1 /* 2 * SWIOTLB-based DMA API implementation 3 * 4 * Copyright (C) 2012 ARM Ltd. 5 * Author: Catalin Marinas <catalin.marinas@arm.com> 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program. If not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include <linux/gfp.h> 21 #include <linux/acpi.h> 22 #include <linux/bootmem.h> 23 #include <linux/cache.h> 24 #include <linux/export.h> 25 #include <linux/slab.h> 26 #include <linux/genalloc.h> 27 #include <linux/dma-direct.h> 28 #include <linux/dma-contiguous.h> 29 #include <linux/vmalloc.h> 30 #include <linux/swiotlb.h> 31 #include <linux/pci.h> 32 33 #include <asm/cacheflush.h> 34 35 static int swiotlb __ro_after_init; 36 37 static pgprot_t __get_dma_pgprot(unsigned long attrs, pgprot_t prot, 38 bool coherent) 39 { 40 if (!coherent || (attrs & DMA_ATTR_WRITE_COMBINE)) 41 return pgprot_writecombine(prot); 42 return prot; 43 } 44 45 static struct gen_pool *atomic_pool __ro_after_init; 46 47 #define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K 48 static size_t atomic_pool_size __initdata = DEFAULT_DMA_COHERENT_POOL_SIZE; 49 50 static int __init early_coherent_pool(char *p) 51 { 52 atomic_pool_size = memparse(p, &p); 53 return 0; 54 } 55 early_param("coherent_pool", early_coherent_pool); 56 57 static void *__alloc_from_pool(size_t size, struct page **ret_page, gfp_t flags) 58 { 59 unsigned long val; 60 void *ptr = NULL; 61 62 if (!atomic_pool) { 63 WARN(1, "coherent pool not initialised!\n"); 64 return NULL; 65 } 66 67 val = gen_pool_alloc(atomic_pool, size); 68 if (val) { 69 phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val); 70 71 *ret_page = phys_to_page(phys); 72 ptr = (void *)val; 73 memset(ptr, 0, size); 74 } 75 76 return ptr; 77 } 78 79 static bool __in_atomic_pool(void *start, size_t size) 80 { 81 return addr_in_gen_pool(atomic_pool, (unsigned long)start, size); 82 } 83 84 static int __free_from_pool(void *start, size_t size) 85 { 86 if (!__in_atomic_pool(start, size)) 87 return 0; 88 89 gen_pool_free(atomic_pool, (unsigned long)start, size); 90 91 return 1; 92 } 93 94 static void *__dma_alloc(struct device *dev, size_t size, 95 dma_addr_t *dma_handle, gfp_t flags, 96 unsigned long attrs) 97 { 98 struct page *page; 99 void *ptr, *coherent_ptr; 100 bool coherent = is_device_dma_coherent(dev); 101 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL, false); 102 103 size = PAGE_ALIGN(size); 104 105 if (!coherent && !gfpflags_allow_blocking(flags)) { 106 struct page *page = NULL; 107 void *addr = __alloc_from_pool(size, &page, flags); 108 109 if (addr) 110 *dma_handle = phys_to_dma(dev, page_to_phys(page)); 111 112 return addr; 113 } 114 115 ptr = swiotlb_alloc(dev, size, dma_handle, flags, attrs); 116 if (!ptr) 117 goto no_mem; 118 119 /* no need for non-cacheable mapping if coherent */ 120 if (coherent) 121 return ptr; 122 123 /* remove any dirty cache lines on the kernel alias */ 124 __dma_flush_area(ptr, size); 125 126 /* create a coherent mapping */ 127 page = virt_to_page(ptr); 128 coherent_ptr = dma_common_contiguous_remap(page, size, VM_USERMAP, 129 prot, __builtin_return_address(0)); 130 if (!coherent_ptr) 131 goto no_map; 132 133 return coherent_ptr; 134 135 no_map: 136 swiotlb_free(dev, size, ptr, *dma_handle, attrs); 137 no_mem: 138 return NULL; 139 } 140 141 static void __dma_free(struct device *dev, size_t size, 142 void *vaddr, dma_addr_t dma_handle, 143 unsigned long attrs) 144 { 145 void *swiotlb_addr = phys_to_virt(dma_to_phys(dev, dma_handle)); 146 147 size = PAGE_ALIGN(size); 148 149 if (!is_device_dma_coherent(dev)) { 150 if (__free_from_pool(vaddr, size)) 151 return; 152 vunmap(vaddr); 153 } 154 swiotlb_free(dev, size, swiotlb_addr, dma_handle, attrs); 155 } 156 157 static dma_addr_t __swiotlb_map_page(struct device *dev, struct page *page, 158 unsigned long offset, size_t size, 159 enum dma_data_direction dir, 160 unsigned long attrs) 161 { 162 dma_addr_t dev_addr; 163 164 dev_addr = swiotlb_map_page(dev, page, offset, size, dir, attrs); 165 if (!is_device_dma_coherent(dev) && 166 (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 167 __dma_map_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir); 168 169 return dev_addr; 170 } 171 172 173 static void __swiotlb_unmap_page(struct device *dev, dma_addr_t dev_addr, 174 size_t size, enum dma_data_direction dir, 175 unsigned long attrs) 176 { 177 if (!is_device_dma_coherent(dev) && 178 (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 179 __dma_unmap_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir); 180 swiotlb_unmap_page(dev, dev_addr, size, dir, attrs); 181 } 182 183 static int __swiotlb_map_sg_attrs(struct device *dev, struct scatterlist *sgl, 184 int nelems, enum dma_data_direction dir, 185 unsigned long attrs) 186 { 187 struct scatterlist *sg; 188 int i, ret; 189 190 ret = swiotlb_map_sg_attrs(dev, sgl, nelems, dir, attrs); 191 if (!is_device_dma_coherent(dev) && 192 (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 193 for_each_sg(sgl, sg, ret, i) 194 __dma_map_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)), 195 sg->length, dir); 196 197 return ret; 198 } 199 200 static void __swiotlb_unmap_sg_attrs(struct device *dev, 201 struct scatterlist *sgl, int nelems, 202 enum dma_data_direction dir, 203 unsigned long attrs) 204 { 205 struct scatterlist *sg; 206 int i; 207 208 if (!is_device_dma_coherent(dev) && 209 (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 210 for_each_sg(sgl, sg, nelems, i) 211 __dma_unmap_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)), 212 sg->length, dir); 213 swiotlb_unmap_sg_attrs(dev, sgl, nelems, dir, attrs); 214 } 215 216 static void __swiotlb_sync_single_for_cpu(struct device *dev, 217 dma_addr_t dev_addr, size_t size, 218 enum dma_data_direction dir) 219 { 220 if (!is_device_dma_coherent(dev)) 221 __dma_unmap_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir); 222 swiotlb_sync_single_for_cpu(dev, dev_addr, size, dir); 223 } 224 225 static void __swiotlb_sync_single_for_device(struct device *dev, 226 dma_addr_t dev_addr, size_t size, 227 enum dma_data_direction dir) 228 { 229 swiotlb_sync_single_for_device(dev, dev_addr, size, dir); 230 if (!is_device_dma_coherent(dev)) 231 __dma_map_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir); 232 } 233 234 static void __swiotlb_sync_sg_for_cpu(struct device *dev, 235 struct scatterlist *sgl, int nelems, 236 enum dma_data_direction dir) 237 { 238 struct scatterlist *sg; 239 int i; 240 241 if (!is_device_dma_coherent(dev)) 242 for_each_sg(sgl, sg, nelems, i) 243 __dma_unmap_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)), 244 sg->length, dir); 245 swiotlb_sync_sg_for_cpu(dev, sgl, nelems, dir); 246 } 247 248 static void __swiotlb_sync_sg_for_device(struct device *dev, 249 struct scatterlist *sgl, int nelems, 250 enum dma_data_direction dir) 251 { 252 struct scatterlist *sg; 253 int i; 254 255 swiotlb_sync_sg_for_device(dev, sgl, nelems, dir); 256 if (!is_device_dma_coherent(dev)) 257 for_each_sg(sgl, sg, nelems, i) 258 __dma_map_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)), 259 sg->length, dir); 260 } 261 262 static int __swiotlb_mmap_pfn(struct vm_area_struct *vma, 263 unsigned long pfn, size_t size) 264 { 265 int ret = -ENXIO; 266 unsigned long nr_vma_pages = vma_pages(vma); 267 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT; 268 unsigned long off = vma->vm_pgoff; 269 270 if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) { 271 ret = remap_pfn_range(vma, vma->vm_start, 272 pfn + off, 273 vma->vm_end - vma->vm_start, 274 vma->vm_page_prot); 275 } 276 277 return ret; 278 } 279 280 static int __swiotlb_mmap(struct device *dev, 281 struct vm_area_struct *vma, 282 void *cpu_addr, dma_addr_t dma_addr, size_t size, 283 unsigned long attrs) 284 { 285 int ret; 286 unsigned long pfn = dma_to_phys(dev, dma_addr) >> PAGE_SHIFT; 287 288 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot, 289 is_device_dma_coherent(dev)); 290 291 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret)) 292 return ret; 293 294 return __swiotlb_mmap_pfn(vma, pfn, size); 295 } 296 297 static int __swiotlb_get_sgtable_page(struct sg_table *sgt, 298 struct page *page, size_t size) 299 { 300 int ret = sg_alloc_table(sgt, 1, GFP_KERNEL); 301 302 if (!ret) 303 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0); 304 305 return ret; 306 } 307 308 static int __swiotlb_get_sgtable(struct device *dev, struct sg_table *sgt, 309 void *cpu_addr, dma_addr_t handle, size_t size, 310 unsigned long attrs) 311 { 312 struct page *page = phys_to_page(dma_to_phys(dev, handle)); 313 314 return __swiotlb_get_sgtable_page(sgt, page, size); 315 } 316 317 static int __swiotlb_dma_supported(struct device *hwdev, u64 mask) 318 { 319 if (swiotlb) 320 return swiotlb_dma_supported(hwdev, mask); 321 return 1; 322 } 323 324 static int __swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t addr) 325 { 326 if (swiotlb) 327 return swiotlb_dma_mapping_error(hwdev, addr); 328 return 0; 329 } 330 331 static const struct dma_map_ops arm64_swiotlb_dma_ops = { 332 .alloc = __dma_alloc, 333 .free = __dma_free, 334 .mmap = __swiotlb_mmap, 335 .get_sgtable = __swiotlb_get_sgtable, 336 .map_page = __swiotlb_map_page, 337 .unmap_page = __swiotlb_unmap_page, 338 .map_sg = __swiotlb_map_sg_attrs, 339 .unmap_sg = __swiotlb_unmap_sg_attrs, 340 .sync_single_for_cpu = __swiotlb_sync_single_for_cpu, 341 .sync_single_for_device = __swiotlb_sync_single_for_device, 342 .sync_sg_for_cpu = __swiotlb_sync_sg_for_cpu, 343 .sync_sg_for_device = __swiotlb_sync_sg_for_device, 344 .dma_supported = __swiotlb_dma_supported, 345 .mapping_error = __swiotlb_dma_mapping_error, 346 }; 347 348 static int __init atomic_pool_init(void) 349 { 350 pgprot_t prot = __pgprot(PROT_NORMAL_NC); 351 unsigned long nr_pages = atomic_pool_size >> PAGE_SHIFT; 352 struct page *page; 353 void *addr; 354 unsigned int pool_size_order = get_order(atomic_pool_size); 355 356 if (dev_get_cma_area(NULL)) 357 page = dma_alloc_from_contiguous(NULL, nr_pages, 358 pool_size_order, GFP_KERNEL); 359 else 360 page = alloc_pages(GFP_DMA32, pool_size_order); 361 362 if (page) { 363 int ret; 364 void *page_addr = page_address(page); 365 366 memset(page_addr, 0, atomic_pool_size); 367 __dma_flush_area(page_addr, atomic_pool_size); 368 369 atomic_pool = gen_pool_create(PAGE_SHIFT, -1); 370 if (!atomic_pool) 371 goto free_page; 372 373 addr = dma_common_contiguous_remap(page, atomic_pool_size, 374 VM_USERMAP, prot, atomic_pool_init); 375 376 if (!addr) 377 goto destroy_genpool; 378 379 ret = gen_pool_add_virt(atomic_pool, (unsigned long)addr, 380 page_to_phys(page), 381 atomic_pool_size, -1); 382 if (ret) 383 goto remove_mapping; 384 385 gen_pool_set_algo(atomic_pool, 386 gen_pool_first_fit_order_align, 387 NULL); 388 389 pr_info("DMA: preallocated %zu KiB pool for atomic allocations\n", 390 atomic_pool_size / 1024); 391 return 0; 392 } 393 goto out; 394 395 remove_mapping: 396 dma_common_free_remap(addr, atomic_pool_size, VM_USERMAP); 397 destroy_genpool: 398 gen_pool_destroy(atomic_pool); 399 atomic_pool = NULL; 400 free_page: 401 if (!dma_release_from_contiguous(NULL, page, nr_pages)) 402 __free_pages(page, pool_size_order); 403 out: 404 pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n", 405 atomic_pool_size / 1024); 406 return -ENOMEM; 407 } 408 409 /******************************************** 410 * The following APIs are for dummy DMA ops * 411 ********************************************/ 412 413 static void *__dummy_alloc(struct device *dev, size_t size, 414 dma_addr_t *dma_handle, gfp_t flags, 415 unsigned long attrs) 416 { 417 return NULL; 418 } 419 420 static void __dummy_free(struct device *dev, size_t size, 421 void *vaddr, dma_addr_t dma_handle, 422 unsigned long attrs) 423 { 424 } 425 426 static int __dummy_mmap(struct device *dev, 427 struct vm_area_struct *vma, 428 void *cpu_addr, dma_addr_t dma_addr, size_t size, 429 unsigned long attrs) 430 { 431 return -ENXIO; 432 } 433 434 static dma_addr_t __dummy_map_page(struct device *dev, struct page *page, 435 unsigned long offset, size_t size, 436 enum dma_data_direction dir, 437 unsigned long attrs) 438 { 439 return 0; 440 } 441 442 static void __dummy_unmap_page(struct device *dev, dma_addr_t dev_addr, 443 size_t size, enum dma_data_direction dir, 444 unsigned long attrs) 445 { 446 } 447 448 static int __dummy_map_sg(struct device *dev, struct scatterlist *sgl, 449 int nelems, enum dma_data_direction dir, 450 unsigned long attrs) 451 { 452 return 0; 453 } 454 455 static void __dummy_unmap_sg(struct device *dev, 456 struct scatterlist *sgl, int nelems, 457 enum dma_data_direction dir, 458 unsigned long attrs) 459 { 460 } 461 462 static void __dummy_sync_single(struct device *dev, 463 dma_addr_t dev_addr, size_t size, 464 enum dma_data_direction dir) 465 { 466 } 467 468 static void __dummy_sync_sg(struct device *dev, 469 struct scatterlist *sgl, int nelems, 470 enum dma_data_direction dir) 471 { 472 } 473 474 static int __dummy_mapping_error(struct device *hwdev, dma_addr_t dma_addr) 475 { 476 return 1; 477 } 478 479 static int __dummy_dma_supported(struct device *hwdev, u64 mask) 480 { 481 return 0; 482 } 483 484 const struct dma_map_ops dummy_dma_ops = { 485 .alloc = __dummy_alloc, 486 .free = __dummy_free, 487 .mmap = __dummy_mmap, 488 .map_page = __dummy_map_page, 489 .unmap_page = __dummy_unmap_page, 490 .map_sg = __dummy_map_sg, 491 .unmap_sg = __dummy_unmap_sg, 492 .sync_single_for_cpu = __dummy_sync_single, 493 .sync_single_for_device = __dummy_sync_single, 494 .sync_sg_for_cpu = __dummy_sync_sg, 495 .sync_sg_for_device = __dummy_sync_sg, 496 .mapping_error = __dummy_mapping_error, 497 .dma_supported = __dummy_dma_supported, 498 }; 499 EXPORT_SYMBOL(dummy_dma_ops); 500 501 static int __init arm64_dma_init(void) 502 { 503 if (swiotlb_force == SWIOTLB_FORCE || 504 max_pfn > (arm64_dma_phys_limit >> PAGE_SHIFT)) 505 swiotlb = 1; 506 507 return atomic_pool_init(); 508 } 509 arch_initcall(arm64_dma_init); 510 511 #ifdef CONFIG_IOMMU_DMA 512 #include <linux/dma-iommu.h> 513 #include <linux/platform_device.h> 514 #include <linux/amba/bus.h> 515 516 /* Thankfully, all cache ops are by VA so we can ignore phys here */ 517 static void flush_page(struct device *dev, const void *virt, phys_addr_t phys) 518 { 519 __dma_flush_area(virt, PAGE_SIZE); 520 } 521 522 static void *__iommu_alloc_attrs(struct device *dev, size_t size, 523 dma_addr_t *handle, gfp_t gfp, 524 unsigned long attrs) 525 { 526 bool coherent = is_device_dma_coherent(dev); 527 int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs); 528 size_t iosize = size; 529 void *addr; 530 531 if (WARN(!dev, "cannot create IOMMU mapping for unknown device\n")) 532 return NULL; 533 534 size = PAGE_ALIGN(size); 535 536 /* 537 * Some drivers rely on this, and we probably don't want the 538 * possibility of stale kernel data being read by devices anyway. 539 */ 540 gfp |= __GFP_ZERO; 541 542 if (!gfpflags_allow_blocking(gfp)) { 543 struct page *page; 544 /* 545 * In atomic context we can't remap anything, so we'll only 546 * get the virtually contiguous buffer we need by way of a 547 * physically contiguous allocation. 548 */ 549 if (coherent) { 550 page = alloc_pages(gfp, get_order(size)); 551 addr = page ? page_address(page) : NULL; 552 } else { 553 addr = __alloc_from_pool(size, &page, gfp); 554 } 555 if (!addr) 556 return NULL; 557 558 *handle = iommu_dma_map_page(dev, page, 0, iosize, ioprot); 559 if (iommu_dma_mapping_error(dev, *handle)) { 560 if (coherent) 561 __free_pages(page, get_order(size)); 562 else 563 __free_from_pool(addr, size); 564 addr = NULL; 565 } 566 } else if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) { 567 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL, coherent); 568 struct page *page; 569 570 page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT, 571 get_order(size), gfp); 572 if (!page) 573 return NULL; 574 575 *handle = iommu_dma_map_page(dev, page, 0, iosize, ioprot); 576 if (iommu_dma_mapping_error(dev, *handle)) { 577 dma_release_from_contiguous(dev, page, 578 size >> PAGE_SHIFT); 579 return NULL; 580 } 581 if (!coherent) 582 __dma_flush_area(page_to_virt(page), iosize); 583 584 addr = dma_common_contiguous_remap(page, size, VM_USERMAP, 585 prot, 586 __builtin_return_address(0)); 587 if (!addr) { 588 iommu_dma_unmap_page(dev, *handle, iosize, 0, attrs); 589 dma_release_from_contiguous(dev, page, 590 size >> PAGE_SHIFT); 591 } 592 } else { 593 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL, coherent); 594 struct page **pages; 595 596 pages = iommu_dma_alloc(dev, iosize, gfp, attrs, ioprot, 597 handle, flush_page); 598 if (!pages) 599 return NULL; 600 601 addr = dma_common_pages_remap(pages, size, VM_USERMAP, prot, 602 __builtin_return_address(0)); 603 if (!addr) 604 iommu_dma_free(dev, pages, iosize, handle); 605 } 606 return addr; 607 } 608 609 static void __iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr, 610 dma_addr_t handle, unsigned long attrs) 611 { 612 size_t iosize = size; 613 614 size = PAGE_ALIGN(size); 615 /* 616 * @cpu_addr will be one of 4 things depending on how it was allocated: 617 * - A remapped array of pages for contiguous allocations. 618 * - A remapped array of pages from iommu_dma_alloc(), for all 619 * non-atomic allocations. 620 * - A non-cacheable alias from the atomic pool, for atomic 621 * allocations by non-coherent devices. 622 * - A normal lowmem address, for atomic allocations by 623 * coherent devices. 624 * Hence how dodgy the below logic looks... 625 */ 626 if (__in_atomic_pool(cpu_addr, size)) { 627 iommu_dma_unmap_page(dev, handle, iosize, 0, 0); 628 __free_from_pool(cpu_addr, size); 629 } else if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) { 630 struct page *page = vmalloc_to_page(cpu_addr); 631 632 iommu_dma_unmap_page(dev, handle, iosize, 0, attrs); 633 dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT); 634 dma_common_free_remap(cpu_addr, size, VM_USERMAP); 635 } else if (is_vmalloc_addr(cpu_addr)){ 636 struct vm_struct *area = find_vm_area(cpu_addr); 637 638 if (WARN_ON(!area || !area->pages)) 639 return; 640 iommu_dma_free(dev, area->pages, iosize, &handle); 641 dma_common_free_remap(cpu_addr, size, VM_USERMAP); 642 } else { 643 iommu_dma_unmap_page(dev, handle, iosize, 0, 0); 644 __free_pages(virt_to_page(cpu_addr), get_order(size)); 645 } 646 } 647 648 static int __iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma, 649 void *cpu_addr, dma_addr_t dma_addr, size_t size, 650 unsigned long attrs) 651 { 652 struct vm_struct *area; 653 int ret; 654 655 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot, 656 is_device_dma_coherent(dev)); 657 658 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret)) 659 return ret; 660 661 if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) { 662 /* 663 * DMA_ATTR_FORCE_CONTIGUOUS allocations are always remapped, 664 * hence in the vmalloc space. 665 */ 666 unsigned long pfn = vmalloc_to_pfn(cpu_addr); 667 return __swiotlb_mmap_pfn(vma, pfn, size); 668 } 669 670 area = find_vm_area(cpu_addr); 671 if (WARN_ON(!area || !area->pages)) 672 return -ENXIO; 673 674 return iommu_dma_mmap(area->pages, size, vma); 675 } 676 677 static int __iommu_get_sgtable(struct device *dev, struct sg_table *sgt, 678 void *cpu_addr, dma_addr_t dma_addr, 679 size_t size, unsigned long attrs) 680 { 681 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; 682 struct vm_struct *area = find_vm_area(cpu_addr); 683 684 if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) { 685 /* 686 * DMA_ATTR_FORCE_CONTIGUOUS allocations are always remapped, 687 * hence in the vmalloc space. 688 */ 689 struct page *page = vmalloc_to_page(cpu_addr); 690 return __swiotlb_get_sgtable_page(sgt, page, size); 691 } 692 693 if (WARN_ON(!area || !area->pages)) 694 return -ENXIO; 695 696 return sg_alloc_table_from_pages(sgt, area->pages, count, 0, size, 697 GFP_KERNEL); 698 } 699 700 static void __iommu_sync_single_for_cpu(struct device *dev, 701 dma_addr_t dev_addr, size_t size, 702 enum dma_data_direction dir) 703 { 704 phys_addr_t phys; 705 706 if (is_device_dma_coherent(dev)) 707 return; 708 709 phys = iommu_iova_to_phys(iommu_get_domain_for_dev(dev), dev_addr); 710 __dma_unmap_area(phys_to_virt(phys), size, dir); 711 } 712 713 static void __iommu_sync_single_for_device(struct device *dev, 714 dma_addr_t dev_addr, size_t size, 715 enum dma_data_direction dir) 716 { 717 phys_addr_t phys; 718 719 if (is_device_dma_coherent(dev)) 720 return; 721 722 phys = iommu_iova_to_phys(iommu_get_domain_for_dev(dev), dev_addr); 723 __dma_map_area(phys_to_virt(phys), size, dir); 724 } 725 726 static dma_addr_t __iommu_map_page(struct device *dev, struct page *page, 727 unsigned long offset, size_t size, 728 enum dma_data_direction dir, 729 unsigned long attrs) 730 { 731 bool coherent = is_device_dma_coherent(dev); 732 int prot = dma_info_to_prot(dir, coherent, attrs); 733 dma_addr_t dev_addr = iommu_dma_map_page(dev, page, offset, size, prot); 734 735 if (!iommu_dma_mapping_error(dev, dev_addr) && 736 (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 737 __iommu_sync_single_for_device(dev, dev_addr, size, dir); 738 739 return dev_addr; 740 } 741 742 static void __iommu_unmap_page(struct device *dev, dma_addr_t dev_addr, 743 size_t size, enum dma_data_direction dir, 744 unsigned long attrs) 745 { 746 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 747 __iommu_sync_single_for_cpu(dev, dev_addr, size, dir); 748 749 iommu_dma_unmap_page(dev, dev_addr, size, dir, attrs); 750 } 751 752 static void __iommu_sync_sg_for_cpu(struct device *dev, 753 struct scatterlist *sgl, int nelems, 754 enum dma_data_direction dir) 755 { 756 struct scatterlist *sg; 757 int i; 758 759 if (is_device_dma_coherent(dev)) 760 return; 761 762 for_each_sg(sgl, sg, nelems, i) 763 __dma_unmap_area(sg_virt(sg), sg->length, dir); 764 } 765 766 static void __iommu_sync_sg_for_device(struct device *dev, 767 struct scatterlist *sgl, int nelems, 768 enum dma_data_direction dir) 769 { 770 struct scatterlist *sg; 771 int i; 772 773 if (is_device_dma_coherent(dev)) 774 return; 775 776 for_each_sg(sgl, sg, nelems, i) 777 __dma_map_area(sg_virt(sg), sg->length, dir); 778 } 779 780 static int __iommu_map_sg_attrs(struct device *dev, struct scatterlist *sgl, 781 int nelems, enum dma_data_direction dir, 782 unsigned long attrs) 783 { 784 bool coherent = is_device_dma_coherent(dev); 785 786 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 787 __iommu_sync_sg_for_device(dev, sgl, nelems, dir); 788 789 return iommu_dma_map_sg(dev, sgl, nelems, 790 dma_info_to_prot(dir, coherent, attrs)); 791 } 792 793 static void __iommu_unmap_sg_attrs(struct device *dev, 794 struct scatterlist *sgl, int nelems, 795 enum dma_data_direction dir, 796 unsigned long attrs) 797 { 798 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 799 __iommu_sync_sg_for_cpu(dev, sgl, nelems, dir); 800 801 iommu_dma_unmap_sg(dev, sgl, nelems, dir, attrs); 802 } 803 804 static const struct dma_map_ops iommu_dma_ops = { 805 .alloc = __iommu_alloc_attrs, 806 .free = __iommu_free_attrs, 807 .mmap = __iommu_mmap_attrs, 808 .get_sgtable = __iommu_get_sgtable, 809 .map_page = __iommu_map_page, 810 .unmap_page = __iommu_unmap_page, 811 .map_sg = __iommu_map_sg_attrs, 812 .unmap_sg = __iommu_unmap_sg_attrs, 813 .sync_single_for_cpu = __iommu_sync_single_for_cpu, 814 .sync_single_for_device = __iommu_sync_single_for_device, 815 .sync_sg_for_cpu = __iommu_sync_sg_for_cpu, 816 .sync_sg_for_device = __iommu_sync_sg_for_device, 817 .map_resource = iommu_dma_map_resource, 818 .unmap_resource = iommu_dma_unmap_resource, 819 .mapping_error = iommu_dma_mapping_error, 820 }; 821 822 static int __init __iommu_dma_init(void) 823 { 824 return iommu_dma_init(); 825 } 826 arch_initcall(__iommu_dma_init); 827 828 static void __iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size, 829 const struct iommu_ops *ops) 830 { 831 struct iommu_domain *domain; 832 833 if (!ops) 834 return; 835 836 /* 837 * The IOMMU core code allocates the default DMA domain, which the 838 * underlying IOMMU driver needs to support via the dma-iommu layer. 839 */ 840 domain = iommu_get_domain_for_dev(dev); 841 842 if (!domain) 843 goto out_err; 844 845 if (domain->type == IOMMU_DOMAIN_DMA) { 846 if (iommu_dma_init_domain(domain, dma_base, size, dev)) 847 goto out_err; 848 849 dev->dma_ops = &iommu_dma_ops; 850 } 851 852 return; 853 854 out_err: 855 pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n", 856 dev_name(dev)); 857 } 858 859 void arch_teardown_dma_ops(struct device *dev) 860 { 861 dev->dma_ops = NULL; 862 } 863 864 #else 865 866 static void __iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size, 867 const struct iommu_ops *iommu) 868 { } 869 870 #endif /* CONFIG_IOMMU_DMA */ 871 872 void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size, 873 const struct iommu_ops *iommu, bool coherent) 874 { 875 if (!dev->dma_ops) 876 dev->dma_ops = &arm64_swiotlb_dma_ops; 877 878 dev->archdata.dma_coherent = coherent; 879 __iommu_setup_dma_ops(dev, dma_base, size, iommu); 880 881 #ifdef CONFIG_XEN 882 if (xen_initial_domain()) { 883 dev->archdata.dev_dma_ops = dev->dma_ops; 884 dev->dma_ops = xen_dma_ops; 885 } 886 #endif 887 } 888