xref: /linux/arch/powerpc/platforms/cell/spufs/sched.c (revision c537b994505099b7197e7d3125b942ecbcc51eb6)
1 /* sched.c - SPU scheduler.
2  *
3  * Copyright (C) IBM 2005
4  * Author: Mark Nutter <mnutter@us.ibm.com>
5  *
6  * 2006-03-31	NUMA domains added.
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2, or (at your option)
11  * any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22 
23 #undef DEBUG
24 
25 #include <linux/module.h>
26 #include <linux/errno.h>
27 #include <linux/sched.h>
28 #include <linux/kernel.h>
29 #include <linux/mm.h>
30 #include <linux/completion.h>
31 #include <linux/vmalloc.h>
32 #include <linux/smp.h>
33 #include <linux/smp_lock.h>
34 #include <linux/stddef.h>
35 #include <linux/unistd.h>
36 #include <linux/numa.h>
37 #include <linux/mutex.h>
38 #include <linux/notifier.h>
39 
40 #include <asm/io.h>
41 #include <asm/mmu_context.h>
42 #include <asm/spu.h>
43 #include <asm/spu_csa.h>
44 #include <asm/spu_priv1.h>
45 #include "spufs.h"
46 
47 #define SPU_TIMESLICE	(HZ)
48 
49 struct spu_prio_array {
50 	DECLARE_BITMAP(bitmap, MAX_PRIO);
51 	struct list_head runq[MAX_PRIO];
52 	spinlock_t runq_lock;
53 	struct list_head active_list[MAX_NUMNODES];
54 	struct mutex active_mutex[MAX_NUMNODES];
55 };
56 
57 static struct spu_prio_array *spu_prio;
58 static struct workqueue_struct *spu_sched_wq;
59 
60 static inline int node_allowed(int node)
61 {
62 	cpumask_t mask;
63 
64 	if (!nr_cpus_node(node))
65 		return 0;
66 	mask = node_to_cpumask(node);
67 	if (!cpus_intersects(mask, current->cpus_allowed))
68 		return 0;
69 	return 1;
70 }
71 
72 void spu_start_tick(struct spu_context *ctx)
73 {
74 	if (ctx->policy == SCHED_RR)
75 		queue_delayed_work(spu_sched_wq, &ctx->sched_work, SPU_TIMESLICE);
76 }
77 
78 void spu_stop_tick(struct spu_context *ctx)
79 {
80 	if (ctx->policy == SCHED_RR)
81 		cancel_delayed_work(&ctx->sched_work);
82 }
83 
84 void spu_sched_tick(struct work_struct *work)
85 {
86 	struct spu_context *ctx =
87 		container_of(work, struct spu_context, sched_work.work);
88 	struct spu *spu;
89 	int rearm = 1;
90 
91 	mutex_lock(&ctx->state_mutex);
92 	spu = ctx->spu;
93 	if (spu) {
94 		int best = sched_find_first_bit(spu_prio->bitmap);
95 		if (best <= ctx->prio) {
96 			spu_deactivate(ctx);
97 			rearm = 0;
98 		}
99 	}
100 	mutex_unlock(&ctx->state_mutex);
101 
102 	if (rearm)
103 		spu_start_tick(ctx);
104 }
105 
106 /**
107  * spu_add_to_active_list - add spu to active list
108  * @spu:	spu to add to the active list
109  */
110 static void spu_add_to_active_list(struct spu *spu)
111 {
112 	mutex_lock(&spu_prio->active_mutex[spu->node]);
113 	list_add_tail(&spu->list, &spu_prio->active_list[spu->node]);
114 	mutex_unlock(&spu_prio->active_mutex[spu->node]);
115 }
116 
117 /**
118  * spu_remove_from_active_list - remove spu from active list
119  * @spu:       spu to remove from the active list
120  */
121 static void spu_remove_from_active_list(struct spu *spu)
122 {
123 	int node = spu->node;
124 
125 	mutex_lock(&spu_prio->active_mutex[node]);
126 	list_del_init(&spu->list);
127 	mutex_unlock(&spu_prio->active_mutex[node]);
128 }
129 
130 static BLOCKING_NOTIFIER_HEAD(spu_switch_notifier);
131 
132 static void spu_switch_notify(struct spu *spu, struct spu_context *ctx)
133 {
134 	blocking_notifier_call_chain(&spu_switch_notifier,
135 			    ctx ? ctx->object_id : 0, spu);
136 }
137 
138 int spu_switch_event_register(struct notifier_block * n)
139 {
140 	return blocking_notifier_chain_register(&spu_switch_notifier, n);
141 }
142 
143 int spu_switch_event_unregister(struct notifier_block * n)
144 {
145 	return blocking_notifier_chain_unregister(&spu_switch_notifier, n);
146 }
147 
148 /**
149  * spu_bind_context - bind spu context to physical spu
150  * @spu:	physical spu to bind to
151  * @ctx:	context to bind
152  */
153 static void spu_bind_context(struct spu *spu, struct spu_context *ctx)
154 {
155 	pr_debug("%s: pid=%d SPU=%d NODE=%d\n", __FUNCTION__, current->pid,
156 		 spu->number, spu->node);
157 	spu->ctx = ctx;
158 	spu->flags = 0;
159 	ctx->spu = spu;
160 	ctx->ops = &spu_hw_ops;
161 	spu->pid = current->pid;
162 	spu_associate_mm(spu, ctx->owner);
163 	spu->ibox_callback = spufs_ibox_callback;
164 	spu->wbox_callback = spufs_wbox_callback;
165 	spu->stop_callback = spufs_stop_callback;
166 	spu->mfc_callback = spufs_mfc_callback;
167 	spu->dma_callback = spufs_dma_callback;
168 	mb();
169 	spu_unmap_mappings(ctx);
170 	spu_restore(&ctx->csa, spu);
171 	spu->timestamp = jiffies;
172 	spu_cpu_affinity_set(spu, raw_smp_processor_id());
173 	spu_switch_notify(spu, ctx);
174 	spu_add_to_active_list(spu);
175 	ctx->state = SPU_STATE_RUNNABLE;
176 }
177 
178 /**
179  * spu_unbind_context - unbind spu context from physical spu
180  * @spu:	physical spu to unbind from
181  * @ctx:	context to unbind
182  */
183 static void spu_unbind_context(struct spu *spu, struct spu_context *ctx)
184 {
185 	pr_debug("%s: unbind pid=%d SPU=%d NODE=%d\n", __FUNCTION__,
186 		 spu->pid, spu->number, spu->node);
187 
188 	spu_remove_from_active_list(spu);
189 	spu_switch_notify(spu, NULL);
190 	spu_unmap_mappings(ctx);
191 	spu_save(&ctx->csa, spu);
192 	spu->timestamp = jiffies;
193 	ctx->state = SPU_STATE_SAVED;
194 	spu->ibox_callback = NULL;
195 	spu->wbox_callback = NULL;
196 	spu->stop_callback = NULL;
197 	spu->mfc_callback = NULL;
198 	spu->dma_callback = NULL;
199 	spu_associate_mm(spu, NULL);
200 	spu->pid = 0;
201 	ctx->ops = &spu_backing_ops;
202 	ctx->spu = NULL;
203 	spu->flags = 0;
204 	spu->ctx = NULL;
205 }
206 
207 /**
208  * spu_add_to_rq - add a context to the runqueue
209  * @ctx:       context to add
210  */
211 static void spu_add_to_rq(struct spu_context *ctx)
212 {
213 	spin_lock(&spu_prio->runq_lock);
214 	list_add_tail(&ctx->rq, &spu_prio->runq[ctx->prio]);
215 	set_bit(ctx->prio, spu_prio->bitmap);
216 	spin_unlock(&spu_prio->runq_lock);
217 }
218 
219 /**
220  * spu_del_from_rq - remove a context from the runqueue
221  * @ctx:       context to remove
222  */
223 static void spu_del_from_rq(struct spu_context *ctx)
224 {
225 	spin_lock(&spu_prio->runq_lock);
226 	list_del_init(&ctx->rq);
227 	if (list_empty(&spu_prio->runq[ctx->prio]))
228 		clear_bit(ctx->prio, spu_prio->bitmap);
229 	spin_unlock(&spu_prio->runq_lock);
230 }
231 
232 /**
233  * spu_grab_context - remove one context from the runqueue
234  * @prio:      priority of the context to be removed
235  *
236  * This function removes one context from the runqueue for priority @prio.
237  * If there is more than one context with the given priority the first
238  * task on the runqueue will be taken.
239  *
240  * Returns the spu_context it just removed.
241  *
242  * Must be called with spu_prio->runq_lock held.
243  */
244 static struct spu_context *spu_grab_context(int prio)
245 {
246 	struct list_head *rq = &spu_prio->runq[prio];
247 
248 	if (list_empty(rq))
249 		return NULL;
250 	return list_entry(rq->next, struct spu_context, rq);
251 }
252 
253 static void spu_prio_wait(struct spu_context *ctx)
254 {
255 	DEFINE_WAIT(wait);
256 
257 	prepare_to_wait_exclusive(&ctx->stop_wq, &wait, TASK_INTERRUPTIBLE);
258 	if (!signal_pending(current)) {
259 		mutex_unlock(&ctx->state_mutex);
260 		schedule();
261 		mutex_lock(&ctx->state_mutex);
262 	}
263 	__set_current_state(TASK_RUNNING);
264 	remove_wait_queue(&ctx->stop_wq, &wait);
265 }
266 
267 /**
268  * spu_reschedule - try to find a runnable context for a spu
269  * @spu:       spu available
270  *
271  * This function is called whenever a spu becomes idle.  It looks for the
272  * most suitable runnable spu context and schedules it for execution.
273  */
274 static void spu_reschedule(struct spu *spu)
275 {
276 	int best;
277 
278 	spu_free(spu);
279 
280 	spin_lock(&spu_prio->runq_lock);
281 	best = sched_find_first_bit(spu_prio->bitmap);
282 	if (best < MAX_PRIO) {
283 		struct spu_context *ctx = spu_grab_context(best);
284 		if (ctx)
285 			wake_up(&ctx->stop_wq);
286 	}
287 	spin_unlock(&spu_prio->runq_lock);
288 }
289 
290 static struct spu *spu_get_idle(struct spu_context *ctx)
291 {
292 	struct spu *spu = NULL;
293 	int node = cpu_to_node(raw_smp_processor_id());
294 	int n;
295 
296 	for (n = 0; n < MAX_NUMNODES; n++, node++) {
297 		node = (node < MAX_NUMNODES) ? node : 0;
298 		if (!node_allowed(node))
299 			continue;
300 		spu = spu_alloc_node(node);
301 		if (spu)
302 			break;
303 	}
304 	return spu;
305 }
306 
307 /**
308  * find_victim - find a lower priority context to preempt
309  * @ctx:	canidate context for running
310  *
311  * Returns the freed physical spu to run the new context on.
312  */
313 static struct spu *find_victim(struct spu_context *ctx)
314 {
315 	struct spu_context *victim = NULL;
316 	struct spu *spu;
317 	int node, n;
318 
319 	/*
320 	 * Look for a possible preemption candidate on the local node first.
321 	 * If there is no candidate look at the other nodes.  This isn't
322 	 * exactly fair, but so far the whole spu schedule tries to keep
323 	 * a strong node affinity.  We might want to fine-tune this in
324 	 * the future.
325 	 */
326  restart:
327 	node = cpu_to_node(raw_smp_processor_id());
328 	for (n = 0; n < MAX_NUMNODES; n++, node++) {
329 		node = (node < MAX_NUMNODES) ? node : 0;
330 		if (!node_allowed(node))
331 			continue;
332 
333 		mutex_lock(&spu_prio->active_mutex[node]);
334 		list_for_each_entry(spu, &spu_prio->active_list[node], list) {
335 			struct spu_context *tmp = spu->ctx;
336 
337 			if (tmp->rt_priority < ctx->rt_priority &&
338 			    (!victim || tmp->rt_priority < victim->rt_priority))
339 				victim = spu->ctx;
340 		}
341 		mutex_unlock(&spu_prio->active_mutex[node]);
342 
343 		if (victim) {
344 			/*
345 			 * This nests ctx->state_mutex, but we always lock
346 			 * higher priority contexts before lower priority
347 			 * ones, so this is safe until we introduce
348 			 * priority inheritance schemes.
349 			 */
350 			if (!mutex_trylock(&victim->state_mutex)) {
351 				victim = NULL;
352 				goto restart;
353 			}
354 
355 			spu = victim->spu;
356 			if (!spu) {
357 				/*
358 				 * This race can happen because we've dropped
359 				 * the active list mutex.  No a problem, just
360 				 * restart the search.
361 				 */
362 				mutex_unlock(&victim->state_mutex);
363 				victim = NULL;
364 				goto restart;
365 			}
366 			spu_unbind_context(spu, victim);
367 			mutex_unlock(&victim->state_mutex);
368 			return spu;
369 		}
370 	}
371 
372 	return NULL;
373 }
374 
375 /**
376  * spu_activate - find a free spu for a context and execute it
377  * @ctx:	spu context to schedule
378  * @flags:	flags (currently ignored)
379  *
380  * Tries to find a free spu to run @ctx.  If no free spu is availble
381  * add the context to the runqueue so it gets woken up once an spu
382  * is available.
383  */
384 int spu_activate(struct spu_context *ctx, unsigned long flags)
385 {
386 
387 	if (ctx->spu)
388 		return 0;
389 
390 	do {
391 		struct spu *spu;
392 
393 		spu = spu_get_idle(ctx);
394 		/*
395 		 * If this is a realtime thread we try to get it running by
396 		 * preempting a lower priority thread.
397 		 */
398 		if (!spu && ctx->rt_priority)
399 			spu = find_victim(ctx);
400 		if (spu) {
401 			spu_bind_context(spu, ctx);
402 			return 0;
403 		}
404 
405 		spu_add_to_rq(ctx);
406 		spu_prio_wait(ctx);
407 		spu_del_from_rq(ctx);
408 	} while (!signal_pending(current));
409 
410 	return -ERESTARTSYS;
411 }
412 
413 /**
414  * spu_deactivate - unbind a context from it's physical spu
415  * @ctx:	spu context to unbind
416  *
417  * Unbind @ctx from the physical spu it is running on and schedule
418  * the highest priority context to run on the freed physical spu.
419  */
420 void spu_deactivate(struct spu_context *ctx)
421 {
422 	struct spu *spu = ctx->spu;
423 
424 	if (spu) {
425 		spu_unbind_context(spu, ctx);
426 		spu_reschedule(spu);
427 	}
428 }
429 
430 /**
431  * spu_yield -  yield a physical spu if others are waiting
432  * @ctx:	spu context to yield
433  *
434  * Check if there is a higher priority context waiting and if yes
435  * unbind @ctx from the physical spu and schedule the highest
436  * priority context to run on the freed physical spu instead.
437  */
438 void spu_yield(struct spu_context *ctx)
439 {
440 	struct spu *spu;
441 	int need_yield = 0;
442 
443 	if (mutex_trylock(&ctx->state_mutex)) {
444 		if ((spu = ctx->spu) != NULL) {
445 			int best = sched_find_first_bit(spu_prio->bitmap);
446 			if (best < MAX_PRIO) {
447 				pr_debug("%s: yielding SPU %d NODE %d\n",
448 					 __FUNCTION__, spu->number, spu->node);
449 				spu_deactivate(ctx);
450 				need_yield = 1;
451 			}
452 		}
453 		mutex_unlock(&ctx->state_mutex);
454 	}
455 	if (unlikely(need_yield))
456 		yield();
457 }
458 
459 int __init spu_sched_init(void)
460 {
461 	int i;
462 
463 	spu_sched_wq = create_singlethread_workqueue("spusched");
464 	if (!spu_sched_wq)
465 		return 1;
466 
467 	spu_prio = kzalloc(sizeof(struct spu_prio_array), GFP_KERNEL);
468 	if (!spu_prio) {
469 		printk(KERN_WARNING "%s: Unable to allocate priority queue.\n",
470 		       __FUNCTION__);
471 		       destroy_workqueue(spu_sched_wq);
472 		return 1;
473 	}
474 	for (i = 0; i < MAX_PRIO; i++) {
475 		INIT_LIST_HEAD(&spu_prio->runq[i]);
476 		__clear_bit(i, spu_prio->bitmap);
477 	}
478 	__set_bit(MAX_PRIO, spu_prio->bitmap);
479 	for (i = 0; i < MAX_NUMNODES; i++) {
480 		mutex_init(&spu_prio->active_mutex[i]);
481 		INIT_LIST_HEAD(&spu_prio->active_list[i]);
482 	}
483 	spin_lock_init(&spu_prio->runq_lock);
484 	return 0;
485 }
486 
487 void __exit spu_sched_exit(void)
488 {
489 	struct spu *spu, *tmp;
490 	int node;
491 
492 	for (node = 0; node < MAX_NUMNODES; node++) {
493 		mutex_lock(&spu_prio->active_mutex[node]);
494 		list_for_each_entry_safe(spu, tmp, &spu_prio->active_list[node],
495 					 list) {
496 			list_del_init(&spu->list);
497 			spu_free(spu);
498 		}
499 		mutex_unlock(&spu_prio->active_mutex[node]);
500 	}
501 	kfree(spu_prio);
502 	destroy_workqueue(spu_sched_wq);
503 }
504