1 /* 2 * 3 * Common boot and setup code. 4 * 5 * Copyright (C) 2001 PPC64 Team, IBM Corp 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License 9 * as published by the Free Software Foundation; either version 10 * 2 of the License, or (at your option) any later version. 11 */ 12 13 #define DEBUG 14 15 #include <linux/export.h> 16 #include <linux/string.h> 17 #include <linux/sched.h> 18 #include <linux/init.h> 19 #include <linux/kernel.h> 20 #include <linux/reboot.h> 21 #include <linux/delay.h> 22 #include <linux/initrd.h> 23 #include <linux/seq_file.h> 24 #include <linux/ioport.h> 25 #include <linux/console.h> 26 #include <linux/utsname.h> 27 #include <linux/tty.h> 28 #include <linux/root_dev.h> 29 #include <linux/notifier.h> 30 #include <linux/cpu.h> 31 #include <linux/unistd.h> 32 #include <linux/serial.h> 33 #include <linux/serial_8250.h> 34 #include <linux/bootmem.h> 35 #include <linux/pci.h> 36 #include <linux/lockdep.h> 37 #include <linux/memblock.h> 38 #include <linux/memory.h> 39 #include <linux/nmi.h> 40 41 #include <asm/io.h> 42 #include <asm/kdump.h> 43 #include <asm/prom.h> 44 #include <asm/processor.h> 45 #include <asm/pgtable.h> 46 #include <asm/smp.h> 47 #include <asm/elf.h> 48 #include <asm/machdep.h> 49 #include <asm/paca.h> 50 #include <asm/time.h> 51 #include <asm/cputable.h> 52 #include <asm/sections.h> 53 #include <asm/btext.h> 54 #include <asm/nvram.h> 55 #include <asm/setup.h> 56 #include <asm/rtas.h> 57 #include <asm/iommu.h> 58 #include <asm/serial.h> 59 #include <asm/cache.h> 60 #include <asm/page.h> 61 #include <asm/mmu.h> 62 #include <asm/firmware.h> 63 #include <asm/xmon.h> 64 #include <asm/udbg.h> 65 #include <asm/kexec.h> 66 #include <asm/code-patching.h> 67 #include <asm/livepatch.h> 68 #include <asm/opal.h> 69 #include <asm/cputhreads.h> 70 71 #ifdef DEBUG 72 #define DBG(fmt...) udbg_printf(fmt) 73 #else 74 #define DBG(fmt...) 75 #endif 76 77 int spinning_secondaries; 78 u64 ppc64_pft_size; 79 80 struct ppc64_caches ppc64_caches = { 81 .l1d = { 82 .block_size = 0x40, 83 .log_block_size = 6, 84 }, 85 .l1i = { 86 .block_size = 0x40, 87 .log_block_size = 6 88 }, 89 }; 90 EXPORT_SYMBOL_GPL(ppc64_caches); 91 92 #if defined(CONFIG_PPC_BOOK3E) && defined(CONFIG_SMP) 93 void __init setup_tlb_core_data(void) 94 { 95 int cpu; 96 97 BUILD_BUG_ON(offsetof(struct tlb_core_data, lock) != 0); 98 99 for_each_possible_cpu(cpu) { 100 int first = cpu_first_thread_sibling(cpu); 101 102 /* 103 * If we boot via kdump on a non-primary thread, 104 * make sure we point at the thread that actually 105 * set up this TLB. 106 */ 107 if (cpu_first_thread_sibling(boot_cpuid) == first) 108 first = boot_cpuid; 109 110 paca[cpu].tcd_ptr = &paca[first].tcd; 111 112 /* 113 * If we have threads, we need either tlbsrx. 114 * or e6500 tablewalk mode, or else TLB handlers 115 * will be racy and could produce duplicate entries. 116 */ 117 if (smt_enabled_at_boot >= 2 && 118 !mmu_has_feature(MMU_FTR_USE_TLBRSRV) && 119 book3e_htw_mode != PPC_HTW_E6500) { 120 /* Should we panic instead? */ 121 WARN_ONCE("%s: unsupported MMU configuration -- expect problems\n", 122 __func__); 123 } 124 } 125 } 126 #endif 127 128 #ifdef CONFIG_SMP 129 130 static char *smt_enabled_cmdline; 131 132 /* Look for ibm,smt-enabled OF option */ 133 void __init check_smt_enabled(void) 134 { 135 struct device_node *dn; 136 const char *smt_option; 137 138 /* Default to enabling all threads */ 139 smt_enabled_at_boot = threads_per_core; 140 141 /* Allow the command line to overrule the OF option */ 142 if (smt_enabled_cmdline) { 143 if (!strcmp(smt_enabled_cmdline, "on")) 144 smt_enabled_at_boot = threads_per_core; 145 else if (!strcmp(smt_enabled_cmdline, "off")) 146 smt_enabled_at_boot = 0; 147 else { 148 int smt; 149 int rc; 150 151 rc = kstrtoint(smt_enabled_cmdline, 10, &smt); 152 if (!rc) 153 smt_enabled_at_boot = 154 min(threads_per_core, smt); 155 } 156 } else { 157 dn = of_find_node_by_path("/options"); 158 if (dn) { 159 smt_option = of_get_property(dn, "ibm,smt-enabled", 160 NULL); 161 162 if (smt_option) { 163 if (!strcmp(smt_option, "on")) 164 smt_enabled_at_boot = threads_per_core; 165 else if (!strcmp(smt_option, "off")) 166 smt_enabled_at_boot = 0; 167 } 168 169 of_node_put(dn); 170 } 171 } 172 } 173 174 /* Look for smt-enabled= cmdline option */ 175 static int __init early_smt_enabled(char *p) 176 { 177 smt_enabled_cmdline = p; 178 return 0; 179 } 180 early_param("smt-enabled", early_smt_enabled); 181 182 #endif /* CONFIG_SMP */ 183 184 /** Fix up paca fields required for the boot cpu */ 185 static void __init fixup_boot_paca(void) 186 { 187 /* The boot cpu is started */ 188 get_paca()->cpu_start = 1; 189 /* Allow percpu accesses to work until we setup percpu data */ 190 get_paca()->data_offset = 0; 191 } 192 193 static void __init configure_exceptions(void) 194 { 195 /* 196 * Setup the trampolines from the lowmem exception vectors 197 * to the kdump kernel when not using a relocatable kernel. 198 */ 199 setup_kdump_trampoline(); 200 201 /* Under a PAPR hypervisor, we need hypercalls */ 202 if (firmware_has_feature(FW_FEATURE_SET_MODE)) { 203 /* Enable AIL if possible */ 204 pseries_enable_reloc_on_exc(); 205 206 /* 207 * Tell the hypervisor that we want our exceptions to 208 * be taken in little endian mode. 209 * 210 * We don't call this for big endian as our calling convention 211 * makes us always enter in BE, and the call may fail under 212 * some circumstances with kdump. 213 */ 214 #ifdef __LITTLE_ENDIAN__ 215 pseries_little_endian_exceptions(); 216 #endif 217 } else { 218 /* Set endian mode using OPAL */ 219 if (firmware_has_feature(FW_FEATURE_OPAL)) 220 opal_configure_cores(); 221 222 /* AIL on native is done in cpu_ready_for_interrupts() */ 223 } 224 } 225 226 static void cpu_ready_for_interrupts(void) 227 { 228 /* 229 * Enable AIL if supported, and we are in hypervisor mode. This 230 * is called once for every processor. 231 * 232 * If we are not in hypervisor mode the job is done once for 233 * the whole partition in configure_exceptions(). 234 */ 235 if (early_cpu_has_feature(CPU_FTR_HVMODE) && 236 early_cpu_has_feature(CPU_FTR_ARCH_207S)) { 237 unsigned long lpcr = mfspr(SPRN_LPCR); 238 mtspr(SPRN_LPCR, lpcr | LPCR_AIL_3); 239 } 240 241 /* Set IR and DR in PACA MSR */ 242 get_paca()->kernel_msr = MSR_KERNEL; 243 } 244 245 /* 246 * Early initialization entry point. This is called by head.S 247 * with MMU translation disabled. We rely on the "feature" of 248 * the CPU that ignores the top 2 bits of the address in real 249 * mode so we can access kernel globals normally provided we 250 * only toy with things in the RMO region. From here, we do 251 * some early parsing of the device-tree to setup out MEMBLOCK 252 * data structures, and allocate & initialize the hash table 253 * and segment tables so we can start running with translation 254 * enabled. 255 * 256 * It is this function which will call the probe() callback of 257 * the various platform types and copy the matching one to the 258 * global ppc_md structure. Your platform can eventually do 259 * some very early initializations from the probe() routine, but 260 * this is not recommended, be very careful as, for example, the 261 * device-tree is not accessible via normal means at this point. 262 */ 263 264 void __init early_setup(unsigned long dt_ptr) 265 { 266 static __initdata struct paca_struct boot_paca; 267 268 /* -------- printk is _NOT_ safe to use here ! ------- */ 269 270 /* Identify CPU type */ 271 identify_cpu(0, mfspr(SPRN_PVR)); 272 273 /* Assume we're on cpu 0 for now. Don't write to the paca yet! */ 274 initialise_paca(&boot_paca, 0); 275 setup_paca(&boot_paca); 276 fixup_boot_paca(); 277 278 /* -------- printk is now safe to use ------- */ 279 280 /* Enable early debugging if any specified (see udbg.h) */ 281 udbg_early_init(); 282 283 DBG(" -> early_setup(), dt_ptr: 0x%lx\n", dt_ptr); 284 285 /* 286 * Do early initialization using the flattened device 287 * tree, such as retrieving the physical memory map or 288 * calculating/retrieving the hash table size. 289 */ 290 early_init_devtree(__va(dt_ptr)); 291 292 /* Now we know the logical id of our boot cpu, setup the paca. */ 293 setup_paca(&paca[boot_cpuid]); 294 fixup_boot_paca(); 295 296 /* 297 * Configure exception handlers. This include setting up trampolines 298 * if needed, setting exception endian mode, etc... 299 */ 300 configure_exceptions(); 301 302 /* Apply all the dynamic patching */ 303 apply_feature_fixups(); 304 setup_feature_keys(); 305 306 /* Initialize the hash table or TLB handling */ 307 early_init_mmu(); 308 309 /* 310 * At this point, we can let interrupts switch to virtual mode 311 * (the MMU has been setup), so adjust the MSR in the PACA to 312 * have IR and DR set and enable AIL if it exists 313 */ 314 cpu_ready_for_interrupts(); 315 316 DBG(" <- early_setup()\n"); 317 318 #ifdef CONFIG_PPC_EARLY_DEBUG_BOOTX 319 /* 320 * This needs to be done *last* (after the above DBG() even) 321 * 322 * Right after we return from this function, we turn on the MMU 323 * which means the real-mode access trick that btext does will 324 * no longer work, it needs to switch to using a real MMU 325 * mapping. This call will ensure that it does 326 */ 327 btext_map(); 328 #endif /* CONFIG_PPC_EARLY_DEBUG_BOOTX */ 329 } 330 331 #ifdef CONFIG_SMP 332 void early_setup_secondary(void) 333 { 334 /* Mark interrupts disabled in PACA */ 335 get_paca()->soft_enabled = 0; 336 337 /* Initialize the hash table or TLB handling */ 338 early_init_mmu_secondary(); 339 340 /* 341 * At this point, we can let interrupts switch to virtual mode 342 * (the MMU has been setup), so adjust the MSR in the PACA to 343 * have IR and DR set. 344 */ 345 cpu_ready_for_interrupts(); 346 } 347 348 #endif /* CONFIG_SMP */ 349 350 #if defined(CONFIG_SMP) || defined(CONFIG_KEXEC_CORE) 351 static bool use_spinloop(void) 352 { 353 if (!IS_ENABLED(CONFIG_PPC_BOOK3E)) 354 return true; 355 356 /* 357 * When book3e boots from kexec, the ePAPR spin table does 358 * not get used. 359 */ 360 return of_property_read_bool(of_chosen, "linux,booted-from-kexec"); 361 } 362 363 void smp_release_cpus(void) 364 { 365 unsigned long *ptr; 366 int i; 367 368 if (!use_spinloop()) 369 return; 370 371 DBG(" -> smp_release_cpus()\n"); 372 373 /* All secondary cpus are spinning on a common spinloop, release them 374 * all now so they can start to spin on their individual paca 375 * spinloops. For non SMP kernels, the secondary cpus never get out 376 * of the common spinloop. 377 */ 378 379 ptr = (unsigned long *)((unsigned long)&__secondary_hold_spinloop 380 - PHYSICAL_START); 381 *ptr = ppc_function_entry(generic_secondary_smp_init); 382 383 /* And wait a bit for them to catch up */ 384 for (i = 0; i < 100000; i++) { 385 mb(); 386 HMT_low(); 387 if (spinning_secondaries == 0) 388 break; 389 udelay(1); 390 } 391 DBG("spinning_secondaries = %d\n", spinning_secondaries); 392 393 DBG(" <- smp_release_cpus()\n"); 394 } 395 #endif /* CONFIG_SMP || CONFIG_KEXEC_CORE */ 396 397 /* 398 * Initialize some remaining members of the ppc64_caches and systemcfg 399 * structures 400 * (at least until we get rid of them completely). This is mostly some 401 * cache informations about the CPU that will be used by cache flush 402 * routines and/or provided to userland 403 */ 404 405 static void init_cache_info(struct ppc_cache_info *info, u32 size, u32 lsize, 406 u32 bsize, u32 sets) 407 { 408 info->size = size; 409 info->sets = sets; 410 info->line_size = lsize; 411 info->block_size = bsize; 412 info->log_block_size = __ilog2(bsize); 413 info->blocks_per_page = PAGE_SIZE / bsize; 414 415 if (sets == 0) 416 info->assoc = 0xffff; 417 else 418 info->assoc = size / (sets * lsize); 419 } 420 421 static bool __init parse_cache_info(struct device_node *np, 422 bool icache, 423 struct ppc_cache_info *info) 424 { 425 static const char *ipropnames[] __initdata = { 426 "i-cache-size", 427 "i-cache-sets", 428 "i-cache-block-size", 429 "i-cache-line-size", 430 }; 431 static const char *dpropnames[] __initdata = { 432 "d-cache-size", 433 "d-cache-sets", 434 "d-cache-block-size", 435 "d-cache-line-size", 436 }; 437 const char **propnames = icache ? ipropnames : dpropnames; 438 const __be32 *sizep, *lsizep, *bsizep, *setsp; 439 u32 size, lsize, bsize, sets; 440 bool success = true; 441 442 size = 0; 443 sets = -1u; 444 lsize = bsize = cur_cpu_spec->dcache_bsize; 445 sizep = of_get_property(np, propnames[0], NULL); 446 if (sizep != NULL) 447 size = be32_to_cpu(*sizep); 448 setsp = of_get_property(np, propnames[1], NULL); 449 if (setsp != NULL) 450 sets = be32_to_cpu(*setsp); 451 bsizep = of_get_property(np, propnames[2], NULL); 452 lsizep = of_get_property(np, propnames[3], NULL); 453 if (bsizep == NULL) 454 bsizep = lsizep; 455 if (lsizep != NULL) 456 lsize = be32_to_cpu(*lsizep); 457 if (bsizep != NULL) 458 bsize = be32_to_cpu(*bsizep); 459 if (sizep == NULL || bsizep == NULL || lsizep == NULL) 460 success = false; 461 462 /* 463 * OF is weird .. it represents fully associative caches 464 * as "1 way" which doesn't make much sense and doesn't 465 * leave room for direct mapped. We'll assume that 0 466 * in OF means direct mapped for that reason. 467 */ 468 if (sets == 1) 469 sets = 0; 470 else if (sets == 0) 471 sets = 1; 472 473 init_cache_info(info, size, lsize, bsize, sets); 474 475 return success; 476 } 477 478 void __init initialize_cache_info(void) 479 { 480 struct device_node *cpu = NULL, *l2, *l3 = NULL; 481 u32 pvr; 482 483 DBG(" -> initialize_cache_info()\n"); 484 485 /* 486 * All shipping POWER8 machines have a firmware bug that 487 * puts incorrect information in the device-tree. This will 488 * be (hopefully) fixed for future chips but for now hard 489 * code the values if we are running on one of these 490 */ 491 pvr = PVR_VER(mfspr(SPRN_PVR)); 492 if (pvr == PVR_POWER8 || pvr == PVR_POWER8E || 493 pvr == PVR_POWER8NVL) { 494 /* size lsize blk sets */ 495 init_cache_info(&ppc64_caches.l1i, 0x8000, 128, 128, 32); 496 init_cache_info(&ppc64_caches.l1d, 0x10000, 128, 128, 64); 497 init_cache_info(&ppc64_caches.l2, 0x80000, 128, 0, 512); 498 init_cache_info(&ppc64_caches.l3, 0x800000, 128, 0, 8192); 499 } else 500 cpu = of_find_node_by_type(NULL, "cpu"); 501 502 /* 503 * We're assuming *all* of the CPUs have the same 504 * d-cache and i-cache sizes... -Peter 505 */ 506 if (cpu) { 507 if (!parse_cache_info(cpu, false, &ppc64_caches.l1d)) 508 DBG("Argh, can't find dcache properties !\n"); 509 510 if (!parse_cache_info(cpu, true, &ppc64_caches.l1i)) 511 DBG("Argh, can't find icache properties !\n"); 512 513 /* 514 * Try to find the L2 and L3 if any. Assume they are 515 * unified and use the D-side properties. 516 */ 517 l2 = of_find_next_cache_node(cpu); 518 of_node_put(cpu); 519 if (l2) { 520 parse_cache_info(l2, false, &ppc64_caches.l2); 521 l3 = of_find_next_cache_node(l2); 522 of_node_put(l2); 523 } 524 if (l3) { 525 parse_cache_info(l3, false, &ppc64_caches.l3); 526 of_node_put(l3); 527 } 528 } 529 530 /* For use by binfmt_elf */ 531 dcache_bsize = ppc64_caches.l1d.block_size; 532 icache_bsize = ppc64_caches.l1i.block_size; 533 534 DBG(" <- initialize_cache_info()\n"); 535 } 536 537 /* This returns the limit below which memory accesses to the linear 538 * mapping are guarnateed not to cause a TLB or SLB miss. This is 539 * used to allocate interrupt or emergency stacks for which our 540 * exception entry path doesn't deal with being interrupted. 541 */ 542 static __init u64 safe_stack_limit(void) 543 { 544 #ifdef CONFIG_PPC_BOOK3E 545 /* Freescale BookE bolts the entire linear mapping */ 546 if (mmu_has_feature(MMU_FTR_TYPE_FSL_E)) 547 return linear_map_top; 548 /* Other BookE, we assume the first GB is bolted */ 549 return 1ul << 30; 550 #else 551 /* BookS, the first segment is bolted */ 552 if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) 553 return 1UL << SID_SHIFT_1T; 554 return 1UL << SID_SHIFT; 555 #endif 556 } 557 558 void __init irqstack_early_init(void) 559 { 560 u64 limit = safe_stack_limit(); 561 unsigned int i; 562 563 /* 564 * Interrupt stacks must be in the first segment since we 565 * cannot afford to take SLB misses on them. 566 */ 567 for_each_possible_cpu(i) { 568 softirq_ctx[i] = (struct thread_info *) 569 __va(memblock_alloc_base(THREAD_SIZE, 570 THREAD_SIZE, limit)); 571 hardirq_ctx[i] = (struct thread_info *) 572 __va(memblock_alloc_base(THREAD_SIZE, 573 THREAD_SIZE, limit)); 574 } 575 } 576 577 #ifdef CONFIG_PPC_BOOK3E 578 void __init exc_lvl_early_init(void) 579 { 580 unsigned int i; 581 unsigned long sp; 582 583 for_each_possible_cpu(i) { 584 sp = memblock_alloc(THREAD_SIZE, THREAD_SIZE); 585 critirq_ctx[i] = (struct thread_info *)__va(sp); 586 paca[i].crit_kstack = __va(sp + THREAD_SIZE); 587 588 sp = memblock_alloc(THREAD_SIZE, THREAD_SIZE); 589 dbgirq_ctx[i] = (struct thread_info *)__va(sp); 590 paca[i].dbg_kstack = __va(sp + THREAD_SIZE); 591 592 sp = memblock_alloc(THREAD_SIZE, THREAD_SIZE); 593 mcheckirq_ctx[i] = (struct thread_info *)__va(sp); 594 paca[i].mc_kstack = __va(sp + THREAD_SIZE); 595 } 596 597 if (cpu_has_feature(CPU_FTR_DEBUG_LVL_EXC)) 598 patch_exception(0x040, exc_debug_debug_book3e); 599 } 600 #endif 601 602 /* 603 * Stack space used when we detect a bad kernel stack pointer, and 604 * early in SMP boots before relocation is enabled. Exclusive emergency 605 * stack for machine checks. 606 */ 607 void __init emergency_stack_init(void) 608 { 609 u64 limit; 610 unsigned int i; 611 612 /* 613 * Emergency stacks must be under 256MB, we cannot afford to take 614 * SLB misses on them. The ABI also requires them to be 128-byte 615 * aligned. 616 * 617 * Since we use these as temporary stacks during secondary CPU 618 * bringup, we need to get at them in real mode. This means they 619 * must also be within the RMO region. 620 */ 621 limit = min(safe_stack_limit(), ppc64_rma_size); 622 623 for_each_possible_cpu(i) { 624 struct thread_info *ti; 625 ti = __va(memblock_alloc_base(THREAD_SIZE, THREAD_SIZE, limit)); 626 klp_init_thread_info(ti); 627 paca[i].emergency_sp = (void *)ti + THREAD_SIZE; 628 629 #ifdef CONFIG_PPC_BOOK3S_64 630 /* emergency stack for machine check exception handling. */ 631 ti = __va(memblock_alloc_base(THREAD_SIZE, THREAD_SIZE, limit)); 632 klp_init_thread_info(ti); 633 paca[i].mc_emergency_sp = (void *)ti + THREAD_SIZE; 634 #endif 635 } 636 } 637 638 #ifdef CONFIG_SMP 639 #define PCPU_DYN_SIZE () 640 641 static void * __init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align) 642 { 643 return __alloc_bootmem_node(NODE_DATA(cpu_to_node(cpu)), size, align, 644 __pa(MAX_DMA_ADDRESS)); 645 } 646 647 static void __init pcpu_fc_free(void *ptr, size_t size) 648 { 649 free_bootmem(__pa(ptr), size); 650 } 651 652 static int pcpu_cpu_distance(unsigned int from, unsigned int to) 653 { 654 if (cpu_to_node(from) == cpu_to_node(to)) 655 return LOCAL_DISTANCE; 656 else 657 return REMOTE_DISTANCE; 658 } 659 660 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly; 661 EXPORT_SYMBOL(__per_cpu_offset); 662 663 void __init setup_per_cpu_areas(void) 664 { 665 const size_t dyn_size = PERCPU_MODULE_RESERVE + PERCPU_DYNAMIC_RESERVE; 666 size_t atom_size; 667 unsigned long delta; 668 unsigned int cpu; 669 int rc; 670 671 /* 672 * Linear mapping is one of 4K, 1M and 16M. For 4K, no need 673 * to group units. For larger mappings, use 1M atom which 674 * should be large enough to contain a number of units. 675 */ 676 if (mmu_linear_psize == MMU_PAGE_4K) 677 atom_size = PAGE_SIZE; 678 else 679 atom_size = 1 << 20; 680 681 rc = pcpu_embed_first_chunk(0, dyn_size, atom_size, pcpu_cpu_distance, 682 pcpu_fc_alloc, pcpu_fc_free); 683 if (rc < 0) 684 panic("cannot initialize percpu area (err=%d)", rc); 685 686 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start; 687 for_each_possible_cpu(cpu) { 688 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu]; 689 paca[cpu].data_offset = __per_cpu_offset[cpu]; 690 } 691 } 692 #endif 693 694 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE 695 unsigned long memory_block_size_bytes(void) 696 { 697 if (ppc_md.memory_block_size) 698 return ppc_md.memory_block_size(); 699 700 return MIN_MEMORY_BLOCK_SIZE; 701 } 702 #endif 703 704 #if defined(CONFIG_PPC_INDIRECT_PIO) || defined(CONFIG_PPC_INDIRECT_MMIO) 705 struct ppc_pci_io ppc_pci_io; 706 EXPORT_SYMBOL(ppc_pci_io); 707 #endif 708 709 #ifdef CONFIG_HARDLOCKUP_DETECTOR 710 u64 hw_nmi_get_sample_period(int watchdog_thresh) 711 { 712 return ppc_proc_freq * watchdog_thresh; 713 } 714 715 /* 716 * The hardlockup detector breaks PMU event based branches and is likely 717 * to get false positives in KVM guests, so disable it by default. 718 */ 719 static int __init disable_hardlockup_detector(void) 720 { 721 hardlockup_detector_disable(); 722 723 return 0; 724 } 725 early_initcall(disable_hardlockup_detector); 726 #endif 727