xref: /linux/arch/um/kernel/irq.c (revision 42fda66387daa53538ae13a2c858396aaf037158)
1 /*
2  * Copyright (C) 2000 Jeff Dike (jdike@karaya.com)
3  * Licensed under the GPL
4  * Derived (i.e. mostly copied) from arch/i386/kernel/irq.c:
5  *	Copyright (C) 1992, 1998 Linus Torvalds, Ingo Molnar
6  */
7 
8 #include "linux/kernel.h"
9 #include "linux/module.h"
10 #include "linux/smp.h"
11 #include "linux/kernel_stat.h"
12 #include "linux/interrupt.h"
13 #include "linux/random.h"
14 #include "linux/slab.h"
15 #include "linux/file.h"
16 #include "linux/proc_fs.h"
17 #include "linux/init.h"
18 #include "linux/seq_file.h"
19 #include "linux/profile.h"
20 #include "linux/hardirq.h"
21 #include "asm/irq.h"
22 #include "asm/hw_irq.h"
23 #include "asm/atomic.h"
24 #include "asm/signal.h"
25 #include "asm/system.h"
26 #include "asm/errno.h"
27 #include "asm/uaccess.h"
28 #include "kern_util.h"
29 #include "irq_user.h"
30 #include "irq_kern.h"
31 #include "os.h"
32 #include "sigio.h"
33 #include "misc_constants.h"
34 #include "as-layout.h"
35 
36 /*
37  * Generic, controller-independent functions:
38  */
39 
40 int show_interrupts(struct seq_file *p, void *v)
41 {
42 	int i = *(loff_t *) v, j;
43 	struct irqaction * action;
44 	unsigned long flags;
45 
46 	if (i == 0) {
47 		seq_printf(p, "           ");
48 		for_each_online_cpu(j)
49 			seq_printf(p, "CPU%d       ",j);
50 		seq_putc(p, '\n');
51 	}
52 
53 	if (i < NR_IRQS) {
54 		spin_lock_irqsave(&irq_desc[i].lock, flags);
55 		action = irq_desc[i].action;
56 		if (!action)
57 			goto skip;
58 		seq_printf(p, "%3d: ",i);
59 #ifndef CONFIG_SMP
60 		seq_printf(p, "%10u ", kstat_irqs(i));
61 #else
62 		for_each_online_cpu(j)
63 			seq_printf(p, "%10u ", kstat_cpu(j).irqs[i]);
64 #endif
65 		seq_printf(p, " %14s", irq_desc[i].chip->typename);
66 		seq_printf(p, "  %s", action->name);
67 
68 		for (action=action->next; action; action = action->next)
69 			seq_printf(p, ", %s", action->name);
70 
71 		seq_putc(p, '\n');
72 skip:
73 		spin_unlock_irqrestore(&irq_desc[i].lock, flags);
74 	} else if (i == NR_IRQS) {
75 		seq_putc(p, '\n');
76 	}
77 
78 	return 0;
79 }
80 
81 /*
82  * This list is accessed under irq_lock, except in sigio_handler,
83  * where it is safe from being modified.  IRQ handlers won't change it -
84  * if an IRQ source has vanished, it will be freed by free_irqs just
85  * before returning from sigio_handler.  That will process a separate
86  * list of irqs to free, with its own locking, coming back here to
87  * remove list elements, taking the irq_lock to do so.
88  */
89 static struct irq_fd *active_fds = NULL;
90 static struct irq_fd **last_irq_ptr = &active_fds;
91 
92 extern void free_irqs(void);
93 
94 void sigio_handler(int sig, union uml_pt_regs *regs)
95 {
96 	struct irq_fd *irq_fd;
97 	int n;
98 
99 	if (smp_sigio_handler())
100 		return;
101 
102 	while (1) {
103 		n = os_waiting_for_events(active_fds);
104 		if (n <= 0) {
105 			if(n == -EINTR) continue;
106 			else break;
107 		}
108 
109 		for (irq_fd = active_fds; irq_fd != NULL; irq_fd = irq_fd->next) {
110 			if (irq_fd->current_events != 0) {
111 				irq_fd->current_events = 0;
112 				do_IRQ(irq_fd->irq, regs);
113 			}
114 		}
115 	}
116 
117 	free_irqs();
118 }
119 
120 static DEFINE_SPINLOCK(irq_lock);
121 
122 int activate_fd(int irq, int fd, int type, void *dev_id)
123 {
124 	struct pollfd *tmp_pfd;
125 	struct irq_fd *new_fd, *irq_fd;
126 	unsigned long flags;
127 	int pid, events, err, n;
128 
129 	pid = os_getpid();
130 	err = os_set_fd_async(fd, pid);
131 	if (err < 0)
132 		goto out;
133 
134 	err = -ENOMEM;
135 	new_fd = kmalloc(sizeof(struct irq_fd), GFP_KERNEL);
136 	if (new_fd == NULL)
137 		goto out;
138 
139 	if (type == IRQ_READ)
140 		events = UM_POLLIN | UM_POLLPRI;
141 	else
142 		events = UM_POLLOUT;
143 	*new_fd = ((struct irq_fd) { .next  		= NULL,
144 				     .id 		= dev_id,
145 				     .fd 		= fd,
146 				     .type 		= type,
147 				     .irq 		= irq,
148 				     .pid  		= pid,
149 				     .events 		= events,
150 				     .current_events 	= 0 } );
151 
152 	err = -EBUSY;
153 	spin_lock_irqsave(&irq_lock, flags);
154 	for (irq_fd = active_fds; irq_fd != NULL; irq_fd = irq_fd->next) {
155 		if ((irq_fd->fd == fd) && (irq_fd->type == type)) {
156 			printk("Registering fd %d twice\n", fd);
157 			printk("Irqs : %d, %d\n", irq_fd->irq, irq);
158 			printk("Ids : 0x%p, 0x%p\n", irq_fd->id, dev_id);
159 			goto out_unlock;
160 		}
161 	}
162 
163 	if (type == IRQ_WRITE)
164 		fd = -1;
165 
166 	tmp_pfd = NULL;
167 	n = 0;
168 
169 	while (1) {
170 		n = os_create_pollfd(fd, events, tmp_pfd, n);
171 		if (n == 0)
172 			break;
173 
174 		/* n > 0
175 		 * It means we couldn't put new pollfd to current pollfds
176 		 * and tmp_fds is NULL or too small for new pollfds array.
177 		 * Needed size is equal to n as minimum.
178 		 *
179 		 * Here we have to drop the lock in order to call
180 		 * kmalloc, which might sleep.
181 		 * If something else came in and changed the pollfds array
182 		 * so we will not be able to put new pollfd struct to pollfds
183 		 * then we free the buffer tmp_fds and try again.
184 		 */
185 		spin_unlock_irqrestore(&irq_lock, flags);
186 		kfree(tmp_pfd);
187 
188 		tmp_pfd = kmalloc(n, GFP_KERNEL);
189 		if (tmp_pfd == NULL)
190 			goto out_kfree;
191 
192 		spin_lock_irqsave(&irq_lock, flags);
193 	}
194 
195 	*last_irq_ptr = new_fd;
196 	last_irq_ptr = &new_fd->next;
197 
198 	spin_unlock_irqrestore(&irq_lock, flags);
199 
200 	/* This calls activate_fd, so it has to be outside the critical
201 	 * section.
202 	 */
203 	maybe_sigio_broken(fd, (type == IRQ_READ));
204 
205 	return 0;
206 
207  out_unlock:
208 	spin_unlock_irqrestore(&irq_lock, flags);
209  out_kfree:
210 	kfree(new_fd);
211  out:
212 	return err;
213 }
214 
215 static void free_irq_by_cb(int (*test)(struct irq_fd *, void *), void *arg)
216 {
217 	unsigned long flags;
218 
219 	spin_lock_irqsave(&irq_lock, flags);
220 	os_free_irq_by_cb(test, arg, active_fds, &last_irq_ptr);
221 	spin_unlock_irqrestore(&irq_lock, flags);
222 }
223 
224 struct irq_and_dev {
225 	int irq;
226 	void *dev;
227 };
228 
229 static int same_irq_and_dev(struct irq_fd *irq, void *d)
230 {
231 	struct irq_and_dev *data = d;
232 
233 	return ((irq->irq == data->irq) && (irq->id == data->dev));
234 }
235 
236 void free_irq_by_irq_and_dev(unsigned int irq, void *dev)
237 {
238 	struct irq_and_dev data = ((struct irq_and_dev) { .irq  = irq,
239 							  .dev  = dev });
240 
241 	free_irq_by_cb(same_irq_and_dev, &data);
242 }
243 
244 static int same_fd(struct irq_fd *irq, void *fd)
245 {
246 	return (irq->fd == *((int *)fd));
247 }
248 
249 void free_irq_by_fd(int fd)
250 {
251 	free_irq_by_cb(same_fd, &fd);
252 }
253 
254 /* Must be called with irq_lock held */
255 static struct irq_fd *find_irq_by_fd(int fd, int irqnum, int *index_out)
256 {
257 	struct irq_fd *irq;
258 	int i = 0;
259 	int fdi;
260 
261 	for (irq = active_fds; irq != NULL; irq = irq->next) {
262 		if ((irq->fd == fd) && (irq->irq == irqnum))
263 			break;
264 		i++;
265 	}
266 	if (irq == NULL) {
267 		printk("find_irq_by_fd doesn't have descriptor %d\n", fd);
268 		goto out;
269 	}
270 	fdi = os_get_pollfd(i);
271 	if ((fdi != -1) && (fdi != fd)) {
272 		printk("find_irq_by_fd - mismatch between active_fds and "
273 		       "pollfds, fd %d vs %d, need %d\n", irq->fd,
274 		       fdi, fd);
275 		irq = NULL;
276 		goto out;
277 	}
278 	*index_out = i;
279  out:
280 	return irq;
281 }
282 
283 void reactivate_fd(int fd, int irqnum)
284 {
285 	struct irq_fd *irq;
286 	unsigned long flags;
287 	int i;
288 
289 	spin_lock_irqsave(&irq_lock, flags);
290 	irq = find_irq_by_fd(fd, irqnum, &i);
291 	if (irq == NULL) {
292 		spin_unlock_irqrestore(&irq_lock, flags);
293 		return;
294 	}
295 	os_set_pollfd(i, irq->fd);
296 	spin_unlock_irqrestore(&irq_lock, flags);
297 
298 	add_sigio_fd(fd);
299 }
300 
301 void deactivate_fd(int fd, int irqnum)
302 {
303 	struct irq_fd *irq;
304 	unsigned long flags;
305 	int i;
306 
307 	spin_lock_irqsave(&irq_lock, flags);
308 	irq = find_irq_by_fd(fd, irqnum, &i);
309 	if(irq == NULL){
310 		spin_unlock_irqrestore(&irq_lock, flags);
311 		return;
312 	}
313 
314 	os_set_pollfd(i, -1);
315 	spin_unlock_irqrestore(&irq_lock, flags);
316 
317 	ignore_sigio_fd(fd);
318 }
319 
320 /*
321  * Called just before shutdown in order to provide a clean exec
322  * environment in case the system is rebooting.  No locking because
323  * that would cause a pointless shutdown hang if something hadn't
324  * released the lock.
325  */
326 int deactivate_all_fds(void)
327 {
328 	struct irq_fd *irq;
329 	int err;
330 
331 	for (irq = active_fds; irq != NULL; irq = irq->next) {
332 		err = os_clear_fd_async(irq->fd);
333 		if (err)
334 			return err;
335 	}
336 	/* If there is a signal already queued, after unblocking ignore it */
337 	os_set_ioignore();
338 
339 	return 0;
340 }
341 
342 /*
343  * do_IRQ handles all normal device IRQ's (the special
344  * SMP cross-CPU interrupts have their own specific
345  * handlers).
346  */
347 unsigned int do_IRQ(int irq, union uml_pt_regs *regs)
348 {
349 	struct pt_regs *old_regs = set_irq_regs((struct pt_regs *)regs);
350 	irq_enter();
351 	__do_IRQ(irq);
352 	irq_exit();
353 	set_irq_regs(old_regs);
354 	return 1;
355 }
356 
357 int um_request_irq(unsigned int irq, int fd, int type,
358 		   irq_handler_t handler,
359 		   unsigned long irqflags, const char * devname,
360 		   void *dev_id)
361 {
362 	int err;
363 
364 	err = request_irq(irq, handler, irqflags, devname, dev_id);
365 	if (err)
366 		return err;
367 
368 	if (fd != -1)
369 		err = activate_fd(irq, fd, type, dev_id);
370 	return err;
371 }
372 EXPORT_SYMBOL(um_request_irq);
373 EXPORT_SYMBOL(reactivate_fd);
374 
375 /* hw_interrupt_type must define (startup || enable) &&
376  * (shutdown || disable) && end */
377 static void dummy(unsigned int irq)
378 {
379 }
380 
381 /* This is used for everything else than the timer. */
382 static struct hw_interrupt_type normal_irq_type = {
383 	.typename = "SIGIO",
384 	.release = free_irq_by_irq_and_dev,
385 	.disable = dummy,
386 	.enable = dummy,
387 	.ack = dummy,
388 	.end = dummy
389 };
390 
391 static struct hw_interrupt_type SIGVTALRM_irq_type = {
392 	.typename = "SIGVTALRM",
393 	.release = free_irq_by_irq_and_dev,
394 	.shutdown = dummy, /* never called */
395 	.disable = dummy,
396 	.enable = dummy,
397 	.ack = dummy,
398 	.end = dummy
399 };
400 
401 void __init init_IRQ(void)
402 {
403 	int i;
404 
405 	irq_desc[TIMER_IRQ].status = IRQ_DISABLED;
406 	irq_desc[TIMER_IRQ].action = NULL;
407 	irq_desc[TIMER_IRQ].depth = 1;
408 	irq_desc[TIMER_IRQ].chip = &SIGVTALRM_irq_type;
409 	enable_irq(TIMER_IRQ);
410 	for (i = 1; i < NR_IRQS; i++) {
411 		irq_desc[i].status = IRQ_DISABLED;
412 		irq_desc[i].action = NULL;
413 		irq_desc[i].depth = 1;
414 		irq_desc[i].chip = &normal_irq_type;
415 		enable_irq(i);
416 	}
417 }
418 
419 int init_aio_irq(int irq, char *name, irq_handler_t handler)
420 {
421 	int fds[2], err;
422 
423 	err = os_pipe(fds, 1, 1);
424 	if (err) {
425 		printk("init_aio_irq - os_pipe failed, err = %d\n", -err);
426 		goto out;
427 	}
428 
429 	err = um_request_irq(irq, fds[0], IRQ_READ, handler,
430 			     IRQF_DISABLED | IRQF_SAMPLE_RANDOM, name,
431 			     (void *) (long) fds[0]);
432 	if (err) {
433 		printk("init_aio_irq - : um_request_irq failed, err = %d\n",
434 		       err);
435 		goto out_close;
436 	}
437 
438 	err = fds[1];
439 	goto out;
440 
441  out_close:
442 	os_close_file(fds[0]);
443 	os_close_file(fds[1]);
444  out:
445 	return err;
446 }
447 
448 /*
449  * IRQ stack entry and exit:
450  *
451  * Unlike i386, UML doesn't receive IRQs on the normal kernel stack
452  * and switch over to the IRQ stack after some preparation.  We use
453  * sigaltstack to receive signals on a separate stack from the start.
454  * These two functions make sure the rest of the kernel won't be too
455  * upset by being on a different stack.  The IRQ stack has a
456  * thread_info structure at the bottom so that current et al continue
457  * to work.
458  *
459  * to_irq_stack copies the current task's thread_info to the IRQ stack
460  * thread_info and sets the tasks's stack to point to the IRQ stack.
461  *
462  * from_irq_stack copies the thread_info struct back (flags may have
463  * been modified) and resets the task's stack pointer.
464  *
465  * Tricky bits -
466  *
467  * What happens when two signals race each other?  UML doesn't block
468  * signals with sigprocmask, SA_DEFER, or sa_mask, so a second signal
469  * could arrive while a previous one is still setting up the
470  * thread_info.
471  *
472  * There are three cases -
473  *     The first interrupt on the stack - sets up the thread_info and
474  * handles the interrupt
475  *     A nested interrupt interrupting the copying of the thread_info -
476  * can't handle the interrupt, as the stack is in an unknown state
477  *     A nested interrupt not interrupting the copying of the
478  * thread_info - doesn't do any setup, just handles the interrupt
479  *
480  * The first job is to figure out whether we interrupted stack setup.
481  * This is done by xchging the signal mask with thread_info->pending.
482  * If the value that comes back is zero, then there is no setup in
483  * progress, and the interrupt can be handled.  If the value is
484  * non-zero, then there is stack setup in progress.  In order to have
485  * the interrupt handled, we leave our signal in the mask, and it will
486  * be handled by the upper handler after it has set up the stack.
487  *
488  * Next is to figure out whether we are the outer handler or a nested
489  * one.  As part of setting up the stack, thread_info->real_thread is
490  * set to non-NULL (and is reset to NULL on exit).  This is the
491  * nesting indicator.  If it is non-NULL, then the stack is already
492  * set up and the handler can run.
493  */
494 
495 static unsigned long pending_mask;
496 
497 unsigned long to_irq_stack(unsigned long *mask_out)
498 {
499 	struct thread_info *ti;
500 	unsigned long mask, old;
501 	int nested;
502 
503 	mask = xchg(&pending_mask, *mask_out);
504 	if(mask != 0){
505 		/* If any interrupts come in at this point, we want to
506 		 * make sure that their bits aren't lost by our
507 		 * putting our bit in.  So, this loop accumulates bits
508 		 * until xchg returns the same value that we put in.
509 		 * When that happens, there were no new interrupts,
510 		 * and pending_mask contains a bit for each interrupt
511 		 * that came in.
512 		 */
513 		old = *mask_out;
514 		do {
515 			old |= mask;
516 			mask = xchg(&pending_mask, old);
517 		} while(mask != old);
518 		return 1;
519 	}
520 
521 	ti = current_thread_info();
522 	nested = (ti->real_thread != NULL);
523 	if(!nested){
524 		struct task_struct *task;
525 		struct thread_info *tti;
526 
527 		task = cpu_tasks[ti->cpu].task;
528 		tti = task_thread_info(task);
529 
530 		*ti = *tti;
531 		ti->real_thread = tti;
532 		task->stack = ti;
533 	}
534 
535 	mask = xchg(&pending_mask, 0);
536 	*mask_out |= mask | nested;
537 	return 0;
538 }
539 
540 unsigned long from_irq_stack(int nested)
541 {
542 	struct thread_info *ti, *to;
543 	unsigned long mask;
544 
545 	ti = current_thread_info();
546 
547 	pending_mask = 1;
548 
549 	to = ti->real_thread;
550 	current->stack = to;
551 	ti->real_thread = NULL;
552 	*to = *ti;
553 
554 	mask = xchg(&pending_mask, 0);
555 	return mask & ~1;
556 }
557 
558