xref: /linux/arch/powerpc/kernel/prom.c (revision 4e0ae876f77bc01a7e77724dea57b4b82bd53244)
1 /*
2  * Procedures for creating, accessing and interpreting the device tree.
3  *
4  * Paul Mackerras	August 1996.
5  * Copyright (C) 1996-2005 Paul Mackerras.
6  *
7  *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
8  *    {engebret|bergner}@us.ibm.com
9  *
10  *      This program is free software; you can redistribute it and/or
11  *      modify it under the terms of the GNU General Public License
12  *      as published by the Free Software Foundation; either version
13  *      2 of the License, or (at your option) any later version.
14  */
15 
16 #undef DEBUG
17 
18 #include <stdarg.h>
19 #include <linux/kernel.h>
20 #include <linux/string.h>
21 #include <linux/init.h>
22 #include <linux/threads.h>
23 #include <linux/spinlock.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/delay.h>
27 #include <linux/initrd.h>
28 #include <linux/bitops.h>
29 #include <linux/export.h>
30 #include <linux/kexec.h>
31 #include <linux/irq.h>
32 #include <linux/memblock.h>
33 #include <linux/of.h>
34 #include <linux/of_fdt.h>
35 #include <linux/libfdt.h>
36 #include <linux/cpu.h>
37 
38 #include <asm/prom.h>
39 #include <asm/rtas.h>
40 #include <asm/page.h>
41 #include <asm/processor.h>
42 #include <asm/irq.h>
43 #include <asm/io.h>
44 #include <asm/kdump.h>
45 #include <asm/smp.h>
46 #include <asm/mmu.h>
47 #include <asm/paca.h>
48 #include <asm/pgtable.h>
49 #include <asm/powernv.h>
50 #include <asm/iommu.h>
51 #include <asm/btext.h>
52 #include <asm/sections.h>
53 #include <asm/machdep.h>
54 #include <asm/pci-bridge.h>
55 #include <asm/kexec.h>
56 #include <asm/opal.h>
57 #include <asm/fadump.h>
58 #include <asm/epapr_hcalls.h>
59 #include <asm/firmware.h>
60 #include <asm/dt_cpu_ftrs.h>
61 #include <asm/drmem.h>
62 
63 #include <mm/mmu_decl.h>
64 
65 #ifdef DEBUG
66 #define DBG(fmt...) printk(KERN_ERR fmt)
67 #else
68 #define DBG(fmt...)
69 #endif
70 
71 #ifdef CONFIG_PPC64
72 int __initdata iommu_is_off;
73 int __initdata iommu_force_on;
74 unsigned long tce_alloc_start, tce_alloc_end;
75 u64 ppc64_rma_size;
76 #endif
77 static phys_addr_t first_memblock_size;
78 static int __initdata boot_cpu_count;
79 
80 static int __init early_parse_mem(char *p)
81 {
82 	if (!p)
83 		return 1;
84 
85 	memory_limit = PAGE_ALIGN(memparse(p, &p));
86 	DBG("memory limit = 0x%llx\n", memory_limit);
87 
88 	return 0;
89 }
90 early_param("mem", early_parse_mem);
91 
92 /*
93  * overlaps_initrd - check for overlap with page aligned extension of
94  * initrd.
95  */
96 static inline int overlaps_initrd(unsigned long start, unsigned long size)
97 {
98 #ifdef CONFIG_BLK_DEV_INITRD
99 	if (!initrd_start)
100 		return 0;
101 
102 	return	(start + size) > _ALIGN_DOWN(initrd_start, PAGE_SIZE) &&
103 			start <= _ALIGN_UP(initrd_end, PAGE_SIZE);
104 #else
105 	return 0;
106 #endif
107 }
108 
109 /**
110  * move_device_tree - move tree to an unused area, if needed.
111  *
112  * The device tree may be allocated beyond our memory limit, or inside the
113  * crash kernel region for kdump, or within the page aligned range of initrd.
114  * If so, move it out of the way.
115  */
116 static void __init move_device_tree(void)
117 {
118 	unsigned long start, size;
119 	void *p;
120 
121 	DBG("-> move_device_tree\n");
122 
123 	start = __pa(initial_boot_params);
124 	size = fdt_totalsize(initial_boot_params);
125 
126 	if ((memory_limit && (start + size) > PHYSICAL_START + memory_limit) ||
127 	    !memblock_is_memory(start + size - 1) ||
128 	    overlaps_crashkernel(start, size) || overlaps_initrd(start, size)) {
129 		p = memblock_alloc_raw(size, PAGE_SIZE);
130 		if (!p)
131 			panic("Failed to allocate %lu bytes to move device tree\n",
132 			      size);
133 		memcpy(p, initial_boot_params, size);
134 		initial_boot_params = p;
135 		DBG("Moved device tree to 0x%px\n", p);
136 	}
137 
138 	DBG("<- move_device_tree\n");
139 }
140 
141 /*
142  * ibm,pa-features is a per-cpu property that contains a string of
143  * attribute descriptors, each of which has a 2 byte header plus up
144  * to 254 bytes worth of processor attribute bits.  First header
145  * byte specifies the number of bytes following the header.
146  * Second header byte is an "attribute-specifier" type, of which
147  * zero is the only currently-defined value.
148  * Implementation:  Pass in the byte and bit offset for the feature
149  * that we are interested in.  The function will return -1 if the
150  * pa-features property is missing, or a 1/0 to indicate if the feature
151  * is supported/not supported.  Note that the bit numbers are
152  * big-endian to match the definition in PAPR.
153  */
154 static struct ibm_pa_feature {
155 	unsigned long	cpu_features;	/* CPU_FTR_xxx bit */
156 	unsigned long	mmu_features;	/* MMU_FTR_xxx bit */
157 	unsigned int	cpu_user_ftrs;	/* PPC_FEATURE_xxx bit */
158 	unsigned int	cpu_user_ftrs2;	/* PPC_FEATURE2_xxx bit */
159 	unsigned char	pabyte;		/* byte number in ibm,pa-features */
160 	unsigned char	pabit;		/* bit number (big-endian) */
161 	unsigned char	invert;		/* if 1, pa bit set => clear feature */
162 } ibm_pa_features[] __initdata = {
163 	{ .pabyte = 0,  .pabit = 0, .cpu_user_ftrs = PPC_FEATURE_HAS_MMU },
164 	{ .pabyte = 0,  .pabit = 1, .cpu_user_ftrs = PPC_FEATURE_HAS_FPU },
165 	{ .pabyte = 0,  .pabit = 3, .cpu_features  = CPU_FTR_CTRL },
166 	{ .pabyte = 0,  .pabit = 6, .cpu_features  = CPU_FTR_NOEXECUTE },
167 	{ .pabyte = 1,  .pabit = 2, .mmu_features  = MMU_FTR_CI_LARGE_PAGE },
168 #ifdef CONFIG_PPC_RADIX_MMU
169 	{ .pabyte = 40, .pabit = 0, .mmu_features  = MMU_FTR_TYPE_RADIX },
170 #endif
171 	{ .pabyte = 1,  .pabit = 1, .invert = 1, .cpu_features = CPU_FTR_NODSISRALIGN },
172 	{ .pabyte = 5,  .pabit = 0, .cpu_features  = CPU_FTR_REAL_LE,
173 				    .cpu_user_ftrs = PPC_FEATURE_TRUE_LE },
174 	/*
175 	 * If the kernel doesn't support TM (ie CONFIG_PPC_TRANSACTIONAL_MEM=n),
176 	 * we don't want to turn on TM here, so we use the *_COMP versions
177 	 * which are 0 if the kernel doesn't support TM.
178 	 */
179 	{ .pabyte = 22, .pabit = 0, .cpu_features = CPU_FTR_TM_COMP,
180 	  .cpu_user_ftrs2 = PPC_FEATURE2_HTM_COMP | PPC_FEATURE2_HTM_NOSC_COMP },
181 };
182 
183 static void __init scan_features(unsigned long node, const unsigned char *ftrs,
184 				 unsigned long tablelen,
185 				 struct ibm_pa_feature *fp,
186 				 unsigned long ft_size)
187 {
188 	unsigned long i, len, bit;
189 
190 	/* find descriptor with type == 0 */
191 	for (;;) {
192 		if (tablelen < 3)
193 			return;
194 		len = 2 + ftrs[0];
195 		if (tablelen < len)
196 			return;		/* descriptor 0 not found */
197 		if (ftrs[1] == 0)
198 			break;
199 		tablelen -= len;
200 		ftrs += len;
201 	}
202 
203 	/* loop over bits we know about */
204 	for (i = 0; i < ft_size; ++i, ++fp) {
205 		if (fp->pabyte >= ftrs[0])
206 			continue;
207 		bit = (ftrs[2 + fp->pabyte] >> (7 - fp->pabit)) & 1;
208 		if (bit ^ fp->invert) {
209 			cur_cpu_spec->cpu_features |= fp->cpu_features;
210 			cur_cpu_spec->cpu_user_features |= fp->cpu_user_ftrs;
211 			cur_cpu_spec->cpu_user_features2 |= fp->cpu_user_ftrs2;
212 			cur_cpu_spec->mmu_features |= fp->mmu_features;
213 		} else {
214 			cur_cpu_spec->cpu_features &= ~fp->cpu_features;
215 			cur_cpu_spec->cpu_user_features &= ~fp->cpu_user_ftrs;
216 			cur_cpu_spec->cpu_user_features2 &= ~fp->cpu_user_ftrs2;
217 			cur_cpu_spec->mmu_features &= ~fp->mmu_features;
218 		}
219 	}
220 }
221 
222 static void __init check_cpu_pa_features(unsigned long node)
223 {
224 	const unsigned char *pa_ftrs;
225 	int tablelen;
226 
227 	pa_ftrs = of_get_flat_dt_prop(node, "ibm,pa-features", &tablelen);
228 	if (pa_ftrs == NULL)
229 		return;
230 
231 	scan_features(node, pa_ftrs, tablelen,
232 		      ibm_pa_features, ARRAY_SIZE(ibm_pa_features));
233 }
234 
235 #ifdef CONFIG_PPC_BOOK3S_64
236 static void __init init_mmu_slb_size(unsigned long node)
237 {
238 	const __be32 *slb_size_ptr;
239 
240 	slb_size_ptr = of_get_flat_dt_prop(node, "slb-size", NULL) ? :
241 			of_get_flat_dt_prop(node, "ibm,slb-size", NULL);
242 
243 	if (slb_size_ptr)
244 		mmu_slb_size = be32_to_cpup(slb_size_ptr);
245 }
246 #else
247 #define init_mmu_slb_size(node) do { } while(0)
248 #endif
249 
250 static struct feature_property {
251 	const char *name;
252 	u32 min_value;
253 	unsigned long cpu_feature;
254 	unsigned long cpu_user_ftr;
255 } feature_properties[] __initdata = {
256 #ifdef CONFIG_ALTIVEC
257 	{"altivec", 0, CPU_FTR_ALTIVEC, PPC_FEATURE_HAS_ALTIVEC},
258 	{"ibm,vmx", 1, CPU_FTR_ALTIVEC, PPC_FEATURE_HAS_ALTIVEC},
259 #endif /* CONFIG_ALTIVEC */
260 #ifdef CONFIG_VSX
261 	/* Yes, this _really_ is ibm,vmx == 2 to enable VSX */
262 	{"ibm,vmx", 2, CPU_FTR_VSX, PPC_FEATURE_HAS_VSX},
263 #endif /* CONFIG_VSX */
264 #ifdef CONFIG_PPC64
265 	{"ibm,dfp", 1, 0, PPC_FEATURE_HAS_DFP},
266 	{"ibm,purr", 1, CPU_FTR_PURR, 0},
267 	{"ibm,spurr", 1, CPU_FTR_SPURR, 0},
268 #endif /* CONFIG_PPC64 */
269 };
270 
271 #if defined(CONFIG_44x) && defined(CONFIG_PPC_FPU)
272 static inline void identical_pvr_fixup(unsigned long node)
273 {
274 	unsigned int pvr;
275 	const char *model = of_get_flat_dt_prop(node, "model", NULL);
276 
277 	/*
278 	 * Since 440GR(x)/440EP(x) processors have the same pvr,
279 	 * we check the node path and set bit 28 in the cur_cpu_spec
280 	 * pvr for EP(x) processor version. This bit is always 0 in
281 	 * the "real" pvr. Then we call identify_cpu again with
282 	 * the new logical pvr to enable FPU support.
283 	 */
284 	if (model && strstr(model, "440EP")) {
285 		pvr = cur_cpu_spec->pvr_value | 0x8;
286 		identify_cpu(0, pvr);
287 		DBG("Using logical pvr %x for %s\n", pvr, model);
288 	}
289 }
290 #else
291 #define identical_pvr_fixup(node) do { } while(0)
292 #endif
293 
294 static void __init check_cpu_feature_properties(unsigned long node)
295 {
296 	int i;
297 	struct feature_property *fp = feature_properties;
298 	const __be32 *prop;
299 
300 	for (i = 0; i < (int)ARRAY_SIZE(feature_properties); ++i, ++fp) {
301 		prop = of_get_flat_dt_prop(node, fp->name, NULL);
302 		if (prop && be32_to_cpup(prop) >= fp->min_value) {
303 			cur_cpu_spec->cpu_features |= fp->cpu_feature;
304 			cur_cpu_spec->cpu_user_features |= fp->cpu_user_ftr;
305 		}
306 	}
307 }
308 
309 static int __init early_init_dt_scan_cpus(unsigned long node,
310 					  const char *uname, int depth,
311 					  void *data)
312 {
313 	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
314 	const __be32 *prop;
315 	const __be32 *intserv;
316 	int i, nthreads;
317 	int len;
318 	int found = -1;
319 	int found_thread = 0;
320 
321 	/* We are scanning "cpu" nodes only */
322 	if (type == NULL || strcmp(type, "cpu") != 0)
323 		return 0;
324 
325 	/* Get physical cpuid */
326 	intserv = of_get_flat_dt_prop(node, "ibm,ppc-interrupt-server#s", &len);
327 	if (!intserv)
328 		intserv = of_get_flat_dt_prop(node, "reg", &len);
329 
330 	nthreads = len / sizeof(int);
331 
332 	/*
333 	 * Now see if any of these threads match our boot cpu.
334 	 * NOTE: This must match the parsing done in smp_setup_cpu_maps.
335 	 */
336 	for (i = 0; i < nthreads; i++) {
337 		if (be32_to_cpu(intserv[i]) ==
338 			fdt_boot_cpuid_phys(initial_boot_params)) {
339 			found = boot_cpu_count;
340 			found_thread = i;
341 		}
342 #ifdef CONFIG_SMP
343 		/* logical cpu id is always 0 on UP kernels */
344 		boot_cpu_count++;
345 #endif
346 	}
347 
348 	/* Not the boot CPU */
349 	if (found < 0)
350 		return 0;
351 
352 	DBG("boot cpu: logical %d physical %d\n", found,
353 	    be32_to_cpu(intserv[found_thread]));
354 	boot_cpuid = found;
355 
356 	/*
357 	 * PAPR defines "logical" PVR values for cpus that
358 	 * meet various levels of the architecture:
359 	 * 0x0f000001	Architecture version 2.04
360 	 * 0x0f000002	Architecture version 2.05
361 	 * If the cpu-version property in the cpu node contains
362 	 * such a value, we call identify_cpu again with the
363 	 * logical PVR value in order to use the cpu feature
364 	 * bits appropriate for the architecture level.
365 	 *
366 	 * A POWER6 partition in "POWER6 architected" mode
367 	 * uses the 0x0f000002 PVR value; in POWER5+ mode
368 	 * it uses 0x0f000001.
369 	 *
370 	 * If we're using device tree CPU feature discovery then we don't
371 	 * support the cpu-version property, and it's the responsibility of the
372 	 * firmware/hypervisor to provide the correct feature set for the
373 	 * architecture level via the ibm,powerpc-cpu-features binding.
374 	 */
375 	if (!dt_cpu_ftrs_in_use()) {
376 		prop = of_get_flat_dt_prop(node, "cpu-version", NULL);
377 		if (prop && (be32_to_cpup(prop) & 0xff000000) == 0x0f000000)
378 			identify_cpu(0, be32_to_cpup(prop));
379 
380 		check_cpu_feature_properties(node);
381 		check_cpu_pa_features(node);
382 	}
383 
384 	identical_pvr_fixup(node);
385 	init_mmu_slb_size(node);
386 
387 #ifdef CONFIG_PPC64
388 	if (nthreads == 1)
389 		cur_cpu_spec->cpu_features &= ~CPU_FTR_SMT;
390 	else if (!dt_cpu_ftrs_in_use())
391 		cur_cpu_spec->cpu_features |= CPU_FTR_SMT;
392 	allocate_paca(boot_cpuid);
393 #endif
394 	set_hard_smp_processor_id(found, be32_to_cpu(intserv[found_thread]));
395 
396 	return 0;
397 }
398 
399 static int __init early_init_dt_scan_chosen_ppc(unsigned long node,
400 						const char *uname,
401 						int depth, void *data)
402 {
403 	const unsigned long *lprop; /* All these set by kernel, so no need to convert endian */
404 
405 	/* Use common scan routine to determine if this is the chosen node */
406 	if (early_init_dt_scan_chosen(node, uname, depth, data) == 0)
407 		return 0;
408 
409 #ifdef CONFIG_PPC64
410 	/* check if iommu is forced on or off */
411 	if (of_get_flat_dt_prop(node, "linux,iommu-off", NULL) != NULL)
412 		iommu_is_off = 1;
413 	if (of_get_flat_dt_prop(node, "linux,iommu-force-on", NULL) != NULL)
414 		iommu_force_on = 1;
415 #endif
416 
417 	/* mem=x on the command line is the preferred mechanism */
418 	lprop = of_get_flat_dt_prop(node, "linux,memory-limit", NULL);
419 	if (lprop)
420 		memory_limit = *lprop;
421 
422 #ifdef CONFIG_PPC64
423 	lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-start", NULL);
424 	if (lprop)
425 		tce_alloc_start = *lprop;
426 	lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-end", NULL);
427 	if (lprop)
428 		tce_alloc_end = *lprop;
429 #endif
430 
431 #ifdef CONFIG_KEXEC_CORE
432 	lprop = of_get_flat_dt_prop(node, "linux,crashkernel-base", NULL);
433 	if (lprop)
434 		crashk_res.start = *lprop;
435 
436 	lprop = of_get_flat_dt_prop(node, "linux,crashkernel-size", NULL);
437 	if (lprop)
438 		crashk_res.end = crashk_res.start + *lprop - 1;
439 #endif
440 
441 	/* break now */
442 	return 1;
443 }
444 
445 /*
446  * Compare the range against max mem limit and update
447  * size if it cross the limit.
448  */
449 
450 #ifdef CONFIG_SPARSEMEM
451 static bool validate_mem_limit(u64 base, u64 *size)
452 {
453 	u64 max_mem = 1UL << (MAX_PHYSMEM_BITS);
454 
455 	if (base >= max_mem)
456 		return false;
457 	if ((base + *size) > max_mem)
458 		*size = max_mem - base;
459 	return true;
460 }
461 #else
462 static bool validate_mem_limit(u64 base, u64 *size)
463 {
464 	return true;
465 }
466 #endif
467 
468 #ifdef CONFIG_PPC_PSERIES
469 /*
470  * Interpret the ibm dynamic reconfiguration memory LMBs.
471  * This contains a list of memory blocks along with NUMA affinity
472  * information.
473  */
474 static void __init early_init_drmem_lmb(struct drmem_lmb *lmb,
475 					const __be32 **usm)
476 {
477 	u64 base, size;
478 	int is_kexec_kdump = 0, rngs;
479 
480 	base = lmb->base_addr;
481 	size = drmem_lmb_size();
482 	rngs = 1;
483 
484 	/*
485 	 * Skip this block if the reserved bit is set in flags
486 	 * or if the block is not assigned to this partition.
487 	 */
488 	if ((lmb->flags & DRCONF_MEM_RESERVED) ||
489 	    !(lmb->flags & DRCONF_MEM_ASSIGNED))
490 		return;
491 
492 	if (*usm)
493 		is_kexec_kdump = 1;
494 
495 	if (is_kexec_kdump) {
496 		/*
497 		 * For each memblock in ibm,dynamic-memory, a
498 		 * corresponding entry in linux,drconf-usable-memory
499 		 * property contains a counter 'p' followed by 'p'
500 		 * (base, size) duple. Now read the counter from
501 		 * linux,drconf-usable-memory property
502 		 */
503 		rngs = dt_mem_next_cell(dt_root_size_cells, usm);
504 		if (!rngs) /* there are no (base, size) duple */
505 			return;
506 	}
507 
508 	do {
509 		if (is_kexec_kdump) {
510 			base = dt_mem_next_cell(dt_root_addr_cells, usm);
511 			size = dt_mem_next_cell(dt_root_size_cells, usm);
512 		}
513 
514 		if (iommu_is_off) {
515 			if (base >= 0x80000000ul)
516 				continue;
517 			if ((base + size) > 0x80000000ul)
518 				size = 0x80000000ul - base;
519 		}
520 
521 		DBG("Adding: %llx -> %llx\n", base, size);
522 		if (validate_mem_limit(base, &size))
523 			memblock_add(base, size);
524 	} while (--rngs);
525 }
526 #endif /* CONFIG_PPC_PSERIES */
527 
528 static int __init early_init_dt_scan_memory_ppc(unsigned long node,
529 						const char *uname,
530 						int depth, void *data)
531 {
532 #ifdef CONFIG_PPC_PSERIES
533 	if (depth == 1 &&
534 	    strcmp(uname, "ibm,dynamic-reconfiguration-memory") == 0) {
535 		walk_drmem_lmbs_early(node, early_init_drmem_lmb);
536 		return 0;
537 	}
538 #endif
539 
540 	return early_init_dt_scan_memory(node, uname, depth, data);
541 }
542 
543 /*
544  * For a relocatable kernel, we need to get the memstart_addr first,
545  * then use it to calculate the virtual kernel start address. This has
546  * to happen at a very early stage (before machine_init). In this case,
547  * we just want to get the memstart_address and would not like to mess the
548  * memblock at this stage. So introduce a variable to skip the memblock_add()
549  * for this reason.
550  */
551 #ifdef CONFIG_RELOCATABLE
552 static int add_mem_to_memblock = 1;
553 #else
554 #define add_mem_to_memblock 1
555 #endif
556 
557 void __init early_init_dt_add_memory_arch(u64 base, u64 size)
558 {
559 #ifdef CONFIG_PPC64
560 	if (iommu_is_off) {
561 		if (base >= 0x80000000ul)
562 			return;
563 		if ((base + size) > 0x80000000ul)
564 			size = 0x80000000ul - base;
565 	}
566 #endif
567 	/* Keep track of the beginning of memory -and- the size of
568 	 * the very first block in the device-tree as it represents
569 	 * the RMA on ppc64 server
570 	 */
571 	if (base < memstart_addr) {
572 		memstart_addr = base;
573 		first_memblock_size = size;
574 	}
575 
576 	/* Add the chunk to the MEMBLOCK list */
577 	if (add_mem_to_memblock) {
578 		if (validate_mem_limit(base, &size))
579 			memblock_add(base, size);
580 	}
581 }
582 
583 static void __init early_reserve_mem_dt(void)
584 {
585 	unsigned long i, dt_root;
586 	int len;
587 	const __be32 *prop;
588 
589 	early_init_fdt_reserve_self();
590 	early_init_fdt_scan_reserved_mem();
591 
592 	dt_root = of_get_flat_dt_root();
593 
594 	prop = of_get_flat_dt_prop(dt_root, "reserved-ranges", &len);
595 
596 	if (!prop)
597 		return;
598 
599 	DBG("Found new-style reserved-ranges\n");
600 
601 	/* Each reserved range is an (address,size) pair, 2 cells each,
602 	 * totalling 4 cells per range. */
603 	for (i = 0; i < len / (sizeof(*prop) * 4); i++) {
604 		u64 base, size;
605 
606 		base = of_read_number(prop + (i * 4) + 0, 2);
607 		size = of_read_number(prop + (i * 4) + 2, 2);
608 
609 		if (size) {
610 			DBG("reserving: %llx -> %llx\n", base, size);
611 			memblock_reserve(base, size);
612 		}
613 	}
614 }
615 
616 static void __init early_reserve_mem(void)
617 {
618 	__be64 *reserve_map;
619 
620 	reserve_map = (__be64 *)(((unsigned long)initial_boot_params) +
621 			fdt_off_mem_rsvmap(initial_boot_params));
622 
623 	/* Look for the new "reserved-regions" property in the DT */
624 	early_reserve_mem_dt();
625 
626 #ifdef CONFIG_BLK_DEV_INITRD
627 	/* Then reserve the initrd, if any */
628 	if (initrd_start && (initrd_end > initrd_start)) {
629 		memblock_reserve(_ALIGN_DOWN(__pa(initrd_start), PAGE_SIZE),
630 			_ALIGN_UP(initrd_end, PAGE_SIZE) -
631 			_ALIGN_DOWN(initrd_start, PAGE_SIZE));
632 	}
633 #endif /* CONFIG_BLK_DEV_INITRD */
634 
635 #ifdef CONFIG_PPC32
636 	/*
637 	 * Handle the case where we might be booting from an old kexec
638 	 * image that setup the mem_rsvmap as pairs of 32-bit values
639 	 */
640 	if (be64_to_cpup(reserve_map) > 0xffffffffull) {
641 		u32 base_32, size_32;
642 		__be32 *reserve_map_32 = (__be32 *)reserve_map;
643 
644 		DBG("Found old 32-bit reserve map\n");
645 
646 		while (1) {
647 			base_32 = be32_to_cpup(reserve_map_32++);
648 			size_32 = be32_to_cpup(reserve_map_32++);
649 			if (size_32 == 0)
650 				break;
651 			DBG("reserving: %x -> %x\n", base_32, size_32);
652 			memblock_reserve(base_32, size_32);
653 		}
654 		return;
655 	}
656 #endif
657 }
658 
659 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
660 static bool tm_disabled __initdata;
661 
662 static int __init parse_ppc_tm(char *str)
663 {
664 	bool res;
665 
666 	if (kstrtobool(str, &res))
667 		return -EINVAL;
668 
669 	tm_disabled = !res;
670 
671 	return 0;
672 }
673 early_param("ppc_tm", parse_ppc_tm);
674 
675 static void __init tm_init(void)
676 {
677 	if (tm_disabled) {
678 		pr_info("Disabling hardware transactional memory (HTM)\n");
679 		cur_cpu_spec->cpu_user_features2 &=
680 			~(PPC_FEATURE2_HTM_NOSC | PPC_FEATURE2_HTM);
681 		cur_cpu_spec->cpu_features &= ~CPU_FTR_TM;
682 		return;
683 	}
684 
685 	pnv_tm_init();
686 }
687 #else
688 static void tm_init(void) { }
689 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
690 
691 void __init early_init_devtree(void *params)
692 {
693 	phys_addr_t limit;
694 
695 	DBG(" -> early_init_devtree(%px)\n", params);
696 
697 	/* Too early to BUG_ON(), do it by hand */
698 	if (!early_init_dt_verify(params))
699 		panic("BUG: Failed verifying flat device tree, bad version?");
700 
701 #ifdef CONFIG_PPC_RTAS
702 	/* Some machines might need RTAS info for debugging, grab it now. */
703 	of_scan_flat_dt(early_init_dt_scan_rtas, NULL);
704 #endif
705 
706 #ifdef CONFIG_PPC_POWERNV
707 	/* Some machines might need OPAL info for debugging, grab it now. */
708 	of_scan_flat_dt(early_init_dt_scan_opal, NULL);
709 #endif
710 
711 #ifdef CONFIG_FA_DUMP
712 	/* scan tree to see if dump is active during last boot */
713 	of_scan_flat_dt(early_init_dt_scan_fw_dump, NULL);
714 #endif
715 
716 	/* Retrieve various informations from the /chosen node of the
717 	 * device-tree, including the platform type, initrd location and
718 	 * size, TCE reserve, and more ...
719 	 */
720 	of_scan_flat_dt(early_init_dt_scan_chosen_ppc, boot_command_line);
721 
722 	/* Scan memory nodes and rebuild MEMBLOCKs */
723 	of_scan_flat_dt(early_init_dt_scan_root, NULL);
724 	of_scan_flat_dt(early_init_dt_scan_memory_ppc, NULL);
725 
726 	parse_early_param();
727 
728 	/* make sure we've parsed cmdline for mem= before this */
729 	if (memory_limit)
730 		first_memblock_size = min_t(u64, first_memblock_size, memory_limit);
731 	setup_initial_memory_limit(memstart_addr, first_memblock_size);
732 	/* Reserve MEMBLOCK regions used by kernel, initrd, dt, etc... */
733 	memblock_reserve(PHYSICAL_START, __pa(klimit) - PHYSICAL_START);
734 	/* If relocatable, reserve first 32k for interrupt vectors etc. */
735 	if (PHYSICAL_START > MEMORY_START)
736 		memblock_reserve(MEMORY_START, 0x8000);
737 	reserve_kdump_trampoline();
738 #ifdef CONFIG_FA_DUMP
739 	/*
740 	 * If we fail to reserve memory for firmware-assisted dump then
741 	 * fallback to kexec based kdump.
742 	 */
743 	if (fadump_reserve_mem() == 0)
744 #endif
745 		reserve_crashkernel();
746 	early_reserve_mem();
747 
748 	/* Ensure that total memory size is page-aligned. */
749 	limit = ALIGN(memory_limit ?: memblock_phys_mem_size(), PAGE_SIZE);
750 	memblock_enforce_memory_limit(limit);
751 
752 	memblock_allow_resize();
753 	memblock_dump_all();
754 
755 	DBG("Phys. mem: %llx\n", (unsigned long long)memblock_phys_mem_size());
756 
757 	/* We may need to relocate the flat tree, do it now.
758 	 * FIXME .. and the initrd too? */
759 	move_device_tree();
760 
761 	allocate_paca_ptrs();
762 
763 	DBG("Scanning CPUs ...\n");
764 
765 	dt_cpu_ftrs_scan();
766 
767 	/* Retrieve CPU related informations from the flat tree
768 	 * (altivec support, boot CPU ID, ...)
769 	 */
770 	of_scan_flat_dt(early_init_dt_scan_cpus, NULL);
771 	if (boot_cpuid < 0) {
772 		printk("Failed to identify boot CPU !\n");
773 		BUG();
774 	}
775 
776 #if defined(CONFIG_SMP) && defined(CONFIG_PPC64)
777 	/* We'll later wait for secondaries to check in; there are
778 	 * NCPUS-1 non-boot CPUs  :-)
779 	 */
780 	spinning_secondaries = boot_cpu_count - 1;
781 #endif
782 
783 	mmu_early_init_devtree();
784 
785 #ifdef CONFIG_PPC_POWERNV
786 	/* Scan and build the list of machine check recoverable ranges */
787 	of_scan_flat_dt(early_init_dt_scan_recoverable_ranges, NULL);
788 #endif
789 	epapr_paravirt_early_init();
790 
791 	/* Now try to figure out if we are running on LPAR and so on */
792 	pseries_probe_fw_features();
793 
794 #ifdef CONFIG_PPC_PS3
795 	/* Identify PS3 firmware */
796 	if (of_flat_dt_is_compatible(of_get_flat_dt_root(), "sony,ps3"))
797 		powerpc_firmware_features |= FW_FEATURE_PS3_POSSIBLE;
798 #endif
799 
800 	tm_init();
801 
802 	DBG(" <- early_init_devtree()\n");
803 }
804 
805 #ifdef CONFIG_RELOCATABLE
806 /*
807  * This function run before early_init_devtree, so we have to init
808  * initial_boot_params.
809  */
810 void __init early_get_first_memblock_info(void *params, phys_addr_t *size)
811 {
812 	/* Setup flat device-tree pointer */
813 	initial_boot_params = params;
814 
815 	/*
816 	 * Scan the memory nodes and set add_mem_to_memblock to 0 to avoid
817 	 * mess the memblock.
818 	 */
819 	add_mem_to_memblock = 0;
820 	of_scan_flat_dt(early_init_dt_scan_root, NULL);
821 	of_scan_flat_dt(early_init_dt_scan_memory_ppc, NULL);
822 	add_mem_to_memblock = 1;
823 
824 	if (size)
825 		*size = first_memblock_size;
826 }
827 #endif
828 
829 /*******
830  *
831  * New implementation of the OF "find" APIs, return a refcounted
832  * object, call of_node_put() when done.  The device tree and list
833  * are protected by a rw_lock.
834  *
835  * Note that property management will need some locking as well,
836  * this isn't dealt with yet.
837  *
838  *******/
839 
840 /**
841  * of_get_ibm_chip_id - Returns the IBM "chip-id" of a device
842  * @np: device node of the device
843  *
844  * This looks for a property "ibm,chip-id" in the node or any
845  * of its parents and returns its content, or -1 if it cannot
846  * be found.
847  */
848 int of_get_ibm_chip_id(struct device_node *np)
849 {
850 	of_node_get(np);
851 	while (np) {
852 		u32 chip_id;
853 
854 		/*
855 		 * Skiboot may produce memory nodes that contain more than one
856 		 * cell in chip-id, we only read the first one here.
857 		 */
858 		if (!of_property_read_u32(np, "ibm,chip-id", &chip_id)) {
859 			of_node_put(np);
860 			return chip_id;
861 		}
862 
863 		np = of_get_next_parent(np);
864 	}
865 	return -1;
866 }
867 EXPORT_SYMBOL(of_get_ibm_chip_id);
868 
869 /**
870  * cpu_to_chip_id - Return the cpus chip-id
871  * @cpu: The logical cpu number.
872  *
873  * Return the value of the ibm,chip-id property corresponding to the given
874  * logical cpu number. If the chip-id can not be found, returns -1.
875  */
876 int cpu_to_chip_id(int cpu)
877 {
878 	struct device_node *np;
879 
880 	np = of_get_cpu_node(cpu, NULL);
881 	if (!np)
882 		return -1;
883 
884 	of_node_put(np);
885 	return of_get_ibm_chip_id(np);
886 }
887 EXPORT_SYMBOL(cpu_to_chip_id);
888 
889 bool arch_match_cpu_phys_id(int cpu, u64 phys_id)
890 {
891 #ifdef CONFIG_SMP
892 	/*
893 	 * Early firmware scanning must use this rather than
894 	 * get_hard_smp_processor_id because we don't have pacas allocated
895 	 * until memory topology is discovered.
896 	 */
897 	if (cpu_to_phys_id != NULL)
898 		return (int)phys_id == cpu_to_phys_id[cpu];
899 #endif
900 
901 	return (int)phys_id == get_hard_smp_processor_id(cpu);
902 }
903