1 /* 2 * linux/arch/alpha/kernel/process.c 3 * 4 * Copyright (C) 1995 Linus Torvalds 5 */ 6 7 /* 8 * This file handles the architecture-dependent parts of process handling. 9 */ 10 11 #include <linux/errno.h> 12 #include <linux/module.h> 13 #include <linux/sched.h> 14 #include <linux/kernel.h> 15 #include <linux/mm.h> 16 #include <linux/smp.h> 17 #include <linux/smp_lock.h> 18 #include <linux/stddef.h> 19 #include <linux/unistd.h> 20 #include <linux/ptrace.h> 21 #include <linux/slab.h> 22 #include <linux/user.h> 23 #include <linux/a.out.h> 24 #include <linux/utsname.h> 25 #include <linux/time.h> 26 #include <linux/major.h> 27 #include <linux/stat.h> 28 #include <linux/vt.h> 29 #include <linux/mman.h> 30 #include <linux/elfcore.h> 31 #include <linux/reboot.h> 32 #include <linux/tty.h> 33 #include <linux/console.h> 34 35 #include <asm/reg.h> 36 #include <asm/uaccess.h> 37 #include <asm/system.h> 38 #include <asm/io.h> 39 #include <asm/pgtable.h> 40 #include <asm/hwrpb.h> 41 #include <asm/fpu.h> 42 43 #include "proto.h" 44 #include "pci_impl.h" 45 46 /* 47 * Power off function, if any 48 */ 49 void (*pm_power_off)(void) = machine_power_off; 50 EXPORT_SYMBOL(pm_power_off); 51 52 void 53 cpu_idle(void) 54 { 55 set_thread_flag(TIF_POLLING_NRFLAG); 56 57 while (1) { 58 /* FIXME -- EV6 and LCA45 know how to power down 59 the CPU. */ 60 61 while (!need_resched()) 62 cpu_relax(); 63 schedule(); 64 } 65 } 66 67 68 struct halt_info { 69 int mode; 70 char *restart_cmd; 71 }; 72 73 static void 74 common_shutdown_1(void *generic_ptr) 75 { 76 struct halt_info *how = (struct halt_info *)generic_ptr; 77 struct percpu_struct *cpup; 78 unsigned long *pflags, flags; 79 int cpuid = smp_processor_id(); 80 81 /* No point in taking interrupts anymore. */ 82 local_irq_disable(); 83 84 cpup = (struct percpu_struct *) 85 ((unsigned long)hwrpb + hwrpb->processor_offset 86 + hwrpb->processor_size * cpuid); 87 pflags = &cpup->flags; 88 flags = *pflags; 89 90 /* Clear reason to "default"; clear "bootstrap in progress". */ 91 flags &= ~0x00ff0001UL; 92 93 #ifdef CONFIG_SMP 94 /* Secondaries halt here. */ 95 if (cpuid != boot_cpuid) { 96 flags |= 0x00040000UL; /* "remain halted" */ 97 *pflags = flags; 98 cpu_clear(cpuid, cpu_present_map); 99 halt(); 100 } 101 #endif 102 103 if (how->mode == LINUX_REBOOT_CMD_RESTART) { 104 if (!how->restart_cmd) { 105 flags |= 0x00020000UL; /* "cold bootstrap" */ 106 } else { 107 /* For SRM, we could probably set environment 108 variables to get this to work. We'd have to 109 delay this until after srm_paging_stop unless 110 we ever got srm_fixup working. 111 112 At the moment, SRM will use the last boot device, 113 but the file and flags will be the defaults, when 114 doing a "warm" bootstrap. */ 115 flags |= 0x00030000UL; /* "warm bootstrap" */ 116 } 117 } else { 118 flags |= 0x00040000UL; /* "remain halted" */ 119 } 120 *pflags = flags; 121 122 #ifdef CONFIG_SMP 123 /* Wait for the secondaries to halt. */ 124 cpu_clear(boot_cpuid, cpu_present_map); 125 while (cpus_weight(cpu_present_map)) 126 barrier(); 127 #endif 128 129 /* If booted from SRM, reset some of the original environment. */ 130 if (alpha_using_srm) { 131 #ifdef CONFIG_DUMMY_CONSOLE 132 /* If we've gotten here after SysRq-b, leave interrupt 133 context before taking over the console. */ 134 if (in_interrupt()) 135 irq_exit(); 136 /* This has the effect of resetting the VGA video origin. */ 137 take_over_console(&dummy_con, 0, MAX_NR_CONSOLES-1, 1); 138 #endif 139 pci_restore_srm_config(); 140 set_hae(srm_hae); 141 } 142 143 if (alpha_mv.kill_arch) 144 alpha_mv.kill_arch(how->mode); 145 146 if (! alpha_using_srm && how->mode != LINUX_REBOOT_CMD_RESTART) { 147 /* Unfortunately, since MILO doesn't currently understand 148 the hwrpb bits above, we can't reliably halt the 149 processor and keep it halted. So just loop. */ 150 return; 151 } 152 153 if (alpha_using_srm) 154 srm_paging_stop(); 155 156 halt(); 157 } 158 159 static void 160 common_shutdown(int mode, char *restart_cmd) 161 { 162 struct halt_info args; 163 args.mode = mode; 164 args.restart_cmd = restart_cmd; 165 on_each_cpu(common_shutdown_1, &args, 1, 0); 166 } 167 168 void 169 machine_restart(char *restart_cmd) 170 { 171 common_shutdown(LINUX_REBOOT_CMD_RESTART, restart_cmd); 172 } 173 174 175 void 176 machine_halt(void) 177 { 178 common_shutdown(LINUX_REBOOT_CMD_HALT, NULL); 179 } 180 181 182 void 183 machine_power_off(void) 184 { 185 common_shutdown(LINUX_REBOOT_CMD_POWER_OFF, NULL); 186 } 187 188 189 /* Used by sysrq-p, among others. I don't believe r9-r15 are ever 190 saved in the context it's used. */ 191 192 void 193 show_regs(struct pt_regs *regs) 194 { 195 dik_show_regs(regs, NULL); 196 } 197 198 /* 199 * Re-start a thread when doing execve() 200 */ 201 void 202 start_thread(struct pt_regs * regs, unsigned long pc, unsigned long sp) 203 { 204 set_fs(USER_DS); 205 regs->pc = pc; 206 regs->ps = 8; 207 wrusp(sp); 208 } 209 EXPORT_SYMBOL(start_thread); 210 211 /* 212 * Free current thread data structures etc.. 213 */ 214 void 215 exit_thread(void) 216 { 217 } 218 219 void 220 flush_thread(void) 221 { 222 /* Arrange for each exec'ed process to start off with a clean slate 223 with respect to the FPU. This is all exceptions disabled. */ 224 current_thread_info()->ieee_state = 0; 225 wrfpcr(FPCR_DYN_NORMAL | ieee_swcr_to_fpcr(0)); 226 227 /* Clean slate for TLS. */ 228 current_thread_info()->pcb.unique = 0; 229 } 230 231 void 232 release_thread(struct task_struct *dead_task) 233 { 234 } 235 236 /* 237 * "alpha_clone()".. By the time we get here, the 238 * non-volatile registers have also been saved on the 239 * stack. We do some ugly pointer stuff here.. (see 240 * also copy_thread) 241 * 242 * Notice that "fork()" is implemented in terms of clone, 243 * with parameters (SIGCHLD, 0). 244 */ 245 int 246 alpha_clone(unsigned long clone_flags, unsigned long usp, 247 int __user *parent_tid, int __user *child_tid, 248 unsigned long tls_value, struct pt_regs *regs) 249 { 250 if (!usp) 251 usp = rdusp(); 252 253 return do_fork(clone_flags, usp, regs, 0, parent_tid, child_tid); 254 } 255 256 int 257 alpha_vfork(struct pt_regs *regs) 258 { 259 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, rdusp(), 260 regs, 0, NULL, NULL); 261 } 262 263 /* 264 * Copy an alpha thread.. 265 * 266 * Note the "stack_offset" stuff: when returning to kernel mode, we need 267 * to have some extra stack-space for the kernel stack that still exists 268 * after the "ret_from_fork". When returning to user mode, we only want 269 * the space needed by the syscall stack frame (ie "struct pt_regs"). 270 * Use the passed "regs" pointer to determine how much space we need 271 * for a kernel fork(). 272 */ 273 274 int 275 copy_thread(int nr, unsigned long clone_flags, unsigned long usp, 276 unsigned long unused, 277 struct task_struct * p, struct pt_regs * regs) 278 { 279 extern void ret_from_fork(void); 280 281 struct thread_info *childti = task_thread_info(p); 282 struct pt_regs * childregs; 283 struct switch_stack * childstack, *stack; 284 unsigned long stack_offset, settls; 285 286 stack_offset = PAGE_SIZE - sizeof(struct pt_regs); 287 if (!(regs->ps & 8)) 288 stack_offset = (PAGE_SIZE-1) & (unsigned long) regs; 289 childregs = (struct pt_regs *) 290 (stack_offset + PAGE_SIZE + task_stack_page(p)); 291 292 *childregs = *regs; 293 settls = regs->r20; 294 childregs->r0 = 0; 295 childregs->r19 = 0; 296 childregs->r20 = 1; /* OSF/1 has some strange fork() semantics. */ 297 regs->r20 = 0; 298 stack = ((struct switch_stack *) regs) - 1; 299 childstack = ((struct switch_stack *) childregs) - 1; 300 *childstack = *stack; 301 childstack->r26 = (unsigned long) ret_from_fork; 302 childti->pcb.usp = usp; 303 childti->pcb.ksp = (unsigned long) childstack; 304 childti->pcb.flags = 1; /* set FEN, clear everything else */ 305 306 /* Set a new TLS for the child thread? Peek back into the 307 syscall arguments that we saved on syscall entry. Oops, 308 except we'd have clobbered it with the parent/child set 309 of r20. Read the saved copy. */ 310 /* Note: if CLONE_SETTLS is not set, then we must inherit the 311 value from the parent, which will have been set by the block 312 copy in dup_task_struct. This is non-intuitive, but is 313 required for proper operation in the case of a threaded 314 application calling fork. */ 315 if (clone_flags & CLONE_SETTLS) 316 childti->pcb.unique = settls; 317 318 return 0; 319 } 320 321 /* 322 * Fill in the user structure for an ECOFF core dump. 323 */ 324 void 325 dump_thread(struct pt_regs * pt, struct user * dump) 326 { 327 /* switch stack follows right below pt_regs: */ 328 struct switch_stack * sw = ((struct switch_stack *) pt) - 1; 329 330 dump->magic = CMAGIC; 331 dump->start_code = current->mm->start_code; 332 dump->start_data = current->mm->start_data; 333 dump->start_stack = rdusp() & ~(PAGE_SIZE - 1); 334 dump->u_tsize = ((current->mm->end_code - dump->start_code) 335 >> PAGE_SHIFT); 336 dump->u_dsize = ((current->mm->brk + PAGE_SIZE-1 - dump->start_data) 337 >> PAGE_SHIFT); 338 dump->u_ssize = (current->mm->start_stack - dump->start_stack 339 + PAGE_SIZE-1) >> PAGE_SHIFT; 340 341 /* 342 * We store the registers in an order/format that is 343 * compatible with DEC Unix/OSF/1 as this makes life easier 344 * for gdb. 345 */ 346 dump->regs[EF_V0] = pt->r0; 347 dump->regs[EF_T0] = pt->r1; 348 dump->regs[EF_T1] = pt->r2; 349 dump->regs[EF_T2] = pt->r3; 350 dump->regs[EF_T3] = pt->r4; 351 dump->regs[EF_T4] = pt->r5; 352 dump->regs[EF_T5] = pt->r6; 353 dump->regs[EF_T6] = pt->r7; 354 dump->regs[EF_T7] = pt->r8; 355 dump->regs[EF_S0] = sw->r9; 356 dump->regs[EF_S1] = sw->r10; 357 dump->regs[EF_S2] = sw->r11; 358 dump->regs[EF_S3] = sw->r12; 359 dump->regs[EF_S4] = sw->r13; 360 dump->regs[EF_S5] = sw->r14; 361 dump->regs[EF_S6] = sw->r15; 362 dump->regs[EF_A3] = pt->r19; 363 dump->regs[EF_A4] = pt->r20; 364 dump->regs[EF_A5] = pt->r21; 365 dump->regs[EF_T8] = pt->r22; 366 dump->regs[EF_T9] = pt->r23; 367 dump->regs[EF_T10] = pt->r24; 368 dump->regs[EF_T11] = pt->r25; 369 dump->regs[EF_RA] = pt->r26; 370 dump->regs[EF_T12] = pt->r27; 371 dump->regs[EF_AT] = pt->r28; 372 dump->regs[EF_SP] = rdusp(); 373 dump->regs[EF_PS] = pt->ps; 374 dump->regs[EF_PC] = pt->pc; 375 dump->regs[EF_GP] = pt->gp; 376 dump->regs[EF_A0] = pt->r16; 377 dump->regs[EF_A1] = pt->r17; 378 dump->regs[EF_A2] = pt->r18; 379 memcpy((char *)dump->regs + EF_SIZE, sw->fp, 32 * 8); 380 } 381 EXPORT_SYMBOL(dump_thread); 382 383 /* 384 * Fill in the user structure for a ELF core dump. 385 */ 386 void 387 dump_elf_thread(elf_greg_t *dest, struct pt_regs *pt, struct thread_info *ti) 388 { 389 /* switch stack follows right below pt_regs: */ 390 struct switch_stack * sw = ((struct switch_stack *) pt) - 1; 391 392 dest[ 0] = pt->r0; 393 dest[ 1] = pt->r1; 394 dest[ 2] = pt->r2; 395 dest[ 3] = pt->r3; 396 dest[ 4] = pt->r4; 397 dest[ 5] = pt->r5; 398 dest[ 6] = pt->r6; 399 dest[ 7] = pt->r7; 400 dest[ 8] = pt->r8; 401 dest[ 9] = sw->r9; 402 dest[10] = sw->r10; 403 dest[11] = sw->r11; 404 dest[12] = sw->r12; 405 dest[13] = sw->r13; 406 dest[14] = sw->r14; 407 dest[15] = sw->r15; 408 dest[16] = pt->r16; 409 dest[17] = pt->r17; 410 dest[18] = pt->r18; 411 dest[19] = pt->r19; 412 dest[20] = pt->r20; 413 dest[21] = pt->r21; 414 dest[22] = pt->r22; 415 dest[23] = pt->r23; 416 dest[24] = pt->r24; 417 dest[25] = pt->r25; 418 dest[26] = pt->r26; 419 dest[27] = pt->r27; 420 dest[28] = pt->r28; 421 dest[29] = pt->gp; 422 dest[30] = rdusp(); 423 dest[31] = pt->pc; 424 425 /* Once upon a time this was the PS value. Which is stupid 426 since that is always 8 for usermode. Usurped for the more 427 useful value of the thread's UNIQUE field. */ 428 dest[32] = ti->pcb.unique; 429 } 430 EXPORT_SYMBOL(dump_elf_thread); 431 432 int 433 dump_elf_task(elf_greg_t *dest, struct task_struct *task) 434 { 435 dump_elf_thread(dest, task_pt_regs(task), task_thread_info(task)); 436 return 1; 437 } 438 EXPORT_SYMBOL(dump_elf_task); 439 440 int 441 dump_elf_task_fp(elf_fpreg_t *dest, struct task_struct *task) 442 { 443 struct switch_stack *sw = (struct switch_stack *)task_pt_regs(task) - 1; 444 memcpy(dest, sw->fp, 32 * 8); 445 return 1; 446 } 447 EXPORT_SYMBOL(dump_elf_task_fp); 448 449 /* 450 * sys_execve() executes a new program. 451 */ 452 asmlinkage int 453 do_sys_execve(char __user *ufilename, char __user * __user *argv, 454 char __user * __user *envp, struct pt_regs *regs) 455 { 456 int error; 457 char *filename; 458 459 filename = getname(ufilename); 460 error = PTR_ERR(filename); 461 if (IS_ERR(filename)) 462 goto out; 463 error = do_execve(filename, argv, envp, regs); 464 putname(filename); 465 out: 466 return error; 467 } 468 469 /* 470 * Return saved PC of a blocked thread. This assumes the frame 471 * pointer is the 6th saved long on the kernel stack and that the 472 * saved return address is the first long in the frame. This all 473 * holds provided the thread blocked through a call to schedule() ($15 474 * is the frame pointer in schedule() and $15 is saved at offset 48 by 475 * entry.S:do_switch_stack). 476 * 477 * Under heavy swap load I've seen this lose in an ugly way. So do 478 * some extra sanity checking on the ranges we expect these pointers 479 * to be in so that we can fail gracefully. This is just for ps after 480 * all. -- r~ 481 */ 482 483 unsigned long 484 thread_saved_pc(struct task_struct *t) 485 { 486 unsigned long base = (unsigned long)task_stack_page(t); 487 unsigned long fp, sp = task_thread_info(t)->pcb.ksp; 488 489 if (sp > base && sp+6*8 < base + 16*1024) { 490 fp = ((unsigned long*)sp)[6]; 491 if (fp > sp && fp < base + 16*1024) 492 return *(unsigned long *)fp; 493 } 494 495 return 0; 496 } 497 498 unsigned long 499 get_wchan(struct task_struct *p) 500 { 501 unsigned long schedule_frame; 502 unsigned long pc; 503 if (!p || p == current || p->state == TASK_RUNNING) 504 return 0; 505 /* 506 * This one depends on the frame size of schedule(). Do a 507 * "disass schedule" in gdb to find the frame size. Also, the 508 * code assumes that sleep_on() follows immediately after 509 * interruptible_sleep_on() and that add_timer() follows 510 * immediately after interruptible_sleep(). Ugly, isn't it? 511 * Maybe adding a wchan field to task_struct would be better, 512 * after all... 513 */ 514 515 pc = thread_saved_pc(p); 516 if (in_sched_functions(pc)) { 517 schedule_frame = ((unsigned long *)task_thread_info(p)->pcb.ksp)[6]; 518 return ((unsigned long *)schedule_frame)[12]; 519 } 520 return pc; 521 } 522