1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Based on arch/arm/kernel/ptrace.c 4 * 5 * By Ross Biro 1/23/92 6 * edited by Linus Torvalds 7 * ARM modifications Copyright (C) 2000 Russell King 8 * Copyright (C) 2012 ARM Ltd. 9 */ 10 11 #include <linux/audit.h> 12 #include <linux/compat.h> 13 #include <linux/kernel.h> 14 #include <linux/sched/signal.h> 15 #include <linux/sched/task_stack.h> 16 #include <linux/mm.h> 17 #include <linux/nospec.h> 18 #include <linux/smp.h> 19 #include <linux/ptrace.h> 20 #include <linux/user.h> 21 #include <linux/seccomp.h> 22 #include <linux/security.h> 23 #include <linux/init.h> 24 #include <linux/signal.h> 25 #include <linux/string.h> 26 #include <linux/uaccess.h> 27 #include <linux/perf_event.h> 28 #include <linux/hw_breakpoint.h> 29 #include <linux/regset.h> 30 #include <linux/elf.h> 31 #include <linux/rseq.h> 32 33 #include <asm/compat.h> 34 #include <asm/cpufeature.h> 35 #include <asm/debug-monitors.h> 36 #include <asm/fpsimd.h> 37 #include <asm/mte.h> 38 #include <asm/pointer_auth.h> 39 #include <asm/stacktrace.h> 40 #include <asm/syscall.h> 41 #include <asm/traps.h> 42 #include <asm/system_misc.h> 43 44 #define CREATE_TRACE_POINTS 45 #include <trace/events/syscalls.h> 46 47 struct pt_regs_offset { 48 const char *name; 49 int offset; 50 }; 51 52 #define REG_OFFSET_NAME(r) {.name = #r, .offset = offsetof(struct pt_regs, r)} 53 #define REG_OFFSET_END {.name = NULL, .offset = 0} 54 #define GPR_OFFSET_NAME(r) \ 55 {.name = "x" #r, .offset = offsetof(struct pt_regs, regs[r])} 56 57 static const struct pt_regs_offset regoffset_table[] = { 58 GPR_OFFSET_NAME(0), 59 GPR_OFFSET_NAME(1), 60 GPR_OFFSET_NAME(2), 61 GPR_OFFSET_NAME(3), 62 GPR_OFFSET_NAME(4), 63 GPR_OFFSET_NAME(5), 64 GPR_OFFSET_NAME(6), 65 GPR_OFFSET_NAME(7), 66 GPR_OFFSET_NAME(8), 67 GPR_OFFSET_NAME(9), 68 GPR_OFFSET_NAME(10), 69 GPR_OFFSET_NAME(11), 70 GPR_OFFSET_NAME(12), 71 GPR_OFFSET_NAME(13), 72 GPR_OFFSET_NAME(14), 73 GPR_OFFSET_NAME(15), 74 GPR_OFFSET_NAME(16), 75 GPR_OFFSET_NAME(17), 76 GPR_OFFSET_NAME(18), 77 GPR_OFFSET_NAME(19), 78 GPR_OFFSET_NAME(20), 79 GPR_OFFSET_NAME(21), 80 GPR_OFFSET_NAME(22), 81 GPR_OFFSET_NAME(23), 82 GPR_OFFSET_NAME(24), 83 GPR_OFFSET_NAME(25), 84 GPR_OFFSET_NAME(26), 85 GPR_OFFSET_NAME(27), 86 GPR_OFFSET_NAME(28), 87 GPR_OFFSET_NAME(29), 88 GPR_OFFSET_NAME(30), 89 {.name = "lr", .offset = offsetof(struct pt_regs, regs[30])}, 90 REG_OFFSET_NAME(sp), 91 REG_OFFSET_NAME(pc), 92 REG_OFFSET_NAME(pstate), 93 REG_OFFSET_END, 94 }; 95 96 /** 97 * regs_query_register_offset() - query register offset from its name 98 * @name: the name of a register 99 * 100 * regs_query_register_offset() returns the offset of a register in struct 101 * pt_regs from its name. If the name is invalid, this returns -EINVAL; 102 */ 103 int regs_query_register_offset(const char *name) 104 { 105 const struct pt_regs_offset *roff; 106 107 for (roff = regoffset_table; roff->name != NULL; roff++) 108 if (!strcmp(roff->name, name)) 109 return roff->offset; 110 return -EINVAL; 111 } 112 113 /** 114 * regs_within_kernel_stack() - check the address in the stack 115 * @regs: pt_regs which contains kernel stack pointer. 116 * @addr: address which is checked. 117 * 118 * regs_within_kernel_stack() checks @addr is within the kernel stack page(s). 119 * If @addr is within the kernel stack, it returns true. If not, returns false. 120 */ 121 static bool regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr) 122 { 123 return ((addr & ~(THREAD_SIZE - 1)) == 124 (kernel_stack_pointer(regs) & ~(THREAD_SIZE - 1))) || 125 on_irq_stack(addr, sizeof(unsigned long)); 126 } 127 128 /** 129 * regs_get_kernel_stack_nth() - get Nth entry of the stack 130 * @regs: pt_regs which contains kernel stack pointer. 131 * @n: stack entry number. 132 * 133 * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which 134 * is specified by @regs. If the @n th entry is NOT in the kernel stack, 135 * this returns 0. 136 */ 137 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n) 138 { 139 unsigned long *addr = (unsigned long *)kernel_stack_pointer(regs); 140 141 addr += n; 142 if (regs_within_kernel_stack(regs, (unsigned long)addr)) 143 return *addr; 144 else 145 return 0; 146 } 147 148 /* 149 * TODO: does not yet catch signals sent when the child dies. 150 * in exit.c or in signal.c. 151 */ 152 153 /* 154 * Called by kernel/ptrace.c when detaching.. 155 */ 156 void ptrace_disable(struct task_struct *child) 157 { 158 /* 159 * This would be better off in core code, but PTRACE_DETACH has 160 * grown its fair share of arch-specific worts and changing it 161 * is likely to cause regressions on obscure architectures. 162 */ 163 user_disable_single_step(child); 164 } 165 166 #ifdef CONFIG_HAVE_HW_BREAKPOINT 167 /* 168 * Handle hitting a HW-breakpoint. 169 */ 170 static void ptrace_hbptriggered(struct perf_event *bp, 171 struct perf_sample_data *data, 172 struct pt_regs *regs) 173 { 174 struct arch_hw_breakpoint *bkpt = counter_arch_bp(bp); 175 const char *desc = "Hardware breakpoint trap (ptrace)"; 176 177 #ifdef CONFIG_COMPAT 178 if (is_compat_task()) { 179 int si_errno = 0; 180 int i; 181 182 for (i = 0; i < ARM_MAX_BRP; ++i) { 183 if (current->thread.debug.hbp_break[i] == bp) { 184 si_errno = (i << 1) + 1; 185 break; 186 } 187 } 188 189 for (i = 0; i < ARM_MAX_WRP; ++i) { 190 if (current->thread.debug.hbp_watch[i] == bp) { 191 si_errno = -((i << 1) + 1); 192 break; 193 } 194 } 195 arm64_force_sig_ptrace_errno_trap(si_errno, bkpt->trigger, 196 desc); 197 return; 198 } 199 #endif 200 arm64_force_sig_fault(SIGTRAP, TRAP_HWBKPT, bkpt->trigger, desc); 201 } 202 203 /* 204 * Unregister breakpoints from this task and reset the pointers in 205 * the thread_struct. 206 */ 207 void flush_ptrace_hw_breakpoint(struct task_struct *tsk) 208 { 209 int i; 210 struct thread_struct *t = &tsk->thread; 211 212 for (i = 0; i < ARM_MAX_BRP; i++) { 213 if (t->debug.hbp_break[i]) { 214 unregister_hw_breakpoint(t->debug.hbp_break[i]); 215 t->debug.hbp_break[i] = NULL; 216 } 217 } 218 219 for (i = 0; i < ARM_MAX_WRP; i++) { 220 if (t->debug.hbp_watch[i]) { 221 unregister_hw_breakpoint(t->debug.hbp_watch[i]); 222 t->debug.hbp_watch[i] = NULL; 223 } 224 } 225 } 226 227 void ptrace_hw_copy_thread(struct task_struct *tsk) 228 { 229 memset(&tsk->thread.debug, 0, sizeof(struct debug_info)); 230 } 231 232 static struct perf_event *ptrace_hbp_get_event(unsigned int note_type, 233 struct task_struct *tsk, 234 unsigned long idx) 235 { 236 struct perf_event *bp = ERR_PTR(-EINVAL); 237 238 switch (note_type) { 239 case NT_ARM_HW_BREAK: 240 if (idx >= ARM_MAX_BRP) 241 goto out; 242 idx = array_index_nospec(idx, ARM_MAX_BRP); 243 bp = tsk->thread.debug.hbp_break[idx]; 244 break; 245 case NT_ARM_HW_WATCH: 246 if (idx >= ARM_MAX_WRP) 247 goto out; 248 idx = array_index_nospec(idx, ARM_MAX_WRP); 249 bp = tsk->thread.debug.hbp_watch[idx]; 250 break; 251 } 252 253 out: 254 return bp; 255 } 256 257 static int ptrace_hbp_set_event(unsigned int note_type, 258 struct task_struct *tsk, 259 unsigned long idx, 260 struct perf_event *bp) 261 { 262 int err = -EINVAL; 263 264 switch (note_type) { 265 case NT_ARM_HW_BREAK: 266 if (idx >= ARM_MAX_BRP) 267 goto out; 268 idx = array_index_nospec(idx, ARM_MAX_BRP); 269 tsk->thread.debug.hbp_break[idx] = bp; 270 err = 0; 271 break; 272 case NT_ARM_HW_WATCH: 273 if (idx >= ARM_MAX_WRP) 274 goto out; 275 idx = array_index_nospec(idx, ARM_MAX_WRP); 276 tsk->thread.debug.hbp_watch[idx] = bp; 277 err = 0; 278 break; 279 } 280 281 out: 282 return err; 283 } 284 285 static struct perf_event *ptrace_hbp_create(unsigned int note_type, 286 struct task_struct *tsk, 287 unsigned long idx) 288 { 289 struct perf_event *bp; 290 struct perf_event_attr attr; 291 int err, type; 292 293 switch (note_type) { 294 case NT_ARM_HW_BREAK: 295 type = HW_BREAKPOINT_X; 296 break; 297 case NT_ARM_HW_WATCH: 298 type = HW_BREAKPOINT_RW; 299 break; 300 default: 301 return ERR_PTR(-EINVAL); 302 } 303 304 ptrace_breakpoint_init(&attr); 305 306 /* 307 * Initialise fields to sane defaults 308 * (i.e. values that will pass validation). 309 */ 310 attr.bp_addr = 0; 311 attr.bp_len = HW_BREAKPOINT_LEN_4; 312 attr.bp_type = type; 313 attr.disabled = 1; 314 315 bp = register_user_hw_breakpoint(&attr, ptrace_hbptriggered, NULL, tsk); 316 if (IS_ERR(bp)) 317 return bp; 318 319 err = ptrace_hbp_set_event(note_type, tsk, idx, bp); 320 if (err) 321 return ERR_PTR(err); 322 323 return bp; 324 } 325 326 static int ptrace_hbp_fill_attr_ctrl(unsigned int note_type, 327 struct arch_hw_breakpoint_ctrl ctrl, 328 struct perf_event_attr *attr) 329 { 330 int err, len, type, offset, disabled = !ctrl.enabled; 331 332 attr->disabled = disabled; 333 if (disabled) 334 return 0; 335 336 err = arch_bp_generic_fields(ctrl, &len, &type, &offset); 337 if (err) 338 return err; 339 340 switch (note_type) { 341 case NT_ARM_HW_BREAK: 342 if ((type & HW_BREAKPOINT_X) != type) 343 return -EINVAL; 344 break; 345 case NT_ARM_HW_WATCH: 346 if ((type & HW_BREAKPOINT_RW) != type) 347 return -EINVAL; 348 break; 349 default: 350 return -EINVAL; 351 } 352 353 attr->bp_len = len; 354 attr->bp_type = type; 355 attr->bp_addr += offset; 356 357 return 0; 358 } 359 360 static int ptrace_hbp_get_resource_info(unsigned int note_type, u32 *info) 361 { 362 u8 num; 363 u32 reg = 0; 364 365 switch (note_type) { 366 case NT_ARM_HW_BREAK: 367 num = hw_breakpoint_slots(TYPE_INST); 368 break; 369 case NT_ARM_HW_WATCH: 370 num = hw_breakpoint_slots(TYPE_DATA); 371 break; 372 default: 373 return -EINVAL; 374 } 375 376 reg |= debug_monitors_arch(); 377 reg <<= 8; 378 reg |= num; 379 380 *info = reg; 381 return 0; 382 } 383 384 static int ptrace_hbp_get_ctrl(unsigned int note_type, 385 struct task_struct *tsk, 386 unsigned long idx, 387 u32 *ctrl) 388 { 389 struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx); 390 391 if (IS_ERR(bp)) 392 return PTR_ERR(bp); 393 394 *ctrl = bp ? encode_ctrl_reg(counter_arch_bp(bp)->ctrl) : 0; 395 return 0; 396 } 397 398 static int ptrace_hbp_get_addr(unsigned int note_type, 399 struct task_struct *tsk, 400 unsigned long idx, 401 u64 *addr) 402 { 403 struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx); 404 405 if (IS_ERR(bp)) 406 return PTR_ERR(bp); 407 408 *addr = bp ? counter_arch_bp(bp)->address : 0; 409 return 0; 410 } 411 412 static struct perf_event *ptrace_hbp_get_initialised_bp(unsigned int note_type, 413 struct task_struct *tsk, 414 unsigned long idx) 415 { 416 struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx); 417 418 if (!bp) 419 bp = ptrace_hbp_create(note_type, tsk, idx); 420 421 return bp; 422 } 423 424 static int ptrace_hbp_set_ctrl(unsigned int note_type, 425 struct task_struct *tsk, 426 unsigned long idx, 427 u32 uctrl) 428 { 429 int err; 430 struct perf_event *bp; 431 struct perf_event_attr attr; 432 struct arch_hw_breakpoint_ctrl ctrl; 433 434 bp = ptrace_hbp_get_initialised_bp(note_type, tsk, idx); 435 if (IS_ERR(bp)) { 436 err = PTR_ERR(bp); 437 return err; 438 } 439 440 attr = bp->attr; 441 decode_ctrl_reg(uctrl, &ctrl); 442 err = ptrace_hbp_fill_attr_ctrl(note_type, ctrl, &attr); 443 if (err) 444 return err; 445 446 return modify_user_hw_breakpoint(bp, &attr); 447 } 448 449 static int ptrace_hbp_set_addr(unsigned int note_type, 450 struct task_struct *tsk, 451 unsigned long idx, 452 u64 addr) 453 { 454 int err; 455 struct perf_event *bp; 456 struct perf_event_attr attr; 457 458 bp = ptrace_hbp_get_initialised_bp(note_type, tsk, idx); 459 if (IS_ERR(bp)) { 460 err = PTR_ERR(bp); 461 return err; 462 } 463 464 attr = bp->attr; 465 attr.bp_addr = addr; 466 err = modify_user_hw_breakpoint(bp, &attr); 467 return err; 468 } 469 470 #define PTRACE_HBP_ADDR_SZ sizeof(u64) 471 #define PTRACE_HBP_CTRL_SZ sizeof(u32) 472 #define PTRACE_HBP_PAD_SZ sizeof(u32) 473 474 static int hw_break_get(struct task_struct *target, 475 const struct user_regset *regset, 476 struct membuf to) 477 { 478 unsigned int note_type = regset->core_note_type; 479 int ret, idx = 0; 480 u32 info, ctrl; 481 u64 addr; 482 483 /* Resource info */ 484 ret = ptrace_hbp_get_resource_info(note_type, &info); 485 if (ret) 486 return ret; 487 488 membuf_write(&to, &info, sizeof(info)); 489 membuf_zero(&to, sizeof(u32)); 490 /* (address, ctrl) registers */ 491 while (to.left) { 492 ret = ptrace_hbp_get_addr(note_type, target, idx, &addr); 493 if (ret) 494 return ret; 495 ret = ptrace_hbp_get_ctrl(note_type, target, idx, &ctrl); 496 if (ret) 497 return ret; 498 membuf_store(&to, addr); 499 membuf_store(&to, ctrl); 500 membuf_zero(&to, sizeof(u32)); 501 idx++; 502 } 503 return 0; 504 } 505 506 static int hw_break_set(struct task_struct *target, 507 const struct user_regset *regset, 508 unsigned int pos, unsigned int count, 509 const void *kbuf, const void __user *ubuf) 510 { 511 unsigned int note_type = regset->core_note_type; 512 int ret, idx = 0, offset, limit; 513 u32 ctrl; 514 u64 addr; 515 516 /* Resource info and pad */ 517 offset = offsetof(struct user_hwdebug_state, dbg_regs); 518 user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf, 0, offset); 519 520 /* (address, ctrl) registers */ 521 limit = regset->n * regset->size; 522 while (count && offset < limit) { 523 if (count < PTRACE_HBP_ADDR_SZ) 524 return -EINVAL; 525 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &addr, 526 offset, offset + PTRACE_HBP_ADDR_SZ); 527 if (ret) 528 return ret; 529 ret = ptrace_hbp_set_addr(note_type, target, idx, addr); 530 if (ret) 531 return ret; 532 offset += PTRACE_HBP_ADDR_SZ; 533 534 if (!count) 535 break; 536 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ctrl, 537 offset, offset + PTRACE_HBP_CTRL_SZ); 538 if (ret) 539 return ret; 540 ret = ptrace_hbp_set_ctrl(note_type, target, idx, ctrl); 541 if (ret) 542 return ret; 543 offset += PTRACE_HBP_CTRL_SZ; 544 545 user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf, 546 offset, offset + PTRACE_HBP_PAD_SZ); 547 offset += PTRACE_HBP_PAD_SZ; 548 idx++; 549 } 550 551 return 0; 552 } 553 #endif /* CONFIG_HAVE_HW_BREAKPOINT */ 554 555 static int gpr_get(struct task_struct *target, 556 const struct user_regset *regset, 557 struct membuf to) 558 { 559 struct user_pt_regs *uregs = &task_pt_regs(target)->user_regs; 560 return membuf_write(&to, uregs, sizeof(*uregs)); 561 } 562 563 static int gpr_set(struct task_struct *target, const struct user_regset *regset, 564 unsigned int pos, unsigned int count, 565 const void *kbuf, const void __user *ubuf) 566 { 567 int ret; 568 struct user_pt_regs newregs = task_pt_regs(target)->user_regs; 569 570 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &newregs, 0, -1); 571 if (ret) 572 return ret; 573 574 if (!valid_user_regs(&newregs, target)) 575 return -EINVAL; 576 577 task_pt_regs(target)->user_regs = newregs; 578 return 0; 579 } 580 581 static int fpr_active(struct task_struct *target, const struct user_regset *regset) 582 { 583 if (!system_supports_fpsimd()) 584 return -ENODEV; 585 return regset->n; 586 } 587 588 /* 589 * TODO: update fp accessors for lazy context switching (sync/flush hwstate) 590 */ 591 static int __fpr_get(struct task_struct *target, 592 const struct user_regset *regset, 593 struct membuf to) 594 { 595 struct user_fpsimd_state *uregs; 596 597 sve_sync_to_fpsimd(target); 598 599 uregs = &target->thread.uw.fpsimd_state; 600 601 return membuf_write(&to, uregs, sizeof(*uregs)); 602 } 603 604 static int fpr_get(struct task_struct *target, const struct user_regset *regset, 605 struct membuf to) 606 { 607 if (!system_supports_fpsimd()) 608 return -EINVAL; 609 610 if (target == current) 611 fpsimd_preserve_current_state(); 612 613 return __fpr_get(target, regset, to); 614 } 615 616 static int __fpr_set(struct task_struct *target, 617 const struct user_regset *regset, 618 unsigned int pos, unsigned int count, 619 const void *kbuf, const void __user *ubuf, 620 unsigned int start_pos) 621 { 622 int ret; 623 struct user_fpsimd_state newstate; 624 625 /* 626 * Ensure target->thread.uw.fpsimd_state is up to date, so that a 627 * short copyin can't resurrect stale data. 628 */ 629 sve_sync_to_fpsimd(target); 630 631 newstate = target->thread.uw.fpsimd_state; 632 633 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &newstate, 634 start_pos, start_pos + sizeof(newstate)); 635 if (ret) 636 return ret; 637 638 target->thread.uw.fpsimd_state = newstate; 639 640 return ret; 641 } 642 643 static int fpr_set(struct task_struct *target, const struct user_regset *regset, 644 unsigned int pos, unsigned int count, 645 const void *kbuf, const void __user *ubuf) 646 { 647 int ret; 648 649 if (!system_supports_fpsimd()) 650 return -EINVAL; 651 652 ret = __fpr_set(target, regset, pos, count, kbuf, ubuf, 0); 653 if (ret) 654 return ret; 655 656 sve_sync_from_fpsimd_zeropad(target); 657 fpsimd_flush_task_state(target); 658 659 return ret; 660 } 661 662 static int tls_get(struct task_struct *target, const struct user_regset *regset, 663 struct membuf to) 664 { 665 int ret; 666 667 if (target == current) 668 tls_preserve_current_state(); 669 670 ret = membuf_store(&to, target->thread.uw.tp_value); 671 if (system_supports_tpidr2()) 672 ret = membuf_store(&to, target->thread.tpidr2_el0); 673 else 674 ret = membuf_zero(&to, sizeof(u64)); 675 676 return ret; 677 } 678 679 static int tls_set(struct task_struct *target, const struct user_regset *regset, 680 unsigned int pos, unsigned int count, 681 const void *kbuf, const void __user *ubuf) 682 { 683 int ret; 684 unsigned long tls[2]; 685 686 tls[0] = target->thread.uw.tp_value; 687 if (system_supports_tpidr2()) 688 tls[1] = target->thread.tpidr2_el0; 689 690 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, tls, 0, count); 691 if (ret) 692 return ret; 693 694 target->thread.uw.tp_value = tls[0]; 695 if (system_supports_tpidr2()) 696 target->thread.tpidr2_el0 = tls[1]; 697 698 return ret; 699 } 700 701 static int system_call_get(struct task_struct *target, 702 const struct user_regset *regset, 703 struct membuf to) 704 { 705 return membuf_store(&to, task_pt_regs(target)->syscallno); 706 } 707 708 static int system_call_set(struct task_struct *target, 709 const struct user_regset *regset, 710 unsigned int pos, unsigned int count, 711 const void *kbuf, const void __user *ubuf) 712 { 713 int syscallno = task_pt_regs(target)->syscallno; 714 int ret; 715 716 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &syscallno, 0, -1); 717 if (ret) 718 return ret; 719 720 task_pt_regs(target)->syscallno = syscallno; 721 return ret; 722 } 723 724 #ifdef CONFIG_ARM64_SVE 725 726 static void sve_init_header_from_task(struct user_sve_header *header, 727 struct task_struct *target, 728 enum vec_type type) 729 { 730 unsigned int vq; 731 bool active; 732 bool fpsimd_only; 733 enum vec_type task_type; 734 735 memset(header, 0, sizeof(*header)); 736 737 /* Check if the requested registers are active for the task */ 738 if (thread_sm_enabled(&target->thread)) 739 task_type = ARM64_VEC_SME; 740 else 741 task_type = ARM64_VEC_SVE; 742 active = (task_type == type); 743 744 switch (type) { 745 case ARM64_VEC_SVE: 746 if (test_tsk_thread_flag(target, TIF_SVE_VL_INHERIT)) 747 header->flags |= SVE_PT_VL_INHERIT; 748 fpsimd_only = !test_tsk_thread_flag(target, TIF_SVE); 749 break; 750 case ARM64_VEC_SME: 751 if (test_tsk_thread_flag(target, TIF_SME_VL_INHERIT)) 752 header->flags |= SVE_PT_VL_INHERIT; 753 fpsimd_only = false; 754 break; 755 default: 756 WARN_ON_ONCE(1); 757 return; 758 } 759 760 if (active) { 761 if (fpsimd_only) { 762 header->flags |= SVE_PT_REGS_FPSIMD; 763 } else { 764 header->flags |= SVE_PT_REGS_SVE; 765 } 766 } 767 768 header->vl = task_get_vl(target, type); 769 vq = sve_vq_from_vl(header->vl); 770 771 header->max_vl = vec_max_vl(type); 772 header->size = SVE_PT_SIZE(vq, header->flags); 773 header->max_size = SVE_PT_SIZE(sve_vq_from_vl(header->max_vl), 774 SVE_PT_REGS_SVE); 775 } 776 777 static unsigned int sve_size_from_header(struct user_sve_header const *header) 778 { 779 return ALIGN(header->size, SVE_VQ_BYTES); 780 } 781 782 static int sve_get_common(struct task_struct *target, 783 const struct user_regset *regset, 784 struct membuf to, 785 enum vec_type type) 786 { 787 struct user_sve_header header; 788 unsigned int vq; 789 unsigned long start, end; 790 791 /* Header */ 792 sve_init_header_from_task(&header, target, type); 793 vq = sve_vq_from_vl(header.vl); 794 795 membuf_write(&to, &header, sizeof(header)); 796 797 if (target == current) 798 fpsimd_preserve_current_state(); 799 800 BUILD_BUG_ON(SVE_PT_FPSIMD_OFFSET != sizeof(header)); 801 BUILD_BUG_ON(SVE_PT_SVE_OFFSET != sizeof(header)); 802 803 switch ((header.flags & SVE_PT_REGS_MASK)) { 804 case SVE_PT_REGS_FPSIMD: 805 return __fpr_get(target, regset, to); 806 807 case SVE_PT_REGS_SVE: 808 start = SVE_PT_SVE_OFFSET; 809 end = SVE_PT_SVE_FFR_OFFSET(vq) + SVE_PT_SVE_FFR_SIZE(vq); 810 membuf_write(&to, target->thread.sve_state, end - start); 811 812 start = end; 813 end = SVE_PT_SVE_FPSR_OFFSET(vq); 814 membuf_zero(&to, end - start); 815 816 /* 817 * Copy fpsr, and fpcr which must follow contiguously in 818 * struct fpsimd_state: 819 */ 820 start = end; 821 end = SVE_PT_SVE_FPCR_OFFSET(vq) + SVE_PT_SVE_FPCR_SIZE; 822 membuf_write(&to, &target->thread.uw.fpsimd_state.fpsr, 823 end - start); 824 825 start = end; 826 end = sve_size_from_header(&header); 827 return membuf_zero(&to, end - start); 828 829 default: 830 return 0; 831 } 832 } 833 834 static int sve_get(struct task_struct *target, 835 const struct user_regset *regset, 836 struct membuf to) 837 { 838 if (!system_supports_sve()) 839 return -EINVAL; 840 841 return sve_get_common(target, regset, to, ARM64_VEC_SVE); 842 } 843 844 static int sve_set_common(struct task_struct *target, 845 const struct user_regset *regset, 846 unsigned int pos, unsigned int count, 847 const void *kbuf, const void __user *ubuf, 848 enum vec_type type) 849 { 850 int ret; 851 struct user_sve_header header; 852 unsigned int vq; 853 unsigned long start, end; 854 855 /* Header */ 856 if (count < sizeof(header)) 857 return -EINVAL; 858 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &header, 859 0, sizeof(header)); 860 if (ret) 861 goto out; 862 863 /* 864 * Apart from SVE_PT_REGS_MASK, all SVE_PT_* flags are consumed by 865 * vec_set_vector_length(), which will also validate them for us: 866 */ 867 ret = vec_set_vector_length(target, type, header.vl, 868 ((unsigned long)header.flags & ~SVE_PT_REGS_MASK) << 16); 869 if (ret) 870 goto out; 871 872 /* Actual VL set may be less than the user asked for: */ 873 vq = sve_vq_from_vl(task_get_vl(target, type)); 874 875 /* Enter/exit streaming mode */ 876 if (system_supports_sme()) { 877 u64 old_svcr = target->thread.svcr; 878 879 switch (type) { 880 case ARM64_VEC_SVE: 881 target->thread.svcr &= ~SVCR_SM_MASK; 882 break; 883 case ARM64_VEC_SME: 884 target->thread.svcr |= SVCR_SM_MASK; 885 886 /* 887 * Disable traps and ensure there is SME storage but 888 * preserve any currently set values in ZA/ZT. 889 */ 890 sme_alloc(target, false); 891 set_tsk_thread_flag(target, TIF_SME); 892 break; 893 default: 894 WARN_ON_ONCE(1); 895 ret = -EINVAL; 896 goto out; 897 } 898 899 /* 900 * If we switched then invalidate any existing SVE 901 * state and ensure there's storage. 902 */ 903 if (target->thread.svcr != old_svcr) 904 sve_alloc(target, true); 905 } 906 907 /* Registers: FPSIMD-only case */ 908 909 BUILD_BUG_ON(SVE_PT_FPSIMD_OFFSET != sizeof(header)); 910 if ((header.flags & SVE_PT_REGS_MASK) == SVE_PT_REGS_FPSIMD) { 911 ret = __fpr_set(target, regset, pos, count, kbuf, ubuf, 912 SVE_PT_FPSIMD_OFFSET); 913 clear_tsk_thread_flag(target, TIF_SVE); 914 target->thread.fp_type = FP_STATE_FPSIMD; 915 goto out; 916 } 917 918 /* 919 * Otherwise: no registers or full SVE case. For backwards 920 * compatibility reasons we treat empty flags as SVE registers. 921 */ 922 923 /* 924 * If setting a different VL from the requested VL and there is 925 * register data, the data layout will be wrong: don't even 926 * try to set the registers in this case. 927 */ 928 if (count && vq != sve_vq_from_vl(header.vl)) { 929 ret = -EIO; 930 goto out; 931 } 932 933 sve_alloc(target, true); 934 if (!target->thread.sve_state) { 935 ret = -ENOMEM; 936 clear_tsk_thread_flag(target, TIF_SVE); 937 target->thread.fp_type = FP_STATE_FPSIMD; 938 goto out; 939 } 940 941 /* 942 * Ensure target->thread.sve_state is up to date with target's 943 * FPSIMD regs, so that a short copyin leaves trailing 944 * registers unmodified. Only enable SVE if we are 945 * configuring normal SVE, a system with streaming SVE may not 946 * have normal SVE. 947 */ 948 fpsimd_sync_to_sve(target); 949 if (type == ARM64_VEC_SVE) 950 set_tsk_thread_flag(target, TIF_SVE); 951 target->thread.fp_type = FP_STATE_SVE; 952 953 BUILD_BUG_ON(SVE_PT_SVE_OFFSET != sizeof(header)); 954 start = SVE_PT_SVE_OFFSET; 955 end = SVE_PT_SVE_FFR_OFFSET(vq) + SVE_PT_SVE_FFR_SIZE(vq); 956 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, 957 target->thread.sve_state, 958 start, end); 959 if (ret) 960 goto out; 961 962 start = end; 963 end = SVE_PT_SVE_FPSR_OFFSET(vq); 964 user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf, start, end); 965 966 /* 967 * Copy fpsr, and fpcr which must follow contiguously in 968 * struct fpsimd_state: 969 */ 970 start = end; 971 end = SVE_PT_SVE_FPCR_OFFSET(vq) + SVE_PT_SVE_FPCR_SIZE; 972 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, 973 &target->thread.uw.fpsimd_state.fpsr, 974 start, end); 975 976 out: 977 fpsimd_flush_task_state(target); 978 return ret; 979 } 980 981 static int sve_set(struct task_struct *target, 982 const struct user_regset *regset, 983 unsigned int pos, unsigned int count, 984 const void *kbuf, const void __user *ubuf) 985 { 986 if (!system_supports_sve()) 987 return -EINVAL; 988 989 return sve_set_common(target, regset, pos, count, kbuf, ubuf, 990 ARM64_VEC_SVE); 991 } 992 993 #endif /* CONFIG_ARM64_SVE */ 994 995 #ifdef CONFIG_ARM64_SME 996 997 static int ssve_get(struct task_struct *target, 998 const struct user_regset *regset, 999 struct membuf to) 1000 { 1001 if (!system_supports_sme()) 1002 return -EINVAL; 1003 1004 return sve_get_common(target, regset, to, ARM64_VEC_SME); 1005 } 1006 1007 static int ssve_set(struct task_struct *target, 1008 const struct user_regset *regset, 1009 unsigned int pos, unsigned int count, 1010 const void *kbuf, const void __user *ubuf) 1011 { 1012 if (!system_supports_sme()) 1013 return -EINVAL; 1014 1015 return sve_set_common(target, regset, pos, count, kbuf, ubuf, 1016 ARM64_VEC_SME); 1017 } 1018 1019 static int za_get(struct task_struct *target, 1020 const struct user_regset *regset, 1021 struct membuf to) 1022 { 1023 struct user_za_header header; 1024 unsigned int vq; 1025 unsigned long start, end; 1026 1027 if (!system_supports_sme()) 1028 return -EINVAL; 1029 1030 /* Header */ 1031 memset(&header, 0, sizeof(header)); 1032 1033 if (test_tsk_thread_flag(target, TIF_SME_VL_INHERIT)) 1034 header.flags |= ZA_PT_VL_INHERIT; 1035 1036 header.vl = task_get_sme_vl(target); 1037 vq = sve_vq_from_vl(header.vl); 1038 header.max_vl = sme_max_vl(); 1039 header.max_size = ZA_PT_SIZE(vq); 1040 1041 /* If ZA is not active there is only the header */ 1042 if (thread_za_enabled(&target->thread)) 1043 header.size = ZA_PT_SIZE(vq); 1044 else 1045 header.size = ZA_PT_ZA_OFFSET; 1046 1047 membuf_write(&to, &header, sizeof(header)); 1048 1049 BUILD_BUG_ON(ZA_PT_ZA_OFFSET != sizeof(header)); 1050 end = ZA_PT_ZA_OFFSET; 1051 1052 if (target == current) 1053 fpsimd_preserve_current_state(); 1054 1055 /* Any register data to include? */ 1056 if (thread_za_enabled(&target->thread)) { 1057 start = end; 1058 end = ZA_PT_SIZE(vq); 1059 membuf_write(&to, target->thread.sme_state, end - start); 1060 } 1061 1062 /* Zero any trailing padding */ 1063 start = end; 1064 end = ALIGN(header.size, SVE_VQ_BYTES); 1065 return membuf_zero(&to, end - start); 1066 } 1067 1068 static int za_set(struct task_struct *target, 1069 const struct user_regset *regset, 1070 unsigned int pos, unsigned int count, 1071 const void *kbuf, const void __user *ubuf) 1072 { 1073 int ret; 1074 struct user_za_header header; 1075 unsigned int vq; 1076 unsigned long start, end; 1077 1078 if (!system_supports_sme()) 1079 return -EINVAL; 1080 1081 /* Header */ 1082 if (count < sizeof(header)) 1083 return -EINVAL; 1084 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &header, 1085 0, sizeof(header)); 1086 if (ret) 1087 goto out; 1088 1089 /* 1090 * All current ZA_PT_* flags are consumed by 1091 * vec_set_vector_length(), which will also validate them for 1092 * us: 1093 */ 1094 ret = vec_set_vector_length(target, ARM64_VEC_SME, header.vl, 1095 ((unsigned long)header.flags) << 16); 1096 if (ret) 1097 goto out; 1098 1099 /* Actual VL set may be less than the user asked for: */ 1100 vq = sve_vq_from_vl(task_get_sme_vl(target)); 1101 1102 /* Ensure there is some SVE storage for streaming mode */ 1103 if (!target->thread.sve_state) { 1104 sve_alloc(target, false); 1105 if (!target->thread.sve_state) { 1106 ret = -ENOMEM; 1107 goto out; 1108 } 1109 } 1110 1111 /* Allocate/reinit ZA storage */ 1112 sme_alloc(target, true); 1113 if (!target->thread.sme_state) { 1114 ret = -ENOMEM; 1115 goto out; 1116 } 1117 1118 /* If there is no data then disable ZA */ 1119 if (!count) { 1120 target->thread.svcr &= ~SVCR_ZA_MASK; 1121 goto out; 1122 } 1123 1124 /* 1125 * If setting a different VL from the requested VL and there is 1126 * register data, the data layout will be wrong: don't even 1127 * try to set the registers in this case. 1128 */ 1129 if (vq != sve_vq_from_vl(header.vl)) { 1130 ret = -EIO; 1131 goto out; 1132 } 1133 1134 BUILD_BUG_ON(ZA_PT_ZA_OFFSET != sizeof(header)); 1135 start = ZA_PT_ZA_OFFSET; 1136 end = ZA_PT_SIZE(vq); 1137 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, 1138 target->thread.sme_state, 1139 start, end); 1140 if (ret) 1141 goto out; 1142 1143 /* Mark ZA as active and let userspace use it */ 1144 set_tsk_thread_flag(target, TIF_SME); 1145 target->thread.svcr |= SVCR_ZA_MASK; 1146 1147 out: 1148 fpsimd_flush_task_state(target); 1149 return ret; 1150 } 1151 1152 static int zt_get(struct task_struct *target, 1153 const struct user_regset *regset, 1154 struct membuf to) 1155 { 1156 if (!system_supports_sme2()) 1157 return -EINVAL; 1158 1159 /* 1160 * If PSTATE.ZA is not set then ZT will be zeroed when it is 1161 * enabled so report the current register value as zero. 1162 */ 1163 if (thread_za_enabled(&target->thread)) 1164 membuf_write(&to, thread_zt_state(&target->thread), 1165 ZT_SIG_REG_BYTES); 1166 else 1167 membuf_zero(&to, ZT_SIG_REG_BYTES); 1168 1169 return 0; 1170 } 1171 1172 static int zt_set(struct task_struct *target, 1173 const struct user_regset *regset, 1174 unsigned int pos, unsigned int count, 1175 const void *kbuf, const void __user *ubuf) 1176 { 1177 int ret; 1178 1179 if (!system_supports_sme2()) 1180 return -EINVAL; 1181 1182 /* Ensure SVE storage in case this is first use of SME */ 1183 sve_alloc(target, false); 1184 if (!target->thread.sve_state) 1185 return -ENOMEM; 1186 1187 if (!thread_za_enabled(&target->thread)) { 1188 sme_alloc(target, true); 1189 if (!target->thread.sme_state) 1190 return -ENOMEM; 1191 } 1192 1193 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, 1194 thread_zt_state(&target->thread), 1195 0, ZT_SIG_REG_BYTES); 1196 if (ret == 0) { 1197 target->thread.svcr |= SVCR_ZA_MASK; 1198 set_tsk_thread_flag(target, TIF_SME); 1199 } 1200 1201 fpsimd_flush_task_state(target); 1202 1203 return ret; 1204 } 1205 1206 #endif /* CONFIG_ARM64_SME */ 1207 1208 #ifdef CONFIG_ARM64_PTR_AUTH 1209 static int pac_mask_get(struct task_struct *target, 1210 const struct user_regset *regset, 1211 struct membuf to) 1212 { 1213 /* 1214 * The PAC bits can differ across data and instruction pointers 1215 * depending on TCR_EL1.TBID*, which we may make use of in future, so 1216 * we expose separate masks. 1217 */ 1218 unsigned long mask = ptrauth_user_pac_mask(); 1219 struct user_pac_mask uregs = { 1220 .data_mask = mask, 1221 .insn_mask = mask, 1222 }; 1223 1224 if (!system_supports_address_auth()) 1225 return -EINVAL; 1226 1227 return membuf_write(&to, &uregs, sizeof(uregs)); 1228 } 1229 1230 static int pac_enabled_keys_get(struct task_struct *target, 1231 const struct user_regset *regset, 1232 struct membuf to) 1233 { 1234 long enabled_keys = ptrauth_get_enabled_keys(target); 1235 1236 if (IS_ERR_VALUE(enabled_keys)) 1237 return enabled_keys; 1238 1239 return membuf_write(&to, &enabled_keys, sizeof(enabled_keys)); 1240 } 1241 1242 static int pac_enabled_keys_set(struct task_struct *target, 1243 const struct user_regset *regset, 1244 unsigned int pos, unsigned int count, 1245 const void *kbuf, const void __user *ubuf) 1246 { 1247 int ret; 1248 long enabled_keys = ptrauth_get_enabled_keys(target); 1249 1250 if (IS_ERR_VALUE(enabled_keys)) 1251 return enabled_keys; 1252 1253 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &enabled_keys, 0, 1254 sizeof(long)); 1255 if (ret) 1256 return ret; 1257 1258 return ptrauth_set_enabled_keys(target, PR_PAC_ENABLED_KEYS_MASK, 1259 enabled_keys); 1260 } 1261 1262 #ifdef CONFIG_CHECKPOINT_RESTORE 1263 static __uint128_t pac_key_to_user(const struct ptrauth_key *key) 1264 { 1265 return (__uint128_t)key->hi << 64 | key->lo; 1266 } 1267 1268 static struct ptrauth_key pac_key_from_user(__uint128_t ukey) 1269 { 1270 struct ptrauth_key key = { 1271 .lo = (unsigned long)ukey, 1272 .hi = (unsigned long)(ukey >> 64), 1273 }; 1274 1275 return key; 1276 } 1277 1278 static void pac_address_keys_to_user(struct user_pac_address_keys *ukeys, 1279 const struct ptrauth_keys_user *keys) 1280 { 1281 ukeys->apiakey = pac_key_to_user(&keys->apia); 1282 ukeys->apibkey = pac_key_to_user(&keys->apib); 1283 ukeys->apdakey = pac_key_to_user(&keys->apda); 1284 ukeys->apdbkey = pac_key_to_user(&keys->apdb); 1285 } 1286 1287 static void pac_address_keys_from_user(struct ptrauth_keys_user *keys, 1288 const struct user_pac_address_keys *ukeys) 1289 { 1290 keys->apia = pac_key_from_user(ukeys->apiakey); 1291 keys->apib = pac_key_from_user(ukeys->apibkey); 1292 keys->apda = pac_key_from_user(ukeys->apdakey); 1293 keys->apdb = pac_key_from_user(ukeys->apdbkey); 1294 } 1295 1296 static int pac_address_keys_get(struct task_struct *target, 1297 const struct user_regset *regset, 1298 struct membuf to) 1299 { 1300 struct ptrauth_keys_user *keys = &target->thread.keys_user; 1301 struct user_pac_address_keys user_keys; 1302 1303 if (!system_supports_address_auth()) 1304 return -EINVAL; 1305 1306 pac_address_keys_to_user(&user_keys, keys); 1307 1308 return membuf_write(&to, &user_keys, sizeof(user_keys)); 1309 } 1310 1311 static int pac_address_keys_set(struct task_struct *target, 1312 const struct user_regset *regset, 1313 unsigned int pos, unsigned int count, 1314 const void *kbuf, const void __user *ubuf) 1315 { 1316 struct ptrauth_keys_user *keys = &target->thread.keys_user; 1317 struct user_pac_address_keys user_keys; 1318 int ret; 1319 1320 if (!system_supports_address_auth()) 1321 return -EINVAL; 1322 1323 pac_address_keys_to_user(&user_keys, keys); 1324 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, 1325 &user_keys, 0, -1); 1326 if (ret) 1327 return ret; 1328 pac_address_keys_from_user(keys, &user_keys); 1329 1330 return 0; 1331 } 1332 1333 static void pac_generic_keys_to_user(struct user_pac_generic_keys *ukeys, 1334 const struct ptrauth_keys_user *keys) 1335 { 1336 ukeys->apgakey = pac_key_to_user(&keys->apga); 1337 } 1338 1339 static void pac_generic_keys_from_user(struct ptrauth_keys_user *keys, 1340 const struct user_pac_generic_keys *ukeys) 1341 { 1342 keys->apga = pac_key_from_user(ukeys->apgakey); 1343 } 1344 1345 static int pac_generic_keys_get(struct task_struct *target, 1346 const struct user_regset *regset, 1347 struct membuf to) 1348 { 1349 struct ptrauth_keys_user *keys = &target->thread.keys_user; 1350 struct user_pac_generic_keys user_keys; 1351 1352 if (!system_supports_generic_auth()) 1353 return -EINVAL; 1354 1355 pac_generic_keys_to_user(&user_keys, keys); 1356 1357 return membuf_write(&to, &user_keys, sizeof(user_keys)); 1358 } 1359 1360 static int pac_generic_keys_set(struct task_struct *target, 1361 const struct user_regset *regset, 1362 unsigned int pos, unsigned int count, 1363 const void *kbuf, const void __user *ubuf) 1364 { 1365 struct ptrauth_keys_user *keys = &target->thread.keys_user; 1366 struct user_pac_generic_keys user_keys; 1367 int ret; 1368 1369 if (!system_supports_generic_auth()) 1370 return -EINVAL; 1371 1372 pac_generic_keys_to_user(&user_keys, keys); 1373 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, 1374 &user_keys, 0, -1); 1375 if (ret) 1376 return ret; 1377 pac_generic_keys_from_user(keys, &user_keys); 1378 1379 return 0; 1380 } 1381 #endif /* CONFIG_CHECKPOINT_RESTORE */ 1382 #endif /* CONFIG_ARM64_PTR_AUTH */ 1383 1384 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI 1385 static int tagged_addr_ctrl_get(struct task_struct *target, 1386 const struct user_regset *regset, 1387 struct membuf to) 1388 { 1389 long ctrl = get_tagged_addr_ctrl(target); 1390 1391 if (IS_ERR_VALUE(ctrl)) 1392 return ctrl; 1393 1394 return membuf_write(&to, &ctrl, sizeof(ctrl)); 1395 } 1396 1397 static int tagged_addr_ctrl_set(struct task_struct *target, const struct 1398 user_regset *regset, unsigned int pos, 1399 unsigned int count, const void *kbuf, const 1400 void __user *ubuf) 1401 { 1402 int ret; 1403 long ctrl; 1404 1405 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ctrl, 0, -1); 1406 if (ret) 1407 return ret; 1408 1409 return set_tagged_addr_ctrl(target, ctrl); 1410 } 1411 #endif 1412 1413 enum aarch64_regset { 1414 REGSET_GPR, 1415 REGSET_FPR, 1416 REGSET_TLS, 1417 #ifdef CONFIG_HAVE_HW_BREAKPOINT 1418 REGSET_HW_BREAK, 1419 REGSET_HW_WATCH, 1420 #endif 1421 REGSET_SYSTEM_CALL, 1422 #ifdef CONFIG_ARM64_SVE 1423 REGSET_SVE, 1424 #endif 1425 #ifdef CONFIG_ARM64_SME 1426 REGSET_SSVE, 1427 REGSET_ZA, 1428 REGSET_ZT, 1429 #endif 1430 #ifdef CONFIG_ARM64_PTR_AUTH 1431 REGSET_PAC_MASK, 1432 REGSET_PAC_ENABLED_KEYS, 1433 #ifdef CONFIG_CHECKPOINT_RESTORE 1434 REGSET_PACA_KEYS, 1435 REGSET_PACG_KEYS, 1436 #endif 1437 #endif 1438 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI 1439 REGSET_TAGGED_ADDR_CTRL, 1440 #endif 1441 }; 1442 1443 static const struct user_regset aarch64_regsets[] = { 1444 [REGSET_GPR] = { 1445 .core_note_type = NT_PRSTATUS, 1446 .n = sizeof(struct user_pt_regs) / sizeof(u64), 1447 .size = sizeof(u64), 1448 .align = sizeof(u64), 1449 .regset_get = gpr_get, 1450 .set = gpr_set 1451 }, 1452 [REGSET_FPR] = { 1453 .core_note_type = NT_PRFPREG, 1454 .n = sizeof(struct user_fpsimd_state) / sizeof(u32), 1455 /* 1456 * We pretend we have 32-bit registers because the fpsr and 1457 * fpcr are 32-bits wide. 1458 */ 1459 .size = sizeof(u32), 1460 .align = sizeof(u32), 1461 .active = fpr_active, 1462 .regset_get = fpr_get, 1463 .set = fpr_set 1464 }, 1465 [REGSET_TLS] = { 1466 .core_note_type = NT_ARM_TLS, 1467 .n = 2, 1468 .size = sizeof(void *), 1469 .align = sizeof(void *), 1470 .regset_get = tls_get, 1471 .set = tls_set, 1472 }, 1473 #ifdef CONFIG_HAVE_HW_BREAKPOINT 1474 [REGSET_HW_BREAK] = { 1475 .core_note_type = NT_ARM_HW_BREAK, 1476 .n = sizeof(struct user_hwdebug_state) / sizeof(u32), 1477 .size = sizeof(u32), 1478 .align = sizeof(u32), 1479 .regset_get = hw_break_get, 1480 .set = hw_break_set, 1481 }, 1482 [REGSET_HW_WATCH] = { 1483 .core_note_type = NT_ARM_HW_WATCH, 1484 .n = sizeof(struct user_hwdebug_state) / sizeof(u32), 1485 .size = sizeof(u32), 1486 .align = sizeof(u32), 1487 .regset_get = hw_break_get, 1488 .set = hw_break_set, 1489 }, 1490 #endif 1491 [REGSET_SYSTEM_CALL] = { 1492 .core_note_type = NT_ARM_SYSTEM_CALL, 1493 .n = 1, 1494 .size = sizeof(int), 1495 .align = sizeof(int), 1496 .regset_get = system_call_get, 1497 .set = system_call_set, 1498 }, 1499 #ifdef CONFIG_ARM64_SVE 1500 [REGSET_SVE] = { /* Scalable Vector Extension */ 1501 .core_note_type = NT_ARM_SVE, 1502 .n = DIV_ROUND_UP(SVE_PT_SIZE(SVE_VQ_MAX, SVE_PT_REGS_SVE), 1503 SVE_VQ_BYTES), 1504 .size = SVE_VQ_BYTES, 1505 .align = SVE_VQ_BYTES, 1506 .regset_get = sve_get, 1507 .set = sve_set, 1508 }, 1509 #endif 1510 #ifdef CONFIG_ARM64_SME 1511 [REGSET_SSVE] = { /* Streaming mode SVE */ 1512 .core_note_type = NT_ARM_SSVE, 1513 .n = DIV_ROUND_UP(SVE_PT_SIZE(SME_VQ_MAX, SVE_PT_REGS_SVE), 1514 SVE_VQ_BYTES), 1515 .size = SVE_VQ_BYTES, 1516 .align = SVE_VQ_BYTES, 1517 .regset_get = ssve_get, 1518 .set = ssve_set, 1519 }, 1520 [REGSET_ZA] = { /* SME ZA */ 1521 .core_note_type = NT_ARM_ZA, 1522 /* 1523 * ZA is a single register but it's variably sized and 1524 * the ptrace core requires that the size of any data 1525 * be an exact multiple of the configured register 1526 * size so report as though we had SVE_VQ_BYTES 1527 * registers. These values aren't exposed to 1528 * userspace. 1529 */ 1530 .n = DIV_ROUND_UP(ZA_PT_SIZE(SME_VQ_MAX), SVE_VQ_BYTES), 1531 .size = SVE_VQ_BYTES, 1532 .align = SVE_VQ_BYTES, 1533 .regset_get = za_get, 1534 .set = za_set, 1535 }, 1536 [REGSET_ZT] = { /* SME ZT */ 1537 .core_note_type = NT_ARM_ZT, 1538 .n = 1, 1539 .size = ZT_SIG_REG_BYTES, 1540 .align = sizeof(u64), 1541 .regset_get = zt_get, 1542 .set = zt_set, 1543 }, 1544 #endif 1545 #ifdef CONFIG_ARM64_PTR_AUTH 1546 [REGSET_PAC_MASK] = { 1547 .core_note_type = NT_ARM_PAC_MASK, 1548 .n = sizeof(struct user_pac_mask) / sizeof(u64), 1549 .size = sizeof(u64), 1550 .align = sizeof(u64), 1551 .regset_get = pac_mask_get, 1552 /* this cannot be set dynamically */ 1553 }, 1554 [REGSET_PAC_ENABLED_KEYS] = { 1555 .core_note_type = NT_ARM_PAC_ENABLED_KEYS, 1556 .n = 1, 1557 .size = sizeof(long), 1558 .align = sizeof(long), 1559 .regset_get = pac_enabled_keys_get, 1560 .set = pac_enabled_keys_set, 1561 }, 1562 #ifdef CONFIG_CHECKPOINT_RESTORE 1563 [REGSET_PACA_KEYS] = { 1564 .core_note_type = NT_ARM_PACA_KEYS, 1565 .n = sizeof(struct user_pac_address_keys) / sizeof(__uint128_t), 1566 .size = sizeof(__uint128_t), 1567 .align = sizeof(__uint128_t), 1568 .regset_get = pac_address_keys_get, 1569 .set = pac_address_keys_set, 1570 }, 1571 [REGSET_PACG_KEYS] = { 1572 .core_note_type = NT_ARM_PACG_KEYS, 1573 .n = sizeof(struct user_pac_generic_keys) / sizeof(__uint128_t), 1574 .size = sizeof(__uint128_t), 1575 .align = sizeof(__uint128_t), 1576 .regset_get = pac_generic_keys_get, 1577 .set = pac_generic_keys_set, 1578 }, 1579 #endif 1580 #endif 1581 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI 1582 [REGSET_TAGGED_ADDR_CTRL] = { 1583 .core_note_type = NT_ARM_TAGGED_ADDR_CTRL, 1584 .n = 1, 1585 .size = sizeof(long), 1586 .align = sizeof(long), 1587 .regset_get = tagged_addr_ctrl_get, 1588 .set = tagged_addr_ctrl_set, 1589 }, 1590 #endif 1591 }; 1592 1593 static const struct user_regset_view user_aarch64_view = { 1594 .name = "aarch64", .e_machine = EM_AARCH64, 1595 .regsets = aarch64_regsets, .n = ARRAY_SIZE(aarch64_regsets) 1596 }; 1597 1598 #ifdef CONFIG_COMPAT 1599 enum compat_regset { 1600 REGSET_COMPAT_GPR, 1601 REGSET_COMPAT_VFP, 1602 }; 1603 1604 static inline compat_ulong_t compat_get_user_reg(struct task_struct *task, int idx) 1605 { 1606 struct pt_regs *regs = task_pt_regs(task); 1607 1608 switch (idx) { 1609 case 15: 1610 return regs->pc; 1611 case 16: 1612 return pstate_to_compat_psr(regs->pstate); 1613 case 17: 1614 return regs->orig_x0; 1615 default: 1616 return regs->regs[idx]; 1617 } 1618 } 1619 1620 static int compat_gpr_get(struct task_struct *target, 1621 const struct user_regset *regset, 1622 struct membuf to) 1623 { 1624 int i = 0; 1625 1626 while (to.left) 1627 membuf_store(&to, compat_get_user_reg(target, i++)); 1628 return 0; 1629 } 1630 1631 static int compat_gpr_set(struct task_struct *target, 1632 const struct user_regset *regset, 1633 unsigned int pos, unsigned int count, 1634 const void *kbuf, const void __user *ubuf) 1635 { 1636 struct pt_regs newregs; 1637 int ret = 0; 1638 unsigned int i, start, num_regs; 1639 1640 /* Calculate the number of AArch32 registers contained in count */ 1641 num_regs = count / regset->size; 1642 1643 /* Convert pos into an register number */ 1644 start = pos / regset->size; 1645 1646 if (start + num_regs > regset->n) 1647 return -EIO; 1648 1649 newregs = *task_pt_regs(target); 1650 1651 for (i = 0; i < num_regs; ++i) { 1652 unsigned int idx = start + i; 1653 compat_ulong_t reg; 1654 1655 if (kbuf) { 1656 memcpy(®, kbuf, sizeof(reg)); 1657 kbuf += sizeof(reg); 1658 } else { 1659 ret = copy_from_user(®, ubuf, sizeof(reg)); 1660 if (ret) { 1661 ret = -EFAULT; 1662 break; 1663 } 1664 1665 ubuf += sizeof(reg); 1666 } 1667 1668 switch (idx) { 1669 case 15: 1670 newregs.pc = reg; 1671 break; 1672 case 16: 1673 reg = compat_psr_to_pstate(reg); 1674 newregs.pstate = reg; 1675 break; 1676 case 17: 1677 newregs.orig_x0 = reg; 1678 break; 1679 default: 1680 newregs.regs[idx] = reg; 1681 } 1682 1683 } 1684 1685 if (valid_user_regs(&newregs.user_regs, target)) 1686 *task_pt_regs(target) = newregs; 1687 else 1688 ret = -EINVAL; 1689 1690 return ret; 1691 } 1692 1693 static int compat_vfp_get(struct task_struct *target, 1694 const struct user_regset *regset, 1695 struct membuf to) 1696 { 1697 struct user_fpsimd_state *uregs; 1698 compat_ulong_t fpscr; 1699 1700 if (!system_supports_fpsimd()) 1701 return -EINVAL; 1702 1703 uregs = &target->thread.uw.fpsimd_state; 1704 1705 if (target == current) 1706 fpsimd_preserve_current_state(); 1707 1708 /* 1709 * The VFP registers are packed into the fpsimd_state, so they all sit 1710 * nicely together for us. We just need to create the fpscr separately. 1711 */ 1712 membuf_write(&to, uregs, VFP_STATE_SIZE - sizeof(compat_ulong_t)); 1713 fpscr = (uregs->fpsr & VFP_FPSCR_STAT_MASK) | 1714 (uregs->fpcr & VFP_FPSCR_CTRL_MASK); 1715 return membuf_store(&to, fpscr); 1716 } 1717 1718 static int compat_vfp_set(struct task_struct *target, 1719 const struct user_regset *regset, 1720 unsigned int pos, unsigned int count, 1721 const void *kbuf, const void __user *ubuf) 1722 { 1723 struct user_fpsimd_state *uregs; 1724 compat_ulong_t fpscr; 1725 int ret, vregs_end_pos; 1726 1727 if (!system_supports_fpsimd()) 1728 return -EINVAL; 1729 1730 uregs = &target->thread.uw.fpsimd_state; 1731 1732 vregs_end_pos = VFP_STATE_SIZE - sizeof(compat_ulong_t); 1733 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, uregs, 0, 1734 vregs_end_pos); 1735 1736 if (count && !ret) { 1737 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &fpscr, 1738 vregs_end_pos, VFP_STATE_SIZE); 1739 if (!ret) { 1740 uregs->fpsr = fpscr & VFP_FPSCR_STAT_MASK; 1741 uregs->fpcr = fpscr & VFP_FPSCR_CTRL_MASK; 1742 } 1743 } 1744 1745 fpsimd_flush_task_state(target); 1746 return ret; 1747 } 1748 1749 static int compat_tls_get(struct task_struct *target, 1750 const struct user_regset *regset, 1751 struct membuf to) 1752 { 1753 return membuf_store(&to, (compat_ulong_t)target->thread.uw.tp_value); 1754 } 1755 1756 static int compat_tls_set(struct task_struct *target, 1757 const struct user_regset *regset, unsigned int pos, 1758 unsigned int count, const void *kbuf, 1759 const void __user *ubuf) 1760 { 1761 int ret; 1762 compat_ulong_t tls = target->thread.uw.tp_value; 1763 1764 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &tls, 0, -1); 1765 if (ret) 1766 return ret; 1767 1768 target->thread.uw.tp_value = tls; 1769 return ret; 1770 } 1771 1772 static const struct user_regset aarch32_regsets[] = { 1773 [REGSET_COMPAT_GPR] = { 1774 .core_note_type = NT_PRSTATUS, 1775 .n = COMPAT_ELF_NGREG, 1776 .size = sizeof(compat_elf_greg_t), 1777 .align = sizeof(compat_elf_greg_t), 1778 .regset_get = compat_gpr_get, 1779 .set = compat_gpr_set 1780 }, 1781 [REGSET_COMPAT_VFP] = { 1782 .core_note_type = NT_ARM_VFP, 1783 .n = VFP_STATE_SIZE / sizeof(compat_ulong_t), 1784 .size = sizeof(compat_ulong_t), 1785 .align = sizeof(compat_ulong_t), 1786 .active = fpr_active, 1787 .regset_get = compat_vfp_get, 1788 .set = compat_vfp_set 1789 }, 1790 }; 1791 1792 static const struct user_regset_view user_aarch32_view = { 1793 .name = "aarch32", .e_machine = EM_ARM, 1794 .regsets = aarch32_regsets, .n = ARRAY_SIZE(aarch32_regsets) 1795 }; 1796 1797 static const struct user_regset aarch32_ptrace_regsets[] = { 1798 [REGSET_GPR] = { 1799 .core_note_type = NT_PRSTATUS, 1800 .n = COMPAT_ELF_NGREG, 1801 .size = sizeof(compat_elf_greg_t), 1802 .align = sizeof(compat_elf_greg_t), 1803 .regset_get = compat_gpr_get, 1804 .set = compat_gpr_set 1805 }, 1806 [REGSET_FPR] = { 1807 .core_note_type = NT_ARM_VFP, 1808 .n = VFP_STATE_SIZE / sizeof(compat_ulong_t), 1809 .size = sizeof(compat_ulong_t), 1810 .align = sizeof(compat_ulong_t), 1811 .regset_get = compat_vfp_get, 1812 .set = compat_vfp_set 1813 }, 1814 [REGSET_TLS] = { 1815 .core_note_type = NT_ARM_TLS, 1816 .n = 1, 1817 .size = sizeof(compat_ulong_t), 1818 .align = sizeof(compat_ulong_t), 1819 .regset_get = compat_tls_get, 1820 .set = compat_tls_set, 1821 }, 1822 #ifdef CONFIG_HAVE_HW_BREAKPOINT 1823 [REGSET_HW_BREAK] = { 1824 .core_note_type = NT_ARM_HW_BREAK, 1825 .n = sizeof(struct user_hwdebug_state) / sizeof(u32), 1826 .size = sizeof(u32), 1827 .align = sizeof(u32), 1828 .regset_get = hw_break_get, 1829 .set = hw_break_set, 1830 }, 1831 [REGSET_HW_WATCH] = { 1832 .core_note_type = NT_ARM_HW_WATCH, 1833 .n = sizeof(struct user_hwdebug_state) / sizeof(u32), 1834 .size = sizeof(u32), 1835 .align = sizeof(u32), 1836 .regset_get = hw_break_get, 1837 .set = hw_break_set, 1838 }, 1839 #endif 1840 [REGSET_SYSTEM_CALL] = { 1841 .core_note_type = NT_ARM_SYSTEM_CALL, 1842 .n = 1, 1843 .size = sizeof(int), 1844 .align = sizeof(int), 1845 .regset_get = system_call_get, 1846 .set = system_call_set, 1847 }, 1848 }; 1849 1850 static const struct user_regset_view user_aarch32_ptrace_view = { 1851 .name = "aarch32", .e_machine = EM_ARM, 1852 .regsets = aarch32_ptrace_regsets, .n = ARRAY_SIZE(aarch32_ptrace_regsets) 1853 }; 1854 1855 static int compat_ptrace_read_user(struct task_struct *tsk, compat_ulong_t off, 1856 compat_ulong_t __user *ret) 1857 { 1858 compat_ulong_t tmp; 1859 1860 if (off & 3) 1861 return -EIO; 1862 1863 if (off == COMPAT_PT_TEXT_ADDR) 1864 tmp = tsk->mm->start_code; 1865 else if (off == COMPAT_PT_DATA_ADDR) 1866 tmp = tsk->mm->start_data; 1867 else if (off == COMPAT_PT_TEXT_END_ADDR) 1868 tmp = tsk->mm->end_code; 1869 else if (off < sizeof(compat_elf_gregset_t)) 1870 tmp = compat_get_user_reg(tsk, off >> 2); 1871 else if (off >= COMPAT_USER_SZ) 1872 return -EIO; 1873 else 1874 tmp = 0; 1875 1876 return put_user(tmp, ret); 1877 } 1878 1879 static int compat_ptrace_write_user(struct task_struct *tsk, compat_ulong_t off, 1880 compat_ulong_t val) 1881 { 1882 struct pt_regs newregs = *task_pt_regs(tsk); 1883 unsigned int idx = off / 4; 1884 1885 if (off & 3 || off >= COMPAT_USER_SZ) 1886 return -EIO; 1887 1888 if (off >= sizeof(compat_elf_gregset_t)) 1889 return 0; 1890 1891 switch (idx) { 1892 case 15: 1893 newregs.pc = val; 1894 break; 1895 case 16: 1896 newregs.pstate = compat_psr_to_pstate(val); 1897 break; 1898 case 17: 1899 newregs.orig_x0 = val; 1900 break; 1901 default: 1902 newregs.regs[idx] = val; 1903 } 1904 1905 if (!valid_user_regs(&newregs.user_regs, tsk)) 1906 return -EINVAL; 1907 1908 *task_pt_regs(tsk) = newregs; 1909 return 0; 1910 } 1911 1912 #ifdef CONFIG_HAVE_HW_BREAKPOINT 1913 1914 /* 1915 * Convert a virtual register number into an index for a thread_info 1916 * breakpoint array. Breakpoints are identified using positive numbers 1917 * whilst watchpoints are negative. The registers are laid out as pairs 1918 * of (address, control), each pair mapping to a unique hw_breakpoint struct. 1919 * Register 0 is reserved for describing resource information. 1920 */ 1921 static int compat_ptrace_hbp_num_to_idx(compat_long_t num) 1922 { 1923 return (abs(num) - 1) >> 1; 1924 } 1925 1926 static int compat_ptrace_hbp_get_resource_info(u32 *kdata) 1927 { 1928 u8 num_brps, num_wrps, debug_arch, wp_len; 1929 u32 reg = 0; 1930 1931 num_brps = hw_breakpoint_slots(TYPE_INST); 1932 num_wrps = hw_breakpoint_slots(TYPE_DATA); 1933 1934 debug_arch = debug_monitors_arch(); 1935 wp_len = 8; 1936 reg |= debug_arch; 1937 reg <<= 8; 1938 reg |= wp_len; 1939 reg <<= 8; 1940 reg |= num_wrps; 1941 reg <<= 8; 1942 reg |= num_brps; 1943 1944 *kdata = reg; 1945 return 0; 1946 } 1947 1948 static int compat_ptrace_hbp_get(unsigned int note_type, 1949 struct task_struct *tsk, 1950 compat_long_t num, 1951 u32 *kdata) 1952 { 1953 u64 addr = 0; 1954 u32 ctrl = 0; 1955 1956 int err, idx = compat_ptrace_hbp_num_to_idx(num); 1957 1958 if (num & 1) { 1959 err = ptrace_hbp_get_addr(note_type, tsk, idx, &addr); 1960 *kdata = (u32)addr; 1961 } else { 1962 err = ptrace_hbp_get_ctrl(note_type, tsk, idx, &ctrl); 1963 *kdata = ctrl; 1964 } 1965 1966 return err; 1967 } 1968 1969 static int compat_ptrace_hbp_set(unsigned int note_type, 1970 struct task_struct *tsk, 1971 compat_long_t num, 1972 u32 *kdata) 1973 { 1974 u64 addr; 1975 u32 ctrl; 1976 1977 int err, idx = compat_ptrace_hbp_num_to_idx(num); 1978 1979 if (num & 1) { 1980 addr = *kdata; 1981 err = ptrace_hbp_set_addr(note_type, tsk, idx, addr); 1982 } else { 1983 ctrl = *kdata; 1984 err = ptrace_hbp_set_ctrl(note_type, tsk, idx, ctrl); 1985 } 1986 1987 return err; 1988 } 1989 1990 static int compat_ptrace_gethbpregs(struct task_struct *tsk, compat_long_t num, 1991 compat_ulong_t __user *data) 1992 { 1993 int ret; 1994 u32 kdata; 1995 1996 /* Watchpoint */ 1997 if (num < 0) { 1998 ret = compat_ptrace_hbp_get(NT_ARM_HW_WATCH, tsk, num, &kdata); 1999 /* Resource info */ 2000 } else if (num == 0) { 2001 ret = compat_ptrace_hbp_get_resource_info(&kdata); 2002 /* Breakpoint */ 2003 } else { 2004 ret = compat_ptrace_hbp_get(NT_ARM_HW_BREAK, tsk, num, &kdata); 2005 } 2006 2007 if (!ret) 2008 ret = put_user(kdata, data); 2009 2010 return ret; 2011 } 2012 2013 static int compat_ptrace_sethbpregs(struct task_struct *tsk, compat_long_t num, 2014 compat_ulong_t __user *data) 2015 { 2016 int ret; 2017 u32 kdata = 0; 2018 2019 if (num == 0) 2020 return 0; 2021 2022 ret = get_user(kdata, data); 2023 if (ret) 2024 return ret; 2025 2026 if (num < 0) 2027 ret = compat_ptrace_hbp_set(NT_ARM_HW_WATCH, tsk, num, &kdata); 2028 else 2029 ret = compat_ptrace_hbp_set(NT_ARM_HW_BREAK, tsk, num, &kdata); 2030 2031 return ret; 2032 } 2033 #endif /* CONFIG_HAVE_HW_BREAKPOINT */ 2034 2035 long compat_arch_ptrace(struct task_struct *child, compat_long_t request, 2036 compat_ulong_t caddr, compat_ulong_t cdata) 2037 { 2038 unsigned long addr = caddr; 2039 unsigned long data = cdata; 2040 void __user *datap = compat_ptr(data); 2041 int ret; 2042 2043 switch (request) { 2044 case PTRACE_PEEKUSR: 2045 ret = compat_ptrace_read_user(child, addr, datap); 2046 break; 2047 2048 case PTRACE_POKEUSR: 2049 ret = compat_ptrace_write_user(child, addr, data); 2050 break; 2051 2052 case COMPAT_PTRACE_GETREGS: 2053 ret = copy_regset_to_user(child, 2054 &user_aarch32_view, 2055 REGSET_COMPAT_GPR, 2056 0, sizeof(compat_elf_gregset_t), 2057 datap); 2058 break; 2059 2060 case COMPAT_PTRACE_SETREGS: 2061 ret = copy_regset_from_user(child, 2062 &user_aarch32_view, 2063 REGSET_COMPAT_GPR, 2064 0, sizeof(compat_elf_gregset_t), 2065 datap); 2066 break; 2067 2068 case COMPAT_PTRACE_GET_THREAD_AREA: 2069 ret = put_user((compat_ulong_t)child->thread.uw.tp_value, 2070 (compat_ulong_t __user *)datap); 2071 break; 2072 2073 case COMPAT_PTRACE_SET_SYSCALL: 2074 task_pt_regs(child)->syscallno = data; 2075 ret = 0; 2076 break; 2077 2078 case COMPAT_PTRACE_GETVFPREGS: 2079 ret = copy_regset_to_user(child, 2080 &user_aarch32_view, 2081 REGSET_COMPAT_VFP, 2082 0, VFP_STATE_SIZE, 2083 datap); 2084 break; 2085 2086 case COMPAT_PTRACE_SETVFPREGS: 2087 ret = copy_regset_from_user(child, 2088 &user_aarch32_view, 2089 REGSET_COMPAT_VFP, 2090 0, VFP_STATE_SIZE, 2091 datap); 2092 break; 2093 2094 #ifdef CONFIG_HAVE_HW_BREAKPOINT 2095 case COMPAT_PTRACE_GETHBPREGS: 2096 ret = compat_ptrace_gethbpregs(child, addr, datap); 2097 break; 2098 2099 case COMPAT_PTRACE_SETHBPREGS: 2100 ret = compat_ptrace_sethbpregs(child, addr, datap); 2101 break; 2102 #endif 2103 2104 default: 2105 ret = compat_ptrace_request(child, request, addr, 2106 data); 2107 break; 2108 } 2109 2110 return ret; 2111 } 2112 #endif /* CONFIG_COMPAT */ 2113 2114 const struct user_regset_view *task_user_regset_view(struct task_struct *task) 2115 { 2116 #ifdef CONFIG_COMPAT 2117 /* 2118 * Core dumping of 32-bit tasks or compat ptrace requests must use the 2119 * user_aarch32_view compatible with arm32. Native ptrace requests on 2120 * 32-bit children use an extended user_aarch32_ptrace_view to allow 2121 * access to the TLS register. 2122 */ 2123 if (is_compat_task()) 2124 return &user_aarch32_view; 2125 else if (is_compat_thread(task_thread_info(task))) 2126 return &user_aarch32_ptrace_view; 2127 #endif 2128 return &user_aarch64_view; 2129 } 2130 2131 long arch_ptrace(struct task_struct *child, long request, 2132 unsigned long addr, unsigned long data) 2133 { 2134 switch (request) { 2135 case PTRACE_PEEKMTETAGS: 2136 case PTRACE_POKEMTETAGS: 2137 return mte_ptrace_copy_tags(child, request, addr, data); 2138 } 2139 2140 return ptrace_request(child, request, addr, data); 2141 } 2142 2143 enum ptrace_syscall_dir { 2144 PTRACE_SYSCALL_ENTER = 0, 2145 PTRACE_SYSCALL_EXIT, 2146 }; 2147 2148 static void report_syscall(struct pt_regs *regs, enum ptrace_syscall_dir dir) 2149 { 2150 int regno; 2151 unsigned long saved_reg; 2152 2153 /* 2154 * We have some ABI weirdness here in the way that we handle syscall 2155 * exit stops because we indicate whether or not the stop has been 2156 * signalled from syscall entry or syscall exit by clobbering a general 2157 * purpose register (ip/r12 for AArch32, x7 for AArch64) in the tracee 2158 * and restoring its old value after the stop. This means that: 2159 * 2160 * - Any writes by the tracer to this register during the stop are 2161 * ignored/discarded. 2162 * 2163 * - The actual value of the register is not available during the stop, 2164 * so the tracer cannot save it and restore it later. 2165 * 2166 * - Syscall stops behave differently to seccomp and pseudo-step traps 2167 * (the latter do not nobble any registers). 2168 */ 2169 regno = (is_compat_task() ? 12 : 7); 2170 saved_reg = regs->regs[regno]; 2171 regs->regs[regno] = dir; 2172 2173 if (dir == PTRACE_SYSCALL_ENTER) { 2174 if (ptrace_report_syscall_entry(regs)) 2175 forget_syscall(regs); 2176 regs->regs[regno] = saved_reg; 2177 } else if (!test_thread_flag(TIF_SINGLESTEP)) { 2178 ptrace_report_syscall_exit(regs, 0); 2179 regs->regs[regno] = saved_reg; 2180 } else { 2181 regs->regs[regno] = saved_reg; 2182 2183 /* 2184 * Signal a pseudo-step exception since we are stepping but 2185 * tracer modifications to the registers may have rewound the 2186 * state machine. 2187 */ 2188 ptrace_report_syscall_exit(regs, 1); 2189 } 2190 } 2191 2192 int syscall_trace_enter(struct pt_regs *regs) 2193 { 2194 unsigned long flags = read_thread_flags(); 2195 2196 if (flags & (_TIF_SYSCALL_EMU | _TIF_SYSCALL_TRACE)) { 2197 report_syscall(regs, PTRACE_SYSCALL_ENTER); 2198 if (flags & _TIF_SYSCALL_EMU) 2199 return NO_SYSCALL; 2200 } 2201 2202 /* Do the secure computing after ptrace; failures should be fast. */ 2203 if (secure_computing() == -1) 2204 return NO_SYSCALL; 2205 2206 if (test_thread_flag(TIF_SYSCALL_TRACEPOINT)) 2207 trace_sys_enter(regs, regs->syscallno); 2208 2209 audit_syscall_entry(regs->syscallno, regs->orig_x0, regs->regs[1], 2210 regs->regs[2], regs->regs[3]); 2211 2212 return regs->syscallno; 2213 } 2214 2215 void syscall_trace_exit(struct pt_regs *regs) 2216 { 2217 unsigned long flags = read_thread_flags(); 2218 2219 audit_syscall_exit(regs); 2220 2221 if (flags & _TIF_SYSCALL_TRACEPOINT) 2222 trace_sys_exit(regs, syscall_get_return_value(current, regs)); 2223 2224 if (flags & (_TIF_SYSCALL_TRACE | _TIF_SINGLESTEP)) 2225 report_syscall(regs, PTRACE_SYSCALL_EXIT); 2226 2227 rseq_syscall(regs); 2228 } 2229 2230 /* 2231 * SPSR_ELx bits which are always architecturally RES0 per ARM DDI 0487D.a. 2232 * We permit userspace to set SSBS (AArch64 bit 12, AArch32 bit 23) which is 2233 * not described in ARM DDI 0487D.a. 2234 * We treat PAN and UAO as RES0 bits, as they are meaningless at EL0, and may 2235 * be allocated an EL0 meaning in future. 2236 * Userspace cannot use these until they have an architectural meaning. 2237 * Note that this follows the SPSR_ELx format, not the AArch32 PSR format. 2238 * We also reserve IL for the kernel; SS is handled dynamically. 2239 */ 2240 #define SPSR_EL1_AARCH64_RES0_BITS \ 2241 (GENMASK_ULL(63, 32) | GENMASK_ULL(27, 26) | GENMASK_ULL(23, 22) | \ 2242 GENMASK_ULL(20, 13) | GENMASK_ULL(5, 5)) 2243 #define SPSR_EL1_AARCH32_RES0_BITS \ 2244 (GENMASK_ULL(63, 32) | GENMASK_ULL(22, 22) | GENMASK_ULL(20, 20)) 2245 2246 static int valid_compat_regs(struct user_pt_regs *regs) 2247 { 2248 regs->pstate &= ~SPSR_EL1_AARCH32_RES0_BITS; 2249 2250 if (!system_supports_mixed_endian_el0()) { 2251 if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN)) 2252 regs->pstate |= PSR_AA32_E_BIT; 2253 else 2254 regs->pstate &= ~PSR_AA32_E_BIT; 2255 } 2256 2257 if (user_mode(regs) && (regs->pstate & PSR_MODE32_BIT) && 2258 (regs->pstate & PSR_AA32_A_BIT) == 0 && 2259 (regs->pstate & PSR_AA32_I_BIT) == 0 && 2260 (regs->pstate & PSR_AA32_F_BIT) == 0) { 2261 return 1; 2262 } 2263 2264 /* 2265 * Force PSR to a valid 32-bit EL0t, preserving the same bits as 2266 * arch/arm. 2267 */ 2268 regs->pstate &= PSR_AA32_N_BIT | PSR_AA32_Z_BIT | 2269 PSR_AA32_C_BIT | PSR_AA32_V_BIT | 2270 PSR_AA32_Q_BIT | PSR_AA32_IT_MASK | 2271 PSR_AA32_GE_MASK | PSR_AA32_E_BIT | 2272 PSR_AA32_T_BIT; 2273 regs->pstate |= PSR_MODE32_BIT; 2274 2275 return 0; 2276 } 2277 2278 static int valid_native_regs(struct user_pt_regs *regs) 2279 { 2280 regs->pstate &= ~SPSR_EL1_AARCH64_RES0_BITS; 2281 2282 if (user_mode(regs) && !(regs->pstate & PSR_MODE32_BIT) && 2283 (regs->pstate & PSR_D_BIT) == 0 && 2284 (regs->pstate & PSR_A_BIT) == 0 && 2285 (regs->pstate & PSR_I_BIT) == 0 && 2286 (regs->pstate & PSR_F_BIT) == 0) { 2287 return 1; 2288 } 2289 2290 /* Force PSR to a valid 64-bit EL0t */ 2291 regs->pstate &= PSR_N_BIT | PSR_Z_BIT | PSR_C_BIT | PSR_V_BIT; 2292 2293 return 0; 2294 } 2295 2296 /* 2297 * Are the current registers suitable for user mode? (used to maintain 2298 * security in signal handlers) 2299 */ 2300 int valid_user_regs(struct user_pt_regs *regs, struct task_struct *task) 2301 { 2302 /* https://lore.kernel.org/lkml/20191118131525.GA4180@willie-the-truck */ 2303 user_regs_reset_single_step(regs, task); 2304 2305 if (is_compat_thread(task_thread_info(task))) 2306 return valid_compat_regs(regs); 2307 else 2308 return valid_native_regs(regs); 2309 } 2310