xref: /linux/arch/mips/kernel/traps.c (revision 9d796e66230205cd3366f5660387bd9ecca9d336)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7  * Copyright (C) 1995, 1996 Paul M. Antoine
8  * Copyright (C) 1998 Ulf Carlsson
9  * Copyright (C) 1999 Silicon Graphics, Inc.
10  * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11  * Copyright (C) 2002, 2003, 2004, 2005, 2007  Maciej W. Rozycki
12  * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc.  All rights reserved.
13  * Copyright (C) 2014, Imagination Technologies Ltd.
14  */
15 #include <linux/bug.h>
16 #include <linux/compiler.h>
17 #include <linux/context_tracking.h>
18 #include <linux/cpu_pm.h>
19 #include <linux/kexec.h>
20 #include <linux/init.h>
21 #include <linux/kernel.h>
22 #include <linux/module.h>
23 #include <linux/mm.h>
24 #include <linux/sched.h>
25 #include <linux/smp.h>
26 #include <linux/spinlock.h>
27 #include <linux/kallsyms.h>
28 #include <linux/bootmem.h>
29 #include <linux/interrupt.h>
30 #include <linux/ptrace.h>
31 #include <linux/kgdb.h>
32 #include <linux/kdebug.h>
33 #include <linux/kprobes.h>
34 #include <linux/notifier.h>
35 #include <linux/kdb.h>
36 #include <linux/irq.h>
37 #include <linux/perf_event.h>
38 
39 #include <asm/bootinfo.h>
40 #include <asm/branch.h>
41 #include <asm/break.h>
42 #include <asm/cop2.h>
43 #include <asm/cpu.h>
44 #include <asm/cpu-type.h>
45 #include <asm/dsp.h>
46 #include <asm/fpu.h>
47 #include <asm/fpu_emulator.h>
48 #include <asm/idle.h>
49 #include <asm/mips-r2-to-r6-emul.h>
50 #include <asm/mipsregs.h>
51 #include <asm/mipsmtregs.h>
52 #include <asm/module.h>
53 #include <asm/msa.h>
54 #include <asm/pgtable.h>
55 #include <asm/ptrace.h>
56 #include <asm/sections.h>
57 #include <asm/tlbdebug.h>
58 #include <asm/traps.h>
59 #include <asm/uaccess.h>
60 #include <asm/watch.h>
61 #include <asm/mmu_context.h>
62 #include <asm/types.h>
63 #include <asm/stacktrace.h>
64 #include <asm/uasm.h>
65 
66 extern void check_wait(void);
67 extern asmlinkage void rollback_handle_int(void);
68 extern asmlinkage void handle_int(void);
69 extern u32 handle_tlbl[];
70 extern u32 handle_tlbs[];
71 extern u32 handle_tlbm[];
72 extern asmlinkage void handle_adel(void);
73 extern asmlinkage void handle_ades(void);
74 extern asmlinkage void handle_ibe(void);
75 extern asmlinkage void handle_dbe(void);
76 extern asmlinkage void handle_sys(void);
77 extern asmlinkage void handle_bp(void);
78 extern asmlinkage void handle_ri(void);
79 extern asmlinkage void handle_ri_rdhwr_vivt(void);
80 extern asmlinkage void handle_ri_rdhwr(void);
81 extern asmlinkage void handle_cpu(void);
82 extern asmlinkage void handle_ov(void);
83 extern asmlinkage void handle_tr(void);
84 extern asmlinkage void handle_msa_fpe(void);
85 extern asmlinkage void handle_fpe(void);
86 extern asmlinkage void handle_ftlb(void);
87 extern asmlinkage void handle_msa(void);
88 extern asmlinkage void handle_mdmx(void);
89 extern asmlinkage void handle_watch(void);
90 extern asmlinkage void handle_mt(void);
91 extern asmlinkage void handle_dsp(void);
92 extern asmlinkage void handle_mcheck(void);
93 extern asmlinkage void handle_reserved(void);
94 extern void tlb_do_page_fault_0(void);
95 
96 void (*board_be_init)(void);
97 int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
98 void (*board_nmi_handler_setup)(void);
99 void (*board_ejtag_handler_setup)(void);
100 void (*board_bind_eic_interrupt)(int irq, int regset);
101 void (*board_ebase_setup)(void);
102 void(*board_cache_error_setup)(void);
103 
104 static void show_raw_backtrace(unsigned long reg29)
105 {
106 	unsigned long *sp = (unsigned long *)(reg29 & ~3);
107 	unsigned long addr;
108 
109 	printk("Call Trace:");
110 #ifdef CONFIG_KALLSYMS
111 	printk("\n");
112 #endif
113 	while (!kstack_end(sp)) {
114 		unsigned long __user *p =
115 			(unsigned long __user *)(unsigned long)sp++;
116 		if (__get_user(addr, p)) {
117 			printk(" (Bad stack address)");
118 			break;
119 		}
120 		if (__kernel_text_address(addr))
121 			print_ip_sym(addr);
122 	}
123 	printk("\n");
124 }
125 
126 #ifdef CONFIG_KALLSYMS
127 int raw_show_trace;
128 static int __init set_raw_show_trace(char *str)
129 {
130 	raw_show_trace = 1;
131 	return 1;
132 }
133 __setup("raw_show_trace", set_raw_show_trace);
134 #endif
135 
136 static void show_backtrace(struct task_struct *task, const struct pt_regs *regs)
137 {
138 	unsigned long sp = regs->regs[29];
139 	unsigned long ra = regs->regs[31];
140 	unsigned long pc = regs->cp0_epc;
141 
142 	if (!task)
143 		task = current;
144 
145 	if (raw_show_trace || !__kernel_text_address(pc)) {
146 		show_raw_backtrace(sp);
147 		return;
148 	}
149 	printk("Call Trace:\n");
150 	do {
151 		print_ip_sym(pc);
152 		pc = unwind_stack(task, &sp, pc, &ra);
153 	} while (pc);
154 	printk("\n");
155 }
156 
157 /*
158  * This routine abuses get_user()/put_user() to reference pointers
159  * with at least a bit of error checking ...
160  */
161 static void show_stacktrace(struct task_struct *task,
162 	const struct pt_regs *regs)
163 {
164 	const int field = 2 * sizeof(unsigned long);
165 	long stackdata;
166 	int i;
167 	unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
168 
169 	printk("Stack :");
170 	i = 0;
171 	while ((unsigned long) sp & (PAGE_SIZE - 1)) {
172 		if (i && ((i % (64 / field)) == 0))
173 			printk("\n	 ");
174 		if (i > 39) {
175 			printk(" ...");
176 			break;
177 		}
178 
179 		if (__get_user(stackdata, sp++)) {
180 			printk(" (Bad stack address)");
181 			break;
182 		}
183 
184 		printk(" %0*lx", field, stackdata);
185 		i++;
186 	}
187 	printk("\n");
188 	show_backtrace(task, regs);
189 }
190 
191 void show_stack(struct task_struct *task, unsigned long *sp)
192 {
193 	struct pt_regs regs;
194 	if (sp) {
195 		regs.regs[29] = (unsigned long)sp;
196 		regs.regs[31] = 0;
197 		regs.cp0_epc = 0;
198 	} else {
199 		if (task && task != current) {
200 			regs.regs[29] = task->thread.reg29;
201 			regs.regs[31] = 0;
202 			regs.cp0_epc = task->thread.reg31;
203 #ifdef CONFIG_KGDB_KDB
204 		} else if (atomic_read(&kgdb_active) != -1 &&
205 			   kdb_current_regs) {
206 			memcpy(&regs, kdb_current_regs, sizeof(regs));
207 #endif /* CONFIG_KGDB_KDB */
208 		} else {
209 			prepare_frametrace(&regs);
210 		}
211 	}
212 	show_stacktrace(task, &regs);
213 }
214 
215 static void show_code(unsigned int __user *pc)
216 {
217 	long i;
218 	unsigned short __user *pc16 = NULL;
219 
220 	printk("\nCode:");
221 
222 	if ((unsigned long)pc & 1)
223 		pc16 = (unsigned short __user *)((unsigned long)pc & ~1);
224 	for(i = -3 ; i < 6 ; i++) {
225 		unsigned int insn;
226 		if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) {
227 			printk(" (Bad address in epc)\n");
228 			break;
229 		}
230 		printk("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>'));
231 	}
232 }
233 
234 static void __show_regs(const struct pt_regs *regs)
235 {
236 	const int field = 2 * sizeof(unsigned long);
237 	unsigned int cause = regs->cp0_cause;
238 	int i;
239 
240 	show_regs_print_info(KERN_DEFAULT);
241 
242 	/*
243 	 * Saved main processor registers
244 	 */
245 	for (i = 0; i < 32; ) {
246 		if ((i % 4) == 0)
247 			printk("$%2d   :", i);
248 		if (i == 0)
249 			printk(" %0*lx", field, 0UL);
250 		else if (i == 26 || i == 27)
251 			printk(" %*s", field, "");
252 		else
253 			printk(" %0*lx", field, regs->regs[i]);
254 
255 		i++;
256 		if ((i % 4) == 0)
257 			printk("\n");
258 	}
259 
260 #ifdef CONFIG_CPU_HAS_SMARTMIPS
261 	printk("Acx    : %0*lx\n", field, regs->acx);
262 #endif
263 	printk("Hi    : %0*lx\n", field, regs->hi);
264 	printk("Lo    : %0*lx\n", field, regs->lo);
265 
266 	/*
267 	 * Saved cp0 registers
268 	 */
269 	printk("epc   : %0*lx %pS\n", field, regs->cp0_epc,
270 	       (void *) regs->cp0_epc);
271 	printk("    %s\n", print_tainted());
272 	printk("ra    : %0*lx %pS\n", field, regs->regs[31],
273 	       (void *) regs->regs[31]);
274 
275 	printk("Status: %08x	", (uint32_t) regs->cp0_status);
276 
277 	if (cpu_has_3kex) {
278 		if (regs->cp0_status & ST0_KUO)
279 			printk("KUo ");
280 		if (regs->cp0_status & ST0_IEO)
281 			printk("IEo ");
282 		if (regs->cp0_status & ST0_KUP)
283 			printk("KUp ");
284 		if (regs->cp0_status & ST0_IEP)
285 			printk("IEp ");
286 		if (regs->cp0_status & ST0_KUC)
287 			printk("KUc ");
288 		if (regs->cp0_status & ST0_IEC)
289 			printk("IEc ");
290 	} else if (cpu_has_4kex) {
291 		if (regs->cp0_status & ST0_KX)
292 			printk("KX ");
293 		if (regs->cp0_status & ST0_SX)
294 			printk("SX ");
295 		if (regs->cp0_status & ST0_UX)
296 			printk("UX ");
297 		switch (regs->cp0_status & ST0_KSU) {
298 		case KSU_USER:
299 			printk("USER ");
300 			break;
301 		case KSU_SUPERVISOR:
302 			printk("SUPERVISOR ");
303 			break;
304 		case KSU_KERNEL:
305 			printk("KERNEL ");
306 			break;
307 		default:
308 			printk("BAD_MODE ");
309 			break;
310 		}
311 		if (regs->cp0_status & ST0_ERL)
312 			printk("ERL ");
313 		if (regs->cp0_status & ST0_EXL)
314 			printk("EXL ");
315 		if (regs->cp0_status & ST0_IE)
316 			printk("IE ");
317 	}
318 	printk("\n");
319 
320 	printk("Cause : %08x\n", cause);
321 
322 	cause = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
323 	if (1 <= cause && cause <= 5)
324 		printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
325 
326 	printk("PrId  : %08x (%s)\n", read_c0_prid(),
327 	       cpu_name_string());
328 }
329 
330 /*
331  * FIXME: really the generic show_regs should take a const pointer argument.
332  */
333 void show_regs(struct pt_regs *regs)
334 {
335 	__show_regs((struct pt_regs *)regs);
336 }
337 
338 void show_registers(struct pt_regs *regs)
339 {
340 	const int field = 2 * sizeof(unsigned long);
341 	mm_segment_t old_fs = get_fs();
342 
343 	__show_regs(regs);
344 	print_modules();
345 	printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
346 	       current->comm, current->pid, current_thread_info(), current,
347 	      field, current_thread_info()->tp_value);
348 	if (cpu_has_userlocal) {
349 		unsigned long tls;
350 
351 		tls = read_c0_userlocal();
352 		if (tls != current_thread_info()->tp_value)
353 			printk("*HwTLS: %0*lx\n", field, tls);
354 	}
355 
356 	if (!user_mode(regs))
357 		/* Necessary for getting the correct stack content */
358 		set_fs(KERNEL_DS);
359 	show_stacktrace(current, regs);
360 	show_code((unsigned int __user *) regs->cp0_epc);
361 	printk("\n");
362 	set_fs(old_fs);
363 }
364 
365 static int regs_to_trapnr(struct pt_regs *regs)
366 {
367 	return (regs->cp0_cause >> 2) & 0x1f;
368 }
369 
370 static DEFINE_RAW_SPINLOCK(die_lock);
371 
372 void __noreturn die(const char *str, struct pt_regs *regs)
373 {
374 	static int die_counter;
375 	int sig = SIGSEGV;
376 
377 	oops_enter();
378 
379 	if (notify_die(DIE_OOPS, str, regs, 0, regs_to_trapnr(regs),
380 		       SIGSEGV) == NOTIFY_STOP)
381 		sig = 0;
382 
383 	console_verbose();
384 	raw_spin_lock_irq(&die_lock);
385 	bust_spinlocks(1);
386 
387 	printk("%s[#%d]:\n", str, ++die_counter);
388 	show_registers(regs);
389 	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
390 	raw_spin_unlock_irq(&die_lock);
391 
392 	oops_exit();
393 
394 	if (in_interrupt())
395 		panic("Fatal exception in interrupt");
396 
397 	if (panic_on_oops) {
398 		printk(KERN_EMERG "Fatal exception: panic in 5 seconds");
399 		ssleep(5);
400 		panic("Fatal exception");
401 	}
402 
403 	if (regs && kexec_should_crash(current))
404 		crash_kexec(regs);
405 
406 	do_exit(sig);
407 }
408 
409 extern struct exception_table_entry __start___dbe_table[];
410 extern struct exception_table_entry __stop___dbe_table[];
411 
412 __asm__(
413 "	.section	__dbe_table, \"a\"\n"
414 "	.previous			\n");
415 
416 /* Given an address, look for it in the exception tables. */
417 static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
418 {
419 	const struct exception_table_entry *e;
420 
421 	e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr);
422 	if (!e)
423 		e = search_module_dbetables(addr);
424 	return e;
425 }
426 
427 asmlinkage void do_be(struct pt_regs *regs)
428 {
429 	const int field = 2 * sizeof(unsigned long);
430 	const struct exception_table_entry *fixup = NULL;
431 	int data = regs->cp0_cause & 4;
432 	int action = MIPS_BE_FATAL;
433 	enum ctx_state prev_state;
434 
435 	prev_state = exception_enter();
436 	/* XXX For now.	 Fixme, this searches the wrong table ...  */
437 	if (data && !user_mode(regs))
438 		fixup = search_dbe_tables(exception_epc(regs));
439 
440 	if (fixup)
441 		action = MIPS_BE_FIXUP;
442 
443 	if (board_be_handler)
444 		action = board_be_handler(regs, fixup != NULL);
445 
446 	switch (action) {
447 	case MIPS_BE_DISCARD:
448 		goto out;
449 	case MIPS_BE_FIXUP:
450 		if (fixup) {
451 			regs->cp0_epc = fixup->nextinsn;
452 			goto out;
453 		}
454 		break;
455 	default:
456 		break;
457 	}
458 
459 	/*
460 	 * Assume it would be too dangerous to continue ...
461 	 */
462 	printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
463 	       data ? "Data" : "Instruction",
464 	       field, regs->cp0_epc, field, regs->regs[31]);
465 	if (notify_die(DIE_OOPS, "bus error", regs, 0, regs_to_trapnr(regs),
466 		       SIGBUS) == NOTIFY_STOP)
467 		goto out;
468 
469 	die_if_kernel("Oops", regs);
470 	force_sig(SIGBUS, current);
471 
472 out:
473 	exception_exit(prev_state);
474 }
475 
476 /*
477  * ll/sc, rdhwr, sync emulation
478  */
479 
480 #define OPCODE 0xfc000000
481 #define BASE   0x03e00000
482 #define RT     0x001f0000
483 #define OFFSET 0x0000ffff
484 #define LL     0xc0000000
485 #define SC     0xe0000000
486 #define SPEC0  0x00000000
487 #define SPEC3  0x7c000000
488 #define RD     0x0000f800
489 #define FUNC   0x0000003f
490 #define SYNC   0x0000000f
491 #define RDHWR  0x0000003b
492 
493 /*  microMIPS definitions   */
494 #define MM_POOL32A_FUNC 0xfc00ffff
495 #define MM_RDHWR        0x00006b3c
496 #define MM_RS           0x001f0000
497 #define MM_RT           0x03e00000
498 
499 /*
500  * The ll_bit is cleared by r*_switch.S
501  */
502 
503 unsigned int ll_bit;
504 struct task_struct *ll_task;
505 
506 static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
507 {
508 	unsigned long value, __user *vaddr;
509 	long offset;
510 
511 	/*
512 	 * analyse the ll instruction that just caused a ri exception
513 	 * and put the referenced address to addr.
514 	 */
515 
516 	/* sign extend offset */
517 	offset = opcode & OFFSET;
518 	offset <<= 16;
519 	offset >>= 16;
520 
521 	vaddr = (unsigned long __user *)
522 		((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
523 
524 	if ((unsigned long)vaddr & 3)
525 		return SIGBUS;
526 	if (get_user(value, vaddr))
527 		return SIGSEGV;
528 
529 	preempt_disable();
530 
531 	if (ll_task == NULL || ll_task == current) {
532 		ll_bit = 1;
533 	} else {
534 		ll_bit = 0;
535 	}
536 	ll_task = current;
537 
538 	preempt_enable();
539 
540 	regs->regs[(opcode & RT) >> 16] = value;
541 
542 	return 0;
543 }
544 
545 static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
546 {
547 	unsigned long __user *vaddr;
548 	unsigned long reg;
549 	long offset;
550 
551 	/*
552 	 * analyse the sc instruction that just caused a ri exception
553 	 * and put the referenced address to addr.
554 	 */
555 
556 	/* sign extend offset */
557 	offset = opcode & OFFSET;
558 	offset <<= 16;
559 	offset >>= 16;
560 
561 	vaddr = (unsigned long __user *)
562 		((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
563 	reg = (opcode & RT) >> 16;
564 
565 	if ((unsigned long)vaddr & 3)
566 		return SIGBUS;
567 
568 	preempt_disable();
569 
570 	if (ll_bit == 0 || ll_task != current) {
571 		regs->regs[reg] = 0;
572 		preempt_enable();
573 		return 0;
574 	}
575 
576 	preempt_enable();
577 
578 	if (put_user(regs->regs[reg], vaddr))
579 		return SIGSEGV;
580 
581 	regs->regs[reg] = 1;
582 
583 	return 0;
584 }
585 
586 /*
587  * ll uses the opcode of lwc0 and sc uses the opcode of swc0.  That is both
588  * opcodes are supposed to result in coprocessor unusable exceptions if
589  * executed on ll/sc-less processors.  That's the theory.  In practice a
590  * few processors such as NEC's VR4100 throw reserved instruction exceptions
591  * instead, so we're doing the emulation thing in both exception handlers.
592  */
593 static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
594 {
595 	if ((opcode & OPCODE) == LL) {
596 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
597 				1, regs, 0);
598 		return simulate_ll(regs, opcode);
599 	}
600 	if ((opcode & OPCODE) == SC) {
601 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
602 				1, regs, 0);
603 		return simulate_sc(regs, opcode);
604 	}
605 
606 	return -1;			/* Must be something else ... */
607 }
608 
609 /*
610  * Simulate trapping 'rdhwr' instructions to provide user accessible
611  * registers not implemented in hardware.
612  */
613 static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt)
614 {
615 	struct thread_info *ti = task_thread_info(current);
616 
617 	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
618 			1, regs, 0);
619 	switch (rd) {
620 	case 0:		/* CPU number */
621 		regs->regs[rt] = smp_processor_id();
622 		return 0;
623 	case 1:		/* SYNCI length */
624 		regs->regs[rt] = min(current_cpu_data.dcache.linesz,
625 				     current_cpu_data.icache.linesz);
626 		return 0;
627 	case 2:		/* Read count register */
628 		regs->regs[rt] = read_c0_count();
629 		return 0;
630 	case 3:		/* Count register resolution */
631 		switch (current_cpu_type()) {
632 		case CPU_20KC:
633 		case CPU_25KF:
634 			regs->regs[rt] = 1;
635 			break;
636 		default:
637 			regs->regs[rt] = 2;
638 		}
639 		return 0;
640 	case 29:
641 		regs->regs[rt] = ti->tp_value;
642 		return 0;
643 	default:
644 		return -1;
645 	}
646 }
647 
648 static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode)
649 {
650 	if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
651 		int rd = (opcode & RD) >> 11;
652 		int rt = (opcode & RT) >> 16;
653 
654 		simulate_rdhwr(regs, rd, rt);
655 		return 0;
656 	}
657 
658 	/* Not ours.  */
659 	return -1;
660 }
661 
662 static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned short opcode)
663 {
664 	if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) {
665 		int rd = (opcode & MM_RS) >> 16;
666 		int rt = (opcode & MM_RT) >> 21;
667 		simulate_rdhwr(regs, rd, rt);
668 		return 0;
669 	}
670 
671 	/* Not ours.  */
672 	return -1;
673 }
674 
675 static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
676 {
677 	if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
678 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
679 				1, regs, 0);
680 		return 0;
681 	}
682 
683 	return -1;			/* Must be something else ... */
684 }
685 
686 asmlinkage void do_ov(struct pt_regs *regs)
687 {
688 	enum ctx_state prev_state;
689 	siginfo_t info;
690 
691 	prev_state = exception_enter();
692 	die_if_kernel("Integer overflow", regs);
693 
694 	info.si_code = FPE_INTOVF;
695 	info.si_signo = SIGFPE;
696 	info.si_errno = 0;
697 	info.si_addr = (void __user *) regs->cp0_epc;
698 	force_sig_info(SIGFPE, &info, current);
699 	exception_exit(prev_state);
700 }
701 
702 int process_fpemu_return(int sig, void __user *fault_addr)
703 {
704 	/*
705 	 * We can't allow the emulated instruction to leave any of the cause
706 	 * bits set in FCSR. If they were then the kernel would take an FP
707 	 * exception when restoring FP context.
708 	 */
709 	current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
710 
711 	if (sig == SIGSEGV || sig == SIGBUS) {
712 		struct siginfo si = {0};
713 		si.si_addr = fault_addr;
714 		si.si_signo = sig;
715 		if (sig == SIGSEGV) {
716 			down_read(&current->mm->mmap_sem);
717 			if (find_vma(current->mm, (unsigned long)fault_addr))
718 				si.si_code = SEGV_ACCERR;
719 			else
720 				si.si_code = SEGV_MAPERR;
721 			up_read(&current->mm->mmap_sem);
722 		} else {
723 			si.si_code = BUS_ADRERR;
724 		}
725 		force_sig_info(sig, &si, current);
726 		return 1;
727 	} else if (sig) {
728 		force_sig(sig, current);
729 		return 1;
730 	} else {
731 		return 0;
732 	}
733 }
734 
735 static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
736 		       unsigned long old_epc, unsigned long old_ra)
737 {
738 	union mips_instruction inst = { .word = opcode };
739 	void __user *fault_addr = NULL;
740 	int sig;
741 
742 	/* If it's obviously not an FP instruction, skip it */
743 	switch (inst.i_format.opcode) {
744 	case cop1_op:
745 	case cop1x_op:
746 	case lwc1_op:
747 	case ldc1_op:
748 	case swc1_op:
749 	case sdc1_op:
750 		break;
751 
752 	default:
753 		return -1;
754 	}
755 
756 	/*
757 	 * do_ri skipped over the instruction via compute_return_epc, undo
758 	 * that for the FPU emulator.
759 	 */
760 	regs->cp0_epc = old_epc;
761 	regs->regs[31] = old_ra;
762 
763 	/* Save the FP context to struct thread_struct */
764 	lose_fpu(1);
765 
766 	/* Run the emulator */
767 	sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
768 				       &fault_addr);
769 
770 	/* If something went wrong, signal */
771 	process_fpemu_return(sig, fault_addr);
772 
773 	/* Restore the hardware register state */
774 	own_fpu(1);
775 
776 	return 0;
777 }
778 
779 /*
780  * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
781  */
782 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
783 {
784 	enum ctx_state prev_state;
785 	siginfo_t info = {0};
786 
787 	prev_state = exception_enter();
788 	if (notify_die(DIE_FP, "FP exception", regs, 0, regs_to_trapnr(regs),
789 		       SIGFPE) == NOTIFY_STOP)
790 		goto out;
791 
792 	/* Clear FCSR.Cause before enabling interrupts */
793 	write_32bit_cp1_register(CP1_STATUS, fcr31 & ~FPU_CSR_ALL_X);
794 	local_irq_enable();
795 
796 	die_if_kernel("FP exception in kernel code", regs);
797 
798 	if (fcr31 & FPU_CSR_UNI_X) {
799 		int sig;
800 		void __user *fault_addr = NULL;
801 
802 		/*
803 		 * Unimplemented operation exception.  If we've got the full
804 		 * software emulator on-board, let's use it...
805 		 *
806 		 * Force FPU to dump state into task/thread context.  We're
807 		 * moving a lot of data here for what is probably a single
808 		 * instruction, but the alternative is to pre-decode the FP
809 		 * register operands before invoking the emulator, which seems
810 		 * a bit extreme for what should be an infrequent event.
811 		 */
812 		/* Ensure 'resume' not overwrite saved fp context again. */
813 		lose_fpu(1);
814 
815 		/* Run the emulator */
816 		sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
817 					       &fault_addr);
818 
819 		/* If something went wrong, signal */
820 		process_fpemu_return(sig, fault_addr);
821 
822 		/* Restore the hardware register state */
823 		own_fpu(1);	/* Using the FPU again.	 */
824 
825 		goto out;
826 	} else if (fcr31 & FPU_CSR_INV_X)
827 		info.si_code = FPE_FLTINV;
828 	else if (fcr31 & FPU_CSR_DIV_X)
829 		info.si_code = FPE_FLTDIV;
830 	else if (fcr31 & FPU_CSR_OVF_X)
831 		info.si_code = FPE_FLTOVF;
832 	else if (fcr31 & FPU_CSR_UDF_X)
833 		info.si_code = FPE_FLTUND;
834 	else if (fcr31 & FPU_CSR_INE_X)
835 		info.si_code = FPE_FLTRES;
836 	else
837 		info.si_code = __SI_FAULT;
838 	info.si_signo = SIGFPE;
839 	info.si_errno = 0;
840 	info.si_addr = (void __user *) regs->cp0_epc;
841 	force_sig_info(SIGFPE, &info, current);
842 
843 out:
844 	exception_exit(prev_state);
845 }
846 
847 void do_trap_or_bp(struct pt_regs *regs, unsigned int code,
848 	const char *str)
849 {
850 	siginfo_t info;
851 	char b[40];
852 
853 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
854 	if (kgdb_ll_trap(DIE_TRAP, str, regs, code, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
855 		return;
856 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
857 
858 	if (notify_die(DIE_TRAP, str, regs, code, regs_to_trapnr(regs),
859 		       SIGTRAP) == NOTIFY_STOP)
860 		return;
861 
862 	/*
863 	 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
864 	 * insns, even for trap and break codes that indicate arithmetic
865 	 * failures.  Weird ...
866 	 * But should we continue the brokenness???  --macro
867 	 */
868 	switch (code) {
869 	case BRK_OVERFLOW:
870 	case BRK_DIVZERO:
871 		scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
872 		die_if_kernel(b, regs);
873 		if (code == BRK_DIVZERO)
874 			info.si_code = FPE_INTDIV;
875 		else
876 			info.si_code = FPE_INTOVF;
877 		info.si_signo = SIGFPE;
878 		info.si_errno = 0;
879 		info.si_addr = (void __user *) regs->cp0_epc;
880 		force_sig_info(SIGFPE, &info, current);
881 		break;
882 	case BRK_BUG:
883 		die_if_kernel("Kernel bug detected", regs);
884 		force_sig(SIGTRAP, current);
885 		break;
886 	case BRK_MEMU:
887 		/*
888 		 * Address errors may be deliberately induced by the FPU
889 		 * emulator to retake control of the CPU after executing the
890 		 * instruction in the delay slot of an emulated branch.
891 		 *
892 		 * Terminate if exception was recognized as a delay slot return
893 		 * otherwise handle as normal.
894 		 */
895 		if (do_dsemulret(regs))
896 			return;
897 
898 		die_if_kernel("Math emu break/trap", regs);
899 		force_sig(SIGTRAP, current);
900 		break;
901 	default:
902 		scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
903 		die_if_kernel(b, regs);
904 		force_sig(SIGTRAP, current);
905 	}
906 }
907 
908 asmlinkage void do_bp(struct pt_regs *regs)
909 {
910 	unsigned int opcode, bcode;
911 	enum ctx_state prev_state;
912 	unsigned long epc;
913 	u16 instr[2];
914 	mm_segment_t seg;
915 
916 	seg = get_fs();
917 	if (!user_mode(regs))
918 		set_fs(KERNEL_DS);
919 
920 	prev_state = exception_enter();
921 	if (get_isa16_mode(regs->cp0_epc)) {
922 		/* Calculate EPC. */
923 		epc = exception_epc(regs);
924 		if (cpu_has_mmips) {
925 			if ((__get_user(instr[0], (u16 __user *)msk_isa16_mode(epc)) ||
926 			    (__get_user(instr[1], (u16 __user *)msk_isa16_mode(epc + 2)))))
927 				goto out_sigsegv;
928 			opcode = (instr[0] << 16) | instr[1];
929 		} else {
930 			/* MIPS16e mode */
931 			if (__get_user(instr[0],
932 				       (u16 __user *)msk_isa16_mode(epc)))
933 				goto out_sigsegv;
934 			bcode = (instr[0] >> 6) & 0x3f;
935 			do_trap_or_bp(regs, bcode, "Break");
936 			goto out;
937 		}
938 	} else {
939 		if (__get_user(opcode,
940 			       (unsigned int __user *) exception_epc(regs)))
941 			goto out_sigsegv;
942 	}
943 
944 	/*
945 	 * There is the ancient bug in the MIPS assemblers that the break
946 	 * code starts left to bit 16 instead to bit 6 in the opcode.
947 	 * Gas is bug-compatible, but not always, grrr...
948 	 * We handle both cases with a simple heuristics.  --macro
949 	 */
950 	bcode = ((opcode >> 6) & ((1 << 20) - 1));
951 	if (bcode >= (1 << 10))
952 		bcode >>= 10;
953 
954 	/*
955 	 * notify the kprobe handlers, if instruction is likely to
956 	 * pertain to them.
957 	 */
958 	switch (bcode) {
959 	case BRK_KPROBE_BP:
960 		if (notify_die(DIE_BREAK, "debug", regs, bcode,
961 			       regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
962 			goto out;
963 		else
964 			break;
965 	case BRK_KPROBE_SSTEPBP:
966 		if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode,
967 			       regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
968 			goto out;
969 		else
970 			break;
971 	default:
972 		break;
973 	}
974 
975 	do_trap_or_bp(regs, bcode, "Break");
976 
977 out:
978 	set_fs(seg);
979 	exception_exit(prev_state);
980 	return;
981 
982 out_sigsegv:
983 	force_sig(SIGSEGV, current);
984 	goto out;
985 }
986 
987 asmlinkage void do_tr(struct pt_regs *regs)
988 {
989 	u32 opcode, tcode = 0;
990 	enum ctx_state prev_state;
991 	u16 instr[2];
992 	mm_segment_t seg;
993 	unsigned long epc = msk_isa16_mode(exception_epc(regs));
994 
995 	seg = get_fs();
996 	if (!user_mode(regs))
997 		set_fs(get_ds());
998 
999 	prev_state = exception_enter();
1000 	if (get_isa16_mode(regs->cp0_epc)) {
1001 		if (__get_user(instr[0], (u16 __user *)(epc + 0)) ||
1002 		    __get_user(instr[1], (u16 __user *)(epc + 2)))
1003 			goto out_sigsegv;
1004 		opcode = (instr[0] << 16) | instr[1];
1005 		/* Immediate versions don't provide a code.  */
1006 		if (!(opcode & OPCODE))
1007 			tcode = (opcode >> 12) & ((1 << 4) - 1);
1008 	} else {
1009 		if (__get_user(opcode, (u32 __user *)epc))
1010 			goto out_sigsegv;
1011 		/* Immediate versions don't provide a code.  */
1012 		if (!(opcode & OPCODE))
1013 			tcode = (opcode >> 6) & ((1 << 10) - 1);
1014 	}
1015 
1016 	do_trap_or_bp(regs, tcode, "Trap");
1017 
1018 out:
1019 	set_fs(seg);
1020 	exception_exit(prev_state);
1021 	return;
1022 
1023 out_sigsegv:
1024 	force_sig(SIGSEGV, current);
1025 	goto out;
1026 }
1027 
1028 asmlinkage void do_ri(struct pt_regs *regs)
1029 {
1030 	unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
1031 	unsigned long old_epc = regs->cp0_epc;
1032 	unsigned long old31 = regs->regs[31];
1033 	enum ctx_state prev_state;
1034 	unsigned int opcode = 0;
1035 	int status = -1;
1036 
1037 	/*
1038 	 * Avoid any kernel code. Just emulate the R2 instruction
1039 	 * as quickly as possible.
1040 	 */
1041 	if (mipsr2_emulation && cpu_has_mips_r6 &&
1042 	    likely(user_mode(regs))) {
1043 		if (likely(get_user(opcode, epc) >= 0)) {
1044 			status = mipsr2_decoder(regs, opcode);
1045 			switch (status) {
1046 			case 0:
1047 			case SIGEMT:
1048 				task_thread_info(current)->r2_emul_return = 1;
1049 				return;
1050 			case SIGILL:
1051 				goto no_r2_instr;
1052 			default:
1053 				process_fpemu_return(status,
1054 						     &current->thread.cp0_baduaddr);
1055 				task_thread_info(current)->r2_emul_return = 1;
1056 				return;
1057 			}
1058 		}
1059 	}
1060 
1061 no_r2_instr:
1062 
1063 	prev_state = exception_enter();
1064 
1065 	if (notify_die(DIE_RI, "RI Fault", regs, 0, regs_to_trapnr(regs),
1066 		       SIGILL) == NOTIFY_STOP)
1067 		goto out;
1068 
1069 	die_if_kernel("Reserved instruction in kernel code", regs);
1070 
1071 	if (unlikely(compute_return_epc(regs) < 0))
1072 		goto out;
1073 
1074 	if (get_isa16_mode(regs->cp0_epc)) {
1075 		unsigned short mmop[2] = { 0 };
1076 
1077 		if (unlikely(get_user(mmop[0], epc) < 0))
1078 			status = SIGSEGV;
1079 		if (unlikely(get_user(mmop[1], epc) < 0))
1080 			status = SIGSEGV;
1081 		opcode = (mmop[0] << 16) | mmop[1];
1082 
1083 		if (status < 0)
1084 			status = simulate_rdhwr_mm(regs, opcode);
1085 	} else {
1086 		if (unlikely(get_user(opcode, epc) < 0))
1087 			status = SIGSEGV;
1088 
1089 		if (!cpu_has_llsc && status < 0)
1090 			status = simulate_llsc(regs, opcode);
1091 
1092 		if (status < 0)
1093 			status = simulate_rdhwr_normal(regs, opcode);
1094 
1095 		if (status < 0)
1096 			status = simulate_sync(regs, opcode);
1097 
1098 		if (status < 0)
1099 			status = simulate_fp(regs, opcode, old_epc, old31);
1100 	}
1101 
1102 	if (status < 0)
1103 		status = SIGILL;
1104 
1105 	if (unlikely(status > 0)) {
1106 		regs->cp0_epc = old_epc;		/* Undo skip-over.  */
1107 		regs->regs[31] = old31;
1108 		force_sig(status, current);
1109 	}
1110 
1111 out:
1112 	exception_exit(prev_state);
1113 }
1114 
1115 /*
1116  * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
1117  * emulated more than some threshold number of instructions, force migration to
1118  * a "CPU" that has FP support.
1119  */
1120 static void mt_ase_fp_affinity(void)
1121 {
1122 #ifdef CONFIG_MIPS_MT_FPAFF
1123 	if (mt_fpemul_threshold > 0 &&
1124 	     ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
1125 		/*
1126 		 * If there's no FPU present, or if the application has already
1127 		 * restricted the allowed set to exclude any CPUs with FPUs,
1128 		 * we'll skip the procedure.
1129 		 */
1130 		if (cpus_intersects(current->cpus_allowed, mt_fpu_cpumask)) {
1131 			cpumask_t tmask;
1132 
1133 			current->thread.user_cpus_allowed
1134 				= current->cpus_allowed;
1135 			cpus_and(tmask, current->cpus_allowed,
1136 				mt_fpu_cpumask);
1137 			set_cpus_allowed_ptr(current, &tmask);
1138 			set_thread_flag(TIF_FPUBOUND);
1139 		}
1140 	}
1141 #endif /* CONFIG_MIPS_MT_FPAFF */
1142 }
1143 
1144 /*
1145  * No lock; only written during early bootup by CPU 0.
1146  */
1147 static RAW_NOTIFIER_HEAD(cu2_chain);
1148 
1149 int __ref register_cu2_notifier(struct notifier_block *nb)
1150 {
1151 	return raw_notifier_chain_register(&cu2_chain, nb);
1152 }
1153 
1154 int cu2_notifier_call_chain(unsigned long val, void *v)
1155 {
1156 	return raw_notifier_call_chain(&cu2_chain, val, v);
1157 }
1158 
1159 static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
1160 	void *data)
1161 {
1162 	struct pt_regs *regs = data;
1163 
1164 	die_if_kernel("COP2: Unhandled kernel unaligned access or invalid "
1165 			      "instruction", regs);
1166 	force_sig(SIGILL, current);
1167 
1168 	return NOTIFY_OK;
1169 }
1170 
1171 static int wait_on_fp_mode_switch(atomic_t *p)
1172 {
1173 	/*
1174 	 * The FP mode for this task is currently being switched. That may
1175 	 * involve modifications to the format of this tasks FP context which
1176 	 * make it unsafe to proceed with execution for the moment. Instead,
1177 	 * schedule some other task.
1178 	 */
1179 	schedule();
1180 	return 0;
1181 }
1182 
1183 static int enable_restore_fp_context(int msa)
1184 {
1185 	int err, was_fpu_owner, prior_msa;
1186 
1187 	/*
1188 	 * If an FP mode switch is currently underway, wait for it to
1189 	 * complete before proceeding.
1190 	 */
1191 	wait_on_atomic_t(&current->mm->context.fp_mode_switching,
1192 			 wait_on_fp_mode_switch, TASK_KILLABLE);
1193 
1194 	if (!used_math()) {
1195 		/* First time FP context user. */
1196 		preempt_disable();
1197 		err = init_fpu();
1198 		if (msa && !err) {
1199 			enable_msa();
1200 			_init_msa_upper();
1201 			set_thread_flag(TIF_USEDMSA);
1202 			set_thread_flag(TIF_MSA_CTX_LIVE);
1203 		}
1204 		preempt_enable();
1205 		if (!err)
1206 			set_used_math();
1207 		return err;
1208 	}
1209 
1210 	/*
1211 	 * This task has formerly used the FP context.
1212 	 *
1213 	 * If this thread has no live MSA vector context then we can simply
1214 	 * restore the scalar FP context. If it has live MSA vector context
1215 	 * (that is, it has or may have used MSA since last performing a
1216 	 * function call) then we'll need to restore the vector context. This
1217 	 * applies even if we're currently only executing a scalar FP
1218 	 * instruction. This is because if we were to later execute an MSA
1219 	 * instruction then we'd either have to:
1220 	 *
1221 	 *  - Restore the vector context & clobber any registers modified by
1222 	 *    scalar FP instructions between now & then.
1223 	 *
1224 	 * or
1225 	 *
1226 	 *  - Not restore the vector context & lose the most significant bits
1227 	 *    of all vector registers.
1228 	 *
1229 	 * Neither of those options is acceptable. We cannot restore the least
1230 	 * significant bits of the registers now & only restore the most
1231 	 * significant bits later because the most significant bits of any
1232 	 * vector registers whose aliased FP register is modified now will have
1233 	 * been zeroed. We'd have no way to know that when restoring the vector
1234 	 * context & thus may load an outdated value for the most significant
1235 	 * bits of a vector register.
1236 	 */
1237 	if (!msa && !thread_msa_context_live())
1238 		return own_fpu(1);
1239 
1240 	/*
1241 	 * This task is using or has previously used MSA. Thus we require
1242 	 * that Status.FR == 1.
1243 	 */
1244 	preempt_disable();
1245 	was_fpu_owner = is_fpu_owner();
1246 	err = own_fpu_inatomic(0);
1247 	if (err)
1248 		goto out;
1249 
1250 	enable_msa();
1251 	write_msa_csr(current->thread.fpu.msacsr);
1252 	set_thread_flag(TIF_USEDMSA);
1253 
1254 	/*
1255 	 * If this is the first time that the task is using MSA and it has
1256 	 * previously used scalar FP in this time slice then we already nave
1257 	 * FP context which we shouldn't clobber. We do however need to clear
1258 	 * the upper 64b of each vector register so that this task has no
1259 	 * opportunity to see data left behind by another.
1260 	 */
1261 	prior_msa = test_and_set_thread_flag(TIF_MSA_CTX_LIVE);
1262 	if (!prior_msa && was_fpu_owner) {
1263 		_init_msa_upper();
1264 
1265 		goto out;
1266 	}
1267 
1268 	if (!prior_msa) {
1269 		/*
1270 		 * Restore the least significant 64b of each vector register
1271 		 * from the existing scalar FP context.
1272 		 */
1273 		_restore_fp(current);
1274 
1275 		/*
1276 		 * The task has not formerly used MSA, so clear the upper 64b
1277 		 * of each vector register such that it cannot see data left
1278 		 * behind by another task.
1279 		 */
1280 		_init_msa_upper();
1281 	} else {
1282 		/* We need to restore the vector context. */
1283 		restore_msa(current);
1284 
1285 		/* Restore the scalar FP control & status register */
1286 		if (!was_fpu_owner)
1287 			write_32bit_cp1_register(CP1_STATUS,
1288 						 current->thread.fpu.fcr31);
1289 	}
1290 
1291 out:
1292 	preempt_enable();
1293 
1294 	return 0;
1295 }
1296 
1297 asmlinkage void do_cpu(struct pt_regs *regs)
1298 {
1299 	enum ctx_state prev_state;
1300 	unsigned int __user *epc;
1301 	unsigned long old_epc, old31;
1302 	unsigned int opcode;
1303 	unsigned int cpid;
1304 	int status, err;
1305 	unsigned long __maybe_unused flags;
1306 
1307 	prev_state = exception_enter();
1308 	cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
1309 
1310 	if (cpid != 2)
1311 		die_if_kernel("do_cpu invoked from kernel context!", regs);
1312 
1313 	switch (cpid) {
1314 	case 0:
1315 		epc = (unsigned int __user *)exception_epc(regs);
1316 		old_epc = regs->cp0_epc;
1317 		old31 = regs->regs[31];
1318 		opcode = 0;
1319 		status = -1;
1320 
1321 		if (unlikely(compute_return_epc(regs) < 0))
1322 			goto out;
1323 
1324 		if (get_isa16_mode(regs->cp0_epc)) {
1325 			unsigned short mmop[2] = { 0 };
1326 
1327 			if (unlikely(get_user(mmop[0], epc) < 0))
1328 				status = SIGSEGV;
1329 			if (unlikely(get_user(mmop[1], epc) < 0))
1330 				status = SIGSEGV;
1331 			opcode = (mmop[0] << 16) | mmop[1];
1332 
1333 			if (status < 0)
1334 				status = simulate_rdhwr_mm(regs, opcode);
1335 		} else {
1336 			if (unlikely(get_user(opcode, epc) < 0))
1337 				status = SIGSEGV;
1338 
1339 			if (!cpu_has_llsc && status < 0)
1340 				status = simulate_llsc(regs, opcode);
1341 
1342 			if (status < 0)
1343 				status = simulate_rdhwr_normal(regs, opcode);
1344 		}
1345 
1346 		if (status < 0)
1347 			status = SIGILL;
1348 
1349 		if (unlikely(status > 0)) {
1350 			regs->cp0_epc = old_epc;	/* Undo skip-over.  */
1351 			regs->regs[31] = old31;
1352 			force_sig(status, current);
1353 		}
1354 
1355 		goto out;
1356 
1357 	case 3:
1358 		/*
1359 		 * Old (MIPS I and MIPS II) processors will set this code
1360 		 * for COP1X opcode instructions that replaced the original
1361 		 * COP3 space.	We don't limit COP1 space instructions in
1362 		 * the emulator according to the CPU ISA, so we want to
1363 		 * treat COP1X instructions consistently regardless of which
1364 		 * code the CPU chose.	Therefore we redirect this trap to
1365 		 * the FP emulator too.
1366 		 *
1367 		 * Then some newer FPU-less processors use this code
1368 		 * erroneously too, so they are covered by this choice
1369 		 * as well.
1370 		 */
1371 		if (raw_cpu_has_fpu)
1372 			break;
1373 		/* Fall through.  */
1374 
1375 	case 1:
1376 		err = enable_restore_fp_context(0);
1377 
1378 		if (!raw_cpu_has_fpu || err) {
1379 			int sig;
1380 			void __user *fault_addr = NULL;
1381 			sig = fpu_emulator_cop1Handler(regs,
1382 						       &current->thread.fpu,
1383 						       0, &fault_addr);
1384 			if (!process_fpemu_return(sig, fault_addr) && !err)
1385 				mt_ase_fp_affinity();
1386 		}
1387 
1388 		goto out;
1389 
1390 	case 2:
1391 		raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
1392 		goto out;
1393 	}
1394 
1395 	force_sig(SIGILL, current);
1396 
1397 out:
1398 	exception_exit(prev_state);
1399 }
1400 
1401 asmlinkage void do_msa_fpe(struct pt_regs *regs, unsigned int msacsr)
1402 {
1403 	enum ctx_state prev_state;
1404 
1405 	prev_state = exception_enter();
1406 	if (notify_die(DIE_MSAFP, "MSA FP exception", regs, 0,
1407 		       regs_to_trapnr(regs), SIGFPE) == NOTIFY_STOP)
1408 		goto out;
1409 
1410 	/* Clear MSACSR.Cause before enabling interrupts */
1411 	write_msa_csr(msacsr & ~MSA_CSR_CAUSEF);
1412 	local_irq_enable();
1413 
1414 	die_if_kernel("do_msa_fpe invoked from kernel context!", regs);
1415 	force_sig(SIGFPE, current);
1416 out:
1417 	exception_exit(prev_state);
1418 }
1419 
1420 asmlinkage void do_msa(struct pt_regs *regs)
1421 {
1422 	enum ctx_state prev_state;
1423 	int err;
1424 
1425 	prev_state = exception_enter();
1426 
1427 	if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) {
1428 		force_sig(SIGILL, current);
1429 		goto out;
1430 	}
1431 
1432 	die_if_kernel("do_msa invoked from kernel context!", regs);
1433 
1434 	err = enable_restore_fp_context(1);
1435 	if (err)
1436 		force_sig(SIGILL, current);
1437 out:
1438 	exception_exit(prev_state);
1439 }
1440 
1441 asmlinkage void do_mdmx(struct pt_regs *regs)
1442 {
1443 	enum ctx_state prev_state;
1444 
1445 	prev_state = exception_enter();
1446 	force_sig(SIGILL, current);
1447 	exception_exit(prev_state);
1448 }
1449 
1450 /*
1451  * Called with interrupts disabled.
1452  */
1453 asmlinkage void do_watch(struct pt_regs *regs)
1454 {
1455 	enum ctx_state prev_state;
1456 	u32 cause;
1457 
1458 	prev_state = exception_enter();
1459 	/*
1460 	 * Clear WP (bit 22) bit of cause register so we don't loop
1461 	 * forever.
1462 	 */
1463 	cause = read_c0_cause();
1464 	cause &= ~(1 << 22);
1465 	write_c0_cause(cause);
1466 
1467 	/*
1468 	 * If the current thread has the watch registers loaded, save
1469 	 * their values and send SIGTRAP.  Otherwise another thread
1470 	 * left the registers set, clear them and continue.
1471 	 */
1472 	if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
1473 		mips_read_watch_registers();
1474 		local_irq_enable();
1475 		force_sig(SIGTRAP, current);
1476 	} else {
1477 		mips_clear_watch_registers();
1478 		local_irq_enable();
1479 	}
1480 	exception_exit(prev_state);
1481 }
1482 
1483 asmlinkage void do_mcheck(struct pt_regs *regs)
1484 {
1485 	const int field = 2 * sizeof(unsigned long);
1486 	int multi_match = regs->cp0_status & ST0_TS;
1487 	enum ctx_state prev_state;
1488 
1489 	prev_state = exception_enter();
1490 	show_regs(regs);
1491 
1492 	if (multi_match) {
1493 		pr_err("Index	: %0x\n", read_c0_index());
1494 		pr_err("Pagemask: %0x\n", read_c0_pagemask());
1495 		pr_err("EntryHi : %0*lx\n", field, read_c0_entryhi());
1496 		pr_err("EntryLo0: %0*lx\n", field, read_c0_entrylo0());
1497 		pr_err("EntryLo1: %0*lx\n", field, read_c0_entrylo1());
1498 		pr_err("Wired   : %0x\n", read_c0_wired());
1499 		pr_err("Pagegrain: %0x\n", read_c0_pagegrain());
1500 		if (cpu_has_htw) {
1501 			pr_err("PWField : %0*lx\n", field, read_c0_pwfield());
1502 			pr_err("PWSize  : %0*lx\n", field, read_c0_pwsize());
1503 			pr_err("PWCtl   : %0x\n", read_c0_pwctl());
1504 		}
1505 		pr_err("\n");
1506 		dump_tlb_all();
1507 	}
1508 
1509 	show_code((unsigned int __user *) regs->cp0_epc);
1510 
1511 	/*
1512 	 * Some chips may have other causes of machine check (e.g. SB1
1513 	 * graduation timer)
1514 	 */
1515 	panic("Caught Machine Check exception - %scaused by multiple "
1516 	      "matching entries in the TLB.",
1517 	      (multi_match) ? "" : "not ");
1518 }
1519 
1520 asmlinkage void do_mt(struct pt_regs *regs)
1521 {
1522 	int subcode;
1523 
1524 	subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1525 			>> VPECONTROL_EXCPT_SHIFT;
1526 	switch (subcode) {
1527 	case 0:
1528 		printk(KERN_DEBUG "Thread Underflow\n");
1529 		break;
1530 	case 1:
1531 		printk(KERN_DEBUG "Thread Overflow\n");
1532 		break;
1533 	case 2:
1534 		printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
1535 		break;
1536 	case 3:
1537 		printk(KERN_DEBUG "Gating Storage Exception\n");
1538 		break;
1539 	case 4:
1540 		printk(KERN_DEBUG "YIELD Scheduler Exception\n");
1541 		break;
1542 	case 5:
1543 		printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
1544 		break;
1545 	default:
1546 		printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
1547 			subcode);
1548 		break;
1549 	}
1550 	die_if_kernel("MIPS MT Thread exception in kernel", regs);
1551 
1552 	force_sig(SIGILL, current);
1553 }
1554 
1555 
1556 asmlinkage void do_dsp(struct pt_regs *regs)
1557 {
1558 	if (cpu_has_dsp)
1559 		panic("Unexpected DSP exception");
1560 
1561 	force_sig(SIGILL, current);
1562 }
1563 
1564 asmlinkage void do_reserved(struct pt_regs *regs)
1565 {
1566 	/*
1567 	 * Game over - no way to handle this if it ever occurs.	 Most probably
1568 	 * caused by a new unknown cpu type or after another deadly
1569 	 * hard/software error.
1570 	 */
1571 	show_regs(regs);
1572 	panic("Caught reserved exception %ld - should not happen.",
1573 	      (regs->cp0_cause & 0x7f) >> 2);
1574 }
1575 
1576 static int __initdata l1parity = 1;
1577 static int __init nol1parity(char *s)
1578 {
1579 	l1parity = 0;
1580 	return 1;
1581 }
1582 __setup("nol1par", nol1parity);
1583 static int __initdata l2parity = 1;
1584 static int __init nol2parity(char *s)
1585 {
1586 	l2parity = 0;
1587 	return 1;
1588 }
1589 __setup("nol2par", nol2parity);
1590 
1591 /*
1592  * Some MIPS CPUs can enable/disable for cache parity detection, but do
1593  * it different ways.
1594  */
1595 static inline void parity_protection_init(void)
1596 {
1597 	switch (current_cpu_type()) {
1598 	case CPU_24K:
1599 	case CPU_34K:
1600 	case CPU_74K:
1601 	case CPU_1004K:
1602 	case CPU_1074K:
1603 	case CPU_INTERAPTIV:
1604 	case CPU_PROAPTIV:
1605 	case CPU_P5600:
1606 	case CPU_QEMU_GENERIC:
1607 		{
1608 #define ERRCTL_PE	0x80000000
1609 #define ERRCTL_L2P	0x00800000
1610 			unsigned long errctl;
1611 			unsigned int l1parity_present, l2parity_present;
1612 
1613 			errctl = read_c0_ecc();
1614 			errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1615 
1616 			/* probe L1 parity support */
1617 			write_c0_ecc(errctl | ERRCTL_PE);
1618 			back_to_back_c0_hazard();
1619 			l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1620 
1621 			/* probe L2 parity support */
1622 			write_c0_ecc(errctl|ERRCTL_L2P);
1623 			back_to_back_c0_hazard();
1624 			l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1625 
1626 			if (l1parity_present && l2parity_present) {
1627 				if (l1parity)
1628 					errctl |= ERRCTL_PE;
1629 				if (l1parity ^ l2parity)
1630 					errctl |= ERRCTL_L2P;
1631 			} else if (l1parity_present) {
1632 				if (l1parity)
1633 					errctl |= ERRCTL_PE;
1634 			} else if (l2parity_present) {
1635 				if (l2parity)
1636 					errctl |= ERRCTL_L2P;
1637 			} else {
1638 				/* No parity available */
1639 			}
1640 
1641 			printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1642 
1643 			write_c0_ecc(errctl);
1644 			back_to_back_c0_hazard();
1645 			errctl = read_c0_ecc();
1646 			printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1647 
1648 			if (l1parity_present)
1649 				printk(KERN_INFO "Cache parity protection %sabled\n",
1650 				       (errctl & ERRCTL_PE) ? "en" : "dis");
1651 
1652 			if (l2parity_present) {
1653 				if (l1parity_present && l1parity)
1654 					errctl ^= ERRCTL_L2P;
1655 				printk(KERN_INFO "L2 cache parity protection %sabled\n",
1656 				       (errctl & ERRCTL_L2P) ? "en" : "dis");
1657 			}
1658 		}
1659 		break;
1660 
1661 	case CPU_5KC:
1662 	case CPU_5KE:
1663 	case CPU_LOONGSON1:
1664 		write_c0_ecc(0x80000000);
1665 		back_to_back_c0_hazard();
1666 		/* Set the PE bit (bit 31) in the c0_errctl register. */
1667 		printk(KERN_INFO "Cache parity protection %sabled\n",
1668 		       (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1669 		break;
1670 	case CPU_20KC:
1671 	case CPU_25KF:
1672 		/* Clear the DE bit (bit 16) in the c0_status register. */
1673 		printk(KERN_INFO "Enable cache parity protection for "
1674 		       "MIPS 20KC/25KF CPUs.\n");
1675 		clear_c0_status(ST0_DE);
1676 		break;
1677 	default:
1678 		break;
1679 	}
1680 }
1681 
1682 asmlinkage void cache_parity_error(void)
1683 {
1684 	const int field = 2 * sizeof(unsigned long);
1685 	unsigned int reg_val;
1686 
1687 	/* For the moment, report the problem and hang. */
1688 	printk("Cache error exception:\n");
1689 	printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1690 	reg_val = read_c0_cacheerr();
1691 	printk("c0_cacheerr == %08x\n", reg_val);
1692 
1693 	printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1694 	       reg_val & (1<<30) ? "secondary" : "primary",
1695 	       reg_val & (1<<31) ? "data" : "insn");
1696 	if ((cpu_has_mips_r2_r6) &&
1697 	    ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
1698 		pr_err("Error bits: %s%s%s%s%s%s%s%s\n",
1699 			reg_val & (1<<29) ? "ED " : "",
1700 			reg_val & (1<<28) ? "ET " : "",
1701 			reg_val & (1<<27) ? "ES " : "",
1702 			reg_val & (1<<26) ? "EE " : "",
1703 			reg_val & (1<<25) ? "EB " : "",
1704 			reg_val & (1<<24) ? "EI " : "",
1705 			reg_val & (1<<23) ? "E1 " : "",
1706 			reg_val & (1<<22) ? "E0 " : "");
1707 	} else {
1708 		pr_err("Error bits: %s%s%s%s%s%s%s\n",
1709 			reg_val & (1<<29) ? "ED " : "",
1710 			reg_val & (1<<28) ? "ET " : "",
1711 			reg_val & (1<<26) ? "EE " : "",
1712 			reg_val & (1<<25) ? "EB " : "",
1713 			reg_val & (1<<24) ? "EI " : "",
1714 			reg_val & (1<<23) ? "E1 " : "",
1715 			reg_val & (1<<22) ? "E0 " : "");
1716 	}
1717 	printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1718 
1719 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1720 	if (reg_val & (1<<22))
1721 		printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1722 
1723 	if (reg_val & (1<<23))
1724 		printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1725 #endif
1726 
1727 	panic("Can't handle the cache error!");
1728 }
1729 
1730 asmlinkage void do_ftlb(void)
1731 {
1732 	const int field = 2 * sizeof(unsigned long);
1733 	unsigned int reg_val;
1734 
1735 	/* For the moment, report the problem and hang. */
1736 	if ((cpu_has_mips_r2_r6) &&
1737 	    ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
1738 		pr_err("FTLB error exception, cp0_ecc=0x%08x:\n",
1739 		       read_c0_ecc());
1740 		pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1741 		reg_val = read_c0_cacheerr();
1742 		pr_err("c0_cacheerr == %08x\n", reg_val);
1743 
1744 		if ((reg_val & 0xc0000000) == 0xc0000000) {
1745 			pr_err("Decoded c0_cacheerr: FTLB parity error\n");
1746 		} else {
1747 			pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1748 			       reg_val & (1<<30) ? "secondary" : "primary",
1749 			       reg_val & (1<<31) ? "data" : "insn");
1750 		}
1751 	} else {
1752 		pr_err("FTLB error exception\n");
1753 	}
1754 	/* Just print the cacheerr bits for now */
1755 	cache_parity_error();
1756 }
1757 
1758 /*
1759  * SDBBP EJTAG debug exception handler.
1760  * We skip the instruction and return to the next instruction.
1761  */
1762 void ejtag_exception_handler(struct pt_regs *regs)
1763 {
1764 	const int field = 2 * sizeof(unsigned long);
1765 	unsigned long depc, old_epc, old_ra;
1766 	unsigned int debug;
1767 
1768 	printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1769 	depc = read_c0_depc();
1770 	debug = read_c0_debug();
1771 	printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1772 	if (debug & 0x80000000) {
1773 		/*
1774 		 * In branch delay slot.
1775 		 * We cheat a little bit here and use EPC to calculate the
1776 		 * debug return address (DEPC). EPC is restored after the
1777 		 * calculation.
1778 		 */
1779 		old_epc = regs->cp0_epc;
1780 		old_ra = regs->regs[31];
1781 		regs->cp0_epc = depc;
1782 		compute_return_epc(regs);
1783 		depc = regs->cp0_epc;
1784 		regs->cp0_epc = old_epc;
1785 		regs->regs[31] = old_ra;
1786 	} else
1787 		depc += 4;
1788 	write_c0_depc(depc);
1789 
1790 #if 0
1791 	printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1792 	write_c0_debug(debug | 0x100);
1793 #endif
1794 }
1795 
1796 /*
1797  * NMI exception handler.
1798  * No lock; only written during early bootup by CPU 0.
1799  */
1800 static RAW_NOTIFIER_HEAD(nmi_chain);
1801 
1802 int register_nmi_notifier(struct notifier_block *nb)
1803 {
1804 	return raw_notifier_chain_register(&nmi_chain, nb);
1805 }
1806 
1807 void __noreturn nmi_exception_handler(struct pt_regs *regs)
1808 {
1809 	char str[100];
1810 
1811 	raw_notifier_call_chain(&nmi_chain, 0, regs);
1812 	bust_spinlocks(1);
1813 	snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n",
1814 		 smp_processor_id(), regs->cp0_epc);
1815 	regs->cp0_epc = read_c0_errorepc();
1816 	die(str, regs);
1817 }
1818 
1819 #define VECTORSPACING 0x100	/* for EI/VI mode */
1820 
1821 unsigned long ebase;
1822 unsigned long exception_handlers[32];
1823 unsigned long vi_handlers[64];
1824 
1825 void __init *set_except_vector(int n, void *addr)
1826 {
1827 	unsigned long handler = (unsigned long) addr;
1828 	unsigned long old_handler;
1829 
1830 #ifdef CONFIG_CPU_MICROMIPS
1831 	/*
1832 	 * Only the TLB handlers are cache aligned with an even
1833 	 * address. All other handlers are on an odd address and
1834 	 * require no modification. Otherwise, MIPS32 mode will
1835 	 * be entered when handling any TLB exceptions. That
1836 	 * would be bad...since we must stay in microMIPS mode.
1837 	 */
1838 	if (!(handler & 0x1))
1839 		handler |= 1;
1840 #endif
1841 	old_handler = xchg(&exception_handlers[n], handler);
1842 
1843 	if (n == 0 && cpu_has_divec) {
1844 #ifdef CONFIG_CPU_MICROMIPS
1845 		unsigned long jump_mask = ~((1 << 27) - 1);
1846 #else
1847 		unsigned long jump_mask = ~((1 << 28) - 1);
1848 #endif
1849 		u32 *buf = (u32 *)(ebase + 0x200);
1850 		unsigned int k0 = 26;
1851 		if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
1852 			uasm_i_j(&buf, handler & ~jump_mask);
1853 			uasm_i_nop(&buf);
1854 		} else {
1855 			UASM_i_LA(&buf, k0, handler);
1856 			uasm_i_jr(&buf, k0);
1857 			uasm_i_nop(&buf);
1858 		}
1859 		local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
1860 	}
1861 	return (void *)old_handler;
1862 }
1863 
1864 static void do_default_vi(void)
1865 {
1866 	show_regs(get_irq_regs());
1867 	panic("Caught unexpected vectored interrupt.");
1868 }
1869 
1870 static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
1871 {
1872 	unsigned long handler;
1873 	unsigned long old_handler = vi_handlers[n];
1874 	int srssets = current_cpu_data.srsets;
1875 	u16 *h;
1876 	unsigned char *b;
1877 
1878 	BUG_ON(!cpu_has_veic && !cpu_has_vint);
1879 
1880 	if (addr == NULL) {
1881 		handler = (unsigned long) do_default_vi;
1882 		srs = 0;
1883 	} else
1884 		handler = (unsigned long) addr;
1885 	vi_handlers[n] = handler;
1886 
1887 	b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
1888 
1889 	if (srs >= srssets)
1890 		panic("Shadow register set %d not supported", srs);
1891 
1892 	if (cpu_has_veic) {
1893 		if (board_bind_eic_interrupt)
1894 			board_bind_eic_interrupt(n, srs);
1895 	} else if (cpu_has_vint) {
1896 		/* SRSMap is only defined if shadow sets are implemented */
1897 		if (srssets > 1)
1898 			change_c0_srsmap(0xf << n*4, srs << n*4);
1899 	}
1900 
1901 	if (srs == 0) {
1902 		/*
1903 		 * If no shadow set is selected then use the default handler
1904 		 * that does normal register saving and standard interrupt exit
1905 		 */
1906 		extern char except_vec_vi, except_vec_vi_lui;
1907 		extern char except_vec_vi_ori, except_vec_vi_end;
1908 		extern char rollback_except_vec_vi;
1909 		char *vec_start = using_rollback_handler() ?
1910 			&rollback_except_vec_vi : &except_vec_vi;
1911 #if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
1912 		const int lui_offset = &except_vec_vi_lui - vec_start + 2;
1913 		const int ori_offset = &except_vec_vi_ori - vec_start + 2;
1914 #else
1915 		const int lui_offset = &except_vec_vi_lui - vec_start;
1916 		const int ori_offset = &except_vec_vi_ori - vec_start;
1917 #endif
1918 		const int handler_len = &except_vec_vi_end - vec_start;
1919 
1920 		if (handler_len > VECTORSPACING) {
1921 			/*
1922 			 * Sigh... panicing won't help as the console
1923 			 * is probably not configured :(
1924 			 */
1925 			panic("VECTORSPACING too small");
1926 		}
1927 
1928 		set_handler(((unsigned long)b - ebase), vec_start,
1929 #ifdef CONFIG_CPU_MICROMIPS
1930 				(handler_len - 1));
1931 #else
1932 				handler_len);
1933 #endif
1934 		h = (u16 *)(b + lui_offset);
1935 		*h = (handler >> 16) & 0xffff;
1936 		h = (u16 *)(b + ori_offset);
1937 		*h = (handler & 0xffff);
1938 		local_flush_icache_range((unsigned long)b,
1939 					 (unsigned long)(b+handler_len));
1940 	}
1941 	else {
1942 		/*
1943 		 * In other cases jump directly to the interrupt handler. It
1944 		 * is the handler's responsibility to save registers if required
1945 		 * (eg hi/lo) and return from the exception using "eret".
1946 		 */
1947 		u32 insn;
1948 
1949 		h = (u16 *)b;
1950 		/* j handler */
1951 #ifdef CONFIG_CPU_MICROMIPS
1952 		insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1);
1953 #else
1954 		insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2);
1955 #endif
1956 		h[0] = (insn >> 16) & 0xffff;
1957 		h[1] = insn & 0xffff;
1958 		h[2] = 0;
1959 		h[3] = 0;
1960 		local_flush_icache_range((unsigned long)b,
1961 					 (unsigned long)(b+8));
1962 	}
1963 
1964 	return (void *)old_handler;
1965 }
1966 
1967 void *set_vi_handler(int n, vi_handler_t addr)
1968 {
1969 	return set_vi_srs_handler(n, addr, 0);
1970 }
1971 
1972 extern void tlb_init(void);
1973 
1974 /*
1975  * Timer interrupt
1976  */
1977 int cp0_compare_irq;
1978 EXPORT_SYMBOL_GPL(cp0_compare_irq);
1979 int cp0_compare_irq_shift;
1980 
1981 /*
1982  * Performance counter IRQ or -1 if shared with timer
1983  */
1984 int cp0_perfcount_irq;
1985 EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
1986 
1987 static int noulri;
1988 
1989 static int __init ulri_disable(char *s)
1990 {
1991 	pr_info("Disabling ulri\n");
1992 	noulri = 1;
1993 
1994 	return 1;
1995 }
1996 __setup("noulri", ulri_disable);
1997 
1998 /* configure STATUS register */
1999 static void configure_status(void)
2000 {
2001 	/*
2002 	 * Disable coprocessors and select 32-bit or 64-bit addressing
2003 	 * and the 16/32 or 32/32 FPR register model.  Reset the BEV
2004 	 * flag that some firmware may have left set and the TS bit (for
2005 	 * IP27).  Set XX for ISA IV code to work.
2006 	 */
2007 	unsigned int status_set = ST0_CU0;
2008 #ifdef CONFIG_64BIT
2009 	status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
2010 #endif
2011 	if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV)
2012 		status_set |= ST0_XX;
2013 	if (cpu_has_dsp)
2014 		status_set |= ST0_MX;
2015 
2016 	change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
2017 			 status_set);
2018 }
2019 
2020 /* configure HWRENA register */
2021 static void configure_hwrena(void)
2022 {
2023 	unsigned int hwrena = cpu_hwrena_impl_bits;
2024 
2025 	if (cpu_has_mips_r2_r6)
2026 		hwrena |= 0x0000000f;
2027 
2028 	if (!noulri && cpu_has_userlocal)
2029 		hwrena |= (1 << 29);
2030 
2031 	if (hwrena)
2032 		write_c0_hwrena(hwrena);
2033 }
2034 
2035 static void configure_exception_vector(void)
2036 {
2037 	if (cpu_has_veic || cpu_has_vint) {
2038 		unsigned long sr = set_c0_status(ST0_BEV);
2039 		write_c0_ebase(ebase);
2040 		write_c0_status(sr);
2041 		/* Setting vector spacing enables EI/VI mode  */
2042 		change_c0_intctl(0x3e0, VECTORSPACING);
2043 	}
2044 	if (cpu_has_divec) {
2045 		if (cpu_has_mipsmt) {
2046 			unsigned int vpflags = dvpe();
2047 			set_c0_cause(CAUSEF_IV);
2048 			evpe(vpflags);
2049 		} else
2050 			set_c0_cause(CAUSEF_IV);
2051 	}
2052 }
2053 
2054 void per_cpu_trap_init(bool is_boot_cpu)
2055 {
2056 	unsigned int cpu = smp_processor_id();
2057 
2058 	configure_status();
2059 	configure_hwrena();
2060 
2061 	configure_exception_vector();
2062 
2063 	/*
2064 	 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
2065 	 *
2066 	 *  o read IntCtl.IPTI to determine the timer interrupt
2067 	 *  o read IntCtl.IPPCI to determine the performance counter interrupt
2068 	 */
2069 	if (cpu_has_mips_r2_r6) {
2070 		cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
2071 		cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
2072 		cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
2073 		if (cp0_perfcount_irq == cp0_compare_irq)
2074 			cp0_perfcount_irq = -1;
2075 	} else {
2076 		cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
2077 		cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ;
2078 		cp0_perfcount_irq = -1;
2079 	}
2080 
2081 	if (!cpu_data[cpu].asid_cache)
2082 		cpu_data[cpu].asid_cache = ASID_FIRST_VERSION;
2083 
2084 	atomic_inc(&init_mm.mm_count);
2085 	current->active_mm = &init_mm;
2086 	BUG_ON(current->mm);
2087 	enter_lazy_tlb(&init_mm, current);
2088 
2089 		/* Boot CPU's cache setup in setup_arch(). */
2090 		if (!is_boot_cpu)
2091 			cpu_cache_init();
2092 		tlb_init();
2093 	TLBMISS_HANDLER_SETUP();
2094 }
2095 
2096 /* Install CPU exception handler */
2097 void set_handler(unsigned long offset, void *addr, unsigned long size)
2098 {
2099 #ifdef CONFIG_CPU_MICROMIPS
2100 	memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size);
2101 #else
2102 	memcpy((void *)(ebase + offset), addr, size);
2103 #endif
2104 	local_flush_icache_range(ebase + offset, ebase + offset + size);
2105 }
2106 
2107 static char panic_null_cerr[] =
2108 	"Trying to set NULL cache error exception handler";
2109 
2110 /*
2111  * Install uncached CPU exception handler.
2112  * This is suitable only for the cache error exception which is the only
2113  * exception handler that is being run uncached.
2114  */
2115 void set_uncached_handler(unsigned long offset, void *addr,
2116 	unsigned long size)
2117 {
2118 	unsigned long uncached_ebase = CKSEG1ADDR(ebase);
2119 
2120 	if (!addr)
2121 		panic(panic_null_cerr);
2122 
2123 	memcpy((void *)(uncached_ebase + offset), addr, size);
2124 }
2125 
2126 static int __initdata rdhwr_noopt;
2127 static int __init set_rdhwr_noopt(char *str)
2128 {
2129 	rdhwr_noopt = 1;
2130 	return 1;
2131 }
2132 
2133 __setup("rdhwr_noopt", set_rdhwr_noopt);
2134 
2135 void __init trap_init(void)
2136 {
2137 	extern char except_vec3_generic;
2138 	extern char except_vec4;
2139 	extern char except_vec3_r4000;
2140 	unsigned long i;
2141 
2142 	check_wait();
2143 
2144 #if defined(CONFIG_KGDB)
2145 	if (kgdb_early_setup)
2146 		return; /* Already done */
2147 #endif
2148 
2149 	if (cpu_has_veic || cpu_has_vint) {
2150 		unsigned long size = 0x200 + VECTORSPACING*64;
2151 		ebase = (unsigned long)
2152 			__alloc_bootmem(size, 1 << fls(size), 0);
2153 	} else {
2154 #ifdef CONFIG_KVM_GUEST
2155 #define KVM_GUEST_KSEG0     0x40000000
2156         ebase = KVM_GUEST_KSEG0;
2157 #else
2158         ebase = CKSEG0;
2159 #endif
2160 		if (cpu_has_mips_r2_r6)
2161 			ebase += (read_c0_ebase() & 0x3ffff000);
2162 	}
2163 
2164 	if (cpu_has_mmips) {
2165 		unsigned int config3 = read_c0_config3();
2166 
2167 		if (IS_ENABLED(CONFIG_CPU_MICROMIPS))
2168 			write_c0_config3(config3 | MIPS_CONF3_ISA_OE);
2169 		else
2170 			write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE);
2171 	}
2172 
2173 	if (board_ebase_setup)
2174 		board_ebase_setup();
2175 	per_cpu_trap_init(true);
2176 
2177 	/*
2178 	 * Copy the generic exception handlers to their final destination.
2179 	 * This will be overriden later as suitable for a particular
2180 	 * configuration.
2181 	 */
2182 	set_handler(0x180, &except_vec3_generic, 0x80);
2183 
2184 	/*
2185 	 * Setup default vectors
2186 	 */
2187 	for (i = 0; i <= 31; i++)
2188 		set_except_vector(i, handle_reserved);
2189 
2190 	/*
2191 	 * Copy the EJTAG debug exception vector handler code to it's final
2192 	 * destination.
2193 	 */
2194 	if (cpu_has_ejtag && board_ejtag_handler_setup)
2195 		board_ejtag_handler_setup();
2196 
2197 	/*
2198 	 * Only some CPUs have the watch exceptions.
2199 	 */
2200 	if (cpu_has_watch)
2201 		set_except_vector(23, handle_watch);
2202 
2203 	/*
2204 	 * Initialise interrupt handlers
2205 	 */
2206 	if (cpu_has_veic || cpu_has_vint) {
2207 		int nvec = cpu_has_veic ? 64 : 8;
2208 		for (i = 0; i < nvec; i++)
2209 			set_vi_handler(i, NULL);
2210 	}
2211 	else if (cpu_has_divec)
2212 		set_handler(0x200, &except_vec4, 0x8);
2213 
2214 	/*
2215 	 * Some CPUs can enable/disable for cache parity detection, but does
2216 	 * it different ways.
2217 	 */
2218 	parity_protection_init();
2219 
2220 	/*
2221 	 * The Data Bus Errors / Instruction Bus Errors are signaled
2222 	 * by external hardware.  Therefore these two exceptions
2223 	 * may have board specific handlers.
2224 	 */
2225 	if (board_be_init)
2226 		board_be_init();
2227 
2228 	set_except_vector(0, using_rollback_handler() ? rollback_handle_int
2229 						      : handle_int);
2230 	set_except_vector(1, handle_tlbm);
2231 	set_except_vector(2, handle_tlbl);
2232 	set_except_vector(3, handle_tlbs);
2233 
2234 	set_except_vector(4, handle_adel);
2235 	set_except_vector(5, handle_ades);
2236 
2237 	set_except_vector(6, handle_ibe);
2238 	set_except_vector(7, handle_dbe);
2239 
2240 	set_except_vector(8, handle_sys);
2241 	set_except_vector(9, handle_bp);
2242 	set_except_vector(10, rdhwr_noopt ? handle_ri :
2243 			  (cpu_has_vtag_icache ?
2244 			   handle_ri_rdhwr_vivt : handle_ri_rdhwr));
2245 	set_except_vector(11, handle_cpu);
2246 	set_except_vector(12, handle_ov);
2247 	set_except_vector(13, handle_tr);
2248 	set_except_vector(14, handle_msa_fpe);
2249 
2250 	if (current_cpu_type() == CPU_R6000 ||
2251 	    current_cpu_type() == CPU_R6000A) {
2252 		/*
2253 		 * The R6000 is the only R-series CPU that features a machine
2254 		 * check exception (similar to the R4000 cache error) and
2255 		 * unaligned ldc1/sdc1 exception.  The handlers have not been
2256 		 * written yet.	 Well, anyway there is no R6000 machine on the
2257 		 * current list of targets for Linux/MIPS.
2258 		 * (Duh, crap, there is someone with a triple R6k machine)
2259 		 */
2260 		//set_except_vector(14, handle_mc);
2261 		//set_except_vector(15, handle_ndc);
2262 	}
2263 
2264 
2265 	if (board_nmi_handler_setup)
2266 		board_nmi_handler_setup();
2267 
2268 	if (cpu_has_fpu && !cpu_has_nofpuex)
2269 		set_except_vector(15, handle_fpe);
2270 
2271 	set_except_vector(16, handle_ftlb);
2272 
2273 	if (cpu_has_rixiex) {
2274 		set_except_vector(19, tlb_do_page_fault_0);
2275 		set_except_vector(20, tlb_do_page_fault_0);
2276 	}
2277 
2278 	set_except_vector(21, handle_msa);
2279 	set_except_vector(22, handle_mdmx);
2280 
2281 	if (cpu_has_mcheck)
2282 		set_except_vector(24, handle_mcheck);
2283 
2284 	if (cpu_has_mipsmt)
2285 		set_except_vector(25, handle_mt);
2286 
2287 	set_except_vector(26, handle_dsp);
2288 
2289 	if (board_cache_error_setup)
2290 		board_cache_error_setup();
2291 
2292 	if (cpu_has_vce)
2293 		/* Special exception: R4[04]00 uses also the divec space. */
2294 		set_handler(0x180, &except_vec3_r4000, 0x100);
2295 	else if (cpu_has_4kex)
2296 		set_handler(0x180, &except_vec3_generic, 0x80);
2297 	else
2298 		set_handler(0x080, &except_vec3_generic, 0x80);
2299 
2300 	local_flush_icache_range(ebase, ebase + 0x400);
2301 
2302 	sort_extable(__start___dbe_table, __stop___dbe_table);
2303 
2304 	cu2_notifier(default_cu2_call, 0x80000000);	/* Run last  */
2305 }
2306 
2307 static int trap_pm_notifier(struct notifier_block *self, unsigned long cmd,
2308 			    void *v)
2309 {
2310 	switch (cmd) {
2311 	case CPU_PM_ENTER_FAILED:
2312 	case CPU_PM_EXIT:
2313 		configure_status();
2314 		configure_hwrena();
2315 		configure_exception_vector();
2316 
2317 		/* Restore register with CPU number for TLB handlers */
2318 		TLBMISS_HANDLER_RESTORE();
2319 
2320 		break;
2321 	}
2322 
2323 	return NOTIFY_OK;
2324 }
2325 
2326 static struct notifier_block trap_pm_notifier_block = {
2327 	.notifier_call = trap_pm_notifier,
2328 };
2329 
2330 static int __init trap_pm_init(void)
2331 {
2332 	return cpu_pm_register_notifier(&trap_pm_notifier_block);
2333 }
2334 arch_initcall(trap_pm_init);
2335