xref: /linux/arch/powerpc/mm/hugetlbpage.c (revision 858259cf7d1c443c836a2022b78cb281f0a9b95e)
1 /*
2  * PPC64 (POWER4) Huge TLB Page Support for Kernel.
3  *
4  * Copyright (C) 2003 David Gibson, IBM Corporation.
5  *
6  * Based on the IA-32 version:
7  * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
8  */
9 
10 #include <linux/init.h>
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/hugetlb.h>
14 #include <linux/pagemap.h>
15 #include <linux/smp_lock.h>
16 #include <linux/slab.h>
17 #include <linux/err.h>
18 #include <linux/sysctl.h>
19 #include <asm/mman.h>
20 #include <asm/pgalloc.h>
21 #include <asm/tlb.h>
22 #include <asm/tlbflush.h>
23 #include <asm/mmu_context.h>
24 #include <asm/machdep.h>
25 #include <asm/cputable.h>
26 #include <asm/tlb.h>
27 
28 #include <linux/sysctl.h>
29 
30 #define NUM_LOW_AREAS	(0x100000000UL >> SID_SHIFT)
31 #define NUM_HIGH_AREAS	(PGTABLE_RANGE >> HTLB_AREA_SHIFT)
32 
33 /* Modelled after find_linux_pte() */
34 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
35 {
36 	pgd_t *pg;
37 	pud_t *pu;
38 	pmd_t *pm;
39 	pte_t *pt;
40 
41 	BUG_ON(! in_hugepage_area(mm->context, addr));
42 
43 	addr &= HPAGE_MASK;
44 
45 	pg = pgd_offset(mm, addr);
46 	if (!pgd_none(*pg)) {
47 		pu = pud_offset(pg, addr);
48 		if (!pud_none(*pu)) {
49 			pm = pmd_offset(pu, addr);
50 #ifdef CONFIG_PPC_64K_PAGES
51 			/* Currently, we use the normal PTE offset within full
52 			 * size PTE pages, thus our huge PTEs are scattered in
53 			 * the PTE page and we do waste some. We may change
54 			 * that in the future, but the current mecanism keeps
55 			 * things much simpler
56 			 */
57 			if (!pmd_none(*pm)) {
58 				/* Note: pte_offset_* are all equivalent on
59 				 * ppc64 as we don't have HIGHMEM
60 				 */
61 				pt = pte_offset_kernel(pm, addr);
62 				return pt;
63 			}
64 #else /* CONFIG_PPC_64K_PAGES */
65 			/* On 4k pages, we put huge PTEs in the PMD page */
66 			pt = (pte_t *)pm;
67 			return pt;
68 #endif /* CONFIG_PPC_64K_PAGES */
69 		}
70 	}
71 
72 	return NULL;
73 }
74 
75 pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr)
76 {
77 	pgd_t *pg;
78 	pud_t *pu;
79 	pmd_t *pm;
80 	pte_t *pt;
81 
82 	BUG_ON(! in_hugepage_area(mm->context, addr));
83 
84 	addr &= HPAGE_MASK;
85 
86 	pg = pgd_offset(mm, addr);
87 	pu = pud_alloc(mm, pg, addr);
88 
89 	if (pu) {
90 		pm = pmd_alloc(mm, pu, addr);
91 		if (pm) {
92 #ifdef CONFIG_PPC_64K_PAGES
93 			/* See comment in huge_pte_offset. Note that if we ever
94 			 * want to put the page size in the PMD, we would have
95 			 * to open code our own pte_alloc* function in order
96 			 * to populate and set the size atomically
97 			 */
98 			pt = pte_alloc_map(mm, pm, addr);
99 #else /* CONFIG_PPC_64K_PAGES */
100 			pt = (pte_t *)pm;
101 #endif /* CONFIG_PPC_64K_PAGES */
102 			return pt;
103 		}
104 	}
105 
106 	return NULL;
107 }
108 
109 void set_huge_pte_at(struct mm_struct *mm, unsigned long addr,
110 		     pte_t *ptep, pte_t pte)
111 {
112 	if (pte_present(*ptep)) {
113 		/* We open-code pte_clear because we need to pass the right
114 		 * argument to hpte_update (huge / !huge)
115 		 */
116 		unsigned long old = pte_update(ptep, ~0UL);
117 		if (old & _PAGE_HASHPTE)
118 			hpte_update(mm, addr & HPAGE_MASK, ptep, old, 1);
119 		flush_tlb_pending();
120 	}
121 	*ptep = __pte(pte_val(pte) & ~_PAGE_HPTEFLAGS);
122 }
123 
124 pte_t huge_ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
125 			      pte_t *ptep)
126 {
127 	unsigned long old = pte_update(ptep, ~0UL);
128 
129 	if (old & _PAGE_HASHPTE)
130 		hpte_update(mm, addr & HPAGE_MASK, ptep, old, 1);
131 	*ptep = __pte(0);
132 
133 	return __pte(old);
134 }
135 
136 /*
137  * This function checks for proper alignment of input addr and len parameters.
138  */
139 int is_aligned_hugepage_range(unsigned long addr, unsigned long len)
140 {
141 	if (len & ~HPAGE_MASK)
142 		return -EINVAL;
143 	if (addr & ~HPAGE_MASK)
144 		return -EINVAL;
145 	if (! (within_hugepage_low_range(addr, len)
146 	       || within_hugepage_high_range(addr, len)) )
147 		return -EINVAL;
148 	return 0;
149 }
150 
151 static void flush_low_segments(void *parm)
152 {
153 	u16 areas = (unsigned long) parm;
154 	unsigned long i;
155 
156 	asm volatile("isync" : : : "memory");
157 
158 	BUILD_BUG_ON((sizeof(areas)*8) != NUM_LOW_AREAS);
159 
160 	for (i = 0; i < NUM_LOW_AREAS; i++) {
161 		if (! (areas & (1U << i)))
162 			continue;
163 		asm volatile("slbie %0"
164 			     : : "r" ((i << SID_SHIFT) | SLBIE_C));
165 	}
166 
167 	asm volatile("isync" : : : "memory");
168 }
169 
170 static void flush_high_segments(void *parm)
171 {
172 	u16 areas = (unsigned long) parm;
173 	unsigned long i, j;
174 
175 	asm volatile("isync" : : : "memory");
176 
177 	BUILD_BUG_ON((sizeof(areas)*8) != NUM_HIGH_AREAS);
178 
179 	for (i = 0; i < NUM_HIGH_AREAS; i++) {
180 		if (! (areas & (1U << i)))
181 			continue;
182 		for (j = 0; j < (1UL << (HTLB_AREA_SHIFT-SID_SHIFT)); j++)
183 			asm volatile("slbie %0"
184 				     :: "r" (((i << HTLB_AREA_SHIFT)
185 					     + (j << SID_SHIFT)) | SLBIE_C));
186 	}
187 
188 	asm volatile("isync" : : : "memory");
189 }
190 
191 static int prepare_low_area_for_htlb(struct mm_struct *mm, unsigned long area)
192 {
193 	unsigned long start = area << SID_SHIFT;
194 	unsigned long end = (area+1) << SID_SHIFT;
195 	struct vm_area_struct *vma;
196 
197 	BUG_ON(area >= NUM_LOW_AREAS);
198 
199 	/* Check no VMAs are in the region */
200 	vma = find_vma(mm, start);
201 	if (vma && (vma->vm_start < end))
202 		return -EBUSY;
203 
204 	return 0;
205 }
206 
207 static int prepare_high_area_for_htlb(struct mm_struct *mm, unsigned long area)
208 {
209 	unsigned long start = area << HTLB_AREA_SHIFT;
210 	unsigned long end = (area+1) << HTLB_AREA_SHIFT;
211 	struct vm_area_struct *vma;
212 
213 	BUG_ON(area >= NUM_HIGH_AREAS);
214 
215 	/* Hack, so that each addresses is controlled by exactly one
216 	 * of the high or low area bitmaps, the first high area starts
217 	 * at 4GB, not 0 */
218 	if (start == 0)
219 		start = 0x100000000UL;
220 
221 	/* Check no VMAs are in the region */
222 	vma = find_vma(mm, start);
223 	if (vma && (vma->vm_start < end))
224 		return -EBUSY;
225 
226 	return 0;
227 }
228 
229 static int open_low_hpage_areas(struct mm_struct *mm, u16 newareas)
230 {
231 	unsigned long i;
232 
233 	BUILD_BUG_ON((sizeof(newareas)*8) != NUM_LOW_AREAS);
234 	BUILD_BUG_ON((sizeof(mm->context.low_htlb_areas)*8) != NUM_LOW_AREAS);
235 
236 	newareas &= ~(mm->context.low_htlb_areas);
237 	if (! newareas)
238 		return 0; /* The segments we want are already open */
239 
240 	for (i = 0; i < NUM_LOW_AREAS; i++)
241 		if ((1 << i) & newareas)
242 			if (prepare_low_area_for_htlb(mm, i) != 0)
243 				return -EBUSY;
244 
245 	mm->context.low_htlb_areas |= newareas;
246 
247 	/* update the paca copy of the context struct */
248 	get_paca()->context = mm->context;
249 
250 	/* the context change must make it to memory before the flush,
251 	 * so that further SLB misses do the right thing. */
252 	mb();
253 	on_each_cpu(flush_low_segments, (void *)(unsigned long)newareas, 0, 1);
254 
255 	return 0;
256 }
257 
258 static int open_high_hpage_areas(struct mm_struct *mm, u16 newareas)
259 {
260 	unsigned long i;
261 
262 	BUILD_BUG_ON((sizeof(newareas)*8) != NUM_HIGH_AREAS);
263 	BUILD_BUG_ON((sizeof(mm->context.high_htlb_areas)*8)
264 		     != NUM_HIGH_AREAS);
265 
266 	newareas &= ~(mm->context.high_htlb_areas);
267 	if (! newareas)
268 		return 0; /* The areas we want are already open */
269 
270 	for (i = 0; i < NUM_HIGH_AREAS; i++)
271 		if ((1 << i) & newareas)
272 			if (prepare_high_area_for_htlb(mm, i) != 0)
273 				return -EBUSY;
274 
275 	mm->context.high_htlb_areas |= newareas;
276 
277 	/* update the paca copy of the context struct */
278 	get_paca()->context = mm->context;
279 
280 	/* the context change must make it to memory before the flush,
281 	 * so that further SLB misses do the right thing. */
282 	mb();
283 	on_each_cpu(flush_high_segments, (void *)(unsigned long)newareas, 0, 1);
284 
285 	return 0;
286 }
287 
288 int prepare_hugepage_range(unsigned long addr, unsigned long len)
289 {
290 	int err;
291 
292 	if ( (addr+len) < addr )
293 		return -EINVAL;
294 
295 	if ((addr + len) < 0x100000000UL)
296 		err = open_low_hpage_areas(current->mm,
297 					  LOW_ESID_MASK(addr, len));
298 	else
299 		err = open_high_hpage_areas(current->mm,
300 					    HTLB_AREA_MASK(addr, len));
301 	if (err) {
302 		printk(KERN_DEBUG "prepare_hugepage_range(%lx, %lx)"
303 		       " failed (lowmask: 0x%04hx, highmask: 0x%04hx)\n",
304 		       addr, len,
305 		       LOW_ESID_MASK(addr, len), HTLB_AREA_MASK(addr, len));
306 		return err;
307 	}
308 
309 	return 0;
310 }
311 
312 struct page *
313 follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
314 {
315 	pte_t *ptep;
316 	struct page *page;
317 
318 	if (! in_hugepage_area(mm->context, address))
319 		return ERR_PTR(-EINVAL);
320 
321 	ptep = huge_pte_offset(mm, address);
322 	page = pte_page(*ptep);
323 	if (page)
324 		page += (address % HPAGE_SIZE) / PAGE_SIZE;
325 
326 	return page;
327 }
328 
329 int pmd_huge(pmd_t pmd)
330 {
331 	return 0;
332 }
333 
334 struct page *
335 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
336 		pmd_t *pmd, int write)
337 {
338 	BUG();
339 	return NULL;
340 }
341 
342 /* Because we have an exclusive hugepage region which lies within the
343  * normal user address space, we have to take special measures to make
344  * non-huge mmap()s evade the hugepage reserved regions. */
345 unsigned long arch_get_unmapped_area(struct file *filp, unsigned long addr,
346 				     unsigned long len, unsigned long pgoff,
347 				     unsigned long flags)
348 {
349 	struct mm_struct *mm = current->mm;
350 	struct vm_area_struct *vma;
351 	unsigned long start_addr;
352 
353 	if (len > TASK_SIZE)
354 		return -ENOMEM;
355 
356 	if (addr) {
357 		addr = PAGE_ALIGN(addr);
358 		vma = find_vma(mm, addr);
359 		if (((TASK_SIZE - len) >= addr)
360 		    && (!vma || (addr+len) <= vma->vm_start)
361 		    && !is_hugepage_only_range(mm, addr,len))
362 			return addr;
363 	}
364 	if (len > mm->cached_hole_size) {
365 	        start_addr = addr = mm->free_area_cache;
366 	} else {
367 	        start_addr = addr = TASK_UNMAPPED_BASE;
368 	        mm->cached_hole_size = 0;
369 	}
370 
371 full_search:
372 	vma = find_vma(mm, addr);
373 	while (TASK_SIZE - len >= addr) {
374 		BUG_ON(vma && (addr >= vma->vm_end));
375 
376 		if (touches_hugepage_low_range(mm, addr, len)) {
377 			addr = ALIGN(addr+1, 1<<SID_SHIFT);
378 			vma = find_vma(mm, addr);
379 			continue;
380 		}
381 		if (touches_hugepage_high_range(mm, addr, len)) {
382 			addr = ALIGN(addr+1, 1UL<<HTLB_AREA_SHIFT);
383 			vma = find_vma(mm, addr);
384 			continue;
385 		}
386 		if (!vma || addr + len <= vma->vm_start) {
387 			/*
388 			 * Remember the place where we stopped the search:
389 			 */
390 			mm->free_area_cache = addr + len;
391 			return addr;
392 		}
393 		if (addr + mm->cached_hole_size < vma->vm_start)
394 		        mm->cached_hole_size = vma->vm_start - addr;
395 		addr = vma->vm_end;
396 		vma = vma->vm_next;
397 	}
398 
399 	/* Make sure we didn't miss any holes */
400 	if (start_addr != TASK_UNMAPPED_BASE) {
401 		start_addr = addr = TASK_UNMAPPED_BASE;
402 		mm->cached_hole_size = 0;
403 		goto full_search;
404 	}
405 	return -ENOMEM;
406 }
407 
408 /*
409  * This mmap-allocator allocates new areas top-down from below the
410  * stack's low limit (the base):
411  *
412  * Because we have an exclusive hugepage region which lies within the
413  * normal user address space, we have to take special measures to make
414  * non-huge mmap()s evade the hugepage reserved regions.
415  */
416 unsigned long
417 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
418 			  const unsigned long len, const unsigned long pgoff,
419 			  const unsigned long flags)
420 {
421 	struct vm_area_struct *vma, *prev_vma;
422 	struct mm_struct *mm = current->mm;
423 	unsigned long base = mm->mmap_base, addr = addr0;
424 	unsigned long largest_hole = mm->cached_hole_size;
425 	int first_time = 1;
426 
427 	/* requested length too big for entire address space */
428 	if (len > TASK_SIZE)
429 		return -ENOMEM;
430 
431 	/* dont allow allocations above current base */
432 	if (mm->free_area_cache > base)
433 		mm->free_area_cache = base;
434 
435 	/* requesting a specific address */
436 	if (addr) {
437 		addr = PAGE_ALIGN(addr);
438 		vma = find_vma(mm, addr);
439 		if (TASK_SIZE - len >= addr &&
440 				(!vma || addr + len <= vma->vm_start)
441 				&& !is_hugepage_only_range(mm, addr,len))
442 			return addr;
443 	}
444 
445 	if (len <= largest_hole) {
446 	        largest_hole = 0;
447 		mm->free_area_cache = base;
448 	}
449 try_again:
450 	/* make sure it can fit in the remaining address space */
451 	if (mm->free_area_cache < len)
452 		goto fail;
453 
454 	/* either no address requested or cant fit in requested address hole */
455 	addr = (mm->free_area_cache - len) & PAGE_MASK;
456 	do {
457 hugepage_recheck:
458 		if (touches_hugepage_low_range(mm, addr, len)) {
459 			addr = (addr & ((~0) << SID_SHIFT)) - len;
460 			goto hugepage_recheck;
461 		} else if (touches_hugepage_high_range(mm, addr, len)) {
462 			addr = (addr & ((~0UL) << HTLB_AREA_SHIFT)) - len;
463 			goto hugepage_recheck;
464 		}
465 
466 		/*
467 		 * Lookup failure means no vma is above this address,
468 		 * i.e. return with success:
469 		 */
470  	 	if (!(vma = find_vma_prev(mm, addr, &prev_vma)))
471 			return addr;
472 
473 		/*
474 		 * new region fits between prev_vma->vm_end and
475 		 * vma->vm_start, use it:
476 		 */
477 		if (addr+len <= vma->vm_start &&
478 		          (!prev_vma || (addr >= prev_vma->vm_end))) {
479 			/* remember the address as a hint for next time */
480 		        mm->cached_hole_size = largest_hole;
481 		        return (mm->free_area_cache = addr);
482 		} else {
483 			/* pull free_area_cache down to the first hole */
484 		        if (mm->free_area_cache == vma->vm_end) {
485 				mm->free_area_cache = vma->vm_start;
486 				mm->cached_hole_size = largest_hole;
487 			}
488 		}
489 
490 		/* remember the largest hole we saw so far */
491 		if (addr + largest_hole < vma->vm_start)
492 		        largest_hole = vma->vm_start - addr;
493 
494 		/* try just below the current vma->vm_start */
495 		addr = vma->vm_start-len;
496 	} while (len <= vma->vm_start);
497 
498 fail:
499 	/*
500 	 * if hint left us with no space for the requested
501 	 * mapping then try again:
502 	 */
503 	if (first_time) {
504 		mm->free_area_cache = base;
505 		largest_hole = 0;
506 		first_time = 0;
507 		goto try_again;
508 	}
509 	/*
510 	 * A failed mmap() very likely causes application failure,
511 	 * so fall back to the bottom-up function here. This scenario
512 	 * can happen with large stack limits and large mmap()
513 	 * allocations.
514 	 */
515 	mm->free_area_cache = TASK_UNMAPPED_BASE;
516 	mm->cached_hole_size = ~0UL;
517 	addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
518 	/*
519 	 * Restore the topdown base:
520 	 */
521 	mm->free_area_cache = base;
522 	mm->cached_hole_size = ~0UL;
523 
524 	return addr;
525 }
526 
527 static unsigned long htlb_get_low_area(unsigned long len, u16 segmask)
528 {
529 	unsigned long addr = 0;
530 	struct vm_area_struct *vma;
531 
532 	vma = find_vma(current->mm, addr);
533 	while (addr + len <= 0x100000000UL) {
534 		BUG_ON(vma && (addr >= vma->vm_end)); /* invariant */
535 
536 		if (! __within_hugepage_low_range(addr, len, segmask)) {
537 			addr = ALIGN(addr+1, 1<<SID_SHIFT);
538 			vma = find_vma(current->mm, addr);
539 			continue;
540 		}
541 
542 		if (!vma || (addr + len) <= vma->vm_start)
543 			return addr;
544 		addr = ALIGN(vma->vm_end, HPAGE_SIZE);
545 		/* Depending on segmask this might not be a confirmed
546 		 * hugepage region, so the ALIGN could have skipped
547 		 * some VMAs */
548 		vma = find_vma(current->mm, addr);
549 	}
550 
551 	return -ENOMEM;
552 }
553 
554 static unsigned long htlb_get_high_area(unsigned long len, u16 areamask)
555 {
556 	unsigned long addr = 0x100000000UL;
557 	struct vm_area_struct *vma;
558 
559 	vma = find_vma(current->mm, addr);
560 	while (addr + len <= TASK_SIZE_USER64) {
561 		BUG_ON(vma && (addr >= vma->vm_end)); /* invariant */
562 
563 		if (! __within_hugepage_high_range(addr, len, areamask)) {
564 			addr = ALIGN(addr+1, 1UL<<HTLB_AREA_SHIFT);
565 			vma = find_vma(current->mm, addr);
566 			continue;
567 		}
568 
569 		if (!vma || (addr + len) <= vma->vm_start)
570 			return addr;
571 		addr = ALIGN(vma->vm_end, HPAGE_SIZE);
572 		/* Depending on segmask this might not be a confirmed
573 		 * hugepage region, so the ALIGN could have skipped
574 		 * some VMAs */
575 		vma = find_vma(current->mm, addr);
576 	}
577 
578 	return -ENOMEM;
579 }
580 
581 unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
582 					unsigned long len, unsigned long pgoff,
583 					unsigned long flags)
584 {
585 	int lastshift;
586 	u16 areamask, curareas;
587 
588 	if (HPAGE_SHIFT == 0)
589 		return -EINVAL;
590 	if (len & ~HPAGE_MASK)
591 		return -EINVAL;
592 
593 	if (!cpu_has_feature(CPU_FTR_16M_PAGE))
594 		return -EINVAL;
595 
596 	if (test_thread_flag(TIF_32BIT)) {
597 		curareas = current->mm->context.low_htlb_areas;
598 
599 		/* First see if we can do the mapping in the existing
600 		 * low areas */
601 		addr = htlb_get_low_area(len, curareas);
602 		if (addr != -ENOMEM)
603 			return addr;
604 
605 		lastshift = 0;
606 		for (areamask = LOW_ESID_MASK(0x100000000UL-len, len);
607 		     ! lastshift; areamask >>=1) {
608 			if (areamask & 1)
609 				lastshift = 1;
610 
611 			addr = htlb_get_low_area(len, curareas | areamask);
612 			if ((addr != -ENOMEM)
613 			    && open_low_hpage_areas(current->mm, areamask) == 0)
614 				return addr;
615 		}
616 	} else {
617 		curareas = current->mm->context.high_htlb_areas;
618 
619 		/* First see if we can do the mapping in the existing
620 		 * high areas */
621 		addr = htlb_get_high_area(len, curareas);
622 		if (addr != -ENOMEM)
623 			return addr;
624 
625 		lastshift = 0;
626 		for (areamask = HTLB_AREA_MASK(TASK_SIZE_USER64-len, len);
627 		     ! lastshift; areamask >>=1) {
628 			if (areamask & 1)
629 				lastshift = 1;
630 
631 			addr = htlb_get_high_area(len, curareas | areamask);
632 			if ((addr != -ENOMEM)
633 			    && open_high_hpage_areas(current->mm, areamask) == 0)
634 				return addr;
635 		}
636 	}
637 	printk(KERN_DEBUG "hugetlb_get_unmapped_area() unable to open"
638 	       " enough areas\n");
639 	return -ENOMEM;
640 }
641 
642 int hash_huge_page(struct mm_struct *mm, unsigned long access,
643 		   unsigned long ea, unsigned long vsid, int local)
644 {
645 	pte_t *ptep;
646 	unsigned long old_pte, new_pte;
647 	unsigned long va, rflags, pa;
648 	long slot;
649 	int err = 1;
650 
651 	ptep = huge_pte_offset(mm, ea);
652 
653 	/* Search the Linux page table for a match with va */
654 	va = (vsid << 28) | (ea & 0x0fffffff);
655 
656 	/*
657 	 * If no pte found or not present, send the problem up to
658 	 * do_page_fault
659 	 */
660 	if (unlikely(!ptep || pte_none(*ptep)))
661 		goto out;
662 
663 	/*
664 	 * Check the user's access rights to the page.  If access should be
665 	 * prevented then send the problem up to do_page_fault.
666 	 */
667 	if (unlikely(access & ~pte_val(*ptep)))
668 		goto out;
669 	/*
670 	 * At this point, we have a pte (old_pte) which can be used to build
671 	 * or update an HPTE. There are 2 cases:
672 	 *
673 	 * 1. There is a valid (present) pte with no associated HPTE (this is
674 	 *	the most common case)
675 	 * 2. There is a valid (present) pte with an associated HPTE. The
676 	 *	current values of the pp bits in the HPTE prevent access
677 	 *	because we are doing software DIRTY bit management and the
678 	 *	page is currently not DIRTY.
679 	 */
680 
681 
682 	do {
683 		old_pte = pte_val(*ptep);
684 		if (old_pte & _PAGE_BUSY)
685 			goto out;
686 		new_pte = old_pte | _PAGE_BUSY |
687 			_PAGE_ACCESSED | _PAGE_HASHPTE;
688 	} while(old_pte != __cmpxchg_u64((unsigned long *)ptep,
689 					 old_pte, new_pte));
690 
691 	rflags = 0x2 | (!(new_pte & _PAGE_RW));
692  	/* _PAGE_EXEC -> HW_NO_EXEC since it's inverted */
693 	rflags |= ((new_pte & _PAGE_EXEC) ? 0 : HPTE_R_N);
694 
695 	/* Check if pte already has an hpte (case 2) */
696 	if (unlikely(old_pte & _PAGE_HASHPTE)) {
697 		/* There MIGHT be an HPTE for this pte */
698 		unsigned long hash, slot;
699 
700 		hash = hpt_hash(va, HPAGE_SHIFT);
701 		if (old_pte & _PAGE_F_SECOND)
702 			hash = ~hash;
703 		slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
704 		slot += (old_pte & _PAGE_F_GIX) >> 12;
705 
706 		if (ppc_md.hpte_updatepp(slot, rflags, va, 1, local) == -1)
707 			old_pte &= ~_PAGE_HPTEFLAGS;
708 	}
709 
710 	if (likely(!(old_pte & _PAGE_HASHPTE))) {
711 		unsigned long hash = hpt_hash(va, HPAGE_SHIFT);
712 		unsigned long hpte_group;
713 
714 		pa = pte_pfn(__pte(old_pte)) << PAGE_SHIFT;
715 
716 repeat:
717 		hpte_group = ((hash & htab_hash_mask) *
718 			      HPTES_PER_GROUP) & ~0x7UL;
719 
720 		/* clear HPTE slot informations in new PTE */
721 		new_pte = (new_pte & ~_PAGE_HPTEFLAGS) | _PAGE_HASHPTE;
722 
723 		/* Add in WIMG bits */
724 		/* XXX We should store these in the pte */
725 		/* --BenH: I think they are ... */
726 		rflags |= _PAGE_COHERENT;
727 
728 		/* Insert into the hash table, primary slot */
729 		slot = ppc_md.hpte_insert(hpte_group, va, pa, rflags, 0,
730 					  mmu_huge_psize);
731 
732 		/* Primary is full, try the secondary */
733 		if (unlikely(slot == -1)) {
734 			new_pte |= _PAGE_F_SECOND;
735 			hpte_group = ((~hash & htab_hash_mask) *
736 				      HPTES_PER_GROUP) & ~0x7UL;
737 			slot = ppc_md.hpte_insert(hpte_group, va, pa, rflags,
738 						  HPTE_V_SECONDARY,
739 						  mmu_huge_psize);
740 			if (slot == -1) {
741 				if (mftb() & 0x1)
742 					hpte_group = ((hash & htab_hash_mask) *
743 						      HPTES_PER_GROUP)&~0x7UL;
744 
745 				ppc_md.hpte_remove(hpte_group);
746 				goto repeat;
747                         }
748 		}
749 
750 		if (unlikely(slot == -2))
751 			panic("hash_huge_page: pte_insert failed\n");
752 
753 		new_pte |= (slot << 12) & _PAGE_F_GIX;
754 	}
755 
756 	/*
757 	 * No need to use ldarx/stdcx here because all who
758 	 * might be updating the pte will hold the
759 	 * page_table_lock
760 	 */
761 	*ptep = __pte(new_pte & ~_PAGE_BUSY);
762 
763 	err = 0;
764 
765  out:
766 	return err;
767 }
768