xref: /linux/arch/alpha/kernel/process.c (revision c537b994505099b7197e7d3125b942ecbcc51eb6)
1 /*
2  *  linux/arch/alpha/kernel/process.c
3  *
4  *  Copyright (C) 1995  Linus Torvalds
5  */
6 
7 /*
8  * This file handles the architecture-dependent parts of process handling.
9  */
10 
11 #include <linux/errno.h>
12 #include <linux/module.h>
13 #include <linux/sched.h>
14 #include <linux/kernel.h>
15 #include <linux/mm.h>
16 #include <linux/smp.h>
17 #include <linux/smp_lock.h>
18 #include <linux/stddef.h>
19 #include <linux/unistd.h>
20 #include <linux/ptrace.h>
21 #include <linux/slab.h>
22 #include <linux/user.h>
23 #include <linux/a.out.h>
24 #include <linux/utsname.h>
25 #include <linux/time.h>
26 #include <linux/major.h>
27 #include <linux/stat.h>
28 #include <linux/vt.h>
29 #include <linux/mman.h>
30 #include <linux/elfcore.h>
31 #include <linux/reboot.h>
32 #include <linux/tty.h>
33 #include <linux/console.h>
34 
35 #include <asm/reg.h>
36 #include <asm/uaccess.h>
37 #include <asm/system.h>
38 #include <asm/io.h>
39 #include <asm/pgtable.h>
40 #include <asm/hwrpb.h>
41 #include <asm/fpu.h>
42 
43 #include "proto.h"
44 #include "pci_impl.h"
45 
46 /*
47  * Power off function, if any
48  */
49 void (*pm_power_off)(void) = machine_power_off;
50 EXPORT_SYMBOL(pm_power_off);
51 
52 void
53 cpu_idle(void)
54 {
55 	set_thread_flag(TIF_POLLING_NRFLAG);
56 
57 	while (1) {
58 		/* FIXME -- EV6 and LCA45 know how to power down
59 		   the CPU.  */
60 
61 		while (!need_resched())
62 			cpu_relax();
63 		schedule();
64 	}
65 }
66 
67 
68 struct halt_info {
69 	int mode;
70 	char *restart_cmd;
71 };
72 
73 static void
74 common_shutdown_1(void *generic_ptr)
75 {
76 	struct halt_info *how = (struct halt_info *)generic_ptr;
77 	struct percpu_struct *cpup;
78 	unsigned long *pflags, flags;
79 	int cpuid = smp_processor_id();
80 
81 	/* No point in taking interrupts anymore. */
82 	local_irq_disable();
83 
84 	cpup = (struct percpu_struct *)
85 			((unsigned long)hwrpb + hwrpb->processor_offset
86 			 + hwrpb->processor_size * cpuid);
87 	pflags = &cpup->flags;
88 	flags = *pflags;
89 
90 	/* Clear reason to "default"; clear "bootstrap in progress". */
91 	flags &= ~0x00ff0001UL;
92 
93 #ifdef CONFIG_SMP
94 	/* Secondaries halt here. */
95 	if (cpuid != boot_cpuid) {
96 		flags |= 0x00040000UL; /* "remain halted" */
97 		*pflags = flags;
98 		cpu_clear(cpuid, cpu_present_map);
99 		halt();
100 	}
101 #endif
102 
103 	if (how->mode == LINUX_REBOOT_CMD_RESTART) {
104 		if (!how->restart_cmd) {
105 			flags |= 0x00020000UL; /* "cold bootstrap" */
106 		} else {
107 			/* For SRM, we could probably set environment
108 			   variables to get this to work.  We'd have to
109 			   delay this until after srm_paging_stop unless
110 			   we ever got srm_fixup working.
111 
112 			   At the moment, SRM will use the last boot device,
113 			   but the file and flags will be the defaults, when
114 			   doing a "warm" bootstrap.  */
115 			flags |= 0x00030000UL; /* "warm bootstrap" */
116 		}
117 	} else {
118 		flags |= 0x00040000UL; /* "remain halted" */
119 	}
120 	*pflags = flags;
121 
122 #ifdef CONFIG_SMP
123 	/* Wait for the secondaries to halt. */
124 	cpu_clear(boot_cpuid, cpu_present_map);
125 	while (cpus_weight(cpu_present_map))
126 		barrier();
127 #endif
128 
129 	/* If booted from SRM, reset some of the original environment. */
130 	if (alpha_using_srm) {
131 #ifdef CONFIG_DUMMY_CONSOLE
132 		/* If we've gotten here after SysRq-b, leave interrupt
133 		   context before taking over the console. */
134 		if (in_interrupt())
135 			irq_exit();
136 		/* This has the effect of resetting the VGA video origin.  */
137 		take_over_console(&dummy_con, 0, MAX_NR_CONSOLES-1, 1);
138 #endif
139 		pci_restore_srm_config();
140 		set_hae(srm_hae);
141 	}
142 
143 	if (alpha_mv.kill_arch)
144 		alpha_mv.kill_arch(how->mode);
145 
146 	if (! alpha_using_srm && how->mode != LINUX_REBOOT_CMD_RESTART) {
147 		/* Unfortunately, since MILO doesn't currently understand
148 		   the hwrpb bits above, we can't reliably halt the
149 		   processor and keep it halted.  So just loop.  */
150 		return;
151 	}
152 
153 	if (alpha_using_srm)
154 		srm_paging_stop();
155 
156 	halt();
157 }
158 
159 static void
160 common_shutdown(int mode, char *restart_cmd)
161 {
162 	struct halt_info args;
163 	args.mode = mode;
164 	args.restart_cmd = restart_cmd;
165 	on_each_cpu(common_shutdown_1, &args, 1, 0);
166 }
167 
168 void
169 machine_restart(char *restart_cmd)
170 {
171 	common_shutdown(LINUX_REBOOT_CMD_RESTART, restart_cmd);
172 }
173 
174 
175 void
176 machine_halt(void)
177 {
178 	common_shutdown(LINUX_REBOOT_CMD_HALT, NULL);
179 }
180 
181 
182 void
183 machine_power_off(void)
184 {
185 	common_shutdown(LINUX_REBOOT_CMD_POWER_OFF, NULL);
186 }
187 
188 
189 /* Used by sysrq-p, among others.  I don't believe r9-r15 are ever
190    saved in the context it's used.  */
191 
192 void
193 show_regs(struct pt_regs *regs)
194 {
195 	dik_show_regs(regs, NULL);
196 }
197 
198 /*
199  * Re-start a thread when doing execve()
200  */
201 void
202 start_thread(struct pt_regs * regs, unsigned long pc, unsigned long sp)
203 {
204 	set_fs(USER_DS);
205 	regs->pc = pc;
206 	regs->ps = 8;
207 	wrusp(sp);
208 }
209 EXPORT_SYMBOL(start_thread);
210 
211 /*
212  * Free current thread data structures etc..
213  */
214 void
215 exit_thread(void)
216 {
217 }
218 
219 void
220 flush_thread(void)
221 {
222 	/* Arrange for each exec'ed process to start off with a clean slate
223 	   with respect to the FPU.  This is all exceptions disabled.  */
224 	current_thread_info()->ieee_state = 0;
225 	wrfpcr(FPCR_DYN_NORMAL | ieee_swcr_to_fpcr(0));
226 
227 	/* Clean slate for TLS.  */
228 	current_thread_info()->pcb.unique = 0;
229 }
230 
231 void
232 release_thread(struct task_struct *dead_task)
233 {
234 }
235 
236 /*
237  * "alpha_clone()".. By the time we get here, the
238  * non-volatile registers have also been saved on the
239  * stack. We do some ugly pointer stuff here.. (see
240  * also copy_thread)
241  *
242  * Notice that "fork()" is implemented in terms of clone,
243  * with parameters (SIGCHLD, 0).
244  */
245 int
246 alpha_clone(unsigned long clone_flags, unsigned long usp,
247 	    int __user *parent_tid, int __user *child_tid,
248 	    unsigned long tls_value, struct pt_regs *regs)
249 {
250 	if (!usp)
251 		usp = rdusp();
252 
253 	return do_fork(clone_flags, usp, regs, 0, parent_tid, child_tid);
254 }
255 
256 int
257 alpha_vfork(struct pt_regs *regs)
258 {
259 	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, rdusp(),
260 		       regs, 0, NULL, NULL);
261 }
262 
263 /*
264  * Copy an alpha thread..
265  *
266  * Note the "stack_offset" stuff: when returning to kernel mode, we need
267  * to have some extra stack-space for the kernel stack that still exists
268  * after the "ret_from_fork".  When returning to user mode, we only want
269  * the space needed by the syscall stack frame (ie "struct pt_regs").
270  * Use the passed "regs" pointer to determine how much space we need
271  * for a kernel fork().
272  */
273 
274 int
275 copy_thread(int nr, unsigned long clone_flags, unsigned long usp,
276 	    unsigned long unused,
277 	    struct task_struct * p, struct pt_regs * regs)
278 {
279 	extern void ret_from_fork(void);
280 
281 	struct thread_info *childti = task_thread_info(p);
282 	struct pt_regs * childregs;
283 	struct switch_stack * childstack, *stack;
284 	unsigned long stack_offset, settls;
285 
286 	stack_offset = PAGE_SIZE - sizeof(struct pt_regs);
287 	if (!(regs->ps & 8))
288 		stack_offset = (PAGE_SIZE-1) & (unsigned long) regs;
289 	childregs = (struct pt_regs *)
290 	  (stack_offset + PAGE_SIZE + task_stack_page(p));
291 
292 	*childregs = *regs;
293 	settls = regs->r20;
294 	childregs->r0 = 0;
295 	childregs->r19 = 0;
296 	childregs->r20 = 1;	/* OSF/1 has some strange fork() semantics.  */
297 	regs->r20 = 0;
298 	stack = ((struct switch_stack *) regs) - 1;
299 	childstack = ((struct switch_stack *) childregs) - 1;
300 	*childstack = *stack;
301 	childstack->r26 = (unsigned long) ret_from_fork;
302 	childti->pcb.usp = usp;
303 	childti->pcb.ksp = (unsigned long) childstack;
304 	childti->pcb.flags = 1;	/* set FEN, clear everything else */
305 
306 	/* Set a new TLS for the child thread?  Peek back into the
307 	   syscall arguments that we saved on syscall entry.  Oops,
308 	   except we'd have clobbered it with the parent/child set
309 	   of r20.  Read the saved copy.  */
310 	/* Note: if CLONE_SETTLS is not set, then we must inherit the
311 	   value from the parent, which will have been set by the block
312 	   copy in dup_task_struct.  This is non-intuitive, but is
313 	   required for proper operation in the case of a threaded
314 	   application calling fork.  */
315 	if (clone_flags & CLONE_SETTLS)
316 		childti->pcb.unique = settls;
317 
318 	return 0;
319 }
320 
321 /*
322  * Fill in the user structure for an ECOFF core dump.
323  */
324 void
325 dump_thread(struct pt_regs * pt, struct user * dump)
326 {
327 	/* switch stack follows right below pt_regs: */
328 	struct switch_stack * sw = ((struct switch_stack *) pt) - 1;
329 
330 	dump->magic = CMAGIC;
331 	dump->start_code  = current->mm->start_code;
332 	dump->start_data  = current->mm->start_data;
333 	dump->start_stack = rdusp() & ~(PAGE_SIZE - 1);
334 	dump->u_tsize = ((current->mm->end_code - dump->start_code)
335 			 >> PAGE_SHIFT);
336 	dump->u_dsize = ((current->mm->brk + PAGE_SIZE-1 - dump->start_data)
337 			 >> PAGE_SHIFT);
338 	dump->u_ssize = (current->mm->start_stack - dump->start_stack
339 			 + PAGE_SIZE-1) >> PAGE_SHIFT;
340 
341 	/*
342 	 * We store the registers in an order/format that is
343 	 * compatible with DEC Unix/OSF/1 as this makes life easier
344 	 * for gdb.
345 	 */
346 	dump->regs[EF_V0]  = pt->r0;
347 	dump->regs[EF_T0]  = pt->r1;
348 	dump->regs[EF_T1]  = pt->r2;
349 	dump->regs[EF_T2]  = pt->r3;
350 	dump->regs[EF_T3]  = pt->r4;
351 	dump->regs[EF_T4]  = pt->r5;
352 	dump->regs[EF_T5]  = pt->r6;
353 	dump->regs[EF_T6]  = pt->r7;
354 	dump->regs[EF_T7]  = pt->r8;
355 	dump->regs[EF_S0]  = sw->r9;
356 	dump->regs[EF_S1]  = sw->r10;
357 	dump->regs[EF_S2]  = sw->r11;
358 	dump->regs[EF_S3]  = sw->r12;
359 	dump->regs[EF_S4]  = sw->r13;
360 	dump->regs[EF_S5]  = sw->r14;
361 	dump->regs[EF_S6]  = sw->r15;
362 	dump->regs[EF_A3]  = pt->r19;
363 	dump->regs[EF_A4]  = pt->r20;
364 	dump->regs[EF_A5]  = pt->r21;
365 	dump->regs[EF_T8]  = pt->r22;
366 	dump->regs[EF_T9]  = pt->r23;
367 	dump->regs[EF_T10] = pt->r24;
368 	dump->regs[EF_T11] = pt->r25;
369 	dump->regs[EF_RA]  = pt->r26;
370 	dump->regs[EF_T12] = pt->r27;
371 	dump->regs[EF_AT]  = pt->r28;
372 	dump->regs[EF_SP]  = rdusp();
373 	dump->regs[EF_PS]  = pt->ps;
374 	dump->regs[EF_PC]  = pt->pc;
375 	dump->regs[EF_GP]  = pt->gp;
376 	dump->regs[EF_A0]  = pt->r16;
377 	dump->regs[EF_A1]  = pt->r17;
378 	dump->regs[EF_A2]  = pt->r18;
379 	memcpy((char *)dump->regs + EF_SIZE, sw->fp, 32 * 8);
380 }
381 EXPORT_SYMBOL(dump_thread);
382 
383 /*
384  * Fill in the user structure for a ELF core dump.
385  */
386 void
387 dump_elf_thread(elf_greg_t *dest, struct pt_regs *pt, struct thread_info *ti)
388 {
389 	/* switch stack follows right below pt_regs: */
390 	struct switch_stack * sw = ((struct switch_stack *) pt) - 1;
391 
392 	dest[ 0] = pt->r0;
393 	dest[ 1] = pt->r1;
394 	dest[ 2] = pt->r2;
395 	dest[ 3] = pt->r3;
396 	dest[ 4] = pt->r4;
397 	dest[ 5] = pt->r5;
398 	dest[ 6] = pt->r6;
399 	dest[ 7] = pt->r7;
400 	dest[ 8] = pt->r8;
401 	dest[ 9] = sw->r9;
402 	dest[10] = sw->r10;
403 	dest[11] = sw->r11;
404 	dest[12] = sw->r12;
405 	dest[13] = sw->r13;
406 	dest[14] = sw->r14;
407 	dest[15] = sw->r15;
408 	dest[16] = pt->r16;
409 	dest[17] = pt->r17;
410 	dest[18] = pt->r18;
411 	dest[19] = pt->r19;
412 	dest[20] = pt->r20;
413 	dest[21] = pt->r21;
414 	dest[22] = pt->r22;
415 	dest[23] = pt->r23;
416 	dest[24] = pt->r24;
417 	dest[25] = pt->r25;
418 	dest[26] = pt->r26;
419 	dest[27] = pt->r27;
420 	dest[28] = pt->r28;
421 	dest[29] = pt->gp;
422 	dest[30] = rdusp();
423 	dest[31] = pt->pc;
424 
425 	/* Once upon a time this was the PS value.  Which is stupid
426 	   since that is always 8 for usermode.  Usurped for the more
427 	   useful value of the thread's UNIQUE field.  */
428 	dest[32] = ti->pcb.unique;
429 }
430 EXPORT_SYMBOL(dump_elf_thread);
431 
432 int
433 dump_elf_task(elf_greg_t *dest, struct task_struct *task)
434 {
435 	dump_elf_thread(dest, task_pt_regs(task), task_thread_info(task));
436 	return 1;
437 }
438 EXPORT_SYMBOL(dump_elf_task);
439 
440 int
441 dump_elf_task_fp(elf_fpreg_t *dest, struct task_struct *task)
442 {
443 	struct switch_stack *sw = (struct switch_stack *)task_pt_regs(task) - 1;
444 	memcpy(dest, sw->fp, 32 * 8);
445 	return 1;
446 }
447 EXPORT_SYMBOL(dump_elf_task_fp);
448 
449 /*
450  * sys_execve() executes a new program.
451  */
452 asmlinkage int
453 do_sys_execve(char __user *ufilename, char __user * __user *argv,
454 	      char __user * __user *envp, struct pt_regs *regs)
455 {
456 	int error;
457 	char *filename;
458 
459 	filename = getname(ufilename);
460 	error = PTR_ERR(filename);
461 	if (IS_ERR(filename))
462 		goto out;
463 	error = do_execve(filename, argv, envp, regs);
464 	putname(filename);
465 out:
466 	return error;
467 }
468 
469 /*
470  * Return saved PC of a blocked thread.  This assumes the frame
471  * pointer is the 6th saved long on the kernel stack and that the
472  * saved return address is the first long in the frame.  This all
473  * holds provided the thread blocked through a call to schedule() ($15
474  * is the frame pointer in schedule() and $15 is saved at offset 48 by
475  * entry.S:do_switch_stack).
476  *
477  * Under heavy swap load I've seen this lose in an ugly way.  So do
478  * some extra sanity checking on the ranges we expect these pointers
479  * to be in so that we can fail gracefully.  This is just for ps after
480  * all.  -- r~
481  */
482 
483 unsigned long
484 thread_saved_pc(struct task_struct *t)
485 {
486 	unsigned long base = (unsigned long)task_stack_page(t);
487 	unsigned long fp, sp = task_thread_info(t)->pcb.ksp;
488 
489 	if (sp > base && sp+6*8 < base + 16*1024) {
490 		fp = ((unsigned long*)sp)[6];
491 		if (fp > sp && fp < base + 16*1024)
492 			return *(unsigned long *)fp;
493 	}
494 
495 	return 0;
496 }
497 
498 unsigned long
499 get_wchan(struct task_struct *p)
500 {
501 	unsigned long schedule_frame;
502 	unsigned long pc;
503 	if (!p || p == current || p->state == TASK_RUNNING)
504 		return 0;
505 	/*
506 	 * This one depends on the frame size of schedule().  Do a
507 	 * "disass schedule" in gdb to find the frame size.  Also, the
508 	 * code assumes that sleep_on() follows immediately after
509 	 * interruptible_sleep_on() and that add_timer() follows
510 	 * immediately after interruptible_sleep().  Ugly, isn't it?
511 	 * Maybe adding a wchan field to task_struct would be better,
512 	 * after all...
513 	 */
514 
515 	pc = thread_saved_pc(p);
516 	if (in_sched_functions(pc)) {
517 		schedule_frame = ((unsigned long *)task_thread_info(p)->pcb.ksp)[6];
518 		return ((unsigned long *)schedule_frame)[12];
519 	}
520 	return pc;
521 }
522