &proc_root);
442 
443 	if (ent == NULL)
444 	{
445 		printk(KERN_WARNING "Failed to register /proc/sysemu\n");
446 		return(0);
447 	}
448 
449 	ent->read_proc  = proc_read_sysemu;
450 	ent->write_proc = proc_write_sysemu;
451 
452 	return 0;
453 }
454 
455 late_initcall(make_proc_sysemu);
456 
457 int singlestepping(void * t)
458 {
459 	struct task_struct *task = t ? t : current;
460 
461 	if ( ! (task->ptrace & PT_DTRACE) )
462 		return(0);
463 
464 	if (task->thread.singlestep_syscall)
465 		return(1);
466 
467 	return 2;
468 }
469 
470 /*
471  * Only x86 and x86_64 have an arch_align_stack().
472  * All other arches have "#define arch_align_stack(x) (x)"
473  * in their asm/system.h
474  * As this is included in UML from asm-um/system-generic.h,
475  * we can use it to behave as the subarch does.
476  */
477 #ifndef arch_align_stack
478 unsigned long arch_align_stack(unsigned long sp)
479 {
480 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
481 		sp -= get_random_int() % 8192;
482 	return sp & ~0xf;
483 }
484 #endif
485