xref: /linux/arch/mips/mm/c-r4k.c (revision 858259cf7d1c443c836a2022b78cb281f0a9b95e)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1996 David S. Miller (dm@engr.sgi.com)
7  * Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002 Ralf Baechle (ralf@gnu.org)
8  * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
9  */
10 #include <linux/config.h>
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/sched.h>
14 #include <linux/mm.h>
15 #include <linux/bitops.h>
16 
17 #include <asm/bcache.h>
18 #include <asm/bootinfo.h>
19 #include <asm/cache.h>
20 #include <asm/cacheops.h>
21 #include <asm/cpu.h>
22 #include <asm/cpu-features.h>
23 #include <asm/io.h>
24 #include <asm/page.h>
25 #include <asm/pgtable.h>
26 #include <asm/r4kcache.h>
27 #include <asm/system.h>
28 #include <asm/mmu_context.h>
29 #include <asm/war.h>
30 #include <asm/cacheflush.h> /* for run_uncached() */
31 
32 /*
33  * Must die.
34  */
35 static unsigned long icache_size __read_mostly;
36 static unsigned long dcache_size __read_mostly;
37 static unsigned long scache_size __read_mostly;
38 
39 /*
40  * Dummy cache handling routines for machines without boardcaches
41  */
42 static void no_sc_noop(void) {}
43 
44 static struct bcache_ops no_sc_ops = {
45 	.bc_enable = (void *)no_sc_noop,
46 	.bc_disable = (void *)no_sc_noop,
47 	.bc_wback_inv = (void *)no_sc_noop,
48 	.bc_inv = (void *)no_sc_noop
49 };
50 
51 struct bcache_ops *bcops = &no_sc_ops;
52 
53 #define cpu_is_r4600_v1_x()	((read_c0_prid() & 0xfffffff0) == 0x00002010)
54 #define cpu_is_r4600_v2_x()	((read_c0_prid() & 0xfffffff0) == 0x00002020)
55 
56 #define R4600_HIT_CACHEOP_WAR_IMPL					\
57 do {									\
58 	if (R4600_V2_HIT_CACHEOP_WAR && cpu_is_r4600_v2_x())		\
59 		*(volatile unsigned long *)CKSEG1;			\
60 	if (R4600_V1_HIT_CACHEOP_WAR)					\
61 		__asm__ __volatile__("nop;nop;nop;nop");		\
62 } while (0)
63 
64 static void (*r4k_blast_dcache_page)(unsigned long addr);
65 
66 static inline void r4k_blast_dcache_page_dc32(unsigned long addr)
67 {
68 	R4600_HIT_CACHEOP_WAR_IMPL;
69 	blast_dcache32_page(addr);
70 }
71 
72 static inline void r4k_blast_dcache_page_setup(void)
73 {
74 	unsigned long  dc_lsize = cpu_dcache_line_size();
75 
76 	if (dc_lsize == 16)
77 		r4k_blast_dcache_page = blast_dcache16_page;
78 	else if (dc_lsize == 32)
79 		r4k_blast_dcache_page = r4k_blast_dcache_page_dc32;
80 }
81 
82 static void (* r4k_blast_dcache_page_indexed)(unsigned long addr);
83 
84 static inline void r4k_blast_dcache_page_indexed_setup(void)
85 {
86 	unsigned long dc_lsize = cpu_dcache_line_size();
87 
88 	if (dc_lsize == 16)
89 		r4k_blast_dcache_page_indexed = blast_dcache16_page_indexed;
90 	else if (dc_lsize == 32)
91 		r4k_blast_dcache_page_indexed = blast_dcache32_page_indexed;
92 }
93 
94 static void (* r4k_blast_dcache)(void);
95 
96 static inline void r4k_blast_dcache_setup(void)
97 {
98 	unsigned long dc_lsize = cpu_dcache_line_size();
99 
100 	if (dc_lsize == 16)
101 		r4k_blast_dcache = blast_dcache16;
102 	else if (dc_lsize == 32)
103 		r4k_blast_dcache = blast_dcache32;
104 }
105 
106 /* force code alignment (used for TX49XX_ICACHE_INDEX_INV_WAR) */
107 #define JUMP_TO_ALIGN(order) \
108 	__asm__ __volatile__( \
109 		"b\t1f\n\t" \
110 		".align\t" #order "\n\t" \
111 		"1:\n\t" \
112 		)
113 #define CACHE32_UNROLL32_ALIGN	JUMP_TO_ALIGN(10) /* 32 * 32 = 1024 */
114 #define CACHE32_UNROLL32_ALIGN2	JUMP_TO_ALIGN(11)
115 
116 static inline void blast_r4600_v1_icache32(void)
117 {
118 	unsigned long flags;
119 
120 	local_irq_save(flags);
121 	blast_icache32();
122 	local_irq_restore(flags);
123 }
124 
125 static inline void tx49_blast_icache32(void)
126 {
127 	unsigned long start = INDEX_BASE;
128 	unsigned long end = start + current_cpu_data.icache.waysize;
129 	unsigned long ws_inc = 1UL << current_cpu_data.icache.waybit;
130 	unsigned long ws_end = current_cpu_data.icache.ways <<
131 	                       current_cpu_data.icache.waybit;
132 	unsigned long ws, addr;
133 
134 	CACHE32_UNROLL32_ALIGN2;
135 	/* I'm in even chunk.  blast odd chunks */
136 	for (ws = 0; ws < ws_end; ws += ws_inc)
137 		for (addr = start + 0x400; addr < end; addr += 0x400 * 2)
138 			cache32_unroll32(addr|ws,Index_Invalidate_I);
139 	CACHE32_UNROLL32_ALIGN;
140 	/* I'm in odd chunk.  blast even chunks */
141 	for (ws = 0; ws < ws_end; ws += ws_inc)
142 		for (addr = start; addr < end; addr += 0x400 * 2)
143 			cache32_unroll32(addr|ws,Index_Invalidate_I);
144 }
145 
146 static inline void blast_icache32_r4600_v1_page_indexed(unsigned long page)
147 {
148 	unsigned long flags;
149 
150 	local_irq_save(flags);
151 	blast_icache32_page_indexed(page);
152 	local_irq_restore(flags);
153 }
154 
155 static inline void tx49_blast_icache32_page_indexed(unsigned long page)
156 {
157 	unsigned long start = page;
158 	unsigned long end = start + PAGE_SIZE;
159 	unsigned long ws_inc = 1UL << current_cpu_data.icache.waybit;
160 	unsigned long ws_end = current_cpu_data.icache.ways <<
161 	                       current_cpu_data.icache.waybit;
162 	unsigned long ws, addr;
163 
164 	CACHE32_UNROLL32_ALIGN2;
165 	/* I'm in even chunk.  blast odd chunks */
166 	for (ws = 0; ws < ws_end; ws += ws_inc)
167 		for (addr = start + 0x400; addr < end; addr += 0x400 * 2)
168 			cache32_unroll32(addr|ws,Index_Invalidate_I);
169 	CACHE32_UNROLL32_ALIGN;
170 	/* I'm in odd chunk.  blast even chunks */
171 	for (ws = 0; ws < ws_end; ws += ws_inc)
172 		for (addr = start; addr < end; addr += 0x400 * 2)
173 			cache32_unroll32(addr|ws,Index_Invalidate_I);
174 }
175 
176 static void (* r4k_blast_icache_page)(unsigned long addr);
177 
178 static inline void r4k_blast_icache_page_setup(void)
179 {
180 	unsigned long ic_lsize = cpu_icache_line_size();
181 
182 	if (ic_lsize == 16)
183 		r4k_blast_icache_page = blast_icache16_page;
184 	else if (ic_lsize == 32)
185 		r4k_blast_icache_page = blast_icache32_page;
186 	else if (ic_lsize == 64)
187 		r4k_blast_icache_page = blast_icache64_page;
188 }
189 
190 
191 static void (* r4k_blast_icache_page_indexed)(unsigned long addr);
192 
193 static inline void r4k_blast_icache_page_indexed_setup(void)
194 {
195 	unsigned long ic_lsize = cpu_icache_line_size();
196 
197 	if (ic_lsize == 16)
198 		r4k_blast_icache_page_indexed = blast_icache16_page_indexed;
199 	else if (ic_lsize == 32) {
200 		if (R4600_V1_INDEX_ICACHEOP_WAR && cpu_is_r4600_v1_x())
201 			r4k_blast_icache_page_indexed =
202 				blast_icache32_r4600_v1_page_indexed;
203 		else if (TX49XX_ICACHE_INDEX_INV_WAR)
204 			r4k_blast_icache_page_indexed =
205 				tx49_blast_icache32_page_indexed;
206 		else
207 			r4k_blast_icache_page_indexed =
208 				blast_icache32_page_indexed;
209 	} else if (ic_lsize == 64)
210 		r4k_blast_icache_page_indexed = blast_icache64_page_indexed;
211 }
212 
213 static void (* r4k_blast_icache)(void);
214 
215 static inline void r4k_blast_icache_setup(void)
216 {
217 	unsigned long ic_lsize = cpu_icache_line_size();
218 
219 	if (ic_lsize == 16)
220 		r4k_blast_icache = blast_icache16;
221 	else if (ic_lsize == 32) {
222 		if (R4600_V1_INDEX_ICACHEOP_WAR && cpu_is_r4600_v1_x())
223 			r4k_blast_icache = blast_r4600_v1_icache32;
224 		else if (TX49XX_ICACHE_INDEX_INV_WAR)
225 			r4k_blast_icache = tx49_blast_icache32;
226 		else
227 			r4k_blast_icache = blast_icache32;
228 	} else if (ic_lsize == 64)
229 		r4k_blast_icache = blast_icache64;
230 }
231 
232 static void (* r4k_blast_scache_page)(unsigned long addr);
233 
234 static inline void r4k_blast_scache_page_setup(void)
235 {
236 	unsigned long sc_lsize = cpu_scache_line_size();
237 
238 	if (sc_lsize == 16)
239 		r4k_blast_scache_page = blast_scache16_page;
240 	else if (sc_lsize == 32)
241 		r4k_blast_scache_page = blast_scache32_page;
242 	else if (sc_lsize == 64)
243 		r4k_blast_scache_page = blast_scache64_page;
244 	else if (sc_lsize == 128)
245 		r4k_blast_scache_page = blast_scache128_page;
246 }
247 
248 static void (* r4k_blast_scache_page_indexed)(unsigned long addr);
249 
250 static inline void r4k_blast_scache_page_indexed_setup(void)
251 {
252 	unsigned long sc_lsize = cpu_scache_line_size();
253 
254 	if (sc_lsize == 16)
255 		r4k_blast_scache_page_indexed = blast_scache16_page_indexed;
256 	else if (sc_lsize == 32)
257 		r4k_blast_scache_page_indexed = blast_scache32_page_indexed;
258 	else if (sc_lsize == 64)
259 		r4k_blast_scache_page_indexed = blast_scache64_page_indexed;
260 	else if (sc_lsize == 128)
261 		r4k_blast_scache_page_indexed = blast_scache128_page_indexed;
262 }
263 
264 static void (* r4k_blast_scache)(void);
265 
266 static inline void r4k_blast_scache_setup(void)
267 {
268 	unsigned long sc_lsize = cpu_scache_line_size();
269 
270 	if (sc_lsize == 16)
271 		r4k_blast_scache = blast_scache16;
272 	else if (sc_lsize == 32)
273 		r4k_blast_scache = blast_scache32;
274 	else if (sc_lsize == 64)
275 		r4k_blast_scache = blast_scache64;
276 	else if (sc_lsize == 128)
277 		r4k_blast_scache = blast_scache128;
278 }
279 
280 /*
281  * This is former mm's flush_cache_all() which really should be
282  * flush_cache_vunmap these days ...
283  */
284 static inline void local_r4k_flush_cache_all(void * args)
285 {
286 	r4k_blast_dcache();
287 	r4k_blast_icache();
288 }
289 
290 static void r4k_flush_cache_all(void)
291 {
292 	if (!cpu_has_dc_aliases)
293 		return;
294 
295 	on_each_cpu(local_r4k_flush_cache_all, NULL, 1, 1);
296 }
297 
298 static inline void local_r4k___flush_cache_all(void * args)
299 {
300 	r4k_blast_dcache();
301 	r4k_blast_icache();
302 
303 	switch (current_cpu_data.cputype) {
304 	case CPU_R4000SC:
305 	case CPU_R4000MC:
306 	case CPU_R4400SC:
307 	case CPU_R4400MC:
308 	case CPU_R10000:
309 	case CPU_R12000:
310 		r4k_blast_scache();
311 	}
312 }
313 
314 static void r4k___flush_cache_all(void)
315 {
316 	on_each_cpu(local_r4k___flush_cache_all, NULL, 1, 1);
317 }
318 
319 static inline void local_r4k_flush_cache_range(void * args)
320 {
321 	struct vm_area_struct *vma = args;
322 	int exec;
323 
324 	if (!(cpu_context(smp_processor_id(), vma->vm_mm)))
325 		return;
326 
327 	exec = vma->vm_flags & VM_EXEC;
328 	if (cpu_has_dc_aliases || exec)
329 		r4k_blast_dcache();
330 	if (exec)
331 		r4k_blast_icache();
332 }
333 
334 static void r4k_flush_cache_range(struct vm_area_struct *vma,
335 	unsigned long start, unsigned long end)
336 {
337 	on_each_cpu(local_r4k_flush_cache_range, vma, 1, 1);
338 }
339 
340 static inline void local_r4k_flush_cache_mm(void * args)
341 {
342 	struct mm_struct *mm = args;
343 
344 	if (!cpu_context(smp_processor_id(), mm))
345 		return;
346 
347 	r4k_blast_dcache();
348 	r4k_blast_icache();
349 
350 	/*
351 	 * Kludge alert.  For obscure reasons R4000SC and R4400SC go nuts if we
352 	 * only flush the primary caches but R10000 and R12000 behave sane ...
353 	 */
354 	if (current_cpu_data.cputype == CPU_R4000SC ||
355 	    current_cpu_data.cputype == CPU_R4000MC ||
356 	    current_cpu_data.cputype == CPU_R4400SC ||
357 	    current_cpu_data.cputype == CPU_R4400MC)
358 		r4k_blast_scache();
359 }
360 
361 static void r4k_flush_cache_mm(struct mm_struct *mm)
362 {
363 	if (!cpu_has_dc_aliases)
364 		return;
365 
366 	on_each_cpu(local_r4k_flush_cache_mm, mm, 1, 1);
367 }
368 
369 struct flush_cache_page_args {
370 	struct vm_area_struct *vma;
371 	unsigned long addr;
372 };
373 
374 static inline void local_r4k_flush_cache_page(void *args)
375 {
376 	struct flush_cache_page_args *fcp_args = args;
377 	struct vm_area_struct *vma = fcp_args->vma;
378 	unsigned long addr = fcp_args->addr;
379 	int exec = vma->vm_flags & VM_EXEC;
380 	struct mm_struct *mm = vma->vm_mm;
381 	pgd_t *pgdp;
382 	pud_t *pudp;
383 	pmd_t *pmdp;
384 	pte_t *ptep;
385 
386 	/*
387 	 * If ownes no valid ASID yet, cannot possibly have gotten
388 	 * this page into the cache.
389 	 */
390 	if (cpu_context(smp_processor_id(), mm) == 0)
391 		return;
392 
393 	addr &= PAGE_MASK;
394 	pgdp = pgd_offset(mm, addr);
395 	pudp = pud_offset(pgdp, addr);
396 	pmdp = pmd_offset(pudp, addr);
397 	ptep = pte_offset(pmdp, addr);
398 
399 	/*
400 	 * If the page isn't marked valid, the page cannot possibly be
401 	 * in the cache.
402 	 */
403 	if (!(pte_val(*ptep) & _PAGE_PRESENT))
404 		return;
405 
406 	/*
407 	 * Doing flushes for another ASID than the current one is
408 	 * too difficult since stupid R4k caches do a TLB translation
409 	 * for every cache flush operation.  So we do indexed flushes
410 	 * in that case, which doesn't overly flush the cache too much.
411 	 */
412 	if ((mm == current->active_mm) && (pte_val(*ptep) & _PAGE_VALID)) {
413 		if (cpu_has_dc_aliases || (exec && !cpu_has_ic_fills_f_dc)) {
414 			r4k_blast_dcache_page(addr);
415 			if (exec && !cpu_icache_snoops_remote_store)
416 				r4k_blast_scache_page(addr);
417 		}
418 		if (exec)
419 			r4k_blast_icache_page(addr);
420 
421 		return;
422 	}
423 
424 	/*
425 	 * Do indexed flush, too much work to get the (possible) TLB refills
426 	 * to work correctly.
427 	 */
428 	addr = INDEX_BASE + (addr & (dcache_size - 1));
429 	if (cpu_has_dc_aliases || (exec && !cpu_has_ic_fills_f_dc)) {
430 		r4k_blast_dcache_page_indexed(addr);
431 		if (exec && !cpu_icache_snoops_remote_store)
432 			r4k_blast_scache_page_indexed(addr);
433 	}
434 	if (exec) {
435 		if (cpu_has_vtag_icache) {
436 			int cpu = smp_processor_id();
437 
438 			if (cpu_context(cpu, mm) != 0)
439 				drop_mmu_context(mm, cpu);
440 		} else
441 			r4k_blast_icache_page_indexed(addr);
442 	}
443 }
444 
445 static void r4k_flush_cache_page(struct vm_area_struct *vma,
446 	unsigned long addr, unsigned long pfn)
447 {
448 	struct flush_cache_page_args args;
449 
450 	args.vma = vma;
451 	args.addr = addr;
452 
453 	on_each_cpu(local_r4k_flush_cache_page, &args, 1, 1);
454 }
455 
456 static inline void local_r4k_flush_data_cache_page(void * addr)
457 {
458 	r4k_blast_dcache_page((unsigned long) addr);
459 }
460 
461 static void r4k_flush_data_cache_page(unsigned long addr)
462 {
463 	on_each_cpu(local_r4k_flush_data_cache_page, (void *) addr, 1, 1);
464 }
465 
466 struct flush_icache_range_args {
467 	unsigned long __user start;
468 	unsigned long __user end;
469 };
470 
471 static inline void local_r4k_flush_icache_range(void *args)
472 {
473 	struct flush_icache_range_args *fir_args = args;
474 	unsigned long dc_lsize = cpu_dcache_line_size();
475 	unsigned long ic_lsize = cpu_icache_line_size();
476 	unsigned long sc_lsize = cpu_scache_line_size();
477 	unsigned long start = fir_args->start;
478 	unsigned long end = fir_args->end;
479 	unsigned long addr, aend;
480 
481 	if (!cpu_has_ic_fills_f_dc) {
482 		if (end - start > dcache_size) {
483 			r4k_blast_dcache();
484 		} else {
485 			R4600_HIT_CACHEOP_WAR_IMPL;
486 			addr = start & ~(dc_lsize - 1);
487 			aend = (end - 1) & ~(dc_lsize - 1);
488 
489 			while (1) {
490 				/* Hit_Writeback_Inv_D */
491 				protected_writeback_dcache_line(addr);
492 				if (addr == aend)
493 					break;
494 				addr += dc_lsize;
495 			}
496 		}
497 
498 		if (!cpu_icache_snoops_remote_store) {
499 			if (end - start > scache_size) {
500 				r4k_blast_scache();
501 			} else {
502 				addr = start & ~(sc_lsize - 1);
503 				aend = (end - 1) & ~(sc_lsize - 1);
504 
505 				while (1) {
506 					/* Hit_Writeback_Inv_SD */
507 					protected_writeback_scache_line(addr);
508 					if (addr == aend)
509 						break;
510 					addr += sc_lsize;
511 				}
512 			}
513 		}
514 	}
515 
516 	if (end - start > icache_size)
517 		r4k_blast_icache();
518 	else {
519 		addr = start & ~(ic_lsize - 1);
520 		aend = (end - 1) & ~(ic_lsize - 1);
521 		while (1) {
522 			/* Hit_Invalidate_I */
523 			protected_flush_icache_line(addr);
524 			if (addr == aend)
525 				break;
526 			addr += ic_lsize;
527 		}
528 	}
529 }
530 
531 static void r4k_flush_icache_range(unsigned long __user start,
532 	unsigned long __user end)
533 {
534 	struct flush_icache_range_args args;
535 
536 	args.start = start;
537 	args.end = end;
538 
539 	on_each_cpu(local_r4k_flush_icache_range, &args, 1, 1);
540 	instruction_hazard();
541 }
542 
543 /*
544  * Ok, this seriously sucks.  We use them to flush a user page but don't
545  * know the virtual address, so we have to blast away the whole icache
546  * which is significantly more expensive than the real thing.  Otoh we at
547  * least know the kernel address of the page so we can flush it
548  * selectivly.
549  */
550 
551 struct flush_icache_page_args {
552 	struct vm_area_struct *vma;
553 	struct page *page;
554 };
555 
556 static inline void local_r4k_flush_icache_page(void *args)
557 {
558 	struct flush_icache_page_args *fip_args = args;
559 	struct vm_area_struct *vma = fip_args->vma;
560 	struct page *page = fip_args->page;
561 
562 	/*
563 	 * Tricky ...  Because we don't know the virtual address we've got the
564 	 * choice of either invalidating the entire primary and secondary
565 	 * caches or invalidating the secondary caches also.  With the subset
566 	 * enforcment on R4000SC, R4400SC, R10000 and R12000 invalidating the
567 	 * secondary cache will result in any entries in the primary caches
568 	 * also getting invalidated which hopefully is a bit more economical.
569 	 */
570 	if (cpu_has_subset_pcaches) {
571 		unsigned long addr = (unsigned long) page_address(page);
572 
573 		r4k_blast_scache_page(addr);
574 		ClearPageDcacheDirty(page);
575 
576 		return;
577 	}
578 
579 	if (!cpu_has_ic_fills_f_dc) {
580 		unsigned long addr = (unsigned long) page_address(page);
581 		r4k_blast_dcache_page(addr);
582 		if (!cpu_icache_snoops_remote_store)
583 			r4k_blast_scache_page(addr);
584 		ClearPageDcacheDirty(page);
585 	}
586 
587 	/*
588 	 * We're not sure of the virtual address(es) involved here, so
589 	 * we have to flush the entire I-cache.
590 	 */
591 	if (cpu_has_vtag_icache) {
592 		int cpu = smp_processor_id();
593 
594 		if (cpu_context(cpu, vma->vm_mm) != 0)
595 			drop_mmu_context(vma->vm_mm, cpu);
596 	} else
597 		r4k_blast_icache();
598 }
599 
600 static void r4k_flush_icache_page(struct vm_area_struct *vma,
601 	struct page *page)
602 {
603 	struct flush_icache_page_args args;
604 
605 	/*
606 	 * If there's no context yet, or the page isn't executable, no I-cache
607 	 * flush is needed.
608 	 */
609 	if (!(vma->vm_flags & VM_EXEC))
610 		return;
611 
612 	args.vma = vma;
613 	args.page = page;
614 
615 	on_each_cpu(local_r4k_flush_icache_page, &args, 1, 1);
616 }
617 
618 
619 #ifdef CONFIG_DMA_NONCOHERENT
620 
621 static void r4k_dma_cache_wback_inv(unsigned long addr, unsigned long size)
622 {
623 	unsigned long end, a;
624 
625 	/* Catch bad driver code */
626 	BUG_ON(size == 0);
627 
628 	if (cpu_has_subset_pcaches) {
629 		unsigned long sc_lsize = cpu_scache_line_size();
630 
631 		if (size >= scache_size) {
632 			r4k_blast_scache();
633 			return;
634 		}
635 
636 		a = addr & ~(sc_lsize - 1);
637 		end = (addr + size - 1) & ~(sc_lsize - 1);
638 		while (1) {
639 			flush_scache_line(a);	/* Hit_Writeback_Inv_SD */
640 			if (a == end)
641 				break;
642 			a += sc_lsize;
643 		}
644 		return;
645 	}
646 
647 	/*
648 	 * Either no secondary cache or the available caches don't have the
649 	 * subset property so we have to flush the primary caches
650 	 * explicitly
651 	 */
652 	if (size >= dcache_size) {
653 		r4k_blast_dcache();
654 	} else {
655 		unsigned long dc_lsize = cpu_dcache_line_size();
656 
657 		R4600_HIT_CACHEOP_WAR_IMPL;
658 		a = addr & ~(dc_lsize - 1);
659 		end = (addr + size - 1) & ~(dc_lsize - 1);
660 		while (1) {
661 			flush_dcache_line(a);	/* Hit_Writeback_Inv_D */
662 			if (a == end)
663 				break;
664 			a += dc_lsize;
665 		}
666 	}
667 
668 	bc_wback_inv(addr, size);
669 }
670 
671 static void r4k_dma_cache_inv(unsigned long addr, unsigned long size)
672 {
673 	unsigned long end, a;
674 
675 	/* Catch bad driver code */
676 	BUG_ON(size == 0);
677 
678 	if (cpu_has_subset_pcaches) {
679 		unsigned long sc_lsize = cpu_scache_line_size();
680 
681 		if (size >= scache_size) {
682 			r4k_blast_scache();
683 			return;
684 		}
685 
686 		a = addr & ~(sc_lsize - 1);
687 		end = (addr + size - 1) & ~(sc_lsize - 1);
688 		while (1) {
689 			flush_scache_line(a);	/* Hit_Writeback_Inv_SD */
690 			if (a == end)
691 				break;
692 			a += sc_lsize;
693 		}
694 		return;
695 	}
696 
697 	if (size >= dcache_size) {
698 		r4k_blast_dcache();
699 	} else {
700 		unsigned long dc_lsize = cpu_dcache_line_size();
701 
702 		R4600_HIT_CACHEOP_WAR_IMPL;
703 		a = addr & ~(dc_lsize - 1);
704 		end = (addr + size - 1) & ~(dc_lsize - 1);
705 		while (1) {
706 			flush_dcache_line(a);	/* Hit_Writeback_Inv_D */
707 			if (a == end)
708 				break;
709 			a += dc_lsize;
710 		}
711 	}
712 
713 	bc_inv(addr, size);
714 }
715 #endif /* CONFIG_DMA_NONCOHERENT */
716 
717 /*
718  * While we're protected against bad userland addresses we don't care
719  * very much about what happens in that case.  Usually a segmentation
720  * fault will dump the process later on anyway ...
721  */
722 static void local_r4k_flush_cache_sigtramp(void * arg)
723 {
724 	unsigned long ic_lsize = cpu_icache_line_size();
725 	unsigned long dc_lsize = cpu_dcache_line_size();
726 	unsigned long sc_lsize = cpu_scache_line_size();
727 	unsigned long addr = (unsigned long) arg;
728 
729 	R4600_HIT_CACHEOP_WAR_IMPL;
730 	protected_writeback_dcache_line(addr & ~(dc_lsize - 1));
731 	if (!cpu_icache_snoops_remote_store)
732 		protected_writeback_scache_line(addr & ~(sc_lsize - 1));
733 	protected_flush_icache_line(addr & ~(ic_lsize - 1));
734 	if (MIPS4K_ICACHE_REFILL_WAR) {
735 		__asm__ __volatile__ (
736 			".set push\n\t"
737 			".set noat\n\t"
738 			".set mips3\n\t"
739 #ifdef CONFIG_32BIT
740 			"la	$at,1f\n\t"
741 #endif
742 #ifdef CONFIG_64BIT
743 			"dla	$at,1f\n\t"
744 #endif
745 			"cache	%0,($at)\n\t"
746 			"nop; nop; nop\n"
747 			"1:\n\t"
748 			".set pop"
749 			:
750 			: "i" (Hit_Invalidate_I));
751 	}
752 	if (MIPS_CACHE_SYNC_WAR)
753 		__asm__ __volatile__ ("sync");
754 }
755 
756 static void r4k_flush_cache_sigtramp(unsigned long addr)
757 {
758 	on_each_cpu(local_r4k_flush_cache_sigtramp, (void *) addr, 1, 1);
759 }
760 
761 static void r4k_flush_icache_all(void)
762 {
763 	if (cpu_has_vtag_icache)
764 		r4k_blast_icache();
765 }
766 
767 static inline void rm7k_erratum31(void)
768 {
769 	const unsigned long ic_lsize = 32;
770 	unsigned long addr;
771 
772 	/* RM7000 erratum #31. The icache is screwed at startup. */
773 	write_c0_taglo(0);
774 	write_c0_taghi(0);
775 
776 	for (addr = INDEX_BASE; addr <= INDEX_BASE + 4096; addr += ic_lsize) {
777 		__asm__ __volatile__ (
778 			".set push\n\t"
779 			".set noreorder\n\t"
780 			".set mips3\n\t"
781 			"cache\t%1, 0(%0)\n\t"
782 			"cache\t%1, 0x1000(%0)\n\t"
783 			"cache\t%1, 0x2000(%0)\n\t"
784 			"cache\t%1, 0x3000(%0)\n\t"
785 			"cache\t%2, 0(%0)\n\t"
786 			"cache\t%2, 0x1000(%0)\n\t"
787 			"cache\t%2, 0x2000(%0)\n\t"
788 			"cache\t%2, 0x3000(%0)\n\t"
789 			"cache\t%1, 0(%0)\n\t"
790 			"cache\t%1, 0x1000(%0)\n\t"
791 			"cache\t%1, 0x2000(%0)\n\t"
792 			"cache\t%1, 0x3000(%0)\n\t"
793 			".set pop\n"
794 			:
795 			: "r" (addr), "i" (Index_Store_Tag_I), "i" (Fill));
796 	}
797 }
798 
799 static char *way_string[] __initdata = { NULL, "direct mapped", "2-way",
800 	"3-way", "4-way", "5-way", "6-way", "7-way", "8-way"
801 };
802 
803 static void __init probe_pcache(void)
804 {
805 	struct cpuinfo_mips *c = &current_cpu_data;
806 	unsigned int config = read_c0_config();
807 	unsigned int prid = read_c0_prid();
808 	unsigned long config1;
809 	unsigned int lsize;
810 
811 	switch (c->cputype) {
812 	case CPU_R4600:			/* QED style two way caches? */
813 	case CPU_R4700:
814 	case CPU_R5000:
815 	case CPU_NEVADA:
816 		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
817 		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
818 		c->icache.ways = 2;
819 		c->icache.waybit = ffs(icache_size/2) - 1;
820 
821 		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
822 		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
823 		c->dcache.ways = 2;
824 		c->dcache.waybit= ffs(dcache_size/2) - 1;
825 
826 		c->options |= MIPS_CPU_CACHE_CDEX_P;
827 		break;
828 
829 	case CPU_R5432:
830 	case CPU_R5500:
831 		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
832 		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
833 		c->icache.ways = 2;
834 		c->icache.waybit= 0;
835 
836 		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
837 		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
838 		c->dcache.ways = 2;
839 		c->dcache.waybit = 0;
840 
841 		c->options |= MIPS_CPU_CACHE_CDEX_P;
842 		break;
843 
844 	case CPU_TX49XX:
845 		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
846 		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
847 		c->icache.ways = 4;
848 		c->icache.waybit= 0;
849 
850 		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
851 		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
852 		c->dcache.ways = 4;
853 		c->dcache.waybit = 0;
854 
855 		c->options |= MIPS_CPU_CACHE_CDEX_P;
856 		break;
857 
858 	case CPU_R4000PC:
859 	case CPU_R4000SC:
860 	case CPU_R4000MC:
861 	case CPU_R4400PC:
862 	case CPU_R4400SC:
863 	case CPU_R4400MC:
864 	case CPU_R4300:
865 		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
866 		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
867 		c->icache.ways = 1;
868 		c->icache.waybit = 0; 	/* doesn't matter */
869 
870 		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
871 		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
872 		c->dcache.ways = 1;
873 		c->dcache.waybit = 0;	/* does not matter */
874 
875 		c->options |= MIPS_CPU_CACHE_CDEX_P;
876 		break;
877 
878 	case CPU_R10000:
879 	case CPU_R12000:
880 		icache_size = 1 << (12 + ((config & R10K_CONF_IC) >> 29));
881 		c->icache.linesz = 64;
882 		c->icache.ways = 2;
883 		c->icache.waybit = 0;
884 
885 		dcache_size = 1 << (12 + ((config & R10K_CONF_DC) >> 26));
886 		c->dcache.linesz = 32;
887 		c->dcache.ways = 2;
888 		c->dcache.waybit = 0;
889 
890 		c->options |= MIPS_CPU_PREFETCH;
891 		break;
892 
893 	case CPU_VR4133:
894 		write_c0_config(config & ~CONF_EB);
895 	case CPU_VR4131:
896 		/* Workaround for cache instruction bug of VR4131 */
897 		if (c->processor_id == 0x0c80U || c->processor_id == 0x0c81U ||
898 		    c->processor_id == 0x0c82U) {
899 			config &= ~0x00000030U;
900 			config |= 0x00410000U;
901 			write_c0_config(config);
902 		}
903 		icache_size = 1 << (10 + ((config & CONF_IC) >> 9));
904 		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
905 		c->icache.ways = 2;
906 		c->icache.waybit = ffs(icache_size/2) - 1;
907 
908 		dcache_size = 1 << (10 + ((config & CONF_DC) >> 6));
909 		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
910 		c->dcache.ways = 2;
911 		c->dcache.waybit = ffs(dcache_size/2) - 1;
912 
913 		c->options |= MIPS_CPU_CACHE_CDEX_P;
914 		break;
915 
916 	case CPU_VR41XX:
917 	case CPU_VR4111:
918 	case CPU_VR4121:
919 	case CPU_VR4122:
920 	case CPU_VR4181:
921 	case CPU_VR4181A:
922 		icache_size = 1 << (10 + ((config & CONF_IC) >> 9));
923 		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
924 		c->icache.ways = 1;
925 		c->icache.waybit = 0; 	/* doesn't matter */
926 
927 		dcache_size = 1 << (10 + ((config & CONF_DC) >> 6));
928 		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
929 		c->dcache.ways = 1;
930 		c->dcache.waybit = 0;	/* does not matter */
931 
932 		c->options |= MIPS_CPU_CACHE_CDEX_P;
933 		break;
934 
935 	case CPU_RM7000:
936 		rm7k_erratum31();
937 
938 	case CPU_RM9000:
939 		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
940 		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
941 		c->icache.ways = 4;
942 		c->icache.waybit = ffs(icache_size / c->icache.ways) - 1;
943 
944 		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
945 		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
946 		c->dcache.ways = 4;
947 		c->dcache.waybit = ffs(dcache_size / c->dcache.ways) - 1;
948 
949 #if !defined(CONFIG_SMP) || !defined(RM9000_CDEX_SMP_WAR)
950 		c->options |= MIPS_CPU_CACHE_CDEX_P;
951 #endif
952 		c->options |= MIPS_CPU_PREFETCH;
953 		break;
954 
955 	default:
956 		if (!(config & MIPS_CONF_M))
957 			panic("Don't know how to probe P-caches on this cpu.");
958 
959 		/*
960 		 * So we seem to be a MIPS32 or MIPS64 CPU
961 		 * So let's probe the I-cache ...
962 		 */
963 		config1 = read_c0_config1();
964 
965 		if ((lsize = ((config1 >> 19) & 7)))
966 			c->icache.linesz = 2 << lsize;
967 		else
968 			c->icache.linesz = lsize;
969 		c->icache.sets = 64 << ((config1 >> 22) & 7);
970 		c->icache.ways = 1 + ((config1 >> 16) & 7);
971 
972 		icache_size = c->icache.sets *
973 		              c->icache.ways *
974 		              c->icache.linesz;
975 		c->icache.waybit = ffs(icache_size/c->icache.ways) - 1;
976 
977 		if (config & 0x8)		/* VI bit */
978 			c->icache.flags |= MIPS_CACHE_VTAG;
979 
980 		/*
981 		 * Now probe the MIPS32 / MIPS64 data cache.
982 		 */
983 		c->dcache.flags = 0;
984 
985 		if ((lsize = ((config1 >> 10) & 7)))
986 			c->dcache.linesz = 2 << lsize;
987 		else
988 			c->dcache.linesz= lsize;
989 		c->dcache.sets = 64 << ((config1 >> 13) & 7);
990 		c->dcache.ways = 1 + ((config1 >> 7) & 7);
991 
992 		dcache_size = c->dcache.sets *
993 		              c->dcache.ways *
994 		              c->dcache.linesz;
995 		c->dcache.waybit = ffs(dcache_size/c->dcache.ways) - 1;
996 
997 		c->options |= MIPS_CPU_PREFETCH;
998 		break;
999 	}
1000 
1001 	/*
1002 	 * Processor configuration sanity check for the R4000SC erratum
1003 	 * #5.  With page sizes larger than 32kB there is no possibility
1004 	 * to get a VCE exception anymore so we don't care about this
1005 	 * misconfiguration.  The case is rather theoretical anyway;
1006 	 * presumably no vendor is shipping his hardware in the "bad"
1007 	 * configuration.
1008 	 */
1009 	if ((prid & 0xff00) == PRID_IMP_R4000 && (prid & 0xff) < 0x40 &&
1010 	    !(config & CONF_SC) && c->icache.linesz != 16 &&
1011 	    PAGE_SIZE <= 0x8000)
1012 		panic("Improper R4000SC processor configuration detected");
1013 
1014 	/* compute a couple of other cache variables */
1015 	c->icache.waysize = icache_size / c->icache.ways;
1016 	c->dcache.waysize = dcache_size / c->dcache.ways;
1017 
1018 	c->icache.sets = icache_size / (c->icache.linesz * c->icache.ways);
1019 	c->dcache.sets = dcache_size / (c->dcache.linesz * c->dcache.ways);
1020 
1021 	/*
1022 	 * R10000 and R12000 P-caches are odd in a positive way.  They're 32kB
1023 	 * 2-way virtually indexed so normally would suffer from aliases.  So
1024 	 * normally they'd suffer from aliases but magic in the hardware deals
1025 	 * with that for us so we don't need to take care ourselves.
1026 	 */
1027 	switch (c->cputype) {
1028 	case CPU_20KC:
1029 	case CPU_25KF:
1030 	case CPU_R10000:
1031 	case CPU_R12000:
1032 	case CPU_SB1:
1033 		break;
1034 	case CPU_24K:
1035 		if (!(read_c0_config7() & (1 << 16)))
1036 	default:
1037 			if (c->dcache.waysize > PAGE_SIZE)
1038 				c->dcache.flags |= MIPS_CACHE_ALIASES;
1039 	}
1040 
1041 	switch (c->cputype) {
1042 	case CPU_20KC:
1043 		/*
1044 		 * Some older 20Kc chips doesn't have the 'VI' bit in
1045 		 * the config register.
1046 		 */
1047 		c->icache.flags |= MIPS_CACHE_VTAG;
1048 		break;
1049 
1050 	case CPU_AU1000:
1051 	case CPU_AU1500:
1052 	case CPU_AU1100:
1053 	case CPU_AU1550:
1054 	case CPU_AU1200:
1055 		c->icache.flags |= MIPS_CACHE_IC_F_DC;
1056 		break;
1057 	}
1058 
1059 	printk("Primary instruction cache %ldkB, %s, %s, linesize %d bytes.\n",
1060 	       icache_size >> 10,
1061 	       cpu_has_vtag_icache ? "virtually tagged" : "physically tagged",
1062 	       way_string[c->icache.ways], c->icache.linesz);
1063 
1064 	printk("Primary data cache %ldkB, %s, linesize %d bytes.\n",
1065 	       dcache_size >> 10, way_string[c->dcache.ways], c->dcache.linesz);
1066 }
1067 
1068 /*
1069  * If you even _breathe_ on this function, look at the gcc output and make sure
1070  * it does not pop things on and off the stack for the cache sizing loop that
1071  * executes in KSEG1 space or else you will crash and burn badly.  You have
1072  * been warned.
1073  */
1074 static int __init probe_scache(void)
1075 {
1076 	extern unsigned long stext;
1077 	unsigned long flags, addr, begin, end, pow2;
1078 	unsigned int config = read_c0_config();
1079 	struct cpuinfo_mips *c = &current_cpu_data;
1080 	int tmp;
1081 
1082 	if (config & CONF_SC)
1083 		return 0;
1084 
1085 	begin = (unsigned long) &stext;
1086 	begin &= ~((4 * 1024 * 1024) - 1);
1087 	end = begin + (4 * 1024 * 1024);
1088 
1089 	/*
1090 	 * This is such a bitch, you'd think they would make it easy to do
1091 	 * this.  Away you daemons of stupidity!
1092 	 */
1093 	local_irq_save(flags);
1094 
1095 	/* Fill each size-multiple cache line with a valid tag. */
1096 	pow2 = (64 * 1024);
1097 	for (addr = begin; addr < end; addr = (begin + pow2)) {
1098 		unsigned long *p = (unsigned long *) addr;
1099 		__asm__ __volatile__("nop" : : "r" (*p)); /* whee... */
1100 		pow2 <<= 1;
1101 	}
1102 
1103 	/* Load first line with zero (therefore invalid) tag. */
1104 	write_c0_taglo(0);
1105 	write_c0_taghi(0);
1106 	__asm__ __volatile__("nop; nop; nop; nop;"); /* avoid the hazard */
1107 	cache_op(Index_Store_Tag_I, begin);
1108 	cache_op(Index_Store_Tag_D, begin);
1109 	cache_op(Index_Store_Tag_SD, begin);
1110 
1111 	/* Now search for the wrap around point. */
1112 	pow2 = (128 * 1024);
1113 	tmp = 0;
1114 	for (addr = begin + (128 * 1024); addr < end; addr = begin + pow2) {
1115 		cache_op(Index_Load_Tag_SD, addr);
1116 		__asm__ __volatile__("nop; nop; nop; nop;"); /* hazard... */
1117 		if (!read_c0_taglo())
1118 			break;
1119 		pow2 <<= 1;
1120 	}
1121 	local_irq_restore(flags);
1122 	addr -= begin;
1123 
1124 	scache_size = addr;
1125 	c->scache.linesz = 16 << ((config & R4K_CONF_SB) >> 22);
1126 	c->scache.ways = 1;
1127 	c->dcache.waybit = 0;		/* does not matter */
1128 
1129 	return 1;
1130 }
1131 
1132 extern int r5k_sc_init(void);
1133 extern int rm7k_sc_init(void);
1134 
1135 static void __init setup_scache(void)
1136 {
1137 	struct cpuinfo_mips *c = &current_cpu_data;
1138 	unsigned int config = read_c0_config();
1139 	int sc_present = 0;
1140 
1141 	/*
1142 	 * Do the probing thing on R4000SC and R4400SC processors.  Other
1143 	 * processors don't have a S-cache that would be relevant to the
1144 	 * Linux memory managment.
1145 	 */
1146 	switch (c->cputype) {
1147 	case CPU_R4000SC:
1148 	case CPU_R4000MC:
1149 	case CPU_R4400SC:
1150 	case CPU_R4400MC:
1151 		sc_present = run_uncached(probe_scache);
1152 		if (sc_present)
1153 			c->options |= MIPS_CPU_CACHE_CDEX_S;
1154 		break;
1155 
1156 	case CPU_R10000:
1157 	case CPU_R12000:
1158 		scache_size = 0x80000 << ((config & R10K_CONF_SS) >> 16);
1159 		c->scache.linesz = 64 << ((config >> 13) & 1);
1160 		c->scache.ways = 2;
1161 		c->scache.waybit= 0;
1162 		sc_present = 1;
1163 		break;
1164 
1165 	case CPU_R5000:
1166 	case CPU_NEVADA:
1167 #ifdef CONFIG_R5000_CPU_SCACHE
1168 		r5k_sc_init();
1169 #endif
1170                 return;
1171 
1172 	case CPU_RM7000:
1173 	case CPU_RM9000:
1174 #ifdef CONFIG_RM7000_CPU_SCACHE
1175 		rm7k_sc_init();
1176 #endif
1177 		return;
1178 
1179 	default:
1180 		sc_present = 0;
1181 	}
1182 
1183 	if (!sc_present)
1184 		return;
1185 
1186 	if ((c->isa_level == MIPS_CPU_ISA_M32 ||
1187 	     c->isa_level == MIPS_CPU_ISA_M64) &&
1188 	    !(c->scache.flags & MIPS_CACHE_NOT_PRESENT))
1189 		panic("Dunno how to handle MIPS32 / MIPS64 second level cache");
1190 
1191 	/* compute a couple of other cache variables */
1192 	c->scache.waysize = scache_size / c->scache.ways;
1193 
1194 	c->scache.sets = scache_size / (c->scache.linesz * c->scache.ways);
1195 
1196 	printk("Unified secondary cache %ldkB %s, linesize %d bytes.\n",
1197 	       scache_size >> 10, way_string[c->scache.ways], c->scache.linesz);
1198 
1199 	c->options |= MIPS_CPU_SUBSET_CACHES;
1200 }
1201 
1202 static inline void coherency_setup(void)
1203 {
1204 	change_c0_config(CONF_CM_CMASK, CONF_CM_DEFAULT);
1205 
1206 	/*
1207 	 * c0_status.cu=0 specifies that updates by the sc instruction use
1208 	 * the coherency mode specified by the TLB; 1 means cachable
1209 	 * coherent update on write will be used.  Not all processors have
1210 	 * this bit and; some wire it to zero, others like Toshiba had the
1211 	 * silly idea of putting something else there ...
1212 	 */
1213 	switch (current_cpu_data.cputype) {
1214 	case CPU_R4000PC:
1215 	case CPU_R4000SC:
1216 	case CPU_R4000MC:
1217 	case CPU_R4400PC:
1218 	case CPU_R4400SC:
1219 	case CPU_R4400MC:
1220 		clear_c0_config(CONF_CU);
1221 		break;
1222 	}
1223 }
1224 
1225 void __init r4k_cache_init(void)
1226 {
1227 	extern void build_clear_page(void);
1228 	extern void build_copy_page(void);
1229 	extern char except_vec2_generic;
1230 	struct cpuinfo_mips *c = &current_cpu_data;
1231 
1232 	/* Default cache error handler for R4000 and R5000 family */
1233 	set_uncached_handler (0x100, &except_vec2_generic, 0x80);
1234 
1235 	probe_pcache();
1236 	setup_scache();
1237 
1238 	r4k_blast_dcache_page_setup();
1239 	r4k_blast_dcache_page_indexed_setup();
1240 	r4k_blast_dcache_setup();
1241 	r4k_blast_icache_page_setup();
1242 	r4k_blast_icache_page_indexed_setup();
1243 	r4k_blast_icache_setup();
1244 	r4k_blast_scache_page_setup();
1245 	r4k_blast_scache_page_indexed_setup();
1246 	r4k_blast_scache_setup();
1247 
1248 	/*
1249 	 * Some MIPS32 and MIPS64 processors have physically indexed caches.
1250 	 * This code supports virtually indexed processors and will be
1251 	 * unnecessarily inefficient on physically indexed processors.
1252 	 */
1253 	shm_align_mask = max_t( unsigned long,
1254 				c->dcache.sets * c->dcache.linesz - 1,
1255 				PAGE_SIZE - 1);
1256 
1257 	flush_cache_all		= r4k_flush_cache_all;
1258 	__flush_cache_all	= r4k___flush_cache_all;
1259 	flush_cache_mm		= r4k_flush_cache_mm;
1260 	flush_cache_page	= r4k_flush_cache_page;
1261 	flush_icache_page	= r4k_flush_icache_page;
1262 	flush_cache_range	= r4k_flush_cache_range;
1263 
1264 	flush_cache_sigtramp	= r4k_flush_cache_sigtramp;
1265 	flush_icache_all	= r4k_flush_icache_all;
1266 	flush_data_cache_page	= r4k_flush_data_cache_page;
1267 	flush_icache_range	= r4k_flush_icache_range;
1268 
1269 #ifdef CONFIG_DMA_NONCOHERENT
1270 	_dma_cache_wback_inv	= r4k_dma_cache_wback_inv;
1271 	_dma_cache_wback	= r4k_dma_cache_wback_inv;
1272 	_dma_cache_inv		= r4k_dma_cache_inv;
1273 #endif
1274 
1275 	build_clear_page();
1276 	build_copy_page();
1277 	local_r4k___flush_cache_all(NULL);
1278 	coherency_setup();
1279 }
1280