xref: /linux/arch/arm/mm/init.c (revision 5e8d780d745c1619aba81fe7166c5a4b5cad2b84)
1 /*
2  *  linux/arch/arm/mm/init.c
3  *
4  *  Copyright (C) 1995-2005 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/config.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/ptrace.h>
14 #include <linux/swap.h>
15 #include <linux/init.h>
16 #include <linux/bootmem.h>
17 #include <linux/mman.h>
18 #include <linux/nodemask.h>
19 #include <linux/initrd.h>
20 
21 #include <asm/mach-types.h>
22 #include <asm/setup.h>
23 #include <asm/sizes.h>
24 #include <asm/tlb.h>
25 
26 #include <asm/mach/arch.h>
27 #include <asm/mach/map.h>
28 
29 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
30 
31 extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
32 extern void _stext, _text, _etext, __data_start, _end, __init_begin, __init_end;
33 extern unsigned long phys_initrd_start;
34 extern unsigned long phys_initrd_size;
35 
36 /*
37  * The sole use of this is to pass memory configuration
38  * data from paging_init to mem_init.
39  */
40 static struct meminfo meminfo __initdata = { 0, };
41 
42 /*
43  * empty_zero_page is a special page that is used for
44  * zero-initialized data and COW.
45  */
46 struct page *empty_zero_page;
47 
48 void show_mem(void)
49 {
50 	int free = 0, total = 0, reserved = 0;
51 	int shared = 0, cached = 0, slab = 0, node;
52 
53 	printk("Mem-info:\n");
54 	show_free_areas();
55 	printk("Free swap:       %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10));
56 
57 	for_each_online_node(node) {
58 		struct page *page, *end;
59 
60 		page = NODE_MEM_MAP(node);
61 		end  = page + NODE_DATA(node)->node_spanned_pages;
62 
63 		do {
64 			total++;
65 			if (PageReserved(page))
66 				reserved++;
67 			else if (PageSwapCache(page))
68 				cached++;
69 			else if (PageSlab(page))
70 				slab++;
71 			else if (!page_count(page))
72 				free++;
73 			else
74 				shared += page_count(page) - 1;
75 			page++;
76 		} while (page < end);
77 	}
78 
79 	printk("%d pages of RAM\n", total);
80 	printk("%d free pages\n", free);
81 	printk("%d reserved pages\n", reserved);
82 	printk("%d slab pages\n", slab);
83 	printk("%d pages shared\n", shared);
84 	printk("%d pages swap cached\n", cached);
85 }
86 
87 static inline pmd_t *pmd_off(pgd_t *pgd, unsigned long virt)
88 {
89 	return pmd_offset(pgd, virt);
90 }
91 
92 static inline pmd_t *pmd_off_k(unsigned long virt)
93 {
94 	return pmd_off(pgd_offset_k(virt), virt);
95 }
96 
97 #define for_each_nodebank(iter,mi,no)			\
98 	for (iter = 0; iter < mi->nr_banks; iter++)	\
99 		if (mi->bank[iter].node == no)
100 
101 /*
102  * FIXME: We really want to avoid allocating the bootmap bitmap
103  * over the top of the initrd.  Hopefully, this is located towards
104  * the start of a bank, so if we allocate the bootmap bitmap at
105  * the end, we won't clash.
106  */
107 static unsigned int __init
108 find_bootmap_pfn(int node, struct meminfo *mi, unsigned int bootmap_pages)
109 {
110 	unsigned int start_pfn, bank, bootmap_pfn;
111 
112 	start_pfn   = PAGE_ALIGN(__pa(&_end)) >> PAGE_SHIFT;
113 	bootmap_pfn = 0;
114 
115 	for_each_nodebank(bank, mi, node) {
116 		unsigned int start, end;
117 
118 		start = mi->bank[bank].start >> PAGE_SHIFT;
119 		end   = (mi->bank[bank].size +
120 			 mi->bank[bank].start) >> PAGE_SHIFT;
121 
122 		if (end < start_pfn)
123 			continue;
124 
125 		if (start < start_pfn)
126 			start = start_pfn;
127 
128 		if (end <= start)
129 			continue;
130 
131 		if (end - start >= bootmap_pages) {
132 			bootmap_pfn = start;
133 			break;
134 		}
135 	}
136 
137 	if (bootmap_pfn == 0)
138 		BUG();
139 
140 	return bootmap_pfn;
141 }
142 
143 static int __init check_initrd(struct meminfo *mi)
144 {
145 	int initrd_node = -2;
146 #ifdef CONFIG_BLK_DEV_INITRD
147 	unsigned long end = phys_initrd_start + phys_initrd_size;
148 
149 	/*
150 	 * Make sure that the initrd is within a valid area of
151 	 * memory.
152 	 */
153 	if (phys_initrd_size) {
154 		unsigned int i;
155 
156 		initrd_node = -1;
157 
158 		for (i = 0; i < mi->nr_banks; i++) {
159 			unsigned long bank_end;
160 
161 			bank_end = mi->bank[i].start + mi->bank[i].size;
162 
163 			if (mi->bank[i].start <= phys_initrd_start &&
164 			    end <= bank_end)
165 				initrd_node = mi->bank[i].node;
166 		}
167 	}
168 
169 	if (initrd_node == -1) {
170 		printk(KERN_ERR "initrd (0x%08lx - 0x%08lx) extends beyond "
171 		       "physical memory - disabling initrd\n",
172 		       phys_initrd_start, end);
173 		phys_initrd_start = phys_initrd_size = 0;
174 	}
175 #endif
176 
177 	return initrd_node;
178 }
179 
180 /*
181  * Reserve the various regions of node 0
182  */
183 static __init void reserve_node_zero(pg_data_t *pgdat)
184 {
185 	unsigned long res_size = 0;
186 
187 	/*
188 	 * Register the kernel text and data with bootmem.
189 	 * Note that this can only be in node 0.
190 	 */
191 #ifdef CONFIG_XIP_KERNEL
192 	reserve_bootmem_node(pgdat, __pa(&__data_start), &_end - &__data_start);
193 #else
194 	reserve_bootmem_node(pgdat, __pa(&_stext), &_end - &_stext);
195 #endif
196 
197 	/*
198 	 * Reserve the page tables.  These are already in use,
199 	 * and can only be in node 0.
200 	 */
201 	reserve_bootmem_node(pgdat, __pa(swapper_pg_dir),
202 			     PTRS_PER_PGD * sizeof(pgd_t));
203 
204 	/*
205 	 * Hmm... This should go elsewhere, but we really really need to
206 	 * stop things allocating the low memory; ideally we need a better
207 	 * implementation of GFP_DMA which does not assume that DMA-able
208 	 * memory starts at zero.
209 	 */
210 	if (machine_is_integrator() || machine_is_cintegrator())
211 		res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;
212 
213 	/*
214 	 * These should likewise go elsewhere.  They pre-reserve the
215 	 * screen memory region at the start of main system memory.
216 	 */
217 	if (machine_is_edb7211())
218 		res_size = 0x00020000;
219 	if (machine_is_p720t())
220 		res_size = 0x00014000;
221 
222 #ifdef CONFIG_SA1111
223 	/*
224 	 * Because of the SA1111 DMA bug, we want to preserve our
225 	 * precious DMA-able memory...
226 	 */
227 	res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;
228 #endif
229 	if (res_size)
230 		reserve_bootmem_node(pgdat, PHYS_OFFSET, res_size);
231 }
232 
233 void __init build_mem_type_table(void);
234 void __init create_mapping(struct map_desc *md);
235 
236 static unsigned long __init
237 bootmem_init_node(int node, int initrd_node, struct meminfo *mi)
238 {
239 	unsigned long zone_size[MAX_NR_ZONES], zhole_size[MAX_NR_ZONES];
240 	unsigned long start_pfn, end_pfn, boot_pfn;
241 	unsigned int boot_pages;
242 	pg_data_t *pgdat;
243 	int i;
244 
245 	start_pfn = -1UL;
246 	end_pfn = 0;
247 
248 	/*
249 	 * Calculate the pfn range, and map the memory banks for this node.
250 	 */
251 	for_each_nodebank(i, mi, node) {
252 		unsigned long start, end;
253 		struct map_desc map;
254 
255 		start = mi->bank[i].start >> PAGE_SHIFT;
256 		end = (mi->bank[i].start + mi->bank[i].size) >> PAGE_SHIFT;
257 
258 		if (start_pfn > start)
259 			start_pfn = start;
260 		if (end_pfn < end)
261 			end_pfn = end;
262 
263 		map.pfn = __phys_to_pfn(mi->bank[i].start);
264 		map.virtual = __phys_to_virt(mi->bank[i].start);
265 		map.length = mi->bank[i].size;
266 		map.type = MT_MEMORY;
267 
268 		create_mapping(&map);
269 	}
270 
271 	/*
272 	 * If there is no memory in this node, ignore it.
273 	 */
274 	if (end_pfn == 0)
275 		return end_pfn;
276 
277 	/*
278 	 * Allocate the bootmem bitmap page.
279 	 */
280 	boot_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
281 	boot_pfn = find_bootmap_pfn(node, mi, boot_pages);
282 
283 	/*
284 	 * Initialise the bootmem allocator for this node, handing the
285 	 * memory banks over to bootmem.
286 	 */
287 	node_set_online(node);
288 	pgdat = NODE_DATA(node);
289 	init_bootmem_node(pgdat, boot_pfn, start_pfn, end_pfn);
290 
291 	for_each_nodebank(i, mi, node)
292 		free_bootmem_node(pgdat, mi->bank[i].start, mi->bank[i].size);
293 
294 	/*
295 	 * Reserve the bootmem bitmap for this node.
296 	 */
297 	reserve_bootmem_node(pgdat, boot_pfn << PAGE_SHIFT,
298 			     boot_pages << PAGE_SHIFT);
299 
300 #ifdef CONFIG_BLK_DEV_INITRD
301 	/*
302 	 * If the initrd is in this node, reserve its memory.
303 	 */
304 	if (node == initrd_node) {
305 		reserve_bootmem_node(pgdat, phys_initrd_start,
306 				     phys_initrd_size);
307 		initrd_start = __phys_to_virt(phys_initrd_start);
308 		initrd_end = initrd_start + phys_initrd_size;
309 	}
310 #endif
311 
312 	/*
313 	 * Finally, reserve any node zero regions.
314 	 */
315 	if (node == 0)
316 		reserve_node_zero(pgdat);
317 
318 	/*
319 	 * initialise the zones within this node.
320 	 */
321 	memset(zone_size, 0, sizeof(zone_size));
322 	memset(zhole_size, 0, sizeof(zhole_size));
323 
324 	/*
325 	 * The size of this node has already been determined.  If we need
326 	 * to do anything fancy with the allocation of this memory to the
327 	 * zones, now is the time to do it.
328 	 */
329 	zone_size[0] = end_pfn - start_pfn;
330 
331 	/*
332 	 * For each bank in this node, calculate the size of the holes.
333 	 *  holes = node_size - sum(bank_sizes_in_node)
334 	 */
335 	zhole_size[0] = zone_size[0];
336 	for_each_nodebank(i, mi, node)
337 		zhole_size[0] -= mi->bank[i].size >> PAGE_SHIFT;
338 
339 	/*
340 	 * Adjust the sizes according to any special requirements for
341 	 * this machine type.
342 	 */
343 	arch_adjust_zones(node, zone_size, zhole_size);
344 
345 	free_area_init_node(node, pgdat, zone_size, start_pfn, zhole_size);
346 
347 	return end_pfn;
348 }
349 
350 static void __init bootmem_init(struct meminfo *mi)
351 {
352 	unsigned long addr, memend_pfn = 0;
353 	int node, initrd_node, i;
354 
355 	/*
356 	 * Invalidate the node number for empty or invalid memory banks
357 	 */
358 	for (i = 0; i < mi->nr_banks; i++)
359 		if (mi->bank[i].size == 0 || mi->bank[i].node >= MAX_NUMNODES)
360 			mi->bank[i].node = -1;
361 
362 	memcpy(&meminfo, mi, sizeof(meminfo));
363 
364 	/*
365 	 * Clear out all the mappings below the kernel image.
366 	 */
367 	for (addr = 0; addr < MODULE_START; addr += PGDIR_SIZE)
368 		pmd_clear(pmd_off_k(addr));
369 #ifdef CONFIG_XIP_KERNEL
370 	/* The XIP kernel is mapped in the module area -- skip over it */
371 	addr = ((unsigned long)&_etext + PGDIR_SIZE - 1) & PGDIR_MASK;
372 #endif
373 	for ( ; addr < PAGE_OFFSET; addr += PGDIR_SIZE)
374 		pmd_clear(pmd_off_k(addr));
375 
376 	/*
377 	 * Clear out all the kernel space mappings, except for the first
378 	 * memory bank, up to the end of the vmalloc region.
379 	 */
380 	for (addr = __phys_to_virt(mi->bank[0].start + mi->bank[0].size);
381 	     addr < VMALLOC_END; addr += PGDIR_SIZE)
382 		pmd_clear(pmd_off_k(addr));
383 
384 	/*
385 	 * Locate which node contains the ramdisk image, if any.
386 	 */
387 	initrd_node = check_initrd(mi);
388 
389 	/*
390 	 * Run through each node initialising the bootmem allocator.
391 	 */
392 	for_each_node(node) {
393 		unsigned long end_pfn;
394 
395 		end_pfn = bootmem_init_node(node, initrd_node, mi);
396 
397 		/*
398 		 * Remember the highest memory PFN.
399 		 */
400 		if (end_pfn > memend_pfn)
401 			memend_pfn = end_pfn;
402 	}
403 
404 	high_memory = __va(memend_pfn << PAGE_SHIFT);
405 
406 	/*
407 	 * This doesn't seem to be used by the Linux memory manager any
408 	 * more, but is used by ll_rw_block.  If we can get rid of it, we
409 	 * also get rid of some of the stuff above as well.
410 	 *
411 	 * Note: max_low_pfn and max_pfn reflect the number of _pages_ in
412 	 * the system, not the maximum PFN.
413 	 */
414 	max_pfn = max_low_pfn = memend_pfn - PHYS_PFN_OFFSET;
415 }
416 
417 /*
418  * Set up device the mappings.  Since we clear out the page tables for all
419  * mappings above VMALLOC_END, we will remove any debug device mappings.
420  * This means you have to be careful how you debug this function, or any
421  * called function.  This means you can't use any function or debugging
422  * method which may touch any device, otherwise the kernel _will_ crash.
423  */
424 static void __init devicemaps_init(struct machine_desc *mdesc)
425 {
426 	struct map_desc map;
427 	unsigned long addr;
428 	void *vectors;
429 
430 	/*
431 	 * Allocate the vector page early.
432 	 */
433 	vectors = alloc_bootmem_low_pages(PAGE_SIZE);
434 	BUG_ON(!vectors);
435 
436 	for (addr = VMALLOC_END; addr; addr += PGDIR_SIZE)
437 		pmd_clear(pmd_off_k(addr));
438 
439 	/*
440 	 * Map the kernel if it is XIP.
441 	 * It is always first in the modulearea.
442 	 */
443 #ifdef CONFIG_XIP_KERNEL
444 	map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & PGDIR_MASK);
445 	map.virtual = MODULE_START;
446 	map.length = ((unsigned long)&_etext - map.virtual + ~PGDIR_MASK) & PGDIR_MASK;
447 	map.type = MT_ROM;
448 	create_mapping(&map);
449 #endif
450 
451 	/*
452 	 * Map the cache flushing regions.
453 	 */
454 #ifdef FLUSH_BASE
455 	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
456 	map.virtual = FLUSH_BASE;
457 	map.length = SZ_1M;
458 	map.type = MT_CACHECLEAN;
459 	create_mapping(&map);
460 #endif
461 #ifdef FLUSH_BASE_MINICACHE
462 	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
463 	map.virtual = FLUSH_BASE_MINICACHE;
464 	map.length = SZ_1M;
465 	map.type = MT_MINICLEAN;
466 	create_mapping(&map);
467 #endif
468 
469 	/*
470 	 * Create a mapping for the machine vectors at the high-vectors
471 	 * location (0xffff0000).  If we aren't using high-vectors, also
472 	 * create a mapping at the low-vectors virtual address.
473 	 */
474 	map.pfn = __phys_to_pfn(virt_to_phys(vectors));
475 	map.virtual = 0xffff0000;
476 	map.length = PAGE_SIZE;
477 	map.type = MT_HIGH_VECTORS;
478 	create_mapping(&map);
479 
480 	if (!vectors_high()) {
481 		map.virtual = 0;
482 		map.type = MT_LOW_VECTORS;
483 		create_mapping(&map);
484 	}
485 
486 	/*
487 	 * Ask the machine support to map in the statically mapped devices.
488 	 */
489 	if (mdesc->map_io)
490 		mdesc->map_io();
491 
492 	/*
493 	 * Finally flush the caches and tlb to ensure that we're in a
494 	 * consistent state wrt the writebuffer.  This also ensures that
495 	 * any write-allocated cache lines in the vector page are written
496 	 * back.  After this point, we can start to touch devices again.
497 	 */
498 	local_flush_tlb_all();
499 	flush_cache_all();
500 }
501 
502 /*
503  * paging_init() sets up the page tables, initialises the zone memory
504  * maps, and sets up the zero page, bad page and bad page tables.
505  */
506 void __init paging_init(struct meminfo *mi, struct machine_desc *mdesc)
507 {
508 	void *zero_page;
509 
510 	build_mem_type_table();
511 	bootmem_init(mi);
512 	devicemaps_init(mdesc);
513 
514 	top_pmd = pmd_off_k(0xffff0000);
515 
516 	/*
517 	 * allocate the zero page.  Note that we count on this going ok.
518 	 */
519 	zero_page = alloc_bootmem_low_pages(PAGE_SIZE);
520 	memzero(zero_page, PAGE_SIZE);
521 	empty_zero_page = virt_to_page(zero_page);
522 	flush_dcache_page(empty_zero_page);
523 }
524 
525 static inline void free_area(unsigned long addr, unsigned long end, char *s)
526 {
527 	unsigned int size = (end - addr) >> 10;
528 
529 	for (; addr < end; addr += PAGE_SIZE) {
530 		struct page *page = virt_to_page(addr);
531 		ClearPageReserved(page);
532 		init_page_count(page);
533 		free_page(addr);
534 		totalram_pages++;
535 	}
536 
537 	if (size && s)
538 		printk(KERN_INFO "Freeing %s memory: %dK\n", s, size);
539 }
540 
541 static inline void
542 free_memmap(int node, unsigned long start_pfn, unsigned long end_pfn)
543 {
544 	struct page *start_pg, *end_pg;
545 	unsigned long pg, pgend;
546 
547 	/*
548 	 * Convert start_pfn/end_pfn to a struct page pointer.
549 	 */
550 	start_pg = pfn_to_page(start_pfn);
551 	end_pg = pfn_to_page(end_pfn);
552 
553 	/*
554 	 * Convert to physical addresses, and
555 	 * round start upwards and end downwards.
556 	 */
557 	pg = PAGE_ALIGN(__pa(start_pg));
558 	pgend = __pa(end_pg) & PAGE_MASK;
559 
560 	/*
561 	 * If there are free pages between these,
562 	 * free the section of the memmap array.
563 	 */
564 	if (pg < pgend)
565 		free_bootmem_node(NODE_DATA(node), pg, pgend - pg);
566 }
567 
568 /*
569  * The mem_map array can get very big.  Free the unused area of the memory map.
570  */
571 static void __init free_unused_memmap_node(int node, struct meminfo *mi)
572 {
573 	unsigned long bank_start, prev_bank_end = 0;
574 	unsigned int i;
575 
576 	/*
577 	 * [FIXME] This relies on each bank being in address order.  This
578 	 * may not be the case, especially if the user has provided the
579 	 * information on the command line.
580 	 */
581 	for_each_nodebank(i, mi, node) {
582 		bank_start = mi->bank[i].start >> PAGE_SHIFT;
583 		if (bank_start < prev_bank_end) {
584 			printk(KERN_ERR "MEM: unordered memory banks.  "
585 				"Not freeing memmap.\n");
586 			break;
587 		}
588 
589 		/*
590 		 * If we had a previous bank, and there is a space
591 		 * between the current bank and the previous, free it.
592 		 */
593 		if (prev_bank_end && prev_bank_end != bank_start)
594 			free_memmap(node, prev_bank_end, bank_start);
595 
596 		prev_bank_end = (mi->bank[i].start +
597 				 mi->bank[i].size) >> PAGE_SHIFT;
598 	}
599 }
600 
601 /*
602  * mem_init() marks the free areas in the mem_map and tells us how much
603  * memory is free.  This is done after various parts of the system have
604  * claimed their memory after the kernel image.
605  */
606 void __init mem_init(void)
607 {
608 	unsigned int codepages, datapages, initpages;
609 	int i, node;
610 
611 	codepages = &_etext - &_text;
612 	datapages = &_end - &__data_start;
613 	initpages = &__init_end - &__init_begin;
614 
615 #ifndef CONFIG_DISCONTIGMEM
616 	max_mapnr   = virt_to_page(high_memory) - mem_map;
617 #endif
618 
619 	/* this will put all unused low memory onto the freelists */
620 	for_each_online_node(node) {
621 		pg_data_t *pgdat = NODE_DATA(node);
622 
623 		free_unused_memmap_node(node, &meminfo);
624 
625 		if (pgdat->node_spanned_pages != 0)
626 			totalram_pages += free_all_bootmem_node(pgdat);
627 	}
628 
629 #ifdef CONFIG_SA1111
630 	/* now that our DMA memory is actually so designated, we can free it */
631 	free_area(PAGE_OFFSET, (unsigned long)swapper_pg_dir, NULL);
632 #endif
633 
634 	/*
635 	 * Since our memory may not be contiguous, calculate the
636 	 * real number of pages we have in this system
637 	 */
638 	printk(KERN_INFO "Memory:");
639 
640 	num_physpages = 0;
641 	for (i = 0; i < meminfo.nr_banks; i++) {
642 		num_physpages += meminfo.bank[i].size >> PAGE_SHIFT;
643 		printk(" %ldMB", meminfo.bank[i].size >> 20);
644 	}
645 
646 	printk(" = %luMB total\n", num_physpages >> (20 - PAGE_SHIFT));
647 	printk(KERN_NOTICE "Memory: %luKB available (%dK code, "
648 		"%dK data, %dK init)\n",
649 		(unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
650 		codepages >> 10, datapages >> 10, initpages >> 10);
651 
652 	if (PAGE_SIZE >= 16384 && num_physpages <= 128) {
653 		extern int sysctl_overcommit_memory;
654 		/*
655 		 * On a machine this small we won't get
656 		 * anywhere without overcommit, so turn
657 		 * it on by default.
658 		 */
659 		sysctl_overcommit_memory = OVERCOMMIT_ALWAYS;
660 	}
661 }
662 
663 void free_initmem(void)
664 {
665 	if (!machine_is_integrator() && !machine_is_cintegrator()) {
666 		free_area((unsigned long)(&__init_begin),
667 			  (unsigned long)(&__init_end),
668 			  "init");
669 	}
670 }
671 
672 #ifdef CONFIG_BLK_DEV_INITRD
673 
674 static int keep_initrd;
675 
676 void free_initrd_mem(unsigned long start, unsigned long end)
677 {
678 	if (!keep_initrd)
679 		free_area(start, end, "initrd");
680 }
681 
682 static int __init keepinitrd_setup(char *__unused)
683 {
684 	keep_initrd = 1;
685 	return 1;
686 }
687 
688 __setup("keepinitrd", keepinitrd_setup);
689 #endif
690