xref: /linux/arch/arm64/include/asm/kvm_host.h (revision 9abdb50cda0ffe33bbb2e40cbad97b32fb7ff892)
1 /*
2  * Copyright (C) 2012,2013 - ARM Ltd
3  * Author: Marc Zyngier <marc.zyngier@arm.com>
4  *
5  * Derived from arch/arm/include/asm/kvm_host.h:
6  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
7  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
20  */
21 
22 #ifndef __ARM64_KVM_HOST_H__
23 #define __ARM64_KVM_HOST_H__
24 
25 #include <linux/types.h>
26 #include <linux/kvm_types.h>
27 #include <asm/cpufeature.h>
28 #include <asm/daifflags.h>
29 #include <asm/fpsimd.h>
30 #include <asm/kvm.h>
31 #include <asm/kvm_asm.h>
32 #include <asm/kvm_mmio.h>
33 #include <asm/thread_info.h>
34 
35 #define __KVM_HAVE_ARCH_INTC_INITIALIZED
36 
37 #define KVM_USER_MEM_SLOTS 512
38 #define KVM_HALT_POLL_NS_DEFAULT 500000
39 
40 #include <kvm/arm_vgic.h>
41 #include <kvm/arm_arch_timer.h>
42 #include <kvm/arm_pmu.h>
43 
44 #define KVM_MAX_VCPUS VGIC_V3_MAX_CPUS
45 
46 #define KVM_VCPU_MAX_FEATURES 4
47 
48 #define KVM_REQ_SLEEP \
49 	KVM_ARCH_REQ_FLAGS(0, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
50 #define KVM_REQ_IRQ_PENDING	KVM_ARCH_REQ(1)
51 #define KVM_REQ_VCPU_RESET	KVM_ARCH_REQ(2)
52 
53 DECLARE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
54 
55 int __attribute_const__ kvm_target_cpu(void);
56 int kvm_reset_vcpu(struct kvm_vcpu *vcpu);
57 int kvm_arch_vm_ioctl_check_extension(struct kvm *kvm, long ext);
58 void __extended_idmap_trampoline(phys_addr_t boot_pgd, phys_addr_t idmap_start);
59 
60 struct kvm_arch {
61 	/* The VMID generation used for the virt. memory system */
62 	u64    vmid_gen;
63 	u32    vmid;
64 
65 	/* stage2 entry level table */
66 	pgd_t *pgd;
67 
68 	/* VTTBR value associated with above pgd and vmid */
69 	u64    vttbr;
70 	/* VTCR_EL2 value for this VM */
71 	u64    vtcr;
72 
73 	/* The last vcpu id that ran on each physical CPU */
74 	int __percpu *last_vcpu_ran;
75 
76 	/* The maximum number of vCPUs depends on the used GIC model */
77 	int max_vcpus;
78 
79 	/* Interrupt controller */
80 	struct vgic_dist	vgic;
81 
82 	/* Mandated version of PSCI */
83 	u32 psci_version;
84 };
85 
86 #define KVM_NR_MEM_OBJS     40
87 
88 /*
89  * We don't want allocation failures within the mmu code, so we preallocate
90  * enough memory for a single page fault in a cache.
91  */
92 struct kvm_mmu_memory_cache {
93 	int nobjs;
94 	void *objects[KVM_NR_MEM_OBJS];
95 };
96 
97 struct kvm_vcpu_fault_info {
98 	u32 esr_el2;		/* Hyp Syndrom Register */
99 	u64 far_el2;		/* Hyp Fault Address Register */
100 	u64 hpfar_el2;		/* Hyp IPA Fault Address Register */
101 	u64 disr_el1;		/* Deferred [SError] Status Register */
102 };
103 
104 /*
105  * 0 is reserved as an invalid value.
106  * Order should be kept in sync with the save/restore code.
107  */
108 enum vcpu_sysreg {
109 	__INVALID_SYSREG__,
110 	MPIDR_EL1,	/* MultiProcessor Affinity Register */
111 	CSSELR_EL1,	/* Cache Size Selection Register */
112 	SCTLR_EL1,	/* System Control Register */
113 	ACTLR_EL1,	/* Auxiliary Control Register */
114 	CPACR_EL1,	/* Coprocessor Access Control */
115 	TTBR0_EL1,	/* Translation Table Base Register 0 */
116 	TTBR1_EL1,	/* Translation Table Base Register 1 */
117 	TCR_EL1,	/* Translation Control Register */
118 	ESR_EL1,	/* Exception Syndrome Register */
119 	AFSR0_EL1,	/* Auxiliary Fault Status Register 0 */
120 	AFSR1_EL1,	/* Auxiliary Fault Status Register 1 */
121 	FAR_EL1,	/* Fault Address Register */
122 	MAIR_EL1,	/* Memory Attribute Indirection Register */
123 	VBAR_EL1,	/* Vector Base Address Register */
124 	CONTEXTIDR_EL1,	/* Context ID Register */
125 	TPIDR_EL0,	/* Thread ID, User R/W */
126 	TPIDRRO_EL0,	/* Thread ID, User R/O */
127 	TPIDR_EL1,	/* Thread ID, Privileged */
128 	AMAIR_EL1,	/* Aux Memory Attribute Indirection Register */
129 	CNTKCTL_EL1,	/* Timer Control Register (EL1) */
130 	PAR_EL1,	/* Physical Address Register */
131 	MDSCR_EL1,	/* Monitor Debug System Control Register */
132 	MDCCINT_EL1,	/* Monitor Debug Comms Channel Interrupt Enable Reg */
133 	DISR_EL1,	/* Deferred Interrupt Status Register */
134 
135 	/* Performance Monitors Registers */
136 	PMCR_EL0,	/* Control Register */
137 	PMSELR_EL0,	/* Event Counter Selection Register */
138 	PMEVCNTR0_EL0,	/* Event Counter Register (0-30) */
139 	PMEVCNTR30_EL0 = PMEVCNTR0_EL0 + 30,
140 	PMCCNTR_EL0,	/* Cycle Counter Register */
141 	PMEVTYPER0_EL0,	/* Event Type Register (0-30) */
142 	PMEVTYPER30_EL0 = PMEVTYPER0_EL0 + 30,
143 	PMCCFILTR_EL0,	/* Cycle Count Filter Register */
144 	PMCNTENSET_EL0,	/* Count Enable Set Register */
145 	PMINTENSET_EL1,	/* Interrupt Enable Set Register */
146 	PMOVSSET_EL0,	/* Overflow Flag Status Set Register */
147 	PMSWINC_EL0,	/* Software Increment Register */
148 	PMUSERENR_EL0,	/* User Enable Register */
149 
150 	/* 32bit specific registers. Keep them at the end of the range */
151 	DACR32_EL2,	/* Domain Access Control Register */
152 	IFSR32_EL2,	/* Instruction Fault Status Register */
153 	FPEXC32_EL2,	/* Floating-Point Exception Control Register */
154 	DBGVCR32_EL2,	/* Debug Vector Catch Register */
155 
156 	NR_SYS_REGS	/* Nothing after this line! */
157 };
158 
159 /* 32bit mapping */
160 #define c0_MPIDR	(MPIDR_EL1 * 2)	/* MultiProcessor ID Register */
161 #define c0_CSSELR	(CSSELR_EL1 * 2)/* Cache Size Selection Register */
162 #define c1_SCTLR	(SCTLR_EL1 * 2)	/* System Control Register */
163 #define c1_ACTLR	(ACTLR_EL1 * 2)	/* Auxiliary Control Register */
164 #define c1_CPACR	(CPACR_EL1 * 2)	/* Coprocessor Access Control */
165 #define c2_TTBR0	(TTBR0_EL1 * 2)	/* Translation Table Base Register 0 */
166 #define c2_TTBR0_high	(c2_TTBR0 + 1)	/* TTBR0 top 32 bits */
167 #define c2_TTBR1	(TTBR1_EL1 * 2)	/* Translation Table Base Register 1 */
168 #define c2_TTBR1_high	(c2_TTBR1 + 1)	/* TTBR1 top 32 bits */
169 #define c2_TTBCR	(TCR_EL1 * 2)	/* Translation Table Base Control R. */
170 #define c3_DACR		(DACR32_EL2 * 2)/* Domain Access Control Register */
171 #define c5_DFSR		(ESR_EL1 * 2)	/* Data Fault Status Register */
172 #define c5_IFSR		(IFSR32_EL2 * 2)/* Instruction Fault Status Register */
173 #define c5_ADFSR	(AFSR0_EL1 * 2)	/* Auxiliary Data Fault Status R */
174 #define c5_AIFSR	(AFSR1_EL1 * 2)	/* Auxiliary Instr Fault Status R */
175 #define c6_DFAR		(FAR_EL1 * 2)	/* Data Fault Address Register */
176 #define c6_IFAR		(c6_DFAR + 1)	/* Instruction Fault Address Register */
177 #define c7_PAR		(PAR_EL1 * 2)	/* Physical Address Register */
178 #define c7_PAR_high	(c7_PAR + 1)	/* PAR top 32 bits */
179 #define c10_PRRR	(MAIR_EL1 * 2)	/* Primary Region Remap Register */
180 #define c10_NMRR	(c10_PRRR + 1)	/* Normal Memory Remap Register */
181 #define c12_VBAR	(VBAR_EL1 * 2)	/* Vector Base Address Register */
182 #define c13_CID		(CONTEXTIDR_EL1 * 2)	/* Context ID Register */
183 #define c13_TID_URW	(TPIDR_EL0 * 2)	/* Thread ID, User R/W */
184 #define c13_TID_URO	(TPIDRRO_EL0 * 2)/* Thread ID, User R/O */
185 #define c13_TID_PRIV	(TPIDR_EL1 * 2)	/* Thread ID, Privileged */
186 #define c10_AMAIR0	(AMAIR_EL1 * 2)	/* Aux Memory Attr Indirection Reg */
187 #define c10_AMAIR1	(c10_AMAIR0 + 1)/* Aux Memory Attr Indirection Reg */
188 #define c14_CNTKCTL	(CNTKCTL_EL1 * 2) /* Timer Control Register (PL1) */
189 
190 #define cp14_DBGDSCRext	(MDSCR_EL1 * 2)
191 #define cp14_DBGBCR0	(DBGBCR0_EL1 * 2)
192 #define cp14_DBGBVR0	(DBGBVR0_EL1 * 2)
193 #define cp14_DBGBXVR0	(cp14_DBGBVR0 + 1)
194 #define cp14_DBGWCR0	(DBGWCR0_EL1 * 2)
195 #define cp14_DBGWVR0	(DBGWVR0_EL1 * 2)
196 #define cp14_DBGDCCINT	(MDCCINT_EL1 * 2)
197 
198 #define NR_COPRO_REGS	(NR_SYS_REGS * 2)
199 
200 struct kvm_cpu_context {
201 	struct kvm_regs	gp_regs;
202 	union {
203 		u64 sys_regs[NR_SYS_REGS];
204 		u32 copro[NR_COPRO_REGS];
205 	};
206 
207 	struct kvm_vcpu *__hyp_running_vcpu;
208 };
209 
210 typedef struct kvm_cpu_context kvm_cpu_context_t;
211 
212 struct vcpu_reset_state {
213 	unsigned long	pc;
214 	unsigned long	r0;
215 	bool		be;
216 	bool		reset;
217 };
218 
219 struct kvm_vcpu_arch {
220 	struct kvm_cpu_context ctxt;
221 
222 	/* HYP configuration */
223 	u64 hcr_el2;
224 	u32 mdcr_el2;
225 
226 	/* Exception Information */
227 	struct kvm_vcpu_fault_info fault;
228 
229 	/* State of various workarounds, see kvm_asm.h for bit assignment */
230 	u64 workaround_flags;
231 
232 	/* Miscellaneous vcpu state flags */
233 	u64 flags;
234 
235 	/*
236 	 * We maintain more than a single set of debug registers to support
237 	 * debugging the guest from the host and to maintain separate host and
238 	 * guest state during world switches. vcpu_debug_state are the debug
239 	 * registers of the vcpu as the guest sees them.  host_debug_state are
240 	 * the host registers which are saved and restored during
241 	 * world switches. external_debug_state contains the debug
242 	 * values we want to debug the guest. This is set via the
243 	 * KVM_SET_GUEST_DEBUG ioctl.
244 	 *
245 	 * debug_ptr points to the set of debug registers that should be loaded
246 	 * onto the hardware when running the guest.
247 	 */
248 	struct kvm_guest_debug_arch *debug_ptr;
249 	struct kvm_guest_debug_arch vcpu_debug_state;
250 	struct kvm_guest_debug_arch external_debug_state;
251 
252 	/* Pointer to host CPU context */
253 	kvm_cpu_context_t *host_cpu_context;
254 
255 	struct thread_info *host_thread_info;	/* hyp VA */
256 	struct user_fpsimd_state *host_fpsimd_state;	/* hyp VA */
257 
258 	struct {
259 		/* {Break,watch}point registers */
260 		struct kvm_guest_debug_arch regs;
261 		/* Statistical profiling extension */
262 		u64 pmscr_el1;
263 	} host_debug_state;
264 
265 	/* VGIC state */
266 	struct vgic_cpu vgic_cpu;
267 	struct arch_timer_cpu timer_cpu;
268 	struct kvm_pmu pmu;
269 
270 	/*
271 	 * Anything that is not used directly from assembly code goes
272 	 * here.
273 	 */
274 
275 	/*
276 	 * Guest registers we preserve during guest debugging.
277 	 *
278 	 * These shadow registers are updated by the kvm_handle_sys_reg
279 	 * trap handler if the guest accesses or updates them while we
280 	 * are using guest debug.
281 	 */
282 	struct {
283 		u32	mdscr_el1;
284 	} guest_debug_preserved;
285 
286 	/* vcpu power-off state */
287 	bool power_off;
288 
289 	/* Don't run the guest (internal implementation need) */
290 	bool pause;
291 
292 	/* IO related fields */
293 	struct kvm_decode mmio_decode;
294 
295 	/* Cache some mmu pages needed inside spinlock regions */
296 	struct kvm_mmu_memory_cache mmu_page_cache;
297 
298 	/* Target CPU and feature flags */
299 	int target;
300 	DECLARE_BITMAP(features, KVM_VCPU_MAX_FEATURES);
301 
302 	/* Detect first run of a vcpu */
303 	bool has_run_once;
304 
305 	/* Virtual SError ESR to restore when HCR_EL2.VSE is set */
306 	u64 vsesr_el2;
307 
308 	/* Additional reset state */
309 	struct vcpu_reset_state	reset_state;
310 
311 	/* True when deferrable sysregs are loaded on the physical CPU,
312 	 * see kvm_vcpu_load_sysregs and kvm_vcpu_put_sysregs. */
313 	bool sysregs_loaded_on_cpu;
314 };
315 
316 /* vcpu_arch flags field values: */
317 #define KVM_ARM64_DEBUG_DIRTY		(1 << 0)
318 #define KVM_ARM64_FP_ENABLED		(1 << 1) /* guest FP regs loaded */
319 #define KVM_ARM64_FP_HOST		(1 << 2) /* host FP regs loaded */
320 #define KVM_ARM64_HOST_SVE_IN_USE	(1 << 3) /* backup for host TIF_SVE */
321 #define KVM_ARM64_HOST_SVE_ENABLED	(1 << 4) /* SVE enabled for EL0 */
322 
323 #define vcpu_gp_regs(v)		(&(v)->arch.ctxt.gp_regs)
324 
325 /*
326  * Only use __vcpu_sys_reg if you know you want the memory backed version of a
327  * register, and not the one most recently accessed by a running VCPU.  For
328  * example, for userspace access or for system registers that are never context
329  * switched, but only emulated.
330  */
331 #define __vcpu_sys_reg(v,r)	((v)->arch.ctxt.sys_regs[(r)])
332 
333 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg);
334 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg);
335 
336 /*
337  * CP14 and CP15 live in the same array, as they are backed by the
338  * same system registers.
339  */
340 #define vcpu_cp14(v,r)		((v)->arch.ctxt.copro[(r)])
341 #define vcpu_cp15(v,r)		((v)->arch.ctxt.copro[(r)])
342 
343 struct kvm_vm_stat {
344 	ulong remote_tlb_flush;
345 };
346 
347 struct kvm_vcpu_stat {
348 	u64 halt_successful_poll;
349 	u64 halt_attempted_poll;
350 	u64 halt_poll_invalid;
351 	u64 halt_wakeup;
352 	u64 hvc_exit_stat;
353 	u64 wfe_exit_stat;
354 	u64 wfi_exit_stat;
355 	u64 mmio_exit_user;
356 	u64 mmio_exit_kernel;
357 	u64 exits;
358 };
359 
360 int kvm_vcpu_preferred_target(struct kvm_vcpu_init *init);
361 unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu);
362 int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices);
363 int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg);
364 int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg);
365 int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
366 			      struct kvm_vcpu_events *events);
367 
368 int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
369 			      struct kvm_vcpu_events *events);
370 
371 #define KVM_ARCH_WANT_MMU_NOTIFIER
372 int kvm_unmap_hva_range(struct kvm *kvm,
373 			unsigned long start, unsigned long end);
374 int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte);
375 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end);
376 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva);
377 
378 struct kvm_vcpu *kvm_arm_get_running_vcpu(void);
379 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void);
380 void kvm_arm_halt_guest(struct kvm *kvm);
381 void kvm_arm_resume_guest(struct kvm *kvm);
382 
383 u64 __kvm_call_hyp(void *hypfn, ...);
384 #define kvm_call_hyp(f, ...) __kvm_call_hyp(kvm_ksym_ref(f), ##__VA_ARGS__)
385 
386 void force_vm_exit(const cpumask_t *mask);
387 void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot);
388 
389 int handle_exit(struct kvm_vcpu *vcpu, struct kvm_run *run,
390 		int exception_index);
391 void handle_exit_early(struct kvm_vcpu *vcpu, struct kvm_run *run,
392 		       int exception_index);
393 
394 int kvm_perf_init(void);
395 int kvm_perf_teardown(void);
396 
397 void kvm_set_sei_esr(struct kvm_vcpu *vcpu, u64 syndrome);
398 
399 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr);
400 
401 DECLARE_PER_CPU(kvm_cpu_context_t, kvm_host_cpu_state);
402 
403 void __kvm_enable_ssbs(void);
404 
405 static inline void __cpu_init_hyp_mode(phys_addr_t pgd_ptr,
406 				       unsigned long hyp_stack_ptr,
407 				       unsigned long vector_ptr)
408 {
409 	/*
410 	 * Calculate the raw per-cpu offset without a translation from the
411 	 * kernel's mapping to the linear mapping, and store it in tpidr_el2
412 	 * so that we can use adr_l to access per-cpu variables in EL2.
413 	 */
414 	u64 tpidr_el2 = ((u64)this_cpu_ptr(&kvm_host_cpu_state) -
415 			 (u64)kvm_ksym_ref(kvm_host_cpu_state));
416 
417 	/*
418 	 * Call initialization code, and switch to the full blown HYP code.
419 	 * If the cpucaps haven't been finalized yet, something has gone very
420 	 * wrong, and hyp will crash and burn when it uses any
421 	 * cpus_have_const_cap() wrapper.
422 	 */
423 	BUG_ON(!static_branch_likely(&arm64_const_caps_ready));
424 	__kvm_call_hyp((void *)pgd_ptr, hyp_stack_ptr, vector_ptr, tpidr_el2);
425 
426 	/*
427 	 * Disabling SSBD on a non-VHE system requires us to enable SSBS
428 	 * at EL2.
429 	 */
430 	if (!has_vhe() && this_cpu_has_cap(ARM64_SSBS) &&
431 	    arm64_get_ssbd_state() == ARM64_SSBD_FORCE_DISABLE) {
432 		kvm_call_hyp(__kvm_enable_ssbs);
433 	}
434 }
435 
436 static inline bool kvm_arch_requires_vhe(void)
437 {
438 	/*
439 	 * The Arm architecture specifies that implementation of SVE
440 	 * requires VHE also to be implemented.  The KVM code for arm64
441 	 * relies on this when SVE is present:
442 	 */
443 	if (system_supports_sve())
444 		return true;
445 
446 	/* Some implementations have defects that confine them to VHE */
447 	if (cpus_have_cap(ARM64_WORKAROUND_1165522))
448 		return true;
449 
450 	return false;
451 }
452 
453 static inline void kvm_arch_hardware_unsetup(void) {}
454 static inline void kvm_arch_sync_events(struct kvm *kvm) {}
455 static inline void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu) {}
456 static inline void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) {}
457 static inline void kvm_arch_vcpu_block_finish(struct kvm_vcpu *vcpu) {}
458 
459 void kvm_arm_init_debug(void);
460 void kvm_arm_setup_debug(struct kvm_vcpu *vcpu);
461 void kvm_arm_clear_debug(struct kvm_vcpu *vcpu);
462 void kvm_arm_reset_debug_ptr(struct kvm_vcpu *vcpu);
463 int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu,
464 			       struct kvm_device_attr *attr);
465 int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu,
466 			       struct kvm_device_attr *attr);
467 int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu,
468 			       struct kvm_device_attr *attr);
469 
470 static inline void __cpu_init_stage2(void) {}
471 
472 /* Guest/host FPSIMD coordination helpers */
473 int kvm_arch_vcpu_run_map_fp(struct kvm_vcpu *vcpu);
474 void kvm_arch_vcpu_load_fp(struct kvm_vcpu *vcpu);
475 void kvm_arch_vcpu_ctxsync_fp(struct kvm_vcpu *vcpu);
476 void kvm_arch_vcpu_put_fp(struct kvm_vcpu *vcpu);
477 
478 #ifdef CONFIG_KVM /* Avoid conflicts with core headers if CONFIG_KVM=n */
479 static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
480 {
481 	return kvm_arch_vcpu_run_map_fp(vcpu);
482 }
483 #endif
484 
485 static inline void kvm_arm_vhe_guest_enter(void)
486 {
487 	local_daif_mask();
488 }
489 
490 static inline void kvm_arm_vhe_guest_exit(void)
491 {
492 	local_daif_restore(DAIF_PROCCTX_NOIRQ);
493 
494 	/*
495 	 * When we exit from the guest we change a number of CPU configuration
496 	 * parameters, such as traps.  Make sure these changes take effect
497 	 * before running the host or additional guests.
498 	 */
499 	isb();
500 }
501 
502 static inline bool kvm_arm_harden_branch_predictor(void)
503 {
504 	return cpus_have_const_cap(ARM64_HARDEN_BRANCH_PREDICTOR);
505 }
506 
507 #define KVM_SSBD_UNKNOWN		-1
508 #define KVM_SSBD_FORCE_DISABLE		0
509 #define KVM_SSBD_KERNEL		1
510 #define KVM_SSBD_FORCE_ENABLE		2
511 #define KVM_SSBD_MITIGATED		3
512 
513 static inline int kvm_arm_have_ssbd(void)
514 {
515 	switch (arm64_get_ssbd_state()) {
516 	case ARM64_SSBD_FORCE_DISABLE:
517 		return KVM_SSBD_FORCE_DISABLE;
518 	case ARM64_SSBD_KERNEL:
519 		return KVM_SSBD_KERNEL;
520 	case ARM64_SSBD_FORCE_ENABLE:
521 		return KVM_SSBD_FORCE_ENABLE;
522 	case ARM64_SSBD_MITIGATED:
523 		return KVM_SSBD_MITIGATED;
524 	case ARM64_SSBD_UNKNOWN:
525 	default:
526 		return KVM_SSBD_UNKNOWN;
527 	}
528 }
529 
530 void kvm_vcpu_load_sysregs(struct kvm_vcpu *vcpu);
531 void kvm_vcpu_put_sysregs(struct kvm_vcpu *vcpu);
532 
533 void kvm_set_ipa_limit(void);
534 
535 #define __KVM_HAVE_ARCH_VM_ALLOC
536 struct kvm *kvm_arch_alloc_vm(void);
537 void kvm_arch_free_vm(struct kvm *kvm);
538 
539 int kvm_arm_setup_stage2(struct kvm *kvm, unsigned long type);
540 
541 #endif /* __ARM64_KVM_HOST_H__ */
542