xref: /linux/arch/powerpc/include/asm/book3s/64/pgtable.h (revision 6a61b70b43c9c4cbc7314bf6c8b5ba8b0d6e1e7b)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_POWERPC_BOOK3S_64_PGTABLE_H_
3 #define _ASM_POWERPC_BOOK3S_64_PGTABLE_H_
4 
5 #include <asm-generic/5level-fixup.h>
6 
7 #ifndef __ASSEMBLY__
8 #include <linux/mmdebug.h>
9 #include <linux/bug.h>
10 #endif
11 
12 /*
13  * Common bits between hash and Radix page table
14  */
15 #define _PAGE_BIT_SWAP_TYPE	0
16 
17 #define _PAGE_NA		0
18 #define _PAGE_RO		0
19 #define _PAGE_USER		0
20 
21 #define _PAGE_EXEC		0x00001 /* execute permission */
22 #define _PAGE_WRITE		0x00002 /* write access allowed */
23 #define _PAGE_READ		0x00004	/* read access allowed */
24 #define _PAGE_RW		(_PAGE_READ | _PAGE_WRITE)
25 #define _PAGE_RWX		(_PAGE_READ | _PAGE_WRITE | _PAGE_EXEC)
26 #define _PAGE_PRIVILEGED	0x00008 /* kernel access only */
27 #define _PAGE_SAO		0x00010 /* Strong access order */
28 #define _PAGE_NON_IDEMPOTENT	0x00020 /* non idempotent memory */
29 #define _PAGE_TOLERANT		0x00030 /* tolerant memory, cache inhibited */
30 #define _PAGE_DIRTY		0x00080 /* C: page changed */
31 #define _PAGE_ACCESSED		0x00100 /* R: page referenced */
32 /*
33  * Software bits
34  */
35 #define _RPAGE_SW0		0x2000000000000000UL
36 #define _RPAGE_SW1		0x00800
37 #define _RPAGE_SW2		0x00400
38 #define _RPAGE_SW3		0x00200
39 #define _RPAGE_RSV1		0x1000000000000000UL
40 #define _RPAGE_RSV2		0x0800000000000000UL
41 #define _RPAGE_RSV3		0x0400000000000000UL
42 #define _RPAGE_RSV4		0x0200000000000000UL
43 #define _RPAGE_RSV5		0x00040UL
44 
45 #define _PAGE_PTE		0x4000000000000000UL	/* distinguishes PTEs from pointers */
46 #define _PAGE_PRESENT		0x8000000000000000UL	/* pte contains a translation */
47 
48 /*
49  * Top and bottom bits of RPN which can be used by hash
50  * translation mode, because we expect them to be zero
51  * otherwise.
52  */
53 #define _RPAGE_RPN0		0x01000
54 #define _RPAGE_RPN1		0x02000
55 #define _RPAGE_RPN44		0x0100000000000000UL
56 #define _RPAGE_RPN43		0x0080000000000000UL
57 #define _RPAGE_RPN42		0x0040000000000000UL
58 #define _RPAGE_RPN41		0x0020000000000000UL
59 
60 /* Max physical address bit as per radix table */
61 #define _RPAGE_PA_MAX		57
62 
63 /*
64  * Max physical address bit we will use for now.
65  *
66  * This is mostly a hardware limitation and for now Power9 has
67  * a 51 bit limit.
68  *
69  * This is different from the number of physical bit required to address
70  * the last byte of memory. That is defined by MAX_PHYSMEM_BITS.
71  * MAX_PHYSMEM_BITS is a linux limitation imposed by the maximum
72  * number of sections we can support (SECTIONS_SHIFT).
73  *
74  * This is different from Radix page table limitation above and
75  * should always be less than that. The limit is done such that
76  * we can overload the bits between _RPAGE_PA_MAX and _PAGE_PA_MAX
77  * for hash linux page table specific bits.
78  *
79  * In order to be compatible with future hardware generations we keep
80  * some offsets and limit this for now to 53
81  */
82 #define _PAGE_PA_MAX		53
83 
84 #define _PAGE_SOFT_DIRTY	_RPAGE_SW3 /* software: software dirty tracking */
85 #define _PAGE_SPECIAL		_RPAGE_SW2 /* software: special page */
86 #define _PAGE_DEVMAP		_RPAGE_SW1 /* software: ZONE_DEVICE page */
87 #define __HAVE_ARCH_PTE_DEVMAP
88 
89 /*
90  * Drivers request for cache inhibited pte mapping using _PAGE_NO_CACHE
91  * Instead of fixing all of them, add an alternate define which
92  * maps CI pte mapping.
93  */
94 #define _PAGE_NO_CACHE		_PAGE_TOLERANT
95 /*
96  * We support _RPAGE_PA_MAX bit real address in pte. On the linux side
97  * we are limited by _PAGE_PA_MAX. Clear everything above _PAGE_PA_MAX
98  * and every thing below PAGE_SHIFT;
99  */
100 #define PTE_RPN_MASK	(((1UL << _PAGE_PA_MAX) - 1) & (PAGE_MASK))
101 /*
102  * set of bits not changed in pmd_modify. Even though we have hash specific bits
103  * in here, on radix we expect them to be zero.
104  */
105 #define _HPAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \
106 			 _PAGE_ACCESSED | H_PAGE_THP_HUGE | _PAGE_PTE | \
107 			 _PAGE_SOFT_DIRTY)
108 /*
109  * user access blocked by key
110  */
111 #define _PAGE_KERNEL_RW		(_PAGE_PRIVILEGED | _PAGE_RW | _PAGE_DIRTY)
112 #define _PAGE_KERNEL_RO		 (_PAGE_PRIVILEGED | _PAGE_READ)
113 #define _PAGE_KERNEL_RWX	(_PAGE_PRIVILEGED | _PAGE_DIRTY |	\
114 				 _PAGE_RW | _PAGE_EXEC)
115 /*
116  * No page size encoding in the linux PTE
117  */
118 #define _PAGE_PSIZE		0
119 /*
120  * _PAGE_CHG_MASK masks of bits that are to be preserved across
121  * pgprot changes
122  */
123 #define _PAGE_CHG_MASK	(PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \
124 			 _PAGE_ACCESSED | _PAGE_SPECIAL | _PAGE_PTE |	\
125 			 _PAGE_SOFT_DIRTY)
126 
127 #define H_PTE_PKEY  (H_PTE_PKEY_BIT0 | H_PTE_PKEY_BIT1 | H_PTE_PKEY_BIT2 | \
128 		     H_PTE_PKEY_BIT3 | H_PTE_PKEY_BIT4)
129 /*
130  * Mask of bits returned by pte_pgprot()
131  */
132 #define PAGE_PROT_BITS  (_PAGE_SAO | _PAGE_NON_IDEMPOTENT | _PAGE_TOLERANT | \
133 			 H_PAGE_4K_PFN | _PAGE_PRIVILEGED | _PAGE_ACCESSED | \
134 			 _PAGE_READ | _PAGE_WRITE |  _PAGE_DIRTY | _PAGE_EXEC | \
135 			 _PAGE_SOFT_DIRTY | H_PTE_PKEY)
136 /*
137  * We define 2 sets of base prot bits, one for basic pages (ie,
138  * cacheable kernel and user pages) and one for non cacheable
139  * pages. We always set _PAGE_COHERENT when SMP is enabled or
140  * the processor might need it for DMA coherency.
141  */
142 #define _PAGE_BASE_NC	(_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_PSIZE)
143 #define _PAGE_BASE	(_PAGE_BASE_NC)
144 
145 /* Permission masks used to generate the __P and __S table,
146  *
147  * Note:__pgprot is defined in arch/powerpc/include/asm/page.h
148  *
149  * Write permissions imply read permissions for now (we could make write-only
150  * pages on BookE but we don't bother for now). Execute permission control is
151  * possible on platforms that define _PAGE_EXEC
152  *
153  * Note due to the way vm flags are laid out, the bits are XWR
154  */
155 #define PAGE_NONE	__pgprot(_PAGE_BASE | _PAGE_PRIVILEGED)
156 #define PAGE_SHARED	__pgprot(_PAGE_BASE | _PAGE_RW)
157 #define PAGE_SHARED_X	__pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_EXEC)
158 #define PAGE_COPY	__pgprot(_PAGE_BASE | _PAGE_READ)
159 #define PAGE_COPY_X	__pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
160 #define PAGE_READONLY	__pgprot(_PAGE_BASE | _PAGE_READ)
161 #define PAGE_READONLY_X	__pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
162 
163 #define __P000	PAGE_NONE
164 #define __P001	PAGE_READONLY
165 #define __P010	PAGE_COPY
166 #define __P011	PAGE_COPY
167 #define __P100	PAGE_READONLY_X
168 #define __P101	PAGE_READONLY_X
169 #define __P110	PAGE_COPY_X
170 #define __P111	PAGE_COPY_X
171 
172 #define __S000	PAGE_NONE
173 #define __S001	PAGE_READONLY
174 #define __S010	PAGE_SHARED
175 #define __S011	PAGE_SHARED
176 #define __S100	PAGE_READONLY_X
177 #define __S101	PAGE_READONLY_X
178 #define __S110	PAGE_SHARED_X
179 #define __S111	PAGE_SHARED_X
180 
181 /* Permission masks used for kernel mappings */
182 #define PAGE_KERNEL	__pgprot(_PAGE_BASE | _PAGE_KERNEL_RW)
183 #define PAGE_KERNEL_NC	__pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | \
184 				 _PAGE_TOLERANT)
185 #define PAGE_KERNEL_NCG	__pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | \
186 				 _PAGE_NON_IDEMPOTENT)
187 #define PAGE_KERNEL_X	__pgprot(_PAGE_BASE | _PAGE_KERNEL_RWX)
188 #define PAGE_KERNEL_RO	__pgprot(_PAGE_BASE | _PAGE_KERNEL_RO)
189 #define PAGE_KERNEL_ROX	__pgprot(_PAGE_BASE | _PAGE_KERNEL_ROX)
190 
191 /*
192  * Protection used for kernel text. We want the debuggers to be able to
193  * set breakpoints anywhere, so don't write protect the kernel text
194  * on platforms where such control is possible.
195  */
196 #if defined(CONFIG_KGDB) || defined(CONFIG_XMON) || defined(CONFIG_BDI_SWITCH) || \
197 	defined(CONFIG_KPROBES) || defined(CONFIG_DYNAMIC_FTRACE)
198 #define PAGE_KERNEL_TEXT	PAGE_KERNEL_X
199 #else
200 #define PAGE_KERNEL_TEXT	PAGE_KERNEL_ROX
201 #endif
202 
203 /* Make modules code happy. We don't set RO yet */
204 #define PAGE_KERNEL_EXEC	PAGE_KERNEL_X
205 #define PAGE_AGP		(PAGE_KERNEL_NC)
206 
207 #ifndef __ASSEMBLY__
208 /*
209  * page table defines
210  */
211 extern unsigned long __pte_index_size;
212 extern unsigned long __pmd_index_size;
213 extern unsigned long __pud_index_size;
214 extern unsigned long __pgd_index_size;
215 extern unsigned long __pud_cache_index;
216 #define PTE_INDEX_SIZE  __pte_index_size
217 #define PMD_INDEX_SIZE  __pmd_index_size
218 #define PUD_INDEX_SIZE  __pud_index_size
219 #define PGD_INDEX_SIZE  __pgd_index_size
220 /* pmd table use page table fragments */
221 #define PMD_CACHE_INDEX  0
222 #define PUD_CACHE_INDEX __pud_cache_index
223 /*
224  * Because of use of pte fragments and THP, size of page table
225  * are not always derived out of index size above.
226  */
227 extern unsigned long __pte_table_size;
228 extern unsigned long __pmd_table_size;
229 extern unsigned long __pud_table_size;
230 extern unsigned long __pgd_table_size;
231 #define PTE_TABLE_SIZE	__pte_table_size
232 #define PMD_TABLE_SIZE	__pmd_table_size
233 #define PUD_TABLE_SIZE	__pud_table_size
234 #define PGD_TABLE_SIZE	__pgd_table_size
235 
236 extern unsigned long __pmd_val_bits;
237 extern unsigned long __pud_val_bits;
238 extern unsigned long __pgd_val_bits;
239 #define PMD_VAL_BITS	__pmd_val_bits
240 #define PUD_VAL_BITS	__pud_val_bits
241 #define PGD_VAL_BITS	__pgd_val_bits
242 
243 extern unsigned long __pte_frag_nr;
244 #define PTE_FRAG_NR __pte_frag_nr
245 extern unsigned long __pte_frag_size_shift;
246 #define PTE_FRAG_SIZE_SHIFT __pte_frag_size_shift
247 #define PTE_FRAG_SIZE (1UL << PTE_FRAG_SIZE_SHIFT)
248 
249 extern unsigned long __pmd_frag_nr;
250 #define PMD_FRAG_NR __pmd_frag_nr
251 extern unsigned long __pmd_frag_size_shift;
252 #define PMD_FRAG_SIZE_SHIFT __pmd_frag_size_shift
253 #define PMD_FRAG_SIZE (1UL << PMD_FRAG_SIZE_SHIFT)
254 
255 #define PTRS_PER_PTE	(1 << PTE_INDEX_SIZE)
256 #define PTRS_PER_PMD	(1 << PMD_INDEX_SIZE)
257 #define PTRS_PER_PUD	(1 << PUD_INDEX_SIZE)
258 #define PTRS_PER_PGD	(1 << PGD_INDEX_SIZE)
259 
260 /* PMD_SHIFT determines what a second-level page table entry can map */
261 #define PMD_SHIFT	(PAGE_SHIFT + PTE_INDEX_SIZE)
262 #define PMD_SIZE	(1UL << PMD_SHIFT)
263 #define PMD_MASK	(~(PMD_SIZE-1))
264 
265 /* PUD_SHIFT determines what a third-level page table entry can map */
266 #define PUD_SHIFT	(PMD_SHIFT + PMD_INDEX_SIZE)
267 #define PUD_SIZE	(1UL << PUD_SHIFT)
268 #define PUD_MASK	(~(PUD_SIZE-1))
269 
270 /* PGDIR_SHIFT determines what a fourth-level page table entry can map */
271 #define PGDIR_SHIFT	(PUD_SHIFT + PUD_INDEX_SIZE)
272 #define PGDIR_SIZE	(1UL << PGDIR_SHIFT)
273 #define PGDIR_MASK	(~(PGDIR_SIZE-1))
274 
275 /* Bits to mask out from a PMD to get to the PTE page */
276 #define PMD_MASKED_BITS		0xc0000000000000ffUL
277 /* Bits to mask out from a PUD to get to the PMD page */
278 #define PUD_MASKED_BITS		0xc0000000000000ffUL
279 /* Bits to mask out from a PGD to get to the PUD page */
280 #define PGD_MASKED_BITS		0xc0000000000000ffUL
281 
282 /*
283  * Used as an indicator for rcu callback functions
284  */
285 enum pgtable_index {
286 	PTE_INDEX = 0,
287 	PMD_INDEX,
288 	PUD_INDEX,
289 	PGD_INDEX,
290 };
291 
292 extern unsigned long __vmalloc_start;
293 extern unsigned long __vmalloc_end;
294 #define VMALLOC_START	__vmalloc_start
295 #define VMALLOC_END	__vmalloc_end
296 
297 extern unsigned long __kernel_virt_start;
298 extern unsigned long __kernel_virt_size;
299 extern unsigned long __kernel_io_start;
300 #define KERN_VIRT_START __kernel_virt_start
301 #define KERN_VIRT_SIZE  __kernel_virt_size
302 #define KERN_IO_START  __kernel_io_start
303 extern struct page *vmemmap;
304 extern unsigned long ioremap_bot;
305 extern unsigned long pci_io_base;
306 #endif /* __ASSEMBLY__ */
307 
308 #include <asm/book3s/64/hash.h>
309 #include <asm/book3s/64/radix.h>
310 
311 #ifdef CONFIG_PPC_64K_PAGES
312 #include <asm/book3s/64/pgtable-64k.h>
313 #else
314 #include <asm/book3s/64/pgtable-4k.h>
315 #endif
316 
317 #include <asm/barrier.h>
318 /*
319  * The second half of the kernel virtual space is used for IO mappings,
320  * it's itself carved into the PIO region (ISA and PHB IO space) and
321  * the ioremap space
322  *
323  *  ISA_IO_BASE = KERN_IO_START, 64K reserved area
324  *  PHB_IO_BASE = ISA_IO_BASE + 64K to ISA_IO_BASE + 2G, PHB IO spaces
325  * IOREMAP_BASE = ISA_IO_BASE + 2G to VMALLOC_START + PGTABLE_RANGE
326  */
327 #define FULL_IO_SIZE	0x80000000ul
328 #define  ISA_IO_BASE	(KERN_IO_START)
329 #define  ISA_IO_END	(KERN_IO_START + 0x10000ul)
330 #define  PHB_IO_BASE	(ISA_IO_END)
331 #define  PHB_IO_END	(KERN_IO_START + FULL_IO_SIZE)
332 #define IOREMAP_BASE	(PHB_IO_END)
333 #define IOREMAP_END	(KERN_VIRT_START + KERN_VIRT_SIZE)
334 
335 /* Advertise special mapping type for AGP */
336 #define HAVE_PAGE_AGP
337 
338 /* Advertise support for _PAGE_SPECIAL */
339 #define __HAVE_ARCH_PTE_SPECIAL
340 
341 #ifndef __ASSEMBLY__
342 
343 /*
344  * This is the default implementation of various PTE accessors, it's
345  * used in all cases except Book3S with 64K pages where we have a
346  * concept of sub-pages
347  */
348 #ifndef __real_pte
349 
350 #define __real_pte(e, p, o)		((real_pte_t){(e)})
351 #define __rpte_to_pte(r)	((r).pte)
352 #define __rpte_to_hidx(r,index)	(pte_val(__rpte_to_pte(r)) >> H_PAGE_F_GIX_SHIFT)
353 
354 #define pte_iterate_hashed_subpages(rpte, psize, va, index, shift)       \
355 	do {							         \
356 		index = 0;					         \
357 		shift = mmu_psize_defs[psize].shift;		         \
358 
359 #define pte_iterate_hashed_end() } while(0)
360 
361 /*
362  * We expect this to be called only for user addresses or kernel virtual
363  * addresses other than the linear mapping.
364  */
365 #define pte_pagesize_index(mm, addr, pte)	MMU_PAGE_4K
366 
367 #endif /* __real_pte */
368 
369 static inline unsigned long pte_update(struct mm_struct *mm, unsigned long addr,
370 				       pte_t *ptep, unsigned long clr,
371 				       unsigned long set, int huge)
372 {
373 	if (radix_enabled())
374 		return radix__pte_update(mm, addr, ptep, clr, set, huge);
375 	return hash__pte_update(mm, addr, ptep, clr, set, huge);
376 }
377 /*
378  * For hash even if we have _PAGE_ACCESSED = 0, we do a pte_update.
379  * We currently remove entries from the hashtable regardless of whether
380  * the entry was young or dirty.
381  *
382  * We should be more intelligent about this but for the moment we override
383  * these functions and force a tlb flush unconditionally
384  * For radix: H_PAGE_HASHPTE should be zero. Hence we can use the same
385  * function for both hash and radix.
386  */
387 static inline int __ptep_test_and_clear_young(struct mm_struct *mm,
388 					      unsigned long addr, pte_t *ptep)
389 {
390 	unsigned long old;
391 
392 	if ((pte_raw(*ptep) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0)
393 		return 0;
394 	old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0, 0);
395 	return (old & _PAGE_ACCESSED) != 0;
396 }
397 
398 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
399 #define ptep_test_and_clear_young(__vma, __addr, __ptep)	\
400 ({								\
401 	int __r;						\
402 	__r = __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \
403 	__r;							\
404 })
405 
406 static inline int __pte_write(pte_t pte)
407 {
408 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_WRITE));
409 }
410 
411 #ifdef CONFIG_NUMA_BALANCING
412 #define pte_savedwrite pte_savedwrite
413 static inline bool pte_savedwrite(pte_t pte)
414 {
415 	/*
416 	 * Saved write ptes are prot none ptes that doesn't have
417 	 * privileged bit sit. We mark prot none as one which has
418 	 * present and pviliged bit set and RWX cleared. To mark
419 	 * protnone which used to have _PAGE_WRITE set we clear
420 	 * the privileged bit.
421 	 */
422 	return !(pte_raw(pte) & cpu_to_be64(_PAGE_RWX | _PAGE_PRIVILEGED));
423 }
424 #else
425 #define pte_savedwrite pte_savedwrite
426 static inline bool pte_savedwrite(pte_t pte)
427 {
428 	return false;
429 }
430 #endif
431 
432 static inline int pte_write(pte_t pte)
433 {
434 	return __pte_write(pte) || pte_savedwrite(pte);
435 }
436 
437 static inline int pte_read(pte_t pte)
438 {
439 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_READ));
440 }
441 
442 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
443 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
444 				      pte_t *ptep)
445 {
446 	if (__pte_write(*ptep))
447 		pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 0);
448 	else if (unlikely(pte_savedwrite(*ptep)))
449 		pte_update(mm, addr, ptep, 0, _PAGE_PRIVILEGED, 0);
450 }
451 
452 static inline void huge_ptep_set_wrprotect(struct mm_struct *mm,
453 					   unsigned long addr, pte_t *ptep)
454 {
455 	/*
456 	 * We should not find protnone for hugetlb, but this complete the
457 	 * interface.
458 	 */
459 	if (__pte_write(*ptep))
460 		pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 1);
461 	else if (unlikely(pte_savedwrite(*ptep)))
462 		pte_update(mm, addr, ptep, 0, _PAGE_PRIVILEGED, 1);
463 }
464 
465 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
466 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
467 				       unsigned long addr, pte_t *ptep)
468 {
469 	unsigned long old = pte_update(mm, addr, ptep, ~0UL, 0, 0);
470 	return __pte(old);
471 }
472 
473 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
474 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
475 					    unsigned long addr,
476 					    pte_t *ptep, int full)
477 {
478 	if (full && radix_enabled()) {
479 		/*
480 		 * Let's skip the DD1 style pte update here. We know that
481 		 * this is a full mm pte clear and hence can be sure there is
482 		 * no parallel set_pte.
483 		 */
484 		return radix__ptep_get_and_clear_full(mm, addr, ptep, full);
485 	}
486 	return ptep_get_and_clear(mm, addr, ptep);
487 }
488 
489 
490 static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
491 			     pte_t * ptep)
492 {
493 	pte_update(mm, addr, ptep, ~0UL, 0, 0);
494 }
495 
496 static inline int pte_dirty(pte_t pte)
497 {
498 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_DIRTY));
499 }
500 
501 static inline int pte_young(pte_t pte)
502 {
503 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_ACCESSED));
504 }
505 
506 static inline int pte_special(pte_t pte)
507 {
508 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SPECIAL));
509 }
510 
511 static inline pgprot_t pte_pgprot(pte_t pte)	{ return __pgprot(pte_val(pte) & PAGE_PROT_BITS); }
512 
513 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
514 static inline bool pte_soft_dirty(pte_t pte)
515 {
516 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SOFT_DIRTY));
517 }
518 
519 static inline pte_t pte_mksoft_dirty(pte_t pte)
520 {
521 	return __pte(pte_val(pte) | _PAGE_SOFT_DIRTY);
522 }
523 
524 static inline pte_t pte_clear_soft_dirty(pte_t pte)
525 {
526 	return __pte(pte_val(pte) & ~_PAGE_SOFT_DIRTY);
527 }
528 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
529 
530 #ifdef CONFIG_NUMA_BALANCING
531 static inline int pte_protnone(pte_t pte)
532 {
533 	return (pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE | _PAGE_RWX)) ==
534 		cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE);
535 }
536 
537 #define pte_mk_savedwrite pte_mk_savedwrite
538 static inline pte_t pte_mk_savedwrite(pte_t pte)
539 {
540 	/*
541 	 * Used by Autonuma subsystem to preserve the write bit
542 	 * while marking the pte PROT_NONE. Only allow this
543 	 * on PROT_NONE pte
544 	 */
545 	VM_BUG_ON((pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_RWX | _PAGE_PRIVILEGED)) !=
546 		  cpu_to_be64(_PAGE_PRESENT | _PAGE_PRIVILEGED));
547 	return __pte(pte_val(pte) & ~_PAGE_PRIVILEGED);
548 }
549 
550 #define pte_clear_savedwrite pte_clear_savedwrite
551 static inline pte_t pte_clear_savedwrite(pte_t pte)
552 {
553 	/*
554 	 * Used by KSM subsystem to make a protnone pte readonly.
555 	 */
556 	VM_BUG_ON(!pte_protnone(pte));
557 	return __pte(pte_val(pte) | _PAGE_PRIVILEGED);
558 }
559 #else
560 #define pte_clear_savedwrite pte_clear_savedwrite
561 static inline pte_t pte_clear_savedwrite(pte_t pte)
562 {
563 	VM_WARN_ON(1);
564 	return __pte(pte_val(pte) & ~_PAGE_WRITE);
565 }
566 #endif /* CONFIG_NUMA_BALANCING */
567 
568 static inline int pte_present(pte_t pte)
569 {
570 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT));
571 }
572 
573 #ifdef CONFIG_PPC_MEM_KEYS
574 extern bool arch_pte_access_permitted(u64 pte, bool write, bool execute);
575 #else
576 static inline bool arch_pte_access_permitted(u64 pte, bool write, bool execute)
577 {
578 	return true;
579 }
580 #endif /* CONFIG_PPC_MEM_KEYS */
581 
582 #define pte_access_permitted pte_access_permitted
583 static inline bool pte_access_permitted(pte_t pte, bool write)
584 {
585 	unsigned long pteval = pte_val(pte);
586 	/* Also check for pte_user */
587 	unsigned long clear_pte_bits = _PAGE_PRIVILEGED;
588 	/*
589 	 * _PAGE_READ is needed for any access and will be
590 	 * cleared for PROT_NONE
591 	 */
592 	unsigned long need_pte_bits = _PAGE_PRESENT | _PAGE_READ;
593 
594 	if (write)
595 		need_pte_bits |= _PAGE_WRITE;
596 
597 	if ((pteval & need_pte_bits) != need_pte_bits)
598 		return false;
599 
600 	if ((pteval & clear_pte_bits) == clear_pte_bits)
601 		return false;
602 
603 	return arch_pte_access_permitted(pte_val(pte), write, 0);
604 }
605 
606 /*
607  * Conversion functions: convert a page and protection to a page entry,
608  * and a page entry and page directory to the page they refer to.
609  *
610  * Even if PTEs can be unsigned long long, a PFN is always an unsigned
611  * long for now.
612  */
613 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot)
614 {
615 	return __pte((((pte_basic_t)(pfn) << PAGE_SHIFT) & PTE_RPN_MASK) |
616 		     pgprot_val(pgprot));
617 }
618 
619 static inline unsigned long pte_pfn(pte_t pte)
620 {
621 	return (pte_val(pte) & PTE_RPN_MASK) >> PAGE_SHIFT;
622 }
623 
624 /* Generic modifiers for PTE bits */
625 static inline pte_t pte_wrprotect(pte_t pte)
626 {
627 	if (unlikely(pte_savedwrite(pte)))
628 		return pte_clear_savedwrite(pte);
629 	return __pte(pte_val(pte) & ~_PAGE_WRITE);
630 }
631 
632 static inline pte_t pte_mkclean(pte_t pte)
633 {
634 	return __pte(pte_val(pte) & ~_PAGE_DIRTY);
635 }
636 
637 static inline pte_t pte_mkold(pte_t pte)
638 {
639 	return __pte(pte_val(pte) & ~_PAGE_ACCESSED);
640 }
641 
642 static inline pte_t pte_mkwrite(pte_t pte)
643 {
644 	/*
645 	 * write implies read, hence set both
646 	 */
647 	return __pte(pte_val(pte) | _PAGE_RW);
648 }
649 
650 static inline pte_t pte_mkdirty(pte_t pte)
651 {
652 	return __pte(pte_val(pte) | _PAGE_DIRTY | _PAGE_SOFT_DIRTY);
653 }
654 
655 static inline pte_t pte_mkyoung(pte_t pte)
656 {
657 	return __pte(pte_val(pte) | _PAGE_ACCESSED);
658 }
659 
660 static inline pte_t pte_mkspecial(pte_t pte)
661 {
662 	return __pte(pte_val(pte) | _PAGE_SPECIAL);
663 }
664 
665 static inline pte_t pte_mkhuge(pte_t pte)
666 {
667 	return pte;
668 }
669 
670 static inline pte_t pte_mkdevmap(pte_t pte)
671 {
672 	return __pte(pte_val(pte) | _PAGE_SPECIAL|_PAGE_DEVMAP);
673 }
674 
675 /*
676  * This is potentially called with a pmd as the argument, in which case it's not
677  * safe to check _PAGE_DEVMAP unless we also confirm that _PAGE_PTE is set.
678  * That's because the bit we use for _PAGE_DEVMAP is not reserved for software
679  * use in page directory entries (ie. non-ptes).
680  */
681 static inline int pte_devmap(pte_t pte)
682 {
683 	u64 mask = cpu_to_be64(_PAGE_DEVMAP | _PAGE_PTE);
684 
685 	return (pte_raw(pte) & mask) == mask;
686 }
687 
688 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
689 {
690 	/* FIXME!! check whether this need to be a conditional */
691 	return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot));
692 }
693 
694 static inline bool pte_user(pte_t pte)
695 {
696 	return !(pte_raw(pte) & cpu_to_be64(_PAGE_PRIVILEGED));
697 }
698 
699 /* Encode and de-code a swap entry */
700 #define MAX_SWAPFILES_CHECK() do { \
701 	BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > SWP_TYPE_BITS); \
702 	/*							\
703 	 * Don't have overlapping bits with _PAGE_HPTEFLAGS	\
704 	 * We filter HPTEFLAGS on set_pte.			\
705 	 */							\
706 	BUILD_BUG_ON(_PAGE_HPTEFLAGS & (0x1f << _PAGE_BIT_SWAP_TYPE)); \
707 	BUILD_BUG_ON(_PAGE_HPTEFLAGS & _PAGE_SWP_SOFT_DIRTY);	\
708 	} while (0)
709 /*
710  * on pte we don't need handle RADIX_TREE_EXCEPTIONAL_SHIFT;
711  */
712 #define SWP_TYPE_BITS 5
713 #define __swp_type(x)		(((x).val >> _PAGE_BIT_SWAP_TYPE) \
714 				& ((1UL << SWP_TYPE_BITS) - 1))
715 #define __swp_offset(x)		(((x).val & PTE_RPN_MASK) >> PAGE_SHIFT)
716 #define __swp_entry(type, offset)	((swp_entry_t) { \
717 				((type) << _PAGE_BIT_SWAP_TYPE) \
718 				| (((offset) << PAGE_SHIFT) & PTE_RPN_MASK)})
719 /*
720  * swp_entry_t must be independent of pte bits. We build a swp_entry_t from
721  * swap type and offset we get from swap and convert that to pte to find a
722  * matching pte in linux page table.
723  * Clear bits not found in swap entries here.
724  */
725 #define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val((pte)) & ~_PAGE_PTE })
726 #define __swp_entry_to_pte(x)	__pte((x).val | _PAGE_PTE)
727 
728 #ifdef CONFIG_MEM_SOFT_DIRTY
729 #define _PAGE_SWP_SOFT_DIRTY   (1UL << (SWP_TYPE_BITS + _PAGE_BIT_SWAP_TYPE))
730 #else
731 #define _PAGE_SWP_SOFT_DIRTY	0UL
732 #endif /* CONFIG_MEM_SOFT_DIRTY */
733 
734 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
735 static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
736 {
737 	return __pte(pte_val(pte) | _PAGE_SWP_SOFT_DIRTY);
738 }
739 
740 static inline bool pte_swp_soft_dirty(pte_t pte)
741 {
742 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SWP_SOFT_DIRTY));
743 }
744 
745 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
746 {
747 	return __pte(pte_val(pte) & ~_PAGE_SWP_SOFT_DIRTY);
748 }
749 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
750 
751 static inline bool check_pte_access(unsigned long access, unsigned long ptev)
752 {
753 	/*
754 	 * This check for _PAGE_RWX and _PAGE_PRESENT bits
755 	 */
756 	if (access & ~ptev)
757 		return false;
758 	/*
759 	 * This check for access to privilege space
760 	 */
761 	if ((access & _PAGE_PRIVILEGED) != (ptev & _PAGE_PRIVILEGED))
762 		return false;
763 
764 	return true;
765 }
766 /*
767  * Generic functions with hash/radix callbacks
768  */
769 
770 static inline void __ptep_set_access_flags(struct vm_area_struct *vma,
771 					   pte_t *ptep, pte_t entry,
772 					   unsigned long address,
773 					   int psize)
774 {
775 	if (radix_enabled())
776 		return radix__ptep_set_access_flags(vma, ptep, entry,
777 						    address, psize);
778 	return hash__ptep_set_access_flags(ptep, entry);
779 }
780 
781 #define __HAVE_ARCH_PTE_SAME
782 static inline int pte_same(pte_t pte_a, pte_t pte_b)
783 {
784 	if (radix_enabled())
785 		return radix__pte_same(pte_a, pte_b);
786 	return hash__pte_same(pte_a, pte_b);
787 }
788 
789 static inline int pte_none(pte_t pte)
790 {
791 	if (radix_enabled())
792 		return radix__pte_none(pte);
793 	return hash__pte_none(pte);
794 }
795 
796 static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr,
797 				pte_t *ptep, pte_t pte, int percpu)
798 {
799 	if (radix_enabled())
800 		return radix__set_pte_at(mm, addr, ptep, pte, percpu);
801 	return hash__set_pte_at(mm, addr, ptep, pte, percpu);
802 }
803 
804 #define _PAGE_CACHE_CTL	(_PAGE_NON_IDEMPOTENT | _PAGE_TOLERANT)
805 
806 #define pgprot_noncached pgprot_noncached
807 static inline pgprot_t pgprot_noncached(pgprot_t prot)
808 {
809 	return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
810 			_PAGE_NON_IDEMPOTENT);
811 }
812 
813 #define pgprot_noncached_wc pgprot_noncached_wc
814 static inline pgprot_t pgprot_noncached_wc(pgprot_t prot)
815 {
816 	return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
817 			_PAGE_TOLERANT);
818 }
819 
820 #define pgprot_cached pgprot_cached
821 static inline pgprot_t pgprot_cached(pgprot_t prot)
822 {
823 	return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL));
824 }
825 
826 #define pgprot_writecombine pgprot_writecombine
827 static inline pgprot_t pgprot_writecombine(pgprot_t prot)
828 {
829 	return pgprot_noncached_wc(prot);
830 }
831 /*
832  * check a pte mapping have cache inhibited property
833  */
834 static inline bool pte_ci(pte_t pte)
835 {
836 	unsigned long pte_v = pte_val(pte);
837 
838 	if (((pte_v & _PAGE_CACHE_CTL) == _PAGE_TOLERANT) ||
839 	    ((pte_v & _PAGE_CACHE_CTL) == _PAGE_NON_IDEMPOTENT))
840 		return true;
841 	return false;
842 }
843 
844 static inline void pmd_set(pmd_t *pmdp, unsigned long val)
845 {
846 	*pmdp = __pmd(val);
847 }
848 
849 static inline void pmd_clear(pmd_t *pmdp)
850 {
851 	*pmdp = __pmd(0);
852 }
853 
854 static inline int pmd_none(pmd_t pmd)
855 {
856 	return !pmd_raw(pmd);
857 }
858 
859 static inline int pmd_present(pmd_t pmd)
860 {
861 
862 	return !pmd_none(pmd);
863 }
864 
865 static inline int pmd_bad(pmd_t pmd)
866 {
867 	if (radix_enabled())
868 		return radix__pmd_bad(pmd);
869 	return hash__pmd_bad(pmd);
870 }
871 
872 static inline void pud_set(pud_t *pudp, unsigned long val)
873 {
874 	*pudp = __pud(val);
875 }
876 
877 static inline void pud_clear(pud_t *pudp)
878 {
879 	*pudp = __pud(0);
880 }
881 
882 static inline int pud_none(pud_t pud)
883 {
884 	return !pud_raw(pud);
885 }
886 
887 static inline int pud_present(pud_t pud)
888 {
889 	return !pud_none(pud);
890 }
891 
892 extern struct page *pud_page(pud_t pud);
893 extern struct page *pmd_page(pmd_t pmd);
894 static inline pte_t pud_pte(pud_t pud)
895 {
896 	return __pte_raw(pud_raw(pud));
897 }
898 
899 static inline pud_t pte_pud(pte_t pte)
900 {
901 	return __pud_raw(pte_raw(pte));
902 }
903 #define pud_write(pud)		pte_write(pud_pte(pud))
904 
905 static inline int pud_bad(pud_t pud)
906 {
907 	if (radix_enabled())
908 		return radix__pud_bad(pud);
909 	return hash__pud_bad(pud);
910 }
911 
912 #define pud_access_permitted pud_access_permitted
913 static inline bool pud_access_permitted(pud_t pud, bool write)
914 {
915 	return pte_access_permitted(pud_pte(pud), write);
916 }
917 
918 #define pgd_write(pgd)		pte_write(pgd_pte(pgd))
919 static inline void pgd_set(pgd_t *pgdp, unsigned long val)
920 {
921 	*pgdp = __pgd(val);
922 }
923 
924 static inline void pgd_clear(pgd_t *pgdp)
925 {
926 	*pgdp = __pgd(0);
927 }
928 
929 static inline int pgd_none(pgd_t pgd)
930 {
931 	return !pgd_raw(pgd);
932 }
933 
934 static inline int pgd_present(pgd_t pgd)
935 {
936 	return !pgd_none(pgd);
937 }
938 
939 static inline pte_t pgd_pte(pgd_t pgd)
940 {
941 	return __pte_raw(pgd_raw(pgd));
942 }
943 
944 static inline pgd_t pte_pgd(pte_t pte)
945 {
946 	return __pgd_raw(pte_raw(pte));
947 }
948 
949 static inline int pgd_bad(pgd_t pgd)
950 {
951 	if (radix_enabled())
952 		return radix__pgd_bad(pgd);
953 	return hash__pgd_bad(pgd);
954 }
955 
956 #define pgd_access_permitted pgd_access_permitted
957 static inline bool pgd_access_permitted(pgd_t pgd, bool write)
958 {
959 	return pte_access_permitted(pgd_pte(pgd), write);
960 }
961 
962 extern struct page *pgd_page(pgd_t pgd);
963 
964 /* Pointers in the page table tree are physical addresses */
965 #define __pgtable_ptr_val(ptr)	__pa(ptr)
966 
967 #define pmd_page_vaddr(pmd)	__va(pmd_val(pmd) & ~PMD_MASKED_BITS)
968 #define pud_page_vaddr(pud)	__va(pud_val(pud) & ~PUD_MASKED_BITS)
969 #define pgd_page_vaddr(pgd)	__va(pgd_val(pgd) & ~PGD_MASKED_BITS)
970 
971 #define pgd_index(address) (((address) >> (PGDIR_SHIFT)) & (PTRS_PER_PGD - 1))
972 #define pud_index(address) (((address) >> (PUD_SHIFT)) & (PTRS_PER_PUD - 1))
973 #define pmd_index(address) (((address) >> (PMD_SHIFT)) & (PTRS_PER_PMD - 1))
974 #define pte_index(address) (((address) >> (PAGE_SHIFT)) & (PTRS_PER_PTE - 1))
975 
976 /*
977  * Find an entry in a page-table-directory.  We combine the address region
978  * (the high order N bits) and the pgd portion of the address.
979  */
980 
981 #define pgd_offset(mm, address)	 ((mm)->pgd + pgd_index(address))
982 
983 #define pud_offset(pgdp, addr)	\
984 	(((pud_t *) pgd_page_vaddr(*(pgdp))) + pud_index(addr))
985 #define pmd_offset(pudp,addr) \
986 	(((pmd_t *) pud_page_vaddr(*(pudp))) + pmd_index(addr))
987 #define pte_offset_kernel(dir,addr) \
988 	(((pte_t *) pmd_page_vaddr(*(dir))) + pte_index(addr))
989 
990 #define pte_offset_map(dir,addr)	pte_offset_kernel((dir), (addr))
991 #define pte_unmap(pte)			do { } while(0)
992 
993 /* to find an entry in a kernel page-table-directory */
994 /* This now only contains the vmalloc pages */
995 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
996 
997 #define pte_ERROR(e) \
998 	pr_err("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
999 #define pmd_ERROR(e) \
1000 	pr_err("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
1001 #define pud_ERROR(e) \
1002 	pr_err("%s:%d: bad pud %08lx.\n", __FILE__, __LINE__, pud_val(e))
1003 #define pgd_ERROR(e) \
1004 	pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
1005 
1006 static inline int map_kernel_page(unsigned long ea, unsigned long pa,
1007 				  unsigned long flags)
1008 {
1009 	if (radix_enabled()) {
1010 #if defined(CONFIG_PPC_RADIX_MMU) && defined(DEBUG_VM)
1011 		unsigned long page_size = 1 << mmu_psize_defs[mmu_io_psize].shift;
1012 		WARN((page_size != PAGE_SIZE), "I/O page size != PAGE_SIZE");
1013 #endif
1014 		return radix__map_kernel_page(ea, pa, __pgprot(flags), PAGE_SIZE);
1015 	}
1016 	return hash__map_kernel_page(ea, pa, flags);
1017 }
1018 
1019 static inline int __meminit vmemmap_create_mapping(unsigned long start,
1020 						   unsigned long page_size,
1021 						   unsigned long phys)
1022 {
1023 	if (radix_enabled())
1024 		return radix__vmemmap_create_mapping(start, page_size, phys);
1025 	return hash__vmemmap_create_mapping(start, page_size, phys);
1026 }
1027 
1028 #ifdef CONFIG_MEMORY_HOTPLUG
1029 static inline void vmemmap_remove_mapping(unsigned long start,
1030 					  unsigned long page_size)
1031 {
1032 	if (radix_enabled())
1033 		return radix__vmemmap_remove_mapping(start, page_size);
1034 	return hash__vmemmap_remove_mapping(start, page_size);
1035 }
1036 #endif
1037 struct page *realmode_pfn_to_page(unsigned long pfn);
1038 
1039 static inline pte_t pmd_pte(pmd_t pmd)
1040 {
1041 	return __pte_raw(pmd_raw(pmd));
1042 }
1043 
1044 static inline pmd_t pte_pmd(pte_t pte)
1045 {
1046 	return __pmd_raw(pte_raw(pte));
1047 }
1048 
1049 static inline pte_t *pmdp_ptep(pmd_t *pmd)
1050 {
1051 	return (pte_t *)pmd;
1052 }
1053 #define pmd_pfn(pmd)		pte_pfn(pmd_pte(pmd))
1054 #define pmd_dirty(pmd)		pte_dirty(pmd_pte(pmd))
1055 #define pmd_young(pmd)		pte_young(pmd_pte(pmd))
1056 #define pmd_mkold(pmd)		pte_pmd(pte_mkold(pmd_pte(pmd)))
1057 #define pmd_wrprotect(pmd)	pte_pmd(pte_wrprotect(pmd_pte(pmd)))
1058 #define pmd_mkdirty(pmd)	pte_pmd(pte_mkdirty(pmd_pte(pmd)))
1059 #define pmd_mkclean(pmd)	pte_pmd(pte_mkclean(pmd_pte(pmd)))
1060 #define pmd_mkyoung(pmd)	pte_pmd(pte_mkyoung(pmd_pte(pmd)))
1061 #define pmd_mkwrite(pmd)	pte_pmd(pte_mkwrite(pmd_pte(pmd)))
1062 #define pmd_mk_savedwrite(pmd)	pte_pmd(pte_mk_savedwrite(pmd_pte(pmd)))
1063 #define pmd_clear_savedwrite(pmd)	pte_pmd(pte_clear_savedwrite(pmd_pte(pmd)))
1064 
1065 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
1066 #define pmd_soft_dirty(pmd)    pte_soft_dirty(pmd_pte(pmd))
1067 #define pmd_mksoft_dirty(pmd)  pte_pmd(pte_mksoft_dirty(pmd_pte(pmd)))
1068 #define pmd_clear_soft_dirty(pmd) pte_pmd(pte_clear_soft_dirty(pmd_pte(pmd)))
1069 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
1070 
1071 #ifdef CONFIG_NUMA_BALANCING
1072 static inline int pmd_protnone(pmd_t pmd)
1073 {
1074 	return pte_protnone(pmd_pte(pmd));
1075 }
1076 #endif /* CONFIG_NUMA_BALANCING */
1077 
1078 #define pmd_write(pmd)		pte_write(pmd_pte(pmd))
1079 #define __pmd_write(pmd)	__pte_write(pmd_pte(pmd))
1080 #define pmd_savedwrite(pmd)	pte_savedwrite(pmd_pte(pmd))
1081 
1082 #define pmd_access_permitted pmd_access_permitted
1083 static inline bool pmd_access_permitted(pmd_t pmd, bool write)
1084 {
1085 	return pte_access_permitted(pmd_pte(pmd), write);
1086 }
1087 
1088 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1089 extern pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot);
1090 extern pmd_t mk_pmd(struct page *page, pgprot_t pgprot);
1091 extern pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot);
1092 extern void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1093 		       pmd_t *pmdp, pmd_t pmd);
1094 extern void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
1095 				 pmd_t *pmd);
1096 extern int hash__has_transparent_hugepage(void);
1097 static inline int has_transparent_hugepage(void)
1098 {
1099 	if (radix_enabled())
1100 		return radix__has_transparent_hugepage();
1101 	return hash__has_transparent_hugepage();
1102 }
1103 #define has_transparent_hugepage has_transparent_hugepage
1104 
1105 static inline unsigned long
1106 pmd_hugepage_update(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp,
1107 		    unsigned long clr, unsigned long set)
1108 {
1109 	if (radix_enabled())
1110 		return radix__pmd_hugepage_update(mm, addr, pmdp, clr, set);
1111 	return hash__pmd_hugepage_update(mm, addr, pmdp, clr, set);
1112 }
1113 
1114 static inline int pmd_large(pmd_t pmd)
1115 {
1116 	return !!(pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE));
1117 }
1118 
1119 static inline pmd_t pmd_mknotpresent(pmd_t pmd)
1120 {
1121 	return __pmd(pmd_val(pmd) & ~_PAGE_PRESENT);
1122 }
1123 /*
1124  * For radix we should always find H_PAGE_HASHPTE zero. Hence
1125  * the below will work for radix too
1126  */
1127 static inline int __pmdp_test_and_clear_young(struct mm_struct *mm,
1128 					      unsigned long addr, pmd_t *pmdp)
1129 {
1130 	unsigned long old;
1131 
1132 	if ((pmd_raw(*pmdp) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0)
1133 		return 0;
1134 	old = pmd_hugepage_update(mm, addr, pmdp, _PAGE_ACCESSED, 0);
1135 	return ((old & _PAGE_ACCESSED) != 0);
1136 }
1137 
1138 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
1139 static inline void pmdp_set_wrprotect(struct mm_struct *mm, unsigned long addr,
1140 				      pmd_t *pmdp)
1141 {
1142 	if (__pmd_write((*pmdp)))
1143 		pmd_hugepage_update(mm, addr, pmdp, _PAGE_WRITE, 0);
1144 	else if (unlikely(pmd_savedwrite(*pmdp)))
1145 		pmd_hugepage_update(mm, addr, pmdp, 0, _PAGE_PRIVILEGED);
1146 }
1147 
1148 static inline int pmd_trans_huge(pmd_t pmd)
1149 {
1150 	if (radix_enabled())
1151 		return radix__pmd_trans_huge(pmd);
1152 	return hash__pmd_trans_huge(pmd);
1153 }
1154 
1155 #define __HAVE_ARCH_PMD_SAME
1156 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
1157 {
1158 	if (radix_enabled())
1159 		return radix__pmd_same(pmd_a, pmd_b);
1160 	return hash__pmd_same(pmd_a, pmd_b);
1161 }
1162 
1163 static inline pmd_t pmd_mkhuge(pmd_t pmd)
1164 {
1165 	if (radix_enabled())
1166 		return radix__pmd_mkhuge(pmd);
1167 	return hash__pmd_mkhuge(pmd);
1168 }
1169 
1170 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1171 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
1172 				 unsigned long address, pmd_t *pmdp,
1173 				 pmd_t entry, int dirty);
1174 
1175 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1176 extern int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1177 				     unsigned long address, pmd_t *pmdp);
1178 
1179 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1180 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1181 					    unsigned long addr, pmd_t *pmdp)
1182 {
1183 	if (radix_enabled())
1184 		return radix__pmdp_huge_get_and_clear(mm, addr, pmdp);
1185 	return hash__pmdp_huge_get_and_clear(mm, addr, pmdp);
1186 }
1187 
1188 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1189 					unsigned long address, pmd_t *pmdp)
1190 {
1191 	if (radix_enabled())
1192 		return radix__pmdp_collapse_flush(vma, address, pmdp);
1193 	return hash__pmdp_collapse_flush(vma, address, pmdp);
1194 }
1195 #define pmdp_collapse_flush pmdp_collapse_flush
1196 
1197 #define __HAVE_ARCH_PGTABLE_DEPOSIT
1198 static inline void pgtable_trans_huge_deposit(struct mm_struct *mm,
1199 					      pmd_t *pmdp, pgtable_t pgtable)
1200 {
1201 	if (radix_enabled())
1202 		return radix__pgtable_trans_huge_deposit(mm, pmdp, pgtable);
1203 	return hash__pgtable_trans_huge_deposit(mm, pmdp, pgtable);
1204 }
1205 
1206 #define __HAVE_ARCH_PGTABLE_WITHDRAW
1207 static inline pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm,
1208 						    pmd_t *pmdp)
1209 {
1210 	if (radix_enabled())
1211 		return radix__pgtable_trans_huge_withdraw(mm, pmdp);
1212 	return hash__pgtable_trans_huge_withdraw(mm, pmdp);
1213 }
1214 
1215 #define __HAVE_ARCH_PMDP_INVALIDATE
1216 extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
1217 			     pmd_t *pmdp);
1218 
1219 #define pmd_move_must_withdraw pmd_move_must_withdraw
1220 struct spinlock;
1221 static inline int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl,
1222 					 struct spinlock *old_pmd_ptl,
1223 					 struct vm_area_struct *vma)
1224 {
1225 	if (radix_enabled())
1226 		return false;
1227 	/*
1228 	 * Archs like ppc64 use pgtable to store per pmd
1229 	 * specific information. So when we switch the pmd,
1230 	 * we should also withdraw and deposit the pgtable
1231 	 */
1232 	return true;
1233 }
1234 
1235 
1236 #define arch_needs_pgtable_deposit arch_needs_pgtable_deposit
1237 static inline bool arch_needs_pgtable_deposit(void)
1238 {
1239 	if (radix_enabled())
1240 		return false;
1241 	return true;
1242 }
1243 extern void serialize_against_pte_lookup(struct mm_struct *mm);
1244 
1245 
1246 static inline pmd_t pmd_mkdevmap(pmd_t pmd)
1247 {
1248 	return __pmd(pmd_val(pmd) | (_PAGE_PTE | _PAGE_DEVMAP));
1249 }
1250 
1251 static inline int pmd_devmap(pmd_t pmd)
1252 {
1253 	return pte_devmap(pmd_pte(pmd));
1254 }
1255 
1256 static inline int pud_devmap(pud_t pud)
1257 {
1258 	return 0;
1259 }
1260 
1261 static inline int pgd_devmap(pgd_t pgd)
1262 {
1263 	return 0;
1264 }
1265 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1266 
1267 static inline const int pud_pfn(pud_t pud)
1268 {
1269 	/*
1270 	 * Currently all calls to pud_pfn() are gated around a pud_devmap()
1271 	 * check so this should never be used. If it grows another user we
1272 	 * want to know about it.
1273 	 */
1274 	BUILD_BUG();
1275 	return 0;
1276 }
1277 
1278 #endif /* __ASSEMBLY__ */
1279 #endif /* _ASM_POWERPC_BOOK3S_64_PGTABLE_H_ */
1280