xref: /linux/arch/powerpc/kernel/setup_64.c (revision c1aac62f36c1e37ee81c9e09ee9ee733eef05dcb)
1 /*
2  *
3  * Common boot and setup code.
4  *
5  * Copyright (C) 2001 PPC64 Team, IBM Corp
6  *
7  *      This program is free software; you can redistribute it and/or
8  *      modify it under the terms of the GNU General Public License
9  *      as published by the Free Software Foundation; either version
10  *      2 of the License, or (at your option) any later version.
11  */
12 
13 #define DEBUG
14 
15 #include <linux/export.h>
16 #include <linux/string.h>
17 #include <linux/sched.h>
18 #include <linux/init.h>
19 #include <linux/kernel.h>
20 #include <linux/reboot.h>
21 #include <linux/delay.h>
22 #include <linux/initrd.h>
23 #include <linux/seq_file.h>
24 #include <linux/ioport.h>
25 #include <linux/console.h>
26 #include <linux/utsname.h>
27 #include <linux/tty.h>
28 #include <linux/root_dev.h>
29 #include <linux/notifier.h>
30 #include <linux/cpu.h>
31 #include <linux/unistd.h>
32 #include <linux/serial.h>
33 #include <linux/serial_8250.h>
34 #include <linux/bootmem.h>
35 #include <linux/pci.h>
36 #include <linux/lockdep.h>
37 #include <linux/memblock.h>
38 #include <linux/memory.h>
39 #include <linux/nmi.h>
40 
41 #include <asm/io.h>
42 #include <asm/kdump.h>
43 #include <asm/prom.h>
44 #include <asm/processor.h>
45 #include <asm/pgtable.h>
46 #include <asm/smp.h>
47 #include <asm/elf.h>
48 #include <asm/machdep.h>
49 #include <asm/paca.h>
50 #include <asm/time.h>
51 #include <asm/cputable.h>
52 #include <asm/sections.h>
53 #include <asm/btext.h>
54 #include <asm/nvram.h>
55 #include <asm/setup.h>
56 #include <asm/rtas.h>
57 #include <asm/iommu.h>
58 #include <asm/serial.h>
59 #include <asm/cache.h>
60 #include <asm/page.h>
61 #include <asm/mmu.h>
62 #include <asm/firmware.h>
63 #include <asm/xmon.h>
64 #include <asm/udbg.h>
65 #include <asm/kexec.h>
66 #include <asm/code-patching.h>
67 #include <asm/livepatch.h>
68 #include <asm/opal.h>
69 #include <asm/cputhreads.h>
70 
71 #ifdef DEBUG
72 #define DBG(fmt...) udbg_printf(fmt)
73 #else
74 #define DBG(fmt...)
75 #endif
76 
77 int spinning_secondaries;
78 u64 ppc64_pft_size;
79 
80 struct ppc64_caches ppc64_caches = {
81 	.l1d = {
82 		.block_size = 0x40,
83 		.log_block_size = 6,
84 	},
85 	.l1i = {
86 		.block_size = 0x40,
87 		.log_block_size = 6
88 	},
89 };
90 EXPORT_SYMBOL_GPL(ppc64_caches);
91 
92 #if defined(CONFIG_PPC_BOOK3E) && defined(CONFIG_SMP)
93 void __init setup_tlb_core_data(void)
94 {
95 	int cpu;
96 
97 	BUILD_BUG_ON(offsetof(struct tlb_core_data, lock) != 0);
98 
99 	for_each_possible_cpu(cpu) {
100 		int first = cpu_first_thread_sibling(cpu);
101 
102 		/*
103 		 * If we boot via kdump on a non-primary thread,
104 		 * make sure we point at the thread that actually
105 		 * set up this TLB.
106 		 */
107 		if (cpu_first_thread_sibling(boot_cpuid) == first)
108 			first = boot_cpuid;
109 
110 		paca[cpu].tcd_ptr = &paca[first].tcd;
111 
112 		/*
113 		 * If we have threads, we need either tlbsrx.
114 		 * or e6500 tablewalk mode, or else TLB handlers
115 		 * will be racy and could produce duplicate entries.
116 		 */
117 		if (smt_enabled_at_boot >= 2 &&
118 		    !mmu_has_feature(MMU_FTR_USE_TLBRSRV) &&
119 		    book3e_htw_mode != PPC_HTW_E6500) {
120 			/* Should we panic instead? */
121 			WARN_ONCE("%s: unsupported MMU configuration -- expect problems\n",
122 				  __func__);
123 		}
124 	}
125 }
126 #endif
127 
128 #ifdef CONFIG_SMP
129 
130 static char *smt_enabled_cmdline;
131 
132 /* Look for ibm,smt-enabled OF option */
133 void __init check_smt_enabled(void)
134 {
135 	struct device_node *dn;
136 	const char *smt_option;
137 
138 	/* Default to enabling all threads */
139 	smt_enabled_at_boot = threads_per_core;
140 
141 	/* Allow the command line to overrule the OF option */
142 	if (smt_enabled_cmdline) {
143 		if (!strcmp(smt_enabled_cmdline, "on"))
144 			smt_enabled_at_boot = threads_per_core;
145 		else if (!strcmp(smt_enabled_cmdline, "off"))
146 			smt_enabled_at_boot = 0;
147 		else {
148 			int smt;
149 			int rc;
150 
151 			rc = kstrtoint(smt_enabled_cmdline, 10, &smt);
152 			if (!rc)
153 				smt_enabled_at_boot =
154 					min(threads_per_core, smt);
155 		}
156 	} else {
157 		dn = of_find_node_by_path("/options");
158 		if (dn) {
159 			smt_option = of_get_property(dn, "ibm,smt-enabled",
160 						     NULL);
161 
162 			if (smt_option) {
163 				if (!strcmp(smt_option, "on"))
164 					smt_enabled_at_boot = threads_per_core;
165 				else if (!strcmp(smt_option, "off"))
166 					smt_enabled_at_boot = 0;
167 			}
168 
169 			of_node_put(dn);
170 		}
171 	}
172 }
173 
174 /* Look for smt-enabled= cmdline option */
175 static int __init early_smt_enabled(char *p)
176 {
177 	smt_enabled_cmdline = p;
178 	return 0;
179 }
180 early_param("smt-enabled", early_smt_enabled);
181 
182 #endif /* CONFIG_SMP */
183 
184 /** Fix up paca fields required for the boot cpu */
185 static void __init fixup_boot_paca(void)
186 {
187 	/* The boot cpu is started */
188 	get_paca()->cpu_start = 1;
189 	/* Allow percpu accesses to work until we setup percpu data */
190 	get_paca()->data_offset = 0;
191 }
192 
193 static void __init configure_exceptions(void)
194 {
195 	/*
196 	 * Setup the trampolines from the lowmem exception vectors
197 	 * to the kdump kernel when not using a relocatable kernel.
198 	 */
199 	setup_kdump_trampoline();
200 
201 	/* Under a PAPR hypervisor, we need hypercalls */
202 	if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
203 		/* Enable AIL if possible */
204 		pseries_enable_reloc_on_exc();
205 
206 		/*
207 		 * Tell the hypervisor that we want our exceptions to
208 		 * be taken in little endian mode.
209 		 *
210 		 * We don't call this for big endian as our calling convention
211 		 * makes us always enter in BE, and the call may fail under
212 		 * some circumstances with kdump.
213 		 */
214 #ifdef __LITTLE_ENDIAN__
215 		pseries_little_endian_exceptions();
216 #endif
217 	} else {
218 		/* Set endian mode using OPAL */
219 		if (firmware_has_feature(FW_FEATURE_OPAL))
220 			opal_configure_cores();
221 
222 		/* AIL on native is done in cpu_ready_for_interrupts() */
223 	}
224 }
225 
226 static void cpu_ready_for_interrupts(void)
227 {
228 	/*
229 	 * Enable AIL if supported, and we are in hypervisor mode. This
230 	 * is called once for every processor.
231 	 *
232 	 * If we are not in hypervisor mode the job is done once for
233 	 * the whole partition in configure_exceptions().
234 	 */
235 	if (early_cpu_has_feature(CPU_FTR_HVMODE) &&
236 	    early_cpu_has_feature(CPU_FTR_ARCH_207S)) {
237 		unsigned long lpcr = mfspr(SPRN_LPCR);
238 		mtspr(SPRN_LPCR, lpcr | LPCR_AIL_3);
239 	}
240 
241 	/* Set IR and DR in PACA MSR */
242 	get_paca()->kernel_msr = MSR_KERNEL;
243 }
244 
245 /*
246  * Early initialization entry point. This is called by head.S
247  * with MMU translation disabled. We rely on the "feature" of
248  * the CPU that ignores the top 2 bits of the address in real
249  * mode so we can access kernel globals normally provided we
250  * only toy with things in the RMO region. From here, we do
251  * some early parsing of the device-tree to setup out MEMBLOCK
252  * data structures, and allocate & initialize the hash table
253  * and segment tables so we can start running with translation
254  * enabled.
255  *
256  * It is this function which will call the probe() callback of
257  * the various platform types and copy the matching one to the
258  * global ppc_md structure. Your platform can eventually do
259  * some very early initializations from the probe() routine, but
260  * this is not recommended, be very careful as, for example, the
261  * device-tree is not accessible via normal means at this point.
262  */
263 
264 void __init early_setup(unsigned long dt_ptr)
265 {
266 	static __initdata struct paca_struct boot_paca;
267 
268 	/* -------- printk is _NOT_ safe to use here ! ------- */
269 
270 	/* Identify CPU type */
271 	identify_cpu(0, mfspr(SPRN_PVR));
272 
273 	/* Assume we're on cpu 0 for now. Don't write to the paca yet! */
274 	initialise_paca(&boot_paca, 0);
275 	setup_paca(&boot_paca);
276 	fixup_boot_paca();
277 
278 	/* -------- printk is now safe to use ------- */
279 
280 	/* Enable early debugging if any specified (see udbg.h) */
281 	udbg_early_init();
282 
283  	DBG(" -> early_setup(), dt_ptr: 0x%lx\n", dt_ptr);
284 
285 	/*
286 	 * Do early initialization using the flattened device
287 	 * tree, such as retrieving the physical memory map or
288 	 * calculating/retrieving the hash table size.
289 	 */
290 	early_init_devtree(__va(dt_ptr));
291 
292 	/* Now we know the logical id of our boot cpu, setup the paca. */
293 	setup_paca(&paca[boot_cpuid]);
294 	fixup_boot_paca();
295 
296 	/*
297 	 * Configure exception handlers. This include setting up trampolines
298 	 * if needed, setting exception endian mode, etc...
299 	 */
300 	configure_exceptions();
301 
302 	/* Apply all the dynamic patching */
303 	apply_feature_fixups();
304 	setup_feature_keys();
305 
306 	/* Initialize the hash table or TLB handling */
307 	early_init_mmu();
308 
309 	/*
310 	 * At this point, we can let interrupts switch to virtual mode
311 	 * (the MMU has been setup), so adjust the MSR in the PACA to
312 	 * have IR and DR set and enable AIL if it exists
313 	 */
314 	cpu_ready_for_interrupts();
315 
316 	DBG(" <- early_setup()\n");
317 
318 #ifdef CONFIG_PPC_EARLY_DEBUG_BOOTX
319 	/*
320 	 * This needs to be done *last* (after the above DBG() even)
321 	 *
322 	 * Right after we return from this function, we turn on the MMU
323 	 * which means the real-mode access trick that btext does will
324 	 * no longer work, it needs to switch to using a real MMU
325 	 * mapping. This call will ensure that it does
326 	 */
327 	btext_map();
328 #endif /* CONFIG_PPC_EARLY_DEBUG_BOOTX */
329 }
330 
331 #ifdef CONFIG_SMP
332 void early_setup_secondary(void)
333 {
334 	/* Mark interrupts disabled in PACA */
335 	get_paca()->soft_enabled = 0;
336 
337 	/* Initialize the hash table or TLB handling */
338 	early_init_mmu_secondary();
339 
340 	/*
341 	 * At this point, we can let interrupts switch to virtual mode
342 	 * (the MMU has been setup), so adjust the MSR in the PACA to
343 	 * have IR and DR set.
344 	 */
345 	cpu_ready_for_interrupts();
346 }
347 
348 #endif /* CONFIG_SMP */
349 
350 #if defined(CONFIG_SMP) || defined(CONFIG_KEXEC_CORE)
351 static bool use_spinloop(void)
352 {
353 	if (!IS_ENABLED(CONFIG_PPC_BOOK3E))
354 		return true;
355 
356 	/*
357 	 * When book3e boots from kexec, the ePAPR spin table does
358 	 * not get used.
359 	 */
360 	return of_property_read_bool(of_chosen, "linux,booted-from-kexec");
361 }
362 
363 void smp_release_cpus(void)
364 {
365 	unsigned long *ptr;
366 	int i;
367 
368 	if (!use_spinloop())
369 		return;
370 
371 	DBG(" -> smp_release_cpus()\n");
372 
373 	/* All secondary cpus are spinning on a common spinloop, release them
374 	 * all now so they can start to spin on their individual paca
375 	 * spinloops. For non SMP kernels, the secondary cpus never get out
376 	 * of the common spinloop.
377 	 */
378 
379 	ptr  = (unsigned long *)((unsigned long)&__secondary_hold_spinloop
380 			- PHYSICAL_START);
381 	*ptr = ppc_function_entry(generic_secondary_smp_init);
382 
383 	/* And wait a bit for them to catch up */
384 	for (i = 0; i < 100000; i++) {
385 		mb();
386 		HMT_low();
387 		if (spinning_secondaries == 0)
388 			break;
389 		udelay(1);
390 	}
391 	DBG("spinning_secondaries = %d\n", spinning_secondaries);
392 
393 	DBG(" <- smp_release_cpus()\n");
394 }
395 #endif /* CONFIG_SMP || CONFIG_KEXEC_CORE */
396 
397 /*
398  * Initialize some remaining members of the ppc64_caches and systemcfg
399  * structures
400  * (at least until we get rid of them completely). This is mostly some
401  * cache informations about the CPU that will be used by cache flush
402  * routines and/or provided to userland
403  */
404 
405 static void init_cache_info(struct ppc_cache_info *info, u32 size, u32 lsize,
406 			    u32 bsize, u32 sets)
407 {
408 	info->size = size;
409 	info->sets = sets;
410 	info->line_size = lsize;
411 	info->block_size = bsize;
412 	info->log_block_size = __ilog2(bsize);
413 	info->blocks_per_page = PAGE_SIZE / bsize;
414 
415 	if (sets == 0)
416 		info->assoc = 0xffff;
417 	else
418 		info->assoc = size / (sets * lsize);
419 }
420 
421 static bool __init parse_cache_info(struct device_node *np,
422 				    bool icache,
423 				    struct ppc_cache_info *info)
424 {
425 	static const char *ipropnames[] __initdata = {
426 		"i-cache-size",
427 		"i-cache-sets",
428 		"i-cache-block-size",
429 		"i-cache-line-size",
430 	};
431 	static const char *dpropnames[] __initdata = {
432 		"d-cache-size",
433 		"d-cache-sets",
434 		"d-cache-block-size",
435 		"d-cache-line-size",
436 	};
437 	const char **propnames = icache ? ipropnames : dpropnames;
438 	const __be32 *sizep, *lsizep, *bsizep, *setsp;
439 	u32 size, lsize, bsize, sets;
440 	bool success = true;
441 
442 	size = 0;
443 	sets = -1u;
444 	lsize = bsize = cur_cpu_spec->dcache_bsize;
445 	sizep = of_get_property(np, propnames[0], NULL);
446 	if (sizep != NULL)
447 		size = be32_to_cpu(*sizep);
448 	setsp = of_get_property(np, propnames[1], NULL);
449 	if (setsp != NULL)
450 		sets = be32_to_cpu(*setsp);
451 	bsizep = of_get_property(np, propnames[2], NULL);
452 	lsizep = of_get_property(np, propnames[3], NULL);
453 	if (bsizep == NULL)
454 		bsizep = lsizep;
455 	if (lsizep != NULL)
456 		lsize = be32_to_cpu(*lsizep);
457 	if (bsizep != NULL)
458 		bsize = be32_to_cpu(*bsizep);
459 	if (sizep == NULL || bsizep == NULL || lsizep == NULL)
460 		success = false;
461 
462 	/*
463 	 * OF is weird .. it represents fully associative caches
464 	 * as "1 way" which doesn't make much sense and doesn't
465 	 * leave room for direct mapped. We'll assume that 0
466 	 * in OF means direct mapped for that reason.
467 	 */
468 	if (sets == 1)
469 		sets = 0;
470 	else if (sets == 0)
471 		sets = 1;
472 
473 	init_cache_info(info, size, lsize, bsize, sets);
474 
475 	return success;
476 }
477 
478 void __init initialize_cache_info(void)
479 {
480 	struct device_node *cpu = NULL, *l2, *l3 = NULL;
481 	u32 pvr;
482 
483 	DBG(" -> initialize_cache_info()\n");
484 
485 	/*
486 	 * All shipping POWER8 machines have a firmware bug that
487 	 * puts incorrect information in the device-tree. This will
488 	 * be (hopefully) fixed for future chips but for now hard
489 	 * code the values if we are running on one of these
490 	 */
491 	pvr = PVR_VER(mfspr(SPRN_PVR));
492 	if (pvr == PVR_POWER8 || pvr == PVR_POWER8E ||
493 	    pvr == PVR_POWER8NVL) {
494 						/* size    lsize   blk  sets */
495 		init_cache_info(&ppc64_caches.l1i, 0x8000,   128,  128, 32);
496 		init_cache_info(&ppc64_caches.l1d, 0x10000,  128,  128, 64);
497 		init_cache_info(&ppc64_caches.l2,  0x80000,  128,  0,   512);
498 		init_cache_info(&ppc64_caches.l3,  0x800000, 128,  0,   8192);
499 	} else
500 		cpu = of_find_node_by_type(NULL, "cpu");
501 
502 	/*
503 	 * We're assuming *all* of the CPUs have the same
504 	 * d-cache and i-cache sizes... -Peter
505 	 */
506 	if (cpu) {
507 		if (!parse_cache_info(cpu, false, &ppc64_caches.l1d))
508 			DBG("Argh, can't find dcache properties !\n");
509 
510 		if (!parse_cache_info(cpu, true, &ppc64_caches.l1i))
511 			DBG("Argh, can't find icache properties !\n");
512 
513 		/*
514 		 * Try to find the L2 and L3 if any. Assume they are
515 		 * unified and use the D-side properties.
516 		 */
517 		l2 = of_find_next_cache_node(cpu);
518 		of_node_put(cpu);
519 		if (l2) {
520 			parse_cache_info(l2, false, &ppc64_caches.l2);
521 			l3 = of_find_next_cache_node(l2);
522 			of_node_put(l2);
523 		}
524 		if (l3) {
525 			parse_cache_info(l3, false, &ppc64_caches.l3);
526 			of_node_put(l3);
527 		}
528 	}
529 
530 	/* For use by binfmt_elf */
531 	dcache_bsize = ppc64_caches.l1d.block_size;
532 	icache_bsize = ppc64_caches.l1i.block_size;
533 
534 	DBG(" <- initialize_cache_info()\n");
535 }
536 
537 /* This returns the limit below which memory accesses to the linear
538  * mapping are guarnateed not to cause a TLB or SLB miss. This is
539  * used to allocate interrupt or emergency stacks for which our
540  * exception entry path doesn't deal with being interrupted.
541  */
542 static __init u64 safe_stack_limit(void)
543 {
544 #ifdef CONFIG_PPC_BOOK3E
545 	/* Freescale BookE bolts the entire linear mapping */
546 	if (mmu_has_feature(MMU_FTR_TYPE_FSL_E))
547 		return linear_map_top;
548 	/* Other BookE, we assume the first GB is bolted */
549 	return 1ul << 30;
550 #else
551 	/* BookS, the first segment is bolted */
552 	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
553 		return 1UL << SID_SHIFT_1T;
554 	return 1UL << SID_SHIFT;
555 #endif
556 }
557 
558 void __init irqstack_early_init(void)
559 {
560 	u64 limit = safe_stack_limit();
561 	unsigned int i;
562 
563 	/*
564 	 * Interrupt stacks must be in the first segment since we
565 	 * cannot afford to take SLB misses on them.
566 	 */
567 	for_each_possible_cpu(i) {
568 		softirq_ctx[i] = (struct thread_info *)
569 			__va(memblock_alloc_base(THREAD_SIZE,
570 					    THREAD_SIZE, limit));
571 		hardirq_ctx[i] = (struct thread_info *)
572 			__va(memblock_alloc_base(THREAD_SIZE,
573 					    THREAD_SIZE, limit));
574 	}
575 }
576 
577 #ifdef CONFIG_PPC_BOOK3E
578 void __init exc_lvl_early_init(void)
579 {
580 	unsigned int i;
581 	unsigned long sp;
582 
583 	for_each_possible_cpu(i) {
584 		sp = memblock_alloc(THREAD_SIZE, THREAD_SIZE);
585 		critirq_ctx[i] = (struct thread_info *)__va(sp);
586 		paca[i].crit_kstack = __va(sp + THREAD_SIZE);
587 
588 		sp = memblock_alloc(THREAD_SIZE, THREAD_SIZE);
589 		dbgirq_ctx[i] = (struct thread_info *)__va(sp);
590 		paca[i].dbg_kstack = __va(sp + THREAD_SIZE);
591 
592 		sp = memblock_alloc(THREAD_SIZE, THREAD_SIZE);
593 		mcheckirq_ctx[i] = (struct thread_info *)__va(sp);
594 		paca[i].mc_kstack = __va(sp + THREAD_SIZE);
595 	}
596 
597 	if (cpu_has_feature(CPU_FTR_DEBUG_LVL_EXC))
598 		patch_exception(0x040, exc_debug_debug_book3e);
599 }
600 #endif
601 
602 /*
603  * Stack space used when we detect a bad kernel stack pointer, and
604  * early in SMP boots before relocation is enabled. Exclusive emergency
605  * stack for machine checks.
606  */
607 void __init emergency_stack_init(void)
608 {
609 	u64 limit;
610 	unsigned int i;
611 
612 	/*
613 	 * Emergency stacks must be under 256MB, we cannot afford to take
614 	 * SLB misses on them. The ABI also requires them to be 128-byte
615 	 * aligned.
616 	 *
617 	 * Since we use these as temporary stacks during secondary CPU
618 	 * bringup, we need to get at them in real mode. This means they
619 	 * must also be within the RMO region.
620 	 */
621 	limit = min(safe_stack_limit(), ppc64_rma_size);
622 
623 	for_each_possible_cpu(i) {
624 		struct thread_info *ti;
625 		ti = __va(memblock_alloc_base(THREAD_SIZE, THREAD_SIZE, limit));
626 		klp_init_thread_info(ti);
627 		paca[i].emergency_sp = (void *)ti + THREAD_SIZE;
628 
629 #ifdef CONFIG_PPC_BOOK3S_64
630 		/* emergency stack for machine check exception handling. */
631 		ti = __va(memblock_alloc_base(THREAD_SIZE, THREAD_SIZE, limit));
632 		klp_init_thread_info(ti);
633 		paca[i].mc_emergency_sp = (void *)ti + THREAD_SIZE;
634 #endif
635 	}
636 }
637 
638 #ifdef CONFIG_SMP
639 #define PCPU_DYN_SIZE		()
640 
641 static void * __init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align)
642 {
643 	return __alloc_bootmem_node(NODE_DATA(cpu_to_node(cpu)), size, align,
644 				    __pa(MAX_DMA_ADDRESS));
645 }
646 
647 static void __init pcpu_fc_free(void *ptr, size_t size)
648 {
649 	free_bootmem(__pa(ptr), size);
650 }
651 
652 static int pcpu_cpu_distance(unsigned int from, unsigned int to)
653 {
654 	if (cpu_to_node(from) == cpu_to_node(to))
655 		return LOCAL_DISTANCE;
656 	else
657 		return REMOTE_DISTANCE;
658 }
659 
660 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
661 EXPORT_SYMBOL(__per_cpu_offset);
662 
663 void __init setup_per_cpu_areas(void)
664 {
665 	const size_t dyn_size = PERCPU_MODULE_RESERVE + PERCPU_DYNAMIC_RESERVE;
666 	size_t atom_size;
667 	unsigned long delta;
668 	unsigned int cpu;
669 	int rc;
670 
671 	/*
672 	 * Linear mapping is one of 4K, 1M and 16M.  For 4K, no need
673 	 * to group units.  For larger mappings, use 1M atom which
674 	 * should be large enough to contain a number of units.
675 	 */
676 	if (mmu_linear_psize == MMU_PAGE_4K)
677 		atom_size = PAGE_SIZE;
678 	else
679 		atom_size = 1 << 20;
680 
681 	rc = pcpu_embed_first_chunk(0, dyn_size, atom_size, pcpu_cpu_distance,
682 				    pcpu_fc_alloc, pcpu_fc_free);
683 	if (rc < 0)
684 		panic("cannot initialize percpu area (err=%d)", rc);
685 
686 	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
687 	for_each_possible_cpu(cpu) {
688                 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
689 		paca[cpu].data_offset = __per_cpu_offset[cpu];
690 	}
691 }
692 #endif
693 
694 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
695 unsigned long memory_block_size_bytes(void)
696 {
697 	if (ppc_md.memory_block_size)
698 		return ppc_md.memory_block_size();
699 
700 	return MIN_MEMORY_BLOCK_SIZE;
701 }
702 #endif
703 
704 #if defined(CONFIG_PPC_INDIRECT_PIO) || defined(CONFIG_PPC_INDIRECT_MMIO)
705 struct ppc_pci_io ppc_pci_io;
706 EXPORT_SYMBOL(ppc_pci_io);
707 #endif
708 
709 #ifdef CONFIG_HARDLOCKUP_DETECTOR
710 u64 hw_nmi_get_sample_period(int watchdog_thresh)
711 {
712 	return ppc_proc_freq * watchdog_thresh;
713 }
714 
715 /*
716  * The hardlockup detector breaks PMU event based branches and is likely
717  * to get false positives in KVM guests, so disable it by default.
718  */
719 static int __init disable_hardlockup_detector(void)
720 {
721 	hardlockup_detector_disable();
722 
723 	return 0;
724 }
725 early_initcall(disable_hardlockup_detector);
726 #endif
727