xref: /linux/arch/powerpc/mm/hugetlbpage.c (revision c537b994505099b7197e7d3125b942ecbcc51eb6)
1 /*
2  * PPC64 (POWER4) Huge TLB Page Support for Kernel.
3  *
4  * Copyright (C) 2003 David Gibson, IBM Corporation.
5  *
6  * Based on the IA-32 version:
7  * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
8  */
9 
10 #include <linux/init.h>
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/hugetlb.h>
14 #include <linux/pagemap.h>
15 #include <linux/smp_lock.h>
16 #include <linux/slab.h>
17 #include <linux/err.h>
18 #include <linux/sysctl.h>
19 #include <asm/mman.h>
20 #include <asm/pgalloc.h>
21 #include <asm/tlb.h>
22 #include <asm/tlbflush.h>
23 #include <asm/mmu_context.h>
24 #include <asm/machdep.h>
25 #include <asm/cputable.h>
26 #include <asm/tlb.h>
27 #include <asm/spu.h>
28 
29 #include <linux/sysctl.h>
30 
31 #define NUM_LOW_AREAS	(0x100000000UL >> SID_SHIFT)
32 #define NUM_HIGH_AREAS	(PGTABLE_RANGE >> HTLB_AREA_SHIFT)
33 
34 #ifdef CONFIG_PPC_64K_PAGES
35 #define HUGEPTE_INDEX_SIZE	(PMD_SHIFT-HPAGE_SHIFT)
36 #else
37 #define HUGEPTE_INDEX_SIZE	(PUD_SHIFT-HPAGE_SHIFT)
38 #endif
39 #define PTRS_PER_HUGEPTE	(1 << HUGEPTE_INDEX_SIZE)
40 #define HUGEPTE_TABLE_SIZE	(sizeof(pte_t) << HUGEPTE_INDEX_SIZE)
41 
42 #define HUGEPD_SHIFT		(HPAGE_SHIFT + HUGEPTE_INDEX_SIZE)
43 #define HUGEPD_SIZE		(1UL << HUGEPD_SHIFT)
44 #define HUGEPD_MASK		(~(HUGEPD_SIZE-1))
45 
46 #define huge_pgtable_cache	(pgtable_cache[HUGEPTE_CACHE_NUM])
47 
48 /* Flag to mark huge PD pointers.  This means pmd_bad() and pud_bad()
49  * will choke on pointers to hugepte tables, which is handy for
50  * catching screwups early. */
51 #define HUGEPD_OK	0x1
52 
53 typedef struct { unsigned long pd; } hugepd_t;
54 
55 #define hugepd_none(hpd)	((hpd).pd == 0)
56 
57 static inline pte_t *hugepd_page(hugepd_t hpd)
58 {
59 	BUG_ON(!(hpd.pd & HUGEPD_OK));
60 	return (pte_t *)(hpd.pd & ~HUGEPD_OK);
61 }
62 
63 static inline pte_t *hugepte_offset(hugepd_t *hpdp, unsigned long addr)
64 {
65 	unsigned long idx = ((addr >> HPAGE_SHIFT) & (PTRS_PER_HUGEPTE-1));
66 	pte_t *dir = hugepd_page(*hpdp);
67 
68 	return dir + idx;
69 }
70 
71 static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
72 			   unsigned long address)
73 {
74 	pte_t *new = kmem_cache_alloc(huge_pgtable_cache,
75 				      GFP_KERNEL|__GFP_REPEAT);
76 
77 	if (! new)
78 		return -ENOMEM;
79 
80 	spin_lock(&mm->page_table_lock);
81 	if (!hugepd_none(*hpdp))
82 		kmem_cache_free(huge_pgtable_cache, new);
83 	else
84 		hpdp->pd = (unsigned long)new | HUGEPD_OK;
85 	spin_unlock(&mm->page_table_lock);
86 	return 0;
87 }
88 
89 /* Modelled after find_linux_pte() */
90 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
91 {
92 	pgd_t *pg;
93 	pud_t *pu;
94 
95 	BUG_ON(! in_hugepage_area(mm->context, addr));
96 
97 	addr &= HPAGE_MASK;
98 
99 	pg = pgd_offset(mm, addr);
100 	if (!pgd_none(*pg)) {
101 		pu = pud_offset(pg, addr);
102 		if (!pud_none(*pu)) {
103 #ifdef CONFIG_PPC_64K_PAGES
104 			pmd_t *pm;
105 			pm = pmd_offset(pu, addr);
106 			if (!pmd_none(*pm))
107 				return hugepte_offset((hugepd_t *)pm, addr);
108 #else
109 			return hugepte_offset((hugepd_t *)pu, addr);
110 #endif
111 		}
112 	}
113 
114 	return NULL;
115 }
116 
117 pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr)
118 {
119 	pgd_t *pg;
120 	pud_t *pu;
121 	hugepd_t *hpdp = NULL;
122 
123 	BUG_ON(! in_hugepage_area(mm->context, addr));
124 
125 	addr &= HPAGE_MASK;
126 
127 	pg = pgd_offset(mm, addr);
128 	pu = pud_alloc(mm, pg, addr);
129 
130 	if (pu) {
131 #ifdef CONFIG_PPC_64K_PAGES
132 		pmd_t *pm;
133 		pm = pmd_alloc(mm, pu, addr);
134 		if (pm)
135 			hpdp = (hugepd_t *)pm;
136 #else
137 		hpdp = (hugepd_t *)pu;
138 #endif
139 	}
140 
141 	if (! hpdp)
142 		return NULL;
143 
144 	if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr))
145 		return NULL;
146 
147 	return hugepte_offset(hpdp, addr);
148 }
149 
150 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
151 {
152 	return 0;
153 }
154 
155 static void free_hugepte_range(struct mmu_gather *tlb, hugepd_t *hpdp)
156 {
157 	pte_t *hugepte = hugepd_page(*hpdp);
158 
159 	hpdp->pd = 0;
160 	tlb->need_flush = 1;
161 	pgtable_free_tlb(tlb, pgtable_free_cache(hugepte, HUGEPTE_CACHE_NUM,
162 						 PGF_CACHENUM_MASK));
163 }
164 
165 #ifdef CONFIG_PPC_64K_PAGES
166 static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
167 				   unsigned long addr, unsigned long end,
168 				   unsigned long floor, unsigned long ceiling)
169 {
170 	pmd_t *pmd;
171 	unsigned long next;
172 	unsigned long start;
173 
174 	start = addr;
175 	pmd = pmd_offset(pud, addr);
176 	do {
177 		next = pmd_addr_end(addr, end);
178 		if (pmd_none(*pmd))
179 			continue;
180 		free_hugepte_range(tlb, (hugepd_t *)pmd);
181 	} while (pmd++, addr = next, addr != end);
182 
183 	start &= PUD_MASK;
184 	if (start < floor)
185 		return;
186 	if (ceiling) {
187 		ceiling &= PUD_MASK;
188 		if (!ceiling)
189 			return;
190 	}
191 	if (end - 1 > ceiling - 1)
192 		return;
193 
194 	pmd = pmd_offset(pud, start);
195 	pud_clear(pud);
196 	pmd_free_tlb(tlb, pmd);
197 }
198 #endif
199 
200 static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
201 				   unsigned long addr, unsigned long end,
202 				   unsigned long floor, unsigned long ceiling)
203 {
204 	pud_t *pud;
205 	unsigned long next;
206 	unsigned long start;
207 
208 	start = addr;
209 	pud = pud_offset(pgd, addr);
210 	do {
211 		next = pud_addr_end(addr, end);
212 #ifdef CONFIG_PPC_64K_PAGES
213 		if (pud_none_or_clear_bad(pud))
214 			continue;
215 		hugetlb_free_pmd_range(tlb, pud, addr, next, floor, ceiling);
216 #else
217 		if (pud_none(*pud))
218 			continue;
219 		free_hugepte_range(tlb, (hugepd_t *)pud);
220 #endif
221 	} while (pud++, addr = next, addr != end);
222 
223 	start &= PGDIR_MASK;
224 	if (start < floor)
225 		return;
226 	if (ceiling) {
227 		ceiling &= PGDIR_MASK;
228 		if (!ceiling)
229 			return;
230 	}
231 	if (end - 1 > ceiling - 1)
232 		return;
233 
234 	pud = pud_offset(pgd, start);
235 	pgd_clear(pgd);
236 	pud_free_tlb(tlb, pud);
237 }
238 
239 /*
240  * This function frees user-level page tables of a process.
241  *
242  * Must be called with pagetable lock held.
243  */
244 void hugetlb_free_pgd_range(struct mmu_gather **tlb,
245 			    unsigned long addr, unsigned long end,
246 			    unsigned long floor, unsigned long ceiling)
247 {
248 	pgd_t *pgd;
249 	unsigned long next;
250 	unsigned long start;
251 
252 	/*
253 	 * Comments below take from the normal free_pgd_range().  They
254 	 * apply here too.  The tests against HUGEPD_MASK below are
255 	 * essential, because we *don't* test for this at the bottom
256 	 * level.  Without them we'll attempt to free a hugepte table
257 	 * when we unmap just part of it, even if there are other
258 	 * active mappings using it.
259 	 *
260 	 * The next few lines have given us lots of grief...
261 	 *
262 	 * Why are we testing HUGEPD* at this top level?  Because
263 	 * often there will be no work to do at all, and we'd prefer
264 	 * not to go all the way down to the bottom just to discover
265 	 * that.
266 	 *
267 	 * Why all these "- 1"s?  Because 0 represents both the bottom
268 	 * of the address space and the top of it (using -1 for the
269 	 * top wouldn't help much: the masks would do the wrong thing).
270 	 * The rule is that addr 0 and floor 0 refer to the bottom of
271 	 * the address space, but end 0 and ceiling 0 refer to the top
272 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
273 	 * that end 0 case should be mythical).
274 	 *
275 	 * Wherever addr is brought up or ceiling brought down, we
276 	 * must be careful to reject "the opposite 0" before it
277 	 * confuses the subsequent tests.  But what about where end is
278 	 * brought down by HUGEPD_SIZE below? no, end can't go down to
279 	 * 0 there.
280 	 *
281 	 * Whereas we round start (addr) and ceiling down, by different
282 	 * masks at different levels, in order to test whether a table
283 	 * now has no other vmas using it, so can be freed, we don't
284 	 * bother to round floor or end up - the tests don't need that.
285 	 */
286 
287 	addr &= HUGEPD_MASK;
288 	if (addr < floor) {
289 		addr += HUGEPD_SIZE;
290 		if (!addr)
291 			return;
292 	}
293 	if (ceiling) {
294 		ceiling &= HUGEPD_MASK;
295 		if (!ceiling)
296 			return;
297 	}
298 	if (end - 1 > ceiling - 1)
299 		end -= HUGEPD_SIZE;
300 	if (addr > end - 1)
301 		return;
302 
303 	start = addr;
304 	pgd = pgd_offset((*tlb)->mm, addr);
305 	do {
306 		BUG_ON(! in_hugepage_area((*tlb)->mm->context, addr));
307 		next = pgd_addr_end(addr, end);
308 		if (pgd_none_or_clear_bad(pgd))
309 			continue;
310 		hugetlb_free_pud_range(*tlb, pgd, addr, next, floor, ceiling);
311 	} while (pgd++, addr = next, addr != end);
312 }
313 
314 void set_huge_pte_at(struct mm_struct *mm, unsigned long addr,
315 		     pte_t *ptep, pte_t pte)
316 {
317 	if (pte_present(*ptep)) {
318 		/* We open-code pte_clear because we need to pass the right
319 		 * argument to hpte_update (huge / !huge)
320 		 */
321 		unsigned long old = pte_update(ptep, ~0UL);
322 		if (old & _PAGE_HASHPTE)
323 			hpte_update(mm, addr & HPAGE_MASK, ptep, old, 1);
324 		flush_tlb_pending();
325 	}
326 	*ptep = __pte(pte_val(pte) & ~_PAGE_HPTEFLAGS);
327 }
328 
329 pte_t huge_ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
330 			      pte_t *ptep)
331 {
332 	unsigned long old = pte_update(ptep, ~0UL);
333 
334 	if (old & _PAGE_HASHPTE)
335 		hpte_update(mm, addr & HPAGE_MASK, ptep, old, 1);
336 	*ptep = __pte(0);
337 
338 	return __pte(old);
339 }
340 
341 struct slb_flush_info {
342 	struct mm_struct *mm;
343 	u16 newareas;
344 };
345 
346 static void flush_low_segments(void *parm)
347 {
348 	struct slb_flush_info *fi = parm;
349 	unsigned long i;
350 
351 	BUILD_BUG_ON((sizeof(fi->newareas)*8) != NUM_LOW_AREAS);
352 
353 	if (current->active_mm != fi->mm)
354 		return;
355 
356 	/* Only need to do anything if this CPU is working in the same
357 	 * mm as the one which has changed */
358 
359 	/* update the paca copy of the context struct */
360 	get_paca()->context = current->active_mm->context;
361 
362 	asm volatile("isync" : : : "memory");
363 	for (i = 0; i < NUM_LOW_AREAS; i++) {
364 		if (! (fi->newareas & (1U << i)))
365 			continue;
366 		asm volatile("slbie %0"
367 			     : : "r" ((i << SID_SHIFT) | SLBIE_C));
368 	}
369 	asm volatile("isync" : : : "memory");
370 }
371 
372 static void flush_high_segments(void *parm)
373 {
374 	struct slb_flush_info *fi = parm;
375 	unsigned long i, j;
376 
377 
378 	BUILD_BUG_ON((sizeof(fi->newareas)*8) != NUM_HIGH_AREAS);
379 
380 	if (current->active_mm != fi->mm)
381 		return;
382 
383 	/* Only need to do anything if this CPU is working in the same
384 	 * mm as the one which has changed */
385 
386 	/* update the paca copy of the context struct */
387 	get_paca()->context = current->active_mm->context;
388 
389 	asm volatile("isync" : : : "memory");
390 	for (i = 0; i < NUM_HIGH_AREAS; i++) {
391 		if (! (fi->newareas & (1U << i)))
392 			continue;
393 		for (j = 0; j < (1UL << (HTLB_AREA_SHIFT-SID_SHIFT)); j++)
394 			asm volatile("slbie %0"
395 				     :: "r" (((i << HTLB_AREA_SHIFT)
396 					      + (j << SID_SHIFT)) | SLBIE_C));
397 	}
398 	asm volatile("isync" : : : "memory");
399 }
400 
401 static int prepare_low_area_for_htlb(struct mm_struct *mm, unsigned long area)
402 {
403 	unsigned long start = area << SID_SHIFT;
404 	unsigned long end = (area+1) << SID_SHIFT;
405 	struct vm_area_struct *vma;
406 
407 	BUG_ON(area >= NUM_LOW_AREAS);
408 
409 	/* Check no VMAs are in the region */
410 	vma = find_vma(mm, start);
411 	if (vma && (vma->vm_start < end))
412 		return -EBUSY;
413 
414 	return 0;
415 }
416 
417 static int prepare_high_area_for_htlb(struct mm_struct *mm, unsigned long area)
418 {
419 	unsigned long start = area << HTLB_AREA_SHIFT;
420 	unsigned long end = (area+1) << HTLB_AREA_SHIFT;
421 	struct vm_area_struct *vma;
422 
423 	BUG_ON(area >= NUM_HIGH_AREAS);
424 
425 	/* Hack, so that each addresses is controlled by exactly one
426 	 * of the high or low area bitmaps, the first high area starts
427 	 * at 4GB, not 0 */
428 	if (start == 0)
429 		start = 0x100000000UL;
430 
431 	/* Check no VMAs are in the region */
432 	vma = find_vma(mm, start);
433 	if (vma && (vma->vm_start < end))
434 		return -EBUSY;
435 
436 	return 0;
437 }
438 
439 static int open_low_hpage_areas(struct mm_struct *mm, u16 newareas)
440 {
441 	unsigned long i;
442 	struct slb_flush_info fi;
443 
444 	BUILD_BUG_ON((sizeof(newareas)*8) != NUM_LOW_AREAS);
445 	BUILD_BUG_ON((sizeof(mm->context.low_htlb_areas)*8) != NUM_LOW_AREAS);
446 
447 	newareas &= ~(mm->context.low_htlb_areas);
448 	if (! newareas)
449 		return 0; /* The segments we want are already open */
450 
451 	for (i = 0; i < NUM_LOW_AREAS; i++)
452 		if ((1 << i) & newareas)
453 			if (prepare_low_area_for_htlb(mm, i) != 0)
454 				return -EBUSY;
455 
456 	mm->context.low_htlb_areas |= newareas;
457 
458 	/* the context change must make it to memory before the flush,
459 	 * so that further SLB misses do the right thing. */
460 	mb();
461 
462 	fi.mm = mm;
463 	fi.newareas = newareas;
464 	on_each_cpu(flush_low_segments, &fi, 0, 1);
465 
466 	return 0;
467 }
468 
469 static int open_high_hpage_areas(struct mm_struct *mm, u16 newareas)
470 {
471 	struct slb_flush_info fi;
472 	unsigned long i;
473 
474 	BUILD_BUG_ON((sizeof(newareas)*8) != NUM_HIGH_AREAS);
475 	BUILD_BUG_ON((sizeof(mm->context.high_htlb_areas)*8)
476 		     != NUM_HIGH_AREAS);
477 
478 	newareas &= ~(mm->context.high_htlb_areas);
479 	if (! newareas)
480 		return 0; /* The areas we want are already open */
481 
482 	for (i = 0; i < NUM_HIGH_AREAS; i++)
483 		if ((1 << i) & newareas)
484 			if (prepare_high_area_for_htlb(mm, i) != 0)
485 				return -EBUSY;
486 
487 	mm->context.high_htlb_areas |= newareas;
488 
489 	/* the context change must make it to memory before the flush,
490 	 * so that further SLB misses do the right thing. */
491 	mb();
492 
493 	fi.mm = mm;
494 	fi.newareas = newareas;
495 	on_each_cpu(flush_high_segments, &fi, 0, 1);
496 
497 	return 0;
498 }
499 
500 int prepare_hugepage_range(unsigned long addr, unsigned long len, pgoff_t pgoff)
501 {
502 	int err = 0;
503 
504 	if (pgoff & (~HPAGE_MASK >> PAGE_SHIFT))
505 		return -EINVAL;
506 	if (len & ~HPAGE_MASK)
507 		return -EINVAL;
508 	if (addr & ~HPAGE_MASK)
509 		return -EINVAL;
510 
511 	if (addr < 0x100000000UL)
512 		err = open_low_hpage_areas(current->mm,
513 					  LOW_ESID_MASK(addr, len));
514 	if ((addr + len) > 0x100000000UL)
515 		err = open_high_hpage_areas(current->mm,
516 					    HTLB_AREA_MASK(addr, len));
517 #ifdef CONFIG_SPE_BASE
518 	spu_flush_all_slbs(current->mm);
519 #endif
520 	if (err) {
521 		printk(KERN_DEBUG "prepare_hugepage_range(%lx, %lx)"
522 		       " failed (lowmask: 0x%04hx, highmask: 0x%04hx)\n",
523 		       addr, len,
524 		       LOW_ESID_MASK(addr, len), HTLB_AREA_MASK(addr, len));
525 		return err;
526 	}
527 
528 	return 0;
529 }
530 
531 struct page *
532 follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
533 {
534 	pte_t *ptep;
535 	struct page *page;
536 
537 	if (! in_hugepage_area(mm->context, address))
538 		return ERR_PTR(-EINVAL);
539 
540 	ptep = huge_pte_offset(mm, address);
541 	page = pte_page(*ptep);
542 	if (page)
543 		page += (address % HPAGE_SIZE) / PAGE_SIZE;
544 
545 	return page;
546 }
547 
548 int pmd_huge(pmd_t pmd)
549 {
550 	return 0;
551 }
552 
553 struct page *
554 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
555 		pmd_t *pmd, int write)
556 {
557 	BUG();
558 	return NULL;
559 }
560 
561 /* Because we have an exclusive hugepage region which lies within the
562  * normal user address space, we have to take special measures to make
563  * non-huge mmap()s evade the hugepage reserved regions. */
564 unsigned long arch_get_unmapped_area(struct file *filp, unsigned long addr,
565 				     unsigned long len, unsigned long pgoff,
566 				     unsigned long flags)
567 {
568 	struct mm_struct *mm = current->mm;
569 	struct vm_area_struct *vma;
570 	unsigned long start_addr;
571 
572 	if (len > TASK_SIZE)
573 		return -ENOMEM;
574 
575 	if (addr) {
576 		addr = PAGE_ALIGN(addr);
577 		vma = find_vma(mm, addr);
578 		if (((TASK_SIZE - len) >= addr)
579 		    && (!vma || (addr+len) <= vma->vm_start)
580 		    && !is_hugepage_only_range(mm, addr,len))
581 			return addr;
582 	}
583 	if (len > mm->cached_hole_size) {
584 	        start_addr = addr = mm->free_area_cache;
585 	} else {
586 	        start_addr = addr = TASK_UNMAPPED_BASE;
587 	        mm->cached_hole_size = 0;
588 	}
589 
590 full_search:
591 	vma = find_vma(mm, addr);
592 	while (TASK_SIZE - len >= addr) {
593 		BUG_ON(vma && (addr >= vma->vm_end));
594 
595 		if (touches_hugepage_low_range(mm, addr, len)) {
596 			addr = ALIGN(addr+1, 1<<SID_SHIFT);
597 			vma = find_vma(mm, addr);
598 			continue;
599 		}
600 		if (touches_hugepage_high_range(mm, addr, len)) {
601 			addr = ALIGN(addr+1, 1UL<<HTLB_AREA_SHIFT);
602 			vma = find_vma(mm, addr);
603 			continue;
604 		}
605 		if (!vma || addr + len <= vma->vm_start) {
606 			/*
607 			 * Remember the place where we stopped the search:
608 			 */
609 			mm->free_area_cache = addr + len;
610 			return addr;
611 		}
612 		if (addr + mm->cached_hole_size < vma->vm_start)
613 		        mm->cached_hole_size = vma->vm_start - addr;
614 		addr = vma->vm_end;
615 		vma = vma->vm_next;
616 	}
617 
618 	/* Make sure we didn't miss any holes */
619 	if (start_addr != TASK_UNMAPPED_BASE) {
620 		start_addr = addr = TASK_UNMAPPED_BASE;
621 		mm->cached_hole_size = 0;
622 		goto full_search;
623 	}
624 	return -ENOMEM;
625 }
626 
627 /*
628  * This mmap-allocator allocates new areas top-down from below the
629  * stack's low limit (the base):
630  *
631  * Because we have an exclusive hugepage region which lies within the
632  * normal user address space, we have to take special measures to make
633  * non-huge mmap()s evade the hugepage reserved regions.
634  */
635 unsigned long
636 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
637 			  const unsigned long len, const unsigned long pgoff,
638 			  const unsigned long flags)
639 {
640 	struct vm_area_struct *vma, *prev_vma;
641 	struct mm_struct *mm = current->mm;
642 	unsigned long base = mm->mmap_base, addr = addr0;
643 	unsigned long largest_hole = mm->cached_hole_size;
644 	int first_time = 1;
645 
646 	/* requested length too big for entire address space */
647 	if (len > TASK_SIZE)
648 		return -ENOMEM;
649 
650 	/* dont allow allocations above current base */
651 	if (mm->free_area_cache > base)
652 		mm->free_area_cache = base;
653 
654 	/* requesting a specific address */
655 	if (addr) {
656 		addr = PAGE_ALIGN(addr);
657 		vma = find_vma(mm, addr);
658 		if (TASK_SIZE - len >= addr &&
659 				(!vma || addr + len <= vma->vm_start)
660 				&& !is_hugepage_only_range(mm, addr,len))
661 			return addr;
662 	}
663 
664 	if (len <= largest_hole) {
665 	        largest_hole = 0;
666 		mm->free_area_cache = base;
667 	}
668 try_again:
669 	/* make sure it can fit in the remaining address space */
670 	if (mm->free_area_cache < len)
671 		goto fail;
672 
673 	/* either no address requested or cant fit in requested address hole */
674 	addr = (mm->free_area_cache - len) & PAGE_MASK;
675 	do {
676 hugepage_recheck:
677 		if (touches_hugepage_low_range(mm, addr, len)) {
678 			addr = (addr & ((~0) << SID_SHIFT)) - len;
679 			goto hugepage_recheck;
680 		} else if (touches_hugepage_high_range(mm, addr, len)) {
681 			addr = (addr & ((~0UL) << HTLB_AREA_SHIFT)) - len;
682 			goto hugepage_recheck;
683 		}
684 
685 		/*
686 		 * Lookup failure means no vma is above this address,
687 		 * i.e. return with success:
688 		 */
689  	 	if (!(vma = find_vma_prev(mm, addr, &prev_vma)))
690 			return addr;
691 
692 		/*
693 		 * new region fits between prev_vma->vm_end and
694 		 * vma->vm_start, use it:
695 		 */
696 		if (addr+len <= vma->vm_start &&
697 		          (!prev_vma || (addr >= prev_vma->vm_end))) {
698 			/* remember the address as a hint for next time */
699 		        mm->cached_hole_size = largest_hole;
700 		        return (mm->free_area_cache = addr);
701 		} else {
702 			/* pull free_area_cache down to the first hole */
703 		        if (mm->free_area_cache == vma->vm_end) {
704 				mm->free_area_cache = vma->vm_start;
705 				mm->cached_hole_size = largest_hole;
706 			}
707 		}
708 
709 		/* remember the largest hole we saw so far */
710 		if (addr + largest_hole < vma->vm_start)
711 		        largest_hole = vma->vm_start - addr;
712 
713 		/* try just below the current vma->vm_start */
714 		addr = vma->vm_start-len;
715 	} while (len <= vma->vm_start);
716 
717 fail:
718 	/*
719 	 * if hint left us with no space for the requested
720 	 * mapping then try again:
721 	 */
722 	if (first_time) {
723 		mm->free_area_cache = base;
724 		largest_hole = 0;
725 		first_time = 0;
726 		goto try_again;
727 	}
728 	/*
729 	 * A failed mmap() very likely causes application failure,
730 	 * so fall back to the bottom-up function here. This scenario
731 	 * can happen with large stack limits and large mmap()
732 	 * allocations.
733 	 */
734 	mm->free_area_cache = TASK_UNMAPPED_BASE;
735 	mm->cached_hole_size = ~0UL;
736 	addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
737 	/*
738 	 * Restore the topdown base:
739 	 */
740 	mm->free_area_cache = base;
741 	mm->cached_hole_size = ~0UL;
742 
743 	return addr;
744 }
745 
746 static int htlb_check_hinted_area(unsigned long addr, unsigned long len)
747 {
748 	struct vm_area_struct *vma;
749 
750 	vma = find_vma(current->mm, addr);
751 	if (TASK_SIZE - len >= addr &&
752 	    (!vma || ((addr + len) <= vma->vm_start)))
753 		return 0;
754 
755 	return -ENOMEM;
756 }
757 
758 static unsigned long htlb_get_low_area(unsigned long len, u16 segmask)
759 {
760 	unsigned long addr = 0;
761 	struct vm_area_struct *vma;
762 
763 	vma = find_vma(current->mm, addr);
764 	while (addr + len <= 0x100000000UL) {
765 		BUG_ON(vma && (addr >= vma->vm_end)); /* invariant */
766 
767 		if (! __within_hugepage_low_range(addr, len, segmask)) {
768 			addr = ALIGN(addr+1, 1<<SID_SHIFT);
769 			vma = find_vma(current->mm, addr);
770 			continue;
771 		}
772 
773 		if (!vma || (addr + len) <= vma->vm_start)
774 			return addr;
775 		addr = ALIGN(vma->vm_end, HPAGE_SIZE);
776 		/* Depending on segmask this might not be a confirmed
777 		 * hugepage region, so the ALIGN could have skipped
778 		 * some VMAs */
779 		vma = find_vma(current->mm, addr);
780 	}
781 
782 	return -ENOMEM;
783 }
784 
785 static unsigned long htlb_get_high_area(unsigned long len, u16 areamask)
786 {
787 	unsigned long addr = 0x100000000UL;
788 	struct vm_area_struct *vma;
789 
790 	vma = find_vma(current->mm, addr);
791 	while (addr + len <= TASK_SIZE_USER64) {
792 		BUG_ON(vma && (addr >= vma->vm_end)); /* invariant */
793 
794 		if (! __within_hugepage_high_range(addr, len, areamask)) {
795 			addr = ALIGN(addr+1, 1UL<<HTLB_AREA_SHIFT);
796 			vma = find_vma(current->mm, addr);
797 			continue;
798 		}
799 
800 		if (!vma || (addr + len) <= vma->vm_start)
801 			return addr;
802 		addr = ALIGN(vma->vm_end, HPAGE_SIZE);
803 		/* Depending on segmask this might not be a confirmed
804 		 * hugepage region, so the ALIGN could have skipped
805 		 * some VMAs */
806 		vma = find_vma(current->mm, addr);
807 	}
808 
809 	return -ENOMEM;
810 }
811 
812 unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
813 					unsigned long len, unsigned long pgoff,
814 					unsigned long flags)
815 {
816 	int lastshift;
817 	u16 areamask, curareas;
818 
819 	if (HPAGE_SHIFT == 0)
820 		return -EINVAL;
821 	if (len & ~HPAGE_MASK)
822 		return -EINVAL;
823 	if (len > TASK_SIZE)
824 		return -ENOMEM;
825 
826 	if (!cpu_has_feature(CPU_FTR_16M_PAGE))
827 		return -EINVAL;
828 
829 	/* Paranoia, caller should have dealt with this */
830 	BUG_ON((addr + len)  < addr);
831 
832 	if (test_thread_flag(TIF_32BIT)) {
833 		curareas = current->mm->context.low_htlb_areas;
834 
835 		/* First see if we can use the hint address */
836 		if (addr && (htlb_check_hinted_area(addr, len) == 0)) {
837 			areamask = LOW_ESID_MASK(addr, len);
838 			if (open_low_hpage_areas(current->mm, areamask) == 0)
839 				return addr;
840 		}
841 
842 		/* Next see if we can map in the existing low areas */
843 		addr = htlb_get_low_area(len, curareas);
844 		if (addr != -ENOMEM)
845 			return addr;
846 
847 		/* Finally go looking for areas to open */
848 		lastshift = 0;
849 		for (areamask = LOW_ESID_MASK(0x100000000UL-len, len);
850 		     ! lastshift; areamask >>=1) {
851 			if (areamask & 1)
852 				lastshift = 1;
853 
854 			addr = htlb_get_low_area(len, curareas | areamask);
855 			if ((addr != -ENOMEM)
856 			    && open_low_hpage_areas(current->mm, areamask) == 0)
857 				return addr;
858 		}
859 	} else {
860 		curareas = current->mm->context.high_htlb_areas;
861 
862 		/* First see if we can use the hint address */
863 		/* We discourage 64-bit processes from doing hugepage
864 		 * mappings below 4GB (must use MAP_FIXED) */
865 		if ((addr >= 0x100000000UL)
866 		    && (htlb_check_hinted_area(addr, len) == 0)) {
867 			areamask = HTLB_AREA_MASK(addr, len);
868 			if (open_high_hpage_areas(current->mm, areamask) == 0)
869 				return addr;
870 		}
871 
872 		/* Next see if we can map in the existing high areas */
873 		addr = htlb_get_high_area(len, curareas);
874 		if (addr != -ENOMEM)
875 			return addr;
876 
877 		/* Finally go looking for areas to open */
878 		lastshift = 0;
879 		for (areamask = HTLB_AREA_MASK(TASK_SIZE_USER64-len, len);
880 		     ! lastshift; areamask >>=1) {
881 			if (areamask & 1)
882 				lastshift = 1;
883 
884 			addr = htlb_get_high_area(len, curareas | areamask);
885 			if ((addr != -ENOMEM)
886 			    && open_high_hpage_areas(current->mm, areamask) == 0)
887 				return addr;
888 		}
889 	}
890 	printk(KERN_DEBUG "hugetlb_get_unmapped_area() unable to open"
891 	       " enough areas\n");
892 	return -ENOMEM;
893 }
894 
895 /*
896  * Called by asm hashtable.S for doing lazy icache flush
897  */
898 static unsigned int hash_huge_page_do_lazy_icache(unsigned long rflags,
899 						  pte_t pte, int trap)
900 {
901 	struct page *page;
902 	int i;
903 
904 	if (!pfn_valid(pte_pfn(pte)))
905 		return rflags;
906 
907 	page = pte_page(pte);
908 
909 	/* page is dirty */
910 	if (!test_bit(PG_arch_1, &page->flags) && !PageReserved(page)) {
911 		if (trap == 0x400) {
912 			for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++)
913 				__flush_dcache_icache(page_address(page+i));
914 			set_bit(PG_arch_1, &page->flags);
915 		} else {
916 			rflags |= HPTE_R_N;
917 		}
918 	}
919 	return rflags;
920 }
921 
922 int hash_huge_page(struct mm_struct *mm, unsigned long access,
923 		   unsigned long ea, unsigned long vsid, int local,
924 		   unsigned long trap)
925 {
926 	pte_t *ptep;
927 	unsigned long old_pte, new_pte;
928 	unsigned long va, rflags, pa;
929 	long slot;
930 	int err = 1;
931 
932 	ptep = huge_pte_offset(mm, ea);
933 
934 	/* Search the Linux page table for a match with va */
935 	va = (vsid << 28) | (ea & 0x0fffffff);
936 
937 	/*
938 	 * If no pte found or not present, send the problem up to
939 	 * do_page_fault
940 	 */
941 	if (unlikely(!ptep || pte_none(*ptep)))
942 		goto out;
943 
944 	/*
945 	 * Check the user's access rights to the page.  If access should be
946 	 * prevented then send the problem up to do_page_fault.
947 	 */
948 	if (unlikely(access & ~pte_val(*ptep)))
949 		goto out;
950 	/*
951 	 * At this point, we have a pte (old_pte) which can be used to build
952 	 * or update an HPTE. There are 2 cases:
953 	 *
954 	 * 1. There is a valid (present) pte with no associated HPTE (this is
955 	 *	the most common case)
956 	 * 2. There is a valid (present) pte with an associated HPTE. The
957 	 *	current values of the pp bits in the HPTE prevent access
958 	 *	because we are doing software DIRTY bit management and the
959 	 *	page is currently not DIRTY.
960 	 */
961 
962 
963 	do {
964 		old_pte = pte_val(*ptep);
965 		if (old_pte & _PAGE_BUSY)
966 			goto out;
967 		new_pte = old_pte | _PAGE_BUSY |
968 			_PAGE_ACCESSED | _PAGE_HASHPTE;
969 	} while(old_pte != __cmpxchg_u64((unsigned long *)ptep,
970 					 old_pte, new_pte));
971 
972 	rflags = 0x2 | (!(new_pte & _PAGE_RW));
973  	/* _PAGE_EXEC -> HW_NO_EXEC since it's inverted */
974 	rflags |= ((new_pte & _PAGE_EXEC) ? 0 : HPTE_R_N);
975 	if (!cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
976 		/* No CPU has hugepages but lacks no execute, so we
977 		 * don't need to worry about that case */
978 		rflags = hash_huge_page_do_lazy_icache(rflags, __pte(old_pte),
979 						       trap);
980 
981 	/* Check if pte already has an hpte (case 2) */
982 	if (unlikely(old_pte & _PAGE_HASHPTE)) {
983 		/* There MIGHT be an HPTE for this pte */
984 		unsigned long hash, slot;
985 
986 		hash = hpt_hash(va, HPAGE_SHIFT);
987 		if (old_pte & _PAGE_F_SECOND)
988 			hash = ~hash;
989 		slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
990 		slot += (old_pte & _PAGE_F_GIX) >> 12;
991 
992 		if (ppc_md.hpte_updatepp(slot, rflags, va, mmu_huge_psize,
993 					 local) == -1)
994 			old_pte &= ~_PAGE_HPTEFLAGS;
995 	}
996 
997 	if (likely(!(old_pte & _PAGE_HASHPTE))) {
998 		unsigned long hash = hpt_hash(va, HPAGE_SHIFT);
999 		unsigned long hpte_group;
1000 
1001 		pa = pte_pfn(__pte(old_pte)) << PAGE_SHIFT;
1002 
1003 repeat:
1004 		hpte_group = ((hash & htab_hash_mask) *
1005 			      HPTES_PER_GROUP) & ~0x7UL;
1006 
1007 		/* clear HPTE slot informations in new PTE */
1008 		new_pte = (new_pte & ~_PAGE_HPTEFLAGS) | _PAGE_HASHPTE;
1009 
1010 		/* Add in WIMG bits */
1011 		/* XXX We should store these in the pte */
1012 		/* --BenH: I think they are ... */
1013 		rflags |= _PAGE_COHERENT;
1014 
1015 		/* Insert into the hash table, primary slot */
1016 		slot = ppc_md.hpte_insert(hpte_group, va, pa, rflags, 0,
1017 					  mmu_huge_psize);
1018 
1019 		/* Primary is full, try the secondary */
1020 		if (unlikely(slot == -1)) {
1021 			hpte_group = ((~hash & htab_hash_mask) *
1022 				      HPTES_PER_GROUP) & ~0x7UL;
1023 			slot = ppc_md.hpte_insert(hpte_group, va, pa, rflags,
1024 						  HPTE_V_SECONDARY,
1025 						  mmu_huge_psize);
1026 			if (slot == -1) {
1027 				if (mftb() & 0x1)
1028 					hpte_group = ((hash & htab_hash_mask) *
1029 						      HPTES_PER_GROUP)&~0x7UL;
1030 
1031 				ppc_md.hpte_remove(hpte_group);
1032 				goto repeat;
1033                         }
1034 		}
1035 
1036 		if (unlikely(slot == -2))
1037 			panic("hash_huge_page: pte_insert failed\n");
1038 
1039 		new_pte |= (slot << 12) & (_PAGE_F_SECOND | _PAGE_F_GIX);
1040 	}
1041 
1042 	/*
1043 	 * No need to use ldarx/stdcx here
1044 	 */
1045 	*ptep = __pte(new_pte & ~_PAGE_BUSY);
1046 
1047 	err = 0;
1048 
1049  out:
1050 	return err;
1051 }
1052 
1053 static void zero_ctor(void *addr, struct kmem_cache *cache, unsigned long flags)
1054 {
1055 	memset(addr, 0, kmem_cache_size(cache));
1056 }
1057 
1058 static int __init hugetlbpage_init(void)
1059 {
1060 	if (!cpu_has_feature(CPU_FTR_16M_PAGE))
1061 		return -ENODEV;
1062 
1063 	huge_pgtable_cache = kmem_cache_create("hugepte_cache",
1064 					       HUGEPTE_TABLE_SIZE,
1065 					       HUGEPTE_TABLE_SIZE,
1066 					       SLAB_HWCACHE_ALIGN |
1067 					       SLAB_MUST_HWCACHE_ALIGN,
1068 					       zero_ctor, NULL);
1069 	if (! huge_pgtable_cache)
1070 		panic("hugetlbpage_init(): could not create hugepte cache\n");
1071 
1072 	return 0;
1073 }
1074 
1075 module_init(hugetlbpage_init);
1076