1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle 7 * Copyright (C) 1995, 1996 Paul M. Antoine 8 * Copyright (C) 1998 Ulf Carlsson 9 * Copyright (C) 1999 Silicon Graphics, Inc. 10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com 11 * Copyright (C) 2000, 01 MIPS Technologies, Inc. 12 * Copyright (C) 2002, 2003, 2004, 2005 Maciej W. Rozycki 13 */ 14 #include <linux/config.h> 15 #include <linux/init.h> 16 #include <linux/mm.h> 17 #include <linux/module.h> 18 #include <linux/sched.h> 19 #include <linux/smp.h> 20 #include <linux/smp_lock.h> 21 #include <linux/spinlock.h> 22 #include <linux/kallsyms.h> 23 #include <linux/bootmem.h> 24 25 #include <asm/bootinfo.h> 26 #include <asm/branch.h> 27 #include <asm/break.h> 28 #include <asm/cpu.h> 29 #include <asm/dsp.h> 30 #include <asm/fpu.h> 31 #include <asm/mipsregs.h> 32 #include <asm/mipsmtregs.h> 33 #include <asm/module.h> 34 #include <asm/pgtable.h> 35 #include <asm/ptrace.h> 36 #include <asm/sections.h> 37 #include <asm/system.h> 38 #include <asm/tlbdebug.h> 39 #include <asm/traps.h> 40 #include <asm/uaccess.h> 41 #include <asm/mmu_context.h> 42 #include <asm/watch.h> 43 #include <asm/types.h> 44 45 extern asmlinkage void handle_tlbm(void); 46 extern asmlinkage void handle_tlbl(void); 47 extern asmlinkage void handle_tlbs(void); 48 extern asmlinkage void handle_adel(void); 49 extern asmlinkage void handle_ades(void); 50 extern asmlinkage void handle_ibe(void); 51 extern asmlinkage void handle_dbe(void); 52 extern asmlinkage void handle_sys(void); 53 extern asmlinkage void handle_bp(void); 54 extern asmlinkage void handle_ri(void); 55 extern asmlinkage void handle_cpu(void); 56 extern asmlinkage void handle_ov(void); 57 extern asmlinkage void handle_tr(void); 58 extern asmlinkage void handle_fpe(void); 59 extern asmlinkage void handle_mdmx(void); 60 extern asmlinkage void handle_watch(void); 61 extern asmlinkage void handle_mt(void); 62 extern asmlinkage void handle_dsp(void); 63 extern asmlinkage void handle_mcheck(void); 64 extern asmlinkage void handle_reserved(void); 65 66 extern int fpu_emulator_cop1Handler(struct pt_regs *xcp, 67 struct mips_fpu_soft_struct *ctx); 68 69 void (*board_be_init)(void); 70 int (*board_be_handler)(struct pt_regs *regs, int is_fixup); 71 void (*board_nmi_handler_setup)(void); 72 void (*board_ejtag_handler_setup)(void); 73 void (*board_bind_eic_interrupt)(int irq, int regset); 74 75 /* 76 * These constant is for searching for possible module text segments. 77 * MODULE_RANGE is a guess of how much space is likely to be vmalloced. 78 */ 79 #define MODULE_RANGE (8*1024*1024) 80 81 /* 82 * This routine abuses get_user()/put_user() to reference pointers 83 * with at least a bit of error checking ... 84 */ 85 void show_stack(struct task_struct *task, unsigned long *sp) 86 { 87 const int field = 2 * sizeof(unsigned long); 88 long stackdata; 89 int i; 90 91 if (!sp) { 92 if (task && task != current) 93 sp = (unsigned long *) task->thread.reg29; 94 else 95 sp = (unsigned long *) &sp; 96 } 97 98 printk("Stack :"); 99 i = 0; 100 while ((unsigned long) sp & (PAGE_SIZE - 1)) { 101 if (i && ((i % (64 / field)) == 0)) 102 printk("\n "); 103 if (i > 39) { 104 printk(" ..."); 105 break; 106 } 107 108 if (__get_user(stackdata, sp++)) { 109 printk(" (Bad stack address)"); 110 break; 111 } 112 113 printk(" %0*lx", field, stackdata); 114 i++; 115 } 116 printk("\n"); 117 } 118 119 void show_trace(struct task_struct *task, unsigned long *stack) 120 { 121 const int field = 2 * sizeof(unsigned long); 122 unsigned long addr; 123 124 if (!stack) { 125 if (task && task != current) 126 stack = (unsigned long *) task->thread.reg29; 127 else 128 stack = (unsigned long *) &stack; 129 } 130 131 printk("Call Trace:"); 132 #ifdef CONFIG_KALLSYMS 133 printk("\n"); 134 #endif 135 while (!kstack_end(stack)) { 136 addr = *stack++; 137 if (__kernel_text_address(addr)) { 138 printk(" [<%0*lx>] ", field, addr); 139 print_symbol("%s\n", addr); 140 } 141 } 142 printk("\n"); 143 } 144 145 /* 146 * The architecture-independent dump_stack generator 147 */ 148 void dump_stack(void) 149 { 150 unsigned long stack; 151 152 show_trace(current, &stack); 153 } 154 155 EXPORT_SYMBOL(dump_stack); 156 157 void show_code(unsigned int *pc) 158 { 159 long i; 160 161 printk("\nCode:"); 162 163 for(i = -3 ; i < 6 ; i++) { 164 unsigned int insn; 165 if (__get_user(insn, pc + i)) { 166 printk(" (Bad address in epc)\n"); 167 break; 168 } 169 printk("%c%08x%c", (i?' ':'<'), insn, (i?' ':'>')); 170 } 171 } 172 173 void show_regs(struct pt_regs *regs) 174 { 175 const int field = 2 * sizeof(unsigned long); 176 unsigned int cause = regs->cp0_cause; 177 int i; 178 179 printk("Cpu %d\n", smp_processor_id()); 180 181 /* 182 * Saved main processor registers 183 */ 184 for (i = 0; i < 32; ) { 185 if ((i % 4) == 0) 186 printk("$%2d :", i); 187 if (i == 0) 188 printk(" %0*lx", field, 0UL); 189 else if (i == 26 || i == 27) 190 printk(" %*s", field, ""); 191 else 192 printk(" %0*lx", field, regs->regs[i]); 193 194 i++; 195 if ((i % 4) == 0) 196 printk("\n"); 197 } 198 199 printk("Hi : %0*lx\n", field, regs->hi); 200 printk("Lo : %0*lx\n", field, regs->lo); 201 202 /* 203 * Saved cp0 registers 204 */ 205 printk("epc : %0*lx ", field, regs->cp0_epc); 206 print_symbol("%s ", regs->cp0_epc); 207 printk(" %s\n", print_tainted()); 208 printk("ra : %0*lx ", field, regs->regs[31]); 209 print_symbol("%s\n", regs->regs[31]); 210 211 printk("Status: %08x ", (uint32_t) regs->cp0_status); 212 213 if (current_cpu_data.isa_level == MIPS_CPU_ISA_I) { 214 if (regs->cp0_status & ST0_KUO) 215 printk("KUo "); 216 if (regs->cp0_status & ST0_IEO) 217 printk("IEo "); 218 if (regs->cp0_status & ST0_KUP) 219 printk("KUp "); 220 if (regs->cp0_status & ST0_IEP) 221 printk("IEp "); 222 if (regs->cp0_status & ST0_KUC) 223 printk("KUc "); 224 if (regs->cp0_status & ST0_IEC) 225 printk("IEc "); 226 } else { 227 if (regs->cp0_status & ST0_KX) 228 printk("KX "); 229 if (regs->cp0_status & ST0_SX) 230 printk("SX "); 231 if (regs->cp0_status & ST0_UX) 232 printk("UX "); 233 switch (regs->cp0_status & ST0_KSU) { 234 case KSU_USER: 235 printk("USER "); 236 break; 237 case KSU_SUPERVISOR: 238 printk("SUPERVISOR "); 239 break; 240 case KSU_KERNEL: 241 printk("KERNEL "); 242 break; 243 default: 244 printk("BAD_MODE "); 245 break; 246 } 247 if (regs->cp0_status & ST0_ERL) 248 printk("ERL "); 249 if (regs->cp0_status & ST0_EXL) 250 printk("EXL "); 251 if (regs->cp0_status & ST0_IE) 252 printk("IE "); 253 } 254 printk("\n"); 255 256 printk("Cause : %08x\n", cause); 257 258 cause = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE; 259 if (1 <= cause && cause <= 5) 260 printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr); 261 262 printk("PrId : %08x\n", read_c0_prid()); 263 } 264 265 void show_registers(struct pt_regs *regs) 266 { 267 show_regs(regs); 268 print_modules(); 269 printk("Process %s (pid: %d, threadinfo=%p, task=%p)\n", 270 current->comm, current->pid, current_thread_info(), current); 271 show_stack(current, (long *) regs->regs[29]); 272 show_trace(current, (long *) regs->regs[29]); 273 show_code((unsigned int *) regs->cp0_epc); 274 printk("\n"); 275 } 276 277 static DEFINE_SPINLOCK(die_lock); 278 279 NORET_TYPE void ATTRIB_NORET die(const char * str, struct pt_regs * regs) 280 { 281 static int die_counter; 282 283 console_verbose(); 284 spin_lock_irq(&die_lock); 285 printk("%s[#%d]:\n", str, ++die_counter); 286 show_registers(regs); 287 spin_unlock_irq(&die_lock); 288 do_exit(SIGSEGV); 289 } 290 291 extern const struct exception_table_entry __start___dbe_table[]; 292 extern const struct exception_table_entry __stop___dbe_table[]; 293 294 void __declare_dbe_table(void) 295 { 296 __asm__ __volatile__( 297 ".section\t__dbe_table,\"a\"\n\t" 298 ".previous" 299 ); 300 } 301 302 /* Given an address, look for it in the exception tables. */ 303 static const struct exception_table_entry *search_dbe_tables(unsigned long addr) 304 { 305 const struct exception_table_entry *e; 306 307 e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr); 308 if (!e) 309 e = search_module_dbetables(addr); 310 return e; 311 } 312 313 asmlinkage void do_be(struct pt_regs *regs) 314 { 315 const int field = 2 * sizeof(unsigned long); 316 const struct exception_table_entry *fixup = NULL; 317 int data = regs->cp0_cause & 4; 318 int action = MIPS_BE_FATAL; 319 320 /* XXX For now. Fixme, this searches the wrong table ... */ 321 if (data && !user_mode(regs)) 322 fixup = search_dbe_tables(exception_epc(regs)); 323 324 if (fixup) 325 action = MIPS_BE_FIXUP; 326 327 if (board_be_handler) 328 action = board_be_handler(regs, fixup != 0); 329 330 switch (action) { 331 case MIPS_BE_DISCARD: 332 return; 333 case MIPS_BE_FIXUP: 334 if (fixup) { 335 regs->cp0_epc = fixup->nextinsn; 336 return; 337 } 338 break; 339 default: 340 break; 341 } 342 343 /* 344 * Assume it would be too dangerous to continue ... 345 */ 346 printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n", 347 data ? "Data" : "Instruction", 348 field, regs->cp0_epc, field, regs->regs[31]); 349 die_if_kernel("Oops", regs); 350 force_sig(SIGBUS, current); 351 } 352 353 static inline int get_insn_opcode(struct pt_regs *regs, unsigned int *opcode) 354 { 355 unsigned int __user *epc; 356 357 epc = (unsigned int __user *) regs->cp0_epc + 358 ((regs->cp0_cause & CAUSEF_BD) != 0); 359 if (!get_user(*opcode, epc)) 360 return 0; 361 362 force_sig(SIGSEGV, current); 363 return 1; 364 } 365 366 /* 367 * ll/sc emulation 368 */ 369 370 #define OPCODE 0xfc000000 371 #define BASE 0x03e00000 372 #define RT 0x001f0000 373 #define OFFSET 0x0000ffff 374 #define LL 0xc0000000 375 #define SC 0xe0000000 376 #define SPEC3 0x7c000000 377 #define RD 0x0000f800 378 #define FUNC 0x0000003f 379 #define RDHWR 0x0000003b 380 381 /* 382 * The ll_bit is cleared by r*_switch.S 383 */ 384 385 unsigned long ll_bit; 386 387 static struct task_struct *ll_task = NULL; 388 389 static inline void simulate_ll(struct pt_regs *regs, unsigned int opcode) 390 { 391 unsigned long value, __user *vaddr; 392 long offset; 393 int signal = 0; 394 395 /* 396 * analyse the ll instruction that just caused a ri exception 397 * and put the referenced address to addr. 398 */ 399 400 /* sign extend offset */ 401 offset = opcode & OFFSET; 402 offset <<= 16; 403 offset >>= 16; 404 405 vaddr = (unsigned long __user *) 406 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset); 407 408 if ((unsigned long)vaddr & 3) { 409 signal = SIGBUS; 410 goto sig; 411 } 412 if (get_user(value, vaddr)) { 413 signal = SIGSEGV; 414 goto sig; 415 } 416 417 preempt_disable(); 418 419 if (ll_task == NULL || ll_task == current) { 420 ll_bit = 1; 421 } else { 422 ll_bit = 0; 423 } 424 ll_task = current; 425 426 preempt_enable(); 427 428 compute_return_epc(regs); 429 430 regs->regs[(opcode & RT) >> 16] = value; 431 432 return; 433 434 sig: 435 force_sig(signal, current); 436 } 437 438 static inline void simulate_sc(struct pt_regs *regs, unsigned int opcode) 439 { 440 unsigned long __user *vaddr; 441 unsigned long reg; 442 long offset; 443 int signal = 0; 444 445 /* 446 * analyse the sc instruction that just caused a ri exception 447 * and put the referenced address to addr. 448 */ 449 450 /* sign extend offset */ 451 offset = opcode & OFFSET; 452 offset <<= 16; 453 offset >>= 16; 454 455 vaddr = (unsigned long __user *) 456 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset); 457 reg = (opcode & RT) >> 16; 458 459 if ((unsigned long)vaddr & 3) { 460 signal = SIGBUS; 461 goto sig; 462 } 463 464 preempt_disable(); 465 466 if (ll_bit == 0 || ll_task != current) { 467 compute_return_epc(regs); 468 regs->regs[reg] = 0; 469 preempt_enable(); 470 return; 471 } 472 473 preempt_enable(); 474 475 if (put_user(regs->regs[reg], vaddr)) { 476 signal = SIGSEGV; 477 goto sig; 478 } 479 480 compute_return_epc(regs); 481 regs->regs[reg] = 1; 482 483 return; 484 485 sig: 486 force_sig(signal, current); 487 } 488 489 /* 490 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both 491 * opcodes are supposed to result in coprocessor unusable exceptions if 492 * executed on ll/sc-less processors. That's the theory. In practice a 493 * few processors such as NEC's VR4100 throw reserved instruction exceptions 494 * instead, so we're doing the emulation thing in both exception handlers. 495 */ 496 static inline int simulate_llsc(struct pt_regs *regs) 497 { 498 unsigned int opcode; 499 500 if (unlikely(get_insn_opcode(regs, &opcode))) 501 return -EFAULT; 502 503 if ((opcode & OPCODE) == LL) { 504 simulate_ll(regs, opcode); 505 return 0; 506 } 507 if ((opcode & OPCODE) == SC) { 508 simulate_sc(regs, opcode); 509 return 0; 510 } 511 512 return -EFAULT; /* Strange things going on ... */ 513 } 514 515 /* 516 * Simulate trapping 'rdhwr' instructions to provide user accessible 517 * registers not implemented in hardware. The only current use of this 518 * is the thread area pointer. 519 */ 520 static inline int simulate_rdhwr(struct pt_regs *regs) 521 { 522 struct thread_info *ti = task_thread_info(current); 523 unsigned int opcode; 524 525 if (unlikely(get_insn_opcode(regs, &opcode))) 526 return -EFAULT; 527 528 if (unlikely(compute_return_epc(regs))) 529 return -EFAULT; 530 531 if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) { 532 int rd = (opcode & RD) >> 11; 533 int rt = (opcode & RT) >> 16; 534 switch (rd) { 535 case 29: 536 regs->regs[rt] = ti->tp_value; 537 return 0; 538 default: 539 return -EFAULT; 540 } 541 } 542 543 /* Not ours. */ 544 return -EFAULT; 545 } 546 547 asmlinkage void do_ov(struct pt_regs *regs) 548 { 549 siginfo_t info; 550 551 die_if_kernel("Integer overflow", regs); 552 553 info.si_code = FPE_INTOVF; 554 info.si_signo = SIGFPE; 555 info.si_errno = 0; 556 info.si_addr = (void __user *) regs->cp0_epc; 557 force_sig_info(SIGFPE, &info, current); 558 } 559 560 /* 561 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX 562 */ 563 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31) 564 { 565 if (fcr31 & FPU_CSR_UNI_X) { 566 int sig; 567 568 preempt_disable(); 569 570 #ifdef CONFIG_PREEMPT 571 if (!is_fpu_owner()) { 572 /* We might lose fpu before disabling preempt... */ 573 own_fpu(); 574 BUG_ON(!used_math()); 575 restore_fp(current); 576 } 577 #endif 578 /* 579 * Unimplemented operation exception. If we've got the full 580 * software emulator on-board, let's use it... 581 * 582 * Force FPU to dump state into task/thread context. We're 583 * moving a lot of data here for what is probably a single 584 * instruction, but the alternative is to pre-decode the FP 585 * register operands before invoking the emulator, which seems 586 * a bit extreme for what should be an infrequent event. 587 */ 588 save_fp(current); 589 /* Ensure 'resume' not overwrite saved fp context again. */ 590 lose_fpu(); 591 592 preempt_enable(); 593 594 /* Run the emulator */ 595 sig = fpu_emulator_cop1Handler (regs, 596 ¤t->thread.fpu.soft); 597 598 preempt_disable(); 599 600 own_fpu(); /* Using the FPU again. */ 601 /* 602 * We can't allow the emulated instruction to leave any of 603 * the cause bit set in $fcr31. 604 */ 605 current->thread.fpu.soft.fcr31 &= ~FPU_CSR_ALL_X; 606 607 /* Restore the hardware register state */ 608 restore_fp(current); 609 610 preempt_enable(); 611 612 /* If something went wrong, signal */ 613 if (sig) 614 force_sig(sig, current); 615 616 return; 617 } 618 619 force_sig(SIGFPE, current); 620 } 621 622 asmlinkage void do_bp(struct pt_regs *regs) 623 { 624 unsigned int opcode, bcode; 625 siginfo_t info; 626 627 die_if_kernel("Break instruction in kernel code", regs); 628 629 if (get_insn_opcode(regs, &opcode)) 630 return; 631 632 /* 633 * There is the ancient bug in the MIPS assemblers that the break 634 * code starts left to bit 16 instead to bit 6 in the opcode. 635 * Gas is bug-compatible, but not always, grrr... 636 * We handle both cases with a simple heuristics. --macro 637 */ 638 bcode = ((opcode >> 6) & ((1 << 20) - 1)); 639 if (bcode < (1 << 10)) 640 bcode <<= 10; 641 642 /* 643 * (A short test says that IRIX 5.3 sends SIGTRAP for all break 644 * insns, even for break codes that indicate arithmetic failures. 645 * Weird ...) 646 * But should we continue the brokenness??? --macro 647 */ 648 switch (bcode) { 649 case BRK_OVERFLOW << 10: 650 case BRK_DIVZERO << 10: 651 if (bcode == (BRK_DIVZERO << 10)) 652 info.si_code = FPE_INTDIV; 653 else 654 info.si_code = FPE_INTOVF; 655 info.si_signo = SIGFPE; 656 info.si_errno = 0; 657 info.si_addr = (void __user *) regs->cp0_epc; 658 force_sig_info(SIGFPE, &info, current); 659 break; 660 default: 661 force_sig(SIGTRAP, current); 662 } 663 } 664 665 asmlinkage void do_tr(struct pt_regs *regs) 666 { 667 unsigned int opcode, tcode = 0; 668 siginfo_t info; 669 670 die_if_kernel("Trap instruction in kernel code", regs); 671 672 if (get_insn_opcode(regs, &opcode)) 673 return; 674 675 /* Immediate versions don't provide a code. */ 676 if (!(opcode & OPCODE)) 677 tcode = ((opcode >> 6) & ((1 << 10) - 1)); 678 679 /* 680 * (A short test says that IRIX 5.3 sends SIGTRAP for all trap 681 * insns, even for trap codes that indicate arithmetic failures. 682 * Weird ...) 683 * But should we continue the brokenness??? --macro 684 */ 685 switch (tcode) { 686 case BRK_OVERFLOW: 687 case BRK_DIVZERO: 688 if (tcode == BRK_DIVZERO) 689 info.si_code = FPE_INTDIV; 690 else 691 info.si_code = FPE_INTOVF; 692 info.si_signo = SIGFPE; 693 info.si_errno = 0; 694 info.si_addr = (void __user *) regs->cp0_epc; 695 force_sig_info(SIGFPE, &info, current); 696 break; 697 default: 698 force_sig(SIGTRAP, current); 699 } 700 } 701 702 asmlinkage void do_ri(struct pt_regs *regs) 703 { 704 die_if_kernel("Reserved instruction in kernel code", regs); 705 706 if (!cpu_has_llsc) 707 if (!simulate_llsc(regs)) 708 return; 709 710 if (!simulate_rdhwr(regs)) 711 return; 712 713 force_sig(SIGILL, current); 714 } 715 716 asmlinkage void do_cpu(struct pt_regs *regs) 717 { 718 unsigned int cpid; 719 720 die_if_kernel("do_cpu invoked from kernel context!", regs); 721 722 cpid = (regs->cp0_cause >> CAUSEB_CE) & 3; 723 724 switch (cpid) { 725 case 0: 726 if (!cpu_has_llsc) 727 if (!simulate_llsc(regs)) 728 return; 729 730 if (!simulate_rdhwr(regs)) 731 return; 732 733 break; 734 735 case 1: 736 preempt_disable(); 737 738 own_fpu(); 739 if (used_math()) { /* Using the FPU again. */ 740 restore_fp(current); 741 } else { /* First time FPU user. */ 742 init_fpu(); 743 set_used_math(); 744 } 745 746 preempt_enable(); 747 748 if (!cpu_has_fpu) { 749 int sig = fpu_emulator_cop1Handler(regs, 750 ¤t->thread.fpu.soft); 751 if (sig) 752 force_sig(sig, current); 753 } 754 755 return; 756 757 case 2: 758 case 3: 759 break; 760 } 761 762 force_sig(SIGILL, current); 763 } 764 765 asmlinkage void do_mdmx(struct pt_regs *regs) 766 { 767 force_sig(SIGILL, current); 768 } 769 770 asmlinkage void do_watch(struct pt_regs *regs) 771 { 772 /* 773 * We use the watch exception where available to detect stack 774 * overflows. 775 */ 776 dump_tlb_all(); 777 show_regs(regs); 778 panic("Caught WATCH exception - probably caused by stack overflow."); 779 } 780 781 asmlinkage void do_mcheck(struct pt_regs *regs) 782 { 783 show_regs(regs); 784 dump_tlb_all(); 785 /* 786 * Some chips may have other causes of machine check (e.g. SB1 787 * graduation timer) 788 */ 789 panic("Caught Machine Check exception - %scaused by multiple " 790 "matching entries in the TLB.", 791 (regs->cp0_status & ST0_TS) ? "" : "not "); 792 } 793 794 asmlinkage void do_mt(struct pt_regs *regs) 795 { 796 die_if_kernel("MIPS MT Thread exception in kernel", regs); 797 798 force_sig(SIGILL, current); 799 } 800 801 802 asmlinkage void do_dsp(struct pt_regs *regs) 803 { 804 if (cpu_has_dsp) 805 panic("Unexpected DSP exception\n"); 806 807 force_sig(SIGILL, current); 808 } 809 810 asmlinkage void do_reserved(struct pt_regs *regs) 811 { 812 /* 813 * Game over - no way to handle this if it ever occurs. Most probably 814 * caused by a new unknown cpu type or after another deadly 815 * hard/software error. 816 */ 817 show_regs(regs); 818 panic("Caught reserved exception %ld - should not happen.", 819 (regs->cp0_cause & 0x7f) >> 2); 820 } 821 822 asmlinkage void do_default_vi(struct pt_regs *regs) 823 { 824 show_regs(regs); 825 panic("Caught unexpected vectored interrupt."); 826 } 827 828 /* 829 * Some MIPS CPUs can enable/disable for cache parity detection, but do 830 * it different ways. 831 */ 832 static inline void parity_protection_init(void) 833 { 834 switch (current_cpu_data.cputype) { 835 case CPU_24K: 836 case CPU_5KC: 837 write_c0_ecc(0x80000000); 838 back_to_back_c0_hazard(); 839 /* Set the PE bit (bit 31) in the c0_errctl register. */ 840 printk(KERN_INFO "Cache parity protection %sabled\n", 841 (read_c0_ecc() & 0x80000000) ? "en" : "dis"); 842 break; 843 case CPU_20KC: 844 case CPU_25KF: 845 /* Clear the DE bit (bit 16) in the c0_status register. */ 846 printk(KERN_INFO "Enable cache parity protection for " 847 "MIPS 20KC/25KF CPUs.\n"); 848 clear_c0_status(ST0_DE); 849 break; 850 default: 851 break; 852 } 853 } 854 855 asmlinkage void cache_parity_error(void) 856 { 857 const int field = 2 * sizeof(unsigned long); 858 unsigned int reg_val; 859 860 /* For the moment, report the problem and hang. */ 861 printk("Cache error exception:\n"); 862 printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc()); 863 reg_val = read_c0_cacheerr(); 864 printk("c0_cacheerr == %08x\n", reg_val); 865 866 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n", 867 reg_val & (1<<30) ? "secondary" : "primary", 868 reg_val & (1<<31) ? "data" : "insn"); 869 printk("Error bits: %s%s%s%s%s%s%s\n", 870 reg_val & (1<<29) ? "ED " : "", 871 reg_val & (1<<28) ? "ET " : "", 872 reg_val & (1<<26) ? "EE " : "", 873 reg_val & (1<<25) ? "EB " : "", 874 reg_val & (1<<24) ? "EI " : "", 875 reg_val & (1<<23) ? "E1 " : "", 876 reg_val & (1<<22) ? "E0 " : ""); 877 printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1)); 878 879 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64) 880 if (reg_val & (1<<22)) 881 printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0()); 882 883 if (reg_val & (1<<23)) 884 printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1()); 885 #endif 886 887 panic("Can't handle the cache error!"); 888 } 889 890 /* 891 * SDBBP EJTAG debug exception handler. 892 * We skip the instruction and return to the next instruction. 893 */ 894 void ejtag_exception_handler(struct pt_regs *regs) 895 { 896 const int field = 2 * sizeof(unsigned long); 897 unsigned long depc, old_epc; 898 unsigned int debug; 899 900 printk("SDBBP EJTAG debug exception - not handled yet, just ignored!\n"); 901 depc = read_c0_depc(); 902 debug = read_c0_debug(); 903 printk("c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug); 904 if (debug & 0x80000000) { 905 /* 906 * In branch delay slot. 907 * We cheat a little bit here and use EPC to calculate the 908 * debug return address (DEPC). EPC is restored after the 909 * calculation. 910 */ 911 old_epc = regs->cp0_epc; 912 regs->cp0_epc = depc; 913 __compute_return_epc(regs); 914 depc = regs->cp0_epc; 915 regs->cp0_epc = old_epc; 916 } else 917 depc += 4; 918 write_c0_depc(depc); 919 920 #if 0 921 printk("\n\n----- Enable EJTAG single stepping ----\n\n"); 922 write_c0_debug(debug | 0x100); 923 #endif 924 } 925 926 /* 927 * NMI exception handler. 928 */ 929 void nmi_exception_handler(struct pt_regs *regs) 930 { 931 printk("NMI taken!!!!\n"); 932 die("NMI", regs); 933 while(1) ; 934 } 935 936 #define VECTORSPACING 0x100 /* for EI/VI mode */ 937 938 unsigned long ebase; 939 unsigned long exception_handlers[32]; 940 unsigned long vi_handlers[64]; 941 942 /* 943 * As a side effect of the way this is implemented we're limited 944 * to interrupt handlers in the address range from 945 * KSEG0 <= x < KSEG0 + 256mb on the Nevada. Oh well ... 946 */ 947 void *set_except_vector(int n, void *addr) 948 { 949 unsigned long handler = (unsigned long) addr; 950 unsigned long old_handler = exception_handlers[n]; 951 952 exception_handlers[n] = handler; 953 if (n == 0 && cpu_has_divec) { 954 *(volatile u32 *)(ebase + 0x200) = 0x08000000 | 955 (0x03ffffff & (handler >> 2)); 956 flush_icache_range(ebase + 0x200, ebase + 0x204); 957 } 958 return (void *)old_handler; 959 } 960 961 #ifdef CONFIG_CPU_MIPSR2 962 /* 963 * Shadow register allocation 964 * FIXME: SMP... 965 */ 966 967 /* MIPSR2 shadow register sets */ 968 struct shadow_registers { 969 spinlock_t sr_lock; /* */ 970 int sr_supported; /* Number of shadow register sets supported */ 971 int sr_allocated; /* Bitmap of allocated shadow registers */ 972 } shadow_registers; 973 974 void mips_srs_init(void) 975 { 976 #ifdef CONFIG_CPU_MIPSR2_SRS 977 shadow_registers.sr_supported = ((read_c0_srsctl() >> 26) & 0x0f) + 1; 978 printk ("%d MIPSR2 register sets available\n", shadow_registers.sr_supported); 979 #else 980 shadow_registers.sr_supported = 1; 981 #endif 982 shadow_registers.sr_allocated = 1; /* Set 0 used by kernel */ 983 spin_lock_init(&shadow_registers.sr_lock); 984 } 985 986 int mips_srs_max(void) 987 { 988 return shadow_registers.sr_supported; 989 } 990 991 int mips_srs_alloc (void) 992 { 993 struct shadow_registers *sr = &shadow_registers; 994 unsigned long flags; 995 int set; 996 997 spin_lock_irqsave(&sr->sr_lock, flags); 998 999 for (set = 0; set < sr->sr_supported; set++) { 1000 if ((sr->sr_allocated & (1 << set)) == 0) { 1001 sr->sr_allocated |= 1 << set; 1002 spin_unlock_irqrestore(&sr->sr_lock, flags); 1003 return set; 1004 } 1005 } 1006 1007 /* None available */ 1008 spin_unlock_irqrestore(&sr->sr_lock, flags); 1009 return -1; 1010 } 1011 1012 void mips_srs_free (int set) 1013 { 1014 struct shadow_registers *sr = &shadow_registers; 1015 unsigned long flags; 1016 1017 spin_lock_irqsave(&sr->sr_lock, flags); 1018 sr->sr_allocated &= ~(1 << set); 1019 spin_unlock_irqrestore(&sr->sr_lock, flags); 1020 } 1021 1022 void *set_vi_srs_handler (int n, void *addr, int srs) 1023 { 1024 unsigned long handler; 1025 unsigned long old_handler = vi_handlers[n]; 1026 u32 *w; 1027 unsigned char *b; 1028 1029 if (!cpu_has_veic && !cpu_has_vint) 1030 BUG(); 1031 1032 if (addr == NULL) { 1033 handler = (unsigned long) do_default_vi; 1034 srs = 0; 1035 } 1036 else 1037 handler = (unsigned long) addr; 1038 vi_handlers[n] = (unsigned long) addr; 1039 1040 b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING); 1041 1042 if (srs >= mips_srs_max()) 1043 panic("Shadow register set %d not supported", srs); 1044 1045 if (cpu_has_veic) { 1046 if (board_bind_eic_interrupt) 1047 board_bind_eic_interrupt (n, srs); 1048 } 1049 else if (cpu_has_vint) { 1050 /* SRSMap is only defined if shadow sets are implemented */ 1051 if (mips_srs_max() > 1) 1052 change_c0_srsmap (0xf << n*4, srs << n*4); 1053 } 1054 1055 if (srs == 0) { 1056 /* 1057 * If no shadow set is selected then use the default handler 1058 * that does normal register saving and a standard interrupt exit 1059 */ 1060 1061 extern char except_vec_vi, except_vec_vi_lui; 1062 extern char except_vec_vi_ori, except_vec_vi_end; 1063 const int handler_len = &except_vec_vi_end - &except_vec_vi; 1064 const int lui_offset = &except_vec_vi_lui - &except_vec_vi; 1065 const int ori_offset = &except_vec_vi_ori - &except_vec_vi; 1066 1067 if (handler_len > VECTORSPACING) { 1068 /* 1069 * Sigh... panicing won't help as the console 1070 * is probably not configured :( 1071 */ 1072 panic ("VECTORSPACING too small"); 1073 } 1074 1075 memcpy (b, &except_vec_vi, handler_len); 1076 w = (u32 *)(b + lui_offset); 1077 *w = (*w & 0xffff0000) | (((u32)handler >> 16) & 0xffff); 1078 w = (u32 *)(b + ori_offset); 1079 *w = (*w & 0xffff0000) | ((u32)handler & 0xffff); 1080 flush_icache_range((unsigned long)b, (unsigned long)(b+handler_len)); 1081 } 1082 else { 1083 /* 1084 * In other cases jump directly to the interrupt handler 1085 * 1086 * It is the handlers responsibility to save registers if required 1087 * (eg hi/lo) and return from the exception using "eret" 1088 */ 1089 w = (u32 *)b; 1090 *w++ = 0x08000000 | (((u32)handler >> 2) & 0x03fffff); /* j handler */ 1091 *w = 0; 1092 flush_icache_range((unsigned long)b, (unsigned long)(b+8)); 1093 } 1094 1095 return (void *)old_handler; 1096 } 1097 1098 void *set_vi_handler (int n, void *addr) 1099 { 1100 return set_vi_srs_handler (n, addr, 0); 1101 } 1102 #endif 1103 1104 /* 1105 * This is used by native signal handling 1106 */ 1107 asmlinkage int (*save_fp_context)(struct sigcontext *sc); 1108 asmlinkage int (*restore_fp_context)(struct sigcontext *sc); 1109 1110 extern asmlinkage int _save_fp_context(struct sigcontext *sc); 1111 extern asmlinkage int _restore_fp_context(struct sigcontext *sc); 1112 1113 extern asmlinkage int fpu_emulator_save_context(struct sigcontext *sc); 1114 extern asmlinkage int fpu_emulator_restore_context(struct sigcontext *sc); 1115 1116 static inline void signal_init(void) 1117 { 1118 if (cpu_has_fpu) { 1119 save_fp_context = _save_fp_context; 1120 restore_fp_context = _restore_fp_context; 1121 } else { 1122 save_fp_context = fpu_emulator_save_context; 1123 restore_fp_context = fpu_emulator_restore_context; 1124 } 1125 } 1126 1127 #ifdef CONFIG_MIPS32_COMPAT 1128 1129 /* 1130 * This is used by 32-bit signal stuff on the 64-bit kernel 1131 */ 1132 asmlinkage int (*save_fp_context32)(struct sigcontext32 *sc); 1133 asmlinkage int (*restore_fp_context32)(struct sigcontext32 *sc); 1134 1135 extern asmlinkage int _save_fp_context32(struct sigcontext32 *sc); 1136 extern asmlinkage int _restore_fp_context32(struct sigcontext32 *sc); 1137 1138 extern asmlinkage int fpu_emulator_save_context32(struct sigcontext32 *sc); 1139 extern asmlinkage int fpu_emulator_restore_context32(struct sigcontext32 *sc); 1140 1141 static inline void signal32_init(void) 1142 { 1143 if (cpu_has_fpu) { 1144 save_fp_context32 = _save_fp_context32; 1145 restore_fp_context32 = _restore_fp_context32; 1146 } else { 1147 save_fp_context32 = fpu_emulator_save_context32; 1148 restore_fp_context32 = fpu_emulator_restore_context32; 1149 } 1150 } 1151 #endif 1152 1153 extern void cpu_cache_init(void); 1154 extern void tlb_init(void); 1155 extern void flush_tlb_handlers(void); 1156 1157 void __init per_cpu_trap_init(void) 1158 { 1159 unsigned int cpu = smp_processor_id(); 1160 unsigned int status_set = ST0_CU0; 1161 1162 /* 1163 * Disable coprocessors and select 32-bit or 64-bit addressing 1164 * and the 16/32 or 32/32 FPR register model. Reset the BEV 1165 * flag that some firmware may have left set and the TS bit (for 1166 * IP27). Set XX for ISA IV code to work. 1167 */ 1168 #ifdef CONFIG_64BIT 1169 status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX; 1170 #endif 1171 if (current_cpu_data.isa_level == MIPS_CPU_ISA_IV) 1172 status_set |= ST0_XX; 1173 change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX, 1174 status_set); 1175 1176 if (cpu_has_dsp) 1177 set_c0_status(ST0_MX); 1178 1179 #ifdef CONFIG_CPU_MIPSR2 1180 write_c0_hwrena (0x0000000f); /* Allow rdhwr to all registers */ 1181 #endif 1182 1183 /* 1184 * Interrupt handling. 1185 */ 1186 if (cpu_has_veic || cpu_has_vint) { 1187 write_c0_ebase (ebase); 1188 /* Setting vector spacing enables EI/VI mode */ 1189 change_c0_intctl (0x3e0, VECTORSPACING); 1190 } 1191 if (cpu_has_divec) { 1192 if (cpu_has_mipsmt) { 1193 unsigned int vpflags = dvpe(); 1194 set_c0_cause(CAUSEF_IV); 1195 evpe(vpflags); 1196 } else 1197 set_c0_cause(CAUSEF_IV); 1198 } 1199 1200 cpu_data[cpu].asid_cache = ASID_FIRST_VERSION; 1201 TLBMISS_HANDLER_SETUP(); 1202 1203 atomic_inc(&init_mm.mm_count); 1204 current->active_mm = &init_mm; 1205 BUG_ON(current->mm); 1206 enter_lazy_tlb(&init_mm, current); 1207 1208 cpu_cache_init(); 1209 tlb_init(); 1210 } 1211 1212 /* Install CPU exception handler */ 1213 void __init set_handler (unsigned long offset, void *addr, unsigned long size) 1214 { 1215 memcpy((void *)(ebase + offset), addr, size); 1216 flush_icache_range(ebase + offset, ebase + offset + size); 1217 } 1218 1219 /* Install uncached CPU exception handler */ 1220 void __init set_uncached_handler (unsigned long offset, void *addr, unsigned long size) 1221 { 1222 #ifdef CONFIG_32BIT 1223 unsigned long uncached_ebase = KSEG1ADDR(ebase); 1224 #endif 1225 #ifdef CONFIG_64BIT 1226 unsigned long uncached_ebase = TO_UNCAC(ebase); 1227 #endif 1228 1229 memcpy((void *)(uncached_ebase + offset), addr, size); 1230 } 1231 1232 void __init trap_init(void) 1233 { 1234 extern char except_vec3_generic, except_vec3_r4000; 1235 extern char except_vec4; 1236 unsigned long i; 1237 1238 if (cpu_has_veic || cpu_has_vint) 1239 ebase = (unsigned long) alloc_bootmem_low_pages (0x200 + VECTORSPACING*64); 1240 else 1241 ebase = CAC_BASE; 1242 1243 #ifdef CONFIG_CPU_MIPSR2 1244 mips_srs_init(); 1245 #endif 1246 1247 per_cpu_trap_init(); 1248 1249 /* 1250 * Copy the generic exception handlers to their final destination. 1251 * This will be overriden later as suitable for a particular 1252 * configuration. 1253 */ 1254 set_handler(0x180, &except_vec3_generic, 0x80); 1255 1256 /* 1257 * Setup default vectors 1258 */ 1259 for (i = 0; i <= 31; i++) 1260 set_except_vector(i, handle_reserved); 1261 1262 /* 1263 * Copy the EJTAG debug exception vector handler code to it's final 1264 * destination. 1265 */ 1266 if (cpu_has_ejtag && board_ejtag_handler_setup) 1267 board_ejtag_handler_setup (); 1268 1269 /* 1270 * Only some CPUs have the watch exceptions. 1271 */ 1272 if (cpu_has_watch) 1273 set_except_vector(23, handle_watch); 1274 1275 /* 1276 * Initialise interrupt handlers 1277 */ 1278 if (cpu_has_veic || cpu_has_vint) { 1279 int nvec = cpu_has_veic ? 64 : 8; 1280 for (i = 0; i < nvec; i++) 1281 set_vi_handler (i, NULL); 1282 } 1283 else if (cpu_has_divec) 1284 set_handler(0x200, &except_vec4, 0x8); 1285 1286 /* 1287 * Some CPUs can enable/disable for cache parity detection, but does 1288 * it different ways. 1289 */ 1290 parity_protection_init(); 1291 1292 /* 1293 * The Data Bus Errors / Instruction Bus Errors are signaled 1294 * by external hardware. Therefore these two exceptions 1295 * may have board specific handlers. 1296 */ 1297 if (board_be_init) 1298 board_be_init(); 1299 1300 set_except_vector(1, handle_tlbm); 1301 set_except_vector(2, handle_tlbl); 1302 set_except_vector(3, handle_tlbs); 1303 1304 set_except_vector(4, handle_adel); 1305 set_except_vector(5, handle_ades); 1306 1307 set_except_vector(6, handle_ibe); 1308 set_except_vector(7, handle_dbe); 1309 1310 set_except_vector(8, handle_sys); 1311 set_except_vector(9, handle_bp); 1312 set_except_vector(10, handle_ri); 1313 set_except_vector(11, handle_cpu); 1314 set_except_vector(12, handle_ov); 1315 set_except_vector(13, handle_tr); 1316 1317 if (current_cpu_data.cputype == CPU_R6000 || 1318 current_cpu_data.cputype == CPU_R6000A) { 1319 /* 1320 * The R6000 is the only R-series CPU that features a machine 1321 * check exception (similar to the R4000 cache error) and 1322 * unaligned ldc1/sdc1 exception. The handlers have not been 1323 * written yet. Well, anyway there is no R6000 machine on the 1324 * current list of targets for Linux/MIPS. 1325 * (Duh, crap, there is someone with a triple R6k machine) 1326 */ 1327 //set_except_vector(14, handle_mc); 1328 //set_except_vector(15, handle_ndc); 1329 } 1330 1331 1332 if (board_nmi_handler_setup) 1333 board_nmi_handler_setup(); 1334 1335 if (cpu_has_fpu && !cpu_has_nofpuex) 1336 set_except_vector(15, handle_fpe); 1337 1338 set_except_vector(22, handle_mdmx); 1339 1340 if (cpu_has_mcheck) 1341 set_except_vector(24, handle_mcheck); 1342 1343 if (cpu_has_mipsmt) 1344 set_except_vector(25, handle_mt); 1345 1346 if (cpu_has_dsp) 1347 set_except_vector(26, handle_dsp); 1348 1349 if (cpu_has_vce) 1350 /* Special exception: R4[04]00 uses also the divec space. */ 1351 memcpy((void *)(CAC_BASE + 0x180), &except_vec3_r4000, 0x100); 1352 else if (cpu_has_4kex) 1353 memcpy((void *)(CAC_BASE + 0x180), &except_vec3_generic, 0x80); 1354 else 1355 memcpy((void *)(CAC_BASE + 0x080), &except_vec3_generic, 0x80); 1356 1357 signal_init(); 1358 #ifdef CONFIG_MIPS32_COMPAT 1359 signal32_init(); 1360 #endif 1361 1362 flush_icache_range(ebase, ebase + 0x400); 1363 flush_tlb_handlers(); 1364 } 1365