xref: /linux/arch/arm64/kvm/arm.c (revision 4ac6d90867a4de2e12117e755dbd76e08d88697f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5  */
6 
7 #include <linux/bug.h>
8 #include <linux/cpu_pm.h>
9 #include <linux/errno.h>
10 #include <linux/err.h>
11 #include <linux/kvm_host.h>
12 #include <linux/list.h>
13 #include <linux/module.h>
14 #include <linux/vmalloc.h>
15 #include <linux/fs.h>
16 #include <linux/mman.h>
17 #include <linux/sched.h>
18 #include <linux/kvm.h>
19 #include <linux/kvm_irqfd.h>
20 #include <linux/irqbypass.h>
21 #include <linux/sched/stat.h>
22 #include <linux/psci.h>
23 #include <trace/events/kvm.h>
24 
25 #define CREATE_TRACE_POINTS
26 #include "trace_arm.h"
27 
28 #include <linux/uaccess.h>
29 #include <asm/ptrace.h>
30 #include <asm/mman.h>
31 #include <asm/tlbflush.h>
32 #include <asm/cacheflush.h>
33 #include <asm/cpufeature.h>
34 #include <asm/virt.h>
35 #include <asm/kvm_arm.h>
36 #include <asm/kvm_asm.h>
37 #include <asm/kvm_mmu.h>
38 #include <asm/kvm_emulate.h>
39 #include <asm/sections.h>
40 
41 #include <kvm/arm_hypercalls.h>
42 #include <kvm/arm_pmu.h>
43 #include <kvm/arm_psci.h>
44 
45 #ifdef REQUIRES_VIRT
46 __asm__(".arch_extension	virt");
47 #endif
48 
49 static enum kvm_mode kvm_mode = KVM_MODE_DEFAULT;
50 DEFINE_STATIC_KEY_FALSE(kvm_protected_mode_initialized);
51 
52 DECLARE_KVM_HYP_PER_CPU(unsigned long, kvm_hyp_vector);
53 
54 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
55 unsigned long kvm_arm_hyp_percpu_base[NR_CPUS];
56 DECLARE_KVM_NVHE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params);
57 
58 /* The VMID used in the VTTBR */
59 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
60 static u32 kvm_next_vmid;
61 static DEFINE_SPINLOCK(kvm_vmid_lock);
62 
63 static bool vgic_present;
64 
65 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
66 DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
67 
68 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
69 {
70 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
71 }
72 
73 int kvm_arch_hardware_setup(void *opaque)
74 {
75 	return 0;
76 }
77 
78 int kvm_arch_check_processor_compat(void *opaque)
79 {
80 	return 0;
81 }
82 
83 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
84 			    struct kvm_enable_cap *cap)
85 {
86 	int r;
87 
88 	if (cap->flags)
89 		return -EINVAL;
90 
91 	switch (cap->cap) {
92 	case KVM_CAP_ARM_NISV_TO_USER:
93 		r = 0;
94 		kvm->arch.return_nisv_io_abort_to_user = true;
95 		break;
96 	case KVM_CAP_ARM_MTE:
97 		mutex_lock(&kvm->lock);
98 		if (!system_supports_mte() || kvm->created_vcpus) {
99 			r = -EINVAL;
100 		} else {
101 			r = 0;
102 			kvm->arch.mte_enabled = true;
103 		}
104 		mutex_unlock(&kvm->lock);
105 		break;
106 	default:
107 		r = -EINVAL;
108 		break;
109 	}
110 
111 	return r;
112 }
113 
114 static int kvm_arm_default_max_vcpus(void)
115 {
116 	return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
117 }
118 
119 static void set_default_spectre(struct kvm *kvm)
120 {
121 	/*
122 	 * The default is to expose CSV2 == 1 if the HW isn't affected.
123 	 * Although this is a per-CPU feature, we make it global because
124 	 * asymmetric systems are just a nuisance.
125 	 *
126 	 * Userspace can override this as long as it doesn't promise
127 	 * the impossible.
128 	 */
129 	if (arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED)
130 		kvm->arch.pfr0_csv2 = 1;
131 	if (arm64_get_meltdown_state() == SPECTRE_UNAFFECTED)
132 		kvm->arch.pfr0_csv3 = 1;
133 }
134 
135 /**
136  * kvm_arch_init_vm - initializes a VM data structure
137  * @kvm:	pointer to the KVM struct
138  */
139 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
140 {
141 	int ret;
142 
143 	ret = kvm_arm_setup_stage2(kvm, type);
144 	if (ret)
145 		return ret;
146 
147 	ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu);
148 	if (ret)
149 		return ret;
150 
151 	ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
152 	if (ret)
153 		goto out_free_stage2_pgd;
154 
155 	kvm_vgic_early_init(kvm);
156 
157 	/* The maximum number of VCPUs is limited by the host's GIC model */
158 	kvm->arch.max_vcpus = kvm_arm_default_max_vcpus();
159 
160 	set_default_spectre(kvm);
161 
162 	return ret;
163 out_free_stage2_pgd:
164 	kvm_free_stage2_pgd(&kvm->arch.mmu);
165 	return ret;
166 }
167 
168 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
169 {
170 	return VM_FAULT_SIGBUS;
171 }
172 
173 
174 /**
175  * kvm_arch_destroy_vm - destroy the VM data structure
176  * @kvm:	pointer to the KVM struct
177  */
178 void kvm_arch_destroy_vm(struct kvm *kvm)
179 {
180 	int i;
181 
182 	bitmap_free(kvm->arch.pmu_filter);
183 
184 	kvm_vgic_destroy(kvm);
185 
186 	for (i = 0; i < KVM_MAX_VCPUS; ++i) {
187 		if (kvm->vcpus[i]) {
188 			kvm_vcpu_destroy(kvm->vcpus[i]);
189 			kvm->vcpus[i] = NULL;
190 		}
191 	}
192 	atomic_set(&kvm->online_vcpus, 0);
193 }
194 
195 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
196 {
197 	int r;
198 	switch (ext) {
199 	case KVM_CAP_IRQCHIP:
200 		r = vgic_present;
201 		break;
202 	case KVM_CAP_IOEVENTFD:
203 	case KVM_CAP_DEVICE_CTRL:
204 	case KVM_CAP_USER_MEMORY:
205 	case KVM_CAP_SYNC_MMU:
206 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
207 	case KVM_CAP_ONE_REG:
208 	case KVM_CAP_ARM_PSCI:
209 	case KVM_CAP_ARM_PSCI_0_2:
210 	case KVM_CAP_READONLY_MEM:
211 	case KVM_CAP_MP_STATE:
212 	case KVM_CAP_IMMEDIATE_EXIT:
213 	case KVM_CAP_VCPU_EVENTS:
214 	case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
215 	case KVM_CAP_ARM_NISV_TO_USER:
216 	case KVM_CAP_ARM_INJECT_EXT_DABT:
217 	case KVM_CAP_SET_GUEST_DEBUG:
218 	case KVM_CAP_VCPU_ATTRIBUTES:
219 	case KVM_CAP_PTP_KVM:
220 		r = 1;
221 		break;
222 	case KVM_CAP_SET_GUEST_DEBUG2:
223 		return KVM_GUESTDBG_VALID_MASK;
224 	case KVM_CAP_ARM_SET_DEVICE_ADDR:
225 		r = 1;
226 		break;
227 	case KVM_CAP_NR_VCPUS:
228 		r = num_online_cpus();
229 		break;
230 	case KVM_CAP_MAX_VCPUS:
231 	case KVM_CAP_MAX_VCPU_ID:
232 		if (kvm)
233 			r = kvm->arch.max_vcpus;
234 		else
235 			r = kvm_arm_default_max_vcpus();
236 		break;
237 	case KVM_CAP_MSI_DEVID:
238 		if (!kvm)
239 			r = -EINVAL;
240 		else
241 			r = kvm->arch.vgic.msis_require_devid;
242 		break;
243 	case KVM_CAP_ARM_USER_IRQ:
244 		/*
245 		 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
246 		 * (bump this number if adding more devices)
247 		 */
248 		r = 1;
249 		break;
250 	case KVM_CAP_ARM_MTE:
251 		r = system_supports_mte();
252 		break;
253 	case KVM_CAP_STEAL_TIME:
254 		r = kvm_arm_pvtime_supported();
255 		break;
256 	case KVM_CAP_ARM_EL1_32BIT:
257 		r = cpus_have_const_cap(ARM64_HAS_32BIT_EL1);
258 		break;
259 	case KVM_CAP_GUEST_DEBUG_HW_BPS:
260 		r = get_num_brps();
261 		break;
262 	case KVM_CAP_GUEST_DEBUG_HW_WPS:
263 		r = get_num_wrps();
264 		break;
265 	case KVM_CAP_ARM_PMU_V3:
266 		r = kvm_arm_support_pmu_v3();
267 		break;
268 	case KVM_CAP_ARM_INJECT_SERROR_ESR:
269 		r = cpus_have_const_cap(ARM64_HAS_RAS_EXTN);
270 		break;
271 	case KVM_CAP_ARM_VM_IPA_SIZE:
272 		r = get_kvm_ipa_limit();
273 		break;
274 	case KVM_CAP_ARM_SVE:
275 		r = system_supports_sve();
276 		break;
277 	case KVM_CAP_ARM_PTRAUTH_ADDRESS:
278 	case KVM_CAP_ARM_PTRAUTH_GENERIC:
279 		r = system_has_full_ptr_auth();
280 		break;
281 	default:
282 		r = 0;
283 	}
284 
285 	return r;
286 }
287 
288 long kvm_arch_dev_ioctl(struct file *filp,
289 			unsigned int ioctl, unsigned long arg)
290 {
291 	return -EINVAL;
292 }
293 
294 struct kvm *kvm_arch_alloc_vm(void)
295 {
296 	if (!has_vhe())
297 		return kzalloc(sizeof(struct kvm), GFP_KERNEL);
298 
299 	return vzalloc(sizeof(struct kvm));
300 }
301 
302 void kvm_arch_free_vm(struct kvm *kvm)
303 {
304 	if (!has_vhe())
305 		kfree(kvm);
306 	else
307 		vfree(kvm);
308 }
309 
310 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
311 {
312 	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
313 		return -EBUSY;
314 
315 	if (id >= kvm->arch.max_vcpus)
316 		return -EINVAL;
317 
318 	return 0;
319 }
320 
321 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
322 {
323 	int err;
324 
325 	/* Force users to call KVM_ARM_VCPU_INIT */
326 	vcpu->arch.target = -1;
327 	bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
328 
329 	vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO;
330 
331 	/* Set up the timer */
332 	kvm_timer_vcpu_init(vcpu);
333 
334 	kvm_pmu_vcpu_init(vcpu);
335 
336 	kvm_arm_reset_debug_ptr(vcpu);
337 
338 	kvm_arm_pvtime_vcpu_init(&vcpu->arch);
339 
340 	vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu;
341 
342 	err = kvm_vgic_vcpu_init(vcpu);
343 	if (err)
344 		return err;
345 
346 	return create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
347 }
348 
349 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
350 {
351 }
352 
353 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
354 {
355 	if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm)))
356 		static_branch_dec(&userspace_irqchip_in_use);
357 
358 	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
359 	kvm_timer_vcpu_terminate(vcpu);
360 	kvm_pmu_vcpu_destroy(vcpu);
361 
362 	kvm_arm_vcpu_destroy(vcpu);
363 }
364 
365 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
366 {
367 	return kvm_timer_is_pending(vcpu);
368 }
369 
370 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
371 {
372 	/*
373 	 * If we're about to block (most likely because we've just hit a
374 	 * WFI), we need to sync back the state of the GIC CPU interface
375 	 * so that we have the latest PMR and group enables. This ensures
376 	 * that kvm_arch_vcpu_runnable has up-to-date data to decide
377 	 * whether we have pending interrupts.
378 	 *
379 	 * For the same reason, we want to tell GICv4 that we need
380 	 * doorbells to be signalled, should an interrupt become pending.
381 	 */
382 	preempt_disable();
383 	kvm_vgic_vmcr_sync(vcpu);
384 	vgic_v4_put(vcpu, true);
385 	preempt_enable();
386 }
387 
388 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
389 {
390 	preempt_disable();
391 	vgic_v4_load(vcpu);
392 	preempt_enable();
393 }
394 
395 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
396 {
397 	struct kvm_s2_mmu *mmu;
398 	int *last_ran;
399 
400 	mmu = vcpu->arch.hw_mmu;
401 	last_ran = this_cpu_ptr(mmu->last_vcpu_ran);
402 
403 	/*
404 	 * We guarantee that both TLBs and I-cache are private to each
405 	 * vcpu. If detecting that a vcpu from the same VM has
406 	 * previously run on the same physical CPU, call into the
407 	 * hypervisor code to nuke the relevant contexts.
408 	 *
409 	 * We might get preempted before the vCPU actually runs, but
410 	 * over-invalidation doesn't affect correctness.
411 	 */
412 	if (*last_ran != vcpu->vcpu_id) {
413 		kvm_call_hyp(__kvm_flush_cpu_context, mmu);
414 		*last_ran = vcpu->vcpu_id;
415 	}
416 
417 	vcpu->cpu = cpu;
418 
419 	kvm_vgic_load(vcpu);
420 	kvm_timer_vcpu_load(vcpu);
421 	if (has_vhe())
422 		kvm_vcpu_load_sysregs_vhe(vcpu);
423 	kvm_arch_vcpu_load_fp(vcpu);
424 	kvm_vcpu_pmu_restore_guest(vcpu);
425 	if (kvm_arm_is_pvtime_enabled(&vcpu->arch))
426 		kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu);
427 
428 	if (single_task_running())
429 		vcpu_clear_wfx_traps(vcpu);
430 	else
431 		vcpu_set_wfx_traps(vcpu);
432 
433 	if (vcpu_has_ptrauth(vcpu))
434 		vcpu_ptrauth_disable(vcpu);
435 	kvm_arch_vcpu_load_debug_state_flags(vcpu);
436 }
437 
438 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
439 {
440 	kvm_arch_vcpu_put_debug_state_flags(vcpu);
441 	kvm_arch_vcpu_put_fp(vcpu);
442 	if (has_vhe())
443 		kvm_vcpu_put_sysregs_vhe(vcpu);
444 	kvm_timer_vcpu_put(vcpu);
445 	kvm_vgic_put(vcpu);
446 	kvm_vcpu_pmu_restore_host(vcpu);
447 
448 	vcpu->cpu = -1;
449 }
450 
451 static void vcpu_power_off(struct kvm_vcpu *vcpu)
452 {
453 	vcpu->arch.power_off = true;
454 	kvm_make_request(KVM_REQ_SLEEP, vcpu);
455 	kvm_vcpu_kick(vcpu);
456 }
457 
458 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
459 				    struct kvm_mp_state *mp_state)
460 {
461 	if (vcpu->arch.power_off)
462 		mp_state->mp_state = KVM_MP_STATE_STOPPED;
463 	else
464 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
465 
466 	return 0;
467 }
468 
469 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
470 				    struct kvm_mp_state *mp_state)
471 {
472 	int ret = 0;
473 
474 	switch (mp_state->mp_state) {
475 	case KVM_MP_STATE_RUNNABLE:
476 		vcpu->arch.power_off = false;
477 		break;
478 	case KVM_MP_STATE_STOPPED:
479 		vcpu_power_off(vcpu);
480 		break;
481 	default:
482 		ret = -EINVAL;
483 	}
484 
485 	return ret;
486 }
487 
488 /**
489  * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
490  * @v:		The VCPU pointer
491  *
492  * If the guest CPU is not waiting for interrupts or an interrupt line is
493  * asserted, the CPU is by definition runnable.
494  */
495 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
496 {
497 	bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
498 	return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
499 		&& !v->arch.power_off && !v->arch.pause);
500 }
501 
502 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
503 {
504 	return vcpu_mode_priv(vcpu);
505 }
506 
507 /* Just ensure a guest exit from a particular CPU */
508 static void exit_vm_noop(void *info)
509 {
510 }
511 
512 void force_vm_exit(const cpumask_t *mask)
513 {
514 	preempt_disable();
515 	smp_call_function_many(mask, exit_vm_noop, NULL, true);
516 	preempt_enable();
517 }
518 
519 /**
520  * need_new_vmid_gen - check that the VMID is still valid
521  * @vmid: The VMID to check
522  *
523  * return true if there is a new generation of VMIDs being used
524  *
525  * The hardware supports a limited set of values with the value zero reserved
526  * for the host, so we check if an assigned value belongs to a previous
527  * generation, which requires us to assign a new value. If we're the first to
528  * use a VMID for the new generation, we must flush necessary caches and TLBs
529  * on all CPUs.
530  */
531 static bool need_new_vmid_gen(struct kvm_vmid *vmid)
532 {
533 	u64 current_vmid_gen = atomic64_read(&kvm_vmid_gen);
534 	smp_rmb(); /* Orders read of kvm_vmid_gen and kvm->arch.vmid */
535 	return unlikely(READ_ONCE(vmid->vmid_gen) != current_vmid_gen);
536 }
537 
538 /**
539  * update_vmid - Update the vmid with a valid VMID for the current generation
540  * @vmid: The stage-2 VMID information struct
541  */
542 static void update_vmid(struct kvm_vmid *vmid)
543 {
544 	if (!need_new_vmid_gen(vmid))
545 		return;
546 
547 	spin_lock(&kvm_vmid_lock);
548 
549 	/*
550 	 * We need to re-check the vmid_gen here to ensure that if another vcpu
551 	 * already allocated a valid vmid for this vm, then this vcpu should
552 	 * use the same vmid.
553 	 */
554 	if (!need_new_vmid_gen(vmid)) {
555 		spin_unlock(&kvm_vmid_lock);
556 		return;
557 	}
558 
559 	/* First user of a new VMID generation? */
560 	if (unlikely(kvm_next_vmid == 0)) {
561 		atomic64_inc(&kvm_vmid_gen);
562 		kvm_next_vmid = 1;
563 
564 		/*
565 		 * On SMP we know no other CPUs can use this CPU's or each
566 		 * other's VMID after force_vm_exit returns since the
567 		 * kvm_vmid_lock blocks them from reentry to the guest.
568 		 */
569 		force_vm_exit(cpu_all_mask);
570 		/*
571 		 * Now broadcast TLB + ICACHE invalidation over the inner
572 		 * shareable domain to make sure all data structures are
573 		 * clean.
574 		 */
575 		kvm_call_hyp(__kvm_flush_vm_context);
576 	}
577 
578 	vmid->vmid = kvm_next_vmid;
579 	kvm_next_vmid++;
580 	kvm_next_vmid &= (1 << kvm_get_vmid_bits()) - 1;
581 
582 	smp_wmb();
583 	WRITE_ONCE(vmid->vmid_gen, atomic64_read(&kvm_vmid_gen));
584 
585 	spin_unlock(&kvm_vmid_lock);
586 }
587 
588 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
589 {
590 	struct kvm *kvm = vcpu->kvm;
591 	int ret = 0;
592 
593 	if (likely(vcpu->arch.has_run_once))
594 		return 0;
595 
596 	if (!kvm_arm_vcpu_is_finalized(vcpu))
597 		return -EPERM;
598 
599 	vcpu->arch.has_run_once = true;
600 
601 	kvm_arm_vcpu_init_debug(vcpu);
602 
603 	if (likely(irqchip_in_kernel(kvm))) {
604 		/*
605 		 * Map the VGIC hardware resources before running a vcpu the
606 		 * first time on this VM.
607 		 */
608 		ret = kvm_vgic_map_resources(kvm);
609 		if (ret)
610 			return ret;
611 	} else {
612 		/*
613 		 * Tell the rest of the code that there are userspace irqchip
614 		 * VMs in the wild.
615 		 */
616 		static_branch_inc(&userspace_irqchip_in_use);
617 	}
618 
619 	ret = kvm_timer_enable(vcpu);
620 	if (ret)
621 		return ret;
622 
623 	ret = kvm_arm_pmu_v3_enable(vcpu);
624 
625 	return ret;
626 }
627 
628 bool kvm_arch_intc_initialized(struct kvm *kvm)
629 {
630 	return vgic_initialized(kvm);
631 }
632 
633 void kvm_arm_halt_guest(struct kvm *kvm)
634 {
635 	int i;
636 	struct kvm_vcpu *vcpu;
637 
638 	kvm_for_each_vcpu(i, vcpu, kvm)
639 		vcpu->arch.pause = true;
640 	kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
641 }
642 
643 void kvm_arm_resume_guest(struct kvm *kvm)
644 {
645 	int i;
646 	struct kvm_vcpu *vcpu;
647 
648 	kvm_for_each_vcpu(i, vcpu, kvm) {
649 		vcpu->arch.pause = false;
650 		rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu));
651 	}
652 }
653 
654 static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
655 {
656 	struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
657 
658 	rcuwait_wait_event(wait,
659 			   (!vcpu->arch.power_off) &&(!vcpu->arch.pause),
660 			   TASK_INTERRUPTIBLE);
661 
662 	if (vcpu->arch.power_off || vcpu->arch.pause) {
663 		/* Awaken to handle a signal, request we sleep again later. */
664 		kvm_make_request(KVM_REQ_SLEEP, vcpu);
665 	}
666 
667 	/*
668 	 * Make sure we will observe a potential reset request if we've
669 	 * observed a change to the power state. Pairs with the smp_wmb() in
670 	 * kvm_psci_vcpu_on().
671 	 */
672 	smp_rmb();
673 }
674 
675 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
676 {
677 	return vcpu->arch.target >= 0;
678 }
679 
680 static void check_vcpu_requests(struct kvm_vcpu *vcpu)
681 {
682 	if (kvm_request_pending(vcpu)) {
683 		if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
684 			vcpu_req_sleep(vcpu);
685 
686 		if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
687 			kvm_reset_vcpu(vcpu);
688 
689 		/*
690 		 * Clear IRQ_PENDING requests that were made to guarantee
691 		 * that a VCPU sees new virtual interrupts.
692 		 */
693 		kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
694 
695 		if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu))
696 			kvm_update_stolen_time(vcpu);
697 
698 		if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) {
699 			/* The distributor enable bits were changed */
700 			preempt_disable();
701 			vgic_v4_put(vcpu, false);
702 			vgic_v4_load(vcpu);
703 			preempt_enable();
704 		}
705 
706 		if (kvm_check_request(KVM_REQ_RELOAD_PMU, vcpu))
707 			kvm_pmu_handle_pmcr(vcpu,
708 					    __vcpu_sys_reg(vcpu, PMCR_EL0));
709 	}
710 }
711 
712 static bool vcpu_mode_is_bad_32bit(struct kvm_vcpu *vcpu)
713 {
714 	if (likely(!vcpu_mode_is_32bit(vcpu)))
715 		return false;
716 
717 	return !system_supports_32bit_el0() ||
718 		static_branch_unlikely(&arm64_mismatched_32bit_el0);
719 }
720 
721 /**
722  * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
723  * @vcpu:	The VCPU pointer
724  *
725  * This function is called through the VCPU_RUN ioctl called from user space. It
726  * will execute VM code in a loop until the time slice for the process is used
727  * or some emulation is needed from user space in which case the function will
728  * return with return value 0 and with the kvm_run structure filled in with the
729  * required data for the requested emulation.
730  */
731 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
732 {
733 	struct kvm_run *run = vcpu->run;
734 	int ret;
735 
736 	if (unlikely(!kvm_vcpu_initialized(vcpu)))
737 		return -ENOEXEC;
738 
739 	ret = kvm_vcpu_first_run_init(vcpu);
740 	if (ret)
741 		return ret;
742 
743 	if (run->exit_reason == KVM_EXIT_MMIO) {
744 		ret = kvm_handle_mmio_return(vcpu);
745 		if (ret)
746 			return ret;
747 	}
748 
749 	vcpu_load(vcpu);
750 
751 	if (run->immediate_exit) {
752 		ret = -EINTR;
753 		goto out;
754 	}
755 
756 	kvm_sigset_activate(vcpu);
757 
758 	ret = 1;
759 	run->exit_reason = KVM_EXIT_UNKNOWN;
760 	while (ret > 0) {
761 		/*
762 		 * Check conditions before entering the guest
763 		 */
764 		cond_resched();
765 
766 		update_vmid(&vcpu->arch.hw_mmu->vmid);
767 
768 		check_vcpu_requests(vcpu);
769 
770 		/*
771 		 * Preparing the interrupts to be injected also
772 		 * involves poking the GIC, which must be done in a
773 		 * non-preemptible context.
774 		 */
775 		preempt_disable();
776 
777 		kvm_pmu_flush_hwstate(vcpu);
778 
779 		local_irq_disable();
780 
781 		kvm_vgic_flush_hwstate(vcpu);
782 
783 		/*
784 		 * Exit if we have a signal pending so that we can deliver the
785 		 * signal to user space.
786 		 */
787 		if (signal_pending(current)) {
788 			ret = -EINTR;
789 			run->exit_reason = KVM_EXIT_INTR;
790 		}
791 
792 		/*
793 		 * If we're using a userspace irqchip, then check if we need
794 		 * to tell a userspace irqchip about timer or PMU level
795 		 * changes and if so, exit to userspace (the actual level
796 		 * state gets updated in kvm_timer_update_run and
797 		 * kvm_pmu_update_run below).
798 		 */
799 		if (static_branch_unlikely(&userspace_irqchip_in_use)) {
800 			if (kvm_timer_should_notify_user(vcpu) ||
801 			    kvm_pmu_should_notify_user(vcpu)) {
802 				ret = -EINTR;
803 				run->exit_reason = KVM_EXIT_INTR;
804 			}
805 		}
806 
807 		/*
808 		 * Ensure we set mode to IN_GUEST_MODE after we disable
809 		 * interrupts and before the final VCPU requests check.
810 		 * See the comment in kvm_vcpu_exiting_guest_mode() and
811 		 * Documentation/virt/kvm/vcpu-requests.rst
812 		 */
813 		smp_store_mb(vcpu->mode, IN_GUEST_MODE);
814 
815 		if (ret <= 0 || need_new_vmid_gen(&vcpu->arch.hw_mmu->vmid) ||
816 		    kvm_request_pending(vcpu)) {
817 			vcpu->mode = OUTSIDE_GUEST_MODE;
818 			isb(); /* Ensure work in x_flush_hwstate is committed */
819 			kvm_pmu_sync_hwstate(vcpu);
820 			if (static_branch_unlikely(&userspace_irqchip_in_use))
821 				kvm_timer_sync_user(vcpu);
822 			kvm_vgic_sync_hwstate(vcpu);
823 			local_irq_enable();
824 			preempt_enable();
825 			continue;
826 		}
827 
828 		kvm_arm_setup_debug(vcpu);
829 
830 		/**************************************************************
831 		 * Enter the guest
832 		 */
833 		trace_kvm_entry(*vcpu_pc(vcpu));
834 		guest_enter_irqoff();
835 
836 		ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu);
837 
838 		vcpu->mode = OUTSIDE_GUEST_MODE;
839 		vcpu->stat.exits++;
840 		/*
841 		 * Back from guest
842 		 *************************************************************/
843 
844 		kvm_arm_clear_debug(vcpu);
845 
846 		/*
847 		 * We must sync the PMU state before the vgic state so
848 		 * that the vgic can properly sample the updated state of the
849 		 * interrupt line.
850 		 */
851 		kvm_pmu_sync_hwstate(vcpu);
852 
853 		/*
854 		 * Sync the vgic state before syncing the timer state because
855 		 * the timer code needs to know if the virtual timer
856 		 * interrupts are active.
857 		 */
858 		kvm_vgic_sync_hwstate(vcpu);
859 
860 		/*
861 		 * Sync the timer hardware state before enabling interrupts as
862 		 * we don't want vtimer interrupts to race with syncing the
863 		 * timer virtual interrupt state.
864 		 */
865 		if (static_branch_unlikely(&userspace_irqchip_in_use))
866 			kvm_timer_sync_user(vcpu);
867 
868 		kvm_arch_vcpu_ctxsync_fp(vcpu);
869 
870 		/*
871 		 * We may have taken a host interrupt in HYP mode (ie
872 		 * while executing the guest). This interrupt is still
873 		 * pending, as we haven't serviced it yet!
874 		 *
875 		 * We're now back in SVC mode, with interrupts
876 		 * disabled.  Enabling the interrupts now will have
877 		 * the effect of taking the interrupt again, in SVC
878 		 * mode this time.
879 		 */
880 		local_irq_enable();
881 
882 		/*
883 		 * We do local_irq_enable() before calling guest_exit() so
884 		 * that if a timer interrupt hits while running the guest we
885 		 * account that tick as being spent in the guest.  We enable
886 		 * preemption after calling guest_exit() so that if we get
887 		 * preempted we make sure ticks after that is not counted as
888 		 * guest time.
889 		 */
890 		guest_exit();
891 		trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
892 
893 		/* Exit types that need handling before we can be preempted */
894 		handle_exit_early(vcpu, ret);
895 
896 		preempt_enable();
897 
898 		/*
899 		 * The ARMv8 architecture doesn't give the hypervisor
900 		 * a mechanism to prevent a guest from dropping to AArch32 EL0
901 		 * if implemented by the CPU. If we spot the guest in such
902 		 * state and that we decided it wasn't supposed to do so (like
903 		 * with the asymmetric AArch32 case), return to userspace with
904 		 * a fatal error.
905 		 */
906 		if (vcpu_mode_is_bad_32bit(vcpu)) {
907 			/*
908 			 * As we have caught the guest red-handed, decide that
909 			 * it isn't fit for purpose anymore by making the vcpu
910 			 * invalid. The VMM can try and fix it by issuing  a
911 			 * KVM_ARM_VCPU_INIT if it really wants to.
912 			 */
913 			vcpu->arch.target = -1;
914 			ret = ARM_EXCEPTION_IL;
915 		}
916 
917 		ret = handle_exit(vcpu, ret);
918 	}
919 
920 	/* Tell userspace about in-kernel device output levels */
921 	if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
922 		kvm_timer_update_run(vcpu);
923 		kvm_pmu_update_run(vcpu);
924 	}
925 
926 	kvm_sigset_deactivate(vcpu);
927 
928 out:
929 	/*
930 	 * In the unlikely event that we are returning to userspace
931 	 * with pending exceptions or PC adjustment, commit these
932 	 * adjustments in order to give userspace a consistent view of
933 	 * the vcpu state. Note that this relies on __kvm_adjust_pc()
934 	 * being preempt-safe on VHE.
935 	 */
936 	if (unlikely(vcpu->arch.flags & (KVM_ARM64_PENDING_EXCEPTION |
937 					 KVM_ARM64_INCREMENT_PC)))
938 		kvm_call_hyp(__kvm_adjust_pc, vcpu);
939 
940 	vcpu_put(vcpu);
941 	return ret;
942 }
943 
944 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
945 {
946 	int bit_index;
947 	bool set;
948 	unsigned long *hcr;
949 
950 	if (number == KVM_ARM_IRQ_CPU_IRQ)
951 		bit_index = __ffs(HCR_VI);
952 	else /* KVM_ARM_IRQ_CPU_FIQ */
953 		bit_index = __ffs(HCR_VF);
954 
955 	hcr = vcpu_hcr(vcpu);
956 	if (level)
957 		set = test_and_set_bit(bit_index, hcr);
958 	else
959 		set = test_and_clear_bit(bit_index, hcr);
960 
961 	/*
962 	 * If we didn't change anything, no need to wake up or kick other CPUs
963 	 */
964 	if (set == level)
965 		return 0;
966 
967 	/*
968 	 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
969 	 * trigger a world-switch round on the running physical CPU to set the
970 	 * virtual IRQ/FIQ fields in the HCR appropriately.
971 	 */
972 	kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
973 	kvm_vcpu_kick(vcpu);
974 
975 	return 0;
976 }
977 
978 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
979 			  bool line_status)
980 {
981 	u32 irq = irq_level->irq;
982 	unsigned int irq_type, vcpu_idx, irq_num;
983 	int nrcpus = atomic_read(&kvm->online_vcpus);
984 	struct kvm_vcpu *vcpu = NULL;
985 	bool level = irq_level->level;
986 
987 	irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
988 	vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
989 	vcpu_idx += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
990 	irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
991 
992 	trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
993 
994 	switch (irq_type) {
995 	case KVM_ARM_IRQ_TYPE_CPU:
996 		if (irqchip_in_kernel(kvm))
997 			return -ENXIO;
998 
999 		if (vcpu_idx >= nrcpus)
1000 			return -EINVAL;
1001 
1002 		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
1003 		if (!vcpu)
1004 			return -EINVAL;
1005 
1006 		if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
1007 			return -EINVAL;
1008 
1009 		return vcpu_interrupt_line(vcpu, irq_num, level);
1010 	case KVM_ARM_IRQ_TYPE_PPI:
1011 		if (!irqchip_in_kernel(kvm))
1012 			return -ENXIO;
1013 
1014 		if (vcpu_idx >= nrcpus)
1015 			return -EINVAL;
1016 
1017 		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
1018 		if (!vcpu)
1019 			return -EINVAL;
1020 
1021 		if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
1022 			return -EINVAL;
1023 
1024 		return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
1025 	case KVM_ARM_IRQ_TYPE_SPI:
1026 		if (!irqchip_in_kernel(kvm))
1027 			return -ENXIO;
1028 
1029 		if (irq_num < VGIC_NR_PRIVATE_IRQS)
1030 			return -EINVAL;
1031 
1032 		return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
1033 	}
1034 
1035 	return -EINVAL;
1036 }
1037 
1038 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
1039 			       const struct kvm_vcpu_init *init)
1040 {
1041 	unsigned int i, ret;
1042 	int phys_target = kvm_target_cpu();
1043 
1044 	if (init->target != phys_target)
1045 		return -EINVAL;
1046 
1047 	/*
1048 	 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
1049 	 * use the same target.
1050 	 */
1051 	if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
1052 		return -EINVAL;
1053 
1054 	/* -ENOENT for unknown features, -EINVAL for invalid combinations. */
1055 	for (i = 0; i < sizeof(init->features) * 8; i++) {
1056 		bool set = (init->features[i / 32] & (1 << (i % 32)));
1057 
1058 		if (set && i >= KVM_VCPU_MAX_FEATURES)
1059 			return -ENOENT;
1060 
1061 		/*
1062 		 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
1063 		 * use the same feature set.
1064 		 */
1065 		if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
1066 		    test_bit(i, vcpu->arch.features) != set)
1067 			return -EINVAL;
1068 
1069 		if (set)
1070 			set_bit(i, vcpu->arch.features);
1071 	}
1072 
1073 	vcpu->arch.target = phys_target;
1074 
1075 	/* Now we know what it is, we can reset it. */
1076 	ret = kvm_reset_vcpu(vcpu);
1077 	if (ret) {
1078 		vcpu->arch.target = -1;
1079 		bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
1080 	}
1081 
1082 	return ret;
1083 }
1084 
1085 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
1086 					 struct kvm_vcpu_init *init)
1087 {
1088 	int ret;
1089 
1090 	ret = kvm_vcpu_set_target(vcpu, init);
1091 	if (ret)
1092 		return ret;
1093 
1094 	/*
1095 	 * Ensure a rebooted VM will fault in RAM pages and detect if the
1096 	 * guest MMU is turned off and flush the caches as needed.
1097 	 *
1098 	 * S2FWB enforces all memory accesses to RAM being cacheable,
1099 	 * ensuring that the data side is always coherent. We still
1100 	 * need to invalidate the I-cache though, as FWB does *not*
1101 	 * imply CTR_EL0.DIC.
1102 	 */
1103 	if (vcpu->arch.has_run_once) {
1104 		if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
1105 			stage2_unmap_vm(vcpu->kvm);
1106 		else
1107 			icache_inval_all_pou();
1108 	}
1109 
1110 	vcpu_reset_hcr(vcpu);
1111 
1112 	/*
1113 	 * Handle the "start in power-off" case.
1114 	 */
1115 	if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
1116 		vcpu_power_off(vcpu);
1117 	else
1118 		vcpu->arch.power_off = false;
1119 
1120 	return 0;
1121 }
1122 
1123 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
1124 				 struct kvm_device_attr *attr)
1125 {
1126 	int ret = -ENXIO;
1127 
1128 	switch (attr->group) {
1129 	default:
1130 		ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1131 		break;
1132 	}
1133 
1134 	return ret;
1135 }
1136 
1137 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
1138 				 struct kvm_device_attr *attr)
1139 {
1140 	int ret = -ENXIO;
1141 
1142 	switch (attr->group) {
1143 	default:
1144 		ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1145 		break;
1146 	}
1147 
1148 	return ret;
1149 }
1150 
1151 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
1152 				 struct kvm_device_attr *attr)
1153 {
1154 	int ret = -ENXIO;
1155 
1156 	switch (attr->group) {
1157 	default:
1158 		ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1159 		break;
1160 	}
1161 
1162 	return ret;
1163 }
1164 
1165 static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
1166 				   struct kvm_vcpu_events *events)
1167 {
1168 	memset(events, 0, sizeof(*events));
1169 
1170 	return __kvm_arm_vcpu_get_events(vcpu, events);
1171 }
1172 
1173 static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
1174 				   struct kvm_vcpu_events *events)
1175 {
1176 	int i;
1177 
1178 	/* check whether the reserved field is zero */
1179 	for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
1180 		if (events->reserved[i])
1181 			return -EINVAL;
1182 
1183 	/* check whether the pad field is zero */
1184 	for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
1185 		if (events->exception.pad[i])
1186 			return -EINVAL;
1187 
1188 	return __kvm_arm_vcpu_set_events(vcpu, events);
1189 }
1190 
1191 long kvm_arch_vcpu_ioctl(struct file *filp,
1192 			 unsigned int ioctl, unsigned long arg)
1193 {
1194 	struct kvm_vcpu *vcpu = filp->private_data;
1195 	void __user *argp = (void __user *)arg;
1196 	struct kvm_device_attr attr;
1197 	long r;
1198 
1199 	switch (ioctl) {
1200 	case KVM_ARM_VCPU_INIT: {
1201 		struct kvm_vcpu_init init;
1202 
1203 		r = -EFAULT;
1204 		if (copy_from_user(&init, argp, sizeof(init)))
1205 			break;
1206 
1207 		r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
1208 		break;
1209 	}
1210 	case KVM_SET_ONE_REG:
1211 	case KVM_GET_ONE_REG: {
1212 		struct kvm_one_reg reg;
1213 
1214 		r = -ENOEXEC;
1215 		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1216 			break;
1217 
1218 		r = -EFAULT;
1219 		if (copy_from_user(&reg, argp, sizeof(reg)))
1220 			break;
1221 
1222 		if (ioctl == KVM_SET_ONE_REG)
1223 			r = kvm_arm_set_reg(vcpu, &reg);
1224 		else
1225 			r = kvm_arm_get_reg(vcpu, &reg);
1226 		break;
1227 	}
1228 	case KVM_GET_REG_LIST: {
1229 		struct kvm_reg_list __user *user_list = argp;
1230 		struct kvm_reg_list reg_list;
1231 		unsigned n;
1232 
1233 		r = -ENOEXEC;
1234 		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1235 			break;
1236 
1237 		r = -EPERM;
1238 		if (!kvm_arm_vcpu_is_finalized(vcpu))
1239 			break;
1240 
1241 		r = -EFAULT;
1242 		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1243 			break;
1244 		n = reg_list.n;
1245 		reg_list.n = kvm_arm_num_regs(vcpu);
1246 		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1247 			break;
1248 		r = -E2BIG;
1249 		if (n < reg_list.n)
1250 			break;
1251 		r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1252 		break;
1253 	}
1254 	case KVM_SET_DEVICE_ATTR: {
1255 		r = -EFAULT;
1256 		if (copy_from_user(&attr, argp, sizeof(attr)))
1257 			break;
1258 		r = kvm_arm_vcpu_set_attr(vcpu, &attr);
1259 		break;
1260 	}
1261 	case KVM_GET_DEVICE_ATTR: {
1262 		r = -EFAULT;
1263 		if (copy_from_user(&attr, argp, sizeof(attr)))
1264 			break;
1265 		r = kvm_arm_vcpu_get_attr(vcpu, &attr);
1266 		break;
1267 	}
1268 	case KVM_HAS_DEVICE_ATTR: {
1269 		r = -EFAULT;
1270 		if (copy_from_user(&attr, argp, sizeof(attr)))
1271 			break;
1272 		r = kvm_arm_vcpu_has_attr(vcpu, &attr);
1273 		break;
1274 	}
1275 	case KVM_GET_VCPU_EVENTS: {
1276 		struct kvm_vcpu_events events;
1277 
1278 		if (kvm_arm_vcpu_get_events(vcpu, &events))
1279 			return -EINVAL;
1280 
1281 		if (copy_to_user(argp, &events, sizeof(events)))
1282 			return -EFAULT;
1283 
1284 		return 0;
1285 	}
1286 	case KVM_SET_VCPU_EVENTS: {
1287 		struct kvm_vcpu_events events;
1288 
1289 		if (copy_from_user(&events, argp, sizeof(events)))
1290 			return -EFAULT;
1291 
1292 		return kvm_arm_vcpu_set_events(vcpu, &events);
1293 	}
1294 	case KVM_ARM_VCPU_FINALIZE: {
1295 		int what;
1296 
1297 		if (!kvm_vcpu_initialized(vcpu))
1298 			return -ENOEXEC;
1299 
1300 		if (get_user(what, (const int __user *)argp))
1301 			return -EFAULT;
1302 
1303 		return kvm_arm_vcpu_finalize(vcpu, what);
1304 	}
1305 	default:
1306 		r = -EINVAL;
1307 	}
1308 
1309 	return r;
1310 }
1311 
1312 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
1313 {
1314 
1315 }
1316 
1317 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
1318 					const struct kvm_memory_slot *memslot)
1319 {
1320 	kvm_flush_remote_tlbs(kvm);
1321 }
1322 
1323 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1324 					struct kvm_arm_device_addr *dev_addr)
1325 {
1326 	unsigned long dev_id, type;
1327 
1328 	dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
1329 		KVM_ARM_DEVICE_ID_SHIFT;
1330 	type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
1331 		KVM_ARM_DEVICE_TYPE_SHIFT;
1332 
1333 	switch (dev_id) {
1334 	case KVM_ARM_DEVICE_VGIC_V2:
1335 		if (!vgic_present)
1336 			return -ENXIO;
1337 		return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1338 	default:
1339 		return -ENODEV;
1340 	}
1341 }
1342 
1343 long kvm_arch_vm_ioctl(struct file *filp,
1344 		       unsigned int ioctl, unsigned long arg)
1345 {
1346 	struct kvm *kvm = filp->private_data;
1347 	void __user *argp = (void __user *)arg;
1348 
1349 	switch (ioctl) {
1350 	case KVM_CREATE_IRQCHIP: {
1351 		int ret;
1352 		if (!vgic_present)
1353 			return -ENXIO;
1354 		mutex_lock(&kvm->lock);
1355 		ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1356 		mutex_unlock(&kvm->lock);
1357 		return ret;
1358 	}
1359 	case KVM_ARM_SET_DEVICE_ADDR: {
1360 		struct kvm_arm_device_addr dev_addr;
1361 
1362 		if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1363 			return -EFAULT;
1364 		return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1365 	}
1366 	case KVM_ARM_PREFERRED_TARGET: {
1367 		int err;
1368 		struct kvm_vcpu_init init;
1369 
1370 		err = kvm_vcpu_preferred_target(&init);
1371 		if (err)
1372 			return err;
1373 
1374 		if (copy_to_user(argp, &init, sizeof(init)))
1375 			return -EFAULT;
1376 
1377 		return 0;
1378 	}
1379 	case KVM_ARM_MTE_COPY_TAGS: {
1380 		struct kvm_arm_copy_mte_tags copy_tags;
1381 
1382 		if (copy_from_user(&copy_tags, argp, sizeof(copy_tags)))
1383 			return -EFAULT;
1384 		return kvm_vm_ioctl_mte_copy_tags(kvm, &copy_tags);
1385 	}
1386 	default:
1387 		return -EINVAL;
1388 	}
1389 }
1390 
1391 static unsigned long nvhe_percpu_size(void)
1392 {
1393 	return (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_end) -
1394 		(unsigned long)CHOOSE_NVHE_SYM(__per_cpu_start);
1395 }
1396 
1397 static unsigned long nvhe_percpu_order(void)
1398 {
1399 	unsigned long size = nvhe_percpu_size();
1400 
1401 	return size ? get_order(size) : 0;
1402 }
1403 
1404 /* A lookup table holding the hypervisor VA for each vector slot */
1405 static void *hyp_spectre_vector_selector[BP_HARDEN_EL2_SLOTS];
1406 
1407 static void kvm_init_vector_slot(void *base, enum arm64_hyp_spectre_vector slot)
1408 {
1409 	hyp_spectre_vector_selector[slot] = __kvm_vector_slot2addr(base, slot);
1410 }
1411 
1412 static int kvm_init_vector_slots(void)
1413 {
1414 	int err;
1415 	void *base;
1416 
1417 	base = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
1418 	kvm_init_vector_slot(base, HYP_VECTOR_DIRECT);
1419 
1420 	base = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs));
1421 	kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_DIRECT);
1422 
1423 	if (!cpus_have_const_cap(ARM64_SPECTRE_V3A))
1424 		return 0;
1425 
1426 	if (!has_vhe()) {
1427 		err = create_hyp_exec_mappings(__pa_symbol(__bp_harden_hyp_vecs),
1428 					       __BP_HARDEN_HYP_VECS_SZ, &base);
1429 		if (err)
1430 			return err;
1431 	}
1432 
1433 	kvm_init_vector_slot(base, HYP_VECTOR_INDIRECT);
1434 	kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_INDIRECT);
1435 	return 0;
1436 }
1437 
1438 static void cpu_prepare_hyp_mode(int cpu)
1439 {
1440 	struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
1441 	unsigned long tcr;
1442 
1443 	/*
1444 	 * Calculate the raw per-cpu offset without a translation from the
1445 	 * kernel's mapping to the linear mapping, and store it in tpidr_el2
1446 	 * so that we can use adr_l to access per-cpu variables in EL2.
1447 	 * Also drop the KASAN tag which gets in the way...
1448 	 */
1449 	params->tpidr_el2 = (unsigned long)kasan_reset_tag(per_cpu_ptr_nvhe_sym(__per_cpu_start, cpu)) -
1450 			    (unsigned long)kvm_ksym_ref(CHOOSE_NVHE_SYM(__per_cpu_start));
1451 
1452 	params->mair_el2 = read_sysreg(mair_el1);
1453 
1454 	/*
1455 	 * The ID map may be configured to use an extended virtual address
1456 	 * range. This is only the case if system RAM is out of range for the
1457 	 * currently configured page size and VA_BITS, in which case we will
1458 	 * also need the extended virtual range for the HYP ID map, or we won't
1459 	 * be able to enable the EL2 MMU.
1460 	 *
1461 	 * However, at EL2, there is only one TTBR register, and we can't switch
1462 	 * between translation tables *and* update TCR_EL2.T0SZ at the same
1463 	 * time. Bottom line: we need to use the extended range with *both* our
1464 	 * translation tables.
1465 	 *
1466 	 * So use the same T0SZ value we use for the ID map.
1467 	 */
1468 	tcr = (read_sysreg(tcr_el1) & TCR_EL2_MASK) | TCR_EL2_RES1;
1469 	tcr &= ~TCR_T0SZ_MASK;
1470 	tcr |= (idmap_t0sz & GENMASK(TCR_TxSZ_WIDTH - 1, 0)) << TCR_T0SZ_OFFSET;
1471 	params->tcr_el2 = tcr;
1472 
1473 	params->stack_hyp_va = kern_hyp_va(per_cpu(kvm_arm_hyp_stack_page, cpu) + PAGE_SIZE);
1474 	params->pgd_pa = kvm_mmu_get_httbr();
1475 	if (is_protected_kvm_enabled())
1476 		params->hcr_el2 = HCR_HOST_NVHE_PROTECTED_FLAGS;
1477 	else
1478 		params->hcr_el2 = HCR_HOST_NVHE_FLAGS;
1479 	params->vttbr = params->vtcr = 0;
1480 
1481 	/*
1482 	 * Flush the init params from the data cache because the struct will
1483 	 * be read while the MMU is off.
1484 	 */
1485 	kvm_flush_dcache_to_poc(params, sizeof(*params));
1486 }
1487 
1488 static void hyp_install_host_vector(void)
1489 {
1490 	struct kvm_nvhe_init_params *params;
1491 	struct arm_smccc_res res;
1492 
1493 	/* Switch from the HYP stub to our own HYP init vector */
1494 	__hyp_set_vectors(kvm_get_idmap_vector());
1495 
1496 	/*
1497 	 * Call initialization code, and switch to the full blown HYP code.
1498 	 * If the cpucaps haven't been finalized yet, something has gone very
1499 	 * wrong, and hyp will crash and burn when it uses any
1500 	 * cpus_have_const_cap() wrapper.
1501 	 */
1502 	BUG_ON(!system_capabilities_finalized());
1503 	params = this_cpu_ptr_nvhe_sym(kvm_init_params);
1504 	arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__kvm_hyp_init), virt_to_phys(params), &res);
1505 	WARN_ON(res.a0 != SMCCC_RET_SUCCESS);
1506 }
1507 
1508 static void cpu_init_hyp_mode(void)
1509 {
1510 	hyp_install_host_vector();
1511 
1512 	/*
1513 	 * Disabling SSBD on a non-VHE system requires us to enable SSBS
1514 	 * at EL2.
1515 	 */
1516 	if (this_cpu_has_cap(ARM64_SSBS) &&
1517 	    arm64_get_spectre_v4_state() == SPECTRE_VULNERABLE) {
1518 		kvm_call_hyp_nvhe(__kvm_enable_ssbs);
1519 	}
1520 }
1521 
1522 static void cpu_hyp_reset(void)
1523 {
1524 	if (!is_kernel_in_hyp_mode())
1525 		__hyp_reset_vectors();
1526 }
1527 
1528 /*
1529  * EL2 vectors can be mapped and rerouted in a number of ways,
1530  * depending on the kernel configuration and CPU present:
1531  *
1532  * - If the CPU is affected by Spectre-v2, the hardening sequence is
1533  *   placed in one of the vector slots, which is executed before jumping
1534  *   to the real vectors.
1535  *
1536  * - If the CPU also has the ARM64_SPECTRE_V3A cap, the slot
1537  *   containing the hardening sequence is mapped next to the idmap page,
1538  *   and executed before jumping to the real vectors.
1539  *
1540  * - If the CPU only has the ARM64_SPECTRE_V3A cap, then an
1541  *   empty slot is selected, mapped next to the idmap page, and
1542  *   executed before jumping to the real vectors.
1543  *
1544  * Note that ARM64_SPECTRE_V3A is somewhat incompatible with
1545  * VHE, as we don't have hypervisor-specific mappings. If the system
1546  * is VHE and yet selects this capability, it will be ignored.
1547  */
1548 static void cpu_set_hyp_vector(void)
1549 {
1550 	struct bp_hardening_data *data = this_cpu_ptr(&bp_hardening_data);
1551 	void *vector = hyp_spectre_vector_selector[data->slot];
1552 
1553 	if (!is_protected_kvm_enabled())
1554 		*this_cpu_ptr_hyp_sym(kvm_hyp_vector) = (unsigned long)vector;
1555 	else
1556 		kvm_call_hyp_nvhe(__pkvm_cpu_set_vector, data->slot);
1557 }
1558 
1559 static void cpu_hyp_reinit(void)
1560 {
1561 	kvm_init_host_cpu_context(&this_cpu_ptr_hyp_sym(kvm_host_data)->host_ctxt);
1562 
1563 	cpu_hyp_reset();
1564 
1565 	if (is_kernel_in_hyp_mode())
1566 		kvm_timer_init_vhe();
1567 	else
1568 		cpu_init_hyp_mode();
1569 
1570 	cpu_set_hyp_vector();
1571 
1572 	kvm_arm_init_debug();
1573 
1574 	if (vgic_present)
1575 		kvm_vgic_init_cpu_hardware();
1576 }
1577 
1578 static void _kvm_arch_hardware_enable(void *discard)
1579 {
1580 	if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1581 		cpu_hyp_reinit();
1582 		__this_cpu_write(kvm_arm_hardware_enabled, 1);
1583 	}
1584 }
1585 
1586 int kvm_arch_hardware_enable(void)
1587 {
1588 	_kvm_arch_hardware_enable(NULL);
1589 	return 0;
1590 }
1591 
1592 static void _kvm_arch_hardware_disable(void *discard)
1593 {
1594 	if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1595 		cpu_hyp_reset();
1596 		__this_cpu_write(kvm_arm_hardware_enabled, 0);
1597 	}
1598 }
1599 
1600 void kvm_arch_hardware_disable(void)
1601 {
1602 	if (!is_protected_kvm_enabled())
1603 		_kvm_arch_hardware_disable(NULL);
1604 }
1605 
1606 #ifdef CONFIG_CPU_PM
1607 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1608 				    unsigned long cmd,
1609 				    void *v)
1610 {
1611 	/*
1612 	 * kvm_arm_hardware_enabled is left with its old value over
1613 	 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1614 	 * re-enable hyp.
1615 	 */
1616 	switch (cmd) {
1617 	case CPU_PM_ENTER:
1618 		if (__this_cpu_read(kvm_arm_hardware_enabled))
1619 			/*
1620 			 * don't update kvm_arm_hardware_enabled here
1621 			 * so that the hardware will be re-enabled
1622 			 * when we resume. See below.
1623 			 */
1624 			cpu_hyp_reset();
1625 
1626 		return NOTIFY_OK;
1627 	case CPU_PM_ENTER_FAILED:
1628 	case CPU_PM_EXIT:
1629 		if (__this_cpu_read(kvm_arm_hardware_enabled))
1630 			/* The hardware was enabled before suspend. */
1631 			cpu_hyp_reinit();
1632 
1633 		return NOTIFY_OK;
1634 
1635 	default:
1636 		return NOTIFY_DONE;
1637 	}
1638 }
1639 
1640 static struct notifier_block hyp_init_cpu_pm_nb = {
1641 	.notifier_call = hyp_init_cpu_pm_notifier,
1642 };
1643 
1644 static void hyp_cpu_pm_init(void)
1645 {
1646 	if (!is_protected_kvm_enabled())
1647 		cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1648 }
1649 static void hyp_cpu_pm_exit(void)
1650 {
1651 	if (!is_protected_kvm_enabled())
1652 		cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1653 }
1654 #else
1655 static inline void hyp_cpu_pm_init(void)
1656 {
1657 }
1658 static inline void hyp_cpu_pm_exit(void)
1659 {
1660 }
1661 #endif
1662 
1663 static void init_cpu_logical_map(void)
1664 {
1665 	unsigned int cpu;
1666 
1667 	/*
1668 	 * Copy the MPIDR <-> logical CPU ID mapping to hyp.
1669 	 * Only copy the set of online CPUs whose features have been chacked
1670 	 * against the finalized system capabilities. The hypervisor will not
1671 	 * allow any other CPUs from the `possible` set to boot.
1672 	 */
1673 	for_each_online_cpu(cpu)
1674 		hyp_cpu_logical_map[cpu] = cpu_logical_map(cpu);
1675 }
1676 
1677 #define init_psci_0_1_impl_state(config, what)	\
1678 	config.psci_0_1_ ## what ## _implemented = psci_ops.what
1679 
1680 static bool init_psci_relay(void)
1681 {
1682 	/*
1683 	 * If PSCI has not been initialized, protected KVM cannot install
1684 	 * itself on newly booted CPUs.
1685 	 */
1686 	if (!psci_ops.get_version) {
1687 		kvm_err("Cannot initialize protected mode without PSCI\n");
1688 		return false;
1689 	}
1690 
1691 	kvm_host_psci_config.version = psci_ops.get_version();
1692 
1693 	if (kvm_host_psci_config.version == PSCI_VERSION(0, 1)) {
1694 		kvm_host_psci_config.function_ids_0_1 = get_psci_0_1_function_ids();
1695 		init_psci_0_1_impl_state(kvm_host_psci_config, cpu_suspend);
1696 		init_psci_0_1_impl_state(kvm_host_psci_config, cpu_on);
1697 		init_psci_0_1_impl_state(kvm_host_psci_config, cpu_off);
1698 		init_psci_0_1_impl_state(kvm_host_psci_config, migrate);
1699 	}
1700 	return true;
1701 }
1702 
1703 static int init_common_resources(void)
1704 {
1705 	return kvm_set_ipa_limit();
1706 }
1707 
1708 static int init_subsystems(void)
1709 {
1710 	int err = 0;
1711 
1712 	/*
1713 	 * Enable hardware so that subsystem initialisation can access EL2.
1714 	 */
1715 	on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1716 
1717 	/*
1718 	 * Register CPU lower-power notifier
1719 	 */
1720 	hyp_cpu_pm_init();
1721 
1722 	/*
1723 	 * Init HYP view of VGIC
1724 	 */
1725 	err = kvm_vgic_hyp_init();
1726 	switch (err) {
1727 	case 0:
1728 		vgic_present = true;
1729 		break;
1730 	case -ENODEV:
1731 	case -ENXIO:
1732 		vgic_present = false;
1733 		err = 0;
1734 		break;
1735 	default:
1736 		goto out;
1737 	}
1738 
1739 	/*
1740 	 * Init HYP architected timer support
1741 	 */
1742 	err = kvm_timer_hyp_init(vgic_present);
1743 	if (err)
1744 		goto out;
1745 
1746 	kvm_perf_init();
1747 	kvm_sys_reg_table_init();
1748 
1749 out:
1750 	if (err || !is_protected_kvm_enabled())
1751 		on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1752 
1753 	return err;
1754 }
1755 
1756 static void teardown_hyp_mode(void)
1757 {
1758 	int cpu;
1759 
1760 	free_hyp_pgds();
1761 	for_each_possible_cpu(cpu) {
1762 		free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1763 		free_pages(kvm_arm_hyp_percpu_base[cpu], nvhe_percpu_order());
1764 	}
1765 }
1766 
1767 static int do_pkvm_init(u32 hyp_va_bits)
1768 {
1769 	void *per_cpu_base = kvm_ksym_ref(kvm_arm_hyp_percpu_base);
1770 	int ret;
1771 
1772 	preempt_disable();
1773 	hyp_install_host_vector();
1774 	ret = kvm_call_hyp_nvhe(__pkvm_init, hyp_mem_base, hyp_mem_size,
1775 				num_possible_cpus(), kern_hyp_va(per_cpu_base),
1776 				hyp_va_bits);
1777 	preempt_enable();
1778 
1779 	return ret;
1780 }
1781 
1782 static int kvm_hyp_init_protection(u32 hyp_va_bits)
1783 {
1784 	void *addr = phys_to_virt(hyp_mem_base);
1785 	int ret;
1786 
1787 	kvm_nvhe_sym(id_aa64mmfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
1788 	kvm_nvhe_sym(id_aa64mmfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
1789 
1790 	ret = create_hyp_mappings(addr, addr + hyp_mem_size, PAGE_HYP);
1791 	if (ret)
1792 		return ret;
1793 
1794 	ret = do_pkvm_init(hyp_va_bits);
1795 	if (ret)
1796 		return ret;
1797 
1798 	free_hyp_pgds();
1799 
1800 	return 0;
1801 }
1802 
1803 /**
1804  * Inits Hyp-mode on all online CPUs
1805  */
1806 static int init_hyp_mode(void)
1807 {
1808 	u32 hyp_va_bits;
1809 	int cpu;
1810 	int err = -ENOMEM;
1811 
1812 	/*
1813 	 * The protected Hyp-mode cannot be initialized if the memory pool
1814 	 * allocation has failed.
1815 	 */
1816 	if (is_protected_kvm_enabled() && !hyp_mem_base)
1817 		goto out_err;
1818 
1819 	/*
1820 	 * Allocate Hyp PGD and setup Hyp identity mapping
1821 	 */
1822 	err = kvm_mmu_init(&hyp_va_bits);
1823 	if (err)
1824 		goto out_err;
1825 
1826 	/*
1827 	 * Allocate stack pages for Hypervisor-mode
1828 	 */
1829 	for_each_possible_cpu(cpu) {
1830 		unsigned long stack_page;
1831 
1832 		stack_page = __get_free_page(GFP_KERNEL);
1833 		if (!stack_page) {
1834 			err = -ENOMEM;
1835 			goto out_err;
1836 		}
1837 
1838 		per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1839 	}
1840 
1841 	/*
1842 	 * Allocate and initialize pages for Hypervisor-mode percpu regions.
1843 	 */
1844 	for_each_possible_cpu(cpu) {
1845 		struct page *page;
1846 		void *page_addr;
1847 
1848 		page = alloc_pages(GFP_KERNEL, nvhe_percpu_order());
1849 		if (!page) {
1850 			err = -ENOMEM;
1851 			goto out_err;
1852 		}
1853 
1854 		page_addr = page_address(page);
1855 		memcpy(page_addr, CHOOSE_NVHE_SYM(__per_cpu_start), nvhe_percpu_size());
1856 		kvm_arm_hyp_percpu_base[cpu] = (unsigned long)page_addr;
1857 	}
1858 
1859 	/*
1860 	 * Map the Hyp-code called directly from the host
1861 	 */
1862 	err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1863 				  kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1864 	if (err) {
1865 		kvm_err("Cannot map world-switch code\n");
1866 		goto out_err;
1867 	}
1868 
1869 	err = create_hyp_mappings(kvm_ksym_ref(__hyp_rodata_start),
1870 				  kvm_ksym_ref(__hyp_rodata_end), PAGE_HYP_RO);
1871 	if (err) {
1872 		kvm_err("Cannot map .hyp.rodata section\n");
1873 		goto out_err;
1874 	}
1875 
1876 	err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1877 				  kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1878 	if (err) {
1879 		kvm_err("Cannot map rodata section\n");
1880 		goto out_err;
1881 	}
1882 
1883 	/*
1884 	 * .hyp.bss is guaranteed to be placed at the beginning of the .bss
1885 	 * section thanks to an assertion in the linker script. Map it RW and
1886 	 * the rest of .bss RO.
1887 	 */
1888 	err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_start),
1889 				  kvm_ksym_ref(__hyp_bss_end), PAGE_HYP);
1890 	if (err) {
1891 		kvm_err("Cannot map hyp bss section: %d\n", err);
1892 		goto out_err;
1893 	}
1894 
1895 	err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_end),
1896 				  kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
1897 	if (err) {
1898 		kvm_err("Cannot map bss section\n");
1899 		goto out_err;
1900 	}
1901 
1902 	/*
1903 	 * Map the Hyp stack pages
1904 	 */
1905 	for_each_possible_cpu(cpu) {
1906 		char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1907 		err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
1908 					  PAGE_HYP);
1909 
1910 		if (err) {
1911 			kvm_err("Cannot map hyp stack\n");
1912 			goto out_err;
1913 		}
1914 	}
1915 
1916 	for_each_possible_cpu(cpu) {
1917 		char *percpu_begin = (char *)kvm_arm_hyp_percpu_base[cpu];
1918 		char *percpu_end = percpu_begin + nvhe_percpu_size();
1919 
1920 		/* Map Hyp percpu pages */
1921 		err = create_hyp_mappings(percpu_begin, percpu_end, PAGE_HYP);
1922 		if (err) {
1923 			kvm_err("Cannot map hyp percpu region\n");
1924 			goto out_err;
1925 		}
1926 
1927 		/* Prepare the CPU initialization parameters */
1928 		cpu_prepare_hyp_mode(cpu);
1929 	}
1930 
1931 	if (is_protected_kvm_enabled()) {
1932 		init_cpu_logical_map();
1933 
1934 		if (!init_psci_relay()) {
1935 			err = -ENODEV;
1936 			goto out_err;
1937 		}
1938 	}
1939 
1940 	if (is_protected_kvm_enabled()) {
1941 		err = kvm_hyp_init_protection(hyp_va_bits);
1942 		if (err) {
1943 			kvm_err("Failed to init hyp memory protection\n");
1944 			goto out_err;
1945 		}
1946 	}
1947 
1948 	return 0;
1949 
1950 out_err:
1951 	teardown_hyp_mode();
1952 	kvm_err("error initializing Hyp mode: %d\n", err);
1953 	return err;
1954 }
1955 
1956 static void _kvm_host_prot_finalize(void *discard)
1957 {
1958 	WARN_ON(kvm_call_hyp_nvhe(__pkvm_prot_finalize));
1959 }
1960 
1961 static inline int pkvm_mark_hyp(phys_addr_t start, phys_addr_t end)
1962 {
1963 	return kvm_call_hyp_nvhe(__pkvm_mark_hyp, start, end);
1964 }
1965 
1966 #define pkvm_mark_hyp_section(__section)		\
1967 	pkvm_mark_hyp(__pa_symbol(__section##_start),	\
1968 			__pa_symbol(__section##_end))
1969 
1970 static int finalize_hyp_mode(void)
1971 {
1972 	int cpu, ret;
1973 
1974 	if (!is_protected_kvm_enabled())
1975 		return 0;
1976 
1977 	ret = pkvm_mark_hyp_section(__hyp_idmap_text);
1978 	if (ret)
1979 		return ret;
1980 
1981 	ret = pkvm_mark_hyp_section(__hyp_text);
1982 	if (ret)
1983 		return ret;
1984 
1985 	ret = pkvm_mark_hyp_section(__hyp_rodata);
1986 	if (ret)
1987 		return ret;
1988 
1989 	ret = pkvm_mark_hyp_section(__hyp_bss);
1990 	if (ret)
1991 		return ret;
1992 
1993 	ret = pkvm_mark_hyp(hyp_mem_base, hyp_mem_base + hyp_mem_size);
1994 	if (ret)
1995 		return ret;
1996 
1997 	for_each_possible_cpu(cpu) {
1998 		phys_addr_t start = virt_to_phys((void *)kvm_arm_hyp_percpu_base[cpu]);
1999 		phys_addr_t end = start + (PAGE_SIZE << nvhe_percpu_order());
2000 
2001 		ret = pkvm_mark_hyp(start, end);
2002 		if (ret)
2003 			return ret;
2004 
2005 		start = virt_to_phys((void *)per_cpu(kvm_arm_hyp_stack_page, cpu));
2006 		end = start + PAGE_SIZE;
2007 		ret = pkvm_mark_hyp(start, end);
2008 		if (ret)
2009 			return ret;
2010 	}
2011 
2012 	/*
2013 	 * Flip the static key upfront as that may no longer be possible
2014 	 * once the host stage 2 is installed.
2015 	 */
2016 	static_branch_enable(&kvm_protected_mode_initialized);
2017 	on_each_cpu(_kvm_host_prot_finalize, NULL, 1);
2018 
2019 	return 0;
2020 }
2021 
2022 static void check_kvm_target_cpu(void *ret)
2023 {
2024 	*(int *)ret = kvm_target_cpu();
2025 }
2026 
2027 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
2028 {
2029 	struct kvm_vcpu *vcpu;
2030 	int i;
2031 
2032 	mpidr &= MPIDR_HWID_BITMASK;
2033 	kvm_for_each_vcpu(i, vcpu, kvm) {
2034 		if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
2035 			return vcpu;
2036 	}
2037 	return NULL;
2038 }
2039 
2040 bool kvm_arch_has_irq_bypass(void)
2041 {
2042 	return true;
2043 }
2044 
2045 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
2046 				      struct irq_bypass_producer *prod)
2047 {
2048 	struct kvm_kernel_irqfd *irqfd =
2049 		container_of(cons, struct kvm_kernel_irqfd, consumer);
2050 
2051 	return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
2052 					  &irqfd->irq_entry);
2053 }
2054 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
2055 				      struct irq_bypass_producer *prod)
2056 {
2057 	struct kvm_kernel_irqfd *irqfd =
2058 		container_of(cons, struct kvm_kernel_irqfd, consumer);
2059 
2060 	kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
2061 				     &irqfd->irq_entry);
2062 }
2063 
2064 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
2065 {
2066 	struct kvm_kernel_irqfd *irqfd =
2067 		container_of(cons, struct kvm_kernel_irqfd, consumer);
2068 
2069 	kvm_arm_halt_guest(irqfd->kvm);
2070 }
2071 
2072 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
2073 {
2074 	struct kvm_kernel_irqfd *irqfd =
2075 		container_of(cons, struct kvm_kernel_irqfd, consumer);
2076 
2077 	kvm_arm_resume_guest(irqfd->kvm);
2078 }
2079 
2080 /**
2081  * Initialize Hyp-mode and memory mappings on all CPUs.
2082  */
2083 int kvm_arch_init(void *opaque)
2084 {
2085 	int err;
2086 	int ret, cpu;
2087 	bool in_hyp_mode;
2088 
2089 	if (!is_hyp_mode_available()) {
2090 		kvm_info("HYP mode not available\n");
2091 		return -ENODEV;
2092 	}
2093 
2094 	in_hyp_mode = is_kernel_in_hyp_mode();
2095 
2096 	if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) ||
2097 	    cpus_have_final_cap(ARM64_WORKAROUND_1508412))
2098 		kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \
2099 			 "Only trusted guests should be used on this system.\n");
2100 
2101 	for_each_online_cpu(cpu) {
2102 		smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
2103 		if (ret < 0) {
2104 			kvm_err("Error, CPU %d not supported!\n", cpu);
2105 			return -ENODEV;
2106 		}
2107 	}
2108 
2109 	err = init_common_resources();
2110 	if (err)
2111 		return err;
2112 
2113 	err = kvm_arm_init_sve();
2114 	if (err)
2115 		return err;
2116 
2117 	if (!in_hyp_mode) {
2118 		err = init_hyp_mode();
2119 		if (err)
2120 			goto out_err;
2121 	}
2122 
2123 	err = kvm_init_vector_slots();
2124 	if (err) {
2125 		kvm_err("Cannot initialise vector slots\n");
2126 		goto out_err;
2127 	}
2128 
2129 	err = init_subsystems();
2130 	if (err)
2131 		goto out_hyp;
2132 
2133 	if (!in_hyp_mode) {
2134 		err = finalize_hyp_mode();
2135 		if (err) {
2136 			kvm_err("Failed to finalize Hyp protection\n");
2137 			goto out_hyp;
2138 		}
2139 	}
2140 
2141 	if (is_protected_kvm_enabled()) {
2142 		kvm_info("Protected nVHE mode initialized successfully\n");
2143 	} else if (in_hyp_mode) {
2144 		kvm_info("VHE mode initialized successfully\n");
2145 	} else {
2146 		kvm_info("Hyp mode initialized successfully\n");
2147 	}
2148 
2149 	return 0;
2150 
2151 out_hyp:
2152 	hyp_cpu_pm_exit();
2153 	if (!in_hyp_mode)
2154 		teardown_hyp_mode();
2155 out_err:
2156 	return err;
2157 }
2158 
2159 /* NOP: Compiling as a module not supported */
2160 void kvm_arch_exit(void)
2161 {
2162 	kvm_perf_teardown();
2163 }
2164 
2165 static int __init early_kvm_mode_cfg(char *arg)
2166 {
2167 	if (!arg)
2168 		return -EINVAL;
2169 
2170 	if (strcmp(arg, "protected") == 0) {
2171 		kvm_mode = KVM_MODE_PROTECTED;
2172 		return 0;
2173 	}
2174 
2175 	if (strcmp(arg, "nvhe") == 0 && !WARN_ON(is_kernel_in_hyp_mode()))
2176 		return 0;
2177 
2178 	return -EINVAL;
2179 }
2180 early_param("kvm-arm.mode", early_kvm_mode_cfg);
2181 
2182 enum kvm_mode kvm_get_mode(void)
2183 {
2184 	return kvm_mode;
2185 }
2186 
2187 static int arm_init(void)
2188 {
2189 	int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
2190 	return rc;
2191 }
2192 
2193 module_init(arm_init);
2194