1 /* 2 * Common time routines among all ppc machines. 3 * 4 * Written by Cort Dougan (cort@cs.nmt.edu) to merge 5 * Paul Mackerras' version and mine for PReP and Pmac. 6 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net). 7 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com) 8 * 9 * First round of bugfixes by Gabriel Paubert (paubert@iram.es) 10 * to make clock more stable (2.4.0-test5). The only thing 11 * that this code assumes is that the timebases have been synchronized 12 * by firmware on SMP and are never stopped (never do sleep 13 * on SMP then, nap and doze are OK). 14 * 15 * Speeded up do_gettimeofday by getting rid of references to 16 * xtime (which required locks for consistency). (mikejc@us.ibm.com) 17 * 18 * TODO (not necessarily in this file): 19 * - improve precision and reproducibility of timebase frequency 20 * measurement at boot time. (for iSeries, we calibrate the timebase 21 * against the Titan chip's clock.) 22 * - for astronomical applications: add a new function to get 23 * non ambiguous timestamps even around leap seconds. This needs 24 * a new timestamp format and a good name. 25 * 26 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96 27 * "A Kernel Model for Precision Timekeeping" by Dave Mills 28 * 29 * This program is free software; you can redistribute it and/or 30 * modify it under the terms of the GNU General Public License 31 * as published by the Free Software Foundation; either version 32 * 2 of the License, or (at your option) any later version. 33 */ 34 35 #include <linux/config.h> 36 #include <linux/errno.h> 37 #include <linux/module.h> 38 #include <linux/sched.h> 39 #include <linux/kernel.h> 40 #include <linux/param.h> 41 #include <linux/string.h> 42 #include <linux/mm.h> 43 #include <linux/interrupt.h> 44 #include <linux/timex.h> 45 #include <linux/kernel_stat.h> 46 #include <linux/time.h> 47 #include <linux/init.h> 48 #include <linux/profile.h> 49 #include <linux/cpu.h> 50 #include <linux/security.h> 51 #include <linux/percpu.h> 52 #include <linux/rtc.h> 53 #include <linux/jiffies.h> 54 #include <linux/posix-timers.h> 55 56 #include <asm/io.h> 57 #include <asm/processor.h> 58 #include <asm/nvram.h> 59 #include <asm/cache.h> 60 #include <asm/machdep.h> 61 #include <asm/uaccess.h> 62 #include <asm/time.h> 63 #include <asm/prom.h> 64 #include <asm/irq.h> 65 #include <asm/div64.h> 66 #include <asm/smp.h> 67 #include <asm/vdso_datapage.h> 68 #ifdef CONFIG_PPC64 69 #include <asm/firmware.h> 70 #endif 71 #ifdef CONFIG_PPC_ISERIES 72 #include <asm/iseries/it_lp_queue.h> 73 #include <asm/iseries/hv_call_xm.h> 74 #endif 75 #include <asm/smp.h> 76 77 /* keep track of when we need to update the rtc */ 78 time_t last_rtc_update; 79 #ifdef CONFIG_PPC_ISERIES 80 unsigned long iSeries_recal_titan = 0; 81 unsigned long iSeries_recal_tb = 0; 82 static unsigned long first_settimeofday = 1; 83 #endif 84 85 /* The decrementer counts down by 128 every 128ns on a 601. */ 86 #define DECREMENTER_COUNT_601 (1000000000 / HZ) 87 88 #define XSEC_PER_SEC (1024*1024) 89 90 #ifdef CONFIG_PPC64 91 #define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC) 92 #else 93 /* compute ((xsec << 12) * max) >> 32 */ 94 #define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max) 95 #endif 96 97 unsigned long tb_ticks_per_jiffy; 98 unsigned long tb_ticks_per_usec = 100; /* sane default */ 99 EXPORT_SYMBOL(tb_ticks_per_usec); 100 unsigned long tb_ticks_per_sec; 101 EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */ 102 u64 tb_to_xs; 103 unsigned tb_to_us; 104 105 #define TICKLEN_SCALE TICK_LENGTH_SHIFT 106 u64 last_tick_len; /* units are ns / 2^TICKLEN_SCALE */ 107 u64 ticklen_to_xs; /* 0.64 fraction */ 108 109 /* If last_tick_len corresponds to about 1/HZ seconds, then 110 last_tick_len << TICKLEN_SHIFT will be about 2^63. */ 111 #define TICKLEN_SHIFT (63 - 30 - TICKLEN_SCALE + SHIFT_HZ) 112 113 DEFINE_SPINLOCK(rtc_lock); 114 EXPORT_SYMBOL_GPL(rtc_lock); 115 116 u64 tb_to_ns_scale; 117 unsigned tb_to_ns_shift; 118 119 struct gettimeofday_struct do_gtod; 120 121 extern unsigned long wall_jiffies; 122 123 extern struct timezone sys_tz; 124 static long timezone_offset; 125 126 unsigned long ppc_proc_freq; 127 unsigned long ppc_tb_freq; 128 129 u64 tb_last_jiffy __cacheline_aligned_in_smp; 130 unsigned long tb_last_stamp; 131 132 /* 133 * Note that on ppc32 this only stores the bottom 32 bits of 134 * the timebase value, but that's enough to tell when a jiffy 135 * has passed. 136 */ 137 DEFINE_PER_CPU(unsigned long, last_jiffy); 138 139 #ifdef CONFIG_VIRT_CPU_ACCOUNTING 140 /* 141 * Factors for converting from cputime_t (timebase ticks) to 142 * jiffies, milliseconds, seconds, and clock_t (1/USER_HZ seconds). 143 * These are all stored as 0.64 fixed-point binary fractions. 144 */ 145 u64 __cputime_jiffies_factor; 146 EXPORT_SYMBOL(__cputime_jiffies_factor); 147 u64 __cputime_msec_factor; 148 EXPORT_SYMBOL(__cputime_msec_factor); 149 u64 __cputime_sec_factor; 150 EXPORT_SYMBOL(__cputime_sec_factor); 151 u64 __cputime_clockt_factor; 152 EXPORT_SYMBOL(__cputime_clockt_factor); 153 154 static void calc_cputime_factors(void) 155 { 156 struct div_result res; 157 158 div128_by_32(HZ, 0, tb_ticks_per_sec, &res); 159 __cputime_jiffies_factor = res.result_low; 160 div128_by_32(1000, 0, tb_ticks_per_sec, &res); 161 __cputime_msec_factor = res.result_low; 162 div128_by_32(1, 0, tb_ticks_per_sec, &res); 163 __cputime_sec_factor = res.result_low; 164 div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res); 165 __cputime_clockt_factor = res.result_low; 166 } 167 168 /* 169 * Read the PURR on systems that have it, otherwise the timebase. 170 */ 171 static u64 read_purr(void) 172 { 173 if (cpu_has_feature(CPU_FTR_PURR)) 174 return mfspr(SPRN_PURR); 175 return mftb(); 176 } 177 178 /* 179 * Account time for a transition between system, hard irq 180 * or soft irq state. 181 */ 182 void account_system_vtime(struct task_struct *tsk) 183 { 184 u64 now, delta; 185 unsigned long flags; 186 187 local_irq_save(flags); 188 now = read_purr(); 189 delta = now - get_paca()->startpurr; 190 get_paca()->startpurr = now; 191 if (!in_interrupt()) { 192 delta += get_paca()->system_time; 193 get_paca()->system_time = 0; 194 } 195 account_system_time(tsk, 0, delta); 196 local_irq_restore(flags); 197 } 198 199 /* 200 * Transfer the user and system times accumulated in the paca 201 * by the exception entry and exit code to the generic process 202 * user and system time records. 203 * Must be called with interrupts disabled. 204 */ 205 void account_process_vtime(struct task_struct *tsk) 206 { 207 cputime_t utime; 208 209 utime = get_paca()->user_time; 210 get_paca()->user_time = 0; 211 account_user_time(tsk, utime); 212 } 213 214 static void account_process_time(struct pt_regs *regs) 215 { 216 int cpu = smp_processor_id(); 217 218 account_process_vtime(current); 219 run_local_timers(); 220 if (rcu_pending(cpu)) 221 rcu_check_callbacks(cpu, user_mode(regs)); 222 scheduler_tick(); 223 run_posix_cpu_timers(current); 224 } 225 226 #ifdef CONFIG_PPC_SPLPAR 227 /* 228 * Stuff for accounting stolen time. 229 */ 230 struct cpu_purr_data { 231 int initialized; /* thread is running */ 232 u64 tb0; /* timebase at origin time */ 233 u64 purr0; /* PURR at origin time */ 234 u64 tb; /* last TB value read */ 235 u64 purr; /* last PURR value read */ 236 u64 stolen; /* stolen time so far */ 237 spinlock_t lock; 238 }; 239 240 static DEFINE_PER_CPU(struct cpu_purr_data, cpu_purr_data); 241 242 static void snapshot_tb_and_purr(void *data) 243 { 244 struct cpu_purr_data *p = &__get_cpu_var(cpu_purr_data); 245 246 p->tb0 = mftb(); 247 p->purr0 = mfspr(SPRN_PURR); 248 p->tb = p->tb0; 249 p->purr = 0; 250 wmb(); 251 p->initialized = 1; 252 } 253 254 /* 255 * Called during boot when all cpus have come up. 256 */ 257 void snapshot_timebases(void) 258 { 259 int cpu; 260 261 if (!cpu_has_feature(CPU_FTR_PURR)) 262 return; 263 for_each_possible_cpu(cpu) 264 spin_lock_init(&per_cpu(cpu_purr_data, cpu).lock); 265 on_each_cpu(snapshot_tb_and_purr, NULL, 0, 1); 266 } 267 268 void calculate_steal_time(void) 269 { 270 u64 tb, purr, t0; 271 s64 stolen; 272 struct cpu_purr_data *p0, *pme, *phim; 273 int cpu; 274 275 if (!cpu_has_feature(CPU_FTR_PURR)) 276 return; 277 cpu = smp_processor_id(); 278 pme = &per_cpu(cpu_purr_data, cpu); 279 if (!pme->initialized) 280 return; /* this can happen in early boot */ 281 p0 = &per_cpu(cpu_purr_data, cpu & ~1); 282 phim = &per_cpu(cpu_purr_data, cpu ^ 1); 283 spin_lock(&p0->lock); 284 tb = mftb(); 285 purr = mfspr(SPRN_PURR) - pme->purr0; 286 if (!phim->initialized || !cpu_online(cpu ^ 1)) { 287 stolen = (tb - pme->tb) - (purr - pme->purr); 288 } else { 289 t0 = pme->tb0; 290 if (phim->tb0 < t0) 291 t0 = phim->tb0; 292 stolen = phim->tb - t0 - phim->purr - purr - p0->stolen; 293 } 294 if (stolen > 0) { 295 account_steal_time(current, stolen); 296 p0->stolen += stolen; 297 } 298 pme->tb = tb; 299 pme->purr = purr; 300 spin_unlock(&p0->lock); 301 } 302 303 /* 304 * Must be called before the cpu is added to the online map when 305 * a cpu is being brought up at runtime. 306 */ 307 static void snapshot_purr(void) 308 { 309 int cpu; 310 u64 purr; 311 struct cpu_purr_data *p0, *pme, *phim; 312 unsigned long flags; 313 314 if (!cpu_has_feature(CPU_FTR_PURR)) 315 return; 316 cpu = smp_processor_id(); 317 pme = &per_cpu(cpu_purr_data, cpu); 318 p0 = &per_cpu(cpu_purr_data, cpu & ~1); 319 phim = &per_cpu(cpu_purr_data, cpu ^ 1); 320 spin_lock_irqsave(&p0->lock, flags); 321 pme->tb = pme->tb0 = mftb(); 322 purr = mfspr(SPRN_PURR); 323 if (!phim->initialized) { 324 pme->purr = 0; 325 pme->purr0 = purr; 326 } else { 327 /* set p->purr and p->purr0 for no change in p0->stolen */ 328 pme->purr = phim->tb - phim->tb0 - phim->purr - p0->stolen; 329 pme->purr0 = purr - pme->purr; 330 } 331 pme->initialized = 1; 332 spin_unlock_irqrestore(&p0->lock, flags); 333 } 334 335 #endif /* CONFIG_PPC_SPLPAR */ 336 337 #else /* ! CONFIG_VIRT_CPU_ACCOUNTING */ 338 #define calc_cputime_factors() 339 #define account_process_time(regs) update_process_times(user_mode(regs)) 340 #define calculate_steal_time() do { } while (0) 341 #endif 342 343 #if !(defined(CONFIG_VIRT_CPU_ACCOUNTING) && defined(CONFIG_PPC_SPLPAR)) 344 #define snapshot_purr() do { } while (0) 345 #endif 346 347 /* 348 * Called when a cpu comes up after the system has finished booting, 349 * i.e. as a result of a hotplug cpu action. 350 */ 351 void snapshot_timebase(void) 352 { 353 __get_cpu_var(last_jiffy) = get_tb(); 354 snapshot_purr(); 355 } 356 357 void __delay(unsigned long loops) 358 { 359 unsigned long start; 360 int diff; 361 362 if (__USE_RTC()) { 363 start = get_rtcl(); 364 do { 365 /* the RTCL register wraps at 1000000000 */ 366 diff = get_rtcl() - start; 367 if (diff < 0) 368 diff += 1000000000; 369 } while (diff < loops); 370 } else { 371 start = get_tbl(); 372 while (get_tbl() - start < loops) 373 HMT_low(); 374 HMT_medium(); 375 } 376 } 377 EXPORT_SYMBOL(__delay); 378 379 void udelay(unsigned long usecs) 380 { 381 __delay(tb_ticks_per_usec * usecs); 382 } 383 EXPORT_SYMBOL(udelay); 384 385 static __inline__ void timer_check_rtc(void) 386 { 387 /* 388 * update the rtc when needed, this should be performed on the 389 * right fraction of a second. Half or full second ? 390 * Full second works on mk48t59 clocks, others need testing. 391 * Note that this update is basically only used through 392 * the adjtimex system calls. Setting the HW clock in 393 * any other way is a /dev/rtc and userland business. 394 * This is still wrong by -0.5/+1.5 jiffies because of the 395 * timer interrupt resolution and possible delay, but here we 396 * hit a quantization limit which can only be solved by higher 397 * resolution timers and decoupling time management from timer 398 * interrupts. This is also wrong on the clocks 399 * which require being written at the half second boundary. 400 * We should have an rtc call that only sets the minutes and 401 * seconds like on Intel to avoid problems with non UTC clocks. 402 */ 403 if (ppc_md.set_rtc_time && ntp_synced() && 404 xtime.tv_sec - last_rtc_update >= 659 && 405 abs((xtime.tv_nsec/1000) - (1000000-1000000/HZ)) < 500000/HZ) { 406 struct rtc_time tm; 407 to_tm(xtime.tv_sec + 1 + timezone_offset, &tm); 408 tm.tm_year -= 1900; 409 tm.tm_mon -= 1; 410 if (ppc_md.set_rtc_time(&tm) == 0) 411 last_rtc_update = xtime.tv_sec + 1; 412 else 413 /* Try again one minute later */ 414 last_rtc_update += 60; 415 } 416 } 417 418 /* 419 * This version of gettimeofday has microsecond resolution. 420 */ 421 static inline void __do_gettimeofday(struct timeval *tv, u64 tb_val) 422 { 423 unsigned long sec, usec; 424 u64 tb_ticks, xsec; 425 struct gettimeofday_vars *temp_varp; 426 u64 temp_tb_to_xs, temp_stamp_xsec; 427 428 /* 429 * These calculations are faster (gets rid of divides) 430 * if done in units of 1/2^20 rather than microseconds. 431 * The conversion to microseconds at the end is done 432 * without a divide (and in fact, without a multiply) 433 */ 434 temp_varp = do_gtod.varp; 435 tb_ticks = tb_val - temp_varp->tb_orig_stamp; 436 temp_tb_to_xs = temp_varp->tb_to_xs; 437 temp_stamp_xsec = temp_varp->stamp_xsec; 438 xsec = temp_stamp_xsec + mulhdu(tb_ticks, temp_tb_to_xs); 439 sec = xsec / XSEC_PER_SEC; 440 usec = (unsigned long)xsec & (XSEC_PER_SEC - 1); 441 usec = SCALE_XSEC(usec, 1000000); 442 443 tv->tv_sec = sec; 444 tv->tv_usec = usec; 445 } 446 447 void do_gettimeofday(struct timeval *tv) 448 { 449 if (__USE_RTC()) { 450 /* do this the old way */ 451 unsigned long flags, seq; 452 unsigned int sec, nsec, usec; 453 454 do { 455 seq = read_seqbegin_irqsave(&xtime_lock, flags); 456 sec = xtime.tv_sec; 457 nsec = xtime.tv_nsec + tb_ticks_since(tb_last_stamp); 458 } while (read_seqretry_irqrestore(&xtime_lock, seq, flags)); 459 usec = nsec / 1000; 460 while (usec >= 1000000) { 461 usec -= 1000000; 462 ++sec; 463 } 464 tv->tv_sec = sec; 465 tv->tv_usec = usec; 466 return; 467 } 468 __do_gettimeofday(tv, get_tb()); 469 } 470 471 EXPORT_SYMBOL(do_gettimeofday); 472 473 /* 474 * There are two copies of tb_to_xs and stamp_xsec so that no 475 * lock is needed to access and use these values in 476 * do_gettimeofday. We alternate the copies and as long as a 477 * reasonable time elapses between changes, there will never 478 * be inconsistent values. ntpd has a minimum of one minute 479 * between updates. 480 */ 481 static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec, 482 u64 new_tb_to_xs) 483 { 484 unsigned temp_idx; 485 struct gettimeofday_vars *temp_varp; 486 487 temp_idx = (do_gtod.var_idx == 0); 488 temp_varp = &do_gtod.vars[temp_idx]; 489 490 temp_varp->tb_to_xs = new_tb_to_xs; 491 temp_varp->tb_orig_stamp = new_tb_stamp; 492 temp_varp->stamp_xsec = new_stamp_xsec; 493 smp_mb(); 494 do_gtod.varp = temp_varp; 495 do_gtod.var_idx = temp_idx; 496 497 /* 498 * tb_update_count is used to allow the userspace gettimeofday code 499 * to assure itself that it sees a consistent view of the tb_to_xs and 500 * stamp_xsec variables. It reads the tb_update_count, then reads 501 * tb_to_xs and stamp_xsec and then reads tb_update_count again. If 502 * the two values of tb_update_count match and are even then the 503 * tb_to_xs and stamp_xsec values are consistent. If not, then it 504 * loops back and reads them again until this criteria is met. 505 * We expect the caller to have done the first increment of 506 * vdso_data->tb_update_count already. 507 */ 508 vdso_data->tb_orig_stamp = new_tb_stamp; 509 vdso_data->stamp_xsec = new_stamp_xsec; 510 vdso_data->tb_to_xs = new_tb_to_xs; 511 vdso_data->wtom_clock_sec = wall_to_monotonic.tv_sec; 512 vdso_data->wtom_clock_nsec = wall_to_monotonic.tv_nsec; 513 smp_wmb(); 514 ++(vdso_data->tb_update_count); 515 } 516 517 /* 518 * When the timebase - tb_orig_stamp gets too big, we do a manipulation 519 * between tb_orig_stamp and stamp_xsec. The goal here is to keep the 520 * difference tb - tb_orig_stamp small enough to always fit inside a 521 * 32 bits number. This is a requirement of our fast 32 bits userland 522 * implementation in the vdso. If we "miss" a call to this function 523 * (interrupt latency, CPU locked in a spinlock, ...) and we end up 524 * with a too big difference, then the vdso will fallback to calling 525 * the syscall 526 */ 527 static __inline__ void timer_recalc_offset(u64 cur_tb) 528 { 529 unsigned long offset; 530 u64 new_stamp_xsec; 531 u64 tlen, t2x; 532 u64 tb, xsec_old, xsec_new; 533 struct gettimeofday_vars *varp; 534 535 if (__USE_RTC()) 536 return; 537 tlen = current_tick_length(); 538 offset = cur_tb - do_gtod.varp->tb_orig_stamp; 539 if (tlen == last_tick_len && offset < 0x80000000u) 540 return; 541 if (tlen != last_tick_len) { 542 t2x = mulhdu(tlen << TICKLEN_SHIFT, ticklen_to_xs); 543 last_tick_len = tlen; 544 } else 545 t2x = do_gtod.varp->tb_to_xs; 546 new_stamp_xsec = (u64) xtime.tv_nsec * XSEC_PER_SEC; 547 do_div(new_stamp_xsec, 1000000000); 548 new_stamp_xsec += (u64) xtime.tv_sec * XSEC_PER_SEC; 549 550 ++vdso_data->tb_update_count; 551 smp_mb(); 552 553 /* 554 * Make sure time doesn't go backwards for userspace gettimeofday. 555 */ 556 tb = get_tb(); 557 varp = do_gtod.varp; 558 xsec_old = mulhdu(tb - varp->tb_orig_stamp, varp->tb_to_xs) 559 + varp->stamp_xsec; 560 xsec_new = mulhdu(tb - cur_tb, t2x) + new_stamp_xsec; 561 if (xsec_new < xsec_old) 562 new_stamp_xsec += xsec_old - xsec_new; 563 564 update_gtod(cur_tb, new_stamp_xsec, t2x); 565 } 566 567 #ifdef CONFIG_SMP 568 unsigned long profile_pc(struct pt_regs *regs) 569 { 570 unsigned long pc = instruction_pointer(regs); 571 572 if (in_lock_functions(pc)) 573 return regs->link; 574 575 return pc; 576 } 577 EXPORT_SYMBOL(profile_pc); 578 #endif 579 580 #ifdef CONFIG_PPC_ISERIES 581 582 /* 583 * This function recalibrates the timebase based on the 49-bit time-of-day 584 * value in the Titan chip. The Titan is much more accurate than the value 585 * returned by the service processor for the timebase frequency. 586 */ 587 588 static void iSeries_tb_recal(void) 589 { 590 struct div_result divres; 591 unsigned long titan, tb; 592 tb = get_tb(); 593 titan = HvCallXm_loadTod(); 594 if ( iSeries_recal_titan ) { 595 unsigned long tb_ticks = tb - iSeries_recal_tb; 596 unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12; 597 unsigned long new_tb_ticks_per_sec = (tb_ticks * USEC_PER_SEC)/titan_usec; 598 unsigned long new_tb_ticks_per_jiffy = (new_tb_ticks_per_sec+(HZ/2))/HZ; 599 long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy; 600 char sign = '+'; 601 /* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */ 602 new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ; 603 604 if ( tick_diff < 0 ) { 605 tick_diff = -tick_diff; 606 sign = '-'; 607 } 608 if ( tick_diff ) { 609 if ( tick_diff < tb_ticks_per_jiffy/25 ) { 610 printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n", 611 new_tb_ticks_per_jiffy, sign, tick_diff ); 612 tb_ticks_per_jiffy = new_tb_ticks_per_jiffy; 613 tb_ticks_per_sec = new_tb_ticks_per_sec; 614 calc_cputime_factors(); 615 div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres ); 616 do_gtod.tb_ticks_per_sec = tb_ticks_per_sec; 617 tb_to_xs = divres.result_low; 618 do_gtod.varp->tb_to_xs = tb_to_xs; 619 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec; 620 vdso_data->tb_to_xs = tb_to_xs; 621 } 622 else { 623 printk( "Titan recalibrate: FAILED (difference > 4 percent)\n" 624 " new tb_ticks_per_jiffy = %lu\n" 625 " old tb_ticks_per_jiffy = %lu\n", 626 new_tb_ticks_per_jiffy, tb_ticks_per_jiffy ); 627 } 628 } 629 } 630 iSeries_recal_titan = titan; 631 iSeries_recal_tb = tb; 632 } 633 #endif 634 635 /* 636 * For iSeries shared processors, we have to let the hypervisor 637 * set the hardware decrementer. We set a virtual decrementer 638 * in the lppaca and call the hypervisor if the virtual 639 * decrementer is less than the current value in the hardware 640 * decrementer. (almost always the new decrementer value will 641 * be greater than the current hardware decementer so the hypervisor 642 * call will not be needed) 643 */ 644 645 /* 646 * timer_interrupt - gets called when the decrementer overflows, 647 * with interrupts disabled. 648 */ 649 void timer_interrupt(struct pt_regs * regs) 650 { 651 int next_dec; 652 int cpu = smp_processor_id(); 653 unsigned long ticks; 654 655 #ifdef CONFIG_PPC32 656 if (atomic_read(&ppc_n_lost_interrupts) != 0) 657 do_IRQ(regs); 658 #endif 659 660 irq_enter(); 661 662 profile_tick(CPU_PROFILING, regs); 663 calculate_steal_time(); 664 665 #ifdef CONFIG_PPC_ISERIES 666 get_lppaca()->int_dword.fields.decr_int = 0; 667 #endif 668 669 while ((ticks = tb_ticks_since(per_cpu(last_jiffy, cpu))) 670 >= tb_ticks_per_jiffy) { 671 /* Update last_jiffy */ 672 per_cpu(last_jiffy, cpu) += tb_ticks_per_jiffy; 673 /* Handle RTCL overflow on 601 */ 674 if (__USE_RTC() && per_cpu(last_jiffy, cpu) >= 1000000000) 675 per_cpu(last_jiffy, cpu) -= 1000000000; 676 677 /* 678 * We cannot disable the decrementer, so in the period 679 * between this cpu's being marked offline in cpu_online_map 680 * and calling stop-self, it is taking timer interrupts. 681 * Avoid calling into the scheduler rebalancing code if this 682 * is the case. 683 */ 684 if (!cpu_is_offline(cpu)) 685 account_process_time(regs); 686 687 /* 688 * No need to check whether cpu is offline here; boot_cpuid 689 * should have been fixed up by now. 690 */ 691 if (cpu != boot_cpuid) 692 continue; 693 694 write_seqlock(&xtime_lock); 695 tb_last_jiffy += tb_ticks_per_jiffy; 696 tb_last_stamp = per_cpu(last_jiffy, cpu); 697 do_timer(regs); 698 timer_recalc_offset(tb_last_jiffy); 699 timer_check_rtc(); 700 write_sequnlock(&xtime_lock); 701 } 702 703 next_dec = tb_ticks_per_jiffy - ticks; 704 set_dec(next_dec); 705 706 #ifdef CONFIG_PPC_ISERIES 707 if (hvlpevent_is_pending()) 708 process_hvlpevents(regs); 709 #endif 710 711 #ifdef CONFIG_PPC64 712 /* collect purr register values often, for accurate calculations */ 713 if (firmware_has_feature(FW_FEATURE_SPLPAR)) { 714 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array); 715 cu->current_tb = mfspr(SPRN_PURR); 716 } 717 #endif 718 719 irq_exit(); 720 } 721 722 void wakeup_decrementer(void) 723 { 724 unsigned long ticks; 725 726 /* 727 * The timebase gets saved on sleep and restored on wakeup, 728 * so all we need to do is to reset the decrementer. 729 */ 730 ticks = tb_ticks_since(__get_cpu_var(last_jiffy)); 731 if (ticks < tb_ticks_per_jiffy) 732 ticks = tb_ticks_per_jiffy - ticks; 733 else 734 ticks = 1; 735 set_dec(ticks); 736 } 737 738 #ifdef CONFIG_SMP 739 void __init smp_space_timers(unsigned int max_cpus) 740 { 741 int i; 742 unsigned long half = tb_ticks_per_jiffy / 2; 743 unsigned long offset = tb_ticks_per_jiffy / max_cpus; 744 unsigned long previous_tb = per_cpu(last_jiffy, boot_cpuid); 745 746 /* make sure tb > per_cpu(last_jiffy, cpu) for all cpus always */ 747 previous_tb -= tb_ticks_per_jiffy; 748 /* 749 * The stolen time calculation for POWER5 shared-processor LPAR 750 * systems works better if the two threads' timebase interrupts 751 * are staggered by half a jiffy with respect to each other. 752 */ 753 for_each_possible_cpu(i) { 754 if (i == boot_cpuid) 755 continue; 756 if (i == (boot_cpuid ^ 1)) 757 per_cpu(last_jiffy, i) = 758 per_cpu(last_jiffy, boot_cpuid) - half; 759 else if (i & 1) 760 per_cpu(last_jiffy, i) = 761 per_cpu(last_jiffy, i ^ 1) + half; 762 else { 763 previous_tb += offset; 764 per_cpu(last_jiffy, i) = previous_tb; 765 } 766 } 767 } 768 #endif 769 770 /* 771 * Scheduler clock - returns current time in nanosec units. 772 * 773 * Note: mulhdu(a, b) (multiply high double unsigned) returns 774 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b 775 * are 64-bit unsigned numbers. 776 */ 777 unsigned long long sched_clock(void) 778 { 779 if (__USE_RTC()) 780 return get_rtc(); 781 return mulhdu(get_tb(), tb_to_ns_scale) << tb_to_ns_shift; 782 } 783 784 int do_settimeofday(struct timespec *tv) 785 { 786 time_t wtm_sec, new_sec = tv->tv_sec; 787 long wtm_nsec, new_nsec = tv->tv_nsec; 788 unsigned long flags; 789 u64 new_xsec; 790 unsigned long tb_delta; 791 792 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC) 793 return -EINVAL; 794 795 write_seqlock_irqsave(&xtime_lock, flags); 796 797 /* 798 * Updating the RTC is not the job of this code. If the time is 799 * stepped under NTP, the RTC will be updated after STA_UNSYNC 800 * is cleared. Tools like clock/hwclock either copy the RTC 801 * to the system time, in which case there is no point in writing 802 * to the RTC again, or write to the RTC but then they don't call 803 * settimeofday to perform this operation. 804 */ 805 #ifdef CONFIG_PPC_ISERIES 806 if (first_settimeofday) { 807 iSeries_tb_recal(); 808 first_settimeofday = 0; 809 } 810 #endif 811 812 /* Make userspace gettimeofday spin until we're done. */ 813 ++vdso_data->tb_update_count; 814 smp_mb(); 815 816 /* 817 * Subtract off the number of nanoseconds since the 818 * beginning of the last tick. 819 * Note that since we don't increment jiffies_64 anywhere other 820 * than in do_timer (since we don't have a lost tick problem), 821 * wall_jiffies will always be the same as jiffies, 822 * and therefore the (jiffies - wall_jiffies) computation 823 * has been removed. 824 */ 825 tb_delta = tb_ticks_since(tb_last_stamp); 826 tb_delta = mulhdu(tb_delta, do_gtod.varp->tb_to_xs); /* in xsec */ 827 new_nsec -= SCALE_XSEC(tb_delta, 1000000000); 828 829 wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - new_sec); 830 wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - new_nsec); 831 832 set_normalized_timespec(&xtime, new_sec, new_nsec); 833 set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec); 834 835 /* In case of a large backwards jump in time with NTP, we want the 836 * clock to be updated as soon as the PLL is again in lock. 837 */ 838 last_rtc_update = new_sec - 658; 839 840 ntp_clear(); 841 842 new_xsec = xtime.tv_nsec; 843 if (new_xsec != 0) { 844 new_xsec *= XSEC_PER_SEC; 845 do_div(new_xsec, NSEC_PER_SEC); 846 } 847 new_xsec += (u64)xtime.tv_sec * XSEC_PER_SEC; 848 update_gtod(tb_last_jiffy, new_xsec, do_gtod.varp->tb_to_xs); 849 850 vdso_data->tz_minuteswest = sys_tz.tz_minuteswest; 851 vdso_data->tz_dsttime = sys_tz.tz_dsttime; 852 853 write_sequnlock_irqrestore(&xtime_lock, flags); 854 clock_was_set(); 855 return 0; 856 } 857 858 EXPORT_SYMBOL(do_settimeofday); 859 860 static int __init get_freq(char *name, int cells, unsigned long *val) 861 { 862 struct device_node *cpu; 863 unsigned int *fp; 864 int found = 0; 865 866 /* The cpu node should have timebase and clock frequency properties */ 867 cpu = of_find_node_by_type(NULL, "cpu"); 868 869 if (cpu) { 870 fp = (unsigned int *)get_property(cpu, name, NULL); 871 if (fp) { 872 found = 1; 873 *val = 0; 874 while (cells--) 875 *val = (*val << 32) | *fp++; 876 } 877 878 of_node_put(cpu); 879 } 880 881 return found; 882 } 883 884 void __init generic_calibrate_decr(void) 885 { 886 ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */ 887 888 if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) && 889 !get_freq("timebase-frequency", 1, &ppc_tb_freq)) { 890 891 printk(KERN_ERR "WARNING: Estimating decrementer frequency " 892 "(not found)\n"); 893 } 894 895 ppc_proc_freq = DEFAULT_PROC_FREQ; /* hardcoded default */ 896 897 if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) && 898 !get_freq("clock-frequency", 1, &ppc_proc_freq)) { 899 900 printk(KERN_ERR "WARNING: Estimating processor frequency " 901 "(not found)\n"); 902 } 903 904 #ifdef CONFIG_BOOKE 905 /* Set the time base to zero */ 906 mtspr(SPRN_TBWL, 0); 907 mtspr(SPRN_TBWU, 0); 908 909 /* Clear any pending timer interrupts */ 910 mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS); 911 912 /* Enable decrementer interrupt */ 913 mtspr(SPRN_TCR, TCR_DIE); 914 #endif 915 } 916 917 unsigned long get_boot_time(void) 918 { 919 struct rtc_time tm; 920 921 if (ppc_md.get_boot_time) 922 return ppc_md.get_boot_time(); 923 if (!ppc_md.get_rtc_time) 924 return 0; 925 ppc_md.get_rtc_time(&tm); 926 return mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday, 927 tm.tm_hour, tm.tm_min, tm.tm_sec); 928 } 929 930 /* This function is only called on the boot processor */ 931 void __init time_init(void) 932 { 933 unsigned long flags; 934 unsigned long tm = 0; 935 struct div_result res; 936 u64 scale, x; 937 unsigned shift; 938 939 if (ppc_md.time_init != NULL) 940 timezone_offset = ppc_md.time_init(); 941 942 if (__USE_RTC()) { 943 /* 601 processor: dec counts down by 128 every 128ns */ 944 ppc_tb_freq = 1000000000; 945 tb_last_stamp = get_rtcl(); 946 tb_last_jiffy = tb_last_stamp; 947 } else { 948 /* Normal PowerPC with timebase register */ 949 ppc_md.calibrate_decr(); 950 printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n", 951 ppc_tb_freq / 1000000, ppc_tb_freq % 1000000); 952 printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n", 953 ppc_proc_freq / 1000000, ppc_proc_freq % 1000000); 954 tb_last_stamp = tb_last_jiffy = get_tb(); 955 } 956 957 tb_ticks_per_jiffy = ppc_tb_freq / HZ; 958 tb_ticks_per_sec = ppc_tb_freq; 959 tb_ticks_per_usec = ppc_tb_freq / 1000000; 960 tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000); 961 calc_cputime_factors(); 962 963 /* 964 * Calculate the length of each tick in ns. It will not be 965 * exactly 1e9/HZ unless ppc_tb_freq is divisible by HZ. 966 * We compute 1e9 * tb_ticks_per_jiffy / ppc_tb_freq, 967 * rounded up. 968 */ 969 x = (u64) NSEC_PER_SEC * tb_ticks_per_jiffy + ppc_tb_freq - 1; 970 do_div(x, ppc_tb_freq); 971 tick_nsec = x; 972 last_tick_len = x << TICKLEN_SCALE; 973 974 /* 975 * Compute ticklen_to_xs, which is a factor which gets multiplied 976 * by (last_tick_len << TICKLEN_SHIFT) to get a tb_to_xs value. 977 * It is computed as: 978 * ticklen_to_xs = 2^N / (tb_ticks_per_jiffy * 1e9) 979 * where N = 64 + 20 - TICKLEN_SCALE - TICKLEN_SHIFT 980 * which turns out to be N = 51 - SHIFT_HZ. 981 * This gives the result as a 0.64 fixed-point fraction. 982 * That value is reduced by an offset amounting to 1 xsec per 983 * 2^31 timebase ticks to avoid problems with time going backwards 984 * by 1 xsec when we do timer_recalc_offset due to losing the 985 * fractional xsec. That offset is equal to ppc_tb_freq/2^51 986 * since there are 2^20 xsec in a second. 987 */ 988 div128_by_32((1ULL << 51) - ppc_tb_freq, 0, 989 tb_ticks_per_jiffy << SHIFT_HZ, &res); 990 div128_by_32(res.result_high, res.result_low, NSEC_PER_SEC, &res); 991 ticklen_to_xs = res.result_low; 992 993 /* Compute tb_to_xs from tick_nsec */ 994 tb_to_xs = mulhdu(last_tick_len << TICKLEN_SHIFT, ticklen_to_xs); 995 996 /* 997 * Compute scale factor for sched_clock. 998 * The calibrate_decr() function has set tb_ticks_per_sec, 999 * which is the timebase frequency. 1000 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret 1001 * the 128-bit result as a 64.64 fixed-point number. 1002 * We then shift that number right until it is less than 1.0, 1003 * giving us the scale factor and shift count to use in 1004 * sched_clock(). 1005 */ 1006 div128_by_32(1000000000, 0, tb_ticks_per_sec, &res); 1007 scale = res.result_low; 1008 for (shift = 0; res.result_high != 0; ++shift) { 1009 scale = (scale >> 1) | (res.result_high << 63); 1010 res.result_high >>= 1; 1011 } 1012 tb_to_ns_scale = scale; 1013 tb_to_ns_shift = shift; 1014 1015 tm = get_boot_time(); 1016 1017 write_seqlock_irqsave(&xtime_lock, flags); 1018 1019 /* If platform provided a timezone (pmac), we correct the time */ 1020 if (timezone_offset) { 1021 sys_tz.tz_minuteswest = -timezone_offset / 60; 1022 sys_tz.tz_dsttime = 0; 1023 tm -= timezone_offset; 1024 } 1025 1026 xtime.tv_sec = tm; 1027 xtime.tv_nsec = 0; 1028 do_gtod.varp = &do_gtod.vars[0]; 1029 do_gtod.var_idx = 0; 1030 do_gtod.varp->tb_orig_stamp = tb_last_jiffy; 1031 __get_cpu_var(last_jiffy) = tb_last_stamp; 1032 do_gtod.varp->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC; 1033 do_gtod.tb_ticks_per_sec = tb_ticks_per_sec; 1034 do_gtod.varp->tb_to_xs = tb_to_xs; 1035 do_gtod.tb_to_us = tb_to_us; 1036 1037 vdso_data->tb_orig_stamp = tb_last_jiffy; 1038 vdso_data->tb_update_count = 0; 1039 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec; 1040 vdso_data->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC; 1041 vdso_data->tb_to_xs = tb_to_xs; 1042 1043 time_freq = 0; 1044 1045 last_rtc_update = xtime.tv_sec; 1046 set_normalized_timespec(&wall_to_monotonic, 1047 -xtime.tv_sec, -xtime.tv_nsec); 1048 write_sequnlock_irqrestore(&xtime_lock, flags); 1049 1050 /* Not exact, but the timer interrupt takes care of this */ 1051 set_dec(tb_ticks_per_jiffy); 1052 } 1053 1054 1055 #define FEBRUARY 2 1056 #define STARTOFTIME 1970 1057 #define SECDAY 86400L 1058 #define SECYR (SECDAY * 365) 1059 #define leapyear(year) ((year) % 4 == 0 && \ 1060 ((year) % 100 != 0 || (year) % 400 == 0)) 1061 #define days_in_year(a) (leapyear(a) ? 366 : 365) 1062 #define days_in_month(a) (month_days[(a) - 1]) 1063 1064 static int month_days[12] = { 1065 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 1066 }; 1067 1068 /* 1069 * This only works for the Gregorian calendar - i.e. after 1752 (in the UK) 1070 */ 1071 void GregorianDay(struct rtc_time * tm) 1072 { 1073 int leapsToDate; 1074 int lastYear; 1075 int day; 1076 int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 }; 1077 1078 lastYear = tm->tm_year - 1; 1079 1080 /* 1081 * Number of leap corrections to apply up to end of last year 1082 */ 1083 leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400; 1084 1085 /* 1086 * This year is a leap year if it is divisible by 4 except when it is 1087 * divisible by 100 unless it is divisible by 400 1088 * 1089 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was 1090 */ 1091 day = tm->tm_mon > 2 && leapyear(tm->tm_year); 1092 1093 day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] + 1094 tm->tm_mday; 1095 1096 tm->tm_wday = day % 7; 1097 } 1098 1099 void to_tm(int tim, struct rtc_time * tm) 1100 { 1101 register int i; 1102 register long hms, day; 1103 1104 day = tim / SECDAY; 1105 hms = tim % SECDAY; 1106 1107 /* Hours, minutes, seconds are easy */ 1108 tm->tm_hour = hms / 3600; 1109 tm->tm_min = (hms % 3600) / 60; 1110 tm->tm_sec = (hms % 3600) % 60; 1111 1112 /* Number of years in days */ 1113 for (i = STARTOFTIME; day >= days_in_year(i); i++) 1114 day -= days_in_year(i); 1115 tm->tm_year = i; 1116 1117 /* Number of months in days left */ 1118 if (leapyear(tm->tm_year)) 1119 days_in_month(FEBRUARY) = 29; 1120 for (i = 1; day >= days_in_month(i); i++) 1121 day -= days_in_month(i); 1122 days_in_month(FEBRUARY) = 28; 1123 tm->tm_mon = i; 1124 1125 /* Days are what is left over (+1) from all that. */ 1126 tm->tm_mday = day + 1; 1127 1128 /* 1129 * Determine the day of week 1130 */ 1131 GregorianDay(tm); 1132 } 1133 1134 /* Auxiliary function to compute scaling factors */ 1135 /* Actually the choice of a timebase running at 1/4 the of the bus 1136 * frequency giving resolution of a few tens of nanoseconds is quite nice. 1137 * It makes this computation very precise (27-28 bits typically) which 1138 * is optimistic considering the stability of most processor clock 1139 * oscillators and the precision with which the timebase frequency 1140 * is measured but does not harm. 1141 */ 1142 unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale) 1143 { 1144 unsigned mlt=0, tmp, err; 1145 /* No concern for performance, it's done once: use a stupid 1146 * but safe and compact method to find the multiplier. 1147 */ 1148 1149 for (tmp = 1U<<31; tmp != 0; tmp >>= 1) { 1150 if (mulhwu(inscale, mlt|tmp) < outscale) 1151 mlt |= tmp; 1152 } 1153 1154 /* We might still be off by 1 for the best approximation. 1155 * A side effect of this is that if outscale is too large 1156 * the returned value will be zero. 1157 * Many corner cases have been checked and seem to work, 1158 * some might have been forgotten in the test however. 1159 */ 1160 1161 err = inscale * (mlt+1); 1162 if (err <= inscale/2) 1163 mlt++; 1164 return mlt; 1165 } 1166 1167 /* 1168 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit 1169 * result. 1170 */ 1171 void div128_by_32(u64 dividend_high, u64 dividend_low, 1172 unsigned divisor, struct div_result *dr) 1173 { 1174 unsigned long a, b, c, d; 1175 unsigned long w, x, y, z; 1176 u64 ra, rb, rc; 1177 1178 a = dividend_high >> 32; 1179 b = dividend_high & 0xffffffff; 1180 c = dividend_low >> 32; 1181 d = dividend_low & 0xffffffff; 1182 1183 w = a / divisor; 1184 ra = ((u64)(a - (w * divisor)) << 32) + b; 1185 1186 rb = ((u64) do_div(ra, divisor) << 32) + c; 1187 x = ra; 1188 1189 rc = ((u64) do_div(rb, divisor) << 32) + d; 1190 y = rb; 1191 1192 do_div(rc, divisor); 1193 z = rc; 1194 1195 dr->result_high = ((u64)w << 32) + x; 1196 dr->result_low = ((u64)y << 32) + z; 1197 1198 } 1199