xref: /linux/arch/parisc/kernel/irq.c (revision 5e8d780d745c1619aba81fe7166c5a4b5cad2b84)
1 /*
2  * Code to handle x86 style IRQs plus some generic interrupt stuff.
3  *
4  * Copyright (C) 1992 Linus Torvalds
5  * Copyright (C) 1994, 1995, 1996, 1997, 1998 Ralf Baechle
6  * Copyright (C) 1999 SuSE GmbH (Philipp Rumpf, prumpf@tux.org)
7  * Copyright (C) 1999-2000 Grant Grundler
8  * Copyright (c) 2005 Matthew Wilcox
9  *
10  *    This program is free software; you can redistribute it and/or modify
11  *    it under the terms of the GNU General Public License as published by
12  *    the Free Software Foundation; either version 2, or (at your option)
13  *    any later version.
14  *
15  *    This program is distributed in the hope that it will be useful,
16  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
17  *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  *    GNU General Public License for more details.
19  *
20  *    You should have received a copy of the GNU General Public License
21  *    along with this program; if not, write to the Free Software
22  *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23  */
24 #include <linux/bitops.h>
25 #include <linux/config.h>
26 #include <linux/errno.h>
27 #include <linux/init.h>
28 #include <linux/interrupt.h>
29 #include <linux/kernel_stat.h>
30 #include <linux/seq_file.h>
31 #include <linux/spinlock.h>
32 #include <linux/types.h>
33 #include <asm/io.h>
34 
35 #include <asm/smp.h>
36 
37 #undef PARISC_IRQ_CR16_COUNTS
38 
39 extern irqreturn_t timer_interrupt(int, void *, struct pt_regs *);
40 extern irqreturn_t ipi_interrupt(int, void *, struct pt_regs *);
41 
42 #define EIEM_MASK(irq)       (1UL<<(CPU_IRQ_MAX - irq))
43 
44 /* Bits in EIEM correlate with cpu_irq_action[].
45 ** Numbered *Big Endian*! (ie bit 0 is MSB)
46 */
47 static volatile unsigned long cpu_eiem = 0;
48 
49 static void cpu_disable_irq(unsigned int irq)
50 {
51 	unsigned long eirr_bit = EIEM_MASK(irq);
52 
53 	cpu_eiem &= ~eirr_bit;
54 	/* Do nothing on the other CPUs.  If they get this interrupt,
55 	 * The & cpu_eiem in the do_cpu_irq_mask() ensures they won't
56 	 * handle it, and the set_eiem() at the bottom will ensure it
57 	 * then gets disabled */
58 }
59 
60 static void cpu_enable_irq(unsigned int irq)
61 {
62 	unsigned long eirr_bit = EIEM_MASK(irq);
63 
64 	cpu_eiem |= eirr_bit;
65 
66 	/* FIXME: while our interrupts aren't nested, we cannot reset
67 	 * the eiem mask if we're already in an interrupt.  Once we
68 	 * implement nested interrupts, this can go away
69 	 */
70 	if (!in_interrupt())
71 		set_eiem(cpu_eiem);
72 
73 	/* This is just a simple NOP IPI.  But what it does is cause
74 	 * all the other CPUs to do a set_eiem(cpu_eiem) at the end
75 	 * of the interrupt handler */
76 	smp_send_all_nop();
77 }
78 
79 static unsigned int cpu_startup_irq(unsigned int irq)
80 {
81 	cpu_enable_irq(irq);
82 	return 0;
83 }
84 
85 void no_ack_irq(unsigned int irq) { }
86 void no_end_irq(unsigned int irq) { }
87 
88 #ifdef CONFIG_SMP
89 int cpu_check_affinity(unsigned int irq, cpumask_t *dest)
90 {
91 	int cpu_dest;
92 
93 	/* timer and ipi have to always be received on all CPUs */
94 	if (irq == TIMER_IRQ || irq == IPI_IRQ) {
95 		/* Bad linux design decision.  The mask has already
96 		 * been set; we must reset it */
97 		irq_desc[irq].affinity = CPU_MASK_ALL;
98 		return -EINVAL;
99 	}
100 
101 	/* whatever mask they set, we just allow one CPU */
102 	cpu_dest = first_cpu(*dest);
103 	*dest = cpumask_of_cpu(cpu_dest);
104 
105 	return 0;
106 }
107 
108 static void cpu_set_affinity_irq(unsigned int irq, cpumask_t dest)
109 {
110 	if (cpu_check_affinity(irq, &dest))
111 		return;
112 
113 	irq_desc[irq].affinity = dest;
114 }
115 #endif
116 
117 static struct hw_interrupt_type cpu_interrupt_type = {
118 	.typename	= "CPU",
119 	.startup	= cpu_startup_irq,
120 	.shutdown	= cpu_disable_irq,
121 	.enable		= cpu_enable_irq,
122 	.disable	= cpu_disable_irq,
123 	.ack		= no_ack_irq,
124 	.end		= no_end_irq,
125 #ifdef CONFIG_SMP
126 	.set_affinity	= cpu_set_affinity_irq,
127 #endif
128 	/* XXX: Needs to be written.  We managed without it so far, but
129 	 * we really ought to write it.
130 	 */
131 	.retrigger	= NULL,
132 };
133 
134 int show_interrupts(struct seq_file *p, void *v)
135 {
136 	int i = *(loff_t *) v, j;
137 	unsigned long flags;
138 
139 	if (i == 0) {
140 		seq_puts(p, "    ");
141 		for_each_online_cpu(j)
142 			seq_printf(p, "       CPU%d", j);
143 
144 #ifdef PARISC_IRQ_CR16_COUNTS
145 		seq_printf(p, " [min/avg/max] (CPU cycle counts)");
146 #endif
147 		seq_putc(p, '\n');
148 	}
149 
150 	if (i < NR_IRQS) {
151 		struct irqaction *action;
152 
153 		spin_lock_irqsave(&irq_desc[i].lock, flags);
154 		action = irq_desc[i].action;
155 		if (!action)
156 			goto skip;
157 		seq_printf(p, "%3d: ", i);
158 #ifdef CONFIG_SMP
159 		for_each_online_cpu(j)
160 			seq_printf(p, "%10u ", kstat_cpu(j).irqs[i]);
161 #else
162 		seq_printf(p, "%10u ", kstat_irqs(i));
163 #endif
164 
165 		seq_printf(p, " %14s", irq_desc[i].chip->typename);
166 #ifndef PARISC_IRQ_CR16_COUNTS
167 		seq_printf(p, "  %s", action->name);
168 
169 		while ((action = action->next))
170 			seq_printf(p, ", %s", action->name);
171 #else
172 		for ( ;action; action = action->next) {
173 			unsigned int k, avg, min, max;
174 
175 			min = max = action->cr16_hist[0];
176 
177 			for (avg = k = 0; k < PARISC_CR16_HIST_SIZE; k++) {
178 				int hist = action->cr16_hist[k];
179 
180 				if (hist) {
181 					avg += hist;
182 				} else
183 					break;
184 
185 				if (hist > max) max = hist;
186 				if (hist < min) min = hist;
187 			}
188 
189 			avg /= k;
190 			seq_printf(p, " %s[%d/%d/%d]", action->name,
191 					min,avg,max);
192 		}
193 #endif
194 
195 		seq_putc(p, '\n');
196  skip:
197 		spin_unlock_irqrestore(&irq_desc[i].lock, flags);
198 	}
199 
200 	return 0;
201 }
202 
203 
204 
205 /*
206 ** The following form a "set": Virtual IRQ, Transaction Address, Trans Data.
207 ** Respectively, these map to IRQ region+EIRR, Processor HPA, EIRR bit.
208 **
209 ** To use txn_XXX() interfaces, get a Virtual IRQ first.
210 ** Then use that to get the Transaction address and data.
211 */
212 
213 int cpu_claim_irq(unsigned int irq, struct hw_interrupt_type *type, void *data)
214 {
215 	if (irq_desc[irq].action)
216 		return -EBUSY;
217 	if (irq_desc[irq].chip != &cpu_interrupt_type)
218 		return -EBUSY;
219 
220 	if (type) {
221 		irq_desc[irq].chip = type;
222 		irq_desc[irq].chip_data = data;
223 		cpu_interrupt_type.enable(irq);
224 	}
225 	return 0;
226 }
227 
228 int txn_claim_irq(int irq)
229 {
230 	return cpu_claim_irq(irq, NULL, NULL) ? -1 : irq;
231 }
232 
233 /*
234  * The bits_wide parameter accommodates the limitations of the HW/SW which
235  * use these bits:
236  * Legacy PA I/O (GSC/NIO): 5 bits (architected EIM register)
237  * V-class (EPIC):          6 bits
238  * N/L/A-class (iosapic):   8 bits
239  * PCI 2.2 MSI:            16 bits
240  * Some PCI devices:       32 bits (Symbios SCSI/ATM/HyperFabric)
241  *
242  * On the service provider side:
243  * o PA 1.1 (and PA2.0 narrow mode)     5-bits (width of EIR register)
244  * o PA 2.0 wide mode                   6-bits (per processor)
245  * o IA64                               8-bits (0-256 total)
246  *
247  * So a Legacy PA I/O device on a PA 2.0 box can't use all the bits supported
248  * by the processor...and the N/L-class I/O subsystem supports more bits than
249  * PA2.0 has. The first case is the problem.
250  */
251 int txn_alloc_irq(unsigned int bits_wide)
252 {
253 	int irq;
254 
255 	/* never return irq 0 cause that's the interval timer */
256 	for (irq = CPU_IRQ_BASE + 1; irq <= CPU_IRQ_MAX; irq++) {
257 		if (cpu_claim_irq(irq, NULL, NULL) < 0)
258 			continue;
259 		if ((irq - CPU_IRQ_BASE) >= (1 << bits_wide))
260 			continue;
261 		return irq;
262 	}
263 
264 	/* unlikely, but be prepared */
265 	return -1;
266 }
267 
268 
269 unsigned long txn_affinity_addr(unsigned int irq, int cpu)
270 {
271 #ifdef CONFIG_SMP
272 	irq_desc[irq].affinity = cpumask_of_cpu(cpu);
273 #endif
274 
275 	return cpu_data[cpu].txn_addr;
276 }
277 
278 
279 unsigned long txn_alloc_addr(unsigned int virt_irq)
280 {
281 	static int next_cpu = -1;
282 
283 	next_cpu++; /* assign to "next" CPU we want this bugger on */
284 
285 	/* validate entry */
286 	while ((next_cpu < NR_CPUS) && (!cpu_data[next_cpu].txn_addr ||
287 		!cpu_online(next_cpu)))
288 		next_cpu++;
289 
290 	if (next_cpu >= NR_CPUS)
291 		next_cpu = 0;	/* nothing else, assign monarch */
292 
293 	return txn_affinity_addr(virt_irq, next_cpu);
294 }
295 
296 
297 unsigned int txn_alloc_data(unsigned int virt_irq)
298 {
299 	return virt_irq - CPU_IRQ_BASE;
300 }
301 
302 /* ONLY called from entry.S:intr_extint() */
303 void do_cpu_irq_mask(struct pt_regs *regs)
304 {
305 	unsigned long eirr_val;
306 
307 	irq_enter();
308 
309 	/*
310 	 * Don't allow TIMER or IPI nested interrupts.
311 	 * Allowing any single interrupt to nest can lead to that CPU
312 	 * handling interrupts with all enabled interrupts unmasked.
313 	 */
314 	set_eiem(0UL);
315 
316 	/* 1) only process IRQs that are enabled/unmasked (cpu_eiem)
317 	 * 2) We loop here on EIRR contents in order to avoid
318 	 *    nested interrupts or having to take another interrupt
319 	 *    when we could have just handled it right away.
320 	 */
321 	for (;;) {
322 		unsigned long bit = (1UL << (BITS_PER_LONG - 1));
323 		unsigned int irq;
324 		eirr_val = mfctl(23) & cpu_eiem;
325 		if (!eirr_val)
326 			break;
327 
328 		mtctl(eirr_val, 23); /* reset bits we are going to process */
329 
330 		/* Work our way from MSb to LSb...same order we alloc EIRs */
331 		for (irq = TIMER_IRQ; eirr_val && bit; bit>>=1, irq++) {
332 #ifdef CONFIG_SMP
333 			cpumask_t dest = irq_desc[irq].affinity;
334 #endif
335 			if (!(bit & eirr_val))
336 				continue;
337 
338 			/* clear bit in mask - can exit loop sooner */
339 			eirr_val &= ~bit;
340 
341 #ifdef CONFIG_SMP
342 			/* FIXME: because generic set affinity mucks
343 			 * with the affinity before sending it to us
344 			 * we can get the situation where the affinity is
345 			 * wrong for our CPU type interrupts */
346 			if (irq != TIMER_IRQ && irq != IPI_IRQ &&
347 			    !cpu_isset(smp_processor_id(), dest)) {
348 				int cpu = first_cpu(dest);
349 
350 				printk(KERN_DEBUG "redirecting irq %d from CPU %d to %d\n",
351 				       irq, smp_processor_id(), cpu);
352 				gsc_writel(irq + CPU_IRQ_BASE,
353 					   cpu_data[cpu].hpa);
354 				continue;
355 			}
356 #endif
357 
358 			__do_IRQ(irq, regs);
359 		}
360 	}
361 
362 	set_eiem(cpu_eiem);	/* restore original mask */
363 	irq_exit();
364 }
365 
366 
367 static struct irqaction timer_action = {
368 	.handler = timer_interrupt,
369 	.name = "timer",
370 	.flags = SA_INTERRUPT,
371 };
372 
373 #ifdef CONFIG_SMP
374 static struct irqaction ipi_action = {
375 	.handler = ipi_interrupt,
376 	.name = "IPI",
377 	.flags = SA_INTERRUPT,
378 };
379 #endif
380 
381 static void claim_cpu_irqs(void)
382 {
383 	int i;
384 	for (i = CPU_IRQ_BASE; i <= CPU_IRQ_MAX; i++) {
385 		irq_desc[i].chip = &cpu_interrupt_type;
386 	}
387 
388 	irq_desc[TIMER_IRQ].action = &timer_action;
389 	irq_desc[TIMER_IRQ].status |= IRQ_PER_CPU;
390 #ifdef CONFIG_SMP
391 	irq_desc[IPI_IRQ].action = &ipi_action;
392 	irq_desc[IPI_IRQ].status = IRQ_PER_CPU;
393 #endif
394 }
395 
396 void __init init_IRQ(void)
397 {
398 	local_irq_disable();	/* PARANOID - should already be disabled */
399 	mtctl(~0UL, 23);	/* EIRR : clear all pending external intr */
400 	claim_cpu_irqs();
401 #ifdef CONFIG_SMP
402 	if (!cpu_eiem)
403 		cpu_eiem = EIEM_MASK(IPI_IRQ) | EIEM_MASK(TIMER_IRQ);
404 #else
405 	cpu_eiem = EIEM_MASK(TIMER_IRQ);
406 #endif
407         set_eiem(cpu_eiem);	/* EIEM : enable all external intr */
408 
409 }
410 
411 void ack_bad_irq(unsigned int irq)
412 {
413 	printk("unexpected IRQ %d\n", irq);
414 }
415