xref: /linux/arch/s390/kernel/crash_dump.c (revision 3e44c471a2dab210f7e9b1e5f7d4d54d52df59eb)
1 /*
2  * S390 kdump implementation
3  *
4  * Copyright IBM Corp. 2011
5  * Author(s): Michael Holzheu <holzheu@linux.vnet.ibm.com>
6  */
7 
8 #include <linux/crash_dump.h>
9 #include <asm/lowcore.h>
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/gfp.h>
13 #include <linux/slab.h>
14 #include <linux/bootmem.h>
15 #include <linux/elf.h>
16 #include <linux/memblock.h>
17 #include <asm/os_info.h>
18 #include <asm/elf.h>
19 #include <asm/ipl.h>
20 #include <asm/sclp.h>
21 
22 #define PTR_ADD(x, y) (((char *) (x)) + ((unsigned long) (y)))
23 #define PTR_SUB(x, y) (((char *) (x)) - ((unsigned long) (y)))
24 #define PTR_DIFF(x, y) ((unsigned long)(((char *) (x)) - ((unsigned long) (y))))
25 
26 static struct memblock_region oldmem_region;
27 
28 static struct memblock_type oldmem_type = {
29 	.cnt = 1,
30 	.max = 1,
31 	.total_size = 0,
32 	.regions = &oldmem_region,
33 };
34 
35 #define for_each_dump_mem_range(i, nid, p_start, p_end, p_nid)		\
36 	for (i = 0, __next_mem_range(&i, nid, MEMBLOCK_NONE,		\
37 				     &memblock.physmem,			\
38 				     &oldmem_type, p_start,		\
39 				     p_end, p_nid);			\
40 	     i != (u64)ULLONG_MAX;					\
41 	     __next_mem_range(&i, nid, MEMBLOCK_NONE, &memblock.physmem,\
42 			      &oldmem_type,				\
43 			      p_start, p_end, p_nid))
44 
45 struct dump_save_areas dump_save_areas;
46 
47 /*
48  * Allocate and add a save area for a CPU
49  */
50 struct save_area_ext *dump_save_area_create(int cpu)
51 {
52 	struct save_area_ext **save_areas, *save_area;
53 
54 	save_area = kmalloc(sizeof(*save_area), GFP_KERNEL);
55 	if (!save_area)
56 		return NULL;
57 	if (cpu + 1 > dump_save_areas.count) {
58 		dump_save_areas.count = cpu + 1;
59 		save_areas = krealloc(dump_save_areas.areas,
60 				      dump_save_areas.count * sizeof(void *),
61 				      GFP_KERNEL | __GFP_ZERO);
62 		if (!save_areas) {
63 			kfree(save_area);
64 			return NULL;
65 		}
66 		dump_save_areas.areas = save_areas;
67 	}
68 	dump_save_areas.areas[cpu] = save_area;
69 	return save_area;
70 }
71 
72 /*
73  * Return physical address for virtual address
74  */
75 static inline void *load_real_addr(void *addr)
76 {
77 	unsigned long real_addr;
78 
79 	asm volatile(
80 		   "	lra     %0,0(%1)\n"
81 		   "	jz	0f\n"
82 		   "	la	%0,0\n"
83 		   "0:"
84 		   : "=a" (real_addr) : "a" (addr) : "cc");
85 	return (void *)real_addr;
86 }
87 
88 /*
89  * Copy real to virtual or real memory
90  */
91 static int copy_from_realmem(void *dest, void *src, size_t count)
92 {
93 	unsigned long size;
94 
95 	if (!count)
96 		return 0;
97 	if (!is_vmalloc_or_module_addr(dest))
98 		return memcpy_real(dest, src, count);
99 	do {
100 		size = min(count, PAGE_SIZE - (__pa(dest) & ~PAGE_MASK));
101 		if (memcpy_real(load_real_addr(dest), src, size))
102 			return -EFAULT;
103 		count -= size;
104 		dest += size;
105 		src += size;
106 	} while (count);
107 	return 0;
108 }
109 
110 /*
111  * Pointer to ELF header in new kernel
112  */
113 static void *elfcorehdr_newmem;
114 
115 /*
116  * Copy one page from zfcpdump "oldmem"
117  *
118  * For pages below HSA size memory from the HSA is copied. Otherwise
119  * real memory copy is used.
120  */
121 static ssize_t copy_oldmem_page_zfcpdump(char *buf, size_t csize,
122 					 unsigned long src, int userbuf)
123 {
124 	int rc;
125 
126 	if (src < sclp.hsa_size) {
127 		rc = memcpy_hsa(buf, src, csize, userbuf);
128 	} else {
129 		if (userbuf)
130 			rc = copy_to_user_real((void __force __user *) buf,
131 					       (void *) src, csize);
132 		else
133 			rc = memcpy_real(buf, (void *) src, csize);
134 	}
135 	return rc ? rc : csize;
136 }
137 
138 /*
139  * Copy one page from kdump "oldmem"
140  *
141  * For the kdump reserved memory this functions performs a swap operation:
142  *  - [OLDMEM_BASE - OLDMEM_BASE + OLDMEM_SIZE] is mapped to [0 - OLDMEM_SIZE].
143  *  - [0 - OLDMEM_SIZE] is mapped to [OLDMEM_BASE - OLDMEM_BASE + OLDMEM_SIZE]
144  */
145 static ssize_t copy_oldmem_page_kdump(char *buf, size_t csize,
146 				      unsigned long src, int userbuf)
147 
148 {
149 	int rc;
150 
151 	if (src < OLDMEM_SIZE)
152 		src += OLDMEM_BASE;
153 	else if (src > OLDMEM_BASE &&
154 		 src < OLDMEM_BASE + OLDMEM_SIZE)
155 		src -= OLDMEM_BASE;
156 	if (userbuf)
157 		rc = copy_to_user_real((void __force __user *) buf,
158 				       (void *) src, csize);
159 	else
160 		rc = copy_from_realmem(buf, (void *) src, csize);
161 	return (rc == 0) ? rc : csize;
162 }
163 
164 /*
165  * Copy one page from "oldmem"
166  */
167 ssize_t copy_oldmem_page(unsigned long pfn, char *buf, size_t csize,
168 			 unsigned long offset, int userbuf)
169 {
170 	unsigned long src;
171 
172 	if (!csize)
173 		return 0;
174 	src = (pfn << PAGE_SHIFT) + offset;
175 	if (OLDMEM_BASE)
176 		return copy_oldmem_page_kdump(buf, csize, src, userbuf);
177 	else
178 		return copy_oldmem_page_zfcpdump(buf, csize, src, userbuf);
179 }
180 
181 /*
182  * Remap "oldmem" for kdump
183  *
184  * For the kdump reserved memory this functions performs a swap operation:
185  * [0 - OLDMEM_SIZE] is mapped to [OLDMEM_BASE - OLDMEM_BASE + OLDMEM_SIZE]
186  */
187 static int remap_oldmem_pfn_range_kdump(struct vm_area_struct *vma,
188 					unsigned long from, unsigned long pfn,
189 					unsigned long size, pgprot_t prot)
190 {
191 	unsigned long size_old;
192 	int rc;
193 
194 	if (pfn < OLDMEM_SIZE >> PAGE_SHIFT) {
195 		size_old = min(size, OLDMEM_SIZE - (pfn << PAGE_SHIFT));
196 		rc = remap_pfn_range(vma, from,
197 				     pfn + (OLDMEM_BASE >> PAGE_SHIFT),
198 				     size_old, prot);
199 		if (rc || size == size_old)
200 			return rc;
201 		size -= size_old;
202 		from += size_old;
203 		pfn += size_old >> PAGE_SHIFT;
204 	}
205 	return remap_pfn_range(vma, from, pfn, size, prot);
206 }
207 
208 /*
209  * Remap "oldmem" for zfcpdump
210  *
211  * We only map available memory above HSA size. Memory below HSA size
212  * is read on demand using the copy_oldmem_page() function.
213  */
214 static int remap_oldmem_pfn_range_zfcpdump(struct vm_area_struct *vma,
215 					   unsigned long from,
216 					   unsigned long pfn,
217 					   unsigned long size, pgprot_t prot)
218 {
219 	unsigned long hsa_end = sclp.hsa_size;
220 	unsigned long size_hsa;
221 
222 	if (pfn < hsa_end >> PAGE_SHIFT) {
223 		size_hsa = min(size, hsa_end - (pfn << PAGE_SHIFT));
224 		if (size == size_hsa)
225 			return 0;
226 		size -= size_hsa;
227 		from += size_hsa;
228 		pfn += size_hsa >> PAGE_SHIFT;
229 	}
230 	return remap_pfn_range(vma, from, pfn, size, prot);
231 }
232 
233 /*
234  * Remap "oldmem" for kdump or zfcpdump
235  */
236 int remap_oldmem_pfn_range(struct vm_area_struct *vma, unsigned long from,
237 			   unsigned long pfn, unsigned long size, pgprot_t prot)
238 {
239 	if (OLDMEM_BASE)
240 		return remap_oldmem_pfn_range_kdump(vma, from, pfn, size, prot);
241 	else
242 		return remap_oldmem_pfn_range_zfcpdump(vma, from, pfn, size,
243 						       prot);
244 }
245 
246 /*
247  * Copy memory from old kernel
248  */
249 int copy_from_oldmem(void *dest, void *src, size_t count)
250 {
251 	unsigned long copied = 0;
252 	int rc;
253 
254 	if (OLDMEM_BASE) {
255 		if ((unsigned long) src < OLDMEM_SIZE) {
256 			copied = min(count, OLDMEM_SIZE - (unsigned long) src);
257 			rc = copy_from_realmem(dest, src + OLDMEM_BASE, copied);
258 			if (rc)
259 				return rc;
260 		}
261 	} else {
262 		unsigned long hsa_end = sclp.hsa_size;
263 		if ((unsigned long) src < hsa_end) {
264 			copied = min(count, hsa_end - (unsigned long) src);
265 			rc = memcpy_hsa(dest, (unsigned long) src, copied, 0);
266 			if (rc)
267 				return rc;
268 		}
269 	}
270 	return copy_from_realmem(dest + copied, src + copied, count - copied);
271 }
272 
273 /*
274  * Alloc memory and panic in case of ENOMEM
275  */
276 static void *kzalloc_panic(int len)
277 {
278 	void *rc;
279 
280 	rc = kzalloc(len, GFP_KERNEL);
281 	if (!rc)
282 		panic("s390 kdump kzalloc (%d) failed", len);
283 	return rc;
284 }
285 
286 /*
287  * Initialize ELF note
288  */
289 static void *nt_init(void *buf, Elf64_Word type, void *desc, int d_len,
290 		     const char *name)
291 {
292 	Elf64_Nhdr *note;
293 	u64 len;
294 
295 	note = (Elf64_Nhdr *)buf;
296 	note->n_namesz = strlen(name) + 1;
297 	note->n_descsz = d_len;
298 	note->n_type = type;
299 	len = sizeof(Elf64_Nhdr);
300 
301 	memcpy(buf + len, name, note->n_namesz);
302 	len = roundup(len + note->n_namesz, 4);
303 
304 	memcpy(buf + len, desc, note->n_descsz);
305 	len = roundup(len + note->n_descsz, 4);
306 
307 	return PTR_ADD(buf, len);
308 }
309 
310 /*
311  * Initialize prstatus note
312  */
313 static void *nt_prstatus(void *ptr, struct save_area *sa)
314 {
315 	struct elf_prstatus nt_prstatus;
316 	static int cpu_nr = 1;
317 
318 	memset(&nt_prstatus, 0, sizeof(nt_prstatus));
319 	memcpy(&nt_prstatus.pr_reg.gprs, sa->gp_regs, sizeof(sa->gp_regs));
320 	memcpy(&nt_prstatus.pr_reg.psw, sa->psw, sizeof(sa->psw));
321 	memcpy(&nt_prstatus.pr_reg.acrs, sa->acc_regs, sizeof(sa->acc_regs));
322 	nt_prstatus.pr_pid = cpu_nr;
323 	cpu_nr++;
324 
325 	return nt_init(ptr, NT_PRSTATUS, &nt_prstatus, sizeof(nt_prstatus),
326 			 "CORE");
327 }
328 
329 /*
330  * Initialize fpregset (floating point) note
331  */
332 static void *nt_fpregset(void *ptr, struct save_area *sa)
333 {
334 	elf_fpregset_t nt_fpregset;
335 
336 	memset(&nt_fpregset, 0, sizeof(nt_fpregset));
337 	memcpy(&nt_fpregset.fpc, &sa->fp_ctrl_reg, sizeof(sa->fp_ctrl_reg));
338 	memcpy(&nt_fpregset.fprs, &sa->fp_regs, sizeof(sa->fp_regs));
339 
340 	return nt_init(ptr, NT_PRFPREG, &nt_fpregset, sizeof(nt_fpregset),
341 		       "CORE");
342 }
343 
344 /*
345  * Initialize timer note
346  */
347 static void *nt_s390_timer(void *ptr, struct save_area *sa)
348 {
349 	return nt_init(ptr, NT_S390_TIMER, &sa->timer, sizeof(sa->timer),
350 			 KEXEC_CORE_NOTE_NAME);
351 }
352 
353 /*
354  * Initialize TOD clock comparator note
355  */
356 static void *nt_s390_tod_cmp(void *ptr, struct save_area *sa)
357 {
358 	return nt_init(ptr, NT_S390_TODCMP, &sa->clk_cmp,
359 		       sizeof(sa->clk_cmp), KEXEC_CORE_NOTE_NAME);
360 }
361 
362 /*
363  * Initialize TOD programmable register note
364  */
365 static void *nt_s390_tod_preg(void *ptr, struct save_area *sa)
366 {
367 	return nt_init(ptr, NT_S390_TODPREG, &sa->tod_reg,
368 		       sizeof(sa->tod_reg), KEXEC_CORE_NOTE_NAME);
369 }
370 
371 /*
372  * Initialize control register note
373  */
374 static void *nt_s390_ctrs(void *ptr, struct save_area *sa)
375 {
376 	return nt_init(ptr, NT_S390_CTRS, &sa->ctrl_regs,
377 		       sizeof(sa->ctrl_regs), KEXEC_CORE_NOTE_NAME);
378 }
379 
380 /*
381  * Initialize prefix register note
382  */
383 static void *nt_s390_prefix(void *ptr, struct save_area *sa)
384 {
385 	return nt_init(ptr, NT_S390_PREFIX, &sa->pref_reg,
386 			 sizeof(sa->pref_reg), KEXEC_CORE_NOTE_NAME);
387 }
388 
389 /*
390  * Initialize vxrs high note (full 128 bit VX registers 16-31)
391  */
392 static void *nt_s390_vx_high(void *ptr, __vector128 *vx_regs)
393 {
394 	return nt_init(ptr, NT_S390_VXRS_HIGH, &vx_regs[16],
395 		       16 * sizeof(__vector128), KEXEC_CORE_NOTE_NAME);
396 }
397 
398 /*
399  * Initialize vxrs low note (lower halves of VX registers 0-15)
400  */
401 static void *nt_s390_vx_low(void *ptr, __vector128 *vx_regs)
402 {
403 	Elf64_Nhdr *note;
404 	u64 len;
405 	int i;
406 
407 	note = (Elf64_Nhdr *)ptr;
408 	note->n_namesz = strlen(KEXEC_CORE_NOTE_NAME) + 1;
409 	note->n_descsz = 16 * 8;
410 	note->n_type = NT_S390_VXRS_LOW;
411 	len = sizeof(Elf64_Nhdr);
412 
413 	memcpy(ptr + len, KEXEC_CORE_NOTE_NAME, note->n_namesz);
414 	len = roundup(len + note->n_namesz, 4);
415 
416 	ptr += len;
417 	/* Copy lower halves of SIMD registers 0-15 */
418 	for (i = 0; i < 16; i++) {
419 		memcpy(ptr, &vx_regs[i], 8);
420 		ptr += 8;
421 	}
422 	return ptr;
423 }
424 
425 /*
426  * Fill ELF notes for one CPU with save area registers
427  */
428 void *fill_cpu_elf_notes(void *ptr, struct save_area *sa, __vector128 *vx_regs)
429 {
430 	ptr = nt_prstatus(ptr, sa);
431 	ptr = nt_fpregset(ptr, sa);
432 	ptr = nt_s390_timer(ptr, sa);
433 	ptr = nt_s390_tod_cmp(ptr, sa);
434 	ptr = nt_s390_tod_preg(ptr, sa);
435 	ptr = nt_s390_ctrs(ptr, sa);
436 	ptr = nt_s390_prefix(ptr, sa);
437 	if (MACHINE_HAS_VX && vx_regs) {
438 		ptr = nt_s390_vx_low(ptr, vx_regs);
439 		ptr = nt_s390_vx_high(ptr, vx_regs);
440 	}
441 	return ptr;
442 }
443 
444 /*
445  * Initialize prpsinfo note (new kernel)
446  */
447 static void *nt_prpsinfo(void *ptr)
448 {
449 	struct elf_prpsinfo prpsinfo;
450 
451 	memset(&prpsinfo, 0, sizeof(prpsinfo));
452 	prpsinfo.pr_sname = 'R';
453 	strcpy(prpsinfo.pr_fname, "vmlinux");
454 	return nt_init(ptr, NT_PRPSINFO, &prpsinfo, sizeof(prpsinfo),
455 		       KEXEC_CORE_NOTE_NAME);
456 }
457 
458 /*
459  * Get vmcoreinfo using lowcore->vmcore_info (new kernel)
460  */
461 static void *get_vmcoreinfo_old(unsigned long *size)
462 {
463 	char nt_name[11], *vmcoreinfo;
464 	Elf64_Nhdr note;
465 	void *addr;
466 
467 	if (copy_from_oldmem(&addr, &S390_lowcore.vmcore_info, sizeof(addr)))
468 		return NULL;
469 	memset(nt_name, 0, sizeof(nt_name));
470 	if (copy_from_oldmem(&note, addr, sizeof(note)))
471 		return NULL;
472 	if (copy_from_oldmem(nt_name, addr + sizeof(note), sizeof(nt_name) - 1))
473 		return NULL;
474 	if (strcmp(nt_name, "VMCOREINFO") != 0)
475 		return NULL;
476 	vmcoreinfo = kzalloc_panic(note.n_descsz);
477 	if (copy_from_oldmem(vmcoreinfo, addr + 24, note.n_descsz))
478 		return NULL;
479 	*size = note.n_descsz;
480 	return vmcoreinfo;
481 }
482 
483 /*
484  * Initialize vmcoreinfo note (new kernel)
485  */
486 static void *nt_vmcoreinfo(void *ptr)
487 {
488 	unsigned long size;
489 	void *vmcoreinfo;
490 
491 	vmcoreinfo = os_info_old_entry(OS_INFO_VMCOREINFO, &size);
492 	if (!vmcoreinfo)
493 		vmcoreinfo = get_vmcoreinfo_old(&size);
494 	if (!vmcoreinfo)
495 		return ptr;
496 	return nt_init(ptr, 0, vmcoreinfo, size, "VMCOREINFO");
497 }
498 
499 /*
500  * Initialize ELF header (new kernel)
501  */
502 static void *ehdr_init(Elf64_Ehdr *ehdr, int mem_chunk_cnt)
503 {
504 	memset(ehdr, 0, sizeof(*ehdr));
505 	memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
506 	ehdr->e_ident[EI_CLASS] = ELFCLASS64;
507 	ehdr->e_ident[EI_DATA] = ELFDATA2MSB;
508 	ehdr->e_ident[EI_VERSION] = EV_CURRENT;
509 	memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
510 	ehdr->e_type = ET_CORE;
511 	ehdr->e_machine = EM_S390;
512 	ehdr->e_version = EV_CURRENT;
513 	ehdr->e_phoff = sizeof(Elf64_Ehdr);
514 	ehdr->e_ehsize = sizeof(Elf64_Ehdr);
515 	ehdr->e_phentsize = sizeof(Elf64_Phdr);
516 	ehdr->e_phnum = mem_chunk_cnt + 1;
517 	return ehdr + 1;
518 }
519 
520 /*
521  * Return CPU count for ELF header (new kernel)
522  */
523 static int get_cpu_cnt(void)
524 {
525 	int i, cpus = 0;
526 
527 	for (i = 0; i < dump_save_areas.count; i++) {
528 		if (dump_save_areas.areas[i]->sa.pref_reg == 0)
529 			continue;
530 		cpus++;
531 	}
532 	return cpus;
533 }
534 
535 /*
536  * Return memory chunk count for ELF header (new kernel)
537  */
538 static int get_mem_chunk_cnt(void)
539 {
540 	int cnt = 0;
541 	u64 idx;
542 
543 	for_each_dump_mem_range(idx, NUMA_NO_NODE, NULL, NULL, NULL)
544 		cnt++;
545 	return cnt;
546 }
547 
548 /*
549  * Initialize ELF loads (new kernel)
550  */
551 static void loads_init(Elf64_Phdr *phdr, u64 loads_offset)
552 {
553 	phys_addr_t start, end;
554 	u64 idx;
555 
556 	for_each_dump_mem_range(idx, NUMA_NO_NODE, &start, &end, NULL) {
557 		phdr->p_filesz = end - start;
558 		phdr->p_type = PT_LOAD;
559 		phdr->p_offset = start;
560 		phdr->p_vaddr = start;
561 		phdr->p_paddr = start;
562 		phdr->p_memsz = end - start;
563 		phdr->p_flags = PF_R | PF_W | PF_X;
564 		phdr->p_align = PAGE_SIZE;
565 		phdr++;
566 	}
567 }
568 
569 /*
570  * Initialize notes (new kernel)
571  */
572 static void *notes_init(Elf64_Phdr *phdr, void *ptr, u64 notes_offset)
573 {
574 	struct save_area_ext *sa_ext;
575 	void *ptr_start = ptr;
576 	int i;
577 
578 	ptr = nt_prpsinfo(ptr);
579 
580 	for (i = 0; i < dump_save_areas.count; i++) {
581 		sa_ext = dump_save_areas.areas[i];
582 		if (sa_ext->sa.pref_reg == 0)
583 			continue;
584 		ptr = fill_cpu_elf_notes(ptr, &sa_ext->sa, sa_ext->vx_regs);
585 	}
586 	ptr = nt_vmcoreinfo(ptr);
587 	memset(phdr, 0, sizeof(*phdr));
588 	phdr->p_type = PT_NOTE;
589 	phdr->p_offset = notes_offset;
590 	phdr->p_filesz = (unsigned long) PTR_SUB(ptr, ptr_start);
591 	phdr->p_memsz = phdr->p_filesz;
592 	return ptr;
593 }
594 
595 /*
596  * Create ELF core header (new kernel)
597  */
598 int elfcorehdr_alloc(unsigned long long *addr, unsigned long long *size)
599 {
600 	Elf64_Phdr *phdr_notes, *phdr_loads;
601 	int mem_chunk_cnt;
602 	void *ptr, *hdr;
603 	u32 alloc_size;
604 	u64 hdr_off;
605 
606 	/* If we are not in kdump or zfcpdump mode return */
607 	if (!OLDMEM_BASE && ipl_info.type != IPL_TYPE_FCP_DUMP)
608 		return 0;
609 	/* If elfcorehdr= has been passed via cmdline, we use that one */
610 	if (elfcorehdr_addr != ELFCORE_ADDR_MAX)
611 		return 0;
612 	/* If we cannot get HSA size for zfcpdump return error */
613 	if (ipl_info.type == IPL_TYPE_FCP_DUMP && !sclp.hsa_size)
614 		return -ENODEV;
615 
616 	/* For kdump, exclude previous crashkernel memory */
617 	if (OLDMEM_BASE) {
618 		oldmem_region.base = OLDMEM_BASE;
619 		oldmem_region.size = OLDMEM_SIZE;
620 		oldmem_type.total_size = OLDMEM_SIZE;
621 	}
622 
623 	mem_chunk_cnt = get_mem_chunk_cnt();
624 
625 	alloc_size = 0x1000 + get_cpu_cnt() * 0x4a0 +
626 		mem_chunk_cnt * sizeof(Elf64_Phdr);
627 	hdr = kzalloc_panic(alloc_size);
628 	/* Init elf header */
629 	ptr = ehdr_init(hdr, mem_chunk_cnt);
630 	/* Init program headers */
631 	phdr_notes = ptr;
632 	ptr = PTR_ADD(ptr, sizeof(Elf64_Phdr));
633 	phdr_loads = ptr;
634 	ptr = PTR_ADD(ptr, sizeof(Elf64_Phdr) * mem_chunk_cnt);
635 	/* Init notes */
636 	hdr_off = PTR_DIFF(ptr, hdr);
637 	ptr = notes_init(phdr_notes, ptr, ((unsigned long) hdr) + hdr_off);
638 	/* Init loads */
639 	hdr_off = PTR_DIFF(ptr, hdr);
640 	loads_init(phdr_loads, hdr_off);
641 	*addr = (unsigned long long) hdr;
642 	elfcorehdr_newmem = hdr;
643 	*size = (unsigned long long) hdr_off;
644 	BUG_ON(elfcorehdr_size > alloc_size);
645 	return 0;
646 }
647 
648 /*
649  * Free ELF core header (new kernel)
650  */
651 void elfcorehdr_free(unsigned long long addr)
652 {
653 	if (!elfcorehdr_newmem)
654 		return;
655 	kfree((void *)(unsigned long)addr);
656 }
657 
658 /*
659  * Read from ELF header
660  */
661 ssize_t elfcorehdr_read(char *buf, size_t count, u64 *ppos)
662 {
663 	void *src = (void *)(unsigned long)*ppos;
664 
665 	src = elfcorehdr_newmem ? src : src - OLDMEM_BASE;
666 	memcpy(buf, src, count);
667 	*ppos += count;
668 	return count;
669 }
670 
671 /*
672  * Read from ELF notes data
673  */
674 ssize_t elfcorehdr_read_notes(char *buf, size_t count, u64 *ppos)
675 {
676 	void *src = (void *)(unsigned long)*ppos;
677 	int rc;
678 
679 	if (elfcorehdr_newmem) {
680 		memcpy(buf, src, count);
681 	} else {
682 		rc = copy_from_oldmem(buf, src, count);
683 		if (rc)
684 			return rc;
685 	}
686 	*ppos += count;
687 	return count;
688 }
689