1 /* 2 * linux/arch/arm/mm/init.c 3 * 4 * Copyright (C) 1995-2005 Russell King 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 */ 10 #include <linux/config.h> 11 #include <linux/kernel.h> 12 #include <linux/errno.h> 13 #include <linux/ptrace.h> 14 #include <linux/swap.h> 15 #include <linux/init.h> 16 #include <linux/bootmem.h> 17 #include <linux/mman.h> 18 #include <linux/nodemask.h> 19 #include <linux/initrd.h> 20 21 #include <asm/mach-types.h> 22 #include <asm/setup.h> 23 #include <asm/sizes.h> 24 #include <asm/tlb.h> 25 26 #include <asm/mach/arch.h> 27 #include <asm/mach/map.h> 28 29 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers); 30 31 extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; 32 extern void _stext, _text, _etext, __data_start, _end, __init_begin, __init_end; 33 extern unsigned long phys_initrd_start; 34 extern unsigned long phys_initrd_size; 35 36 /* 37 * The sole use of this is to pass memory configuration 38 * data from paging_init to mem_init. 39 */ 40 static struct meminfo meminfo __initdata = { 0, }; 41 42 /* 43 * empty_zero_page is a special page that is used for 44 * zero-initialized data and COW. 45 */ 46 struct page *empty_zero_page; 47 48 void show_mem(void) 49 { 50 int free = 0, total = 0, reserved = 0; 51 int shared = 0, cached = 0, slab = 0, node; 52 53 printk("Mem-info:\n"); 54 show_free_areas(); 55 printk("Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10)); 56 57 for_each_online_node(node) { 58 struct page *page, *end; 59 60 page = NODE_MEM_MAP(node); 61 end = page + NODE_DATA(node)->node_spanned_pages; 62 63 do { 64 total++; 65 if (PageReserved(page)) 66 reserved++; 67 else if (PageSwapCache(page)) 68 cached++; 69 else if (PageSlab(page)) 70 slab++; 71 else if (!page_count(page)) 72 free++; 73 else 74 shared += page_count(page) - 1; 75 page++; 76 } while (page < end); 77 } 78 79 printk("%d pages of RAM\n", total); 80 printk("%d free pages\n", free); 81 printk("%d reserved pages\n", reserved); 82 printk("%d slab pages\n", slab); 83 printk("%d pages shared\n", shared); 84 printk("%d pages swap cached\n", cached); 85 } 86 87 static inline pmd_t *pmd_off(pgd_t *pgd, unsigned long virt) 88 { 89 return pmd_offset(pgd, virt); 90 } 91 92 static inline pmd_t *pmd_off_k(unsigned long virt) 93 { 94 return pmd_off(pgd_offset_k(virt), virt); 95 } 96 97 #define for_each_nodebank(iter,mi,no) \ 98 for (iter = 0; iter < mi->nr_banks; iter++) \ 99 if (mi->bank[iter].node == no) 100 101 /* 102 * FIXME: We really want to avoid allocating the bootmap bitmap 103 * over the top of the initrd. Hopefully, this is located towards 104 * the start of a bank, so if we allocate the bootmap bitmap at 105 * the end, we won't clash. 106 */ 107 static unsigned int __init 108 find_bootmap_pfn(int node, struct meminfo *mi, unsigned int bootmap_pages) 109 { 110 unsigned int start_pfn, bank, bootmap_pfn; 111 112 start_pfn = PAGE_ALIGN(__pa(&_end)) >> PAGE_SHIFT; 113 bootmap_pfn = 0; 114 115 for_each_nodebank(bank, mi, node) { 116 unsigned int start, end; 117 118 start = mi->bank[bank].start >> PAGE_SHIFT; 119 end = (mi->bank[bank].size + 120 mi->bank[bank].start) >> PAGE_SHIFT; 121 122 if (end < start_pfn) 123 continue; 124 125 if (start < start_pfn) 126 start = start_pfn; 127 128 if (end <= start) 129 continue; 130 131 if (end - start >= bootmap_pages) { 132 bootmap_pfn = start; 133 break; 134 } 135 } 136 137 if (bootmap_pfn == 0) 138 BUG(); 139 140 return bootmap_pfn; 141 } 142 143 static int __init check_initrd(struct meminfo *mi) 144 { 145 int initrd_node = -2; 146 #ifdef CONFIG_BLK_DEV_INITRD 147 unsigned long end = phys_initrd_start + phys_initrd_size; 148 149 /* 150 * Make sure that the initrd is within a valid area of 151 * memory. 152 */ 153 if (phys_initrd_size) { 154 unsigned int i; 155 156 initrd_node = -1; 157 158 for (i = 0; i < mi->nr_banks; i++) { 159 unsigned long bank_end; 160 161 bank_end = mi->bank[i].start + mi->bank[i].size; 162 163 if (mi->bank[i].start <= phys_initrd_start && 164 end <= bank_end) 165 initrd_node = mi->bank[i].node; 166 } 167 } 168 169 if (initrd_node == -1) { 170 printk(KERN_ERR "initrd (0x%08lx - 0x%08lx) extends beyond " 171 "physical memory - disabling initrd\n", 172 phys_initrd_start, end); 173 phys_initrd_start = phys_initrd_size = 0; 174 } 175 #endif 176 177 return initrd_node; 178 } 179 180 /* 181 * Reserve the various regions of node 0 182 */ 183 static __init void reserve_node_zero(pg_data_t *pgdat) 184 { 185 unsigned long res_size = 0; 186 187 /* 188 * Register the kernel text and data with bootmem. 189 * Note that this can only be in node 0. 190 */ 191 #ifdef CONFIG_XIP_KERNEL 192 reserve_bootmem_node(pgdat, __pa(&__data_start), &_end - &__data_start); 193 #else 194 reserve_bootmem_node(pgdat, __pa(&_stext), &_end - &_stext); 195 #endif 196 197 /* 198 * Reserve the page tables. These are already in use, 199 * and can only be in node 0. 200 */ 201 reserve_bootmem_node(pgdat, __pa(swapper_pg_dir), 202 PTRS_PER_PGD * sizeof(pgd_t)); 203 204 /* 205 * Hmm... This should go elsewhere, but we really really need to 206 * stop things allocating the low memory; ideally we need a better 207 * implementation of GFP_DMA which does not assume that DMA-able 208 * memory starts at zero. 209 */ 210 if (machine_is_integrator() || machine_is_cintegrator()) 211 res_size = __pa(swapper_pg_dir) - PHYS_OFFSET; 212 213 /* 214 * These should likewise go elsewhere. They pre-reserve the 215 * screen memory region at the start of main system memory. 216 */ 217 if (machine_is_edb7211()) 218 res_size = 0x00020000; 219 if (machine_is_p720t()) 220 res_size = 0x00014000; 221 222 #ifdef CONFIG_SA1111 223 /* 224 * Because of the SA1111 DMA bug, we want to preserve our 225 * precious DMA-able memory... 226 */ 227 res_size = __pa(swapper_pg_dir) - PHYS_OFFSET; 228 #endif 229 if (res_size) 230 reserve_bootmem_node(pgdat, PHYS_OFFSET, res_size); 231 } 232 233 void __init build_mem_type_table(void); 234 void __init create_mapping(struct map_desc *md); 235 236 static unsigned long __init 237 bootmem_init_node(int node, int initrd_node, struct meminfo *mi) 238 { 239 unsigned long zone_size[MAX_NR_ZONES], zhole_size[MAX_NR_ZONES]; 240 unsigned long start_pfn, end_pfn, boot_pfn; 241 unsigned int boot_pages; 242 pg_data_t *pgdat; 243 int i; 244 245 start_pfn = -1UL; 246 end_pfn = 0; 247 248 /* 249 * Calculate the pfn range, and map the memory banks for this node. 250 */ 251 for_each_nodebank(i, mi, node) { 252 unsigned long start, end; 253 struct map_desc map; 254 255 start = mi->bank[i].start >> PAGE_SHIFT; 256 end = (mi->bank[i].start + mi->bank[i].size) >> PAGE_SHIFT; 257 258 if (start_pfn > start) 259 start_pfn = start; 260 if (end_pfn < end) 261 end_pfn = end; 262 263 map.pfn = __phys_to_pfn(mi->bank[i].start); 264 map.virtual = __phys_to_virt(mi->bank[i].start); 265 map.length = mi->bank[i].size; 266 map.type = MT_MEMORY; 267 268 create_mapping(&map); 269 } 270 271 /* 272 * If there is no memory in this node, ignore it. 273 */ 274 if (end_pfn == 0) 275 return end_pfn; 276 277 /* 278 * Allocate the bootmem bitmap page. 279 */ 280 boot_pages = bootmem_bootmap_pages(end_pfn - start_pfn); 281 boot_pfn = find_bootmap_pfn(node, mi, boot_pages); 282 283 /* 284 * Initialise the bootmem allocator for this node, handing the 285 * memory banks over to bootmem. 286 */ 287 node_set_online(node); 288 pgdat = NODE_DATA(node); 289 init_bootmem_node(pgdat, boot_pfn, start_pfn, end_pfn); 290 291 for_each_nodebank(i, mi, node) 292 free_bootmem_node(pgdat, mi->bank[i].start, mi->bank[i].size); 293 294 /* 295 * Reserve the bootmem bitmap for this node. 296 */ 297 reserve_bootmem_node(pgdat, boot_pfn << PAGE_SHIFT, 298 boot_pages << PAGE_SHIFT); 299 300 #ifdef CONFIG_BLK_DEV_INITRD 301 /* 302 * If the initrd is in this node, reserve its memory. 303 */ 304 if (node == initrd_node) { 305 reserve_bootmem_node(pgdat, phys_initrd_start, 306 phys_initrd_size); 307 initrd_start = __phys_to_virt(phys_initrd_start); 308 initrd_end = initrd_start + phys_initrd_size; 309 } 310 #endif 311 312 /* 313 * Finally, reserve any node zero regions. 314 */ 315 if (node == 0) 316 reserve_node_zero(pgdat); 317 318 /* 319 * initialise the zones within this node. 320 */ 321 memset(zone_size, 0, sizeof(zone_size)); 322 memset(zhole_size, 0, sizeof(zhole_size)); 323 324 /* 325 * The size of this node has already been determined. If we need 326 * to do anything fancy with the allocation of this memory to the 327 * zones, now is the time to do it. 328 */ 329 zone_size[0] = end_pfn - start_pfn; 330 331 /* 332 * For each bank in this node, calculate the size of the holes. 333 * holes = node_size - sum(bank_sizes_in_node) 334 */ 335 zhole_size[0] = zone_size[0]; 336 for_each_nodebank(i, mi, node) 337 zhole_size[0] -= mi->bank[i].size >> PAGE_SHIFT; 338 339 /* 340 * Adjust the sizes according to any special requirements for 341 * this machine type. 342 */ 343 arch_adjust_zones(node, zone_size, zhole_size); 344 345 free_area_init_node(node, pgdat, zone_size, start_pfn, zhole_size); 346 347 return end_pfn; 348 } 349 350 static void __init bootmem_init(struct meminfo *mi) 351 { 352 unsigned long addr, memend_pfn = 0; 353 int node, initrd_node, i; 354 355 /* 356 * Invalidate the node number for empty or invalid memory banks 357 */ 358 for (i = 0; i < mi->nr_banks; i++) 359 if (mi->bank[i].size == 0 || mi->bank[i].node >= MAX_NUMNODES) 360 mi->bank[i].node = -1; 361 362 memcpy(&meminfo, mi, sizeof(meminfo)); 363 364 /* 365 * Clear out all the mappings below the kernel image. 366 */ 367 for (addr = 0; addr < MODULE_START; addr += PGDIR_SIZE) 368 pmd_clear(pmd_off_k(addr)); 369 #ifdef CONFIG_XIP_KERNEL 370 /* The XIP kernel is mapped in the module area -- skip over it */ 371 addr = ((unsigned long)&_etext + PGDIR_SIZE - 1) & PGDIR_MASK; 372 #endif 373 for ( ; addr < PAGE_OFFSET; addr += PGDIR_SIZE) 374 pmd_clear(pmd_off_k(addr)); 375 376 /* 377 * Clear out all the kernel space mappings, except for the first 378 * memory bank, up to the end of the vmalloc region. 379 */ 380 for (addr = __phys_to_virt(mi->bank[0].start + mi->bank[0].size); 381 addr < VMALLOC_END; addr += PGDIR_SIZE) 382 pmd_clear(pmd_off_k(addr)); 383 384 /* 385 * Locate which node contains the ramdisk image, if any. 386 */ 387 initrd_node = check_initrd(mi); 388 389 /* 390 * Run through each node initialising the bootmem allocator. 391 */ 392 for_each_node(node) { 393 unsigned long end_pfn; 394 395 end_pfn = bootmem_init_node(node, initrd_node, mi); 396 397 /* 398 * Remember the highest memory PFN. 399 */ 400 if (end_pfn > memend_pfn) 401 memend_pfn = end_pfn; 402 } 403 404 high_memory = __va(memend_pfn << PAGE_SHIFT); 405 406 /* 407 * This doesn't seem to be used by the Linux memory manager any 408 * more, but is used by ll_rw_block. If we can get rid of it, we 409 * also get rid of some of the stuff above as well. 410 * 411 * Note: max_low_pfn and max_pfn reflect the number of _pages_ in 412 * the system, not the maximum PFN. 413 */ 414 max_pfn = max_low_pfn = memend_pfn - PHYS_PFN_OFFSET; 415 } 416 417 /* 418 * Set up device the mappings. Since we clear out the page tables for all 419 * mappings above VMALLOC_END, we will remove any debug device mappings. 420 * This means you have to be careful how you debug this function, or any 421 * called function. This means you can't use any function or debugging 422 * method which may touch any device, otherwise the kernel _will_ crash. 423 */ 424 static void __init devicemaps_init(struct machine_desc *mdesc) 425 { 426 struct map_desc map; 427 unsigned long addr; 428 void *vectors; 429 430 /* 431 * Allocate the vector page early. 432 */ 433 vectors = alloc_bootmem_low_pages(PAGE_SIZE); 434 BUG_ON(!vectors); 435 436 for (addr = VMALLOC_END; addr; addr += PGDIR_SIZE) 437 pmd_clear(pmd_off_k(addr)); 438 439 /* 440 * Map the kernel if it is XIP. 441 * It is always first in the modulearea. 442 */ 443 #ifdef CONFIG_XIP_KERNEL 444 map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & PGDIR_MASK); 445 map.virtual = MODULE_START; 446 map.length = ((unsigned long)&_etext - map.virtual + ~PGDIR_MASK) & PGDIR_MASK; 447 map.type = MT_ROM; 448 create_mapping(&map); 449 #endif 450 451 /* 452 * Map the cache flushing regions. 453 */ 454 #ifdef FLUSH_BASE 455 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS); 456 map.virtual = FLUSH_BASE; 457 map.length = SZ_1M; 458 map.type = MT_CACHECLEAN; 459 create_mapping(&map); 460 #endif 461 #ifdef FLUSH_BASE_MINICACHE 462 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M); 463 map.virtual = FLUSH_BASE_MINICACHE; 464 map.length = SZ_1M; 465 map.type = MT_MINICLEAN; 466 create_mapping(&map); 467 #endif 468 469 /* 470 * Create a mapping for the machine vectors at the high-vectors 471 * location (0xffff0000). If we aren't using high-vectors, also 472 * create a mapping at the low-vectors virtual address. 473 */ 474 map.pfn = __phys_to_pfn(virt_to_phys(vectors)); 475 map.virtual = 0xffff0000; 476 map.length = PAGE_SIZE; 477 map.type = MT_HIGH_VECTORS; 478 create_mapping(&map); 479 480 if (!vectors_high()) { 481 map.virtual = 0; 482 map.type = MT_LOW_VECTORS; 483 create_mapping(&map); 484 } 485 486 /* 487 * Ask the machine support to map in the statically mapped devices. 488 */ 489 if (mdesc->map_io) 490 mdesc->map_io(); 491 492 /* 493 * Finally flush the caches and tlb to ensure that we're in a 494 * consistent state wrt the writebuffer. This also ensures that 495 * any write-allocated cache lines in the vector page are written 496 * back. After this point, we can start to touch devices again. 497 */ 498 local_flush_tlb_all(); 499 flush_cache_all(); 500 } 501 502 /* 503 * paging_init() sets up the page tables, initialises the zone memory 504 * maps, and sets up the zero page, bad page and bad page tables. 505 */ 506 void __init paging_init(struct meminfo *mi, struct machine_desc *mdesc) 507 { 508 void *zero_page; 509 510 build_mem_type_table(); 511 bootmem_init(mi); 512 devicemaps_init(mdesc); 513 514 top_pmd = pmd_off_k(0xffff0000); 515 516 /* 517 * allocate the zero page. Note that we count on this going ok. 518 */ 519 zero_page = alloc_bootmem_low_pages(PAGE_SIZE); 520 memzero(zero_page, PAGE_SIZE); 521 empty_zero_page = virt_to_page(zero_page); 522 flush_dcache_page(empty_zero_page); 523 } 524 525 static inline void free_area(unsigned long addr, unsigned long end, char *s) 526 { 527 unsigned int size = (end - addr) >> 10; 528 529 for (; addr < end; addr += PAGE_SIZE) { 530 struct page *page = virt_to_page(addr); 531 ClearPageReserved(page); 532 init_page_count(page); 533 free_page(addr); 534 totalram_pages++; 535 } 536 537 if (size && s) 538 printk(KERN_INFO "Freeing %s memory: %dK\n", s, size); 539 } 540 541 static inline void 542 free_memmap(int node, unsigned long start_pfn, unsigned long end_pfn) 543 { 544 struct page *start_pg, *end_pg; 545 unsigned long pg, pgend; 546 547 /* 548 * Convert start_pfn/end_pfn to a struct page pointer. 549 */ 550 start_pg = pfn_to_page(start_pfn); 551 end_pg = pfn_to_page(end_pfn); 552 553 /* 554 * Convert to physical addresses, and 555 * round start upwards and end downwards. 556 */ 557 pg = PAGE_ALIGN(__pa(start_pg)); 558 pgend = __pa(end_pg) & PAGE_MASK; 559 560 /* 561 * If there are free pages between these, 562 * free the section of the memmap array. 563 */ 564 if (pg < pgend) 565 free_bootmem_node(NODE_DATA(node), pg, pgend - pg); 566 } 567 568 /* 569 * The mem_map array can get very big. Free the unused area of the memory map. 570 */ 571 static void __init free_unused_memmap_node(int node, struct meminfo *mi) 572 { 573 unsigned long bank_start, prev_bank_end = 0; 574 unsigned int i; 575 576 /* 577 * [FIXME] This relies on each bank being in address order. This 578 * may not be the case, especially if the user has provided the 579 * information on the command line. 580 */ 581 for_each_nodebank(i, mi, node) { 582 bank_start = mi->bank[i].start >> PAGE_SHIFT; 583 if (bank_start < prev_bank_end) { 584 printk(KERN_ERR "MEM: unordered memory banks. " 585 "Not freeing memmap.\n"); 586 break; 587 } 588 589 /* 590 * If we had a previous bank, and there is a space 591 * between the current bank and the previous, free it. 592 */ 593 if (prev_bank_end && prev_bank_end != bank_start) 594 free_memmap(node, prev_bank_end, bank_start); 595 596 prev_bank_end = (mi->bank[i].start + 597 mi->bank[i].size) >> PAGE_SHIFT; 598 } 599 } 600 601 /* 602 * mem_init() marks the free areas in the mem_map and tells us how much 603 * memory is free. This is done after various parts of the system have 604 * claimed their memory after the kernel image. 605 */ 606 void __init mem_init(void) 607 { 608 unsigned int codepages, datapages, initpages; 609 int i, node; 610 611 codepages = &_etext - &_text; 612 datapages = &_end - &__data_start; 613 initpages = &__init_end - &__init_begin; 614 615 #ifndef CONFIG_DISCONTIGMEM 616 max_mapnr = virt_to_page(high_memory) - mem_map; 617 #endif 618 619 /* this will put all unused low memory onto the freelists */ 620 for_each_online_node(node) { 621 pg_data_t *pgdat = NODE_DATA(node); 622 623 free_unused_memmap_node(node, &meminfo); 624 625 if (pgdat->node_spanned_pages != 0) 626 totalram_pages += free_all_bootmem_node(pgdat); 627 } 628 629 #ifdef CONFIG_SA1111 630 /* now that our DMA memory is actually so designated, we can free it */ 631 free_area(PAGE_OFFSET, (unsigned long)swapper_pg_dir, NULL); 632 #endif 633 634 /* 635 * Since our memory may not be contiguous, calculate the 636 * real number of pages we have in this system 637 */ 638 printk(KERN_INFO "Memory:"); 639 640 num_physpages = 0; 641 for (i = 0; i < meminfo.nr_banks; i++) { 642 num_physpages += meminfo.bank[i].size >> PAGE_SHIFT; 643 printk(" %ldMB", meminfo.bank[i].size >> 20); 644 } 645 646 printk(" = %luMB total\n", num_physpages >> (20 - PAGE_SHIFT)); 647 printk(KERN_NOTICE "Memory: %luKB available (%dK code, " 648 "%dK data, %dK init)\n", 649 (unsigned long) nr_free_pages() << (PAGE_SHIFT-10), 650 codepages >> 10, datapages >> 10, initpages >> 10); 651 652 if (PAGE_SIZE >= 16384 && num_physpages <= 128) { 653 extern int sysctl_overcommit_memory; 654 /* 655 * On a machine this small we won't get 656 * anywhere without overcommit, so turn 657 * it on by default. 658 */ 659 sysctl_overcommit_memory = OVERCOMMIT_ALWAYS; 660 } 661 } 662 663 void free_initmem(void) 664 { 665 if (!machine_is_integrator() && !machine_is_cintegrator()) { 666 free_area((unsigned long)(&__init_begin), 667 (unsigned long)(&__init_end), 668 "init"); 669 } 670 } 671 672 #ifdef CONFIG_BLK_DEV_INITRD 673 674 static int keep_initrd; 675 676 void free_initrd_mem(unsigned long start, unsigned long end) 677 { 678 if (!keep_initrd) 679 free_area(start, end, "initrd"); 680 } 681 682 static int __init keepinitrd_setup(char *__unused) 683 { 684 keep_initrd = 1; 685 return 1; 686 } 687 688 __setup("keepinitrd", keepinitrd_setup); 689 #endif 690