xref: /linux/arch/arm64/mm/init.c (revision 9abdb50cda0ffe33bbb2e40cbad97b32fb7ff892)
1 /*
2  * Based on arch/arm/mm/init.c
3  *
4  * Copyright (C) 1995-2005 Russell King
5  * Copyright (C) 2012 ARM Ltd.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include <linux/kernel.h>
21 #include <linux/export.h>
22 #include <linux/errno.h>
23 #include <linux/swap.h>
24 #include <linux/init.h>
25 #include <linux/cache.h>
26 #include <linux/mman.h>
27 #include <linux/nodemask.h>
28 #include <linux/initrd.h>
29 #include <linux/gfp.h>
30 #include <linux/memblock.h>
31 #include <linux/sort.h>
32 #include <linux/of.h>
33 #include <linux/of_fdt.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/dma-contiguous.h>
36 #include <linux/efi.h>
37 #include <linux/swiotlb.h>
38 #include <linux/vmalloc.h>
39 #include <linux/mm.h>
40 #include <linux/kexec.h>
41 #include <linux/crash_dump.h>
42 
43 #include <asm/boot.h>
44 #include <asm/fixmap.h>
45 #include <asm/kasan.h>
46 #include <asm/kernel-pgtable.h>
47 #include <asm/memory.h>
48 #include <asm/numa.h>
49 #include <asm/sections.h>
50 #include <asm/setup.h>
51 #include <asm/sizes.h>
52 #include <asm/tlb.h>
53 #include <asm/alternative.h>
54 
55 /*
56  * We need to be able to catch inadvertent references to memstart_addr
57  * that occur (potentially in generic code) before arm64_memblock_init()
58  * executes, which assigns it its actual value. So use a default value
59  * that cannot be mistaken for a real physical address.
60  */
61 s64 memstart_addr __ro_after_init = -1;
62 EXPORT_SYMBOL(memstart_addr);
63 
64 phys_addr_t arm64_dma_phys_limit __ro_after_init;
65 
66 #ifdef CONFIG_KEXEC_CORE
67 /*
68  * reserve_crashkernel() - reserves memory for crash kernel
69  *
70  * This function reserves memory area given in "crashkernel=" kernel command
71  * line parameter. The memory reserved is used by dump capture kernel when
72  * primary kernel is crashing.
73  */
74 static void __init reserve_crashkernel(void)
75 {
76 	unsigned long long crash_base, crash_size;
77 	int ret;
78 
79 	ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(),
80 				&crash_size, &crash_base);
81 	/* no crashkernel= or invalid value specified */
82 	if (ret || !crash_size)
83 		return;
84 
85 	crash_size = PAGE_ALIGN(crash_size);
86 
87 	if (crash_base == 0) {
88 		/* Current arm64 boot protocol requires 2MB alignment */
89 		crash_base = memblock_find_in_range(0, ARCH_LOW_ADDRESS_LIMIT,
90 				crash_size, SZ_2M);
91 		if (crash_base == 0) {
92 			pr_warn("cannot allocate crashkernel (size:0x%llx)\n",
93 				crash_size);
94 			return;
95 		}
96 	} else {
97 		/* User specifies base address explicitly. */
98 		if (!memblock_is_region_memory(crash_base, crash_size)) {
99 			pr_warn("cannot reserve crashkernel: region is not memory\n");
100 			return;
101 		}
102 
103 		if (memblock_is_region_reserved(crash_base, crash_size)) {
104 			pr_warn("cannot reserve crashkernel: region overlaps reserved memory\n");
105 			return;
106 		}
107 
108 		if (!IS_ALIGNED(crash_base, SZ_2M)) {
109 			pr_warn("cannot reserve crashkernel: base address is not 2MB aligned\n");
110 			return;
111 		}
112 	}
113 	memblock_reserve(crash_base, crash_size);
114 
115 	pr_info("crashkernel reserved: 0x%016llx - 0x%016llx (%lld MB)\n",
116 		crash_base, crash_base + crash_size, crash_size >> 20);
117 
118 	crashk_res.start = crash_base;
119 	crashk_res.end = crash_base + crash_size - 1;
120 }
121 #else
122 static void __init reserve_crashkernel(void)
123 {
124 }
125 #endif /* CONFIG_KEXEC_CORE */
126 
127 #ifdef CONFIG_CRASH_DUMP
128 static int __init early_init_dt_scan_elfcorehdr(unsigned long node,
129 		const char *uname, int depth, void *data)
130 {
131 	const __be32 *reg;
132 	int len;
133 
134 	if (depth != 1 || strcmp(uname, "chosen") != 0)
135 		return 0;
136 
137 	reg = of_get_flat_dt_prop(node, "linux,elfcorehdr", &len);
138 	if (!reg || (len < (dt_root_addr_cells + dt_root_size_cells)))
139 		return 1;
140 
141 	elfcorehdr_addr = dt_mem_next_cell(dt_root_addr_cells, &reg);
142 	elfcorehdr_size = dt_mem_next_cell(dt_root_size_cells, &reg);
143 
144 	return 1;
145 }
146 
147 /*
148  * reserve_elfcorehdr() - reserves memory for elf core header
149  *
150  * This function reserves the memory occupied by an elf core header
151  * described in the device tree. This region contains all the
152  * information about primary kernel's core image and is used by a dump
153  * capture kernel to access the system memory on primary kernel.
154  */
155 static void __init reserve_elfcorehdr(void)
156 {
157 	of_scan_flat_dt(early_init_dt_scan_elfcorehdr, NULL);
158 
159 	if (!elfcorehdr_size)
160 		return;
161 
162 	if (memblock_is_region_reserved(elfcorehdr_addr, elfcorehdr_size)) {
163 		pr_warn("elfcorehdr is overlapped\n");
164 		return;
165 	}
166 
167 	memblock_reserve(elfcorehdr_addr, elfcorehdr_size);
168 
169 	pr_info("Reserving %lldKB of memory at 0x%llx for elfcorehdr\n",
170 		elfcorehdr_size >> 10, elfcorehdr_addr);
171 }
172 #else
173 static void __init reserve_elfcorehdr(void)
174 {
175 }
176 #endif /* CONFIG_CRASH_DUMP */
177 /*
178  * Return the maximum physical address for ZONE_DMA32 (DMA_BIT_MASK(32)). It
179  * currently assumes that for memory starting above 4G, 32-bit devices will
180  * use a DMA offset.
181  */
182 static phys_addr_t __init max_zone_dma_phys(void)
183 {
184 	phys_addr_t offset = memblock_start_of_DRAM() & GENMASK_ULL(63, 32);
185 	return min(offset + (1ULL << 32), memblock_end_of_DRAM());
186 }
187 
188 #ifdef CONFIG_NUMA
189 
190 static void __init zone_sizes_init(unsigned long min, unsigned long max)
191 {
192 	unsigned long max_zone_pfns[MAX_NR_ZONES]  = {0};
193 
194 	if (IS_ENABLED(CONFIG_ZONE_DMA32))
195 		max_zone_pfns[ZONE_DMA32] = PFN_DOWN(max_zone_dma_phys());
196 	max_zone_pfns[ZONE_NORMAL] = max;
197 
198 	free_area_init_nodes(max_zone_pfns);
199 }
200 
201 #else
202 
203 static void __init zone_sizes_init(unsigned long min, unsigned long max)
204 {
205 	struct memblock_region *reg;
206 	unsigned long zone_size[MAX_NR_ZONES], zhole_size[MAX_NR_ZONES];
207 	unsigned long max_dma = min;
208 
209 	memset(zone_size, 0, sizeof(zone_size));
210 
211 	/* 4GB maximum for 32-bit only capable devices */
212 #ifdef CONFIG_ZONE_DMA32
213 	max_dma = PFN_DOWN(arm64_dma_phys_limit);
214 	zone_size[ZONE_DMA32] = max_dma - min;
215 #endif
216 	zone_size[ZONE_NORMAL] = max - max_dma;
217 
218 	memcpy(zhole_size, zone_size, sizeof(zhole_size));
219 
220 	for_each_memblock(memory, reg) {
221 		unsigned long start = memblock_region_memory_base_pfn(reg);
222 		unsigned long end = memblock_region_memory_end_pfn(reg);
223 
224 		if (start >= max)
225 			continue;
226 
227 #ifdef CONFIG_ZONE_DMA32
228 		if (start < max_dma) {
229 			unsigned long dma_end = min(end, max_dma);
230 			zhole_size[ZONE_DMA32] -= dma_end - start;
231 		}
232 #endif
233 		if (end > max_dma) {
234 			unsigned long normal_end = min(end, max);
235 			unsigned long normal_start = max(start, max_dma);
236 			zhole_size[ZONE_NORMAL] -= normal_end - normal_start;
237 		}
238 	}
239 
240 	free_area_init_node(0, zone_size, min, zhole_size);
241 }
242 
243 #endif /* CONFIG_NUMA */
244 
245 int pfn_valid(unsigned long pfn)
246 {
247 	phys_addr_t addr = pfn << PAGE_SHIFT;
248 
249 	if ((addr >> PAGE_SHIFT) != pfn)
250 		return 0;
251 
252 #ifdef CONFIG_SPARSEMEM
253 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
254 		return 0;
255 
256 	if (!valid_section(__nr_to_section(pfn_to_section_nr(pfn))))
257 		return 0;
258 #endif
259 	return memblock_is_map_memory(addr);
260 }
261 EXPORT_SYMBOL(pfn_valid);
262 
263 #ifndef CONFIG_SPARSEMEM
264 static void __init arm64_memory_present(void)
265 {
266 }
267 #else
268 static void __init arm64_memory_present(void)
269 {
270 	struct memblock_region *reg;
271 
272 	for_each_memblock(memory, reg) {
273 		int nid = memblock_get_region_node(reg);
274 
275 		memory_present(nid, memblock_region_memory_base_pfn(reg),
276 				memblock_region_memory_end_pfn(reg));
277 	}
278 }
279 #endif
280 
281 static phys_addr_t memory_limit = PHYS_ADDR_MAX;
282 
283 /*
284  * Limit the memory size that was specified via FDT.
285  */
286 static int __init early_mem(char *p)
287 {
288 	if (!p)
289 		return 1;
290 
291 	memory_limit = memparse(p, &p) & PAGE_MASK;
292 	pr_notice("Memory limited to %lldMB\n", memory_limit >> 20);
293 
294 	return 0;
295 }
296 early_param("mem", early_mem);
297 
298 static int __init early_init_dt_scan_usablemem(unsigned long node,
299 		const char *uname, int depth, void *data)
300 {
301 	struct memblock_region *usablemem = data;
302 	const __be32 *reg;
303 	int len;
304 
305 	if (depth != 1 || strcmp(uname, "chosen") != 0)
306 		return 0;
307 
308 	reg = of_get_flat_dt_prop(node, "linux,usable-memory-range", &len);
309 	if (!reg || (len < (dt_root_addr_cells + dt_root_size_cells)))
310 		return 1;
311 
312 	usablemem->base = dt_mem_next_cell(dt_root_addr_cells, &reg);
313 	usablemem->size = dt_mem_next_cell(dt_root_size_cells, &reg);
314 
315 	return 1;
316 }
317 
318 static void __init fdt_enforce_memory_region(void)
319 {
320 	struct memblock_region reg = {
321 		.size = 0,
322 	};
323 
324 	of_scan_flat_dt(early_init_dt_scan_usablemem, &reg);
325 
326 	if (reg.size)
327 		memblock_cap_memory_range(reg.base, reg.size);
328 }
329 
330 void __init arm64_memblock_init(void)
331 {
332 	const s64 linear_region_size = -(s64)PAGE_OFFSET;
333 
334 	/* Handle linux,usable-memory-range property */
335 	fdt_enforce_memory_region();
336 
337 	/* Remove memory above our supported physical address size */
338 	memblock_remove(1ULL << PHYS_MASK_SHIFT, ULLONG_MAX);
339 
340 	/*
341 	 * Ensure that the linear region takes up exactly half of the kernel
342 	 * virtual address space. This way, we can distinguish a linear address
343 	 * from a kernel/module/vmalloc address by testing a single bit.
344 	 */
345 	BUILD_BUG_ON(linear_region_size != BIT(VA_BITS - 1));
346 
347 	/*
348 	 * Select a suitable value for the base of physical memory.
349 	 */
350 	memstart_addr = round_down(memblock_start_of_DRAM(),
351 				   ARM64_MEMSTART_ALIGN);
352 
353 	/*
354 	 * Remove the memory that we will not be able to cover with the
355 	 * linear mapping. Take care not to clip the kernel which may be
356 	 * high in memory.
357 	 */
358 	memblock_remove(max_t(u64, memstart_addr + linear_region_size,
359 			__pa_symbol(_end)), ULLONG_MAX);
360 	if (memstart_addr + linear_region_size < memblock_end_of_DRAM()) {
361 		/* ensure that memstart_addr remains sufficiently aligned */
362 		memstart_addr = round_up(memblock_end_of_DRAM() - linear_region_size,
363 					 ARM64_MEMSTART_ALIGN);
364 		memblock_remove(0, memstart_addr);
365 	}
366 
367 	/*
368 	 * Apply the memory limit if it was set. Since the kernel may be loaded
369 	 * high up in memory, add back the kernel region that must be accessible
370 	 * via the linear mapping.
371 	 */
372 	if (memory_limit != PHYS_ADDR_MAX) {
373 		memblock_mem_limit_remove_map(memory_limit);
374 		memblock_add(__pa_symbol(_text), (u64)(_end - _text));
375 	}
376 
377 	if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) {
378 		/*
379 		 * Add back the memory we just removed if it results in the
380 		 * initrd to become inaccessible via the linear mapping.
381 		 * Otherwise, this is a no-op
382 		 */
383 		u64 base = phys_initrd_start & PAGE_MASK;
384 		u64 size = PAGE_ALIGN(phys_initrd_size);
385 
386 		/*
387 		 * We can only add back the initrd memory if we don't end up
388 		 * with more memory than we can address via the linear mapping.
389 		 * It is up to the bootloader to position the kernel and the
390 		 * initrd reasonably close to each other (i.e., within 32 GB of
391 		 * each other) so that all granule/#levels combinations can
392 		 * always access both.
393 		 */
394 		if (WARN(base < memblock_start_of_DRAM() ||
395 			 base + size > memblock_start_of_DRAM() +
396 				       linear_region_size,
397 			"initrd not fully accessible via the linear mapping -- please check your bootloader ...\n")) {
398 			initrd_start = 0;
399 		} else {
400 			memblock_remove(base, size); /* clear MEMBLOCK_ flags */
401 			memblock_add(base, size);
402 			memblock_reserve(base, size);
403 		}
404 	}
405 
406 	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
407 		extern u16 memstart_offset_seed;
408 		u64 range = linear_region_size -
409 			    (memblock_end_of_DRAM() - memblock_start_of_DRAM());
410 
411 		/*
412 		 * If the size of the linear region exceeds, by a sufficient
413 		 * margin, the size of the region that the available physical
414 		 * memory spans, randomize the linear region as well.
415 		 */
416 		if (memstart_offset_seed > 0 && range >= ARM64_MEMSTART_ALIGN) {
417 			range /= ARM64_MEMSTART_ALIGN;
418 			memstart_addr -= ARM64_MEMSTART_ALIGN *
419 					 ((range * memstart_offset_seed) >> 16);
420 		}
421 	}
422 
423 	/*
424 	 * Register the kernel text, kernel data, initrd, and initial
425 	 * pagetables with memblock.
426 	 */
427 	memblock_reserve(__pa_symbol(_text), _end - _text);
428 	if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) {
429 		/* the generic initrd code expects virtual addresses */
430 		initrd_start = __phys_to_virt(phys_initrd_start);
431 		initrd_end = initrd_start + phys_initrd_size;
432 	}
433 
434 	early_init_fdt_scan_reserved_mem();
435 
436 	/* 4GB maximum for 32-bit only capable devices */
437 	if (IS_ENABLED(CONFIG_ZONE_DMA32))
438 		arm64_dma_phys_limit = max_zone_dma_phys();
439 	else
440 		arm64_dma_phys_limit = PHYS_MASK + 1;
441 
442 	reserve_crashkernel();
443 
444 	reserve_elfcorehdr();
445 
446 	high_memory = __va(memblock_end_of_DRAM() - 1) + 1;
447 
448 	dma_contiguous_reserve(arm64_dma_phys_limit);
449 }
450 
451 void __init bootmem_init(void)
452 {
453 	unsigned long min, max;
454 
455 	min = PFN_UP(memblock_start_of_DRAM());
456 	max = PFN_DOWN(memblock_end_of_DRAM());
457 
458 	early_memtest(min << PAGE_SHIFT, max << PAGE_SHIFT);
459 
460 	max_pfn = max_low_pfn = max;
461 
462 	arm64_numa_init();
463 	/*
464 	 * Sparsemem tries to allocate bootmem in memory_present(), so must be
465 	 * done after the fixed reservations.
466 	 */
467 	arm64_memory_present();
468 
469 	sparse_init();
470 	zone_sizes_init(min, max);
471 
472 	memblock_dump_all();
473 }
474 
475 #ifndef CONFIG_SPARSEMEM_VMEMMAP
476 static inline void free_memmap(unsigned long start_pfn, unsigned long end_pfn)
477 {
478 	struct page *start_pg, *end_pg;
479 	unsigned long pg, pgend;
480 
481 	/*
482 	 * Convert start_pfn/end_pfn to a struct page pointer.
483 	 */
484 	start_pg = pfn_to_page(start_pfn - 1) + 1;
485 	end_pg = pfn_to_page(end_pfn - 1) + 1;
486 
487 	/*
488 	 * Convert to physical addresses, and round start upwards and end
489 	 * downwards.
490 	 */
491 	pg = (unsigned long)PAGE_ALIGN(__pa(start_pg));
492 	pgend = (unsigned long)__pa(end_pg) & PAGE_MASK;
493 
494 	/*
495 	 * If there are free pages between these, free the section of the
496 	 * memmap array.
497 	 */
498 	if (pg < pgend)
499 		memblock_free(pg, pgend - pg);
500 }
501 
502 /*
503  * The mem_map array can get very big. Free the unused area of the memory map.
504  */
505 static void __init free_unused_memmap(void)
506 {
507 	unsigned long start, prev_end = 0;
508 	struct memblock_region *reg;
509 
510 	for_each_memblock(memory, reg) {
511 		start = __phys_to_pfn(reg->base);
512 
513 #ifdef CONFIG_SPARSEMEM
514 		/*
515 		 * Take care not to free memmap entries that don't exist due
516 		 * to SPARSEMEM sections which aren't present.
517 		 */
518 		start = min(start, ALIGN(prev_end, PAGES_PER_SECTION));
519 #endif
520 		/*
521 		 * If we had a previous bank, and there is a space between the
522 		 * current bank and the previous, free it.
523 		 */
524 		if (prev_end && prev_end < start)
525 			free_memmap(prev_end, start);
526 
527 		/*
528 		 * Align up here since the VM subsystem insists that the
529 		 * memmap entries are valid from the bank end aligned to
530 		 * MAX_ORDER_NR_PAGES.
531 		 */
532 		prev_end = ALIGN(__phys_to_pfn(reg->base + reg->size),
533 				 MAX_ORDER_NR_PAGES);
534 	}
535 
536 #ifdef CONFIG_SPARSEMEM
537 	if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION))
538 		free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION));
539 #endif
540 }
541 #endif	/* !CONFIG_SPARSEMEM_VMEMMAP */
542 
543 /*
544  * mem_init() marks the free areas in the mem_map and tells us how much memory
545  * is free.  This is done after various parts of the system have claimed their
546  * memory after the kernel image.
547  */
548 void __init mem_init(void)
549 {
550 	if (swiotlb_force == SWIOTLB_FORCE ||
551 	    max_pfn > (arm64_dma_phys_limit >> PAGE_SHIFT))
552 		swiotlb_init(1);
553 	else
554 		swiotlb_force = SWIOTLB_NO_FORCE;
555 
556 	set_max_mapnr(pfn_to_page(max_pfn) - mem_map);
557 
558 #ifndef CONFIG_SPARSEMEM_VMEMMAP
559 	free_unused_memmap();
560 #endif
561 	/* this will put all unused low memory onto the freelists */
562 	memblock_free_all();
563 
564 	mem_init_print_info(NULL);
565 
566 	/*
567 	 * Check boundaries twice: Some fundamental inconsistencies can be
568 	 * detected at build time already.
569 	 */
570 #ifdef CONFIG_COMPAT
571 	BUILD_BUG_ON(TASK_SIZE_32 > DEFAULT_MAP_WINDOW_64);
572 #endif
573 
574 	if (PAGE_SIZE >= 16384 && get_num_physpages() <= 128) {
575 		extern int sysctl_overcommit_memory;
576 		/*
577 		 * On a machine this small we won't get anywhere without
578 		 * overcommit, so turn it on by default.
579 		 */
580 		sysctl_overcommit_memory = OVERCOMMIT_ALWAYS;
581 	}
582 }
583 
584 void free_initmem(void)
585 {
586 	free_reserved_area(lm_alias(__init_begin),
587 			   lm_alias(__init_end),
588 			   0, "unused kernel");
589 	/*
590 	 * Unmap the __init region but leave the VM area in place. This
591 	 * prevents the region from being reused for kernel modules, which
592 	 * is not supported by kallsyms.
593 	 */
594 	unmap_kernel_range((u64)__init_begin, (u64)(__init_end - __init_begin));
595 }
596 
597 #ifdef CONFIG_BLK_DEV_INITRD
598 
599 static int keep_initrd __initdata;
600 
601 void __init free_initrd_mem(unsigned long start, unsigned long end)
602 {
603 	if (!keep_initrd) {
604 		free_reserved_area((void *)start, (void *)end, 0, "initrd");
605 		memblock_free(__virt_to_phys(start), end - start);
606 	}
607 }
608 
609 static int __init keepinitrd_setup(char *__unused)
610 {
611 	keep_initrd = 1;
612 	return 1;
613 }
614 
615 __setup("keepinitrd", keepinitrd_setup);
616 #endif
617 
618 /*
619  * Dump out memory limit information on panic.
620  */
621 static int dump_mem_limit(struct notifier_block *self, unsigned long v, void *p)
622 {
623 	if (memory_limit != PHYS_ADDR_MAX) {
624 		pr_emerg("Memory Limit: %llu MB\n", memory_limit >> 20);
625 	} else {
626 		pr_emerg("Memory Limit: none\n");
627 	}
628 	return 0;
629 }
630 
631 static struct notifier_block mem_limit_notifier = {
632 	.notifier_call = dump_mem_limit,
633 };
634 
635 static int __init register_mem_limit_dumper(void)
636 {
637 	atomic_notifier_chain_register(&panic_notifier_list,
638 				       &mem_limit_notifier);
639 	return 0;
640 }
641 __initcall(register_mem_limit_dumper);
642