xref: /linux/arch/mips/kernel/traps.c (revision de2fe5e07d58424bc286fff3fd3c1b0bf933cd58)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7  * Copyright (C) 1995, 1996 Paul M. Antoine
8  * Copyright (C) 1998 Ulf Carlsson
9  * Copyright (C) 1999 Silicon Graphics, Inc.
10  * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11  * Copyright (C) 2000, 01 MIPS Technologies, Inc.
12  * Copyright (C) 2002, 2003, 2004, 2005  Maciej W. Rozycki
13  */
14 #include <linux/config.h>
15 #include <linux/init.h>
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/sched.h>
19 #include <linux/smp.h>
20 #include <linux/smp_lock.h>
21 #include <linux/spinlock.h>
22 #include <linux/kallsyms.h>
23 #include <linux/bootmem.h>
24 
25 #include <asm/bootinfo.h>
26 #include <asm/branch.h>
27 #include <asm/break.h>
28 #include <asm/cpu.h>
29 #include <asm/dsp.h>
30 #include <asm/fpu.h>
31 #include <asm/mipsregs.h>
32 #include <asm/mipsmtregs.h>
33 #include <asm/module.h>
34 #include <asm/pgtable.h>
35 #include <asm/ptrace.h>
36 #include <asm/sections.h>
37 #include <asm/system.h>
38 #include <asm/tlbdebug.h>
39 #include <asm/traps.h>
40 #include <asm/uaccess.h>
41 #include <asm/mmu_context.h>
42 #include <asm/watch.h>
43 #include <asm/types.h>
44 
45 extern asmlinkage void handle_tlbm(void);
46 extern asmlinkage void handle_tlbl(void);
47 extern asmlinkage void handle_tlbs(void);
48 extern asmlinkage void handle_adel(void);
49 extern asmlinkage void handle_ades(void);
50 extern asmlinkage void handle_ibe(void);
51 extern asmlinkage void handle_dbe(void);
52 extern asmlinkage void handle_sys(void);
53 extern asmlinkage void handle_bp(void);
54 extern asmlinkage void handle_ri(void);
55 extern asmlinkage void handle_cpu(void);
56 extern asmlinkage void handle_ov(void);
57 extern asmlinkage void handle_tr(void);
58 extern asmlinkage void handle_fpe(void);
59 extern asmlinkage void handle_mdmx(void);
60 extern asmlinkage void handle_watch(void);
61 extern asmlinkage void handle_mt(void);
62 extern asmlinkage void handle_dsp(void);
63 extern asmlinkage void handle_mcheck(void);
64 extern asmlinkage void handle_reserved(void);
65 
66 extern int fpu_emulator_cop1Handler(struct pt_regs *xcp,
67 	struct mips_fpu_soft_struct *ctx);
68 
69 void (*board_be_init)(void);
70 int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
71 void (*board_nmi_handler_setup)(void);
72 void (*board_ejtag_handler_setup)(void);
73 void (*board_bind_eic_interrupt)(int irq, int regset);
74 
75 /*
76  * These constant is for searching for possible module text segments.
77  * MODULE_RANGE is a guess of how much space is likely to be vmalloced.
78  */
79 #define MODULE_RANGE (8*1024*1024)
80 
81 /*
82  * This routine abuses get_user()/put_user() to reference pointers
83  * with at least a bit of error checking ...
84  */
85 void show_stack(struct task_struct *task, unsigned long *sp)
86 {
87 	const int field = 2 * sizeof(unsigned long);
88 	long stackdata;
89 	int i;
90 
91 	if (!sp) {
92 		if (task && task != current)
93 			sp = (unsigned long *) task->thread.reg29;
94 		else
95 			sp = (unsigned long *) &sp;
96 	}
97 
98 	printk("Stack :");
99 	i = 0;
100 	while ((unsigned long) sp & (PAGE_SIZE - 1)) {
101 		if (i && ((i % (64 / field)) == 0))
102 			printk("\n       ");
103 		if (i > 39) {
104 			printk(" ...");
105 			break;
106 		}
107 
108 		if (__get_user(stackdata, sp++)) {
109 			printk(" (Bad stack address)");
110 			break;
111 		}
112 
113 		printk(" %0*lx", field, stackdata);
114 		i++;
115 	}
116 	printk("\n");
117 }
118 
119 void show_trace(struct task_struct *task, unsigned long *stack)
120 {
121 	const int field = 2 * sizeof(unsigned long);
122 	unsigned long addr;
123 
124 	if (!stack) {
125 		if (task && task != current)
126 			stack = (unsigned long *) task->thread.reg29;
127 		else
128 			stack = (unsigned long *) &stack;
129 	}
130 
131 	printk("Call Trace:");
132 #ifdef CONFIG_KALLSYMS
133 	printk("\n");
134 #endif
135 	while (!kstack_end(stack)) {
136 		addr = *stack++;
137 		if (__kernel_text_address(addr)) {
138 			printk(" [<%0*lx>] ", field, addr);
139 			print_symbol("%s\n", addr);
140 		}
141 	}
142 	printk("\n");
143 }
144 
145 /*
146  * The architecture-independent dump_stack generator
147  */
148 void dump_stack(void)
149 {
150 	unsigned long stack;
151 
152 	show_trace(current, &stack);
153 }
154 
155 EXPORT_SYMBOL(dump_stack);
156 
157 void show_code(unsigned int *pc)
158 {
159 	long i;
160 
161 	printk("\nCode:");
162 
163 	for(i = -3 ; i < 6 ; i++) {
164 		unsigned int insn;
165 		if (__get_user(insn, pc + i)) {
166 			printk(" (Bad address in epc)\n");
167 			break;
168 		}
169 		printk("%c%08x%c", (i?' ':'<'), insn, (i?' ':'>'));
170 	}
171 }
172 
173 void show_regs(struct pt_regs *regs)
174 {
175 	const int field = 2 * sizeof(unsigned long);
176 	unsigned int cause = regs->cp0_cause;
177 	int i;
178 
179 	printk("Cpu %d\n", smp_processor_id());
180 
181 	/*
182 	 * Saved main processor registers
183 	 */
184 	for (i = 0; i < 32; ) {
185 		if ((i % 4) == 0)
186 			printk("$%2d   :", i);
187 		if (i == 0)
188 			printk(" %0*lx", field, 0UL);
189 		else if (i == 26 || i == 27)
190 			printk(" %*s", field, "");
191 		else
192 			printk(" %0*lx", field, regs->regs[i]);
193 
194 		i++;
195 		if ((i % 4) == 0)
196 			printk("\n");
197 	}
198 
199 	printk("Hi    : %0*lx\n", field, regs->hi);
200 	printk("Lo    : %0*lx\n", field, regs->lo);
201 
202 	/*
203 	 * Saved cp0 registers
204 	 */
205 	printk("epc   : %0*lx ", field, regs->cp0_epc);
206 	print_symbol("%s ", regs->cp0_epc);
207 	printk("    %s\n", print_tainted());
208 	printk("ra    : %0*lx ", field, regs->regs[31]);
209 	print_symbol("%s\n", regs->regs[31]);
210 
211 	printk("Status: %08x    ", (uint32_t) regs->cp0_status);
212 
213 	if (current_cpu_data.isa_level == MIPS_CPU_ISA_I) {
214 		if (regs->cp0_status & ST0_KUO)
215 			printk("KUo ");
216 		if (regs->cp0_status & ST0_IEO)
217 			printk("IEo ");
218 		if (regs->cp0_status & ST0_KUP)
219 			printk("KUp ");
220 		if (regs->cp0_status & ST0_IEP)
221 			printk("IEp ");
222 		if (regs->cp0_status & ST0_KUC)
223 			printk("KUc ");
224 		if (regs->cp0_status & ST0_IEC)
225 			printk("IEc ");
226 	} else {
227 		if (regs->cp0_status & ST0_KX)
228 			printk("KX ");
229 		if (regs->cp0_status & ST0_SX)
230 			printk("SX ");
231 		if (regs->cp0_status & ST0_UX)
232 			printk("UX ");
233 		switch (regs->cp0_status & ST0_KSU) {
234 		case KSU_USER:
235 			printk("USER ");
236 			break;
237 		case KSU_SUPERVISOR:
238 			printk("SUPERVISOR ");
239 			break;
240 		case KSU_KERNEL:
241 			printk("KERNEL ");
242 			break;
243 		default:
244 			printk("BAD_MODE ");
245 			break;
246 		}
247 		if (regs->cp0_status & ST0_ERL)
248 			printk("ERL ");
249 		if (regs->cp0_status & ST0_EXL)
250 			printk("EXL ");
251 		if (regs->cp0_status & ST0_IE)
252 			printk("IE ");
253 	}
254 	printk("\n");
255 
256 	printk("Cause : %08x\n", cause);
257 
258 	cause = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
259 	if (1 <= cause && cause <= 5)
260 		printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
261 
262 	printk("PrId  : %08x\n", read_c0_prid());
263 }
264 
265 void show_registers(struct pt_regs *regs)
266 {
267 	show_regs(regs);
268 	print_modules();
269 	printk("Process %s (pid: %d, threadinfo=%p, task=%p)\n",
270 	        current->comm, current->pid, current_thread_info(), current);
271 	show_stack(current, (long *) regs->regs[29]);
272 	show_trace(current, (long *) regs->regs[29]);
273 	show_code((unsigned int *) regs->cp0_epc);
274 	printk("\n");
275 }
276 
277 static DEFINE_SPINLOCK(die_lock);
278 
279 NORET_TYPE void ATTRIB_NORET die(const char * str, struct pt_regs * regs)
280 {
281 	static int die_counter;
282 
283 	console_verbose();
284 	spin_lock_irq(&die_lock);
285 	printk("%s[#%d]:\n", str, ++die_counter);
286 	show_registers(regs);
287 	spin_unlock_irq(&die_lock);
288 	do_exit(SIGSEGV);
289 }
290 
291 extern const struct exception_table_entry __start___dbe_table[];
292 extern const struct exception_table_entry __stop___dbe_table[];
293 
294 void __declare_dbe_table(void)
295 {
296 	__asm__ __volatile__(
297 	".section\t__dbe_table,\"a\"\n\t"
298 	".previous"
299 	);
300 }
301 
302 /* Given an address, look for it in the exception tables. */
303 static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
304 {
305 	const struct exception_table_entry *e;
306 
307 	e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr);
308 	if (!e)
309 		e = search_module_dbetables(addr);
310 	return e;
311 }
312 
313 asmlinkage void do_be(struct pt_regs *regs)
314 {
315 	const int field = 2 * sizeof(unsigned long);
316 	const struct exception_table_entry *fixup = NULL;
317 	int data = regs->cp0_cause & 4;
318 	int action = MIPS_BE_FATAL;
319 
320 	/* XXX For now.  Fixme, this searches the wrong table ...  */
321 	if (data && !user_mode(regs))
322 		fixup = search_dbe_tables(exception_epc(regs));
323 
324 	if (fixup)
325 		action = MIPS_BE_FIXUP;
326 
327 	if (board_be_handler)
328 		action = board_be_handler(regs, fixup != 0);
329 
330 	switch (action) {
331 	case MIPS_BE_DISCARD:
332 		return;
333 	case MIPS_BE_FIXUP:
334 		if (fixup) {
335 			regs->cp0_epc = fixup->nextinsn;
336 			return;
337 		}
338 		break;
339 	default:
340 		break;
341 	}
342 
343 	/*
344 	 * Assume it would be too dangerous to continue ...
345 	 */
346 	printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
347 	       data ? "Data" : "Instruction",
348 	       field, regs->cp0_epc, field, regs->regs[31]);
349 	die_if_kernel("Oops", regs);
350 	force_sig(SIGBUS, current);
351 }
352 
353 static inline int get_insn_opcode(struct pt_regs *regs, unsigned int *opcode)
354 {
355 	unsigned int __user *epc;
356 
357 	epc = (unsigned int __user *) regs->cp0_epc +
358 	      ((regs->cp0_cause & CAUSEF_BD) != 0);
359 	if (!get_user(*opcode, epc))
360 		return 0;
361 
362 	force_sig(SIGSEGV, current);
363 	return 1;
364 }
365 
366 /*
367  * ll/sc emulation
368  */
369 
370 #define OPCODE 0xfc000000
371 #define BASE   0x03e00000
372 #define RT     0x001f0000
373 #define OFFSET 0x0000ffff
374 #define LL     0xc0000000
375 #define SC     0xe0000000
376 #define SPEC3  0x7c000000
377 #define RD     0x0000f800
378 #define FUNC   0x0000003f
379 #define RDHWR  0x0000003b
380 
381 /*
382  * The ll_bit is cleared by r*_switch.S
383  */
384 
385 unsigned long ll_bit;
386 
387 static struct task_struct *ll_task = NULL;
388 
389 static inline void simulate_ll(struct pt_regs *regs, unsigned int opcode)
390 {
391 	unsigned long value, __user *vaddr;
392 	long offset;
393 	int signal = 0;
394 
395 	/*
396 	 * analyse the ll instruction that just caused a ri exception
397 	 * and put the referenced address to addr.
398 	 */
399 
400 	/* sign extend offset */
401 	offset = opcode & OFFSET;
402 	offset <<= 16;
403 	offset >>= 16;
404 
405 	vaddr = (unsigned long __user *)
406 	        ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
407 
408 	if ((unsigned long)vaddr & 3) {
409 		signal = SIGBUS;
410 		goto sig;
411 	}
412 	if (get_user(value, vaddr)) {
413 		signal = SIGSEGV;
414 		goto sig;
415 	}
416 
417 	preempt_disable();
418 
419 	if (ll_task == NULL || ll_task == current) {
420 		ll_bit = 1;
421 	} else {
422 		ll_bit = 0;
423 	}
424 	ll_task = current;
425 
426 	preempt_enable();
427 
428 	compute_return_epc(regs);
429 
430 	regs->regs[(opcode & RT) >> 16] = value;
431 
432 	return;
433 
434 sig:
435 	force_sig(signal, current);
436 }
437 
438 static inline void simulate_sc(struct pt_regs *regs, unsigned int opcode)
439 {
440 	unsigned long __user *vaddr;
441 	unsigned long reg;
442 	long offset;
443 	int signal = 0;
444 
445 	/*
446 	 * analyse the sc instruction that just caused a ri exception
447 	 * and put the referenced address to addr.
448 	 */
449 
450 	/* sign extend offset */
451 	offset = opcode & OFFSET;
452 	offset <<= 16;
453 	offset >>= 16;
454 
455 	vaddr = (unsigned long __user *)
456 	        ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
457 	reg = (opcode & RT) >> 16;
458 
459 	if ((unsigned long)vaddr & 3) {
460 		signal = SIGBUS;
461 		goto sig;
462 	}
463 
464 	preempt_disable();
465 
466 	if (ll_bit == 0 || ll_task != current) {
467 		compute_return_epc(regs);
468 		regs->regs[reg] = 0;
469 		preempt_enable();
470 		return;
471 	}
472 
473 	preempt_enable();
474 
475 	if (put_user(regs->regs[reg], vaddr)) {
476 		signal = SIGSEGV;
477 		goto sig;
478 	}
479 
480 	compute_return_epc(regs);
481 	regs->regs[reg] = 1;
482 
483 	return;
484 
485 sig:
486 	force_sig(signal, current);
487 }
488 
489 /*
490  * ll uses the opcode of lwc0 and sc uses the opcode of swc0.  That is both
491  * opcodes are supposed to result in coprocessor unusable exceptions if
492  * executed on ll/sc-less processors.  That's the theory.  In practice a
493  * few processors such as NEC's VR4100 throw reserved instruction exceptions
494  * instead, so we're doing the emulation thing in both exception handlers.
495  */
496 static inline int simulate_llsc(struct pt_regs *regs)
497 {
498 	unsigned int opcode;
499 
500 	if (unlikely(get_insn_opcode(regs, &opcode)))
501 		return -EFAULT;
502 
503 	if ((opcode & OPCODE) == LL) {
504 		simulate_ll(regs, opcode);
505 		return 0;
506 	}
507 	if ((opcode & OPCODE) == SC) {
508 		simulate_sc(regs, opcode);
509 		return 0;
510 	}
511 
512 	return -EFAULT;			/* Strange things going on ... */
513 }
514 
515 /*
516  * Simulate trapping 'rdhwr' instructions to provide user accessible
517  * registers not implemented in hardware.  The only current use of this
518  * is the thread area pointer.
519  */
520 static inline int simulate_rdhwr(struct pt_regs *regs)
521 {
522 	struct thread_info *ti = task_thread_info(current);
523 	unsigned int opcode;
524 
525 	if (unlikely(get_insn_opcode(regs, &opcode)))
526 		return -EFAULT;
527 
528 	if (unlikely(compute_return_epc(regs)))
529 		return -EFAULT;
530 
531 	if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
532 		int rd = (opcode & RD) >> 11;
533 		int rt = (opcode & RT) >> 16;
534 		switch (rd) {
535 			case 29:
536 				regs->regs[rt] = ti->tp_value;
537 				return 0;
538 			default:
539 				return -EFAULT;
540 		}
541 	}
542 
543 	/* Not ours.  */
544 	return -EFAULT;
545 }
546 
547 asmlinkage void do_ov(struct pt_regs *regs)
548 {
549 	siginfo_t info;
550 
551 	die_if_kernel("Integer overflow", regs);
552 
553 	info.si_code = FPE_INTOVF;
554 	info.si_signo = SIGFPE;
555 	info.si_errno = 0;
556 	info.si_addr = (void __user *) regs->cp0_epc;
557 	force_sig_info(SIGFPE, &info, current);
558 }
559 
560 /*
561  * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
562  */
563 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
564 {
565 	if (fcr31 & FPU_CSR_UNI_X) {
566 		int sig;
567 
568 		preempt_disable();
569 
570 #ifdef CONFIG_PREEMPT
571 		if (!is_fpu_owner()) {
572 			/* We might lose fpu before disabling preempt... */
573 			own_fpu();
574 			BUG_ON(!used_math());
575 			restore_fp(current);
576 		}
577 #endif
578 		/*
579 		 * Unimplemented operation exception.  If we've got the full
580 		 * software emulator on-board, let's use it...
581 		 *
582 		 * Force FPU to dump state into task/thread context.  We're
583 		 * moving a lot of data here for what is probably a single
584 		 * instruction, but the alternative is to pre-decode the FP
585 		 * register operands before invoking the emulator, which seems
586 		 * a bit extreme for what should be an infrequent event.
587 		 */
588 		save_fp(current);
589 		/* Ensure 'resume' not overwrite saved fp context again. */
590 		lose_fpu();
591 
592 		preempt_enable();
593 
594 		/* Run the emulator */
595 		sig = fpu_emulator_cop1Handler (regs,
596 			&current->thread.fpu.soft);
597 
598 		preempt_disable();
599 
600 		own_fpu();	/* Using the FPU again.  */
601 		/*
602 		 * We can't allow the emulated instruction to leave any of
603 		 * the cause bit set in $fcr31.
604 		 */
605 		current->thread.fpu.soft.fcr31 &= ~FPU_CSR_ALL_X;
606 
607 		/* Restore the hardware register state */
608 		restore_fp(current);
609 
610 		preempt_enable();
611 
612 		/* If something went wrong, signal */
613 		if (sig)
614 			force_sig(sig, current);
615 
616 		return;
617 	}
618 
619 	force_sig(SIGFPE, current);
620 }
621 
622 asmlinkage void do_bp(struct pt_regs *regs)
623 {
624 	unsigned int opcode, bcode;
625 	siginfo_t info;
626 
627 	die_if_kernel("Break instruction in kernel code", regs);
628 
629 	if (get_insn_opcode(regs, &opcode))
630 		return;
631 
632 	/*
633 	 * There is the ancient bug in the MIPS assemblers that the break
634 	 * code starts left to bit 16 instead to bit 6 in the opcode.
635 	 * Gas is bug-compatible, but not always, grrr...
636 	 * We handle both cases with a simple heuristics.  --macro
637 	 */
638 	bcode = ((opcode >> 6) & ((1 << 20) - 1));
639 	if (bcode < (1 << 10))
640 		bcode <<= 10;
641 
642 	/*
643 	 * (A short test says that IRIX 5.3 sends SIGTRAP for all break
644 	 * insns, even for break codes that indicate arithmetic failures.
645 	 * Weird ...)
646 	 * But should we continue the brokenness???  --macro
647 	 */
648 	switch (bcode) {
649 	case BRK_OVERFLOW << 10:
650 	case BRK_DIVZERO << 10:
651 		if (bcode == (BRK_DIVZERO << 10))
652 			info.si_code = FPE_INTDIV;
653 		else
654 			info.si_code = FPE_INTOVF;
655 		info.si_signo = SIGFPE;
656 		info.si_errno = 0;
657 		info.si_addr = (void __user *) regs->cp0_epc;
658 		force_sig_info(SIGFPE, &info, current);
659 		break;
660 	default:
661 		force_sig(SIGTRAP, current);
662 	}
663 }
664 
665 asmlinkage void do_tr(struct pt_regs *regs)
666 {
667 	unsigned int opcode, tcode = 0;
668 	siginfo_t info;
669 
670 	die_if_kernel("Trap instruction in kernel code", regs);
671 
672 	if (get_insn_opcode(regs, &opcode))
673 		return;
674 
675 	/* Immediate versions don't provide a code.  */
676 	if (!(opcode & OPCODE))
677 		tcode = ((opcode >> 6) & ((1 << 10) - 1));
678 
679 	/*
680 	 * (A short test says that IRIX 5.3 sends SIGTRAP for all trap
681 	 * insns, even for trap codes that indicate arithmetic failures.
682 	 * Weird ...)
683 	 * But should we continue the brokenness???  --macro
684 	 */
685 	switch (tcode) {
686 	case BRK_OVERFLOW:
687 	case BRK_DIVZERO:
688 		if (tcode == BRK_DIVZERO)
689 			info.si_code = FPE_INTDIV;
690 		else
691 			info.si_code = FPE_INTOVF;
692 		info.si_signo = SIGFPE;
693 		info.si_errno = 0;
694 		info.si_addr = (void __user *) regs->cp0_epc;
695 		force_sig_info(SIGFPE, &info, current);
696 		break;
697 	default:
698 		force_sig(SIGTRAP, current);
699 	}
700 }
701 
702 asmlinkage void do_ri(struct pt_regs *regs)
703 {
704 	die_if_kernel("Reserved instruction in kernel code", regs);
705 
706 	if (!cpu_has_llsc)
707 		if (!simulate_llsc(regs))
708 			return;
709 
710 	if (!simulate_rdhwr(regs))
711 		return;
712 
713 	force_sig(SIGILL, current);
714 }
715 
716 asmlinkage void do_cpu(struct pt_regs *regs)
717 {
718 	unsigned int cpid;
719 
720 	die_if_kernel("do_cpu invoked from kernel context!", regs);
721 
722 	cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
723 
724 	switch (cpid) {
725 	case 0:
726 		if (!cpu_has_llsc)
727 			if (!simulate_llsc(regs))
728 				return;
729 
730 		if (!simulate_rdhwr(regs))
731 			return;
732 
733 		break;
734 
735 	case 1:
736 		preempt_disable();
737 
738 		own_fpu();
739 		if (used_math()) {	/* Using the FPU again.  */
740 			restore_fp(current);
741 		} else {			/* First time FPU user.  */
742 			init_fpu();
743 			set_used_math();
744 		}
745 
746 		preempt_enable();
747 
748 		if (!cpu_has_fpu) {
749 			int sig = fpu_emulator_cop1Handler(regs,
750 						&current->thread.fpu.soft);
751 			if (sig)
752 				force_sig(sig, current);
753 		}
754 
755 		return;
756 
757 	case 2:
758 	case 3:
759 		break;
760 	}
761 
762 	force_sig(SIGILL, current);
763 }
764 
765 asmlinkage void do_mdmx(struct pt_regs *regs)
766 {
767 	force_sig(SIGILL, current);
768 }
769 
770 asmlinkage void do_watch(struct pt_regs *regs)
771 {
772 	/*
773 	 * We use the watch exception where available to detect stack
774 	 * overflows.
775 	 */
776 	dump_tlb_all();
777 	show_regs(regs);
778 	panic("Caught WATCH exception - probably caused by stack overflow.");
779 }
780 
781 asmlinkage void do_mcheck(struct pt_regs *regs)
782 {
783 	show_regs(regs);
784 	dump_tlb_all();
785 	/*
786 	 * Some chips may have other causes of machine check (e.g. SB1
787 	 * graduation timer)
788 	 */
789 	panic("Caught Machine Check exception - %scaused by multiple "
790 	      "matching entries in the TLB.",
791 	      (regs->cp0_status & ST0_TS) ? "" : "not ");
792 }
793 
794 asmlinkage void do_mt(struct pt_regs *regs)
795 {
796 	die_if_kernel("MIPS MT Thread exception in kernel", regs);
797 
798 	force_sig(SIGILL, current);
799 }
800 
801 
802 asmlinkage void do_dsp(struct pt_regs *regs)
803 {
804 	if (cpu_has_dsp)
805 		panic("Unexpected DSP exception\n");
806 
807 	force_sig(SIGILL, current);
808 }
809 
810 asmlinkage void do_reserved(struct pt_regs *regs)
811 {
812 	/*
813 	 * Game over - no way to handle this if it ever occurs.  Most probably
814 	 * caused by a new unknown cpu type or after another deadly
815 	 * hard/software error.
816 	 */
817 	show_regs(regs);
818 	panic("Caught reserved exception %ld - should not happen.",
819 	      (regs->cp0_cause & 0x7f) >> 2);
820 }
821 
822 asmlinkage void do_default_vi(struct pt_regs *regs)
823 {
824 	show_regs(regs);
825 	panic("Caught unexpected vectored interrupt.");
826 }
827 
828 /*
829  * Some MIPS CPUs can enable/disable for cache parity detection, but do
830  * it different ways.
831  */
832 static inline void parity_protection_init(void)
833 {
834 	switch (current_cpu_data.cputype) {
835 	case CPU_24K:
836 	case CPU_5KC:
837 		write_c0_ecc(0x80000000);
838 		back_to_back_c0_hazard();
839 		/* Set the PE bit (bit 31) in the c0_errctl register. */
840 		printk(KERN_INFO "Cache parity protection %sabled\n",
841 		       (read_c0_ecc() & 0x80000000) ? "en" : "dis");
842 		break;
843 	case CPU_20KC:
844 	case CPU_25KF:
845 		/* Clear the DE bit (bit 16) in the c0_status register. */
846 		printk(KERN_INFO "Enable cache parity protection for "
847 		       "MIPS 20KC/25KF CPUs.\n");
848 		clear_c0_status(ST0_DE);
849 		break;
850 	default:
851 		break;
852 	}
853 }
854 
855 asmlinkage void cache_parity_error(void)
856 {
857 	const int field = 2 * sizeof(unsigned long);
858 	unsigned int reg_val;
859 
860 	/* For the moment, report the problem and hang. */
861 	printk("Cache error exception:\n");
862 	printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
863 	reg_val = read_c0_cacheerr();
864 	printk("c0_cacheerr == %08x\n", reg_val);
865 
866 	printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
867 	       reg_val & (1<<30) ? "secondary" : "primary",
868 	       reg_val & (1<<31) ? "data" : "insn");
869 	printk("Error bits: %s%s%s%s%s%s%s\n",
870 	       reg_val & (1<<29) ? "ED " : "",
871 	       reg_val & (1<<28) ? "ET " : "",
872 	       reg_val & (1<<26) ? "EE " : "",
873 	       reg_val & (1<<25) ? "EB " : "",
874 	       reg_val & (1<<24) ? "EI " : "",
875 	       reg_val & (1<<23) ? "E1 " : "",
876 	       reg_val & (1<<22) ? "E0 " : "");
877 	printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
878 
879 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
880 	if (reg_val & (1<<22))
881 		printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
882 
883 	if (reg_val & (1<<23))
884 		printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
885 #endif
886 
887 	panic("Can't handle the cache error!");
888 }
889 
890 /*
891  * SDBBP EJTAG debug exception handler.
892  * We skip the instruction and return to the next instruction.
893  */
894 void ejtag_exception_handler(struct pt_regs *regs)
895 {
896 	const int field = 2 * sizeof(unsigned long);
897 	unsigned long depc, old_epc;
898 	unsigned int debug;
899 
900 	printk("SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
901 	depc = read_c0_depc();
902 	debug = read_c0_debug();
903 	printk("c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
904 	if (debug & 0x80000000) {
905 		/*
906 		 * In branch delay slot.
907 		 * We cheat a little bit here and use EPC to calculate the
908 		 * debug return address (DEPC). EPC is restored after the
909 		 * calculation.
910 		 */
911 		old_epc = regs->cp0_epc;
912 		regs->cp0_epc = depc;
913 		__compute_return_epc(regs);
914 		depc = regs->cp0_epc;
915 		regs->cp0_epc = old_epc;
916 	} else
917 		depc += 4;
918 	write_c0_depc(depc);
919 
920 #if 0
921 	printk("\n\n----- Enable EJTAG single stepping ----\n\n");
922 	write_c0_debug(debug | 0x100);
923 #endif
924 }
925 
926 /*
927  * NMI exception handler.
928  */
929 void nmi_exception_handler(struct pt_regs *regs)
930 {
931 	printk("NMI taken!!!!\n");
932 	die("NMI", regs);
933 	while(1) ;
934 }
935 
936 #define VECTORSPACING 0x100	/* for EI/VI mode */
937 
938 unsigned long ebase;
939 unsigned long exception_handlers[32];
940 unsigned long vi_handlers[64];
941 
942 /*
943  * As a side effect of the way this is implemented we're limited
944  * to interrupt handlers in the address range from
945  * KSEG0 <= x < KSEG0 + 256mb on the Nevada.  Oh well ...
946  */
947 void *set_except_vector(int n, void *addr)
948 {
949 	unsigned long handler = (unsigned long) addr;
950 	unsigned long old_handler = exception_handlers[n];
951 
952 	exception_handlers[n] = handler;
953 	if (n == 0 && cpu_has_divec) {
954 		*(volatile u32 *)(ebase + 0x200) = 0x08000000 |
955 		                                 (0x03ffffff & (handler >> 2));
956 		flush_icache_range(ebase + 0x200, ebase + 0x204);
957 	}
958 	return (void *)old_handler;
959 }
960 
961 #ifdef CONFIG_CPU_MIPSR2
962 /*
963  * Shadow register allocation
964  * FIXME: SMP...
965  */
966 
967 /* MIPSR2 shadow register sets */
968 struct shadow_registers {
969 	spinlock_t sr_lock;	/*  */
970 	int sr_supported;	/* Number of shadow register sets supported */
971 	int sr_allocated;	/* Bitmap of allocated shadow registers */
972 } shadow_registers;
973 
974 void mips_srs_init(void)
975 {
976 #ifdef CONFIG_CPU_MIPSR2_SRS
977 	shadow_registers.sr_supported = ((read_c0_srsctl() >> 26) & 0x0f) + 1;
978 	printk ("%d MIPSR2 register sets available\n", shadow_registers.sr_supported);
979 #else
980 	shadow_registers.sr_supported = 1;
981 #endif
982 	shadow_registers.sr_allocated = 1;	/* Set 0 used by kernel */
983 	spin_lock_init(&shadow_registers.sr_lock);
984 }
985 
986 int mips_srs_max(void)
987 {
988 	return shadow_registers.sr_supported;
989 }
990 
991 int mips_srs_alloc (void)
992 {
993 	struct shadow_registers *sr = &shadow_registers;
994 	unsigned long flags;
995 	int set;
996 
997 	spin_lock_irqsave(&sr->sr_lock, flags);
998 
999 	for (set = 0; set < sr->sr_supported; set++) {
1000 		if ((sr->sr_allocated & (1 << set)) == 0) {
1001 			sr->sr_allocated |= 1 << set;
1002 			spin_unlock_irqrestore(&sr->sr_lock, flags);
1003 			return set;
1004 		}
1005 	}
1006 
1007 	/* None available */
1008 	spin_unlock_irqrestore(&sr->sr_lock, flags);
1009 	return -1;
1010 }
1011 
1012 void mips_srs_free (int set)
1013 {
1014 	struct shadow_registers *sr = &shadow_registers;
1015 	unsigned long flags;
1016 
1017 	spin_lock_irqsave(&sr->sr_lock, flags);
1018 	sr->sr_allocated &= ~(1 << set);
1019 	spin_unlock_irqrestore(&sr->sr_lock, flags);
1020 }
1021 
1022 void *set_vi_srs_handler (int n, void *addr, int srs)
1023 {
1024 	unsigned long handler;
1025 	unsigned long old_handler = vi_handlers[n];
1026 	u32 *w;
1027 	unsigned char *b;
1028 
1029 	if (!cpu_has_veic && !cpu_has_vint)
1030 		BUG();
1031 
1032 	if (addr == NULL) {
1033 		handler = (unsigned long) do_default_vi;
1034 		srs = 0;
1035 	}
1036 	else
1037 		handler = (unsigned long) addr;
1038 	vi_handlers[n] = (unsigned long) addr;
1039 
1040 	b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
1041 
1042 	if (srs >= mips_srs_max())
1043 		panic("Shadow register set %d not supported", srs);
1044 
1045 	if (cpu_has_veic) {
1046 		if (board_bind_eic_interrupt)
1047 			board_bind_eic_interrupt (n, srs);
1048 	}
1049 	else if (cpu_has_vint) {
1050 		/* SRSMap is only defined if shadow sets are implemented */
1051 		if (mips_srs_max() > 1)
1052 			change_c0_srsmap (0xf << n*4, srs << n*4);
1053 	}
1054 
1055 	if (srs == 0) {
1056 		/*
1057 		 * If no shadow set is selected then use the default handler
1058 		 * that does normal register saving and a standard interrupt exit
1059 		 */
1060 
1061 		extern char except_vec_vi, except_vec_vi_lui;
1062 		extern char except_vec_vi_ori, except_vec_vi_end;
1063 		const int handler_len = &except_vec_vi_end - &except_vec_vi;
1064 		const int lui_offset = &except_vec_vi_lui - &except_vec_vi;
1065 		const int ori_offset = &except_vec_vi_ori - &except_vec_vi;
1066 
1067 		if (handler_len > VECTORSPACING) {
1068 			/*
1069 			 * Sigh... panicing won't help as the console
1070 			 * is probably not configured :(
1071 			 */
1072 			panic ("VECTORSPACING too small");
1073 		}
1074 
1075 		memcpy (b, &except_vec_vi, handler_len);
1076 		w = (u32 *)(b + lui_offset);
1077 		*w = (*w & 0xffff0000) | (((u32)handler >> 16) & 0xffff);
1078 		w = (u32 *)(b + ori_offset);
1079 		*w = (*w & 0xffff0000) | ((u32)handler & 0xffff);
1080 		flush_icache_range((unsigned long)b, (unsigned long)(b+handler_len));
1081 	}
1082 	else {
1083 		/*
1084 		 * In other cases jump directly to the interrupt handler
1085 		 *
1086 		 * It is the handlers responsibility to save registers if required
1087 		 * (eg hi/lo) and return from the exception using "eret"
1088 		 */
1089 		w = (u32 *)b;
1090 		*w++ = 0x08000000 | (((u32)handler >> 2) & 0x03fffff); /* j handler */
1091 		*w = 0;
1092 		flush_icache_range((unsigned long)b, (unsigned long)(b+8));
1093 	}
1094 
1095 	return (void *)old_handler;
1096 }
1097 
1098 void *set_vi_handler (int n, void *addr)
1099 {
1100 	return set_vi_srs_handler (n, addr, 0);
1101 }
1102 #endif
1103 
1104 /*
1105  * This is used by native signal handling
1106  */
1107 asmlinkage int (*save_fp_context)(struct sigcontext *sc);
1108 asmlinkage int (*restore_fp_context)(struct sigcontext *sc);
1109 
1110 extern asmlinkage int _save_fp_context(struct sigcontext *sc);
1111 extern asmlinkage int _restore_fp_context(struct sigcontext *sc);
1112 
1113 extern asmlinkage int fpu_emulator_save_context(struct sigcontext *sc);
1114 extern asmlinkage int fpu_emulator_restore_context(struct sigcontext *sc);
1115 
1116 static inline void signal_init(void)
1117 {
1118 	if (cpu_has_fpu) {
1119 		save_fp_context = _save_fp_context;
1120 		restore_fp_context = _restore_fp_context;
1121 	} else {
1122 		save_fp_context = fpu_emulator_save_context;
1123 		restore_fp_context = fpu_emulator_restore_context;
1124 	}
1125 }
1126 
1127 #ifdef CONFIG_MIPS32_COMPAT
1128 
1129 /*
1130  * This is used by 32-bit signal stuff on the 64-bit kernel
1131  */
1132 asmlinkage int (*save_fp_context32)(struct sigcontext32 *sc);
1133 asmlinkage int (*restore_fp_context32)(struct sigcontext32 *sc);
1134 
1135 extern asmlinkage int _save_fp_context32(struct sigcontext32 *sc);
1136 extern asmlinkage int _restore_fp_context32(struct sigcontext32 *sc);
1137 
1138 extern asmlinkage int fpu_emulator_save_context32(struct sigcontext32 *sc);
1139 extern asmlinkage int fpu_emulator_restore_context32(struct sigcontext32 *sc);
1140 
1141 static inline void signal32_init(void)
1142 {
1143 	if (cpu_has_fpu) {
1144 		save_fp_context32 = _save_fp_context32;
1145 		restore_fp_context32 = _restore_fp_context32;
1146 	} else {
1147 		save_fp_context32 = fpu_emulator_save_context32;
1148 		restore_fp_context32 = fpu_emulator_restore_context32;
1149 	}
1150 }
1151 #endif
1152 
1153 extern void cpu_cache_init(void);
1154 extern void tlb_init(void);
1155 extern void flush_tlb_handlers(void);
1156 
1157 void __init per_cpu_trap_init(void)
1158 {
1159 	unsigned int cpu = smp_processor_id();
1160 	unsigned int status_set = ST0_CU0;
1161 
1162 	/*
1163 	 * Disable coprocessors and select 32-bit or 64-bit addressing
1164 	 * and the 16/32 or 32/32 FPR register model.  Reset the BEV
1165 	 * flag that some firmware may have left set and the TS bit (for
1166 	 * IP27).  Set XX for ISA IV code to work.
1167 	 */
1168 #ifdef CONFIG_64BIT
1169 	status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
1170 #endif
1171 	if (current_cpu_data.isa_level == MIPS_CPU_ISA_IV)
1172 		status_set |= ST0_XX;
1173 	change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
1174 			 status_set);
1175 
1176 	if (cpu_has_dsp)
1177 		set_c0_status(ST0_MX);
1178 
1179 #ifdef CONFIG_CPU_MIPSR2
1180 	write_c0_hwrena (0x0000000f); /* Allow rdhwr to all registers */
1181 #endif
1182 
1183 	/*
1184 	 * Interrupt handling.
1185 	 */
1186 	if (cpu_has_veic || cpu_has_vint) {
1187 		write_c0_ebase (ebase);
1188 		/* Setting vector spacing enables EI/VI mode  */
1189 		change_c0_intctl (0x3e0, VECTORSPACING);
1190 	}
1191 	if (cpu_has_divec) {
1192 		if (cpu_has_mipsmt) {
1193 			unsigned int vpflags = dvpe();
1194 			set_c0_cause(CAUSEF_IV);
1195 			evpe(vpflags);
1196 		} else
1197 			set_c0_cause(CAUSEF_IV);
1198 	}
1199 
1200 	cpu_data[cpu].asid_cache = ASID_FIRST_VERSION;
1201 	TLBMISS_HANDLER_SETUP();
1202 
1203 	atomic_inc(&init_mm.mm_count);
1204 	current->active_mm = &init_mm;
1205 	BUG_ON(current->mm);
1206 	enter_lazy_tlb(&init_mm, current);
1207 
1208 	cpu_cache_init();
1209 	tlb_init();
1210 }
1211 
1212 /* Install CPU exception handler */
1213 void __init set_handler (unsigned long offset, void *addr, unsigned long size)
1214 {
1215 	memcpy((void *)(ebase + offset), addr, size);
1216 	flush_icache_range(ebase + offset, ebase + offset + size);
1217 }
1218 
1219 /* Install uncached CPU exception handler */
1220 void __init set_uncached_handler (unsigned long offset, void *addr, unsigned long size)
1221 {
1222 #ifdef CONFIG_32BIT
1223 	unsigned long uncached_ebase = KSEG1ADDR(ebase);
1224 #endif
1225 #ifdef CONFIG_64BIT
1226 	unsigned long uncached_ebase = TO_UNCAC(ebase);
1227 #endif
1228 
1229 	memcpy((void *)(uncached_ebase + offset), addr, size);
1230 }
1231 
1232 void __init trap_init(void)
1233 {
1234 	extern char except_vec3_generic, except_vec3_r4000;
1235 	extern char except_vec4;
1236 	unsigned long i;
1237 
1238 	if (cpu_has_veic || cpu_has_vint)
1239 		ebase = (unsigned long) alloc_bootmem_low_pages (0x200 + VECTORSPACING*64);
1240 	else
1241 		ebase = CAC_BASE;
1242 
1243 #ifdef CONFIG_CPU_MIPSR2
1244 	mips_srs_init();
1245 #endif
1246 
1247 	per_cpu_trap_init();
1248 
1249 	/*
1250 	 * Copy the generic exception handlers to their final destination.
1251 	 * This will be overriden later as suitable for a particular
1252 	 * configuration.
1253 	 */
1254 	set_handler(0x180, &except_vec3_generic, 0x80);
1255 
1256 	/*
1257 	 * Setup default vectors
1258 	 */
1259 	for (i = 0; i <= 31; i++)
1260 		set_except_vector(i, handle_reserved);
1261 
1262 	/*
1263 	 * Copy the EJTAG debug exception vector handler code to it's final
1264 	 * destination.
1265 	 */
1266 	if (cpu_has_ejtag && board_ejtag_handler_setup)
1267 		board_ejtag_handler_setup ();
1268 
1269 	/*
1270 	 * Only some CPUs have the watch exceptions.
1271 	 */
1272 	if (cpu_has_watch)
1273 		set_except_vector(23, handle_watch);
1274 
1275 	/*
1276 	 * Initialise interrupt handlers
1277 	 */
1278 	if (cpu_has_veic || cpu_has_vint) {
1279 		int nvec = cpu_has_veic ? 64 : 8;
1280 		for (i = 0; i < nvec; i++)
1281 			set_vi_handler (i, NULL);
1282 	}
1283 	else if (cpu_has_divec)
1284 		set_handler(0x200, &except_vec4, 0x8);
1285 
1286 	/*
1287 	 * Some CPUs can enable/disable for cache parity detection, but does
1288 	 * it different ways.
1289 	 */
1290 	parity_protection_init();
1291 
1292 	/*
1293 	 * The Data Bus Errors / Instruction Bus Errors are signaled
1294 	 * by external hardware.  Therefore these two exceptions
1295 	 * may have board specific handlers.
1296 	 */
1297 	if (board_be_init)
1298 		board_be_init();
1299 
1300 	set_except_vector(1, handle_tlbm);
1301 	set_except_vector(2, handle_tlbl);
1302 	set_except_vector(3, handle_tlbs);
1303 
1304 	set_except_vector(4, handle_adel);
1305 	set_except_vector(5, handle_ades);
1306 
1307 	set_except_vector(6, handle_ibe);
1308 	set_except_vector(7, handle_dbe);
1309 
1310 	set_except_vector(8, handle_sys);
1311 	set_except_vector(9, handle_bp);
1312 	set_except_vector(10, handle_ri);
1313 	set_except_vector(11, handle_cpu);
1314 	set_except_vector(12, handle_ov);
1315 	set_except_vector(13, handle_tr);
1316 
1317 	if (current_cpu_data.cputype == CPU_R6000 ||
1318 	    current_cpu_data.cputype == CPU_R6000A) {
1319 		/*
1320 		 * The R6000 is the only R-series CPU that features a machine
1321 		 * check exception (similar to the R4000 cache error) and
1322 		 * unaligned ldc1/sdc1 exception.  The handlers have not been
1323 		 * written yet.  Well, anyway there is no R6000 machine on the
1324 		 * current list of targets for Linux/MIPS.
1325 		 * (Duh, crap, there is someone with a triple R6k machine)
1326 		 */
1327 		//set_except_vector(14, handle_mc);
1328 		//set_except_vector(15, handle_ndc);
1329 	}
1330 
1331 
1332 	if (board_nmi_handler_setup)
1333 		board_nmi_handler_setup();
1334 
1335 	if (cpu_has_fpu && !cpu_has_nofpuex)
1336 		set_except_vector(15, handle_fpe);
1337 
1338 	set_except_vector(22, handle_mdmx);
1339 
1340 	if (cpu_has_mcheck)
1341 		set_except_vector(24, handle_mcheck);
1342 
1343 	if (cpu_has_mipsmt)
1344 		set_except_vector(25, handle_mt);
1345 
1346 	if (cpu_has_dsp)
1347 		set_except_vector(26, handle_dsp);
1348 
1349 	if (cpu_has_vce)
1350 		/* Special exception: R4[04]00 uses also the divec space. */
1351 		memcpy((void *)(CAC_BASE + 0x180), &except_vec3_r4000, 0x100);
1352 	else if (cpu_has_4kex)
1353 		memcpy((void *)(CAC_BASE + 0x180), &except_vec3_generic, 0x80);
1354 	else
1355 		memcpy((void *)(CAC_BASE + 0x080), &except_vec3_generic, 0x80);
1356 
1357 	signal_init();
1358 #ifdef CONFIG_MIPS32_COMPAT
1359 	signal32_init();
1360 #endif
1361 
1362 	flush_icache_range(ebase, ebase + 0x400);
1363 	flush_tlb_handlers();
1364 }
1365