xref: /illumos-gate/usr/src/uts/sun4v/io/vds.c (revision cf327f5a61bfa78d5cf81410e439640e480f850b)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*
28  * Virtual disk server
29  */
30 
31 
32 #include <sys/types.h>
33 #include <sys/conf.h>
34 #include <sys/crc32.h>
35 #include <sys/ddi.h>
36 #include <sys/dkio.h>
37 #include <sys/file.h>
38 #include <sys/fs/hsfs_isospec.h>
39 #include <sys/mdeg.h>
40 #include <sys/mhd.h>
41 #include <sys/modhash.h>
42 #include <sys/note.h>
43 #include <sys/pathname.h>
44 #include <sys/sdt.h>
45 #include <sys/sunddi.h>
46 #include <sys/sunldi.h>
47 #include <sys/sysmacros.h>
48 #include <sys/vio_common.h>
49 #include <sys/vio_util.h>
50 #include <sys/vdsk_mailbox.h>
51 #include <sys/vdsk_common.h>
52 #include <sys/vtoc.h>
53 #include <sys/vfs.h>
54 #include <sys/stat.h>
55 #include <sys/scsi/impl/uscsi.h>
56 #include <sys/ontrap.h>
57 #include <vm/seg_map.h>
58 
59 #define	ONE_MEGABYTE	(1ULL << 20)
60 #define	ONE_GIGABYTE	(1ULL << 30)
61 #define	ONE_TERABYTE	(1ULL << 40)
62 
63 /* Virtual disk server initialization flags */
64 #define	VDS_LDI			0x01
65 #define	VDS_MDEG		0x02
66 
67 /* Virtual disk server tunable parameters */
68 #define	VDS_RETRIES		5
69 #define	VDS_LDC_DELAY		1000 /* 1 msecs */
70 #define	VDS_DEV_DELAY		10000000 /* 10 secs */
71 #define	VDS_NCHAINS		32
72 
73 /* Identification parameters for MD, synthetic dkio(7i) structures, etc. */
74 #define	VDS_NAME		"virtual-disk-server"
75 
76 #define	VD_NAME			"vd"
77 #define	VD_VOLUME_NAME		"vdisk"
78 #define	VD_ASCIILABEL		"Virtual Disk"
79 
80 #define	VD_CHANNEL_ENDPOINT	"channel-endpoint"
81 #define	VD_ID_PROP		"id"
82 #define	VD_BLOCK_DEVICE_PROP	"vds-block-device"
83 #define	VD_BLOCK_DEVICE_OPTS	"vds-block-device-opts"
84 #define	VD_REG_PROP		"reg"
85 
86 /* Virtual disk initialization flags */
87 #define	VD_DISK_READY		0x01
88 #define	VD_LOCKING		0x02
89 #define	VD_LDC			0x04
90 #define	VD_DRING		0x08
91 #define	VD_SID			0x10
92 #define	VD_SEQ_NUM		0x20
93 #define	VD_SETUP_ERROR		0x40
94 
95 /* Flags for writing to a vdisk which is a file */
96 #define	VD_FILE_WRITE_FLAGS	SM_ASYNC
97 
98 /* Number of backup labels */
99 #define	VD_FILE_NUM_BACKUP	5
100 
101 /* Timeout for SCSI I/O */
102 #define	VD_SCSI_RDWR_TIMEOUT	30	/* 30 secs */
103 
104 /* Maximum number of logical partitions */
105 #define	VD_MAXPART	(NDKMAP + 1)
106 
107 /*
108  * By Solaris convention, slice/partition 2 represents the entire disk;
109  * unfortunately, this convention does not appear to be codified.
110  */
111 #define	VD_ENTIRE_DISK_SLICE	2
112 
113 /* Logical block address for EFI */
114 #define	VD_EFI_LBA_GPT		1	/* LBA of the GPT */
115 #define	VD_EFI_LBA_GPE		2	/* LBA of the GPE */
116 
117 /* Driver types */
118 typedef enum vd_driver {
119 	VD_DRIVER_UNKNOWN = 0,	/* driver type unknown  */
120 	VD_DRIVER_DISK,		/* disk driver */
121 	VD_DRIVER_VOLUME	/* volume driver */
122 } vd_driver_t;
123 
124 #define	VD_DRIVER_NAME_LEN	64
125 
126 #define	VDS_NUM_DRIVERS	(sizeof (vds_driver_types) / sizeof (vd_driver_type_t))
127 
128 typedef struct vd_driver_type {
129 	char name[VD_DRIVER_NAME_LEN];	/* driver name */
130 	vd_driver_t type;		/* driver type (disk or volume) */
131 } vd_driver_type_t;
132 
133 /*
134  * There is no reliable way to determine if a device is representing a disk
135  * or a volume, especially with pseudo devices. So we maintain a list of well
136  * known drivers and the type of device they represent (either a disk or a
137  * volume).
138  *
139  * The list can be extended by adding a "driver-type-list" entry in vds.conf
140  * with the following syntax:
141  *
142  * 	driver-type-list="<driver>:<type>", ... ,"<driver>:<type>";
143  *
144  * Where:
145  *	<driver> is the name of a driver (limited to 64 characters)
146  *	<type> is either the string "disk" or "volume"
147  *
148  * Invalid entries in "driver-type-list" will be ignored.
149  *
150  * For example, the following line in vds.conf:
151  *
152  * 	driver-type-list="foo:disk","bar:volume";
153  *
154  * defines that "foo" is a disk driver, and driver "bar" is a volume driver.
155  *
156  * When a list is defined in vds.conf, it is checked before the built-in list
157  * (vds_driver_types[]) so that any definition from this list can be overriden
158  * using vds.conf.
159  */
160 vd_driver_type_t vds_driver_types[] = {
161 	{ "dad",	VD_DRIVER_DISK },	/* Solaris */
162 	{ "did",	VD_DRIVER_DISK },	/* Sun Cluster */
163 	{ "emcp",	VD_DRIVER_DISK },	/* EMC Powerpath */
164 	{ "lofi",	VD_DRIVER_VOLUME },	/* Solaris */
165 	{ "md",		VD_DRIVER_VOLUME },	/* Solaris - SVM */
166 	{ "sd",		VD_DRIVER_DISK },	/* Solaris */
167 	{ "ssd",	VD_DRIVER_DISK },	/* Solaris */
168 	{ "vdc",	VD_DRIVER_DISK },	/* Solaris */
169 	{ "vxdmp",	VD_DRIVER_DISK },	/* Veritas */
170 	{ "vxio",	VD_DRIVER_VOLUME },	/* Veritas - VxVM */
171 	{ "zfs",	VD_DRIVER_VOLUME }	/* Solaris */
172 };
173 
174 /* Return a cpp token as a string */
175 #define	STRINGIZE(token)	#token
176 
177 /*
178  * Print a message prefixed with the current function name to the message log
179  * (and optionally to the console for verbose boots); these macros use cpp's
180  * concatenation of string literals and C99 variable-length-argument-list
181  * macros
182  */
183 #define	PRN(...)	_PRN("?%s():  "__VA_ARGS__, "")
184 #define	_PRN(format, ...)					\
185 	cmn_err(CE_CONT, format"%s", __func__, __VA_ARGS__)
186 
187 /* Return a pointer to the "i"th vdisk dring element */
188 #define	VD_DRING_ELEM(i)	((vd_dring_entry_t *)(void *)	\
189 	    (vd->dring + (i)*vd->descriptor_size))
190 
191 /* Return the virtual disk client's type as a string (for use in messages) */
192 #define	VD_CLIENT(vd)							\
193 	(((vd)->xfer_mode == VIO_DESC_MODE) ? "in-band client" :	\
194 	    (((vd)->xfer_mode == VIO_DRING_MODE_V1_0) ? "dring client" :    \
195 		(((vd)->xfer_mode == 0) ? "null client" :		\
196 		    "unsupported client")))
197 
198 /* Read disk label from a disk on file */
199 #define	VD_FILE_LABEL_READ(vd, labelp) \
200 	vd_file_rw(vd, VD_SLICE_NONE, VD_OP_BREAD, (caddr_t)labelp, \
201 	    0, sizeof (struct dk_label))
202 
203 /* Write disk label to a disk on file */
204 #define	VD_FILE_LABEL_WRITE(vd, labelp)	\
205 	vd_file_rw(vd, VD_SLICE_NONE, VD_OP_BWRITE, (caddr_t)labelp, \
206 	    0, sizeof (struct dk_label))
207 
208 /* Message for disk access rights reset failure */
209 #define	VD_RESET_ACCESS_FAILURE_MSG \
210 	"Fail to reset disk access rights for disk %s"
211 
212 /*
213  * Specification of an MD node passed to the MDEG to filter any
214  * 'vport' nodes that do not belong to the specified node. This
215  * template is copied for each vds instance and filled in with
216  * the appropriate 'cfg-handle' value before being passed to the MDEG.
217  */
218 static mdeg_prop_spec_t	vds_prop_template[] = {
219 	{ MDET_PROP_STR,	"name",		VDS_NAME },
220 	{ MDET_PROP_VAL,	"cfg-handle",	NULL },
221 	{ MDET_LIST_END,	NULL, 		NULL }
222 };
223 
224 #define	VDS_SET_MDEG_PROP_INST(specp, val) (specp)[1].ps_val = (val);
225 
226 /*
227  * Matching criteria passed to the MDEG to register interest
228  * in changes to 'virtual-device-port' nodes identified by their
229  * 'id' property.
230  */
231 static md_prop_match_t	vd_prop_match[] = {
232 	{ MDET_PROP_VAL,	VD_ID_PROP },
233 	{ MDET_LIST_END,	NULL }
234 };
235 
236 static mdeg_node_match_t vd_match = {"virtual-device-port",
237 				    vd_prop_match};
238 
239 /*
240  * Options for the VD_BLOCK_DEVICE_OPTS property.
241  */
242 #define	VD_OPT_RDONLY		0x1	/* read-only  */
243 #define	VD_OPT_SLICE		0x2	/* single slice */
244 #define	VD_OPT_EXCLUSIVE	0x4	/* exclusive access */
245 
246 #define	VD_OPTION_NLEN	128
247 
248 typedef struct vd_option {
249 	char vdo_name[VD_OPTION_NLEN];
250 	uint64_t vdo_value;
251 } vd_option_t;
252 
253 vd_option_t vd_bdev_options[] = {
254 	{ "ro",		VD_OPT_RDONLY },
255 	{ "slice", 	VD_OPT_SLICE },
256 	{ "excl",	VD_OPT_EXCLUSIVE }
257 };
258 
259 /* Debugging macros */
260 #ifdef DEBUG
261 
262 static int	vd_msglevel = 0;
263 
264 #define	PR0 if (vd_msglevel > 0)	PRN
265 #define	PR1 if (vd_msglevel > 1)	PRN
266 #define	PR2 if (vd_msglevel > 2)	PRN
267 
268 #define	VD_DUMP_DRING_ELEM(elem)					\
269 	PR0("dst:%x op:%x st:%u nb:%lx addr:%lx ncook:%u\n",		\
270 	    elem->hdr.dstate,						\
271 	    elem->payload.operation,					\
272 	    elem->payload.status,					\
273 	    elem->payload.nbytes,					\
274 	    elem->payload.addr,						\
275 	    elem->payload.ncookies);
276 
277 char *
278 vd_decode_state(int state)
279 {
280 	char *str;
281 
282 #define	CASE_STATE(_s)	case _s: str = #_s; break;
283 
284 	switch (state) {
285 	CASE_STATE(VD_STATE_INIT)
286 	CASE_STATE(VD_STATE_VER)
287 	CASE_STATE(VD_STATE_ATTR)
288 	CASE_STATE(VD_STATE_DRING)
289 	CASE_STATE(VD_STATE_RDX)
290 	CASE_STATE(VD_STATE_DATA)
291 	default: str = "unknown"; break;
292 	}
293 
294 #undef CASE_STATE
295 
296 	return (str);
297 }
298 
299 void
300 vd_decode_tag(vio_msg_t *msg)
301 {
302 	char *tstr, *sstr, *estr;
303 
304 #define	CASE_TYPE(_s)	case _s: tstr = #_s; break;
305 
306 	switch (msg->tag.vio_msgtype) {
307 	CASE_TYPE(VIO_TYPE_CTRL)
308 	CASE_TYPE(VIO_TYPE_DATA)
309 	CASE_TYPE(VIO_TYPE_ERR)
310 	default: tstr = "unknown"; break;
311 	}
312 
313 #undef CASE_TYPE
314 
315 #define	CASE_SUBTYPE(_s) case _s: sstr = #_s; break;
316 
317 	switch (msg->tag.vio_subtype) {
318 	CASE_SUBTYPE(VIO_SUBTYPE_INFO)
319 	CASE_SUBTYPE(VIO_SUBTYPE_ACK)
320 	CASE_SUBTYPE(VIO_SUBTYPE_NACK)
321 	default: sstr = "unknown"; break;
322 	}
323 
324 #undef CASE_SUBTYPE
325 
326 #define	CASE_ENV(_s)	case _s: estr = #_s; break;
327 
328 	switch (msg->tag.vio_subtype_env) {
329 	CASE_ENV(VIO_VER_INFO)
330 	CASE_ENV(VIO_ATTR_INFO)
331 	CASE_ENV(VIO_DRING_REG)
332 	CASE_ENV(VIO_DRING_UNREG)
333 	CASE_ENV(VIO_RDX)
334 	CASE_ENV(VIO_PKT_DATA)
335 	CASE_ENV(VIO_DESC_DATA)
336 	CASE_ENV(VIO_DRING_DATA)
337 	default: estr = "unknown"; break;
338 	}
339 
340 #undef CASE_ENV
341 
342 	PR1("(%x/%x/%x) message : (%s/%s/%s)",
343 	    msg->tag.vio_msgtype, msg->tag.vio_subtype,
344 	    msg->tag.vio_subtype_env, tstr, sstr, estr);
345 }
346 
347 #else	/* !DEBUG */
348 
349 #define	PR0(...)
350 #define	PR1(...)
351 #define	PR2(...)
352 
353 #define	VD_DUMP_DRING_ELEM(elem)
354 
355 #define	vd_decode_state(_s)	(NULL)
356 #define	vd_decode_tag(_s)	(NULL)
357 
358 #endif	/* DEBUG */
359 
360 
361 /*
362  * Soft state structure for a vds instance
363  */
364 typedef struct vds {
365 	uint_t		initialized;	/* driver inst initialization flags */
366 	dev_info_t	*dip;		/* driver inst devinfo pointer */
367 	ldi_ident_t	ldi_ident;	/* driver's identifier for LDI */
368 	mod_hash_t	*vd_table;	/* table of virtual disks served */
369 	mdeg_node_spec_t *ispecp;	/* mdeg node specification */
370 	mdeg_handle_t	mdeg;		/* handle for MDEG operations  */
371 	vd_driver_type_t *driver_types;	/* extra driver types (from vds.conf) */
372 	int 		num_drivers;	/* num of extra driver types */
373 } vds_t;
374 
375 /*
376  * Types of descriptor-processing tasks
377  */
378 typedef enum vd_task_type {
379 	VD_NONFINAL_RANGE_TASK,	/* task for intermediate descriptor in range */
380 	VD_FINAL_RANGE_TASK,	/* task for last in a range of descriptors */
381 } vd_task_type_t;
382 
383 /*
384  * Structure describing the task for processing a descriptor
385  */
386 typedef struct vd_task {
387 	struct vd		*vd;		/* vd instance task is for */
388 	vd_task_type_t		type;		/* type of descriptor task */
389 	int			index;		/* dring elem index for task */
390 	vio_msg_t		*msg;		/* VIO message task is for */
391 	size_t			msglen;		/* length of message content */
392 	vd_dring_payload_t	*request;	/* request task will perform */
393 	struct buf		buf;		/* buf(9s) for I/O request */
394 	ldc_mem_handle_t	mhdl;		/* task memory handle */
395 	int			status;		/* status of processing task */
396 	int	(*completef)(struct vd_task *task); /* completion func ptr */
397 } vd_task_t;
398 
399 /*
400  * Soft state structure for a virtual disk instance
401  */
402 typedef struct vd {
403 	uint_t			initialized;	/* vdisk initialization flags */
404 	uint64_t		operations;	/* bitmask of VD_OPs exported */
405 	vio_ver_t		version;	/* ver negotiated with client */
406 	vds_t			*vds;		/* server for this vdisk */
407 	ddi_taskq_t		*startq;	/* queue for I/O start tasks */
408 	ddi_taskq_t		*completionq;	/* queue for completion tasks */
409 	ldi_handle_t		ldi_handle[V_NUMPAR];	/* LDI slice handles */
410 	char			device_path[MAXPATHLEN + 1]; /* vdisk device */
411 	dev_t			dev[V_NUMPAR];	/* dev numbers for slices */
412 	int			open_flags;	/* open flags */
413 	uint_t			nslices;	/* number of slices we export */
414 	size_t			vdisk_size;	/* number of blocks in vdisk */
415 	size_t			vdisk_block_size; /* size of each vdisk block */
416 	vd_disk_type_t		vdisk_type;	/* slice or entire disk */
417 	vd_disk_label_t		vdisk_label;	/* EFI or VTOC label */
418 	vd_media_t		vdisk_media;	/* media type of backing dev. */
419 	boolean_t		is_atapi_dev;	/* Is this an IDE CD-ROM dev? */
420 	ushort_t		max_xfer_sz;	/* max xfer size in DEV_BSIZE */
421 	size_t			block_size;	/* blk size of actual device */
422 	boolean_t		volume;		/* is vDisk backed by volume */
423 	boolean_t		file;		/* is vDisk backed by a file? */
424 	boolean_t		scsi;		/* is vDisk backed by scsi? */
425 	vnode_t			*file_vnode;	/* file vnode */
426 	size_t			file_size;	/* file size */
427 	ddi_devid_t		file_devid;	/* devid for disk image */
428 	int			efi_reserved;	/* EFI reserved slice */
429 	caddr_t			flabel;		/* fake label for slice type */
430 	uint_t			flabel_size;	/* fake label size */
431 	uint_t			flabel_limit;	/* limit of the fake label */
432 	struct dk_geom		dk_geom;	/* synthetic for slice type */
433 	struct extvtoc		vtoc;		/* synthetic for slice type */
434 	vd_slice_t		slices[VD_MAXPART]; /* logical partitions */
435 	boolean_t		ownership;	/* disk ownership status */
436 	ldc_status_t		ldc_state;	/* LDC connection state */
437 	ldc_handle_t		ldc_handle;	/* handle for LDC comm */
438 	size_t			max_msglen;	/* largest LDC message len */
439 	vd_state_t		state;		/* client handshake state */
440 	uint8_t			xfer_mode;	/* transfer mode with client */
441 	uint32_t		sid;		/* client's session ID */
442 	uint64_t		seq_num;	/* message sequence number */
443 	uint64_t		dring_ident;	/* identifier of dring */
444 	ldc_dring_handle_t	dring_handle;	/* handle for dring ops */
445 	uint32_t		descriptor_size;	/* num bytes in desc */
446 	uint32_t		dring_len;	/* number of dring elements */
447 	uint8_t			dring_mtype;	/* dring mem map type */
448 	caddr_t			dring;		/* address of dring */
449 	caddr_t			vio_msgp;	/* vio msg staging buffer */
450 	vd_task_t		inband_task;	/* task for inband descriptor */
451 	vd_task_t		*dring_task;	/* tasks dring elements */
452 
453 	kmutex_t		lock;		/* protects variables below */
454 	boolean_t		enabled;	/* is vdisk enabled? */
455 	boolean_t		reset_state;	/* reset connection state? */
456 	boolean_t		reset_ldc;	/* reset LDC channel? */
457 } vd_t;
458 
459 /*
460  * Macros to manipulate the fake label (flabel) for single slice disks.
461  *
462  * If we fake a VTOC label then the fake label consists of only one block
463  * containing the VTOC label (struct dk_label).
464  *
465  * If we fake an EFI label then the fake label consists of a blank block
466  * followed by a GPT (efi_gpt_t) and a GPE (efi_gpe_t).
467  *
468  */
469 #define	VD_LABEL_VTOC_SIZE					\
470 	P2ROUNDUP(sizeof (struct dk_label), DEV_BSIZE)
471 
472 #define	VD_LABEL_EFI_SIZE					\
473 	P2ROUNDUP(DEV_BSIZE + sizeof (efi_gpt_t) + 		\
474 	    sizeof (efi_gpe_t) * VD_MAXPART, DEV_BSIZE)
475 
476 #define	VD_LABEL_VTOC(vd)	\
477 		((struct dk_label *)(void *)((vd)->flabel))
478 
479 #define	VD_LABEL_EFI_GPT(vd)	\
480 		((efi_gpt_t *)(void *)((vd)->flabel + DEV_BSIZE))
481 #define	VD_LABEL_EFI_GPE(vd)	\
482 		((efi_gpe_t *)(void *)((vd)->flabel + DEV_BSIZE + \
483 		sizeof (efi_gpt_t)))
484 
485 
486 typedef struct vds_operation {
487 	char	*namep;
488 	uint8_t	operation;
489 	int	(*start)(vd_task_t *task);
490 	int	(*complete)(vd_task_t *task);
491 } vds_operation_t;
492 
493 typedef struct vd_ioctl {
494 	uint8_t		operation;		/* vdisk operation */
495 	const char	*operation_name;	/* vdisk operation name */
496 	size_t		nbytes;			/* size of operation buffer */
497 	int		cmd;			/* corresponding ioctl cmd */
498 	const char	*cmd_name;		/* ioctl cmd name */
499 	void		*arg;			/* ioctl cmd argument */
500 	/* convert input vd_buf to output ioctl_arg */
501 	int		(*copyin)(void *vd_buf, size_t, void *ioctl_arg);
502 	/* convert input ioctl_arg to output vd_buf */
503 	void		(*copyout)(void *ioctl_arg, void *vd_buf);
504 	/* write is true if the operation writes any data to the backend */
505 	boolean_t	write;
506 } vd_ioctl_t;
507 
508 /* Define trivial copyin/copyout conversion function flag */
509 #define	VD_IDENTITY_IN	((int (*)(void *, size_t, void *))-1)
510 #define	VD_IDENTITY_OUT	((void (*)(void *, void *))-1)
511 
512 
513 static int	vds_ldc_retries = VDS_RETRIES;
514 static int	vds_ldc_delay = VDS_LDC_DELAY;
515 static int	vds_dev_retries = VDS_RETRIES;
516 static int	vds_dev_delay = VDS_DEV_DELAY;
517 static void	*vds_state;
518 
519 static uint_t	vd_file_write_flags = VD_FILE_WRITE_FLAGS;
520 
521 static short	vd_scsi_rdwr_timeout = VD_SCSI_RDWR_TIMEOUT;
522 static int	vd_scsi_debug = USCSI_SILENT;
523 
524 /*
525  * Tunable to define the behavior of the service domain if the vdisk server
526  * fails to reset disk exclusive access when a LDC channel is reset. When a
527  * LDC channel is reset the vdisk server will try to reset disk exclusive
528  * access by releasing any SCSI-2 reservation or resetting the disk. If these
529  * actions fail then the default behavior (vd_reset_access_failure = 0) is to
530  * print a warning message. This default behavior can be changed by setting
531  * the vd_reset_access_failure variable to A_REBOOT (= 0x1) and that will
532  * cause the service domain to reboot, or A_DUMP (= 0x5) and that will cause
533  * the service domain to panic. In both cases, the reset of the service domain
534  * should trigger a reset SCSI buses and hopefully clear any SCSI-2 reservation.
535  */
536 static int 	vd_reset_access_failure = 0;
537 
538 /*
539  * Tunable for backward compatibility. When this variable is set to B_TRUE,
540  * all disk volumes (ZFS, SVM, VxvM volumes) will be exported as single
541  * slice disks whether or not they have the "slice" option set. This is
542  * to provide a simple backward compatibility mechanism when upgrading
543  * the vds driver and using a domain configuration created before the
544  * "slice" option was available.
545  */
546 static boolean_t vd_volume_force_slice = B_FALSE;
547 
548 /*
549  * The label of disk images created with some earlier versions of the virtual
550  * disk software is not entirely correct and have an incorrect v_sanity field
551  * (usually 0) instead of VTOC_SANE. This creates a compatibility problem with
552  * these images because we are now validating that the disk label (and the
553  * sanity) is correct when a disk image is opened.
554  *
555  * This tunable is set to false to not validate the sanity field and ensure
556  * compatibility. If the tunable is set to true, we will do a strict checking
557  * of the sanity but this can create compatibility problems with old disk
558  * images.
559  */
560 static boolean_t vd_file_validate_sanity = B_FALSE;
561 
562 /*
563  * Enables the use of LDC_DIRECT_MAP when mapping in imported descriptor rings.
564  */
565 static boolean_t vd_direct_mapped_drings = B_TRUE;
566 
567 /*
568  * When a backend is exported as a single-slice disk then we entirely fake
569  * its disk label. So it can be exported either with a VTOC label or with
570  * an EFI label. If vd_slice_label is set to VD_DISK_LABEL_VTOC then all
571  * single-slice disks will be exported with a VTOC label; and if it is set
572  * to VD_DISK_LABEL_EFI then all single-slice disks will be exported with
573  * an EFI label.
574  *
575  * If vd_slice_label is set to VD_DISK_LABEL_UNK and the backend is a disk
576  * or volume device then it will be exported with the same type of label as
577  * defined on the device. Otherwise if the backend is a file then it will
578  * exported with the disk label type set in the vd_file_slice_label variable.
579  *
580  * Note that if the backend size is greater than 1TB then it will always be
581  * exported with an EFI label no matter what the setting is.
582  */
583 static vd_disk_label_t vd_slice_label = VD_DISK_LABEL_UNK;
584 
585 static vd_disk_label_t vd_file_slice_label = VD_DISK_LABEL_VTOC;
586 
587 /*
588  * Tunable for backward compatibility. If this variable is set to B_TRUE then
589  * single-slice disks are exported as disks with only one slice instead of
590  * faking a complete disk partitioning.
591  */
592 static boolean_t vd_slice_single_slice = B_FALSE;
593 
594 /*
595  * Supported protocol version pairs, from highest (newest) to lowest (oldest)
596  *
597  * Each supported major version should appear only once, paired with (and only
598  * with) its highest supported minor version number (as the protocol requires
599  * supporting all lower minor version numbers as well)
600  */
601 static const vio_ver_t	vds_version[] = {{1, 1}};
602 static const size_t	vds_num_versions =
603     sizeof (vds_version)/sizeof (vds_version[0]);
604 
605 static void vd_free_dring_task(vd_t *vdp);
606 static int vd_setup_vd(vd_t *vd);
607 static int vd_setup_single_slice_disk(vd_t *vd);
608 static int vd_backend_check_size(vd_t *vd);
609 static boolean_t vd_enabled(vd_t *vd);
610 static ushort_t vd_lbl2cksum(struct dk_label *label);
611 static int vd_file_validate_geometry(vd_t *vd);
612 static boolean_t vd_file_is_iso_image(vd_t *vd);
613 static void vd_set_exported_operations(vd_t *vd);
614 static void vd_reset_access(vd_t *vd);
615 static int vd_backend_ioctl(vd_t *vd, int cmd, caddr_t arg);
616 static int vds_efi_alloc_and_read(vd_t *, efi_gpt_t **, efi_gpe_t **);
617 static void vds_efi_free(vd_t *, efi_gpt_t *, efi_gpe_t *);
618 static void vds_driver_types_free(vds_t *vds);
619 static void vd_vtocgeom_to_label(struct extvtoc *vtoc, struct dk_geom *geom,
620     struct dk_label *label);
621 static void vd_label_to_vtocgeom(struct dk_label *label, struct extvtoc *vtoc,
622     struct dk_geom *geom);
623 static boolean_t vd_slice_geom_isvalid(vd_t *vd, struct dk_geom *geom);
624 static boolean_t vd_slice_vtoc_isvalid(vd_t *vd, struct extvtoc *vtoc);
625 
626 extern int is_pseudo_device(dev_info_t *);
627 
628 /*
629  * Function:
630  *	vd_get_readable_size
631  *
632  * Description:
633  * 	Convert a given size in bytes to a human readable format in
634  * 	kilobytes, megabytes, gigabytes or terabytes.
635  *
636  * Parameters:
637  *	full_size	- the size to convert in bytes.
638  *	size		- the converted size.
639  *	unit		- the unit of the converted size: 'K' (kilobyte),
640  *			  'M' (Megabyte), 'G' (Gigabyte), 'T' (Terabyte).
641  *
642  * Return Code:
643  *	none
644  */
645 void
646 vd_get_readable_size(size_t full_size, size_t *size, char *unit)
647 {
648 	if (full_size < (1ULL << 20)) {
649 		*size = full_size >> 10;
650 		*unit = 'K'; /* Kilobyte */
651 	} else if (full_size < (1ULL << 30)) {
652 		*size = full_size >> 20;
653 		*unit = 'M'; /* Megabyte */
654 	} else if (full_size < (1ULL << 40)) {
655 		*size = full_size >> 30;
656 		*unit = 'G'; /* Gigabyte */
657 	} else {
658 		*size = full_size >> 40;
659 		*unit = 'T'; /* Terabyte */
660 	}
661 }
662 
663 /*
664  * Function:
665  *	vd_file_rw
666  *
667  * Description:
668  * 	Read or write to a disk on file.
669  *
670  * Parameters:
671  *	vd		- disk on which the operation is performed.
672  *	slice		- slice on which the operation is performed,
673  *			  VD_SLICE_NONE indicates that the operation
674  *			  is done using an absolute disk offset.
675  *	operation	- operation to execute: read (VD_OP_BREAD) or
676  *			  write (VD_OP_BWRITE).
677  *	data		- buffer where data are read to or written from.
678  *	blk		- starting block for the operation.
679  *	len		- number of bytes to read or write.
680  *
681  * Return Code:
682  *	n >= 0		- success, n indicates the number of bytes read
683  *			  or written.
684  *	-1		- error.
685  */
686 static ssize_t
687 vd_file_rw(vd_t *vd, int slice, int operation, caddr_t data, size_t blk,
688     size_t len)
689 {
690 	caddr_t	maddr;
691 	size_t offset, maxlen, moffset, mlen, n;
692 	uint_t smflags;
693 	enum seg_rw srw;
694 
695 	ASSERT(vd->file);
696 	ASSERT(len > 0);
697 
698 	/*
699 	 * If a file is exported as a slice then we don't care about the vtoc.
700 	 * In that case, the vtoc is a fake mainly to make newfs happy and we
701 	 * handle any I/O as a raw disk access so that we can have access to the
702 	 * entire backend.
703 	 */
704 	if (vd->vdisk_type == VD_DISK_TYPE_SLICE || slice == VD_SLICE_NONE) {
705 		/* raw disk access */
706 		offset = blk * DEV_BSIZE;
707 		if (offset >= vd->file_size) {
708 			/* offset past the end of the disk */
709 			PR0("offset (0x%lx) >= fsize (0x%lx)",
710 			    offset, vd->file_size);
711 			return (0);
712 		}
713 		maxlen = vd->file_size - offset;
714 	} else {
715 		ASSERT(slice >= 0 && slice < V_NUMPAR);
716 
717 		/*
718 		 * v1.0 vDisk clients depended on the server not verifying
719 		 * the label of a unformatted disk.  This "feature" is
720 		 * maintained for backward compatibility but all versions
721 		 * from v1.1 onwards must do the right thing.
722 		 */
723 		if (vd->vdisk_label == VD_DISK_LABEL_UNK &&
724 		    vio_ver_is_supported(vd->version, 1, 1)) {
725 			(void) vd_file_validate_geometry(vd);
726 			if (vd->vdisk_label == VD_DISK_LABEL_UNK) {
727 				PR0("Unknown disk label, can't do I/O "
728 				    "from slice %d", slice);
729 				return (-1);
730 			}
731 		}
732 
733 		if (vd->vdisk_label == VD_DISK_LABEL_VTOC) {
734 			ASSERT(vd->vtoc.v_sectorsz == DEV_BSIZE);
735 		} else {
736 			ASSERT(vd->vdisk_label == VD_DISK_LABEL_EFI);
737 			ASSERT(vd->vdisk_block_size == DEV_BSIZE);
738 		}
739 
740 		if (blk >= vd->slices[slice].nblocks) {
741 			/* address past the end of the slice */
742 			PR0("req_addr (0x%lx) >= psize (0x%lx)",
743 			    blk, vd->slices[slice].nblocks);
744 			return (0);
745 		}
746 
747 		offset = (vd->slices[slice].start + blk) * DEV_BSIZE;
748 		maxlen = (vd->slices[slice].nblocks - blk) * DEV_BSIZE;
749 	}
750 
751 	/*
752 	 * If the requested size is greater than the size
753 	 * of the partition, truncate the read/write.
754 	 */
755 	if (len > maxlen) {
756 		PR0("I/O size truncated to %lu bytes from %lu bytes",
757 		    maxlen, len);
758 		len = maxlen;
759 	}
760 
761 	/*
762 	 * We have to ensure that we are reading/writing into the mmap
763 	 * range. If we have a partial disk image (e.g. an image of
764 	 * s0 instead s2) the system can try to access slices that
765 	 * are not included into the disk image.
766 	 */
767 	if ((offset + len) > vd->file_size) {
768 		PR0("offset + nbytes (0x%lx + 0x%lx) > "
769 		    "file_size (0x%lx)", offset, len, vd->file_size);
770 		return (-1);
771 	}
772 
773 	srw = (operation == VD_OP_BREAD)? S_READ : S_WRITE;
774 	smflags = (operation == VD_OP_BREAD)? 0 :
775 	    (SM_WRITE | vd_file_write_flags);
776 	n = len;
777 
778 	do {
779 		/*
780 		 * segmap_getmapflt() returns a MAXBSIZE chunk which is
781 		 * MAXBSIZE aligned.
782 		 */
783 		moffset = offset & MAXBOFFSET;
784 		mlen = MIN(MAXBSIZE - moffset, n);
785 		maddr = segmap_getmapflt(segkmap, vd->file_vnode, offset,
786 		    mlen, 1, srw);
787 		/*
788 		 * Fault in the pages so we can check for error and ensure
789 		 * that we can safely used the mapped address.
790 		 */
791 		if (segmap_fault(kas.a_hat, segkmap, maddr, mlen,
792 		    F_SOFTLOCK, srw) != 0) {
793 			(void) segmap_release(segkmap, maddr, 0);
794 			return (-1);
795 		}
796 
797 		if (operation == VD_OP_BREAD)
798 			bcopy(maddr + moffset, data, mlen);
799 		else
800 			bcopy(data, maddr + moffset, mlen);
801 
802 		if (segmap_fault(kas.a_hat, segkmap, maddr, mlen,
803 		    F_SOFTUNLOCK, srw) != 0) {
804 			(void) segmap_release(segkmap, maddr, 0);
805 			return (-1);
806 		}
807 		if (segmap_release(segkmap, maddr, smflags) != 0)
808 			return (-1);
809 		n -= mlen;
810 		offset += mlen;
811 		data += mlen;
812 
813 	} while (n > 0);
814 
815 	return (len);
816 }
817 
818 /*
819  * Function:
820  *	vd_build_default_label
821  *
822  * Description:
823  *	Return a default label for a given disk size. This is used when the disk
824  *	does not have a valid VTOC so that the user can get a valid default
825  *	configuration. The default label has all slice sizes set to 0 (except
826  *	slice 2 which is the entire disk) to force the user to write a valid
827  *	label onto the disk image.
828  *
829  * Parameters:
830  *	disk_size	- the disk size in bytes
831  *	label		- the returned default label.
832  *
833  * Return Code:
834  *	none.
835  */
836 static void
837 vd_build_default_label(size_t disk_size, struct dk_label *label)
838 {
839 	size_t size;
840 	char unit;
841 
842 	bzero(label, sizeof (struct dk_label));
843 
844 	/*
845 	 * Ideally we would like the cylinder size (nsect * nhead) to be the
846 	 * same whatever the disk size is. That way the VTOC label could be
847 	 * easily updated in case the disk size is increased (keeping the
848 	 * same cylinder size allows to preserve the existing partitioning
849 	 * when updating the VTOC label). But it is not possible to have
850 	 * a fixed cylinder size and to cover all disk size.
851 	 *
852 	 * So we define different cylinder sizes depending on the disk size.
853 	 * The cylinder size is chosen so that we don't have too few cylinders
854 	 * for a small disk image, or so many on a big disk image that you
855 	 * waste space for backup superblocks or cylinder group structures.
856 	 * Also we must have a resonable number of cylinders and sectors so
857 	 * that newfs can run using default values.
858 	 *
859 	 *	+-----------+--------+---------+--------+
860 	 *	| disk_size |  < 2MB | 2MB-4GB | >= 8GB |
861 	 *	+-----------+--------+---------+--------+
862 	 *	| nhead	    |	 1   |	   1   |    96  |
863 	 *	| nsect	    |  200   |   600   |   768  |
864 	 *	+-----------+--------+---------+--------+
865 	 *
866 	 * Other parameters are computed from these values:
867 	 *
868 	 * 	pcyl = disk_size / (nhead * nsect * 512)
869 	 * 	acyl = (pcyl > 2)? 2 : 0
870 	 * 	ncyl = pcyl - acyl
871 	 *
872 	 * The maximum number of cylinder is 65535 so this allows to define a
873 	 * geometry for a disk size up to 65535 * 96 * 768 * 512 = 2.24 TB
874 	 * which is more than enough to cover the maximum size allowed by the
875 	 * extended VTOC format (2TB).
876 	 */
877 
878 	if (disk_size >= 8 * ONE_GIGABYTE) {
879 
880 		label->dkl_nhead = 96;
881 		label->dkl_nsect = 768;
882 
883 	} else if (disk_size >= 2 * ONE_MEGABYTE) {
884 
885 		label->dkl_nhead = 1;
886 		label->dkl_nsect = 600;
887 
888 	} else {
889 
890 		label->dkl_nhead = 1;
891 		label->dkl_nsect = 200;
892 	}
893 
894 	label->dkl_pcyl = disk_size /
895 	    (label->dkl_nsect * label->dkl_nhead * DEV_BSIZE);
896 
897 	if (label->dkl_pcyl == 0)
898 		label->dkl_pcyl = 1;
899 
900 	label->dkl_acyl = 0;
901 
902 	if (label->dkl_pcyl > 2)
903 		label->dkl_acyl = 2;
904 
905 	label->dkl_ncyl = label->dkl_pcyl - label->dkl_acyl;
906 	label->dkl_write_reinstruct = 0;
907 	label->dkl_read_reinstruct = 0;
908 	label->dkl_rpm = 7200;
909 	label->dkl_apc = 0;
910 	label->dkl_intrlv = 0;
911 
912 	PR0("requested disk size: %ld bytes\n", disk_size);
913 	PR0("setup: ncyl=%d nhead=%d nsec=%d\n", label->dkl_pcyl,
914 	    label->dkl_nhead, label->dkl_nsect);
915 	PR0("provided disk size: %ld bytes\n", (uint64_t)
916 	    (label->dkl_pcyl * label->dkl_nhead *
917 	    label->dkl_nsect * DEV_BSIZE));
918 
919 	vd_get_readable_size(disk_size, &size, &unit);
920 
921 	/*
922 	 * We must have a correct label name otherwise format(1m) will
923 	 * not recognized the disk as labeled.
924 	 */
925 	(void) snprintf(label->dkl_asciilabel, LEN_DKL_ASCII,
926 	    "SUN-DiskImage-%ld%cB cyl %d alt %d hd %d sec %d",
927 	    size, unit,
928 	    label->dkl_ncyl, label->dkl_acyl, label->dkl_nhead,
929 	    label->dkl_nsect);
930 
931 	/* default VTOC */
932 	label->dkl_vtoc.v_version = V_EXTVERSION;
933 	label->dkl_vtoc.v_nparts = V_NUMPAR;
934 	label->dkl_vtoc.v_sanity = VTOC_SANE;
935 	label->dkl_vtoc.v_part[VD_ENTIRE_DISK_SLICE].p_tag = V_BACKUP;
936 	label->dkl_map[VD_ENTIRE_DISK_SLICE].dkl_cylno = 0;
937 	label->dkl_map[VD_ENTIRE_DISK_SLICE].dkl_nblk = label->dkl_ncyl *
938 	    label->dkl_nhead * label->dkl_nsect;
939 	label->dkl_magic = DKL_MAGIC;
940 	label->dkl_cksum = vd_lbl2cksum(label);
941 }
942 
943 /*
944  * Function:
945  *	vd_file_set_vtoc
946  *
947  * Description:
948  *	Set the vtoc of a disk image by writing the label and backup
949  *	labels into the disk image backend.
950  *
951  * Parameters:
952  *	vd		- disk on which the operation is performed.
953  *	label		- the data to be written.
954  *
955  * Return Code:
956  *	0		- success.
957  *	n > 0		- error, n indicates the errno code.
958  */
959 static int
960 vd_file_set_vtoc(vd_t *vd, struct dk_label *label)
961 {
962 	size_t blk, sec, cyl, head, cnt;
963 
964 	ASSERT(vd->file);
965 
966 	if (VD_FILE_LABEL_WRITE(vd, label) < 0) {
967 		PR0("fail to write disk label");
968 		return (EIO);
969 	}
970 
971 	/*
972 	 * Backup labels are on the last alternate cylinder's
973 	 * first five odd sectors.
974 	 */
975 	if (label->dkl_acyl == 0) {
976 		PR0("no alternate cylinder, can not store backup labels");
977 		return (0);
978 	}
979 
980 	cyl = label->dkl_ncyl  + label->dkl_acyl - 1;
981 	head = label->dkl_nhead - 1;
982 
983 	blk = (cyl * ((label->dkl_nhead * label->dkl_nsect) - label->dkl_apc)) +
984 	    (head * label->dkl_nsect);
985 
986 	/*
987 	 * Write the backup labels. Make sure we don't try to write past
988 	 * the last cylinder.
989 	 */
990 	sec = 1;
991 
992 	for (cnt = 0; cnt < VD_FILE_NUM_BACKUP; cnt++) {
993 
994 		if (sec >= label->dkl_nsect) {
995 			PR0("not enough sector to store all backup labels");
996 			return (0);
997 		}
998 
999 		if (vd_file_rw(vd, VD_SLICE_NONE, VD_OP_BWRITE, (caddr_t)label,
1000 		    blk + sec, sizeof (struct dk_label)) < 0) {
1001 			PR0("error writing backup label at block %lu\n",
1002 			    blk + sec);
1003 			return (EIO);
1004 		}
1005 
1006 		PR1("wrote backup label at block %lu\n", blk + sec);
1007 
1008 		sec += 2;
1009 	}
1010 
1011 	return (0);
1012 }
1013 
1014 /*
1015  * Function:
1016  *	vd_file_get_devid_block
1017  *
1018  * Description:
1019  *	Return the block number where the device id is stored.
1020  *
1021  * Parameters:
1022  *	vd		- disk on which the operation is performed.
1023  *	blkp		- pointer to the block number
1024  *
1025  * Return Code:
1026  *	0		- success
1027  *	ENOSPC		- disk has no space to store a device id
1028  */
1029 static int
1030 vd_file_get_devid_block(vd_t *vd, size_t *blkp)
1031 {
1032 	diskaddr_t spc, head, cyl;
1033 
1034 	ASSERT(vd->file);
1035 
1036 	if (vd->vdisk_label == VD_DISK_LABEL_UNK) {
1037 		/*
1038 		 * If no label is defined we don't know where to find
1039 		 * a device id.
1040 		 */
1041 		return (ENOSPC);
1042 	}
1043 
1044 	if (vd->vdisk_label == VD_DISK_LABEL_EFI) {
1045 		/*
1046 		 * For an EFI disk, the devid is at the beginning of
1047 		 * the reserved slice
1048 		 */
1049 		if (vd->efi_reserved == -1) {
1050 			PR0("EFI disk has no reserved slice");
1051 			return (ENOSPC);
1052 		}
1053 
1054 		*blkp = vd->slices[vd->efi_reserved].start;
1055 		return (0);
1056 	}
1057 
1058 	ASSERT(vd->vdisk_label == VD_DISK_LABEL_VTOC);
1059 
1060 	/* this geometry doesn't allow us to have a devid */
1061 	if (vd->dk_geom.dkg_acyl < 2) {
1062 		PR0("not enough alternate cylinder available for devid "
1063 		    "(acyl=%u)", vd->dk_geom.dkg_acyl);
1064 		return (ENOSPC);
1065 	}
1066 
1067 	/* the devid is in on the track next to the last cylinder */
1068 	cyl = vd->dk_geom.dkg_ncyl + vd->dk_geom.dkg_acyl - 2;
1069 	spc = vd->dk_geom.dkg_nhead * vd->dk_geom.dkg_nsect;
1070 	head = vd->dk_geom.dkg_nhead - 1;
1071 
1072 	*blkp = (cyl * (spc - vd->dk_geom.dkg_apc)) +
1073 	    (head * vd->dk_geom.dkg_nsect) + 1;
1074 
1075 	return (0);
1076 }
1077 
1078 /*
1079  * Return the checksum of a disk block containing an on-disk devid.
1080  */
1081 static uint_t
1082 vd_dkdevid2cksum(struct dk_devid *dkdevid)
1083 {
1084 	uint_t chksum, *ip;
1085 	int i;
1086 
1087 	chksum = 0;
1088 	ip = (void *)dkdevid;
1089 	for (i = 0; i < ((DEV_BSIZE - sizeof (int)) / sizeof (int)); i++)
1090 		chksum ^= ip[i];
1091 
1092 	return (chksum);
1093 }
1094 
1095 /*
1096  * Function:
1097  *	vd_file_read_devid
1098  *
1099  * Description:
1100  *	Read the device id stored on a disk image.
1101  *
1102  * Parameters:
1103  *	vd		- disk on which the operation is performed.
1104  *	devid		- the return address of the device ID.
1105  *
1106  * Return Code:
1107  *	0		- success
1108  *	EIO		- I/O error while trying to access the disk image
1109  *	EINVAL		- no valid device id was found
1110  *	ENOSPC		- disk has no space to store a device id
1111  */
1112 static int
1113 vd_file_read_devid(vd_t *vd, ddi_devid_t *devid)
1114 {
1115 	struct dk_devid *dkdevid;
1116 	size_t blk;
1117 	uint_t chksum;
1118 	int status, sz;
1119 
1120 	if ((status = vd_file_get_devid_block(vd, &blk)) != 0)
1121 		return (status);
1122 
1123 	dkdevid = kmem_zalloc(DEV_BSIZE, KM_SLEEP);
1124 
1125 	/* get the devid */
1126 	if ((vd_file_rw(vd, VD_SLICE_NONE, VD_OP_BREAD, (caddr_t)dkdevid, blk,
1127 	    DEV_BSIZE)) < 0) {
1128 		PR0("error reading devid block at %lu", blk);
1129 		status = EIO;
1130 		goto done;
1131 	}
1132 
1133 	/* validate the revision */
1134 	if ((dkdevid->dkd_rev_hi != DK_DEVID_REV_MSB) ||
1135 	    (dkdevid->dkd_rev_lo != DK_DEVID_REV_LSB)) {
1136 		PR0("invalid devid found at block %lu (bad revision)", blk);
1137 		status = EINVAL;
1138 		goto done;
1139 	}
1140 
1141 	/* compute checksum */
1142 	chksum = vd_dkdevid2cksum(dkdevid);
1143 
1144 	/* compare the checksums */
1145 	if (DKD_GETCHKSUM(dkdevid) != chksum) {
1146 		PR0("invalid devid found at block %lu (bad checksum)", blk);
1147 		status = EINVAL;
1148 		goto done;
1149 	}
1150 
1151 	/* validate the device id */
1152 	if (ddi_devid_valid((ddi_devid_t)&dkdevid->dkd_devid) != DDI_SUCCESS) {
1153 		PR0("invalid devid found at block %lu", blk);
1154 		status = EINVAL;
1155 		goto done;
1156 	}
1157 
1158 	PR1("devid read at block %lu", blk);
1159 
1160 	sz = ddi_devid_sizeof((ddi_devid_t)&dkdevid->dkd_devid);
1161 	*devid = kmem_alloc(sz, KM_SLEEP);
1162 	bcopy(&dkdevid->dkd_devid, *devid, sz);
1163 
1164 done:
1165 	kmem_free(dkdevid, DEV_BSIZE);
1166 	return (status);
1167 
1168 }
1169 
1170 /*
1171  * Function:
1172  *	vd_file_write_devid
1173  *
1174  * Description:
1175  *	Write a device id into disk image.
1176  *
1177  * Parameters:
1178  *	vd		- disk on which the operation is performed.
1179  *	devid		- the device ID to store.
1180  *
1181  * Return Code:
1182  *	0		- success
1183  *	EIO		- I/O error while trying to access the disk image
1184  *	ENOSPC		- disk has no space to store a device id
1185  */
1186 static int
1187 vd_file_write_devid(vd_t *vd, ddi_devid_t devid)
1188 {
1189 	struct dk_devid *dkdevid;
1190 	uint_t chksum;
1191 	size_t blk;
1192 	int status;
1193 
1194 	if (devid == NULL) {
1195 		/* nothing to write */
1196 		return (0);
1197 	}
1198 
1199 	if ((status = vd_file_get_devid_block(vd, &blk)) != 0)
1200 		return (status);
1201 
1202 	dkdevid = kmem_zalloc(DEV_BSIZE, KM_SLEEP);
1203 
1204 	/* set revision */
1205 	dkdevid->dkd_rev_hi = DK_DEVID_REV_MSB;
1206 	dkdevid->dkd_rev_lo = DK_DEVID_REV_LSB;
1207 
1208 	/* copy devid */
1209 	bcopy(devid, &dkdevid->dkd_devid, ddi_devid_sizeof(devid));
1210 
1211 	/* compute checksum */
1212 	chksum = vd_dkdevid2cksum(dkdevid);
1213 
1214 	/* set checksum */
1215 	DKD_FORMCHKSUM(chksum, dkdevid);
1216 
1217 	/* store the devid */
1218 	if ((status = vd_file_rw(vd, VD_SLICE_NONE, VD_OP_BWRITE,
1219 	    (caddr_t)dkdevid, blk, DEV_BSIZE)) < 0) {
1220 		PR0("Error writing devid block at %lu", blk);
1221 		status = EIO;
1222 	} else {
1223 		PR1("devid written at block %lu", blk);
1224 		status = 0;
1225 	}
1226 
1227 	kmem_free(dkdevid, DEV_BSIZE);
1228 	return (status);
1229 }
1230 
1231 /*
1232  * Function:
1233  *	vd_do_scsi_rdwr
1234  *
1235  * Description:
1236  * 	Read or write to a SCSI disk using an absolute disk offset.
1237  *
1238  * Parameters:
1239  *	vd		- disk on which the operation is performed.
1240  *	operation	- operation to execute: read (VD_OP_BREAD) or
1241  *			  write (VD_OP_BWRITE).
1242  *	data		- buffer where data are read to or written from.
1243  *	blk		- starting block for the operation.
1244  *	len		- number of bytes to read or write.
1245  *
1246  * Return Code:
1247  *	0		- success
1248  *	n != 0		- error.
1249  */
1250 static int
1251 vd_do_scsi_rdwr(vd_t *vd, int operation, caddr_t data, size_t blk, size_t len)
1252 {
1253 	struct uscsi_cmd ucmd;
1254 	union scsi_cdb cdb;
1255 	int nsectors, nblk;
1256 	int max_sectors;
1257 	int status, rval;
1258 
1259 	ASSERT(!vd->file);
1260 	ASSERT(vd->vdisk_block_size > 0);
1261 
1262 	max_sectors = vd->max_xfer_sz;
1263 	nblk = (len / vd->vdisk_block_size);
1264 
1265 	if (len % vd->vdisk_block_size != 0)
1266 		return (EINVAL);
1267 
1268 	/*
1269 	 * Build and execute the uscsi ioctl.  We build a group0, group1
1270 	 * or group4 command as necessary, since some targets
1271 	 * do not support group1 commands.
1272 	 */
1273 	while (nblk) {
1274 
1275 		bzero(&ucmd, sizeof (ucmd));
1276 		bzero(&cdb, sizeof (cdb));
1277 
1278 		nsectors = (max_sectors < nblk) ? max_sectors : nblk;
1279 
1280 		/*
1281 		 * Some of the optical drives on sun4v machines are ATAPI
1282 		 * devices which use Group 1 Read/Write commands so we need
1283 		 * to explicitly check a flag which is set when a domain
1284 		 * is bound.
1285 		 */
1286 		if (blk < (2 << 20) && nsectors <= 0xff && !vd->is_atapi_dev) {
1287 			FORMG0ADDR(&cdb, blk);
1288 			FORMG0COUNT(&cdb, (uchar_t)nsectors);
1289 			ucmd.uscsi_cdblen = CDB_GROUP0;
1290 		} else if (blk > 0xffffffff) {
1291 			FORMG4LONGADDR(&cdb, blk);
1292 			FORMG4COUNT(&cdb, nsectors);
1293 			ucmd.uscsi_cdblen = CDB_GROUP4;
1294 			cdb.scc_cmd |= SCMD_GROUP4;
1295 		} else {
1296 			FORMG1ADDR(&cdb, blk);
1297 			FORMG1COUNT(&cdb, nsectors);
1298 			ucmd.uscsi_cdblen = CDB_GROUP1;
1299 			cdb.scc_cmd |= SCMD_GROUP1;
1300 		}
1301 		ucmd.uscsi_cdb = (caddr_t)&cdb;
1302 		ucmd.uscsi_bufaddr = data;
1303 		ucmd.uscsi_buflen = nsectors * vd->block_size;
1304 		ucmd.uscsi_timeout = vd_scsi_rdwr_timeout;
1305 		/*
1306 		 * Set flags so that the command is isolated from normal
1307 		 * commands and no error message is printed.
1308 		 */
1309 		ucmd.uscsi_flags = USCSI_ISOLATE | USCSI_SILENT;
1310 
1311 		if (operation == VD_OP_BREAD) {
1312 			cdb.scc_cmd |= SCMD_READ;
1313 			ucmd.uscsi_flags |= USCSI_READ;
1314 		} else {
1315 			cdb.scc_cmd |= SCMD_WRITE;
1316 		}
1317 
1318 		status = ldi_ioctl(vd->ldi_handle[VD_ENTIRE_DISK_SLICE],
1319 		    USCSICMD, (intptr_t)&ucmd, (vd->open_flags | FKIOCTL),
1320 		    kcred, &rval);
1321 
1322 		if (status == 0)
1323 			status = ucmd.uscsi_status;
1324 
1325 		if (status != 0)
1326 			break;
1327 
1328 		/*
1329 		 * Check if partial DMA breakup is required. If so, reduce
1330 		 * the request size by half and retry the last request.
1331 		 */
1332 		if (ucmd.uscsi_resid == ucmd.uscsi_buflen) {
1333 			max_sectors >>= 1;
1334 			if (max_sectors <= 0) {
1335 				status = EIO;
1336 				break;
1337 			}
1338 			continue;
1339 		}
1340 
1341 		if (ucmd.uscsi_resid != 0) {
1342 			status = EIO;
1343 			break;
1344 		}
1345 
1346 		blk += nsectors;
1347 		nblk -= nsectors;
1348 		data += nsectors * vd->vdisk_block_size; /* SECSIZE */
1349 	}
1350 
1351 	return (status);
1352 }
1353 
1354 /*
1355  * Function:
1356  *	vd_scsi_rdwr
1357  *
1358  * Description:
1359  * 	Wrapper function to read or write to a SCSI disk using an absolute
1360  *	disk offset. It checks the blocksize of the underlying device and,
1361  *	if necessary, adjusts the buffers accordingly before calling
1362  *	vd_do_scsi_rdwr() to do the actual read or write.
1363  *
1364  * Parameters:
1365  *	vd		- disk on which the operation is performed.
1366  *	operation	- operation to execute: read (VD_OP_BREAD) or
1367  *			  write (VD_OP_BWRITE).
1368  *	data		- buffer where data are read to or written from.
1369  *	blk		- starting block for the operation.
1370  *	len		- number of bytes to read or write.
1371  *
1372  * Return Code:
1373  *	0		- success
1374  *	n != 0		- error.
1375  */
1376 static int
1377 vd_scsi_rdwr(vd_t *vd, int operation, caddr_t data, size_t vblk, size_t vlen)
1378 {
1379 	int	rv;
1380 
1381 	size_t	pblk;	/* physical device block number of data on device */
1382 	size_t	delta;	/* relative offset between pblk and vblk */
1383 	size_t	pnblk;	/* number of physical blocks to be read from device */
1384 	size_t	plen;	/* length of data to be read from physical device */
1385 	char	*buf;	/* buffer area to fit physical device's block size */
1386 
1387 	if (vd->block_size == 0) {
1388 		/*
1389 		 * The block size was not available during the attach,
1390 		 * try to update it now.
1391 		 */
1392 		if (vd_backend_check_size(vd) != 0)
1393 			return (EIO);
1394 	}
1395 
1396 	/*
1397 	 * If the vdisk block size and the block size of the underlying device
1398 	 * match we can skip straight to vd_do_scsi_rdwr(), otherwise we need
1399 	 * to create a buffer large enough to handle the device's block size
1400 	 * and adjust the block to be read from and the amount of data to
1401 	 * read to correspond with the device's block size.
1402 	 */
1403 	if (vd->vdisk_block_size == vd->block_size)
1404 		return (vd_do_scsi_rdwr(vd, operation, data, vblk, vlen));
1405 
1406 	if (vd->vdisk_block_size > vd->block_size)
1407 		return (EINVAL);
1408 
1409 	/*
1410 	 * Writing of physical block sizes larger than the virtual block size
1411 	 * is not supported. This would be added if/when support for guests
1412 	 * writing to DVDs is implemented.
1413 	 */
1414 	if (operation == VD_OP_BWRITE)
1415 		return (ENOTSUP);
1416 
1417 	/* BEGIN CSTYLED */
1418 	/*
1419 	 * Below is a diagram showing the relationship between the physical
1420 	 * and virtual blocks. If the virtual blocks marked by 'X' below are
1421 	 * requested, then the physical blocks denoted by 'Y' are read.
1422 	 *
1423 	 *           vblk
1424 	 *             |      vlen
1425 	 *             |<--------------->|
1426 	 *             v                 v
1427 	 *  --+--+--+--+--+--+--+--+--+--+--+--+--+--+--+-   virtual disk:
1428 	 *    |  |  |  |XX|XX|XX|XX|XX|XX|  |  |  |  |  |  } block size is
1429 	 *  --+--+--+--+--+--+--+--+--+--+--+--+--+--+--+-  vd->vdisk_block_size
1430 	 *          :  :                 :  :
1431 	 *         >:==:< delta          :  :
1432 	 *          :  :                 :  :
1433 	 *  --+-----+-----+-----+-----+-----+-----+-----+--   physical disk:
1434 	 *    |     |YY:YY|YYYYY|YYYYY|YY:YY|     |     |   } block size is
1435 	 *  --+-----+-----+-----+-----+-----+-----+-----+--   vd->block_size
1436 	 *          ^                       ^
1437 	 *          |<--------------------->|
1438 	 *          |         plen
1439 	 *         pblk
1440 	 */
1441 	/* END CSTYLED */
1442 	pblk = (vblk * vd->vdisk_block_size) / vd->block_size;
1443 	delta = (vblk * vd->vdisk_block_size) - (pblk * vd->block_size);
1444 	pnblk = ((delta + vlen - 1) / vd->block_size) + 1;
1445 	plen = pnblk * vd->block_size;
1446 
1447 	PR2("vblk %lx:pblk %lx: vlen %ld:plen %ld", vblk, pblk, vlen, plen);
1448 
1449 	buf = kmem_zalloc(sizeof (caddr_t) * plen, KM_SLEEP);
1450 	rv = vd_do_scsi_rdwr(vd, operation, (caddr_t)buf, pblk, plen);
1451 	bcopy(buf + delta, data, vlen);
1452 
1453 	kmem_free(buf, sizeof (caddr_t) * plen);
1454 
1455 	return (rv);
1456 }
1457 
1458 /*
1459  * Function:
1460  *	vd_slice_flabel_read
1461  *
1462  * Description:
1463  *	This function simulates a read operation from the fake label of
1464  *	a single-slice disk.
1465  *
1466  * Parameters:
1467  *	vd		- single-slice disk to read from
1468  *	data		- buffer where data should be read to
1469  *	offset		- offset in byte where the read should start
1470  *	length		- number of bytes to read
1471  *
1472  * Return Code:
1473  *	n >= 0		- success, n indicates the number of bytes read
1474  *	-1		- error
1475  */
1476 static ssize_t
1477 vd_slice_flabel_read(vd_t *vd, caddr_t data, size_t offset, size_t length)
1478 {
1479 	size_t n = 0;
1480 	uint_t limit = vd->flabel_limit * DEV_BSIZE;
1481 
1482 	ASSERT(vd->vdisk_type == VD_DISK_TYPE_SLICE);
1483 	ASSERT(vd->flabel != NULL);
1484 
1485 	/* if offset is past the fake label limit there's nothing to read */
1486 	if (offset >= limit)
1487 		return (0);
1488 
1489 	/* data with offset 0 to flabel_size are read from flabel */
1490 	if (offset < vd->flabel_size) {
1491 
1492 		if (offset + length <= vd->flabel_size) {
1493 			bcopy(vd->flabel + offset, data, length);
1494 			return (length);
1495 		}
1496 
1497 		n = vd->flabel_size - offset;
1498 		bcopy(vd->flabel + offset, data, n);
1499 		data += n;
1500 	}
1501 
1502 	/* data with offset from flabel_size to flabel_limit are all zeros */
1503 	if (offset + length <= limit) {
1504 		bzero(data, length - n);
1505 		return (length);
1506 	}
1507 
1508 	bzero(data, limit - offset - n);
1509 	return (limit - offset);
1510 }
1511 
1512 /*
1513  * Function:
1514  *	vd_slice_flabel_write
1515  *
1516  * Description:
1517  *	This function simulates a write operation to the fake label of
1518  *	a single-slice disk. Write operations are actually faked and return
1519  *	success although the label is never changed. This is mostly to
1520  *	simulate a successful label update.
1521  *
1522  * Parameters:
1523  *	vd		- single-slice disk to write to
1524  *	data		- buffer where data should be written from
1525  *	offset		- offset in byte where the write should start
1526  *	length		- number of bytes to written
1527  *
1528  * Return Code:
1529  *	n >= 0		- success, n indicates the number of bytes written
1530  *	-1		- error
1531  */
1532 static ssize_t
1533 vd_slice_flabel_write(vd_t *vd, caddr_t data, size_t offset, size_t length)
1534 {
1535 	uint_t limit = vd->flabel_limit * DEV_BSIZE;
1536 	struct dk_label *label;
1537 	struct dk_geom geom;
1538 	struct extvtoc vtoc;
1539 
1540 	ASSERT(vd->vdisk_type == VD_DISK_TYPE_SLICE);
1541 	ASSERT(vd->flabel != NULL);
1542 
1543 	if (offset >= limit)
1544 		return (0);
1545 
1546 	/*
1547 	 * If this is a request to overwrite the VTOC disk label, check that
1548 	 * the new label is similar to the previous one and return that the
1549 	 * write was successful, but note that nothing is actually overwritten.
1550 	 */
1551 	if (vd->vdisk_label == VD_DISK_LABEL_VTOC &&
1552 	    offset == 0 && length == DEV_BSIZE) {
1553 		label = (void *)data;
1554 
1555 		/* check that this is a valid label */
1556 		if (label->dkl_magic != DKL_MAGIC ||
1557 		    label->dkl_cksum != vd_lbl2cksum(label))
1558 			return (-1);
1559 
1560 		/* check the vtoc and geometry */
1561 		vd_label_to_vtocgeom(label, &vtoc, &geom);
1562 		if (vd_slice_geom_isvalid(vd, &geom) &&
1563 		    vd_slice_vtoc_isvalid(vd, &vtoc))
1564 			return (length);
1565 	}
1566 
1567 	/* fail any other write */
1568 	return (-1);
1569 }
1570 
1571 /*
1572  * Function:
1573  *	vd_slice_fake_rdwr
1574  *
1575  * Description:
1576  *	This function simulates a raw read or write operation to a single-slice
1577  *	disk. It only handles the faked part of the operation i.e. I/Os to
1578  *	blocks which have no mapping with the vdisk backend (I/Os to the
1579  *	beginning and to the end of the vdisk).
1580  *
1581  *	The function returns 0 is the operation	is completed and it has been
1582  *	entirely handled as a fake read or write. In that case, lengthp points
1583  *	to the number of bytes not read or written. Values returned by datap
1584  *	and blkp are undefined.
1585  *
1586  *	If the fake operation has succeeded but the read or write is not
1587  *	complete (i.e. the read/write operation extends beyond the blocks
1588  *	we fake) then the function returns EAGAIN and datap, blkp and lengthp
1589  *	pointers points to the parameters for completing the operation.
1590  *
1591  *	In case of an error, for example if the slice is empty or parameters
1592  *	are invalid, then the function returns a non-zero value different
1593  *	from EAGAIN. In that case, the returned values of datap, blkp and
1594  *	lengthp are undefined.
1595  *
1596  * Parameters:
1597  *	vd		- single-slice disk on which the operation is performed
1598  *	slice		- slice on which the operation is performed,
1599  *			  VD_SLICE_NONE indicates that the operation
1600  *			  is done using an absolute disk offset.
1601  *	operation	- operation to execute: read (VD_OP_BREAD) or
1602  *			  write (VD_OP_BWRITE).
1603  *	datap		- pointer to the buffer where data are read to
1604  *			  or written from. Return the pointer where remaining
1605  *			  data have to be read to or written from.
1606  *	blkp		- pointer to the starting block for the operation.
1607  *			  Return the starting block relative to the vdisk
1608  *			  backend for the remaining operation.
1609  *	lengthp		- pointer to the number of bytes to read or write.
1610  *			  This should be a multiple of DEV_BSIZE. Return the
1611  *			  remaining number of bytes to read or write.
1612  *
1613  * Return Code:
1614  *	0		- read/write operation is completed
1615  *	EAGAIN		- read/write operation is not completed
1616  *	other values	- error
1617  */
1618 static int
1619 vd_slice_fake_rdwr(vd_t *vd, int slice, int operation, caddr_t *datap,
1620     size_t *blkp, size_t *lengthp)
1621 {
1622 	struct dk_label *label;
1623 	caddr_t data;
1624 	size_t blk, length, csize;
1625 	size_t ablk, asize, aoff, alen;
1626 	ssize_t n;
1627 	int sec, status;
1628 
1629 	ASSERT(vd->vdisk_type == VD_DISK_TYPE_SLICE);
1630 	ASSERT(slice != 0);
1631 
1632 	data = *datap;
1633 	blk = *blkp;
1634 	length = *lengthp;
1635 
1636 	/*
1637 	 * If this is not a raw I/O or an I/O from a full disk slice then
1638 	 * this is an I/O to/from an empty slice.
1639 	 */
1640 	if (slice != VD_SLICE_NONE &&
1641 	    (slice != VD_ENTIRE_DISK_SLICE ||
1642 	    vd->vdisk_label != VD_DISK_LABEL_VTOC) &&
1643 	    (slice != VD_EFI_WD_SLICE ||
1644 	    vd->vdisk_label != VD_DISK_LABEL_EFI)) {
1645 		return (EIO);
1646 	}
1647 
1648 	if (length % DEV_BSIZE != 0)
1649 		return (EINVAL);
1650 
1651 	/* handle any I/O with the fake label */
1652 	if (operation == VD_OP_BWRITE)
1653 		n = vd_slice_flabel_write(vd, data, blk * DEV_BSIZE, length);
1654 	else
1655 		n = vd_slice_flabel_read(vd, data, blk * DEV_BSIZE, length);
1656 
1657 	if (n == -1)
1658 		return (EINVAL);
1659 
1660 	ASSERT(n % DEV_BSIZE == 0);
1661 
1662 	/* adjust I/O arguments */
1663 	data += n;
1664 	blk += n / DEV_BSIZE;
1665 	length -= n;
1666 
1667 	/* check if there's something else to process */
1668 	if (length == 0) {
1669 		status = 0;
1670 		goto done;
1671 	}
1672 
1673 	if (vd->vdisk_label == VD_DISK_LABEL_VTOC &&
1674 	    slice == VD_ENTIRE_DISK_SLICE) {
1675 		status = EAGAIN;
1676 		goto done;
1677 	}
1678 
1679 	if (vd->vdisk_label == VD_DISK_LABEL_EFI) {
1680 		asize = EFI_MIN_RESV_SIZE + 33;
1681 		ablk = vd->vdisk_size - asize;
1682 	} else {
1683 		ASSERT(vd->vdisk_label == VD_DISK_LABEL_VTOC);
1684 		ASSERT(vd->dk_geom.dkg_apc == 0);
1685 
1686 		csize = vd->dk_geom.dkg_nhead * vd->dk_geom.dkg_nsect;
1687 		ablk = vd->dk_geom.dkg_ncyl * csize;
1688 		asize = vd->dk_geom.dkg_acyl * csize;
1689 	}
1690 
1691 	alen = length / DEV_BSIZE;
1692 	aoff = blk;
1693 
1694 	/* if we have reached the last block then the I/O is completed */
1695 	if (aoff == ablk + asize) {
1696 		status = 0;
1697 		goto done;
1698 	}
1699 
1700 	/* if we are past the last block then return an error */
1701 	if (aoff > ablk + asize)
1702 		return (EIO);
1703 
1704 	/* check if there is any I/O to end of the disk */
1705 	if (aoff + alen < ablk) {
1706 		status = EAGAIN;
1707 		goto done;
1708 	}
1709 
1710 	/* we don't allow any write to the end of the disk */
1711 	if (operation == VD_OP_BWRITE)
1712 		return (EIO);
1713 
1714 	if (aoff < ablk) {
1715 		alen -= (ablk - aoff);
1716 		aoff = ablk;
1717 	}
1718 
1719 	if (aoff + alen > ablk + asize) {
1720 		alen = ablk + asize - aoff;
1721 	}
1722 
1723 	alen *= DEV_BSIZE;
1724 
1725 	if (operation == VD_OP_BREAD) {
1726 		bzero(data + (aoff - blk) * DEV_BSIZE, alen);
1727 
1728 		if (vd->vdisk_label == VD_DISK_LABEL_VTOC) {
1729 			/* check if we read backup labels */
1730 			label = VD_LABEL_VTOC(vd);
1731 			ablk += (label->dkl_acyl - 1) * csize +
1732 			    (label->dkl_nhead - 1) * label->dkl_nsect;
1733 
1734 			for (sec = 1; (sec < 5 * 2 + 1); sec += 2) {
1735 
1736 				if (ablk + sec >= blk &&
1737 				    ablk + sec < blk + (length / DEV_BSIZE)) {
1738 					bcopy(label, data +
1739 					    (ablk + sec - blk) * DEV_BSIZE,
1740 					    sizeof (struct dk_label));
1741 				}
1742 			}
1743 		}
1744 	}
1745 
1746 	length -= alen;
1747 
1748 	status = (length == 0)? 0: EAGAIN;
1749 
1750 done:
1751 	ASSERT(length == 0 || blk >= vd->flabel_limit);
1752 
1753 	/*
1754 	 * Return the parameters for the remaining I/O. The starting block is
1755 	 * adjusted so that it is relative to the vdisk backend.
1756 	 */
1757 	*datap = data;
1758 	*blkp = blk - vd->flabel_limit;
1759 	*lengthp = length;
1760 
1761 	return (status);
1762 }
1763 
1764 /*
1765  * Return Values
1766  *	EINPROGRESS	- operation was successfully started
1767  *	EIO		- encountered LDC (aka. task error)
1768  *	0		- operation completed successfully
1769  *
1770  * Side Effect
1771  *     sets request->status = <disk operation status>
1772  */
1773 static int
1774 vd_start_bio(vd_task_t *task)
1775 {
1776 	int			rv, status = 0;
1777 	vd_t			*vd		= task->vd;
1778 	vd_dring_payload_t	*request	= task->request;
1779 	struct buf		*buf		= &task->buf;
1780 	uint8_t			mtype;
1781 	int 			slice;
1782 	char			*bufaddr = 0;
1783 	size_t			buflen;
1784 	size_t			offset, length, nbytes;
1785 
1786 	ASSERT(vd != NULL);
1787 	ASSERT(request != NULL);
1788 
1789 	slice = request->slice;
1790 
1791 	ASSERT(slice == VD_SLICE_NONE || slice < vd->nslices);
1792 	ASSERT((request->operation == VD_OP_BREAD) ||
1793 	    (request->operation == VD_OP_BWRITE));
1794 
1795 	if (request->nbytes == 0) {
1796 		/* no service for trivial requests */
1797 		request->status = EINVAL;
1798 		return (0);
1799 	}
1800 
1801 	PR1("%s %lu bytes at block %lu",
1802 	    (request->operation == VD_OP_BREAD) ? "Read" : "Write",
1803 	    request->nbytes, request->addr);
1804 
1805 	/*
1806 	 * We have to check the open flags because the functions processing
1807 	 * the read/write request will not do it.
1808 	 */
1809 	if (request->operation == VD_OP_BWRITE && !(vd->open_flags & FWRITE)) {
1810 		PR0("write fails because backend is opened read-only");
1811 		request->nbytes = 0;
1812 		request->status = EROFS;
1813 		return (0);
1814 	}
1815 
1816 	mtype = (&vd->inband_task == task) ? LDC_SHADOW_MAP : LDC_DIRECT_MAP;
1817 
1818 	/* Map memory exported by client */
1819 	status = ldc_mem_map(task->mhdl, request->cookie, request->ncookies,
1820 	    mtype, (request->operation == VD_OP_BREAD) ? LDC_MEM_W : LDC_MEM_R,
1821 	    &bufaddr, NULL);
1822 	if (status != 0) {
1823 		PR0("ldc_mem_map() returned err %d ", status);
1824 		return (EIO);
1825 	}
1826 
1827 	/*
1828 	 * The buffer size has to be 8-byte aligned, so the client should have
1829 	 * sent a buffer which size is roundup to the next 8-byte aligned value.
1830 	 */
1831 	buflen = P2ROUNDUP(request->nbytes, 8);
1832 
1833 	status = ldc_mem_acquire(task->mhdl, 0, buflen);
1834 	if (status != 0) {
1835 		(void) ldc_mem_unmap(task->mhdl);
1836 		PR0("ldc_mem_acquire() returned err %d ", status);
1837 		return (EIO);
1838 	}
1839 
1840 	offset = request->addr;
1841 	nbytes = request->nbytes;
1842 	length = nbytes;
1843 
1844 	/* default number of byte returned by the I/O */
1845 	request->nbytes = 0;
1846 
1847 	if (vd->vdisk_type == VD_DISK_TYPE_SLICE) {
1848 
1849 		if (slice != 0) {
1850 			/* handle any fake I/O */
1851 			rv = vd_slice_fake_rdwr(vd, slice, request->operation,
1852 			    &bufaddr, &offset, &length);
1853 
1854 			/* record the number of bytes from the fake I/O */
1855 			request->nbytes = nbytes - length;
1856 
1857 			if (rv == 0) {
1858 				request->status = 0;
1859 				goto io_done;
1860 			}
1861 
1862 			if (rv != EAGAIN) {
1863 				request->nbytes = 0;
1864 				request->status = EIO;
1865 				goto io_done;
1866 			}
1867 
1868 			/*
1869 			 * If we return with EAGAIN then this means that there
1870 			 * are still data to read or write.
1871 			 */
1872 			ASSERT(length != 0);
1873 
1874 			/*
1875 			 * We need to continue the I/O from the slice backend to
1876 			 * complete the request. The variables bufaddr, offset
1877 			 * and length have been adjusted to have the right
1878 			 * information to do the remaining I/O from the backend.
1879 			 * The backend is entirely mapped to slice 0 so we just
1880 			 * have to complete the I/O from that slice.
1881 			 */
1882 			slice = 0;
1883 		}
1884 
1885 	} else if ((slice == VD_SLICE_NONE) && (!vd->file)) {
1886 
1887 		/*
1888 		 * This is not a disk image so it is a real disk. We
1889 		 * assume that the underlying device driver supports
1890 		 * USCSICMD ioctls. This is the case of all SCSI devices
1891 		 * (sd, ssd...).
1892 		 *
1893 		 * In the future if we have non-SCSI disks we would need
1894 		 * to invoke the appropriate function to do I/O using an
1895 		 * absolute disk offset (for example using DIOCTL_RWCMD
1896 		 * for IDE disks).
1897 		 */
1898 		rv = vd_scsi_rdwr(vd, request->operation, bufaddr, offset,
1899 		    length);
1900 		if (rv != 0) {
1901 			request->status = EIO;
1902 		} else {
1903 			request->nbytes = length;
1904 			request->status = 0;
1905 		}
1906 		goto io_done;
1907 	}
1908 
1909 	/* Start the block I/O */
1910 	if (vd->file) {
1911 		rv = vd_file_rw(vd, slice, request->operation, bufaddr, offset,
1912 		    length);
1913 		if (rv < 0) {
1914 			request->nbytes = 0;
1915 			request->status = EIO;
1916 		} else {
1917 			request->nbytes += rv;
1918 			request->status = 0;
1919 		}
1920 	} else {
1921 		bioinit(buf);
1922 		buf->b_flags	= B_BUSY;
1923 		buf->b_bcount	= length;
1924 		buf->b_lblkno	= offset;
1925 		buf->b_bufsize	= buflen;
1926 		buf->b_edev 	= vd->dev[slice];
1927 		buf->b_un.b_addr = bufaddr;
1928 		buf->b_flags 	|= (request->operation == VD_OP_BREAD)?
1929 		    B_READ : B_WRITE;
1930 
1931 		request->status = ldi_strategy(vd->ldi_handle[slice], buf);
1932 
1933 		/*
1934 		 * This is to indicate to the caller that the request
1935 		 * needs to be finished by vd_complete_bio() by calling
1936 		 * biowait() there and waiting for that to return before
1937 		 * triggering the notification of the vDisk client.
1938 		 *
1939 		 * This is necessary when writing to real disks as
1940 		 * otherwise calls to ldi_strategy() would be serialized
1941 		 * behind the calls to biowait() and performance would
1942 		 * suffer.
1943 		 */
1944 		if (request->status == 0)
1945 			return (EINPROGRESS);
1946 
1947 		biofini(buf);
1948 	}
1949 
1950 io_done:
1951 	/* Clean up after error or completion */
1952 	rv = ldc_mem_release(task->mhdl, 0, buflen);
1953 	if (rv) {
1954 		PR0("ldc_mem_release() returned err %d ", rv);
1955 		status = EIO;
1956 	}
1957 	rv = ldc_mem_unmap(task->mhdl);
1958 	if (rv) {
1959 		PR0("ldc_mem_unmap() returned err %d ", rv);
1960 		status = EIO;
1961 	}
1962 
1963 	return (status);
1964 }
1965 
1966 /*
1967  * This function should only be called from vd_notify to ensure that requests
1968  * are responded to in the order that they are received.
1969  */
1970 static int
1971 send_msg(ldc_handle_t ldc_handle, void *msg, size_t msglen)
1972 {
1973 	int	status;
1974 	size_t	nbytes;
1975 
1976 	do {
1977 		nbytes = msglen;
1978 		status = ldc_write(ldc_handle, msg, &nbytes);
1979 		if (status != EWOULDBLOCK)
1980 			break;
1981 		drv_usecwait(vds_ldc_delay);
1982 	} while (status == EWOULDBLOCK);
1983 
1984 	if (status != 0) {
1985 		if (status != ECONNRESET)
1986 			PR0("ldc_write() returned errno %d", status);
1987 		return (status);
1988 	} else if (nbytes != msglen) {
1989 		PR0("ldc_write() performed only partial write");
1990 		return (EIO);
1991 	}
1992 
1993 	PR1("SENT %lu bytes", msglen);
1994 	return (0);
1995 }
1996 
1997 static void
1998 vd_need_reset(vd_t *vd, boolean_t reset_ldc)
1999 {
2000 	mutex_enter(&vd->lock);
2001 	vd->reset_state	= B_TRUE;
2002 	vd->reset_ldc	= reset_ldc;
2003 	mutex_exit(&vd->lock);
2004 }
2005 
2006 /*
2007  * Reset the state of the connection with a client, if needed; reset the LDC
2008  * transport as well, if needed.  This function should only be called from the
2009  * "vd_recv_msg", as it waits for tasks - otherwise a deadlock can occur.
2010  */
2011 static void
2012 vd_reset_if_needed(vd_t *vd)
2013 {
2014 	int	status = 0;
2015 
2016 	mutex_enter(&vd->lock);
2017 	if (!vd->reset_state) {
2018 		ASSERT(!vd->reset_ldc);
2019 		mutex_exit(&vd->lock);
2020 		return;
2021 	}
2022 	mutex_exit(&vd->lock);
2023 
2024 	PR0("Resetting connection state with %s", VD_CLIENT(vd));
2025 
2026 	/*
2027 	 * Let any asynchronous I/O complete before possibly pulling the rug
2028 	 * out from under it; defer checking vd->reset_ldc, as one of the
2029 	 * asynchronous tasks might set it
2030 	 */
2031 	ddi_taskq_wait(vd->completionq);
2032 
2033 	if (vd->file) {
2034 		status = VOP_FSYNC(vd->file_vnode, FSYNC, kcred, NULL);
2035 		if (status) {
2036 			PR0("VOP_FSYNC returned errno %d", status);
2037 		}
2038 	}
2039 
2040 	if ((vd->initialized & VD_DRING) &&
2041 	    ((status = ldc_mem_dring_unmap(vd->dring_handle)) != 0))
2042 		PR0("ldc_mem_dring_unmap() returned errno %d", status);
2043 
2044 	vd_free_dring_task(vd);
2045 
2046 	/* Free the staging buffer for msgs */
2047 	if (vd->vio_msgp != NULL) {
2048 		kmem_free(vd->vio_msgp, vd->max_msglen);
2049 		vd->vio_msgp = NULL;
2050 	}
2051 
2052 	/* Free the inband message buffer */
2053 	if (vd->inband_task.msg != NULL) {
2054 		kmem_free(vd->inband_task.msg, vd->max_msglen);
2055 		vd->inband_task.msg = NULL;
2056 	}
2057 
2058 	mutex_enter(&vd->lock);
2059 
2060 	if (vd->reset_ldc)
2061 		PR0("taking down LDC channel");
2062 	if (vd->reset_ldc && ((status = ldc_down(vd->ldc_handle)) != 0))
2063 		PR0("ldc_down() returned errno %d", status);
2064 
2065 	/* Reset exclusive access rights */
2066 	vd_reset_access(vd);
2067 
2068 	vd->initialized	&= ~(VD_SID | VD_SEQ_NUM | VD_DRING);
2069 	vd->state	= VD_STATE_INIT;
2070 	vd->max_msglen	= sizeof (vio_msg_t);	/* baseline vio message size */
2071 
2072 	/* Allocate the staging buffer */
2073 	vd->vio_msgp = kmem_alloc(vd->max_msglen, KM_SLEEP);
2074 
2075 	PR0("calling ldc_up\n");
2076 	(void) ldc_up(vd->ldc_handle);
2077 
2078 	vd->reset_state	= B_FALSE;
2079 	vd->reset_ldc	= B_FALSE;
2080 
2081 	mutex_exit(&vd->lock);
2082 }
2083 
2084 static void vd_recv_msg(void *arg);
2085 
2086 static void
2087 vd_mark_in_reset(vd_t *vd)
2088 {
2089 	int status;
2090 
2091 	PR0("vd_mark_in_reset: marking vd in reset\n");
2092 
2093 	vd_need_reset(vd, B_FALSE);
2094 	status = ddi_taskq_dispatch(vd->startq, vd_recv_msg, vd, DDI_SLEEP);
2095 	if (status == DDI_FAILURE) {
2096 		PR0("cannot schedule task to recv msg\n");
2097 		vd_need_reset(vd, B_TRUE);
2098 		return;
2099 	}
2100 }
2101 
2102 static int
2103 vd_mark_elem_done(vd_t *vd, int idx, int elem_status, int elem_nbytes)
2104 {
2105 	boolean_t		accepted;
2106 	int			status;
2107 	on_trap_data_t		otd;
2108 	vd_dring_entry_t	*elem = VD_DRING_ELEM(idx);
2109 
2110 	if (vd->reset_state)
2111 		return (0);
2112 
2113 	/* Acquire the element */
2114 	if ((status = VIO_DRING_ACQUIRE(&otd, vd->dring_mtype,
2115 	    vd->dring_handle, idx, idx)) != 0) {
2116 		if (status == ECONNRESET) {
2117 			vd_mark_in_reset(vd);
2118 			return (0);
2119 		} else {
2120 			return (status);
2121 		}
2122 	}
2123 
2124 	/* Set the element's status and mark it done */
2125 	accepted = (elem->hdr.dstate == VIO_DESC_ACCEPTED);
2126 	if (accepted) {
2127 		elem->payload.nbytes	= elem_nbytes;
2128 		elem->payload.status	= elem_status;
2129 		elem->hdr.dstate	= VIO_DESC_DONE;
2130 	} else {
2131 		/* Perhaps client timed out waiting for I/O... */
2132 		PR0("element %u no longer \"accepted\"", idx);
2133 		VD_DUMP_DRING_ELEM(elem);
2134 	}
2135 	/* Release the element */
2136 	if ((status = VIO_DRING_RELEASE(vd->dring_mtype,
2137 	    vd->dring_handle, idx, idx)) != 0) {
2138 		if (status == ECONNRESET) {
2139 			vd_mark_in_reset(vd);
2140 			return (0);
2141 		} else {
2142 			PR0("VIO_DRING_RELEASE() returned errno %d",
2143 			    status);
2144 			return (status);
2145 		}
2146 	}
2147 
2148 	return (accepted ? 0 : EINVAL);
2149 }
2150 
2151 /*
2152  * Return Values
2153  *	0	- operation completed successfully
2154  *	EIO	- encountered LDC / task error
2155  *
2156  * Side Effect
2157  *	sets request->status = <disk operation status>
2158  */
2159 static int
2160 vd_complete_bio(vd_task_t *task)
2161 {
2162 	int			status		= 0;
2163 	int			rv		= 0;
2164 	vd_t			*vd		= task->vd;
2165 	vd_dring_payload_t	*request	= task->request;
2166 	struct buf		*buf		= &task->buf;
2167 
2168 
2169 	ASSERT(vd != NULL);
2170 	ASSERT(request != NULL);
2171 	ASSERT(task->msg != NULL);
2172 	ASSERT(task->msglen >= sizeof (*task->msg));
2173 	ASSERT(!vd->file);
2174 	ASSERT(request->slice != VD_SLICE_NONE || (!vd_slice_single_slice &&
2175 	    vd->vdisk_type == VD_DISK_TYPE_SLICE));
2176 
2177 	/* Wait for the I/O to complete [ call to ldi_strategy(9f) ] */
2178 	request->status = biowait(buf);
2179 
2180 	/* Update the number of bytes read/written */
2181 	request->nbytes += buf->b_bcount - buf->b_resid;
2182 
2183 	/* Release the buffer */
2184 	if (!vd->reset_state)
2185 		status = ldc_mem_release(task->mhdl, 0, buf->b_bufsize);
2186 	if (status) {
2187 		PR0("ldc_mem_release() returned errno %d copying to "
2188 		    "client", status);
2189 		if (status == ECONNRESET) {
2190 			vd_mark_in_reset(vd);
2191 		}
2192 		rv = EIO;
2193 	}
2194 
2195 	/* Unmap the memory, even if in reset */
2196 	status = ldc_mem_unmap(task->mhdl);
2197 	if (status) {
2198 		PR0("ldc_mem_unmap() returned errno %d copying to client",
2199 		    status);
2200 		if (status == ECONNRESET) {
2201 			vd_mark_in_reset(vd);
2202 		}
2203 		rv = EIO;
2204 	}
2205 
2206 	biofini(buf);
2207 
2208 	return (rv);
2209 }
2210 
2211 /*
2212  * Description:
2213  *	This function is called by the two functions called by a taskq
2214  *	[ vd_complete_notify() and vd_serial_notify()) ] to send the
2215  *	message to the client.
2216  *
2217  * Parameters:
2218  *	arg 	- opaque pointer to structure containing task to be completed
2219  *
2220  * Return Values
2221  *	None
2222  */
2223 static void
2224 vd_notify(vd_task_t *task)
2225 {
2226 	int	status;
2227 
2228 	ASSERT(task != NULL);
2229 	ASSERT(task->vd != NULL);
2230 
2231 	/*
2232 	 * Send the "ack" or "nack" back to the client; if sending the message
2233 	 * via LDC fails, arrange to reset both the connection state and LDC
2234 	 * itself
2235 	 */
2236 	PR2("Sending %s",
2237 	    (task->msg->tag.vio_subtype == VIO_SUBTYPE_ACK) ? "ACK" : "NACK");
2238 
2239 	status = send_msg(task->vd->ldc_handle, task->msg, task->msglen);
2240 	switch (status) {
2241 	case 0:
2242 		break;
2243 	case ECONNRESET:
2244 		vd_mark_in_reset(task->vd);
2245 		break;
2246 	default:
2247 		PR0("initiating full reset");
2248 		vd_need_reset(task->vd, B_TRUE);
2249 		break;
2250 	}
2251 
2252 	DTRACE_PROBE1(task__end, vd_task_t *, task);
2253 }
2254 
2255 /*
2256  * Description:
2257  *	Mark the Dring entry as Done and (if necessary) send an ACK/NACK to
2258  *	the vDisk client
2259  *
2260  * Parameters:
2261  *	task 		- structure containing the request sent from client
2262  *
2263  * Return Values
2264  *	None
2265  */
2266 static void
2267 vd_complete_notify(vd_task_t *task)
2268 {
2269 	int			status		= 0;
2270 	vd_t			*vd		= task->vd;
2271 	vd_dring_payload_t	*request	= task->request;
2272 
2273 	/* Update the dring element for a dring client */
2274 	if (!vd->reset_state && (vd->xfer_mode == VIO_DRING_MODE_V1_0)) {
2275 		status = vd_mark_elem_done(vd, task->index,
2276 		    request->status, request->nbytes);
2277 		if (status == ECONNRESET)
2278 			vd_mark_in_reset(vd);
2279 		else if (status == EACCES)
2280 			vd_need_reset(vd, B_TRUE);
2281 	}
2282 
2283 	/*
2284 	 * If a transport error occurred while marking the element done or
2285 	 * previously while executing the task, arrange to "nack" the message
2286 	 * when the final task in the descriptor element range completes
2287 	 */
2288 	if ((status != 0) || (task->status != 0))
2289 		task->msg->tag.vio_subtype = VIO_SUBTYPE_NACK;
2290 
2291 	/*
2292 	 * Only the final task for a range of elements will respond to and
2293 	 * free the message
2294 	 */
2295 	if (task->type == VD_NONFINAL_RANGE_TASK) {
2296 		return;
2297 	}
2298 
2299 	/*
2300 	 * We should only send an ACK/NACK here if we are not currently in
2301 	 * reset as, depending on how we reset, the dring may have been
2302 	 * blown away and we don't want to ACK/NACK a message that isn't
2303 	 * there.
2304 	 */
2305 	if (!vd->reset_state)
2306 		vd_notify(task);
2307 }
2308 
2309 /*
2310  * Description:
2311  *	This is the basic completion function called to handle inband data
2312  *	requests and handshake messages. All it needs to do is trigger a
2313  *	message to the client that the request is completed.
2314  *
2315  * Parameters:
2316  *	arg 	- opaque pointer to structure containing task to be completed
2317  *
2318  * Return Values
2319  *	None
2320  */
2321 static void
2322 vd_serial_notify(void *arg)
2323 {
2324 	vd_task_t		*task = (vd_task_t *)arg;
2325 
2326 	ASSERT(task != NULL);
2327 	vd_notify(task);
2328 }
2329 
2330 /* ARGSUSED */
2331 static int
2332 vd_geom2dk_geom(void *vd_buf, size_t vd_buf_len, void *ioctl_arg)
2333 {
2334 	VD_GEOM2DK_GEOM((vd_geom_t *)vd_buf, (struct dk_geom *)ioctl_arg);
2335 	return (0);
2336 }
2337 
2338 /* ARGSUSED */
2339 static int
2340 vd_vtoc2vtoc(void *vd_buf, size_t vd_buf_len, void *ioctl_arg)
2341 {
2342 	VD_VTOC2VTOC((vd_vtoc_t *)vd_buf, (struct extvtoc *)ioctl_arg);
2343 	return (0);
2344 }
2345 
2346 static void
2347 dk_geom2vd_geom(void *ioctl_arg, void *vd_buf)
2348 {
2349 	DK_GEOM2VD_GEOM((struct dk_geom *)ioctl_arg, (vd_geom_t *)vd_buf);
2350 }
2351 
2352 static void
2353 vtoc2vd_vtoc(void *ioctl_arg, void *vd_buf)
2354 {
2355 	VTOC2VD_VTOC((struct extvtoc *)ioctl_arg, (vd_vtoc_t *)vd_buf);
2356 }
2357 
2358 static int
2359 vd_get_efi_in(void *vd_buf, size_t vd_buf_len, void *ioctl_arg)
2360 {
2361 	vd_efi_t *vd_efi = (vd_efi_t *)vd_buf;
2362 	dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg;
2363 	size_t data_len;
2364 
2365 	data_len = vd_buf_len - (sizeof (vd_efi_t) - sizeof (uint64_t));
2366 	if (vd_efi->length > data_len)
2367 		return (EINVAL);
2368 
2369 	dk_efi->dki_lba = vd_efi->lba;
2370 	dk_efi->dki_length = vd_efi->length;
2371 	dk_efi->dki_data = kmem_zalloc(vd_efi->length, KM_SLEEP);
2372 	return (0);
2373 }
2374 
2375 static void
2376 vd_get_efi_out(void *ioctl_arg, void *vd_buf)
2377 {
2378 	int len;
2379 	vd_efi_t *vd_efi = (vd_efi_t *)vd_buf;
2380 	dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg;
2381 
2382 	len = vd_efi->length;
2383 	DK_EFI2VD_EFI(dk_efi, vd_efi);
2384 	kmem_free(dk_efi->dki_data, len);
2385 }
2386 
2387 static int
2388 vd_set_efi_in(void *vd_buf, size_t vd_buf_len, void *ioctl_arg)
2389 {
2390 	vd_efi_t *vd_efi = (vd_efi_t *)vd_buf;
2391 	dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg;
2392 	size_t data_len;
2393 
2394 	data_len = vd_buf_len - (sizeof (vd_efi_t) - sizeof (uint64_t));
2395 	if (vd_efi->length > data_len)
2396 		return (EINVAL);
2397 
2398 	dk_efi->dki_data = kmem_alloc(vd_efi->length, KM_SLEEP);
2399 	VD_EFI2DK_EFI(vd_efi, dk_efi);
2400 	return (0);
2401 }
2402 
2403 static void
2404 vd_set_efi_out(void *ioctl_arg, void *vd_buf)
2405 {
2406 	vd_efi_t *vd_efi = (vd_efi_t *)vd_buf;
2407 	dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg;
2408 
2409 	kmem_free(dk_efi->dki_data, vd_efi->length);
2410 }
2411 
2412 static int
2413 vd_scsicmd_in(void *vd_buf, size_t vd_buf_len, void *ioctl_arg)
2414 {
2415 	size_t vd_scsi_len;
2416 	vd_scsi_t *vd_scsi = (vd_scsi_t *)vd_buf;
2417 	struct uscsi_cmd *uscsi = (struct uscsi_cmd *)ioctl_arg;
2418 
2419 	/* check buffer size */
2420 	vd_scsi_len = VD_SCSI_SIZE;
2421 	vd_scsi_len += P2ROUNDUP(vd_scsi->cdb_len, sizeof (uint64_t));
2422 	vd_scsi_len += P2ROUNDUP(vd_scsi->sense_len, sizeof (uint64_t));
2423 	vd_scsi_len += P2ROUNDUP(vd_scsi->datain_len, sizeof (uint64_t));
2424 	vd_scsi_len += P2ROUNDUP(vd_scsi->dataout_len, sizeof (uint64_t));
2425 
2426 	ASSERT(vd_scsi_len % sizeof (uint64_t) == 0);
2427 
2428 	if (vd_buf_len < vd_scsi_len)
2429 		return (EINVAL);
2430 
2431 	/* set flags */
2432 	uscsi->uscsi_flags = vd_scsi_debug;
2433 
2434 	if (vd_scsi->options & VD_SCSI_OPT_NORETRY) {
2435 		uscsi->uscsi_flags |= USCSI_ISOLATE;
2436 		uscsi->uscsi_flags |= USCSI_DIAGNOSE;
2437 	}
2438 
2439 	/* task attribute */
2440 	switch (vd_scsi->task_attribute) {
2441 	case VD_SCSI_TASK_ACA:
2442 		uscsi->uscsi_flags |= USCSI_HEAD;
2443 		break;
2444 	case VD_SCSI_TASK_HQUEUE:
2445 		uscsi->uscsi_flags |= USCSI_HTAG;
2446 		break;
2447 	case VD_SCSI_TASK_ORDERED:
2448 		uscsi->uscsi_flags |= USCSI_OTAG;
2449 		break;
2450 	default:
2451 		uscsi->uscsi_flags |= USCSI_NOTAG;
2452 		break;
2453 	}
2454 
2455 	/* timeout */
2456 	uscsi->uscsi_timeout = vd_scsi->timeout;
2457 
2458 	/* cdb data */
2459 	uscsi->uscsi_cdb = (caddr_t)VD_SCSI_DATA_CDB(vd_scsi);
2460 	uscsi->uscsi_cdblen = vd_scsi->cdb_len;
2461 
2462 	/* sense buffer */
2463 	if (vd_scsi->sense_len != 0) {
2464 		uscsi->uscsi_flags |= USCSI_RQENABLE;
2465 		uscsi->uscsi_rqbuf = (caddr_t)VD_SCSI_DATA_SENSE(vd_scsi);
2466 		uscsi->uscsi_rqlen = vd_scsi->sense_len;
2467 	}
2468 
2469 	if (vd_scsi->datain_len != 0 && vd_scsi->dataout_len != 0) {
2470 		/* uscsi does not support read/write request */
2471 		return (EINVAL);
2472 	}
2473 
2474 	/* request data-in */
2475 	if (vd_scsi->datain_len != 0) {
2476 		uscsi->uscsi_flags |= USCSI_READ;
2477 		uscsi->uscsi_buflen = vd_scsi->datain_len;
2478 		uscsi->uscsi_bufaddr = (char *)VD_SCSI_DATA_IN(vd_scsi);
2479 	}
2480 
2481 	/* request data-out */
2482 	if (vd_scsi->dataout_len != 0) {
2483 		uscsi->uscsi_buflen = vd_scsi->dataout_len;
2484 		uscsi->uscsi_bufaddr = (char *)VD_SCSI_DATA_OUT(vd_scsi);
2485 	}
2486 
2487 	return (0);
2488 }
2489 
2490 static void
2491 vd_scsicmd_out(void *ioctl_arg, void *vd_buf)
2492 {
2493 	vd_scsi_t *vd_scsi = (vd_scsi_t *)vd_buf;
2494 	struct uscsi_cmd *uscsi = (struct uscsi_cmd *)ioctl_arg;
2495 
2496 	/* output fields */
2497 	vd_scsi->cmd_status = uscsi->uscsi_status;
2498 
2499 	/* sense data */
2500 	if ((uscsi->uscsi_flags & USCSI_RQENABLE) &&
2501 	    (uscsi->uscsi_status == STATUS_CHECK ||
2502 	    uscsi->uscsi_status == STATUS_TERMINATED)) {
2503 		vd_scsi->sense_status = uscsi->uscsi_rqstatus;
2504 		if (uscsi->uscsi_rqstatus == STATUS_GOOD)
2505 			vd_scsi->sense_len -= uscsi->uscsi_rqresid;
2506 		else
2507 			vd_scsi->sense_len = 0;
2508 	} else {
2509 		vd_scsi->sense_len = 0;
2510 	}
2511 
2512 	if (uscsi->uscsi_status != STATUS_GOOD) {
2513 		vd_scsi->dataout_len = 0;
2514 		vd_scsi->datain_len = 0;
2515 		return;
2516 	}
2517 
2518 	if (uscsi->uscsi_flags & USCSI_READ) {
2519 		/* request data (read) */
2520 		vd_scsi->datain_len -= uscsi->uscsi_resid;
2521 		vd_scsi->dataout_len = 0;
2522 	} else {
2523 		/* request data (write) */
2524 		vd_scsi->datain_len = 0;
2525 		vd_scsi->dataout_len -= uscsi->uscsi_resid;
2526 	}
2527 }
2528 
2529 static ushort_t
2530 vd_lbl2cksum(struct dk_label *label)
2531 {
2532 	int	count;
2533 	ushort_t sum, *sp;
2534 
2535 	count =	(sizeof (struct dk_label)) / (sizeof (short)) - 1;
2536 	sp = (ushort_t *)label;
2537 	sum = 0;
2538 	while (count--) {
2539 		sum ^= *sp++;
2540 	}
2541 
2542 	return (sum);
2543 }
2544 
2545 /*
2546  * Copy information from a vtoc and dk_geom structures to a dk_label structure.
2547  */
2548 static void
2549 vd_vtocgeom_to_label(struct extvtoc *vtoc, struct dk_geom *geom,
2550     struct dk_label *label)
2551 {
2552 	int i;
2553 
2554 	ASSERT(vtoc->v_nparts == V_NUMPAR);
2555 	ASSERT(vtoc->v_sanity == VTOC_SANE);
2556 
2557 	bzero(label, sizeof (struct dk_label));
2558 
2559 	label->dkl_ncyl = geom->dkg_ncyl;
2560 	label->dkl_acyl = geom->dkg_acyl;
2561 	label->dkl_pcyl = geom->dkg_pcyl;
2562 	label->dkl_nhead = geom->dkg_nhead;
2563 	label->dkl_nsect = geom->dkg_nsect;
2564 	label->dkl_intrlv = geom->dkg_intrlv;
2565 	label->dkl_apc = geom->dkg_apc;
2566 	label->dkl_rpm = geom->dkg_rpm;
2567 	label->dkl_write_reinstruct = geom->dkg_write_reinstruct;
2568 	label->dkl_read_reinstruct = geom->dkg_read_reinstruct;
2569 
2570 	label->dkl_vtoc.v_nparts = V_NUMPAR;
2571 	label->dkl_vtoc.v_sanity = VTOC_SANE;
2572 	label->dkl_vtoc.v_version = vtoc->v_version;
2573 	for (i = 0; i < V_NUMPAR; i++) {
2574 		label->dkl_vtoc.v_timestamp[i] = vtoc->timestamp[i];
2575 		label->dkl_vtoc.v_part[i].p_tag = vtoc->v_part[i].p_tag;
2576 		label->dkl_vtoc.v_part[i].p_flag = vtoc->v_part[i].p_flag;
2577 		label->dkl_map[i].dkl_cylno = vtoc->v_part[i].p_start /
2578 		    (label->dkl_nhead * label->dkl_nsect);
2579 		label->dkl_map[i].dkl_nblk = vtoc->v_part[i].p_size;
2580 	}
2581 
2582 	/*
2583 	 * The bootinfo array can not be copied with bcopy() because
2584 	 * elements are of type long in vtoc (so 64-bit) and of type
2585 	 * int in dk_vtoc (so 32-bit).
2586 	 */
2587 	label->dkl_vtoc.v_bootinfo[0] = vtoc->v_bootinfo[0];
2588 	label->dkl_vtoc.v_bootinfo[1] = vtoc->v_bootinfo[1];
2589 	label->dkl_vtoc.v_bootinfo[2] = vtoc->v_bootinfo[2];
2590 	bcopy(vtoc->v_asciilabel, label->dkl_asciilabel, LEN_DKL_ASCII);
2591 	bcopy(vtoc->v_volume, label->dkl_vtoc.v_volume, LEN_DKL_VVOL);
2592 
2593 	/* re-compute checksum */
2594 	label->dkl_magic = DKL_MAGIC;
2595 	label->dkl_cksum = vd_lbl2cksum(label);
2596 }
2597 
2598 /*
2599  * Copy information from a dk_label structure to a vtoc and dk_geom structures.
2600  */
2601 static void
2602 vd_label_to_vtocgeom(struct dk_label *label, struct extvtoc *vtoc,
2603     struct dk_geom *geom)
2604 {
2605 	int i;
2606 
2607 	bzero(vtoc, sizeof (struct vtoc));
2608 	bzero(geom, sizeof (struct dk_geom));
2609 
2610 	geom->dkg_ncyl = label->dkl_ncyl;
2611 	geom->dkg_acyl = label->dkl_acyl;
2612 	geom->dkg_nhead = label->dkl_nhead;
2613 	geom->dkg_nsect = label->dkl_nsect;
2614 	geom->dkg_intrlv = label->dkl_intrlv;
2615 	geom->dkg_apc = label->dkl_apc;
2616 	geom->dkg_rpm = label->dkl_rpm;
2617 	geom->dkg_pcyl = label->dkl_pcyl;
2618 	geom->dkg_write_reinstruct = label->dkl_write_reinstruct;
2619 	geom->dkg_read_reinstruct = label->dkl_read_reinstruct;
2620 
2621 	vtoc->v_sanity = label->dkl_vtoc.v_sanity;
2622 	vtoc->v_version = label->dkl_vtoc.v_version;
2623 	vtoc->v_sectorsz = DEV_BSIZE;
2624 	vtoc->v_nparts = label->dkl_vtoc.v_nparts;
2625 
2626 	for (i = 0; i < vtoc->v_nparts; i++) {
2627 		vtoc->v_part[i].p_tag = label->dkl_vtoc.v_part[i].p_tag;
2628 		vtoc->v_part[i].p_flag = label->dkl_vtoc.v_part[i].p_flag;
2629 		vtoc->v_part[i].p_start = label->dkl_map[i].dkl_cylno *
2630 		    (label->dkl_nhead * label->dkl_nsect);
2631 		vtoc->v_part[i].p_size = label->dkl_map[i].dkl_nblk;
2632 		vtoc->timestamp[i] = label->dkl_vtoc.v_timestamp[i];
2633 	}
2634 
2635 	/*
2636 	 * The bootinfo array can not be copied with bcopy() because
2637 	 * elements are of type long in vtoc (so 64-bit) and of type
2638 	 * int in dk_vtoc (so 32-bit).
2639 	 */
2640 	vtoc->v_bootinfo[0] = label->dkl_vtoc.v_bootinfo[0];
2641 	vtoc->v_bootinfo[1] = label->dkl_vtoc.v_bootinfo[1];
2642 	vtoc->v_bootinfo[2] = label->dkl_vtoc.v_bootinfo[2];
2643 	bcopy(label->dkl_asciilabel, vtoc->v_asciilabel, LEN_DKL_ASCII);
2644 	bcopy(label->dkl_vtoc.v_volume, vtoc->v_volume, LEN_DKL_VVOL);
2645 }
2646 
2647 /*
2648  * Check if a geometry is valid for a single-slice disk. A geometry is
2649  * considered valid if the main attributes of the geometry match with the
2650  * attributes of the fake geometry we have created.
2651  */
2652 static boolean_t
2653 vd_slice_geom_isvalid(vd_t *vd, struct dk_geom *geom)
2654 {
2655 	ASSERT(vd->vdisk_type == VD_DISK_TYPE_SLICE);
2656 	ASSERT(vd->vdisk_label == VD_DISK_LABEL_VTOC);
2657 
2658 	if (geom->dkg_ncyl != vd->dk_geom.dkg_ncyl ||
2659 	    geom->dkg_acyl != vd->dk_geom.dkg_acyl ||
2660 	    geom->dkg_nsect != vd->dk_geom.dkg_nsect ||
2661 	    geom->dkg_pcyl != vd->dk_geom.dkg_pcyl)
2662 		return (B_FALSE);
2663 
2664 	return (B_TRUE);
2665 }
2666 
2667 /*
2668  * Check if a vtoc is valid for a single-slice disk. A vtoc is considered
2669  * valid if the main attributes of the vtoc match with the attributes of the
2670  * fake vtoc we have created.
2671  */
2672 static boolean_t
2673 vd_slice_vtoc_isvalid(vd_t *vd, struct extvtoc *vtoc)
2674 {
2675 	size_t csize;
2676 	int i;
2677 
2678 	ASSERT(vd->vdisk_type == VD_DISK_TYPE_SLICE);
2679 	ASSERT(vd->vdisk_label == VD_DISK_LABEL_VTOC);
2680 
2681 	if (vtoc->v_sanity != vd->vtoc.v_sanity ||
2682 	    vtoc->v_version != vd->vtoc.v_version ||
2683 	    vtoc->v_nparts != vd->vtoc.v_nparts ||
2684 	    strcmp(vtoc->v_volume, vd->vtoc.v_volume) != 0 ||
2685 	    strcmp(vtoc->v_asciilabel, vd->vtoc.v_asciilabel) != 0)
2686 		return (B_FALSE);
2687 
2688 	/* slice 2 should be unchanged */
2689 	if (vtoc->v_part[VD_ENTIRE_DISK_SLICE].p_start !=
2690 	    vd->vtoc.v_part[VD_ENTIRE_DISK_SLICE].p_start ||
2691 	    vtoc->v_part[VD_ENTIRE_DISK_SLICE].p_size !=
2692 	    vd->vtoc.v_part[VD_ENTIRE_DISK_SLICE].p_size)
2693 		return (B_FALSE);
2694 
2695 	/*
2696 	 * Slice 0 should be mostly unchanged and cover most of the disk.
2697 	 * However we allow some flexibility wrt to the start and the size
2698 	 * of this slice mainly because we can't exactly know how it will
2699 	 * be defined by the OS installer.
2700 	 *
2701 	 * We allow slice 0 to be defined as starting on any of the first
2702 	 * 4 cylinders.
2703 	 */
2704 	csize = vd->dk_geom.dkg_nhead * vd->dk_geom.dkg_nsect;
2705 
2706 	if (vtoc->v_part[0].p_start > 4 * csize ||
2707 	    vtoc->v_part[0].p_size > vtoc->v_part[VD_ENTIRE_DISK_SLICE].p_size)
2708 			return (B_FALSE);
2709 
2710 	if (vd->vtoc.v_part[0].p_size >= 4 * csize &&
2711 	    vtoc->v_part[0].p_size < vd->vtoc.v_part[0].p_size - 4 *csize)
2712 			return (B_FALSE);
2713 
2714 	/* any other slice should have a size of 0 */
2715 	for (i = 1; i < vtoc->v_nparts; i++) {
2716 		if (i != VD_ENTIRE_DISK_SLICE &&
2717 		    vtoc->v_part[i].p_size != 0)
2718 			return (B_FALSE);
2719 	}
2720 
2721 	return (B_TRUE);
2722 }
2723 
2724 /*
2725  * Handle ioctls to a disk slice.
2726  *
2727  * Return Values
2728  *	0	- Indicates that there are no errors in disk operations
2729  *	ENOTSUP	- Unknown disk label type or unsupported DKIO ioctl
2730  *	EINVAL	- Not enough room to copy the EFI label
2731  *
2732  */
2733 static int
2734 vd_do_slice_ioctl(vd_t *vd, int cmd, void *ioctl_arg)
2735 {
2736 	dk_efi_t *dk_ioc;
2737 	struct extvtoc *vtoc;
2738 	struct dk_geom *geom;
2739 	size_t len, lba;
2740 	int rval;
2741 
2742 	ASSERT(vd->vdisk_type == VD_DISK_TYPE_SLICE);
2743 
2744 	if (cmd == DKIOCFLUSHWRITECACHE) {
2745 		if (vd->file) {
2746 			return (VOP_FSYNC(vd->file_vnode, FSYNC, kcred, NULL));
2747 		} else {
2748 			return (ldi_ioctl(vd->ldi_handle[0], cmd,
2749 			    (intptr_t)ioctl_arg, vd->open_flags | FKIOCTL,
2750 			    kcred, &rval));
2751 		}
2752 	}
2753 
2754 	switch (vd->vdisk_label) {
2755 
2756 	/* ioctls for a single slice disk with a VTOC label */
2757 	case VD_DISK_LABEL_VTOC:
2758 
2759 		switch (cmd) {
2760 
2761 		case DKIOCGGEOM:
2762 			ASSERT(ioctl_arg != NULL);
2763 			bcopy(&vd->dk_geom, ioctl_arg, sizeof (vd->dk_geom));
2764 			return (0);
2765 
2766 		case DKIOCGEXTVTOC:
2767 			ASSERT(ioctl_arg != NULL);
2768 			bcopy(&vd->vtoc, ioctl_arg, sizeof (vd->vtoc));
2769 			return (0);
2770 
2771 		case DKIOCSGEOM:
2772 			ASSERT(ioctl_arg != NULL);
2773 			if (vd_slice_single_slice)
2774 				return (ENOTSUP);
2775 
2776 			/* fake success only if new geometry is valid */
2777 			geom = (struct dk_geom *)ioctl_arg;
2778 			if (!vd_slice_geom_isvalid(vd, geom))
2779 				return (EINVAL);
2780 
2781 			return (0);
2782 
2783 		case DKIOCSEXTVTOC:
2784 			ASSERT(ioctl_arg != NULL);
2785 			if (vd_slice_single_slice)
2786 				return (ENOTSUP);
2787 
2788 			/* fake sucess only if the new vtoc is valid */
2789 			vtoc = (struct extvtoc *)ioctl_arg;
2790 			if (!vd_slice_vtoc_isvalid(vd, vtoc))
2791 				return (EINVAL);
2792 
2793 			return (0);
2794 
2795 		default:
2796 			return (ENOTSUP);
2797 		}
2798 
2799 	/* ioctls for a single slice disk with an EFI label */
2800 	case VD_DISK_LABEL_EFI:
2801 
2802 		if (cmd != DKIOCGETEFI && cmd != DKIOCSETEFI)
2803 			return (ENOTSUP);
2804 
2805 		ASSERT(ioctl_arg != NULL);
2806 		dk_ioc = (dk_efi_t *)ioctl_arg;
2807 
2808 		len = dk_ioc->dki_length;
2809 		lba = dk_ioc->dki_lba;
2810 
2811 		if ((lba != VD_EFI_LBA_GPT && lba != VD_EFI_LBA_GPE) ||
2812 		    (lba == VD_EFI_LBA_GPT && len < sizeof (efi_gpt_t)) ||
2813 		    (lba == VD_EFI_LBA_GPE && len < sizeof (efi_gpe_t)))
2814 			return (EINVAL);
2815 
2816 		switch (cmd) {
2817 		case DKIOCGETEFI:
2818 			len = vd_slice_flabel_read(vd,
2819 			    (caddr_t)dk_ioc->dki_data, lba * DEV_BSIZE, len);
2820 
2821 			ASSERT(len > 0);
2822 
2823 			return (0);
2824 
2825 		case DKIOCSETEFI:
2826 			if (vd_slice_single_slice)
2827 				return (ENOTSUP);
2828 
2829 			/* we currently don't support writing EFI */
2830 			return (EIO);
2831 		}
2832 
2833 	default:
2834 		/* Unknown disk label type */
2835 		return (ENOTSUP);
2836 	}
2837 }
2838 
2839 static int
2840 vds_efi_alloc_and_read(vd_t *vd, efi_gpt_t **gpt, efi_gpe_t **gpe)
2841 {
2842 	vd_efi_dev_t edev;
2843 	int status;
2844 
2845 	VD_EFI_DEV_SET(edev, vd, (vd_efi_ioctl_func)vd_backend_ioctl);
2846 
2847 	status = vd_efi_alloc_and_read(&edev, gpt, gpe);
2848 
2849 	return (status);
2850 }
2851 
2852 static void
2853 vds_efi_free(vd_t *vd, efi_gpt_t *gpt, efi_gpe_t *gpe)
2854 {
2855 	vd_efi_dev_t edev;
2856 
2857 	VD_EFI_DEV_SET(edev, vd, (vd_efi_ioctl_func)vd_backend_ioctl);
2858 
2859 	vd_efi_free(&edev, gpt, gpe);
2860 }
2861 
2862 static int
2863 vd_file_validate_efi(vd_t *vd)
2864 {
2865 	efi_gpt_t *gpt;
2866 	efi_gpe_t *gpe;
2867 	int i, nparts, status;
2868 	struct uuid efi_reserved = EFI_RESERVED;
2869 
2870 	if ((status = vds_efi_alloc_and_read(vd, &gpt, &gpe)) != 0)
2871 		return (status);
2872 
2873 	bzero(&vd->vtoc, sizeof (struct extvtoc));
2874 	bzero(&vd->dk_geom, sizeof (struct dk_geom));
2875 	bzero(vd->slices, sizeof (vd_slice_t) * VD_MAXPART);
2876 
2877 	vd->efi_reserved = -1;
2878 
2879 	nparts = gpt->efi_gpt_NumberOfPartitionEntries;
2880 
2881 	for (i = 0; i < nparts && i < VD_MAXPART; i++) {
2882 
2883 		if (gpe[i].efi_gpe_StartingLBA == 0 ||
2884 		    gpe[i].efi_gpe_EndingLBA == 0) {
2885 			continue;
2886 		}
2887 
2888 		vd->slices[i].start = gpe[i].efi_gpe_StartingLBA;
2889 		vd->slices[i].nblocks = gpe[i].efi_gpe_EndingLBA -
2890 		    gpe[i].efi_gpe_StartingLBA + 1;
2891 
2892 		if (bcmp(&gpe[i].efi_gpe_PartitionTypeGUID, &efi_reserved,
2893 		    sizeof (struct uuid)) == 0)
2894 			vd->efi_reserved = i;
2895 
2896 	}
2897 
2898 	ASSERT(vd->vdisk_size != 0);
2899 	vd->slices[VD_EFI_WD_SLICE].start = 0;
2900 	vd->slices[VD_EFI_WD_SLICE].nblocks = vd->vdisk_size;
2901 
2902 	vds_efi_free(vd, gpt, gpe);
2903 
2904 	return (status);
2905 }
2906 
2907 /*
2908  * Function:
2909  *	vd_file_validate_geometry
2910  *
2911  * Description:
2912  *	Read the label and validate the geometry of a disk image. The driver
2913  *	label, vtoc and geometry information are updated according to the
2914  *	label read from the disk image.
2915  *
2916  *	If no valid label is found, the label is set to unknown and the
2917  *	function returns EINVAL, but a default vtoc and geometry are provided
2918  *	to the driver. If an EFI label is found, ENOTSUP is returned.
2919  *
2920  * Parameters:
2921  *	vd	- disk on which the operation is performed.
2922  *
2923  * Return Code:
2924  *	0	- success.
2925  *	EIO	- error reading the label from the disk image.
2926  *	EINVAL	- unknown disk label.
2927  *	ENOTSUP	- geometry not applicable (EFI label).
2928  */
2929 static int
2930 vd_file_validate_geometry(vd_t *vd)
2931 {
2932 	struct dk_label label;
2933 	struct dk_geom *geom = &vd->dk_geom;
2934 	struct extvtoc *vtoc = &vd->vtoc;
2935 	int i;
2936 	int status = 0;
2937 
2938 	ASSERT(vd->file);
2939 	ASSERT(vd->vdisk_type == VD_DISK_TYPE_DISK);
2940 
2941 	if (VD_FILE_LABEL_READ(vd, &label) < 0)
2942 		return (EIO);
2943 
2944 	if (label.dkl_magic != DKL_MAGIC ||
2945 	    label.dkl_cksum != vd_lbl2cksum(&label) ||
2946 	    (vd_file_validate_sanity && label.dkl_vtoc.v_sanity != VTOC_SANE) ||
2947 	    label.dkl_vtoc.v_nparts != V_NUMPAR) {
2948 
2949 		if (vd_file_validate_efi(vd) == 0) {
2950 			vd->vdisk_label = VD_DISK_LABEL_EFI;
2951 			return (ENOTSUP);
2952 		}
2953 
2954 		vd->vdisk_label = VD_DISK_LABEL_UNK;
2955 		vd_build_default_label(vd->file_size, &label);
2956 		status = EINVAL;
2957 	} else {
2958 		vd->vdisk_label = VD_DISK_LABEL_VTOC;
2959 	}
2960 
2961 	/* Update the driver geometry and vtoc */
2962 	vd_label_to_vtocgeom(&label, vtoc, geom);
2963 
2964 	/* Update logical partitions */
2965 	bzero(vd->slices, sizeof (vd_slice_t) * VD_MAXPART);
2966 	if (vd->vdisk_label != VD_DISK_LABEL_UNK) {
2967 		for (i = 0; i < vtoc->v_nparts; i++) {
2968 			vd->slices[i].start = vtoc->v_part[i].p_start;
2969 			vd->slices[i].nblocks = vtoc->v_part[i].p_size;
2970 		}
2971 	}
2972 
2973 	return (status);
2974 }
2975 
2976 /*
2977  * Handle ioctls to a disk image (file-based).
2978  *
2979  * Return Values
2980  *	0	- Indicates that there are no errors
2981  *	!= 0	- Disk operation returned an error
2982  */
2983 static int
2984 vd_do_file_ioctl(vd_t *vd, int cmd, void *ioctl_arg)
2985 {
2986 	struct dk_label label;
2987 	struct dk_geom *geom;
2988 	struct extvtoc *vtoc;
2989 	dk_efi_t *efi;
2990 	int rc;
2991 
2992 	ASSERT(vd->file);
2993 	ASSERT(vd->vdisk_type == VD_DISK_TYPE_DISK);
2994 
2995 	switch (cmd) {
2996 
2997 	case DKIOCGGEOM:
2998 		ASSERT(ioctl_arg != NULL);
2999 		geom = (struct dk_geom *)ioctl_arg;
3000 
3001 		rc = vd_file_validate_geometry(vd);
3002 		if (rc != 0 && rc != EINVAL)
3003 			return (rc);
3004 		bcopy(&vd->dk_geom, geom, sizeof (struct dk_geom));
3005 		return (0);
3006 
3007 	case DKIOCGEXTVTOC:
3008 		ASSERT(ioctl_arg != NULL);
3009 		vtoc = (struct extvtoc *)ioctl_arg;
3010 
3011 		rc = vd_file_validate_geometry(vd);
3012 		if (rc != 0 && rc != EINVAL)
3013 			return (rc);
3014 		bcopy(&vd->vtoc, vtoc, sizeof (struct extvtoc));
3015 		return (0);
3016 
3017 	case DKIOCSGEOM:
3018 		ASSERT(ioctl_arg != NULL);
3019 		geom = (struct dk_geom *)ioctl_arg;
3020 
3021 		if (geom->dkg_nhead == 0 || geom->dkg_nsect == 0)
3022 			return (EINVAL);
3023 
3024 		/*
3025 		 * The current device geometry is not updated, just the driver
3026 		 * "notion" of it. The device geometry will be effectively
3027 		 * updated when a label is written to the device during a next
3028 		 * DKIOCSEXTVTOC.
3029 		 */
3030 		bcopy(ioctl_arg, &vd->dk_geom, sizeof (vd->dk_geom));
3031 		return (0);
3032 
3033 	case DKIOCSEXTVTOC:
3034 		ASSERT(ioctl_arg != NULL);
3035 		ASSERT(vd->dk_geom.dkg_nhead != 0 &&
3036 		    vd->dk_geom.dkg_nsect != 0);
3037 		vtoc = (struct extvtoc *)ioctl_arg;
3038 
3039 		if (vtoc->v_sanity != VTOC_SANE ||
3040 		    vtoc->v_sectorsz != DEV_BSIZE ||
3041 		    vtoc->v_nparts != V_NUMPAR)
3042 			return (EINVAL);
3043 
3044 		vd_vtocgeom_to_label(vtoc, &vd->dk_geom, &label);
3045 
3046 		/* write label to the disk image */
3047 		if ((rc = vd_file_set_vtoc(vd, &label)) != 0)
3048 			return (rc);
3049 
3050 		break;
3051 
3052 	case DKIOCFLUSHWRITECACHE:
3053 		return (VOP_FSYNC(vd->file_vnode, FSYNC, kcred, NULL));
3054 
3055 	case DKIOCGETEFI:
3056 		ASSERT(ioctl_arg != NULL);
3057 		efi = (dk_efi_t *)ioctl_arg;
3058 
3059 		if (vd_file_rw(vd, VD_SLICE_NONE, VD_OP_BREAD,
3060 		    (caddr_t)efi->dki_data, efi->dki_lba, efi->dki_length) < 0)
3061 			return (EIO);
3062 
3063 		return (0);
3064 
3065 	case DKIOCSETEFI:
3066 		ASSERT(ioctl_arg != NULL);
3067 		efi = (dk_efi_t *)ioctl_arg;
3068 
3069 		if (vd_file_rw(vd, VD_SLICE_NONE, VD_OP_BWRITE,
3070 		    (caddr_t)efi->dki_data, efi->dki_lba, efi->dki_length) < 0)
3071 			return (EIO);
3072 
3073 		break;
3074 
3075 
3076 	default:
3077 		return (ENOTSUP);
3078 	}
3079 
3080 	ASSERT(cmd == DKIOCSEXTVTOC || cmd == DKIOCSETEFI);
3081 
3082 	/* label has changed, revalidate the geometry */
3083 	(void) vd_file_validate_geometry(vd);
3084 
3085 	/*
3086 	 * The disk geometry may have changed, so we need to write
3087 	 * the devid (if there is one) so that it is stored at the
3088 	 * right location.
3089 	 */
3090 	if (vd_file_write_devid(vd, vd->file_devid) != 0) {
3091 		PR0("Fail to write devid");
3092 	}
3093 
3094 	return (0);
3095 }
3096 
3097 static int
3098 vd_backend_ioctl(vd_t *vd, int cmd, caddr_t arg)
3099 {
3100 	int rval = 0, status;
3101 	struct vtoc vtoc;
3102 
3103 	/*
3104 	 * Call the appropriate function to execute the ioctl depending
3105 	 * on the type of vdisk.
3106 	 */
3107 	if (vd->vdisk_type == VD_DISK_TYPE_SLICE) {
3108 
3109 		/* slice, file or volume exported as a single slice disk */
3110 		status = vd_do_slice_ioctl(vd, cmd, arg);
3111 
3112 	} else if (vd->file) {
3113 
3114 		/* file or volume exported as a full disk */
3115 		status = vd_do_file_ioctl(vd, cmd, arg);
3116 
3117 	} else {
3118 
3119 		/* disk device exported as a full disk */
3120 		status = ldi_ioctl(vd->ldi_handle[0], cmd, (intptr_t)arg,
3121 		    vd->open_flags | FKIOCTL, kcred, &rval);
3122 
3123 		/*
3124 		 * By default VTOC ioctls are done using ioctls for the
3125 		 * extended VTOC. Some drivers (in particular non-Sun drivers)
3126 		 * may not support these ioctls. In that case, we fallback to
3127 		 * the regular VTOC ioctls.
3128 		 */
3129 		if (status == ENOTTY) {
3130 			switch (cmd) {
3131 
3132 			case DKIOCGEXTVTOC:
3133 				cmd = DKIOCGVTOC;
3134 				status = ldi_ioctl(vd->ldi_handle[0], cmd,
3135 				    (intptr_t)&vtoc, vd->open_flags | FKIOCTL,
3136 				    kcred, &rval);
3137 				vtoctoextvtoc(vtoc,
3138 				    (*(struct extvtoc *)(void *)arg));
3139 				break;
3140 
3141 			case DKIOCSEXTVTOC:
3142 				cmd = DKIOCSVTOC;
3143 				extvtoctovtoc((*(struct extvtoc *)(void *)arg),
3144 				    vtoc);
3145 				status = ldi_ioctl(vd->ldi_handle[0], cmd,
3146 				    (intptr_t)&vtoc, vd->open_flags | FKIOCTL,
3147 				    kcred, &rval);
3148 				break;
3149 			}
3150 		}
3151 	}
3152 
3153 #ifdef DEBUG
3154 	if (rval != 0) {
3155 		PR0("ioctl %x set rval = %d, which is not being returned"
3156 		    " to caller", cmd, rval);
3157 	}
3158 #endif /* DEBUG */
3159 
3160 	return (status);
3161 }
3162 
3163 /*
3164  * Description:
3165  *	This is the function that processes the ioctl requests (farming it
3166  *	out to functions that handle slices, files or whole disks)
3167  *
3168  * Return Values
3169  *     0		- ioctl operation completed successfully
3170  *     != 0		- The LDC error value encountered
3171  *			  (propagated back up the call stack as a task error)
3172  *
3173  * Side Effect
3174  *     sets request->status to the return value of the ioctl function.
3175  */
3176 static int
3177 vd_do_ioctl(vd_t *vd, vd_dring_payload_t *request, void* buf, vd_ioctl_t *ioctl)
3178 {
3179 	int	status = 0;
3180 	size_t	nbytes = request->nbytes;	/* modifiable copy */
3181 
3182 
3183 	ASSERT(request->slice < vd->nslices);
3184 	PR0("Performing %s", ioctl->operation_name);
3185 
3186 	/* Get data from client and convert, if necessary */
3187 	if (ioctl->copyin != NULL)  {
3188 		ASSERT(nbytes != 0 && buf != NULL);
3189 		PR1("Getting \"arg\" data from client");
3190 		if ((status = ldc_mem_copy(vd->ldc_handle, buf, 0, &nbytes,
3191 		    request->cookie, request->ncookies,
3192 		    LDC_COPY_IN)) != 0) {
3193 			PR0("ldc_mem_copy() returned errno %d "
3194 			    "copying from client", status);
3195 			return (status);
3196 		}
3197 
3198 		/* Convert client's data, if necessary */
3199 		if (ioctl->copyin == VD_IDENTITY_IN) {
3200 			/* use client buffer */
3201 			ioctl->arg = buf;
3202 		} else {
3203 			/* convert client vdisk operation data to ioctl data */
3204 			status = (ioctl->copyin)(buf, nbytes,
3205 			    (void *)ioctl->arg);
3206 			if (status != 0) {
3207 				request->status = status;
3208 				return (0);
3209 			}
3210 		}
3211 	}
3212 
3213 	if (ioctl->operation == VD_OP_SCSICMD) {
3214 		struct uscsi_cmd *uscsi = (struct uscsi_cmd *)ioctl->arg;
3215 
3216 		/* check write permission */
3217 		if (!(vd->open_flags & FWRITE) &&
3218 		    !(uscsi->uscsi_flags & USCSI_READ)) {
3219 			PR0("uscsi fails because backend is opened read-only");
3220 			request->status = EROFS;
3221 			return (0);
3222 		}
3223 	}
3224 
3225 	/*
3226 	 * Send the ioctl to the disk backend.
3227 	 */
3228 	request->status = vd_backend_ioctl(vd, ioctl->cmd, ioctl->arg);
3229 
3230 	if (request->status != 0) {
3231 		PR0("ioctl(%s) = errno %d", ioctl->cmd_name, request->status);
3232 		if (ioctl->operation == VD_OP_SCSICMD &&
3233 		    ((struct uscsi_cmd *)ioctl->arg)->uscsi_status != 0)
3234 			/*
3235 			 * USCSICMD has reported an error and the uscsi_status
3236 			 * field is not zero. This means that the SCSI command
3237 			 * has completed but it has an error. So we should
3238 			 * mark the VD operation has succesfully completed
3239 			 * and clients can check the SCSI status field for
3240 			 * SCSI errors.
3241 			 */
3242 			request->status = 0;
3243 		else
3244 			return (0);
3245 	}
3246 
3247 	/* Convert data and send to client, if necessary */
3248 	if (ioctl->copyout != NULL)  {
3249 		ASSERT(nbytes != 0 && buf != NULL);
3250 		PR1("Sending \"arg\" data to client");
3251 
3252 		/* Convert ioctl data to vdisk operation data, if necessary */
3253 		if (ioctl->copyout != VD_IDENTITY_OUT)
3254 			(ioctl->copyout)((void *)ioctl->arg, buf);
3255 
3256 		if ((status = ldc_mem_copy(vd->ldc_handle, buf, 0, &nbytes,
3257 		    request->cookie, request->ncookies,
3258 		    LDC_COPY_OUT)) != 0) {
3259 			PR0("ldc_mem_copy() returned errno %d "
3260 			    "copying to client", status);
3261 			return (status);
3262 		}
3263 	}
3264 
3265 	return (status);
3266 }
3267 
3268 #define	RNDSIZE(expr) P2ROUNDUP(sizeof (expr), sizeof (uint64_t))
3269 
3270 /*
3271  * Description:
3272  *	This generic function is called by the task queue to complete
3273  *	the processing of the tasks. The specific completion function
3274  *	is passed in as a field in the task pointer.
3275  *
3276  * Parameters:
3277  *	arg 	- opaque pointer to structure containing task to be completed
3278  *
3279  * Return Values
3280  *	None
3281  */
3282 static void
3283 vd_complete(void *arg)
3284 {
3285 	vd_task_t	*task = (vd_task_t *)arg;
3286 
3287 	ASSERT(task != NULL);
3288 	ASSERT(task->status == EINPROGRESS);
3289 	ASSERT(task->completef != NULL);
3290 
3291 	task->status = task->completef(task);
3292 	if (task->status)
3293 		PR0("%s: Error %d completing task", __func__, task->status);
3294 
3295 	/* Now notify the vDisk client */
3296 	vd_complete_notify(task);
3297 }
3298 
3299 static int
3300 vd_ioctl(vd_task_t *task)
3301 {
3302 	int			i, status;
3303 	void			*buf = NULL;
3304 	struct dk_geom		dk_geom = {0};
3305 	struct extvtoc		vtoc = {0};
3306 	struct dk_efi		dk_efi = {0};
3307 	struct uscsi_cmd	uscsi = {0};
3308 	vd_t			*vd		= task->vd;
3309 	vd_dring_payload_t	*request	= task->request;
3310 	vd_ioctl_t		ioctl[] = {
3311 		/* Command (no-copy) operations */
3312 		{VD_OP_FLUSH, STRINGIZE(VD_OP_FLUSH), 0,
3313 		    DKIOCFLUSHWRITECACHE, STRINGIZE(DKIOCFLUSHWRITECACHE),
3314 		    NULL, NULL, NULL, B_TRUE},
3315 
3316 		/* "Get" (copy-out) operations */
3317 		{VD_OP_GET_WCE, STRINGIZE(VD_OP_GET_WCE), RNDSIZE(int),
3318 		    DKIOCGETWCE, STRINGIZE(DKIOCGETWCE),
3319 		    NULL, VD_IDENTITY_IN, VD_IDENTITY_OUT, B_FALSE},
3320 		{VD_OP_GET_DISKGEOM, STRINGIZE(VD_OP_GET_DISKGEOM),
3321 		    RNDSIZE(vd_geom_t),
3322 		    DKIOCGGEOM, STRINGIZE(DKIOCGGEOM),
3323 		    &dk_geom, NULL, dk_geom2vd_geom, B_FALSE},
3324 		{VD_OP_GET_VTOC, STRINGIZE(VD_OP_GET_VTOC), RNDSIZE(vd_vtoc_t),
3325 		    DKIOCGEXTVTOC, STRINGIZE(DKIOCGEXTVTOC),
3326 		    &vtoc, NULL, vtoc2vd_vtoc, B_FALSE},
3327 		{VD_OP_GET_EFI, STRINGIZE(VD_OP_GET_EFI), RNDSIZE(vd_efi_t),
3328 		    DKIOCGETEFI, STRINGIZE(DKIOCGETEFI),
3329 		    &dk_efi, vd_get_efi_in, vd_get_efi_out, B_FALSE},
3330 
3331 		/* "Set" (copy-in) operations */
3332 		{VD_OP_SET_WCE, STRINGIZE(VD_OP_SET_WCE), RNDSIZE(int),
3333 		    DKIOCSETWCE, STRINGIZE(DKIOCSETWCE),
3334 		    NULL, VD_IDENTITY_IN, VD_IDENTITY_OUT, B_TRUE},
3335 		{VD_OP_SET_DISKGEOM, STRINGIZE(VD_OP_SET_DISKGEOM),
3336 		    RNDSIZE(vd_geom_t),
3337 		    DKIOCSGEOM, STRINGIZE(DKIOCSGEOM),
3338 		    &dk_geom, vd_geom2dk_geom, NULL, B_TRUE},
3339 		{VD_OP_SET_VTOC, STRINGIZE(VD_OP_SET_VTOC), RNDSIZE(vd_vtoc_t),
3340 		    DKIOCSEXTVTOC, STRINGIZE(DKIOCSEXTVTOC),
3341 		    &vtoc, vd_vtoc2vtoc, NULL, B_TRUE},
3342 		{VD_OP_SET_EFI, STRINGIZE(VD_OP_SET_EFI), RNDSIZE(vd_efi_t),
3343 		    DKIOCSETEFI, STRINGIZE(DKIOCSETEFI),
3344 		    &dk_efi, vd_set_efi_in, vd_set_efi_out, B_TRUE},
3345 
3346 		{VD_OP_SCSICMD, STRINGIZE(VD_OP_SCSICMD), RNDSIZE(vd_scsi_t),
3347 		    USCSICMD, STRINGIZE(USCSICMD),
3348 		    &uscsi, vd_scsicmd_in, vd_scsicmd_out, B_FALSE},
3349 	};
3350 	size_t		nioctls = (sizeof (ioctl))/(sizeof (ioctl[0]));
3351 
3352 
3353 	ASSERT(vd != NULL);
3354 	ASSERT(request != NULL);
3355 	ASSERT(request->slice < vd->nslices);
3356 
3357 	/*
3358 	 * Determine ioctl corresponding to caller's "operation" and
3359 	 * validate caller's "nbytes"
3360 	 */
3361 	for (i = 0; i < nioctls; i++) {
3362 		if (request->operation == ioctl[i].operation) {
3363 			/* LDC memory operations require 8-byte multiples */
3364 			ASSERT(ioctl[i].nbytes % sizeof (uint64_t) == 0);
3365 
3366 			if (request->operation == VD_OP_GET_EFI ||
3367 			    request->operation == VD_OP_SET_EFI ||
3368 			    request->operation == VD_OP_SCSICMD) {
3369 				if (request->nbytes >= ioctl[i].nbytes)
3370 					break;
3371 				PR0("%s:  Expected at least nbytes = %lu, "
3372 				    "got %lu", ioctl[i].operation_name,
3373 				    ioctl[i].nbytes, request->nbytes);
3374 				return (EINVAL);
3375 			}
3376 
3377 			if (request->nbytes != ioctl[i].nbytes) {
3378 				PR0("%s:  Expected nbytes = %lu, got %lu",
3379 				    ioctl[i].operation_name, ioctl[i].nbytes,
3380 				    request->nbytes);
3381 				return (EINVAL);
3382 			}
3383 
3384 			break;
3385 		}
3386 	}
3387 	ASSERT(i < nioctls);	/* because "operation" already validated */
3388 
3389 	if (!(vd->open_flags & FWRITE) && ioctl[i].write) {
3390 		PR0("%s fails because backend is opened read-only",
3391 		    ioctl[i].operation_name);
3392 		request->status = EROFS;
3393 		return (0);
3394 	}
3395 
3396 	if (request->nbytes)
3397 		buf = kmem_zalloc(request->nbytes, KM_SLEEP);
3398 	status = vd_do_ioctl(vd, request, buf, &ioctl[i]);
3399 	if (request->nbytes)
3400 		kmem_free(buf, request->nbytes);
3401 
3402 	return (status);
3403 }
3404 
3405 static int
3406 vd_get_devid(vd_task_t *task)
3407 {
3408 	vd_t *vd = task->vd;
3409 	vd_dring_payload_t *request = task->request;
3410 	vd_devid_t *vd_devid;
3411 	impl_devid_t *devid;
3412 	int status, bufid_len, devid_len, len, sz;
3413 	int bufbytes;
3414 
3415 	PR1("Get Device ID, nbytes=%ld", request->nbytes);
3416 
3417 	if (vd->vdisk_type == VD_DISK_TYPE_SLICE) {
3418 		/*
3419 		 * We don't support devid for single-slice disks because we
3420 		 * have no space to store a fabricated devid and for physical
3421 		 * disk slices, we can't use the devid of the disk otherwise
3422 		 * exporting multiple slices from the same disk will produce
3423 		 * the same devids.
3424 		 */
3425 		PR2("No Device ID for slices");
3426 		request->status = ENOTSUP;
3427 		return (0);
3428 	}
3429 
3430 	if (vd->file) {
3431 		if (vd->file_devid == NULL) {
3432 			PR2("No Device ID");
3433 			request->status = ENOENT;
3434 			return (0);
3435 		} else {
3436 			sz = ddi_devid_sizeof(vd->file_devid);
3437 			devid = kmem_alloc(sz, KM_SLEEP);
3438 			bcopy(vd->file_devid, devid, sz);
3439 		}
3440 	} else {
3441 		if (ddi_lyr_get_devid(vd->dev[request->slice],
3442 		    (ddi_devid_t *)&devid) != DDI_SUCCESS) {
3443 			PR2("No Device ID");
3444 			request->status = ENOENT;
3445 			return (0);
3446 		}
3447 	}
3448 
3449 	bufid_len = request->nbytes - sizeof (vd_devid_t) + 1;
3450 	devid_len = DEVID_GETLEN(devid);
3451 
3452 	/*
3453 	 * Save the buffer size here for use in deallocation.
3454 	 * The actual number of bytes copied is returned in
3455 	 * the 'nbytes' field of the request structure.
3456 	 */
3457 	bufbytes = request->nbytes;
3458 
3459 	vd_devid = kmem_zalloc(bufbytes, KM_SLEEP);
3460 	vd_devid->length = devid_len;
3461 	vd_devid->type = DEVID_GETTYPE(devid);
3462 
3463 	len = (devid_len > bufid_len)? bufid_len : devid_len;
3464 
3465 	bcopy(devid->did_id, vd_devid->id, len);
3466 
3467 	request->status = 0;
3468 
3469 	/* LDC memory operations require 8-byte multiples */
3470 	ASSERT(request->nbytes % sizeof (uint64_t) == 0);
3471 
3472 	if ((status = ldc_mem_copy(vd->ldc_handle, (caddr_t)vd_devid, 0,
3473 	    &request->nbytes, request->cookie, request->ncookies,
3474 	    LDC_COPY_OUT)) != 0) {
3475 		PR0("ldc_mem_copy() returned errno %d copying to client",
3476 		    status);
3477 	}
3478 	PR1("post mem_copy: nbytes=%ld", request->nbytes);
3479 
3480 	kmem_free(vd_devid, bufbytes);
3481 	ddi_devid_free((ddi_devid_t)devid);
3482 
3483 	return (status);
3484 }
3485 
3486 static int
3487 vd_scsi_reset(vd_t *vd)
3488 {
3489 	int rval, status;
3490 	struct uscsi_cmd uscsi = { 0 };
3491 
3492 	uscsi.uscsi_flags = vd_scsi_debug | USCSI_RESET;
3493 	uscsi.uscsi_timeout = vd_scsi_rdwr_timeout;
3494 
3495 	status = ldi_ioctl(vd->ldi_handle[0], USCSICMD, (intptr_t)&uscsi,
3496 	    (vd->open_flags | FKIOCTL), kcred, &rval);
3497 
3498 	return (status);
3499 }
3500 
3501 static int
3502 vd_reset(vd_task_t *task)
3503 {
3504 	vd_t *vd = task->vd;
3505 	vd_dring_payload_t *request = task->request;
3506 
3507 	ASSERT(request->operation == VD_OP_RESET);
3508 	ASSERT(vd->scsi);
3509 
3510 	PR0("Performing VD_OP_RESET");
3511 
3512 	if (request->nbytes != 0) {
3513 		PR0("VD_OP_RESET:  Expected nbytes = 0, got %lu",
3514 		    request->nbytes);
3515 		return (EINVAL);
3516 	}
3517 
3518 	request->status = vd_scsi_reset(vd);
3519 
3520 	return (0);
3521 }
3522 
3523 static int
3524 vd_get_capacity(vd_task_t *task)
3525 {
3526 	int rv;
3527 	size_t nbytes;
3528 	vd_t *vd = task->vd;
3529 	vd_dring_payload_t *request = task->request;
3530 	vd_capacity_t vd_cap = { 0 };
3531 
3532 	ASSERT(request->operation == VD_OP_GET_CAPACITY);
3533 
3534 	PR0("Performing VD_OP_GET_CAPACITY");
3535 
3536 	nbytes = request->nbytes;
3537 
3538 	if (nbytes != RNDSIZE(vd_capacity_t)) {
3539 		PR0("VD_OP_GET_CAPACITY:  Expected nbytes = %lu, got %lu",
3540 		    RNDSIZE(vd_capacity_t), nbytes);
3541 		return (EINVAL);
3542 	}
3543 
3544 	/*
3545 	 * Check the backend size in case it has changed. If the check fails
3546 	 * then we will return the last known size.
3547 	 */
3548 
3549 	(void) vd_backend_check_size(vd);
3550 	ASSERT(vd->vdisk_size != 0);
3551 
3552 	request->status = 0;
3553 
3554 	vd_cap.vdisk_block_size = vd->vdisk_block_size;
3555 	vd_cap.vdisk_size = vd->vdisk_size;
3556 
3557 	if ((rv = ldc_mem_copy(vd->ldc_handle, (char *)&vd_cap, 0, &nbytes,
3558 	    request->cookie, request->ncookies, LDC_COPY_OUT)) != 0) {
3559 		PR0("ldc_mem_copy() returned errno %d copying to client", rv);
3560 		return (rv);
3561 	}
3562 
3563 	return (0);
3564 }
3565 
3566 static int
3567 vd_get_access(vd_task_t *task)
3568 {
3569 	uint64_t access;
3570 	int rv, rval = 0;
3571 	size_t nbytes;
3572 	vd_t *vd = task->vd;
3573 	vd_dring_payload_t *request = task->request;
3574 
3575 	ASSERT(request->operation == VD_OP_GET_ACCESS);
3576 	ASSERT(vd->scsi);
3577 
3578 	PR0("Performing VD_OP_GET_ACCESS");
3579 
3580 	nbytes = request->nbytes;
3581 
3582 	if (nbytes != sizeof (uint64_t)) {
3583 		PR0("VD_OP_GET_ACCESS:  Expected nbytes = %lu, got %lu",
3584 		    sizeof (uint64_t), nbytes);
3585 		return (EINVAL);
3586 	}
3587 
3588 	request->status = ldi_ioctl(vd->ldi_handle[request->slice], MHIOCSTATUS,
3589 	    NULL, (vd->open_flags | FKIOCTL), kcred, &rval);
3590 
3591 	if (request->status != 0)
3592 		return (0);
3593 
3594 	access = (rval == 0)? VD_ACCESS_ALLOWED : VD_ACCESS_DENIED;
3595 
3596 	if ((rv = ldc_mem_copy(vd->ldc_handle, (char *)&access, 0, &nbytes,
3597 	    request->cookie, request->ncookies, LDC_COPY_OUT)) != 0) {
3598 		PR0("ldc_mem_copy() returned errno %d copying to client", rv);
3599 		return (rv);
3600 	}
3601 
3602 	return (0);
3603 }
3604 
3605 static int
3606 vd_set_access(vd_task_t *task)
3607 {
3608 	uint64_t flags;
3609 	int rv, rval;
3610 	size_t nbytes;
3611 	vd_t *vd = task->vd;
3612 	vd_dring_payload_t *request = task->request;
3613 
3614 	ASSERT(request->operation == VD_OP_SET_ACCESS);
3615 	ASSERT(vd->scsi);
3616 
3617 	nbytes = request->nbytes;
3618 
3619 	if (nbytes != sizeof (uint64_t)) {
3620 		PR0("VD_OP_SET_ACCESS:  Expected nbytes = %lu, got %lu",
3621 		    sizeof (uint64_t), nbytes);
3622 		return (EINVAL);
3623 	}
3624 
3625 	if ((rv = ldc_mem_copy(vd->ldc_handle, (char *)&flags, 0, &nbytes,
3626 	    request->cookie, request->ncookies, LDC_COPY_IN)) != 0) {
3627 		PR0("ldc_mem_copy() returned errno %d copying from client", rv);
3628 		return (rv);
3629 	}
3630 
3631 	if (flags == VD_ACCESS_SET_CLEAR) {
3632 		PR0("Performing VD_OP_SET_ACCESS (CLEAR)");
3633 		request->status = ldi_ioctl(vd->ldi_handle[request->slice],
3634 		    MHIOCRELEASE, NULL, (vd->open_flags | FKIOCTL), kcred,
3635 		    &rval);
3636 		if (request->status == 0)
3637 			vd->ownership = B_FALSE;
3638 		return (0);
3639 	}
3640 
3641 	/*
3642 	 * As per the VIO spec, the PREEMPT and PRESERVE flags are only valid
3643 	 * when the EXCLUSIVE flag is set.
3644 	 */
3645 	if (!(flags & VD_ACCESS_SET_EXCLUSIVE)) {
3646 		PR0("Invalid VD_OP_SET_ACCESS flags: 0x%lx", flags);
3647 		request->status = EINVAL;
3648 		return (0);
3649 	}
3650 
3651 	switch (flags & (VD_ACCESS_SET_PREEMPT | VD_ACCESS_SET_PRESERVE)) {
3652 
3653 	case VD_ACCESS_SET_PREEMPT | VD_ACCESS_SET_PRESERVE:
3654 		/*
3655 		 * Flags EXCLUSIVE and PREEMPT and PRESERVE. We have to
3656 		 * acquire exclusive access rights, preserve them and we
3657 		 * can use preemption. So we can use the MHIOCTKNOWN ioctl.
3658 		 */
3659 		PR0("Performing VD_OP_SET_ACCESS (EXCLUSIVE|PREEMPT|PRESERVE)");
3660 		request->status = ldi_ioctl(vd->ldi_handle[request->slice],
3661 		    MHIOCTKOWN, NULL, (vd->open_flags | FKIOCTL), kcred, &rval);
3662 		break;
3663 
3664 	case VD_ACCESS_SET_PRESERVE:
3665 		/*
3666 		 * Flags EXCLUSIVE and PRESERVE. We have to acquire exclusive
3667 		 * access rights and preserve them, but not preempt any other
3668 		 * host. So we need to use the MHIOCTKOWN ioctl to enable the
3669 		 * "preserve" feature but we can not called it directly
3670 		 * because it uses preemption. So before that, we use the
3671 		 * MHIOCQRESERVE ioctl to ensure we can get exclusive rights
3672 		 * without preempting anyone.
3673 		 */
3674 		PR0("Performing VD_OP_SET_ACCESS (EXCLUSIVE|PRESERVE)");
3675 		request->status = ldi_ioctl(vd->ldi_handle[request->slice],
3676 		    MHIOCQRESERVE, NULL, (vd->open_flags | FKIOCTL), kcred,
3677 		    &rval);
3678 		if (request->status != 0)
3679 			break;
3680 		request->status = ldi_ioctl(vd->ldi_handle[request->slice],
3681 		    MHIOCTKOWN, NULL, (vd->open_flags | FKIOCTL), kcred, &rval);
3682 		break;
3683 
3684 	case VD_ACCESS_SET_PREEMPT:
3685 		/*
3686 		 * Flags EXCLUSIVE and PREEMPT. We have to acquire exclusive
3687 		 * access rights and we can use preemption. So we try to do
3688 		 * a SCSI reservation, if it fails we reset the disk to clear
3689 		 * any reservation and we try to reserve again.
3690 		 */
3691 		PR0("Performing VD_OP_SET_ACCESS (EXCLUSIVE|PREEMPT)");
3692 		request->status = ldi_ioctl(vd->ldi_handle[request->slice],
3693 		    MHIOCQRESERVE, NULL, (vd->open_flags | FKIOCTL), kcred,
3694 		    &rval);
3695 		if (request->status == 0)
3696 			break;
3697 
3698 		/* reset the disk */
3699 		(void) vd_scsi_reset(vd);
3700 
3701 		/* try again even if the reset has failed */
3702 		request->status = ldi_ioctl(vd->ldi_handle[request->slice],
3703 		    MHIOCQRESERVE, NULL, (vd->open_flags | FKIOCTL), kcred,
3704 		    &rval);
3705 		break;
3706 
3707 	case 0:
3708 		/* Flag EXCLUSIVE only. Just issue a SCSI reservation */
3709 		PR0("Performing VD_OP_SET_ACCESS (EXCLUSIVE)");
3710 		request->status = ldi_ioctl(vd->ldi_handle[request->slice],
3711 		    MHIOCQRESERVE, NULL, (vd->open_flags | FKIOCTL), kcred,
3712 		    &rval);
3713 		break;
3714 	}
3715 
3716 	if (request->status == 0)
3717 		vd->ownership = B_TRUE;
3718 	else
3719 		PR0("VD_OP_SET_ACCESS: error %d", request->status);
3720 
3721 	return (0);
3722 }
3723 
3724 static void
3725 vd_reset_access(vd_t *vd)
3726 {
3727 	int status, rval;
3728 
3729 	if (vd->file || !vd->ownership)
3730 		return;
3731 
3732 	PR0("Releasing disk ownership");
3733 	status = ldi_ioctl(vd->ldi_handle[0], MHIOCRELEASE, NULL,
3734 	    (vd->open_flags | FKIOCTL), kcred, &rval);
3735 
3736 	/*
3737 	 * An EACCES failure means that there is a reservation conflict,
3738 	 * so we are not the owner of the disk anymore.
3739 	 */
3740 	if (status == 0 || status == EACCES) {
3741 		vd->ownership = B_FALSE;
3742 		return;
3743 	}
3744 
3745 	PR0("Fail to release ownership, error %d", status);
3746 
3747 	/*
3748 	 * We have failed to release the ownership, try to reset the disk
3749 	 * to release reservations.
3750 	 */
3751 	PR0("Resetting disk");
3752 	status = vd_scsi_reset(vd);
3753 
3754 	if (status != 0)
3755 		PR0("Fail to reset disk, error %d", status);
3756 
3757 	/* whatever the result of the reset is, we try the release again */
3758 	status = ldi_ioctl(vd->ldi_handle[0], MHIOCRELEASE, NULL,
3759 	    (vd->open_flags | FKIOCTL), kcred, &rval);
3760 
3761 	if (status == 0 || status == EACCES) {
3762 		vd->ownership = B_FALSE;
3763 		return;
3764 	}
3765 
3766 	PR0("Fail to release ownership, error %d", status);
3767 
3768 	/*
3769 	 * At this point we have done our best to try to reset the
3770 	 * access rights to the disk and we don't know if we still
3771 	 * own a reservation and if any mechanism to preserve the
3772 	 * ownership is still in place. The ultimate solution would
3773 	 * be to reset the system but this is usually not what we
3774 	 * want to happen.
3775 	 */
3776 
3777 	if (vd_reset_access_failure == A_REBOOT) {
3778 		cmn_err(CE_WARN, VD_RESET_ACCESS_FAILURE_MSG
3779 		    ", rebooting the system", vd->device_path);
3780 		(void) uadmin(A_SHUTDOWN, AD_BOOT, NULL);
3781 	} else if (vd_reset_access_failure == A_DUMP) {
3782 		panic(VD_RESET_ACCESS_FAILURE_MSG, vd->device_path);
3783 	}
3784 
3785 	cmn_err(CE_WARN, VD_RESET_ACCESS_FAILURE_MSG, vd->device_path);
3786 }
3787 
3788 /*
3789  * Define the supported operations once the functions for performing them have
3790  * been defined
3791  */
3792 static const vds_operation_t	vds_operation[] = {
3793 #define	X(_s)	#_s, _s
3794 	{X(VD_OP_BREAD),	vd_start_bio,	vd_complete_bio},
3795 	{X(VD_OP_BWRITE),	vd_start_bio,	vd_complete_bio},
3796 	{X(VD_OP_FLUSH),	vd_ioctl,	NULL},
3797 	{X(VD_OP_GET_WCE),	vd_ioctl,	NULL},
3798 	{X(VD_OP_SET_WCE),	vd_ioctl,	NULL},
3799 	{X(VD_OP_GET_VTOC),	vd_ioctl,	NULL},
3800 	{X(VD_OP_SET_VTOC),	vd_ioctl,	NULL},
3801 	{X(VD_OP_GET_DISKGEOM),	vd_ioctl,	NULL},
3802 	{X(VD_OP_SET_DISKGEOM),	vd_ioctl,	NULL},
3803 	{X(VD_OP_GET_EFI),	vd_ioctl,	NULL},
3804 	{X(VD_OP_SET_EFI),	vd_ioctl,	NULL},
3805 	{X(VD_OP_GET_DEVID),	vd_get_devid,	NULL},
3806 	{X(VD_OP_SCSICMD),	vd_ioctl,	NULL},
3807 	{X(VD_OP_RESET),	vd_reset,	NULL},
3808 	{X(VD_OP_GET_CAPACITY),	vd_get_capacity, NULL},
3809 	{X(VD_OP_SET_ACCESS),	vd_set_access,	NULL},
3810 	{X(VD_OP_GET_ACCESS),	vd_get_access,	NULL},
3811 #undef	X
3812 };
3813 
3814 static const size_t	vds_noperations =
3815 	(sizeof (vds_operation))/(sizeof (vds_operation[0]));
3816 
3817 /*
3818  * Process a task specifying a client I/O request
3819  *
3820  * Parameters:
3821  *	task 		- structure containing the request sent from client
3822  *
3823  * Return Value
3824  *	0	- success
3825  *	ENOTSUP	- Unknown/Unsupported VD_OP_XXX operation
3826  *	EINVAL	- Invalid disk slice
3827  *	!= 0	- some other non-zero return value from start function
3828  */
3829 static int
3830 vd_do_process_task(vd_task_t *task)
3831 {
3832 	int			i;
3833 	vd_t			*vd		= task->vd;
3834 	vd_dring_payload_t	*request	= task->request;
3835 
3836 	ASSERT(vd != NULL);
3837 	ASSERT(request != NULL);
3838 
3839 	/* Find the requested operation */
3840 	for (i = 0; i < vds_noperations; i++) {
3841 		if (request->operation == vds_operation[i].operation) {
3842 			/* all operations should have a start func */
3843 			ASSERT(vds_operation[i].start != NULL);
3844 
3845 			task->completef = vds_operation[i].complete;
3846 			break;
3847 		}
3848 	}
3849 
3850 	/*
3851 	 * We need to check that the requested operation is permitted
3852 	 * for the particular client that sent it or that the loop above
3853 	 * did not complete without finding the operation type (indicating
3854 	 * that the requested operation is unknown/unimplemented)
3855 	 */
3856 	if ((VD_OP_SUPPORTED(vd->operations, request->operation) == B_FALSE) ||
3857 	    (i == vds_noperations)) {
3858 		PR0("Unsupported operation %u", request->operation);
3859 		request->status = ENOTSUP;
3860 		return (0);
3861 	}
3862 
3863 	/* Range-check slice */
3864 	if (request->slice >= vd->nslices &&
3865 	    ((vd->vdisk_type != VD_DISK_TYPE_DISK && vd_slice_single_slice) ||
3866 	    request->slice != VD_SLICE_NONE)) {
3867 		PR0("Invalid \"slice\" %u (max %u) for virtual disk",
3868 		    request->slice, (vd->nslices - 1));
3869 		request->status = EINVAL;
3870 		return (0);
3871 	}
3872 
3873 	/*
3874 	 * Call the function pointer that starts the operation.
3875 	 */
3876 	return (vds_operation[i].start(task));
3877 }
3878 
3879 /*
3880  * Description:
3881  *	This function is called by both the in-band and descriptor ring
3882  *	message processing functions paths to actually execute the task
3883  *	requested by the vDisk client. It in turn calls its worker
3884  *	function, vd_do_process_task(), to carry our the request.
3885  *
3886  *	Any transport errors (e.g. LDC errors, vDisk protocol errors) are
3887  *	saved in the 'status' field of the task and are propagated back
3888  *	up the call stack to trigger a NACK
3889  *
3890  *	Any request errors (e.g. ENOTTY from an ioctl) are saved in
3891  *	the 'status' field of the request and result in an ACK being sent
3892  *	by the completion handler.
3893  *
3894  * Parameters:
3895  *	task 		- structure containing the request sent from client
3896  *
3897  * Return Value
3898  *	0		- successful synchronous request.
3899  *	!= 0		- transport error (e.g. LDC errors, vDisk protocol)
3900  *	EINPROGRESS	- task will be finished in a completion handler
3901  */
3902 static int
3903 vd_process_task(vd_task_t *task)
3904 {
3905 	vd_t	*vd = task->vd;
3906 	int	status;
3907 
3908 	DTRACE_PROBE1(task__start, vd_task_t *, task);
3909 
3910 	task->status =  vd_do_process_task(task);
3911 
3912 	/*
3913 	 * If the task processing function returned EINPROGRESS indicating
3914 	 * that the task needs completing then schedule a taskq entry to
3915 	 * finish it now.
3916 	 *
3917 	 * Otherwise the task processing function returned either zero
3918 	 * indicating that the task was finished in the start function (and we
3919 	 * don't need to wait in a completion function) or the start function
3920 	 * returned an error - in both cases all that needs to happen is the
3921 	 * notification to the vDisk client higher up the call stack.
3922 	 * If the task was using a Descriptor Ring, we need to mark it as done
3923 	 * at this stage.
3924 	 */
3925 	if (task->status == EINPROGRESS) {
3926 		/* Queue a task to complete the operation */
3927 		(void) ddi_taskq_dispatch(vd->completionq, vd_complete,
3928 		    task, DDI_SLEEP);
3929 
3930 	} else if (!vd->reset_state && (vd->xfer_mode == VIO_DRING_MODE_V1_0)) {
3931 		/* Update the dring element if it's a dring client */
3932 		status = vd_mark_elem_done(vd, task->index,
3933 		    task->request->status, task->request->nbytes);
3934 		if (status == ECONNRESET)
3935 			vd_mark_in_reset(vd);
3936 		else if (status == EACCES)
3937 			vd_need_reset(vd, B_TRUE);
3938 	}
3939 
3940 	return (task->status);
3941 }
3942 
3943 /*
3944  * Return true if the "type", "subtype", and "env" fields of the "tag" first
3945  * argument match the corresponding remaining arguments; otherwise, return false
3946  */
3947 boolean_t
3948 vd_msgtype(vio_msg_tag_t *tag, int type, int subtype, int env)
3949 {
3950 	return ((tag->vio_msgtype == type) &&
3951 	    (tag->vio_subtype == subtype) &&
3952 	    (tag->vio_subtype_env == env)) ? B_TRUE : B_FALSE;
3953 }
3954 
3955 /*
3956  * Check whether the major/minor version specified in "ver_msg" is supported
3957  * by this server.
3958  */
3959 static boolean_t
3960 vds_supported_version(vio_ver_msg_t *ver_msg)
3961 {
3962 	for (int i = 0; i < vds_num_versions; i++) {
3963 		ASSERT(vds_version[i].major > 0);
3964 		ASSERT((i == 0) ||
3965 		    (vds_version[i].major < vds_version[i-1].major));
3966 
3967 		/*
3968 		 * If the major versions match, adjust the minor version, if
3969 		 * necessary, down to the highest value supported by this
3970 		 * server and return true so this message will get "ack"ed;
3971 		 * the client should also support all minor versions lower
3972 		 * than the value it sent
3973 		 */
3974 		if (ver_msg->ver_major == vds_version[i].major) {
3975 			if (ver_msg->ver_minor > vds_version[i].minor) {
3976 				PR0("Adjusting minor version from %u to %u",
3977 				    ver_msg->ver_minor, vds_version[i].minor);
3978 				ver_msg->ver_minor = vds_version[i].minor;
3979 			}
3980 			return (B_TRUE);
3981 		}
3982 
3983 		/*
3984 		 * If the message contains a higher major version number, set
3985 		 * the message's major/minor versions to the current values
3986 		 * and return false, so this message will get "nack"ed with
3987 		 * these values, and the client will potentially try again
3988 		 * with the same or a lower version
3989 		 */
3990 		if (ver_msg->ver_major > vds_version[i].major) {
3991 			ver_msg->ver_major = vds_version[i].major;
3992 			ver_msg->ver_minor = vds_version[i].minor;
3993 			return (B_FALSE);
3994 		}
3995 
3996 		/*
3997 		 * Otherwise, the message's major version is less than the
3998 		 * current major version, so continue the loop to the next
3999 		 * (lower) supported version
4000 		 */
4001 	}
4002 
4003 	/*
4004 	 * No common version was found; "ground" the version pair in the
4005 	 * message to terminate negotiation
4006 	 */
4007 	ver_msg->ver_major = 0;
4008 	ver_msg->ver_minor = 0;
4009 	return (B_FALSE);
4010 }
4011 
4012 /*
4013  * Process a version message from a client.  vds expects to receive version
4014  * messages from clients seeking service, but never issues version messages
4015  * itself; therefore, vds can ACK or NACK client version messages, but does
4016  * not expect to receive version-message ACKs or NACKs (and will treat such
4017  * messages as invalid).
4018  */
4019 static int
4020 vd_process_ver_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
4021 {
4022 	vio_ver_msg_t	*ver_msg = (vio_ver_msg_t *)msg;
4023 
4024 
4025 	ASSERT(msglen >= sizeof (msg->tag));
4026 
4027 	if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO,
4028 	    VIO_VER_INFO)) {
4029 		return (ENOMSG);	/* not a version message */
4030 	}
4031 
4032 	if (msglen != sizeof (*ver_msg)) {
4033 		PR0("Expected %lu-byte version message; "
4034 		    "received %lu bytes", sizeof (*ver_msg), msglen);
4035 		return (EBADMSG);
4036 	}
4037 
4038 	if (ver_msg->dev_class != VDEV_DISK) {
4039 		PR0("Expected device class %u (disk); received %u",
4040 		    VDEV_DISK, ver_msg->dev_class);
4041 		return (EBADMSG);
4042 	}
4043 
4044 	/*
4045 	 * We're talking to the expected kind of client; set our device class
4046 	 * for "ack/nack" back to the client
4047 	 */
4048 	ver_msg->dev_class = VDEV_DISK_SERVER;
4049 
4050 	/*
4051 	 * Check whether the (valid) version message specifies a version
4052 	 * supported by this server.  If the version is not supported, return
4053 	 * EBADMSG so the message will get "nack"ed; vds_supported_version()
4054 	 * will have updated the message with a supported version for the
4055 	 * client to consider
4056 	 */
4057 	if (!vds_supported_version(ver_msg))
4058 		return (EBADMSG);
4059 
4060 
4061 	/*
4062 	 * A version has been agreed upon; use the client's SID for
4063 	 * communication on this channel now
4064 	 */
4065 	ASSERT(!(vd->initialized & VD_SID));
4066 	vd->sid = ver_msg->tag.vio_sid;
4067 	vd->initialized |= VD_SID;
4068 
4069 	/*
4070 	 * Store the negotiated major and minor version values in the "vd" data
4071 	 * structure so that we can check if certain operations are supported
4072 	 * by the client.
4073 	 */
4074 	vd->version.major = ver_msg->ver_major;
4075 	vd->version.minor = ver_msg->ver_minor;
4076 
4077 	PR0("Using major version %u, minor version %u",
4078 	    ver_msg->ver_major, ver_msg->ver_minor);
4079 	return (0);
4080 }
4081 
4082 static void
4083 vd_set_exported_operations(vd_t *vd)
4084 {
4085 	vd->operations = 0;	/* clear field */
4086 
4087 	/*
4088 	 * We need to check from the highest version supported to the
4089 	 * lowest because versions with a higher minor number implicitly
4090 	 * support versions with a lower minor number.
4091 	 */
4092 	if (vio_ver_is_supported(vd->version, 1, 1)) {
4093 		ASSERT(vd->open_flags & FREAD);
4094 		vd->operations |= VD_OP_MASK_READ | (1 << VD_OP_GET_CAPACITY);
4095 
4096 		if (vd->open_flags & FWRITE)
4097 			vd->operations |= VD_OP_MASK_WRITE;
4098 
4099 		if (vd->scsi)
4100 			vd->operations |= VD_OP_MASK_SCSI;
4101 
4102 		if (vd->file && vd_file_is_iso_image(vd)) {
4103 			/*
4104 			 * can't write to ISO images, make sure that write
4105 			 * support is not set in case administrator did not
4106 			 * use "options=ro" when doing an ldm add-vdsdev
4107 			 */
4108 			vd->operations &= ~VD_OP_MASK_WRITE;
4109 		}
4110 	} else if (vio_ver_is_supported(vd->version, 1, 0)) {
4111 		vd->operations = VD_OP_MASK_READ | VD_OP_MASK_WRITE;
4112 	}
4113 
4114 	/* we should have already agreed on a version */
4115 	ASSERT(vd->operations != 0);
4116 }
4117 
4118 static int
4119 vd_process_attr_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
4120 {
4121 	vd_attr_msg_t	*attr_msg = (vd_attr_msg_t *)msg;
4122 	int		status, retry = 0;
4123 
4124 
4125 	ASSERT(msglen >= sizeof (msg->tag));
4126 
4127 	if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO,
4128 	    VIO_ATTR_INFO)) {
4129 		PR0("Message is not an attribute message");
4130 		return (ENOMSG);
4131 	}
4132 
4133 	if (msglen != sizeof (*attr_msg)) {
4134 		PR0("Expected %lu-byte attribute message; "
4135 		    "received %lu bytes", sizeof (*attr_msg), msglen);
4136 		return (EBADMSG);
4137 	}
4138 
4139 	if (attr_msg->max_xfer_sz == 0) {
4140 		PR0("Received maximum transfer size of 0 from client");
4141 		return (EBADMSG);
4142 	}
4143 
4144 	if ((attr_msg->xfer_mode != VIO_DESC_MODE) &&
4145 	    (attr_msg->xfer_mode != VIO_DRING_MODE_V1_0)) {
4146 		PR0("Client requested unsupported transfer mode");
4147 		return (EBADMSG);
4148 	}
4149 
4150 	/*
4151 	 * check if the underlying disk is ready, if not try accessing
4152 	 * the device again. Open the vdisk device and extract info
4153 	 * about it, as this is needed to respond to the attr info msg
4154 	 */
4155 	if ((vd->initialized & VD_DISK_READY) == 0) {
4156 		PR0("Retry setting up disk (%s)", vd->device_path);
4157 		do {
4158 			status = vd_setup_vd(vd);
4159 			if (status != EAGAIN || ++retry > vds_dev_retries)
4160 				break;
4161 
4162 			/* incremental delay */
4163 			delay(drv_usectohz(vds_dev_delay));
4164 
4165 			/* if vdisk is no longer enabled - return error */
4166 			if (!vd_enabled(vd))
4167 				return (ENXIO);
4168 
4169 		} while (status == EAGAIN);
4170 
4171 		if (status)
4172 			return (ENXIO);
4173 
4174 		vd->initialized |= VD_DISK_READY;
4175 		ASSERT(vd->nslices > 0 && vd->nslices <= V_NUMPAR);
4176 		PR0("vdisk_type = %s, volume = %s, file = %s, nslices = %u",
4177 		    ((vd->vdisk_type == VD_DISK_TYPE_DISK) ? "disk" : "slice"),
4178 		    (vd->volume ? "yes" : "no"),
4179 		    (vd->file ? "yes" : "no"),
4180 		    vd->nslices);
4181 	}
4182 
4183 	/* Success:  valid message and transfer mode */
4184 	vd->xfer_mode = attr_msg->xfer_mode;
4185 
4186 	if (vd->xfer_mode == VIO_DESC_MODE) {
4187 
4188 		/*
4189 		 * The vd_dring_inband_msg_t contains one cookie; need room
4190 		 * for up to n-1 more cookies, where "n" is the number of full
4191 		 * pages plus possibly one partial page required to cover
4192 		 * "max_xfer_sz".  Add room for one more cookie if
4193 		 * "max_xfer_sz" isn't an integral multiple of the page size.
4194 		 * Must first get the maximum transfer size in bytes.
4195 		 */
4196 		size_t	max_xfer_bytes = attr_msg->vdisk_block_size ?
4197 		    attr_msg->vdisk_block_size*attr_msg->max_xfer_sz :
4198 		    attr_msg->max_xfer_sz;
4199 		size_t	max_inband_msglen =
4200 		    sizeof (vd_dring_inband_msg_t) +
4201 		    ((max_xfer_bytes/PAGESIZE +
4202 		    ((max_xfer_bytes % PAGESIZE) ? 1 : 0))*
4203 		    (sizeof (ldc_mem_cookie_t)));
4204 
4205 		/*
4206 		 * Set the maximum expected message length to
4207 		 * accommodate in-band-descriptor messages with all
4208 		 * their cookies
4209 		 */
4210 		vd->max_msglen = MAX(vd->max_msglen, max_inband_msglen);
4211 
4212 		/*
4213 		 * Initialize the data structure for processing in-band I/O
4214 		 * request descriptors
4215 		 */
4216 		vd->inband_task.vd	= vd;
4217 		vd->inband_task.msg	= kmem_alloc(vd->max_msglen, KM_SLEEP);
4218 		vd->inband_task.index	= 0;
4219 		vd->inband_task.type	= VD_FINAL_RANGE_TASK;	/* range == 1 */
4220 	}
4221 
4222 	/* Return the device's block size and max transfer size to the client */
4223 	attr_msg->vdisk_block_size	= vd->vdisk_block_size;
4224 	attr_msg->max_xfer_sz		= vd->max_xfer_sz;
4225 
4226 	attr_msg->vdisk_size = vd->vdisk_size;
4227 	attr_msg->vdisk_type = (vd_slice_single_slice)? vd->vdisk_type :
4228 	    VD_DISK_TYPE_DISK;
4229 	attr_msg->vdisk_media = vd->vdisk_media;
4230 
4231 	/* Discover and save the list of supported VD_OP_XXX operations */
4232 	vd_set_exported_operations(vd);
4233 	attr_msg->operations = vd->operations;
4234 
4235 	PR0("%s", VD_CLIENT(vd));
4236 
4237 	ASSERT(vd->dring_task == NULL);
4238 
4239 	return (0);
4240 }
4241 
4242 static int
4243 vd_process_dring_reg_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
4244 {
4245 	int			status;
4246 	size_t			expected;
4247 	ldc_mem_info_t		dring_minfo;
4248 	uint8_t			mtype;
4249 	vio_dring_reg_msg_t	*reg_msg = (vio_dring_reg_msg_t *)msg;
4250 
4251 
4252 	ASSERT(msglen >= sizeof (msg->tag));
4253 
4254 	if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO,
4255 	    VIO_DRING_REG)) {
4256 		PR0("Message is not a register-dring message");
4257 		return (ENOMSG);
4258 	}
4259 
4260 	if (msglen < sizeof (*reg_msg)) {
4261 		PR0("Expected at least %lu-byte register-dring message; "
4262 		    "received %lu bytes", sizeof (*reg_msg), msglen);
4263 		return (EBADMSG);
4264 	}
4265 
4266 	expected = sizeof (*reg_msg) +
4267 	    (reg_msg->ncookies - 1)*(sizeof (reg_msg->cookie[0]));
4268 	if (msglen != expected) {
4269 		PR0("Expected %lu-byte register-dring message; "
4270 		    "received %lu bytes", expected, msglen);
4271 		return (EBADMSG);
4272 	}
4273 
4274 	if (vd->initialized & VD_DRING) {
4275 		PR0("A dring was previously registered; only support one");
4276 		return (EBADMSG);
4277 	}
4278 
4279 	if (reg_msg->num_descriptors > INT32_MAX) {
4280 		PR0("reg_msg->num_descriptors = %u; must be <= %u (%s)",
4281 		    reg_msg->ncookies, INT32_MAX, STRINGIZE(INT32_MAX));
4282 		return (EBADMSG);
4283 	}
4284 
4285 	if (reg_msg->ncookies != 1) {
4286 		/*
4287 		 * In addition to fixing the assertion in the success case
4288 		 * below, supporting drings which require more than one
4289 		 * "cookie" requires increasing the value of vd->max_msglen
4290 		 * somewhere in the code path prior to receiving the message
4291 		 * which results in calling this function.  Note that without
4292 		 * making this change, the larger message size required to
4293 		 * accommodate multiple cookies cannot be successfully
4294 		 * received, so this function will not even get called.
4295 		 * Gracefully accommodating more dring cookies might
4296 		 * reasonably demand exchanging an additional attribute or
4297 		 * making a minor protocol adjustment
4298 		 */
4299 		PR0("reg_msg->ncookies = %u != 1", reg_msg->ncookies);
4300 		return (EBADMSG);
4301 	}
4302 
4303 	if (vd_direct_mapped_drings)
4304 		mtype = LDC_DIRECT_MAP;
4305 	else
4306 		mtype = LDC_SHADOW_MAP;
4307 
4308 	status = ldc_mem_dring_map(vd->ldc_handle, reg_msg->cookie,
4309 	    reg_msg->ncookies, reg_msg->num_descriptors,
4310 	    reg_msg->descriptor_size, mtype, &vd->dring_handle);
4311 	if (status != 0) {
4312 		PR0("ldc_mem_dring_map() returned errno %d", status);
4313 		return (status);
4314 	}
4315 
4316 	/*
4317 	 * To remove the need for this assertion, must call
4318 	 * ldc_mem_dring_nextcookie() successfully ncookies-1 times after a
4319 	 * successful call to ldc_mem_dring_map()
4320 	 */
4321 	ASSERT(reg_msg->ncookies == 1);
4322 
4323 	if ((status =
4324 	    ldc_mem_dring_info(vd->dring_handle, &dring_minfo)) != 0) {
4325 		PR0("ldc_mem_dring_info() returned errno %d", status);
4326 		if ((status = ldc_mem_dring_unmap(vd->dring_handle)) != 0)
4327 			PR0("ldc_mem_dring_unmap() returned errno %d", status);
4328 		return (status);
4329 	}
4330 
4331 	if (dring_minfo.vaddr == NULL) {
4332 		PR0("Descriptor ring virtual address is NULL");
4333 		return (ENXIO);
4334 	}
4335 
4336 
4337 	/* Initialize for valid message and mapped dring */
4338 	vd->initialized |= VD_DRING;
4339 	vd->dring_ident = 1;	/* "There Can Be Only One" */
4340 	vd->dring = dring_minfo.vaddr;
4341 	vd->descriptor_size = reg_msg->descriptor_size;
4342 	vd->dring_len = reg_msg->num_descriptors;
4343 	vd->dring_mtype = dring_minfo.mtype;
4344 	reg_msg->dring_ident = vd->dring_ident;
4345 	PR1("descriptor size = %u, dring length = %u",
4346 	    vd->descriptor_size, vd->dring_len);
4347 
4348 	/*
4349 	 * Allocate and initialize a "shadow" array of data structures for
4350 	 * tasks to process I/O requests in dring elements
4351 	 */
4352 	vd->dring_task =
4353 	    kmem_zalloc((sizeof (*vd->dring_task)) * vd->dring_len, KM_SLEEP);
4354 	for (int i = 0; i < vd->dring_len; i++) {
4355 		vd->dring_task[i].vd		= vd;
4356 		vd->dring_task[i].index		= i;
4357 
4358 		status = ldc_mem_alloc_handle(vd->ldc_handle,
4359 		    &(vd->dring_task[i].mhdl));
4360 		if (status) {
4361 			PR0("ldc_mem_alloc_handle() returned err %d ", status);
4362 			return (ENXIO);
4363 		}
4364 
4365 		/*
4366 		 * The descriptor payload varies in length. Calculate its
4367 		 * size by subtracting the header size from the total
4368 		 * descriptor size.
4369 		 */
4370 		vd->dring_task[i].request = kmem_zalloc((vd->descriptor_size -
4371 		    sizeof (vio_dring_entry_hdr_t)), KM_SLEEP);
4372 		vd->dring_task[i].msg = kmem_alloc(vd->max_msglen, KM_SLEEP);
4373 	}
4374 
4375 	return (0);
4376 }
4377 
4378 static int
4379 vd_process_dring_unreg_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
4380 {
4381 	vio_dring_unreg_msg_t	*unreg_msg = (vio_dring_unreg_msg_t *)msg;
4382 
4383 
4384 	ASSERT(msglen >= sizeof (msg->tag));
4385 
4386 	if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO,
4387 	    VIO_DRING_UNREG)) {
4388 		PR0("Message is not an unregister-dring message");
4389 		return (ENOMSG);
4390 	}
4391 
4392 	if (msglen != sizeof (*unreg_msg)) {
4393 		PR0("Expected %lu-byte unregister-dring message; "
4394 		    "received %lu bytes", sizeof (*unreg_msg), msglen);
4395 		return (EBADMSG);
4396 	}
4397 
4398 	if (unreg_msg->dring_ident != vd->dring_ident) {
4399 		PR0("Expected dring ident %lu; received %lu",
4400 		    vd->dring_ident, unreg_msg->dring_ident);
4401 		return (EBADMSG);
4402 	}
4403 
4404 	return (0);
4405 }
4406 
4407 static int
4408 process_rdx_msg(vio_msg_t *msg, size_t msglen)
4409 {
4410 	ASSERT(msglen >= sizeof (msg->tag));
4411 
4412 	if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO, VIO_RDX)) {
4413 		PR0("Message is not an RDX message");
4414 		return (ENOMSG);
4415 	}
4416 
4417 	if (msglen != sizeof (vio_rdx_msg_t)) {
4418 		PR0("Expected %lu-byte RDX message; received %lu bytes",
4419 		    sizeof (vio_rdx_msg_t), msglen);
4420 		return (EBADMSG);
4421 	}
4422 
4423 	PR0("Valid RDX message");
4424 	return (0);
4425 }
4426 
4427 static int
4428 vd_check_seq_num(vd_t *vd, uint64_t seq_num)
4429 {
4430 	if ((vd->initialized & VD_SEQ_NUM) && (seq_num != vd->seq_num + 1)) {
4431 		PR0("Received seq_num %lu; expected %lu",
4432 		    seq_num, (vd->seq_num + 1));
4433 		PR0("initiating soft reset");
4434 		vd_need_reset(vd, B_FALSE);
4435 		return (1);
4436 	}
4437 
4438 	vd->seq_num = seq_num;
4439 	vd->initialized |= VD_SEQ_NUM;	/* superfluous after first time... */
4440 	return (0);
4441 }
4442 
4443 /*
4444  * Return the expected size of an inband-descriptor message with all the
4445  * cookies it claims to include
4446  */
4447 static size_t
4448 expected_inband_size(vd_dring_inband_msg_t *msg)
4449 {
4450 	return ((sizeof (*msg)) +
4451 	    (msg->payload.ncookies - 1)*(sizeof (msg->payload.cookie[0])));
4452 }
4453 
4454 /*
4455  * Process an in-band descriptor message:  used with clients like OBP, with
4456  * which vds exchanges descriptors within VIO message payloads, rather than
4457  * operating on them within a descriptor ring
4458  */
4459 static int
4460 vd_process_desc_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
4461 {
4462 	size_t			expected;
4463 	vd_dring_inband_msg_t	*desc_msg = (vd_dring_inband_msg_t *)msg;
4464 
4465 
4466 	ASSERT(msglen >= sizeof (msg->tag));
4467 
4468 	if (!vd_msgtype(&msg->tag, VIO_TYPE_DATA, VIO_SUBTYPE_INFO,
4469 	    VIO_DESC_DATA)) {
4470 		PR1("Message is not an in-band-descriptor message");
4471 		return (ENOMSG);
4472 	}
4473 
4474 	if (msglen < sizeof (*desc_msg)) {
4475 		PR0("Expected at least %lu-byte descriptor message; "
4476 		    "received %lu bytes", sizeof (*desc_msg), msglen);
4477 		return (EBADMSG);
4478 	}
4479 
4480 	if (msglen != (expected = expected_inband_size(desc_msg))) {
4481 		PR0("Expected %lu-byte descriptor message; "
4482 		    "received %lu bytes", expected, msglen);
4483 		return (EBADMSG);
4484 	}
4485 
4486 	if (vd_check_seq_num(vd, desc_msg->hdr.seq_num) != 0)
4487 		return (EBADMSG);
4488 
4489 	/*
4490 	 * Valid message:  Set up the in-band descriptor task and process the
4491 	 * request.  Arrange to acknowledge the client's message, unless an
4492 	 * error processing the descriptor task results in setting
4493 	 * VIO_SUBTYPE_NACK
4494 	 */
4495 	PR1("Valid in-band-descriptor message");
4496 	msg->tag.vio_subtype = VIO_SUBTYPE_ACK;
4497 
4498 	ASSERT(vd->inband_task.msg != NULL);
4499 
4500 	bcopy(msg, vd->inband_task.msg, msglen);
4501 	vd->inband_task.msglen	= msglen;
4502 
4503 	/*
4504 	 * The task request is now the payload of the message
4505 	 * that was just copied into the body of the task.
4506 	 */
4507 	desc_msg = (vd_dring_inband_msg_t *)vd->inband_task.msg;
4508 	vd->inband_task.request	= &desc_msg->payload;
4509 
4510 	return (vd_process_task(&vd->inband_task));
4511 }
4512 
4513 static int
4514 vd_process_element(vd_t *vd, vd_task_type_t type, uint32_t idx,
4515     vio_msg_t *msg, size_t msglen)
4516 {
4517 	int			status;
4518 	boolean_t		ready;
4519 	on_trap_data_t		otd;
4520 	vd_dring_entry_t	*elem = VD_DRING_ELEM(idx);
4521 
4522 	/* Accept the updated dring element */
4523 	if ((status = VIO_DRING_ACQUIRE(&otd, vd->dring_mtype,
4524 	    vd->dring_handle, idx, idx)) != 0) {
4525 		return (status);
4526 	}
4527 	ready = (elem->hdr.dstate == VIO_DESC_READY);
4528 	if (ready) {
4529 		elem->hdr.dstate = VIO_DESC_ACCEPTED;
4530 		bcopy(&elem->payload, vd->dring_task[idx].request,
4531 		    (vd->descriptor_size - sizeof (vio_dring_entry_hdr_t)));
4532 	} else {
4533 		PR0("descriptor %u not ready", idx);
4534 		VD_DUMP_DRING_ELEM(elem);
4535 	}
4536 	if ((status = VIO_DRING_RELEASE(vd->dring_mtype,
4537 	    vd->dring_handle, idx, idx)) != 0) {
4538 		PR0("VIO_DRING_RELEASE() returned errno %d", status);
4539 		return (status);
4540 	}
4541 	if (!ready)
4542 		return (EBUSY);
4543 
4544 
4545 	/* Initialize a task and process the accepted element */
4546 	PR1("Processing dring element %u", idx);
4547 	vd->dring_task[idx].type	= type;
4548 
4549 	/* duplicate msg buf for cookies etc. */
4550 	bcopy(msg, vd->dring_task[idx].msg, msglen);
4551 
4552 	vd->dring_task[idx].msglen	= msglen;
4553 	return (vd_process_task(&vd->dring_task[idx]));
4554 }
4555 
4556 static int
4557 vd_process_element_range(vd_t *vd, int start, int end,
4558     vio_msg_t *msg, size_t msglen)
4559 {
4560 	int		i, n, nelem, status = 0;
4561 	boolean_t	inprogress = B_FALSE;
4562 	vd_task_type_t	type;
4563 
4564 
4565 	ASSERT(start >= 0);
4566 	ASSERT(end >= 0);
4567 
4568 	/*
4569 	 * Arrange to acknowledge the client's message, unless an error
4570 	 * processing one of the dring elements results in setting
4571 	 * VIO_SUBTYPE_NACK
4572 	 */
4573 	msg->tag.vio_subtype = VIO_SUBTYPE_ACK;
4574 
4575 	/*
4576 	 * Process the dring elements in the range
4577 	 */
4578 	nelem = ((end < start) ? end + vd->dring_len : end) - start + 1;
4579 	for (i = start, n = nelem; n > 0; i = (i + 1) % vd->dring_len, n--) {
4580 		((vio_dring_msg_t *)msg)->end_idx = i;
4581 		type = (n == 1) ? VD_FINAL_RANGE_TASK : VD_NONFINAL_RANGE_TASK;
4582 		status = vd_process_element(vd, type, i, msg, msglen);
4583 		if (status == EINPROGRESS)
4584 			inprogress = B_TRUE;
4585 		else if (status != 0)
4586 			break;
4587 	}
4588 
4589 	/*
4590 	 * If some, but not all, operations of a multi-element range are in
4591 	 * progress, wait for other operations to complete before returning
4592 	 * (which will result in "ack" or "nack" of the message).  Note that
4593 	 * all outstanding operations will need to complete, not just the ones
4594 	 * corresponding to the current range of dring elements; howevever, as
4595 	 * this situation is an error case, performance is less critical.
4596 	 */
4597 	if ((nelem > 1) && (status != EINPROGRESS) && inprogress)
4598 		ddi_taskq_wait(vd->completionq);
4599 
4600 	return (status);
4601 }
4602 
4603 static int
4604 vd_process_dring_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
4605 {
4606 	vio_dring_msg_t	*dring_msg = (vio_dring_msg_t *)msg;
4607 
4608 
4609 	ASSERT(msglen >= sizeof (msg->tag));
4610 
4611 	if (!vd_msgtype(&msg->tag, VIO_TYPE_DATA, VIO_SUBTYPE_INFO,
4612 	    VIO_DRING_DATA)) {
4613 		PR1("Message is not a dring-data message");
4614 		return (ENOMSG);
4615 	}
4616 
4617 	if (msglen != sizeof (*dring_msg)) {
4618 		PR0("Expected %lu-byte dring message; received %lu bytes",
4619 		    sizeof (*dring_msg), msglen);
4620 		return (EBADMSG);
4621 	}
4622 
4623 	if (vd_check_seq_num(vd, dring_msg->seq_num) != 0)
4624 		return (EBADMSG);
4625 
4626 	if (dring_msg->dring_ident != vd->dring_ident) {
4627 		PR0("Expected dring ident %lu; received ident %lu",
4628 		    vd->dring_ident, dring_msg->dring_ident);
4629 		return (EBADMSG);
4630 	}
4631 
4632 	if (dring_msg->start_idx >= vd->dring_len) {
4633 		PR0("\"start_idx\" = %u; must be less than %u",
4634 		    dring_msg->start_idx, vd->dring_len);
4635 		return (EBADMSG);
4636 	}
4637 
4638 	if ((dring_msg->end_idx < 0) ||
4639 	    (dring_msg->end_idx >= vd->dring_len)) {
4640 		PR0("\"end_idx\" = %u; must be >= 0 and less than %u",
4641 		    dring_msg->end_idx, vd->dring_len);
4642 		return (EBADMSG);
4643 	}
4644 
4645 	/* Valid message; process range of updated dring elements */
4646 	PR1("Processing descriptor range, start = %u, end = %u",
4647 	    dring_msg->start_idx, dring_msg->end_idx);
4648 	return (vd_process_element_range(vd, dring_msg->start_idx,
4649 	    dring_msg->end_idx, msg, msglen));
4650 }
4651 
4652 static int
4653 recv_msg(ldc_handle_t ldc_handle, void *msg, size_t *nbytes)
4654 {
4655 	int	retry, status;
4656 	size_t	size = *nbytes;
4657 
4658 
4659 	for (retry = 0, status = ETIMEDOUT;
4660 	    retry < vds_ldc_retries && status == ETIMEDOUT;
4661 	    retry++) {
4662 		PR1("ldc_read() attempt %d", (retry + 1));
4663 		*nbytes = size;
4664 		status = ldc_read(ldc_handle, msg, nbytes);
4665 	}
4666 
4667 	if (status) {
4668 		PR0("ldc_read() returned errno %d", status);
4669 		if (status != ECONNRESET)
4670 			return (ENOMSG);
4671 		return (status);
4672 	} else if (*nbytes == 0) {
4673 		PR1("ldc_read() returned 0 and no message read");
4674 		return (ENOMSG);
4675 	}
4676 
4677 	PR1("RCVD %lu-byte message", *nbytes);
4678 	return (0);
4679 }
4680 
4681 static int
4682 vd_do_process_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
4683 {
4684 	int		status;
4685 
4686 
4687 	PR1("Processing (%x/%x/%x) message", msg->tag.vio_msgtype,
4688 	    msg->tag.vio_subtype, msg->tag.vio_subtype_env);
4689 #ifdef	DEBUG
4690 	vd_decode_tag(msg);
4691 #endif
4692 
4693 	/*
4694 	 * Validate session ID up front, since it applies to all messages
4695 	 * once set
4696 	 */
4697 	if ((msg->tag.vio_sid != vd->sid) && (vd->initialized & VD_SID)) {
4698 		PR0("Expected SID %u, received %u", vd->sid,
4699 		    msg->tag.vio_sid);
4700 		return (EBADMSG);
4701 	}
4702 
4703 	PR1("\tWhile in state %d (%s)", vd->state, vd_decode_state(vd->state));
4704 
4705 	/*
4706 	 * Process the received message based on connection state
4707 	 */
4708 	switch (vd->state) {
4709 	case VD_STATE_INIT:	/* expect version message */
4710 		if ((status = vd_process_ver_msg(vd, msg, msglen)) != 0)
4711 			return (status);
4712 
4713 		/* Version negotiated, move to that state */
4714 		vd->state = VD_STATE_VER;
4715 		return (0);
4716 
4717 	case VD_STATE_VER:	/* expect attribute message */
4718 		if ((status = vd_process_attr_msg(vd, msg, msglen)) != 0)
4719 			return (status);
4720 
4721 		/* Attributes exchanged, move to that state */
4722 		vd->state = VD_STATE_ATTR;
4723 		return (0);
4724 
4725 	case VD_STATE_ATTR:
4726 		switch (vd->xfer_mode) {
4727 		case VIO_DESC_MODE:	/* expect RDX message */
4728 			if ((status = process_rdx_msg(msg, msglen)) != 0)
4729 				return (status);
4730 
4731 			/* Ready to receive in-band descriptors */
4732 			vd->state = VD_STATE_DATA;
4733 			return (0);
4734 
4735 		case VIO_DRING_MODE_V1_0:  /* expect register-dring message */
4736 			if ((status =
4737 			    vd_process_dring_reg_msg(vd, msg, msglen)) != 0)
4738 				return (status);
4739 
4740 			/* One dring negotiated, move to that state */
4741 			vd->state = VD_STATE_DRING;
4742 			return (0);
4743 
4744 		default:
4745 			ASSERT("Unsupported transfer mode");
4746 			PR0("Unsupported transfer mode");
4747 			return (ENOTSUP);
4748 		}
4749 
4750 	case VD_STATE_DRING:	/* expect RDX, register-dring, or unreg-dring */
4751 		if ((status = process_rdx_msg(msg, msglen)) == 0) {
4752 			/* Ready to receive data */
4753 			vd->state = VD_STATE_DATA;
4754 			return (0);
4755 		} else if (status != ENOMSG) {
4756 			return (status);
4757 		}
4758 
4759 
4760 		/*
4761 		 * If another register-dring message is received, stay in
4762 		 * dring state in case the client sends RDX; although the
4763 		 * protocol allows multiple drings, this server does not
4764 		 * support using more than one
4765 		 */
4766 		if ((status =
4767 		    vd_process_dring_reg_msg(vd, msg, msglen)) != ENOMSG)
4768 			return (status);
4769 
4770 		/*
4771 		 * Acknowledge an unregister-dring message, but reset the
4772 		 * connection anyway:  Although the protocol allows
4773 		 * unregistering drings, this server cannot serve a vdisk
4774 		 * without its only dring
4775 		 */
4776 		status = vd_process_dring_unreg_msg(vd, msg, msglen);
4777 		return ((status == 0) ? ENOTSUP : status);
4778 
4779 	case VD_STATE_DATA:
4780 		switch (vd->xfer_mode) {
4781 		case VIO_DESC_MODE:	/* expect in-band-descriptor message */
4782 			return (vd_process_desc_msg(vd, msg, msglen));
4783 
4784 		case VIO_DRING_MODE_V1_0: /* expect dring-data or unreg-dring */
4785 			/*
4786 			 * Typically expect dring-data messages, so handle
4787 			 * them first
4788 			 */
4789 			if ((status = vd_process_dring_msg(vd, msg,
4790 			    msglen)) != ENOMSG)
4791 				return (status);
4792 
4793 			/*
4794 			 * Acknowledge an unregister-dring message, but reset
4795 			 * the connection anyway:  Although the protocol
4796 			 * allows unregistering drings, this server cannot
4797 			 * serve a vdisk without its only dring
4798 			 */
4799 			status = vd_process_dring_unreg_msg(vd, msg, msglen);
4800 			return ((status == 0) ? ENOTSUP : status);
4801 
4802 		default:
4803 			ASSERT("Unsupported transfer mode");
4804 			PR0("Unsupported transfer mode");
4805 			return (ENOTSUP);
4806 		}
4807 
4808 	default:
4809 		ASSERT("Invalid client connection state");
4810 		PR0("Invalid client connection state");
4811 		return (ENOTSUP);
4812 	}
4813 }
4814 
4815 static int
4816 vd_process_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
4817 {
4818 	int		status;
4819 	boolean_t	reset_ldc = B_FALSE;
4820 	vd_task_t	task;
4821 
4822 	/*
4823 	 * Check that the message is at least big enough for a "tag", so that
4824 	 * message processing can proceed based on tag-specified message type
4825 	 */
4826 	if (msglen < sizeof (vio_msg_tag_t)) {
4827 		PR0("Received short (%lu-byte) message", msglen);
4828 		/* Can't "nack" short message, so drop the big hammer */
4829 		PR0("initiating full reset");
4830 		vd_need_reset(vd, B_TRUE);
4831 		return (EBADMSG);
4832 	}
4833 
4834 	/*
4835 	 * Process the message
4836 	 */
4837 	switch (status = vd_do_process_msg(vd, msg, msglen)) {
4838 	case 0:
4839 		/* "ack" valid, successfully-processed messages */
4840 		msg->tag.vio_subtype = VIO_SUBTYPE_ACK;
4841 		break;
4842 
4843 	case EINPROGRESS:
4844 		/* The completion handler will "ack" or "nack" the message */
4845 		return (EINPROGRESS);
4846 	case ENOMSG:
4847 		PR0("Received unexpected message");
4848 		_NOTE(FALLTHROUGH);
4849 	case EBADMSG:
4850 	case ENOTSUP:
4851 		/* "transport" error will cause NACK of invalid messages */
4852 		msg->tag.vio_subtype = VIO_SUBTYPE_NACK;
4853 		break;
4854 
4855 	default:
4856 		/* "transport" error will cause NACK of invalid messages */
4857 		msg->tag.vio_subtype = VIO_SUBTYPE_NACK;
4858 		/* An LDC error probably occurred, so try resetting it */
4859 		reset_ldc = B_TRUE;
4860 		break;
4861 	}
4862 
4863 	PR1("\tResulting in state %d (%s)", vd->state,
4864 	    vd_decode_state(vd->state));
4865 
4866 	/* populate the task so we can dispatch it on the taskq */
4867 	task.vd = vd;
4868 	task.msg = msg;
4869 	task.msglen = msglen;
4870 
4871 	/*
4872 	 * Queue a task to send the notification that the operation completed.
4873 	 * We need to ensure that requests are responded to in the correct
4874 	 * order and since the taskq is processed serially this ordering
4875 	 * is maintained.
4876 	 */
4877 	(void) ddi_taskq_dispatch(vd->completionq, vd_serial_notify,
4878 	    &task, DDI_SLEEP);
4879 
4880 	/*
4881 	 * To ensure handshake negotiations do not happen out of order, such
4882 	 * requests that come through this path should not be done in parallel
4883 	 * so we need to wait here until the response is sent to the client.
4884 	 */
4885 	ddi_taskq_wait(vd->completionq);
4886 
4887 	/* Arrange to reset the connection for nack'ed or failed messages */
4888 	if ((status != 0) || reset_ldc) {
4889 		PR0("initiating %s reset",
4890 		    (reset_ldc) ? "full" : "soft");
4891 		vd_need_reset(vd, reset_ldc);
4892 	}
4893 
4894 	return (status);
4895 }
4896 
4897 static boolean_t
4898 vd_enabled(vd_t *vd)
4899 {
4900 	boolean_t	enabled;
4901 
4902 	mutex_enter(&vd->lock);
4903 	enabled = vd->enabled;
4904 	mutex_exit(&vd->lock);
4905 	return (enabled);
4906 }
4907 
4908 static void
4909 vd_recv_msg(void *arg)
4910 {
4911 	vd_t	*vd = (vd_t *)arg;
4912 	int	rv = 0, status = 0;
4913 
4914 	ASSERT(vd != NULL);
4915 
4916 	PR2("New task to receive incoming message(s)");
4917 
4918 
4919 	while (vd_enabled(vd) && status == 0) {
4920 		size_t		msglen, msgsize;
4921 		ldc_status_t	lstatus;
4922 
4923 		/*
4924 		 * Receive and process a message
4925 		 */
4926 		vd_reset_if_needed(vd);	/* can change vd->max_msglen */
4927 
4928 		/*
4929 		 * check if channel is UP - else break out of loop
4930 		 */
4931 		status = ldc_status(vd->ldc_handle, &lstatus);
4932 		if (lstatus != LDC_UP) {
4933 			PR0("channel not up (status=%d), exiting recv loop\n",
4934 			    lstatus);
4935 			break;
4936 		}
4937 
4938 		ASSERT(vd->max_msglen != 0);
4939 
4940 		msgsize = vd->max_msglen; /* stable copy for alloc/free */
4941 		msglen	= msgsize;	  /* actual len after recv_msg() */
4942 
4943 		status = recv_msg(vd->ldc_handle, vd->vio_msgp, &msglen);
4944 		switch (status) {
4945 		case 0:
4946 			rv = vd_process_msg(vd, (void *)vd->vio_msgp, msglen);
4947 			/* check if max_msglen changed */
4948 			if (msgsize != vd->max_msglen) {
4949 				PR0("max_msglen changed 0x%lx to 0x%lx bytes\n",
4950 				    msgsize, vd->max_msglen);
4951 				kmem_free(vd->vio_msgp, msgsize);
4952 				vd->vio_msgp =
4953 				    kmem_alloc(vd->max_msglen, KM_SLEEP);
4954 			}
4955 			if (rv == EINPROGRESS)
4956 				continue;
4957 			break;
4958 
4959 		case ENOMSG:
4960 			break;
4961 
4962 		case ECONNRESET:
4963 			PR0("initiating soft reset (ECONNRESET)\n");
4964 			vd_need_reset(vd, B_FALSE);
4965 			status = 0;
4966 			break;
4967 
4968 		default:
4969 			/* Probably an LDC failure; arrange to reset it */
4970 			PR0("initiating full reset (status=0x%x)", status);
4971 			vd_need_reset(vd, B_TRUE);
4972 			break;
4973 		}
4974 	}
4975 
4976 	PR2("Task finished");
4977 }
4978 
4979 static uint_t
4980 vd_handle_ldc_events(uint64_t event, caddr_t arg)
4981 {
4982 	vd_t	*vd = (vd_t *)(void *)arg;
4983 	int	status;
4984 
4985 	ASSERT(vd != NULL);
4986 
4987 	if (!vd_enabled(vd))
4988 		return (LDC_SUCCESS);
4989 
4990 	if (event & LDC_EVT_DOWN) {
4991 		PR0("LDC_EVT_DOWN: LDC channel went down");
4992 
4993 		vd_need_reset(vd, B_TRUE);
4994 		status = ddi_taskq_dispatch(vd->startq, vd_recv_msg, vd,
4995 		    DDI_SLEEP);
4996 		if (status == DDI_FAILURE) {
4997 			PR0("cannot schedule task to recv msg\n");
4998 			vd_need_reset(vd, B_TRUE);
4999 		}
5000 	}
5001 
5002 	if (event & LDC_EVT_RESET) {
5003 		PR0("LDC_EVT_RESET: LDC channel was reset");
5004 
5005 		if (vd->state != VD_STATE_INIT) {
5006 			PR0("scheduling full reset");
5007 			vd_need_reset(vd, B_FALSE);
5008 			status = ddi_taskq_dispatch(vd->startq, vd_recv_msg,
5009 			    vd, DDI_SLEEP);
5010 			if (status == DDI_FAILURE) {
5011 				PR0("cannot schedule task to recv msg\n");
5012 				vd_need_reset(vd, B_TRUE);
5013 			}
5014 
5015 		} else {
5016 			PR0("channel already reset, ignoring...\n");
5017 			PR0("doing ldc up...\n");
5018 			(void) ldc_up(vd->ldc_handle);
5019 		}
5020 
5021 		return (LDC_SUCCESS);
5022 	}
5023 
5024 	if (event & LDC_EVT_UP) {
5025 		PR0("EVT_UP: LDC is up\nResetting client connection state");
5026 		PR0("initiating soft reset");
5027 		vd_need_reset(vd, B_FALSE);
5028 		status = ddi_taskq_dispatch(vd->startq, vd_recv_msg,
5029 		    vd, DDI_SLEEP);
5030 		if (status == DDI_FAILURE) {
5031 			PR0("cannot schedule task to recv msg\n");
5032 			vd_need_reset(vd, B_TRUE);
5033 			return (LDC_SUCCESS);
5034 		}
5035 	}
5036 
5037 	if (event & LDC_EVT_READ) {
5038 		int	status;
5039 
5040 		PR1("New data available");
5041 		/* Queue a task to receive the new data */
5042 		status = ddi_taskq_dispatch(vd->startq, vd_recv_msg, vd,
5043 		    DDI_SLEEP);
5044 
5045 		if (status == DDI_FAILURE) {
5046 			PR0("cannot schedule task to recv msg\n");
5047 			vd_need_reset(vd, B_TRUE);
5048 		}
5049 	}
5050 
5051 	return (LDC_SUCCESS);
5052 }
5053 
5054 static uint_t
5055 vds_check_for_vd(mod_hash_key_t key, mod_hash_val_t *val, void *arg)
5056 {
5057 	_NOTE(ARGUNUSED(key, val))
5058 	(*((uint_t *)arg))++;
5059 	return (MH_WALK_TERMINATE);
5060 }
5061 
5062 
5063 static int
5064 vds_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
5065 {
5066 	uint_t	vd_present = 0;
5067 	minor_t	instance;
5068 	vds_t	*vds;
5069 
5070 
5071 	switch (cmd) {
5072 	case DDI_DETACH:
5073 		/* the real work happens below */
5074 		break;
5075 	case DDI_SUSPEND:
5076 		PR0("No action required for DDI_SUSPEND");
5077 		return (DDI_SUCCESS);
5078 	default:
5079 		PR0("Unrecognized \"cmd\"");
5080 		return (DDI_FAILURE);
5081 	}
5082 
5083 	ASSERT(cmd == DDI_DETACH);
5084 	instance = ddi_get_instance(dip);
5085 	if ((vds = ddi_get_soft_state(vds_state, instance)) == NULL) {
5086 		PR0("Could not get state for instance %u", instance);
5087 		ddi_soft_state_free(vds_state, instance);
5088 		return (DDI_FAILURE);
5089 	}
5090 
5091 	/* Do no detach when serving any vdisks */
5092 	mod_hash_walk(vds->vd_table, vds_check_for_vd, &vd_present);
5093 	if (vd_present) {
5094 		PR0("Not detaching because serving vdisks");
5095 		return (DDI_FAILURE);
5096 	}
5097 
5098 	PR0("Detaching");
5099 	if (vds->initialized & VDS_MDEG) {
5100 		(void) mdeg_unregister(vds->mdeg);
5101 		kmem_free(vds->ispecp->specp, sizeof (vds_prop_template));
5102 		kmem_free(vds->ispecp, sizeof (mdeg_node_spec_t));
5103 		vds->ispecp = NULL;
5104 		vds->mdeg = NULL;
5105 	}
5106 
5107 	vds_driver_types_free(vds);
5108 
5109 	if (vds->initialized & VDS_LDI)
5110 		(void) ldi_ident_release(vds->ldi_ident);
5111 	mod_hash_destroy_hash(vds->vd_table);
5112 	ddi_soft_state_free(vds_state, instance);
5113 	return (DDI_SUCCESS);
5114 }
5115 
5116 /*
5117  * Description:
5118  *	This function checks to see if the file being used as a
5119  *	virtual disk is an ISO image. An ISO image is a special
5120  *	case which can be booted/installed from like a CD/DVD
5121  *
5122  * Parameters:
5123  *	vd		- disk on which the operation is performed.
5124  *
5125  * Return Code:
5126  *	B_TRUE		- The file is an ISO 9660 compliant image
5127  *	B_FALSE		- just a regular disk image file
5128  */
5129 static boolean_t
5130 vd_file_is_iso_image(vd_t *vd)
5131 {
5132 	char	iso_buf[ISO_SECTOR_SIZE];
5133 	int	i, rv;
5134 	uint_t	sec;
5135 
5136 	ASSERT(vd->file);
5137 
5138 	/*
5139 	 * If we have already discovered and saved this info we can
5140 	 * short-circuit the check and avoid reading the file.
5141 	 */
5142 	if (vd->vdisk_media == VD_MEDIA_DVD || vd->vdisk_media == VD_MEDIA_CD)
5143 		return (B_TRUE);
5144 
5145 	/*
5146 	 * We wish to read the sector that should contain the 2nd ISO volume
5147 	 * descriptor. The second field in this descriptor is called the
5148 	 * Standard Identifier and is set to CD001 for a CD-ROM compliant
5149 	 * to the ISO 9660 standard.
5150 	 */
5151 	sec = (ISO_VOLDESC_SEC * ISO_SECTOR_SIZE) / vd->vdisk_block_size;
5152 	rv = vd_file_rw(vd, VD_SLICE_NONE, VD_OP_BREAD, (caddr_t)iso_buf,
5153 	    sec, ISO_SECTOR_SIZE);
5154 
5155 	if (rv < 0)
5156 		return (B_FALSE);
5157 
5158 	for (i = 0; i < ISO_ID_STRLEN; i++) {
5159 		if (ISO_STD_ID(iso_buf)[i] != ISO_ID_STRING[i])
5160 			return (B_FALSE);
5161 	}
5162 
5163 	return (B_TRUE);
5164 }
5165 
5166 /*
5167  * Description:
5168  *	This function checks to see if the virtual device is an ATAPI
5169  *	device. ATAPI devices use Group 1 Read/Write commands, so
5170  *	any USCSI calls vds makes need to take this into account.
5171  *
5172  * Parameters:
5173  *	vd		- disk on which the operation is performed.
5174  *
5175  * Return Code:
5176  *	B_TRUE		- The virtual disk is backed by an ATAPI device
5177  *	B_FALSE		- not an ATAPI device (presumably SCSI)
5178  */
5179 static boolean_t
5180 vd_is_atapi_device(vd_t *vd)
5181 {
5182 	boolean_t	is_atapi = B_FALSE;
5183 	char		*variantp;
5184 	int		rv;
5185 
5186 	ASSERT(vd->ldi_handle[0] != NULL);
5187 	ASSERT(!vd->file);
5188 
5189 	rv = ldi_prop_lookup_string(vd->ldi_handle[0],
5190 	    (LDI_DEV_T_ANY | DDI_PROP_DONTPASS), "variant", &variantp);
5191 	if (rv == DDI_PROP_SUCCESS) {
5192 		PR0("'variant' property exists for %s", vd->device_path);
5193 		if (strcmp(variantp, "atapi") == 0)
5194 			is_atapi = B_TRUE;
5195 		ddi_prop_free(variantp);
5196 	}
5197 
5198 	rv = ldi_prop_exists(vd->ldi_handle[0], LDI_DEV_T_ANY, "atapi");
5199 	if (rv) {
5200 		PR0("'atapi' property exists for %s", vd->device_path);
5201 		is_atapi = B_TRUE;
5202 	}
5203 
5204 	return (is_atapi);
5205 }
5206 
5207 static int
5208 vd_setup_full_disk(vd_t *vd)
5209 {
5210 	int		status;
5211 	major_t		major = getmajor(vd->dev[0]);
5212 	minor_t		minor = getminor(vd->dev[0]) - VD_ENTIRE_DISK_SLICE;
5213 
5214 	ASSERT(vd->vdisk_type == VD_DISK_TYPE_DISK);
5215 
5216 	vd->vdisk_block_size = DEV_BSIZE;
5217 
5218 	/* set the disk size, block size and the media type of the disk */
5219 	status = vd_backend_check_size(vd);
5220 
5221 	if (status != 0) {
5222 		if (!vd->scsi) {
5223 			/* unexpected failure */
5224 			PRN("ldi_ioctl(DKIOCGMEDIAINFO) returned errno %d",
5225 			    status);
5226 			return (status);
5227 		}
5228 
5229 		/*
5230 		 * The function can fail for SCSI disks which are present but
5231 		 * reserved by another system. In that case, we don't know the
5232 		 * size of the disk and the block size.
5233 		 */
5234 		vd->vdisk_size = VD_SIZE_UNKNOWN;
5235 		vd->block_size = 0;
5236 		vd->vdisk_media = VD_MEDIA_FIXED;
5237 	}
5238 
5239 	/* Move dev number and LDI handle to entire-disk-slice array elements */
5240 	vd->dev[VD_ENTIRE_DISK_SLICE]		= vd->dev[0];
5241 	vd->dev[0]				= 0;
5242 	vd->ldi_handle[VD_ENTIRE_DISK_SLICE]	= vd->ldi_handle[0];
5243 	vd->ldi_handle[0]			= NULL;
5244 
5245 	/* Initialize device numbers for remaining slices and open them */
5246 	for (int slice = 0; slice < vd->nslices; slice++) {
5247 		/*
5248 		 * Skip the entire-disk slice, as it's already open and its
5249 		 * device known
5250 		 */
5251 		if (slice == VD_ENTIRE_DISK_SLICE)
5252 			continue;
5253 		ASSERT(vd->dev[slice] == 0);
5254 		ASSERT(vd->ldi_handle[slice] == NULL);
5255 
5256 		/*
5257 		 * Construct the device number for the current slice
5258 		 */
5259 		vd->dev[slice] = makedevice(major, (minor + slice));
5260 
5261 		/*
5262 		 * Open all slices of the disk to serve them to the client.
5263 		 * Slices are opened exclusively to prevent other threads or
5264 		 * processes in the service domain from performing I/O to
5265 		 * slices being accessed by a client.  Failure to open a slice
5266 		 * results in vds not serving this disk, as the client could
5267 		 * attempt (and should be able) to access any slice immediately.
5268 		 * Any slices successfully opened before a failure will get
5269 		 * closed by vds_destroy_vd() as a result of the error returned
5270 		 * by this function.
5271 		 *
5272 		 * We need to do the open with FNDELAY so that opening an empty
5273 		 * slice does not fail.
5274 		 */
5275 		PR0("Opening device major %u, minor %u = slice %u",
5276 		    major, minor, slice);
5277 
5278 		/*
5279 		 * Try to open the device. This can fail for example if we are
5280 		 * opening an empty slice. So in case of a failure, we try the
5281 		 * open again but this time with the FNDELAY flag.
5282 		 */
5283 		status = ldi_open_by_dev(&vd->dev[slice], OTYP_BLK,
5284 		    vd->open_flags, kcred, &vd->ldi_handle[slice],
5285 		    vd->vds->ldi_ident);
5286 
5287 		if (status != 0) {
5288 			status = ldi_open_by_dev(&vd->dev[slice], OTYP_BLK,
5289 			    vd->open_flags | FNDELAY, kcred,
5290 			    &vd->ldi_handle[slice], vd->vds->ldi_ident);
5291 		}
5292 
5293 		if (status != 0) {
5294 			PRN("ldi_open_by_dev() returned errno %d "
5295 			    "for slice %u", status, slice);
5296 			/* vds_destroy_vd() will close any open slices */
5297 			vd->ldi_handle[slice] = NULL;
5298 			return (status);
5299 		}
5300 	}
5301 
5302 	return (0);
5303 }
5304 
5305 /*
5306  * When a slice or a volume is exported as a single-slice disk, we want
5307  * the disk backend (i.e. the slice or volume) to be entirely mapped as
5308  * a slice without the addition of any metadata.
5309  *
5310  * So when exporting the disk as a VTOC disk, we fake a disk with the following
5311  * layout:
5312  *                flabel +--- flabel_limit
5313  *                 <->   V
5314  *                 0 1   C                          D  E
5315  *                 +-+---+--------------------------+--+
5316  *  virtual disk:  |L|XXX|           slice 0        |AA|
5317  *                 +-+---+--------------------------+--+
5318  *                  ^    :                          :
5319  *                  |    :                          :
5320  *      VTOC LABEL--+    :                          :
5321  *                       +--------------------------+
5322  *  disk backend:        |     slice/volume/file    |
5323  *                       +--------------------------+
5324  *                       0                          N
5325  *
5326  * N is the number of blocks in the slice/volume/file.
5327  *
5328  * We simulate a disk with N+M blocks, where M is the number of blocks
5329  * simluated at the beginning and at the end of the disk (blocks 0-C
5330  * and D-E).
5331  *
5332  * The first blocks (0 to C-1) are emulated and can not be changed. Blocks C
5333  * to D defines slice 0 and are mapped to the backend. Finally we emulate 2
5334  * alternate cylinders at the end of the disk (blocks D-E). In summary we have:
5335  *
5336  * - block 0 (L) returns a fake VTOC label
5337  * - blocks 1 to C-1 (X) are unused and return 0
5338  * - blocks C to D-1 are mapped to the exported slice or volume
5339  * - blocks D and E (A) are blocks defining alternate cylinders (2 cylinders)
5340  *
5341  * Note: because we define a fake disk geometry, it is possible that the length
5342  * of the backend is not a multiple of the size of cylinder, in that case the
5343  * very end of the backend will not map to any block of the virtual disk.
5344  */
5345 static int
5346 vd_setup_partition_vtoc(vd_t *vd)
5347 {
5348 	char *device_path = vd->device_path;
5349 	char unit;
5350 	size_t size, csize;
5351 
5352 	/* Initialize dk_geom structure for single-slice device */
5353 	if (vd->dk_geom.dkg_nsect == 0) {
5354 		PRN("%s geometry claims 0 sectors per track", device_path);
5355 		return (EIO);
5356 	}
5357 	if (vd->dk_geom.dkg_nhead == 0) {
5358 		PRN("%s geometry claims 0 heads", device_path);
5359 		return (EIO);
5360 	}
5361 
5362 	/* size of a cylinder in block */
5363 	csize = vd->dk_geom.dkg_nhead * vd->dk_geom.dkg_nsect;
5364 
5365 	/*
5366 	 * Add extra cylinders: we emulate the first cylinder (which contains
5367 	 * the disk label).
5368 	 */
5369 	vd->dk_geom.dkg_ncyl = vd->vdisk_size / csize + 1;
5370 
5371 	/* we emulate 2 alternate cylinders */
5372 	vd->dk_geom.dkg_acyl = 2;
5373 	vd->dk_geom.dkg_pcyl = vd->dk_geom.dkg_ncyl + vd->dk_geom.dkg_acyl;
5374 
5375 
5376 	/* Initialize vtoc structure for single-slice device */
5377 	bzero(vd->vtoc.v_part, sizeof (vd->vtoc.v_part));
5378 	vd->vtoc.v_part[0].p_tag = V_UNASSIGNED;
5379 	vd->vtoc.v_part[0].p_flag = 0;
5380 	/*
5381 	 * Partition 0 starts on cylinder 1 and its size has to be
5382 	 * a multiple of a number of cylinder.
5383 	 */
5384 	vd->vtoc.v_part[0].p_start = csize; /* start on cylinder 1 */
5385 	vd->vtoc.v_part[0].p_size = (vd->vdisk_size / csize) * csize;
5386 
5387 	if (vd_slice_single_slice) {
5388 		vd->vtoc.v_nparts = 1;
5389 		bcopy(VD_ASCIILABEL, vd->vtoc.v_asciilabel,
5390 		    MIN(sizeof (VD_ASCIILABEL),
5391 		    sizeof (vd->vtoc.v_asciilabel)));
5392 		bcopy(VD_VOLUME_NAME, vd->vtoc.v_volume,
5393 		    MIN(sizeof (VD_VOLUME_NAME), sizeof (vd->vtoc.v_volume)));
5394 	} else {
5395 		/* adjust the number of slices */
5396 		vd->nslices = V_NUMPAR;
5397 		vd->vtoc.v_nparts = V_NUMPAR;
5398 
5399 		/* define slice 2 representing the entire disk */
5400 		vd->vtoc.v_part[VD_ENTIRE_DISK_SLICE].p_tag = V_BACKUP;
5401 		vd->vtoc.v_part[VD_ENTIRE_DISK_SLICE].p_flag = 0;
5402 		vd->vtoc.v_part[VD_ENTIRE_DISK_SLICE].p_start = 0;
5403 		vd->vtoc.v_part[VD_ENTIRE_DISK_SLICE].p_size =
5404 		    vd->dk_geom.dkg_ncyl * csize;
5405 
5406 		vd_get_readable_size(vd->vdisk_size * vd->vdisk_block_size,
5407 		    &size, &unit);
5408 
5409 		/*
5410 		 * Set some attributes of the geometry to what format(1m) uses
5411 		 * so that writing a default label using format(1m) does not
5412 		 * produce any error.
5413 		 */
5414 		vd->dk_geom.dkg_bcyl = 0;
5415 		vd->dk_geom.dkg_intrlv = 1;
5416 		vd->dk_geom.dkg_write_reinstruct = 0;
5417 		vd->dk_geom.dkg_read_reinstruct = 0;
5418 
5419 		/*
5420 		 * We must have a correct label name otherwise format(1m) will
5421 		 * not recognized the disk as labeled.
5422 		 */
5423 		(void) snprintf(vd->vtoc.v_asciilabel, LEN_DKL_ASCII,
5424 		    "SUN-DiskSlice-%ld%cB cyl %d alt %d hd %d sec %d",
5425 		    size, unit,
5426 		    vd->dk_geom.dkg_ncyl, vd->dk_geom.dkg_acyl,
5427 		    vd->dk_geom.dkg_nhead, vd->dk_geom.dkg_nsect);
5428 		bzero(vd->vtoc.v_volume, sizeof (vd->vtoc.v_volume));
5429 
5430 		/* create a fake label from the vtoc and geometry */
5431 		vd->flabel_limit = (uint_t)csize;
5432 		vd->flabel_size = VD_LABEL_VTOC_SIZE;
5433 		vd->flabel = kmem_zalloc(vd->flabel_size, KM_SLEEP);
5434 		vd_vtocgeom_to_label(&vd->vtoc, &vd->dk_geom,
5435 		    VD_LABEL_VTOC(vd));
5436 	}
5437 
5438 	/* adjust the vdisk_size, we emulate 3 cylinders */
5439 	vd->vdisk_size += csize * 3;
5440 
5441 	return (0);
5442 }
5443 
5444 /*
5445  * When a slice, volume or file is exported as a single-slice disk, we want
5446  * the disk backend (i.e. the slice, volume or file) to be entirely mapped
5447  * as a slice without the addition of any metadata.
5448  *
5449  * So when exporting the disk as an EFI disk, we fake a disk with the following
5450  * layout:
5451  *
5452  *                  flabel        +--- flabel_limit
5453  *                 <------>       v
5454  *                 0 1 2  L      34                        34+N      P
5455  *                 +-+-+--+-------+--------------------------+-------+
5456  *  virtual disk:  |X|T|EE|XXXXXXX|           slice 0        |RRRRRRR|
5457  *                 +-+-+--+-------+--------------------------+-------+
5458  *                    ^ ^         :                          :
5459  *                    | |         :                          :
5460  *                GPT-+ +-GPE     :                          :
5461  *                                +--------------------------+
5462  *  disk backend:                 |     slice/volume/file    |
5463  *                                +--------------------------+
5464  *                                0                          N
5465  *
5466  * N is the number of blocks in the slice/volume/file.
5467  *
5468  * We simulate a disk with N+M blocks, where M is the number of blocks
5469  * simluated at the beginning and at the end of the disk (blocks 0-34
5470  * and 34+N-P).
5471  *
5472  * The first 34 blocks (0 to 33) are emulated and can not be changed. Blocks 34
5473  * to 34+N defines slice 0 and are mapped to the exported backend, and we
5474  * emulate some blocks at the end of the disk (blocks 34+N to P) as a the EFI
5475  * reserved partition.
5476  *
5477  * - block 0 (X) is unused and return 0
5478  * - block 1 (T) returns a fake EFI GPT (via DKIOCGETEFI)
5479  * - blocks 2 to L-1 (E) defines a fake EFI GPE (via DKIOCGETEFI)
5480  * - blocks L to 33 (X) are unused and return 0
5481  * - blocks 34 to 34+N are mapped to the exported slice, volume or file
5482  * - blocks 34+N+1 to P define a fake reserved partition and backup label, it
5483  *   returns 0
5484  *
5485  * Note: if the backend size is not a multiple of the vdisk block size
5486  * (DEV_BSIZE = 512 byte) then the very end of the backend will not map to
5487  * any block of the virtual disk.
5488  */
5489 static int
5490 vd_setup_partition_efi(vd_t *vd)
5491 {
5492 	efi_gpt_t *gpt;
5493 	efi_gpe_t *gpe;
5494 	struct uuid uuid = EFI_USR;
5495 	struct uuid efi_reserved = EFI_RESERVED;
5496 	uint32_t crc;
5497 	uint64_t s0_start, s0_end;
5498 
5499 	vd->flabel_limit = 34;
5500 	vd->flabel_size = VD_LABEL_EFI_SIZE;
5501 	vd->flabel = kmem_zalloc(vd->flabel_size, KM_SLEEP);
5502 	gpt = VD_LABEL_EFI_GPT(vd);
5503 	gpe = VD_LABEL_EFI_GPE(vd);
5504 
5505 	/* adjust the vdisk_size, we emulate the first 34 blocks */
5506 	vd->vdisk_size += 34;
5507 	s0_start = 34;
5508 	s0_end = vd->vdisk_size - 1;
5509 
5510 	gpt->efi_gpt_Signature = LE_64(EFI_SIGNATURE);
5511 	gpt->efi_gpt_Revision = LE_32(EFI_VERSION_CURRENT);
5512 	gpt->efi_gpt_HeaderSize = LE_32(sizeof (efi_gpt_t));
5513 	gpt->efi_gpt_FirstUsableLBA = LE_64(34ULL);
5514 	gpt->efi_gpt_PartitionEntryLBA = LE_64(2ULL);
5515 	gpt->efi_gpt_SizeOfPartitionEntry = LE_32(sizeof (efi_gpe_t));
5516 
5517 	UUID_LE_CONVERT(gpe[0].efi_gpe_PartitionTypeGUID, uuid);
5518 	gpe[0].efi_gpe_StartingLBA = LE_64(s0_start);
5519 	gpe[0].efi_gpe_EndingLBA = LE_64(s0_end);
5520 
5521 	if (vd_slice_single_slice) {
5522 		gpt->efi_gpt_NumberOfPartitionEntries = LE_32(1);
5523 	} else {
5524 		/* adjust the number of slices */
5525 		gpt->efi_gpt_NumberOfPartitionEntries = LE_32(VD_MAXPART);
5526 		vd->nslices = V_NUMPAR;
5527 
5528 		/* define a fake reserved partition */
5529 		UUID_LE_CONVERT(gpe[VD_MAXPART - 1].efi_gpe_PartitionTypeGUID,
5530 		    efi_reserved);
5531 		gpe[VD_MAXPART - 1].efi_gpe_StartingLBA =
5532 		    LE_64(s0_end + 1);
5533 		gpe[VD_MAXPART - 1].efi_gpe_EndingLBA =
5534 		    LE_64(s0_end + EFI_MIN_RESV_SIZE);
5535 
5536 		/* adjust the vdisk_size to include the reserved slice */
5537 		vd->vdisk_size += EFI_MIN_RESV_SIZE;
5538 	}
5539 
5540 	gpt->efi_gpt_LastUsableLBA = LE_64(vd->vdisk_size - 1);
5541 
5542 	/* adjust the vdisk size for the backup GPT and GPE */
5543 	vd->vdisk_size += 33;
5544 
5545 	CRC32(crc, gpe, sizeof (efi_gpe_t) * VD_MAXPART, -1U, crc32_table);
5546 	gpt->efi_gpt_PartitionEntryArrayCRC32 = LE_32(~crc);
5547 
5548 	CRC32(crc, gpt, sizeof (efi_gpt_t), -1U, crc32_table);
5549 	gpt->efi_gpt_HeaderCRC32 = LE_32(~crc);
5550 
5551 	return (0);
5552 }
5553 
5554 /*
5555  * Setup for a virtual disk whose backend is a file (exported as a single slice
5556  * or as a full disk) or a volume device (for example a ZFS, SVM or VxVM volume)
5557  * exported as a full disk. In these cases, the backend is accessed using the
5558  * vnode interface.
5559  */
5560 static int
5561 vd_setup_backend_vnode(vd_t *vd)
5562 {
5563 	int 		rval, status;
5564 	vattr_t		vattr;
5565 	dev_t		dev;
5566 	char		*file_path = vd->device_path;
5567 	ldi_handle_t	lhandle;
5568 	struct dk_cinfo	dk_cinfo;
5569 	struct dk_label label;
5570 
5571 	if ((status = vn_open(file_path, UIO_SYSSPACE, vd->open_flags | FOFFMAX,
5572 	    0, &vd->file_vnode, 0, 0)) != 0) {
5573 		PRN("vn_open(%s) = errno %d", file_path, status);
5574 		return (status);
5575 	}
5576 
5577 	/*
5578 	 * We set vd->file now so that vds_destroy_vd will take care of
5579 	 * closing the file and releasing the vnode in case of an error.
5580 	 */
5581 	vd->file = B_TRUE;
5582 
5583 	vattr.va_mask = AT_SIZE;
5584 	if ((status = VOP_GETATTR(vd->file_vnode, &vattr, 0, kcred, NULL))
5585 	    != 0) {
5586 		PRN("VOP_GETATTR(%s) = errno %d", file_path, status);
5587 		return (EIO);
5588 	}
5589 
5590 	vd->file_size = vattr.va_size;
5591 	/* size should be at least sizeof(dk_label) */
5592 	if (vd->file_size < sizeof (struct dk_label)) {
5593 		PRN("Size of file has to be at least %ld bytes",
5594 		    sizeof (struct dk_label));
5595 		return (EIO);
5596 	}
5597 
5598 	if (vd->file_vnode->v_flag & VNOMAP) {
5599 		PRN("File %s cannot be mapped", file_path);
5600 		return (EIO);
5601 	}
5602 
5603 	/* sector size = block size = DEV_BSIZE */
5604 	vd->block_size = DEV_BSIZE;
5605 	vd->vdisk_block_size = DEV_BSIZE;
5606 	vd->vdisk_size = vd->file_size / DEV_BSIZE;
5607 	vd->max_xfer_sz = maxphys / DEV_BSIZE; /* default transfer size */
5608 
5609 	/*
5610 	 * Get max_xfer_sz from the device where the file is or from the device
5611 	 * itself if we have a volume device.
5612 	 */
5613 	if (vd->volume) {
5614 		status = ldi_open_by_name(file_path, FREAD, kcred, &lhandle,
5615 		    vd->vds->ldi_ident);
5616 	} else {
5617 		dev = vd->file_vnode->v_vfsp->vfs_dev;
5618 		PR0("underlying device of %s = (%d, %d)\n", file_path,
5619 		    getmajor(dev), getminor(dev));
5620 
5621 		status = ldi_open_by_dev(&dev, OTYP_BLK, FREAD, kcred, &lhandle,
5622 		    vd->vds->ldi_ident);
5623 	}
5624 
5625 	if (status != 0) {
5626 		PR0("ldi_open() returned errno %d for underlying device",
5627 		    status);
5628 	} else {
5629 		if ((status = ldi_ioctl(lhandle, DKIOCINFO,
5630 		    (intptr_t)&dk_cinfo, (vd->open_flags | FKIOCTL), kcred,
5631 		    &rval)) != 0) {
5632 			PR0("ldi_ioctl(DKIOCINFO) returned errno %d for "
5633 			    "underlying device", status);
5634 		} else {
5635 			/*
5636 			 * Store the device's max transfer size for
5637 			 * return to the client
5638 			 */
5639 			vd->max_xfer_sz = dk_cinfo.dki_maxtransfer;
5640 		}
5641 
5642 		PR0("close the underlying device");
5643 		(void) ldi_close(lhandle, FREAD, kcred);
5644 	}
5645 
5646 	if (vd->volume) {
5647 		PR0("using volume %s, max_xfer = %u blks", file_path,
5648 		    vd->max_xfer_sz);
5649 	} else {
5650 		PR0("using file %s on device (%d, %d), max_xfer = %u blks",
5651 		    file_path, getmajor(dev), getminor(dev), vd->max_xfer_sz);
5652 	}
5653 
5654 	if (vd->vdisk_type == VD_DISK_TYPE_SLICE) {
5655 		ASSERT(!vd->volume);
5656 		vd->vdisk_media = VD_MEDIA_FIXED;
5657 		vd->vdisk_label = (vd_slice_label == VD_DISK_LABEL_UNK)?
5658 		    vd_file_slice_label : vd_slice_label;
5659 		if (vd->vdisk_label == VD_DISK_LABEL_EFI ||
5660 		    vd->file_size >= 2 * ONE_TERABYTE) {
5661 			status = vd_setup_partition_efi(vd);
5662 		} else {
5663 			/*
5664 			 * We build a default label to get a geometry for
5665 			 * the vdisk. Then the partition setup function will
5666 			 * adjust the vtoc so that it defines a single-slice
5667 			 * disk.
5668 			 */
5669 			vd_build_default_label(vd->file_size, &label);
5670 			vd_label_to_vtocgeom(&label, &vd->vtoc, &vd->dk_geom);
5671 			status = vd_setup_partition_vtoc(vd);
5672 		}
5673 		return (status);
5674 	}
5675 
5676 	/*
5677 	 * Find and validate the geometry of a disk image.
5678 	 */
5679 	status = vd_file_validate_geometry(vd);
5680 	if (status != 0 && status != EINVAL && status != ENOTSUP) {
5681 		PRN("Failed to read label from %s", file_path);
5682 		return (EIO);
5683 	}
5684 
5685 	if (vd_file_is_iso_image(vd)) {
5686 		/*
5687 		 * Indicate whether to call this a CD or DVD from the size
5688 		 * of the ISO image (images for both drive types are stored
5689 		 * in the ISO-9600 format). CDs can store up to just under 1Gb
5690 		 */
5691 		if ((vd->vdisk_size * vd->vdisk_block_size) > ONE_GIGABYTE)
5692 			vd->vdisk_media = VD_MEDIA_DVD;
5693 		else
5694 			vd->vdisk_media = VD_MEDIA_CD;
5695 	} else {
5696 		vd->vdisk_media = VD_MEDIA_FIXED;
5697 	}
5698 
5699 	/* Setup devid for the disk image */
5700 
5701 	if (vd->vdisk_label != VD_DISK_LABEL_UNK) {
5702 
5703 		status = vd_file_read_devid(vd, &vd->file_devid);
5704 
5705 		if (status == 0) {
5706 			/* a valid devid was found */
5707 			return (0);
5708 		}
5709 
5710 		if (status != EINVAL) {
5711 			/*
5712 			 * There was an error while trying to read the devid.
5713 			 * So this disk image may have a devid but we are
5714 			 * unable to read it.
5715 			 */
5716 			PR0("can not read devid for %s", file_path);
5717 			vd->file_devid = NULL;
5718 			return (0);
5719 		}
5720 	}
5721 
5722 	/*
5723 	 * No valid device id was found so we create one. Note that a failure
5724 	 * to create a device id is not fatal and does not prevent the disk
5725 	 * image from being attached.
5726 	 */
5727 	PR1("creating devid for %s", file_path);
5728 
5729 	if (ddi_devid_init(vd->vds->dip, DEVID_FAB, NULL, 0,
5730 	    &vd->file_devid) != DDI_SUCCESS) {
5731 		PR0("fail to create devid for %s", file_path);
5732 		vd->file_devid = NULL;
5733 		return (0);
5734 	}
5735 
5736 	/*
5737 	 * Write devid to the disk image. The devid is stored into the disk
5738 	 * image if we have a valid label; otherwise the devid will be stored
5739 	 * when the user writes a valid label.
5740 	 */
5741 	if (vd->vdisk_label != VD_DISK_LABEL_UNK) {
5742 		if (vd_file_write_devid(vd, vd->file_devid) != 0) {
5743 			PR0("fail to write devid for %s", file_path);
5744 			ddi_devid_free(vd->file_devid);
5745 			vd->file_devid = NULL;
5746 		}
5747 	}
5748 
5749 	return (0);
5750 }
5751 
5752 
5753 /*
5754  * Description:
5755  *	Open a device using its device path (supplied by ldm(1m))
5756  *
5757  * Parameters:
5758  *	vd 	- pointer to structure containing the vDisk info
5759  *	flags	- open flags
5760  *
5761  * Return Value
5762  *	0	- success
5763  *	!= 0	- some other non-zero return value from ldi(9F) functions
5764  */
5765 static int
5766 vd_open_using_ldi_by_name(vd_t *vd, int flags)
5767 {
5768 	int		status;
5769 	char		*device_path = vd->device_path;
5770 
5771 	/* Attempt to open device */
5772 	status = ldi_open_by_name(device_path, flags, kcred,
5773 	    &vd->ldi_handle[0], vd->vds->ldi_ident);
5774 
5775 	/*
5776 	 * The open can fail for example if we are opening an empty slice.
5777 	 * In case of a failure, we try the open again but this time with
5778 	 * the FNDELAY flag.
5779 	 */
5780 	if (status != 0)
5781 		status = ldi_open_by_name(device_path, flags | FNDELAY,
5782 		    kcred, &vd->ldi_handle[0], vd->vds->ldi_ident);
5783 
5784 	if (status != 0) {
5785 		PR0("ldi_open_by_name(%s) = errno %d", device_path, status);
5786 		vd->ldi_handle[0] = NULL;
5787 		return (status);
5788 	}
5789 
5790 	return (0);
5791 }
5792 
5793 /*
5794  * Setup for a virtual disk which backend is a device (a physical disk,
5795  * slice or volume device) that is directly exported either as a full disk
5796  * for a physical disk or as a slice for a volume device or a disk slice.
5797  * In these cases, the backend is accessed using the LDI interface.
5798  */
5799 static int
5800 vd_setup_backend_ldi(vd_t *vd)
5801 {
5802 	int		rval, status;
5803 	struct dk_cinfo	dk_cinfo;
5804 	char		*device_path = vd->device_path;
5805 
5806 	/* device has been opened by vd_identify_dev() */
5807 	ASSERT(vd->ldi_handle[0] != NULL);
5808 	ASSERT(vd->dev[0] != NULL);
5809 
5810 	vd->file = B_FALSE;
5811 
5812 	/* Verify backing device supports dk_cinfo */
5813 	if ((status = ldi_ioctl(vd->ldi_handle[0], DKIOCINFO,
5814 	    (intptr_t)&dk_cinfo, (vd->open_flags | FKIOCTL), kcred,
5815 	    &rval)) != 0) {
5816 		PRN("ldi_ioctl(DKIOCINFO) returned errno %d for %s",
5817 		    status, device_path);
5818 		return (status);
5819 	}
5820 	if (dk_cinfo.dki_partition >= V_NUMPAR) {
5821 		PRN("slice %u >= maximum slice %u for %s",
5822 		    dk_cinfo.dki_partition, V_NUMPAR, device_path);
5823 		return (EIO);
5824 	}
5825 
5826 	/*
5827 	 * The device has been opened read-only by vd_identify_dev(), re-open
5828 	 * it read-write if the write flag is set and we don't have an optical
5829 	 * device such as a CD-ROM, which, for now, we do not permit writes to
5830 	 * and thus should not export write operations to the client.
5831 	 *
5832 	 * Future: if/when we implement support for guest domains writing to
5833 	 * optical devices we will need to do further checking of the media type
5834 	 * to distinguish between read-only and writable discs.
5835 	 */
5836 	if (dk_cinfo.dki_ctype == DKC_CDROM) {
5837 
5838 		vd->open_flags &= ~FWRITE;
5839 
5840 	} else if (vd->open_flags & FWRITE) {
5841 
5842 		(void) ldi_close(vd->ldi_handle[0], vd->open_flags & ~FWRITE,
5843 		    kcred);
5844 		status = vd_open_using_ldi_by_name(vd, vd->open_flags);
5845 		if (status != 0) {
5846 			PR0("Failed to open (%s) = errno %d",
5847 			    device_path, status);
5848 			return (status);
5849 		}
5850 	}
5851 
5852 	/* Store the device's max transfer size for return to the client */
5853 	vd->max_xfer_sz = dk_cinfo.dki_maxtransfer;
5854 
5855 	/*
5856 	 * We need to work out if it's an ATAPI (IDE CD-ROM) or SCSI device so
5857 	 * that we can use the correct CDB group when sending USCSI commands.
5858 	 */
5859 	vd->is_atapi_dev = vd_is_atapi_device(vd);
5860 
5861 	/*
5862 	 * Export a full disk.
5863 	 *
5864 	 * When we use the LDI interface, we export a device as a full disk
5865 	 * if we have an entire disk slice (slice 2) and if this slice is
5866 	 * exported as a full disk and not as a single slice disk.
5867 	 * Similarly, we want to use LDI if we are accessing a CD or DVD
5868 	 * device (even if it isn't s2)
5869 	 *
5870 	 * Note that volume devices are exported as full disks using the vnode
5871 	 * interface, not the LDI interface.
5872 	 */
5873 	if ((dk_cinfo.dki_partition == VD_ENTIRE_DISK_SLICE &&
5874 	    vd->vdisk_type == VD_DISK_TYPE_DISK) ||
5875 	    dk_cinfo.dki_ctype == DKC_CDROM) {
5876 		ASSERT(!vd->volume);
5877 		if (dk_cinfo.dki_ctype == DKC_SCSI_CCS)
5878 			vd->scsi = B_TRUE;
5879 		return (vd_setup_full_disk(vd));
5880 	}
5881 
5882 	/*
5883 	 * Export a single slice disk.
5884 	 *
5885 	 * The exported device can be either a volume device or a disk slice. If
5886 	 * it is a disk slice different from slice 2 then it is always exported
5887 	 * as a single slice disk even if the "slice" option is not specified.
5888 	 * If it is disk slice 2 or a volume device then it is exported as a
5889 	 * single slice disk only if the "slice" option is specified.
5890 	 */
5891 	return (vd_setup_single_slice_disk(vd));
5892 }
5893 
5894 static int
5895 vd_setup_single_slice_disk(vd_t *vd)
5896 {
5897 	int status, rval;
5898 	struct dk_label label;
5899 	char *device_path = vd->device_path;
5900 	struct vtoc vtoc;
5901 
5902 	/* Get size of backing device */
5903 	if (ldi_get_size(vd->ldi_handle[0], &vd->vdisk_size) != DDI_SUCCESS) {
5904 		PRN("ldi_get_size() failed for %s", device_path);
5905 		return (EIO);
5906 	}
5907 	vd->vdisk_size = lbtodb(vd->vdisk_size);	/* convert to blocks */
5908 	vd->block_size = DEV_BSIZE;
5909 	vd->vdisk_block_size = DEV_BSIZE;
5910 	vd->vdisk_media = VD_MEDIA_FIXED;
5911 
5912 	if (vd->volume) {
5913 		ASSERT(vd->vdisk_type == VD_DISK_TYPE_SLICE);
5914 	}
5915 
5916 	/*
5917 	 * We export the slice as a single slice disk even if the "slice"
5918 	 * option was not specified.
5919 	 */
5920 	vd->vdisk_type  = VD_DISK_TYPE_SLICE;
5921 	vd->nslices	= 1;
5922 
5923 	/*
5924 	 * When exporting a slice or a device as a single slice disk, we don't
5925 	 * care about any partitioning exposed by the backend. The goal is just
5926 	 * to export the backend as a flat storage. We provide a fake partition
5927 	 * table (either a VTOC or EFI), which presents only one slice, to
5928 	 * accommodate tools expecting a disk label. The selection of the label
5929 	 * type (VTOC or EFI) depends on the value of the vd_slice_label
5930 	 * variable.
5931 	 */
5932 	if (vd_slice_label == VD_DISK_LABEL_EFI ||
5933 	    vd->vdisk_size >= ONE_TERABYTE / DEV_BSIZE) {
5934 		vd->vdisk_label = VD_DISK_LABEL_EFI;
5935 	} else {
5936 		status = ldi_ioctl(vd->ldi_handle[0], DKIOCGEXTVTOC,
5937 		    (intptr_t)&vd->vtoc, (vd->open_flags | FKIOCTL),
5938 		    kcred, &rval);
5939 
5940 		if (status == ENOTTY) {
5941 			/* try with the non-extended vtoc ioctl */
5942 			status = ldi_ioctl(vd->ldi_handle[0], DKIOCGVTOC,
5943 			    (intptr_t)&vtoc, (vd->open_flags | FKIOCTL),
5944 			    kcred, &rval);
5945 			vtoctoextvtoc(vtoc, vd->vtoc);
5946 		}
5947 
5948 		if (status == 0) {
5949 			status = ldi_ioctl(vd->ldi_handle[0], DKIOCGGEOM,
5950 			    (intptr_t)&vd->dk_geom, (vd->open_flags | FKIOCTL),
5951 			    kcred, &rval);
5952 
5953 			if (status != 0) {
5954 				PRN("ldi_ioctl(DKIOCGEOM) returned errno %d "
5955 				    "for %s", status, device_path);
5956 				return (status);
5957 			}
5958 			vd->vdisk_label = VD_DISK_LABEL_VTOC;
5959 
5960 		} else if (vd_slice_label == VD_DISK_LABEL_VTOC) {
5961 
5962 			vd->vdisk_label = VD_DISK_LABEL_VTOC;
5963 			vd_build_default_label(vd->vdisk_size * DEV_BSIZE,
5964 			    &label);
5965 			vd_label_to_vtocgeom(&label, &vd->vtoc, &vd->dk_geom);
5966 
5967 		} else {
5968 			vd->vdisk_label = VD_DISK_LABEL_EFI;
5969 		}
5970 	}
5971 
5972 	if (vd->vdisk_label == VD_DISK_LABEL_VTOC) {
5973 		/* export with a fake VTOC label */
5974 		status = vd_setup_partition_vtoc(vd);
5975 
5976 	} else {
5977 		/* export with a fake EFI label */
5978 		status = vd_setup_partition_efi(vd);
5979 	}
5980 
5981 	return (status);
5982 }
5983 
5984 static int
5985 vd_backend_check_size(vd_t *vd)
5986 {
5987 	size_t backend_size, old_size, new_size;
5988 	struct dk_minfo minfo;
5989 	vattr_t vattr;
5990 	int rval, rv;
5991 
5992 	if (vd->file) {
5993 
5994 		/* file (slice or full disk) */
5995 		vattr.va_mask = AT_SIZE;
5996 		rv = VOP_GETATTR(vd->file_vnode, &vattr, 0, kcred, NULL);
5997 		if (rv != 0) {
5998 			PR0("VOP_GETATTR(%s) = errno %d", vd->device_path, rv);
5999 			return (rv);
6000 		}
6001 		backend_size = vattr.va_size;
6002 
6003 	} else if (vd->vdisk_type == VD_DISK_TYPE_SLICE) {
6004 
6005 		/* slice or device exported as a slice */
6006 		rv = ldi_get_size(vd->ldi_handle[0], &backend_size);
6007 		if (rv != DDI_SUCCESS) {
6008 			PR0("ldi_get_size() failed for %s", vd->device_path);
6009 			return (EIO);
6010 		}
6011 
6012 	} else {
6013 
6014 		/* disk or device exported as a disk */
6015 		ASSERT(vd->vdisk_type == VD_DISK_TYPE_DISK);
6016 		rv = ldi_ioctl(vd->ldi_handle[0], DKIOCGMEDIAINFO,
6017 		    (intptr_t)&minfo, (vd->open_flags | FKIOCTL),
6018 		    kcred, &rval);
6019 		if (rv != 0) {
6020 			PR0("DKIOCGMEDIAINFO failed for %s (err=%d)",
6021 			    vd->device_path, rv);
6022 			return (rv);
6023 		}
6024 		backend_size = minfo.dki_capacity * minfo.dki_lbsize;
6025 	}
6026 
6027 	old_size = vd->vdisk_size;
6028 	new_size = backend_size / DEV_BSIZE;
6029 
6030 	/* check if size has changed */
6031 	if (old_size != VD_SIZE_UNKNOWN && old_size == new_size)
6032 		return (0);
6033 
6034 	vd->vdisk_size = new_size;
6035 
6036 	if (vd->file)
6037 		vd->file_size = backend_size;
6038 
6039 	/*
6040 	 * If we are exporting a single-slice disk and the size of the backend
6041 	 * has changed then we regenerate the partition setup so that the
6042 	 * partitioning matches with the new disk backend size.
6043 	 */
6044 
6045 	if (vd->vdisk_type == VD_DISK_TYPE_SLICE) {
6046 		/* slice or file or device exported as a slice */
6047 		if (vd->vdisk_label == VD_DISK_LABEL_VTOC) {
6048 			rv = vd_setup_partition_vtoc(vd);
6049 			if (rv != 0) {
6050 				PR0("vd_setup_partition_vtoc() failed for %s "
6051 				    "(err = %d)", vd->device_path, rv);
6052 				return (rv);
6053 			}
6054 		} else {
6055 			rv = vd_setup_partition_efi(vd);
6056 			if (rv != 0) {
6057 				PR0("vd_setup_partition_efi() failed for %s "
6058 				    "(err = %d)", vd->device_path, rv);
6059 				return (rv);
6060 			}
6061 		}
6062 
6063 	} else if (!vd->file) {
6064 		/* disk or device exported as a disk */
6065 		ASSERT(vd->vdisk_type == VD_DISK_TYPE_DISK);
6066 		vd->block_size = minfo.dki_lbsize;
6067 		vd->vdisk_media =
6068 		    DK_MEDIATYPE2VD_MEDIATYPE(minfo.dki_media_type);
6069 	}
6070 
6071 	return (0);
6072 }
6073 
6074 /*
6075  * Description:
6076  *	Open a device using its device path and identify if this is
6077  *	a disk device or a volume device.
6078  *
6079  * Parameters:
6080  *	vd 	- pointer to structure containing the vDisk info
6081  *	dtype	- return the driver type of the device
6082  *
6083  * Return Value
6084  *	0	- success
6085  *	!= 0	- some other non-zero return value from ldi(9F) functions
6086  */
6087 static int
6088 vd_identify_dev(vd_t *vd, int *dtype)
6089 {
6090 	int status, i;
6091 	char *device_path = vd->device_path;
6092 	char *drv_name;
6093 	int drv_type;
6094 	vds_t *vds = vd->vds;
6095 
6096 	status = vd_open_using_ldi_by_name(vd, vd->open_flags & ~FWRITE);
6097 	if (status != 0) {
6098 		PR0("Failed to open (%s) = errno %d", device_path, status);
6099 		return (status);
6100 	}
6101 
6102 	/* Get device number of backing device */
6103 	if ((status = ldi_get_dev(vd->ldi_handle[0], &vd->dev[0])) != 0) {
6104 		PRN("ldi_get_dev() returned errno %d for %s",
6105 		    status, device_path);
6106 		return (status);
6107 	}
6108 
6109 	/*
6110 	 * We start by looking if the driver is in the list from vds.conf
6111 	 * so that we can override the built-in list using vds.conf.
6112 	 */
6113 	drv_name = ddi_major_to_name(getmajor(vd->dev[0]));
6114 	drv_type = VD_DRIVER_UNKNOWN;
6115 
6116 	/* check vds.conf list */
6117 	for (i = 0; i < vds->num_drivers; i++) {
6118 		if (vds->driver_types[i].type == VD_DRIVER_UNKNOWN) {
6119 			/* ignore invalid entries */
6120 			continue;
6121 		}
6122 		if (strcmp(drv_name, vds->driver_types[i].name) == 0) {
6123 			drv_type = vds->driver_types[i].type;
6124 			goto done;
6125 		}
6126 	}
6127 
6128 	/* check built-in list */
6129 	for (i = 0; i < VDS_NUM_DRIVERS; i++) {
6130 		if (strcmp(drv_name, vds_driver_types[i].name) == 0) {
6131 			drv_type = vds_driver_types[i].type;
6132 			goto done;
6133 		}
6134 	}
6135 
6136 done:
6137 	PR0("driver %s identified as %s", drv_name,
6138 	    (drv_type == VD_DRIVER_DISK)? "DISK" :
6139 	    (drv_type == VD_DRIVER_VOLUME)? "VOLUME" : "UNKNOWN");
6140 
6141 	*dtype = drv_type;
6142 
6143 	return (0);
6144 }
6145 
6146 static int
6147 vd_setup_vd(vd_t *vd)
6148 {
6149 	int		status, drv_type, pseudo;
6150 	dev_info_t	*dip;
6151 	vnode_t 	*vnp;
6152 	char		*path = vd->device_path;
6153 
6154 	/* make sure the vdisk backend is valid */
6155 	if ((status = lookupname(path, UIO_SYSSPACE,
6156 	    FOLLOW, NULLVPP, &vnp)) != 0) {
6157 		PR0("Cannot lookup %s errno %d", path, status);
6158 		goto done;
6159 	}
6160 
6161 	switch (vnp->v_type) {
6162 	case VREG:
6163 		/*
6164 		 * Backend is a file so it is exported as a full disk or as a
6165 		 * single slice disk using the vnode interface.
6166 		 */
6167 		VN_RELE(vnp);
6168 		vd->volume = B_FALSE;
6169 		status = vd_setup_backend_vnode(vd);
6170 		break;
6171 
6172 	case VBLK:
6173 	case VCHR:
6174 		/*
6175 		 * Backend is a device. The way it is exported depends on the
6176 		 * type of the device.
6177 		 *
6178 		 * - A volume device is exported as a full disk using the vnode
6179 		 *   interface or as a single slice disk using the LDI
6180 		 *   interface.
6181 		 *
6182 		 * - A disk (represented by the slice 2 of that disk) is
6183 		 *   exported as a full disk using the LDI interface.
6184 		 *
6185 		 * - A disk slice (different from slice 2) is always exported
6186 		 *   as a single slice disk using the LDI interface.
6187 		 *
6188 		 * - The slice 2 of a disk is exported as a single slice disk
6189 		 *   if the "slice" option is specified, otherwise the entire
6190 		 *   disk will be exported. In any case, the LDI interface is
6191 		 *   used.
6192 		 */
6193 
6194 		/* check if this is a pseudo device */
6195 		if ((dip = ddi_hold_devi_by_instance(getmajor(vnp->v_rdev),
6196 		    dev_to_instance(vnp->v_rdev), 0))  == NULL) {
6197 			PRN("%s is no longer accessible", path);
6198 			VN_RELE(vnp);
6199 			status = EIO;
6200 			break;
6201 		}
6202 		pseudo = is_pseudo_device(dip);
6203 		ddi_release_devi(dip);
6204 		VN_RELE(vnp);
6205 
6206 		if (vd_identify_dev(vd, &drv_type) != 0) {
6207 			PRN("%s identification failed", path);
6208 			status = EIO;
6209 			break;
6210 		}
6211 
6212 		/*
6213 		 * If the driver hasn't been identified then we consider that
6214 		 * pseudo devices are volumes and other devices are disks.
6215 		 */
6216 		if (drv_type == VD_DRIVER_VOLUME ||
6217 		    (drv_type == VD_DRIVER_UNKNOWN && pseudo)) {
6218 			vd->volume = B_TRUE;
6219 		} else {
6220 			status = vd_setup_backend_ldi(vd);
6221 			break;
6222 		}
6223 
6224 		/*
6225 		 * If this is a volume device then its usage depends if the
6226 		 * "slice" option is set or not. If the "slice" option is set
6227 		 * then the volume device will be exported as a single slice,
6228 		 * otherwise it will be exported as a full disk.
6229 		 *
6230 		 * For backward compatibility, if vd_volume_force_slice is set
6231 		 * then we always export volume devices as slices.
6232 		 */
6233 		if (vd_volume_force_slice) {
6234 			vd->vdisk_type = VD_DISK_TYPE_SLICE;
6235 			vd->nslices = 1;
6236 		}
6237 
6238 		if (vd->vdisk_type == VD_DISK_TYPE_DISK) {
6239 			/* close device opened during identification */
6240 			(void) ldi_close(vd->ldi_handle[0],
6241 			    vd->open_flags & ~FWRITE, kcred);
6242 			vd->ldi_handle[0] = NULL;
6243 			vd->dev[0] = 0;
6244 			status = vd_setup_backend_vnode(vd);
6245 		} else {
6246 			status = vd_setup_backend_ldi(vd);
6247 		}
6248 		break;
6249 
6250 	default:
6251 		PRN("Unsupported vdisk backend %s", path);
6252 		VN_RELE(vnp);
6253 		status = EBADF;
6254 	}
6255 
6256 done:
6257 	if (status != 0) {
6258 		/*
6259 		 * If the error is retryable print an error message only
6260 		 * during the first try.
6261 		 */
6262 		if (status == ENXIO || status == ENODEV ||
6263 		    status == ENOENT || status == EROFS) {
6264 			if (!(vd->initialized & VD_SETUP_ERROR)) {
6265 				PRN("%s is currently inaccessible (error %d)",
6266 				    path, status);
6267 			}
6268 			status = EAGAIN;
6269 		} else {
6270 			PRN("%s can not be exported as a virtual disk "
6271 			    "(error %d)", path, status);
6272 		}
6273 		vd->initialized |= VD_SETUP_ERROR;
6274 
6275 	} else if (vd->initialized & VD_SETUP_ERROR) {
6276 		/* print a message only if we previously had an error */
6277 		PRN("%s is now online", path);
6278 		vd->initialized &= ~VD_SETUP_ERROR;
6279 	}
6280 
6281 	return (status);
6282 }
6283 
6284 static int
6285 vds_do_init_vd(vds_t *vds, uint64_t id, char *device_path, uint64_t options,
6286     uint64_t ldc_id, vd_t **vdp)
6287 {
6288 	char			tq_name[TASKQ_NAMELEN];
6289 	int			status;
6290 	ddi_iblock_cookie_t	iblock = NULL;
6291 	ldc_attr_t		ldc_attr;
6292 	vd_t			*vd;
6293 
6294 
6295 	ASSERT(vds != NULL);
6296 	ASSERT(device_path != NULL);
6297 	ASSERT(vdp != NULL);
6298 	PR0("Adding vdisk for %s", device_path);
6299 
6300 	if ((vd = kmem_zalloc(sizeof (*vd), KM_NOSLEEP)) == NULL) {
6301 		PRN("No memory for virtual disk");
6302 		return (EAGAIN);
6303 	}
6304 	*vdp = vd;	/* assign here so vds_destroy_vd() can cleanup later */
6305 	vd->vds = vds;
6306 	(void) strncpy(vd->device_path, device_path, MAXPATHLEN);
6307 
6308 	/* Setup open flags */
6309 	vd->open_flags = FREAD;
6310 
6311 	if (!(options & VD_OPT_RDONLY))
6312 		vd->open_flags |= FWRITE;
6313 
6314 	if (options & VD_OPT_EXCLUSIVE)
6315 		vd->open_flags |= FEXCL;
6316 
6317 	/* Setup disk type */
6318 	if (options & VD_OPT_SLICE) {
6319 		vd->vdisk_type = VD_DISK_TYPE_SLICE;
6320 		vd->nslices = 1;
6321 	} else {
6322 		vd->vdisk_type = VD_DISK_TYPE_DISK;
6323 		vd->nslices = V_NUMPAR;
6324 	}
6325 
6326 	/* default disk label */
6327 	vd->vdisk_label = VD_DISK_LABEL_UNK;
6328 
6329 	/* Open vdisk and initialize parameters */
6330 	if ((status = vd_setup_vd(vd)) == 0) {
6331 		vd->initialized |= VD_DISK_READY;
6332 
6333 		ASSERT(vd->nslices > 0 && vd->nslices <= V_NUMPAR);
6334 		PR0("vdisk_type = %s, volume = %s, file = %s, nslices = %u",
6335 		    ((vd->vdisk_type == VD_DISK_TYPE_DISK) ? "disk" : "slice"),
6336 		    (vd->volume ? "yes" : "no"), (vd->file ? "yes" : "no"),
6337 		    vd->nslices);
6338 	} else {
6339 		if (status != EAGAIN)
6340 			return (status);
6341 	}
6342 
6343 	/* Initialize locking */
6344 	if (ddi_get_soft_iblock_cookie(vds->dip, DDI_SOFTINT_MED,
6345 	    &iblock) != DDI_SUCCESS) {
6346 		PRN("Could not get iblock cookie.");
6347 		return (EIO);
6348 	}
6349 
6350 	mutex_init(&vd->lock, NULL, MUTEX_DRIVER, iblock);
6351 	vd->initialized |= VD_LOCKING;
6352 
6353 
6354 	/* Create start and completion task queues for the vdisk */
6355 	(void) snprintf(tq_name, sizeof (tq_name), "vd_startq%lu", id);
6356 	PR1("tq_name = %s", tq_name);
6357 	if ((vd->startq = ddi_taskq_create(vds->dip, tq_name, 1,
6358 	    TASKQ_DEFAULTPRI, 0)) == NULL) {
6359 		PRN("Could not create task queue");
6360 		return (EIO);
6361 	}
6362 	(void) snprintf(tq_name, sizeof (tq_name), "vd_completionq%lu", id);
6363 	PR1("tq_name = %s", tq_name);
6364 	if ((vd->completionq = ddi_taskq_create(vds->dip, tq_name, 1,
6365 	    TASKQ_DEFAULTPRI, 0)) == NULL) {
6366 		PRN("Could not create task queue");
6367 		return (EIO);
6368 	}
6369 
6370 	/* Allocate the staging buffer */
6371 	vd->max_msglen = sizeof (vio_msg_t);	/* baseline vio message size */
6372 	vd->vio_msgp = kmem_alloc(vd->max_msglen, KM_SLEEP);
6373 
6374 	vd->enabled = 1;	/* before callback can dispatch to startq */
6375 
6376 
6377 	/* Bring up LDC */
6378 	ldc_attr.devclass	= LDC_DEV_BLK_SVC;
6379 	ldc_attr.instance	= ddi_get_instance(vds->dip);
6380 	ldc_attr.mode		= LDC_MODE_UNRELIABLE;
6381 	ldc_attr.mtu		= VD_LDC_MTU;
6382 	if ((status = ldc_init(ldc_id, &ldc_attr, &vd->ldc_handle)) != 0) {
6383 		PRN("Could not initialize LDC channel %lx, "
6384 		    "init failed with error %d", ldc_id, status);
6385 		return (status);
6386 	}
6387 	vd->initialized |= VD_LDC;
6388 
6389 	if ((status = ldc_reg_callback(vd->ldc_handle, vd_handle_ldc_events,
6390 	    (caddr_t)vd)) != 0) {
6391 		PRN("Could not initialize LDC channel %lu,"
6392 		    "reg_callback failed with error %d", ldc_id, status);
6393 		return (status);
6394 	}
6395 
6396 	if ((status = ldc_open(vd->ldc_handle)) != 0) {
6397 		PRN("Could not initialize LDC channel %lu,"
6398 		    "open failed with error %d", ldc_id, status);
6399 		return (status);
6400 	}
6401 
6402 	if ((status = ldc_up(vd->ldc_handle)) != 0) {
6403 		PR0("ldc_up() returned errno %d", status);
6404 	}
6405 
6406 	/* Allocate the inband task memory handle */
6407 	status = ldc_mem_alloc_handle(vd->ldc_handle, &(vd->inband_task.mhdl));
6408 	if (status) {
6409 		PRN("Could not initialize LDC channel %lu,"
6410 		    "alloc_handle failed with error %d", ldc_id, status);
6411 		return (ENXIO);
6412 	}
6413 
6414 	/* Add the successfully-initialized vdisk to the server's table */
6415 	if (mod_hash_insert(vds->vd_table, (mod_hash_key_t)id, vd) != 0) {
6416 		PRN("Error adding vdisk ID %lu to table", id);
6417 		return (EIO);
6418 	}
6419 
6420 	/* store initial state */
6421 	vd->state = VD_STATE_INIT;
6422 
6423 	return (0);
6424 }
6425 
6426 static void
6427 vd_free_dring_task(vd_t *vdp)
6428 {
6429 	if (vdp->dring_task != NULL) {
6430 		ASSERT(vdp->dring_len != 0);
6431 		/* Free all dring_task memory handles */
6432 		for (int i = 0; i < vdp->dring_len; i++) {
6433 			(void) ldc_mem_free_handle(vdp->dring_task[i].mhdl);
6434 			kmem_free(vdp->dring_task[i].request,
6435 			    (vdp->descriptor_size -
6436 			    sizeof (vio_dring_entry_hdr_t)));
6437 			vdp->dring_task[i].request = NULL;
6438 			kmem_free(vdp->dring_task[i].msg, vdp->max_msglen);
6439 			vdp->dring_task[i].msg = NULL;
6440 		}
6441 		kmem_free(vdp->dring_task,
6442 		    (sizeof (*vdp->dring_task)) * vdp->dring_len);
6443 		vdp->dring_task = NULL;
6444 	}
6445 }
6446 
6447 /*
6448  * Destroy the state associated with a virtual disk
6449  */
6450 static void
6451 vds_destroy_vd(void *arg)
6452 {
6453 	vd_t	*vd = (vd_t *)arg;
6454 	int	retry = 0, rv;
6455 
6456 	if (vd == NULL)
6457 		return;
6458 
6459 	PR0("Destroying vdisk state");
6460 
6461 	/* Disable queuing requests for the vdisk */
6462 	if (vd->initialized & VD_LOCKING) {
6463 		mutex_enter(&vd->lock);
6464 		vd->enabled = 0;
6465 		mutex_exit(&vd->lock);
6466 	}
6467 
6468 	/* Drain and destroy start queue (*before* destroying completionq) */
6469 	if (vd->startq != NULL)
6470 		ddi_taskq_destroy(vd->startq);	/* waits for queued tasks */
6471 
6472 	/* Drain and destroy completion queue (*before* shutting down LDC) */
6473 	if (vd->completionq != NULL)
6474 		ddi_taskq_destroy(vd->completionq);	/* waits for tasks */
6475 
6476 	vd_free_dring_task(vd);
6477 
6478 	/* Free the inband task memory handle */
6479 	(void) ldc_mem_free_handle(vd->inband_task.mhdl);
6480 
6481 	/* Shut down LDC */
6482 	if (vd->initialized & VD_LDC) {
6483 		/* unmap the dring */
6484 		if (vd->initialized & VD_DRING)
6485 			(void) ldc_mem_dring_unmap(vd->dring_handle);
6486 
6487 		/* close LDC channel - retry on EAGAIN */
6488 		while ((rv = ldc_close(vd->ldc_handle)) == EAGAIN) {
6489 			if (++retry > vds_ldc_retries) {
6490 				PR0("Timed out closing channel");
6491 				break;
6492 			}
6493 			drv_usecwait(vds_ldc_delay);
6494 		}
6495 		if (rv == 0) {
6496 			(void) ldc_unreg_callback(vd->ldc_handle);
6497 			(void) ldc_fini(vd->ldc_handle);
6498 		} else {
6499 			/*
6500 			 * Closing the LDC channel has failed. Ideally we should
6501 			 * fail here but there is no Zeus level infrastructure
6502 			 * to handle this. The MD has already been changed and
6503 			 * we have to do the close. So we try to do as much
6504 			 * clean up as we can.
6505 			 */
6506 			(void) ldc_set_cb_mode(vd->ldc_handle, LDC_CB_DISABLE);
6507 			while (ldc_unreg_callback(vd->ldc_handle) == EAGAIN)
6508 				drv_usecwait(vds_ldc_delay);
6509 		}
6510 	}
6511 
6512 	/* Free the staging buffer for msgs */
6513 	if (vd->vio_msgp != NULL) {
6514 		kmem_free(vd->vio_msgp, vd->max_msglen);
6515 		vd->vio_msgp = NULL;
6516 	}
6517 
6518 	/* Free the inband message buffer */
6519 	if (vd->inband_task.msg != NULL) {
6520 		kmem_free(vd->inband_task.msg, vd->max_msglen);
6521 		vd->inband_task.msg = NULL;
6522 	}
6523 
6524 	if (vd->file) {
6525 		/* Close file */
6526 		(void) VOP_CLOSE(vd->file_vnode, vd->open_flags, 1,
6527 		    0, kcred, NULL);
6528 		VN_RELE(vd->file_vnode);
6529 		if (vd->file_devid != NULL)
6530 			ddi_devid_free(vd->file_devid);
6531 	} else {
6532 		/* Close any open backing-device slices */
6533 		for (uint_t slice = 0; slice < V_NUMPAR; slice++) {
6534 			if (vd->ldi_handle[slice] != NULL) {
6535 				PR0("Closing slice %u", slice);
6536 				(void) ldi_close(vd->ldi_handle[slice],
6537 				    vd->open_flags, kcred);
6538 			}
6539 		}
6540 	}
6541 
6542 	/* Free any fake label */
6543 	if (vd->flabel) {
6544 		kmem_free(vd->flabel, vd->flabel_size);
6545 		vd->flabel = NULL;
6546 		vd->flabel_size = 0;
6547 	}
6548 
6549 	/* Free lock */
6550 	if (vd->initialized & VD_LOCKING)
6551 		mutex_destroy(&vd->lock);
6552 
6553 	/* Finally, free the vdisk structure itself */
6554 	kmem_free(vd, sizeof (*vd));
6555 }
6556 
6557 static int
6558 vds_init_vd(vds_t *vds, uint64_t id, char *device_path, uint64_t options,
6559     uint64_t ldc_id)
6560 {
6561 	int	status;
6562 	vd_t	*vd = NULL;
6563 
6564 
6565 	if ((status = vds_do_init_vd(vds, id, device_path, options,
6566 	    ldc_id, &vd)) != 0)
6567 		vds_destroy_vd(vd);
6568 
6569 	return (status);
6570 }
6571 
6572 static int
6573 vds_do_get_ldc_id(md_t *md, mde_cookie_t vd_node, mde_cookie_t *channel,
6574     uint64_t *ldc_id)
6575 {
6576 	int	num_channels;
6577 
6578 
6579 	/* Look for channel endpoint child(ren) of the vdisk MD node */
6580 	if ((num_channels = md_scan_dag(md, vd_node,
6581 	    md_find_name(md, VD_CHANNEL_ENDPOINT),
6582 	    md_find_name(md, "fwd"), channel)) <= 0) {
6583 		PRN("No \"%s\" found for virtual disk", VD_CHANNEL_ENDPOINT);
6584 		return (-1);
6585 	}
6586 
6587 	/* Get the "id" value for the first channel endpoint node */
6588 	if (md_get_prop_val(md, channel[0], VD_ID_PROP, ldc_id) != 0) {
6589 		PRN("No \"%s\" property found for \"%s\" of vdisk",
6590 		    VD_ID_PROP, VD_CHANNEL_ENDPOINT);
6591 		return (-1);
6592 	}
6593 
6594 	if (num_channels > 1) {
6595 		PRN("Using ID of first of multiple channels for this vdisk");
6596 	}
6597 
6598 	return (0);
6599 }
6600 
6601 static int
6602 vds_get_ldc_id(md_t *md, mde_cookie_t vd_node, uint64_t *ldc_id)
6603 {
6604 	int		num_nodes, status;
6605 	size_t		size;
6606 	mde_cookie_t	*channel;
6607 
6608 
6609 	if ((num_nodes = md_node_count(md)) <= 0) {
6610 		PRN("Invalid node count in Machine Description subtree");
6611 		return (-1);
6612 	}
6613 	size = num_nodes*(sizeof (*channel));
6614 	channel = kmem_zalloc(size, KM_SLEEP);
6615 	status = vds_do_get_ldc_id(md, vd_node, channel, ldc_id);
6616 	kmem_free(channel, size);
6617 
6618 	return (status);
6619 }
6620 
6621 /*
6622  * Function:
6623  *	vds_get_options
6624  *
6625  * Description:
6626  * 	Parse the options of a vds node. Options are defined as an array
6627  *	of strings in the vds-block-device-opts property of the vds node
6628  *	in the machine description. Options are returned as a bitmask. The
6629  *	mapping between the bitmask options and the options strings from the
6630  *	machine description is defined in the vd_bdev_options[] array.
6631  *
6632  *	The vds-block-device-opts property is optional. If a vds has no such
6633  *	property then no option is defined.
6634  *
6635  * Parameters:
6636  *	md		- machine description.
6637  *	vd_node		- vds node in the machine description for which
6638  *			  options have to be parsed.
6639  *	options		- the returned options.
6640  *
6641  * Return Code:
6642  *	none.
6643  */
6644 static void
6645 vds_get_options(md_t *md, mde_cookie_t vd_node, uint64_t *options)
6646 {
6647 	char	*optstr, *opt;
6648 	int	len, n, i;
6649 
6650 	*options = 0;
6651 
6652 	if (md_get_prop_data(md, vd_node, VD_BLOCK_DEVICE_OPTS,
6653 	    (uint8_t **)&optstr, &len) != 0) {
6654 		PR0("No options found");
6655 		return;
6656 	}
6657 
6658 	/* parse options */
6659 	opt = optstr;
6660 	n = sizeof (vd_bdev_options) / sizeof (vd_option_t);
6661 
6662 	while (opt < optstr + len) {
6663 		for (i = 0; i < n; i++) {
6664 			if (strncmp(vd_bdev_options[i].vdo_name,
6665 			    opt, VD_OPTION_NLEN) == 0) {
6666 				*options |= vd_bdev_options[i].vdo_value;
6667 				break;
6668 			}
6669 		}
6670 
6671 		if (i < n) {
6672 			PR0("option: %s", opt);
6673 		} else {
6674 			PRN("option %s is unknown or unsupported", opt);
6675 		}
6676 
6677 		opt += strlen(opt) + 1;
6678 	}
6679 }
6680 
6681 static void
6682 vds_driver_types_free(vds_t *vds)
6683 {
6684 	if (vds->driver_types != NULL) {
6685 		kmem_free(vds->driver_types, sizeof (vd_driver_type_t) *
6686 		    vds->num_drivers);
6687 		vds->driver_types = NULL;
6688 		vds->num_drivers = 0;
6689 	}
6690 }
6691 
6692 /*
6693  * Update the driver type list with information from vds.conf.
6694  */
6695 static void
6696 vds_driver_types_update(vds_t *vds)
6697 {
6698 	char **list, *s;
6699 	uint_t i, num, count = 0, len;
6700 
6701 	if (ddi_prop_lookup_string_array(DDI_DEV_T_ANY, vds->dip,
6702 	    DDI_PROP_DONTPASS, "driver-type-list", &list, &num) !=
6703 	    DDI_PROP_SUCCESS)
6704 		return;
6705 
6706 	/*
6707 	 * We create a driver_types list with as many as entries as there
6708 	 * is in the driver-type-list from vds.conf. However only valid
6709 	 * entries will be populated (i.e. entries from driver-type-list
6710 	 * with a valid syntax). Invalid entries will be left blank so
6711 	 * they will have no driver name and the driver type will be
6712 	 * VD_DRIVER_UNKNOWN (= 0).
6713 	 */
6714 	vds->num_drivers = num;
6715 	vds->driver_types = kmem_zalloc(sizeof (vd_driver_type_t) * num,
6716 	    KM_SLEEP);
6717 
6718 	for (i = 0; i < num; i++) {
6719 
6720 		s = strchr(list[i], ':');
6721 
6722 		if (s == NULL) {
6723 			PRN("vds.conf: driver-type-list, entry %d (%s): "
6724 			    "a colon is expected in the entry",
6725 			    i, list[i]);
6726 			continue;
6727 		}
6728 
6729 		len = (uintptr_t)s - (uintptr_t)list[i];
6730 
6731 		if (len == 0) {
6732 			PRN("vds.conf: driver-type-list, entry %d (%s): "
6733 			    "the driver name is empty",
6734 			    i, list[i]);
6735 			continue;
6736 		}
6737 
6738 		if (len >= VD_DRIVER_NAME_LEN) {
6739 			PRN("vds.conf: driver-type-list, entry %d (%s): "
6740 			    "the driver name is too long",
6741 			    i, list[i]);
6742 			continue;
6743 		}
6744 
6745 		if (strcmp(s + 1, "disk") == 0) {
6746 
6747 			vds->driver_types[i].type = VD_DRIVER_DISK;
6748 
6749 		} else if (strcmp(s + 1, "volume") == 0) {
6750 
6751 			vds->driver_types[i].type = VD_DRIVER_VOLUME;
6752 
6753 		} else {
6754 			PRN("vds.conf: driver-type-list, entry %d (%s): "
6755 			    "the driver type is invalid",
6756 			    i, list[i]);
6757 			continue;
6758 		}
6759 
6760 		(void) strncpy(vds->driver_types[i].name, list[i], len);
6761 
6762 		PR0("driver-type-list, entry %d (%s) added",
6763 		    i, list[i]);
6764 
6765 		count++;
6766 	}
6767 
6768 	ddi_prop_free(list);
6769 
6770 	if (count == 0) {
6771 		/* nothing was added, clean up */
6772 		vds_driver_types_free(vds);
6773 	}
6774 }
6775 
6776 static void
6777 vds_add_vd(vds_t *vds, md_t *md, mde_cookie_t vd_node)
6778 {
6779 	char		*device_path = NULL;
6780 	uint64_t	id = 0, ldc_id = 0, options = 0;
6781 
6782 	if (md_get_prop_val(md, vd_node, VD_ID_PROP, &id) != 0) {
6783 		PRN("Error getting vdisk \"%s\"", VD_ID_PROP);
6784 		return;
6785 	}
6786 	PR0("Adding vdisk ID %lu", id);
6787 	if (md_get_prop_str(md, vd_node, VD_BLOCK_DEVICE_PROP,
6788 	    &device_path) != 0) {
6789 		PRN("Error getting vdisk \"%s\"", VD_BLOCK_DEVICE_PROP);
6790 		return;
6791 	}
6792 
6793 	vds_get_options(md, vd_node, &options);
6794 
6795 	if (vds_get_ldc_id(md, vd_node, &ldc_id) != 0) {
6796 		PRN("Error getting LDC ID for vdisk %lu", id);
6797 		return;
6798 	}
6799 
6800 	if (vds_init_vd(vds, id, device_path, options, ldc_id) != 0) {
6801 		PRN("Failed to add vdisk ID %lu", id);
6802 		if (mod_hash_destroy(vds->vd_table, (mod_hash_key_t)id) != 0)
6803 			PRN("No vDisk entry found for vdisk ID %lu", id);
6804 		return;
6805 	}
6806 }
6807 
6808 static void
6809 vds_remove_vd(vds_t *vds, md_t *md, mde_cookie_t vd_node)
6810 {
6811 	uint64_t	id = 0;
6812 
6813 
6814 	if (md_get_prop_val(md, vd_node, VD_ID_PROP, &id) != 0) {
6815 		PRN("Unable to get \"%s\" property from vdisk's MD node",
6816 		    VD_ID_PROP);
6817 		return;
6818 	}
6819 	PR0("Removing vdisk ID %lu", id);
6820 	if (mod_hash_destroy(vds->vd_table, (mod_hash_key_t)id) != 0)
6821 		PRN("No vdisk entry found for vdisk ID %lu", id);
6822 }
6823 
6824 static void
6825 vds_change_vd(vds_t *vds, md_t *prev_md, mde_cookie_t prev_vd_node,
6826     md_t *curr_md, mde_cookie_t curr_vd_node)
6827 {
6828 	char		*curr_dev, *prev_dev;
6829 	uint64_t	curr_id = 0, curr_ldc_id = 0, curr_options = 0;
6830 	uint64_t	prev_id = 0, prev_ldc_id = 0, prev_options = 0;
6831 	size_t		len;
6832 
6833 
6834 	/* Validate that vdisk ID has not changed */
6835 	if (md_get_prop_val(prev_md, prev_vd_node, VD_ID_PROP, &prev_id) != 0) {
6836 		PRN("Error getting previous vdisk \"%s\" property",
6837 		    VD_ID_PROP);
6838 		return;
6839 	}
6840 	if (md_get_prop_val(curr_md, curr_vd_node, VD_ID_PROP, &curr_id) != 0) {
6841 		PRN("Error getting current vdisk \"%s\" property", VD_ID_PROP);
6842 		return;
6843 	}
6844 	if (curr_id != prev_id) {
6845 		PRN("Not changing vdisk:  ID changed from %lu to %lu",
6846 		    prev_id, curr_id);
6847 		return;
6848 	}
6849 
6850 	/* Validate that LDC ID has not changed */
6851 	if (vds_get_ldc_id(prev_md, prev_vd_node, &prev_ldc_id) != 0) {
6852 		PRN("Error getting LDC ID for vdisk %lu", prev_id);
6853 		return;
6854 	}
6855 
6856 	if (vds_get_ldc_id(curr_md, curr_vd_node, &curr_ldc_id) != 0) {
6857 		PRN("Error getting LDC ID for vdisk %lu", curr_id);
6858 		return;
6859 	}
6860 	if (curr_ldc_id != prev_ldc_id) {
6861 		_NOTE(NOTREACHED);	/* lint is confused */
6862 		PRN("Not changing vdisk:  "
6863 		    "LDC ID changed from %lu to %lu", prev_ldc_id, curr_ldc_id);
6864 		return;
6865 	}
6866 
6867 	/* Determine whether device path has changed */
6868 	if (md_get_prop_str(prev_md, prev_vd_node, VD_BLOCK_DEVICE_PROP,
6869 	    &prev_dev) != 0) {
6870 		PRN("Error getting previous vdisk \"%s\"",
6871 		    VD_BLOCK_DEVICE_PROP);
6872 		return;
6873 	}
6874 	if (md_get_prop_str(curr_md, curr_vd_node, VD_BLOCK_DEVICE_PROP,
6875 	    &curr_dev) != 0) {
6876 		PRN("Error getting current vdisk \"%s\"", VD_BLOCK_DEVICE_PROP);
6877 		return;
6878 	}
6879 	if (((len = strlen(curr_dev)) == strlen(prev_dev)) &&
6880 	    (strncmp(curr_dev, prev_dev, len) == 0))
6881 		return;	/* no relevant (supported) change */
6882 
6883 	/* Validate that options have not changed */
6884 	vds_get_options(prev_md, prev_vd_node, &prev_options);
6885 	vds_get_options(curr_md, curr_vd_node, &curr_options);
6886 	if (prev_options != curr_options) {
6887 		PRN("Not changing vdisk:  options changed from %lx to %lx",
6888 		    prev_options, curr_options);
6889 		return;
6890 	}
6891 
6892 	PR0("Changing vdisk ID %lu", prev_id);
6893 
6894 	/* Remove old state, which will close vdisk and reset */
6895 	if (mod_hash_destroy(vds->vd_table, (mod_hash_key_t)prev_id) != 0)
6896 		PRN("No entry found for vdisk ID %lu", prev_id);
6897 
6898 	/* Re-initialize vdisk with new state */
6899 	if (vds_init_vd(vds, curr_id, curr_dev, curr_options,
6900 	    curr_ldc_id) != 0) {
6901 		PRN("Failed to change vdisk ID %lu", curr_id);
6902 		return;
6903 	}
6904 }
6905 
6906 static int
6907 vds_process_md(void *arg, mdeg_result_t *md)
6908 {
6909 	int	i;
6910 	vds_t	*vds = arg;
6911 
6912 
6913 	if (md == NULL)
6914 		return (MDEG_FAILURE);
6915 	ASSERT(vds != NULL);
6916 
6917 	for (i = 0; i < md->removed.nelem; i++)
6918 		vds_remove_vd(vds, md->removed.mdp, md->removed.mdep[i]);
6919 	for (i = 0; i < md->match_curr.nelem; i++)
6920 		vds_change_vd(vds, md->match_prev.mdp, md->match_prev.mdep[i],
6921 		    md->match_curr.mdp, md->match_curr.mdep[i]);
6922 	for (i = 0; i < md->added.nelem; i++)
6923 		vds_add_vd(vds, md->added.mdp, md->added.mdep[i]);
6924 
6925 	return (MDEG_SUCCESS);
6926 }
6927 
6928 
6929 static int
6930 vds_do_attach(dev_info_t *dip)
6931 {
6932 	int			status, sz;
6933 	int			cfg_handle;
6934 	minor_t			instance = ddi_get_instance(dip);
6935 	vds_t			*vds;
6936 	mdeg_prop_spec_t	*pspecp;
6937 	mdeg_node_spec_t	*ispecp;
6938 
6939 	/*
6940 	 * The "cfg-handle" property of a vds node in an MD contains the MD's
6941 	 * notion of "instance", or unique identifier, for that node; OBP
6942 	 * stores the value of the "cfg-handle" MD property as the value of
6943 	 * the "reg" property on the node in the device tree it builds from
6944 	 * the MD and passes to Solaris.  Thus, we look up the devinfo node's
6945 	 * "reg" property value to uniquely identify this device instance when
6946 	 * registering with the MD event-generation framework.  If the "reg"
6947 	 * property cannot be found, the device tree state is presumably so
6948 	 * broken that there is no point in continuing.
6949 	 */
6950 	if (!ddi_prop_exists(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
6951 	    VD_REG_PROP)) {
6952 		PRN("vds \"%s\" property does not exist", VD_REG_PROP);
6953 		return (DDI_FAILURE);
6954 	}
6955 
6956 	/* Get the MD instance for later MDEG registration */
6957 	cfg_handle = ddi_prop_get_int(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
6958 	    VD_REG_PROP, -1);
6959 
6960 	if (ddi_soft_state_zalloc(vds_state, instance) != DDI_SUCCESS) {
6961 		PRN("Could not allocate state for instance %u", instance);
6962 		return (DDI_FAILURE);
6963 	}
6964 
6965 	if ((vds = ddi_get_soft_state(vds_state, instance)) == NULL) {
6966 		PRN("Could not get state for instance %u", instance);
6967 		ddi_soft_state_free(vds_state, instance);
6968 		return (DDI_FAILURE);
6969 	}
6970 
6971 	vds->dip	= dip;
6972 	vds->vd_table	= mod_hash_create_ptrhash("vds_vd_table", VDS_NCHAINS,
6973 	    vds_destroy_vd, sizeof (void *));
6974 
6975 	ASSERT(vds->vd_table != NULL);
6976 
6977 	if ((status = ldi_ident_from_dip(dip, &vds->ldi_ident)) != 0) {
6978 		PRN("ldi_ident_from_dip() returned errno %d", status);
6979 		return (DDI_FAILURE);
6980 	}
6981 	vds->initialized |= VDS_LDI;
6982 
6983 	/* Register for MD updates */
6984 	sz = sizeof (vds_prop_template);
6985 	pspecp = kmem_alloc(sz, KM_SLEEP);
6986 	bcopy(vds_prop_template, pspecp, sz);
6987 
6988 	VDS_SET_MDEG_PROP_INST(pspecp, cfg_handle);
6989 
6990 	/* initialize the complete prop spec structure */
6991 	ispecp = kmem_zalloc(sizeof (mdeg_node_spec_t), KM_SLEEP);
6992 	ispecp->namep = "virtual-device";
6993 	ispecp->specp = pspecp;
6994 
6995 	if (mdeg_register(ispecp, &vd_match, vds_process_md, vds,
6996 	    &vds->mdeg) != MDEG_SUCCESS) {
6997 		PRN("Unable to register for MD updates");
6998 		kmem_free(ispecp, sizeof (mdeg_node_spec_t));
6999 		kmem_free(pspecp, sz);
7000 		return (DDI_FAILURE);
7001 	}
7002 
7003 	vds->ispecp = ispecp;
7004 	vds->initialized |= VDS_MDEG;
7005 
7006 	/* Prevent auto-detaching so driver is available whenever MD changes */
7007 	if (ddi_prop_update_int(DDI_DEV_T_NONE, dip, DDI_NO_AUTODETACH, 1) !=
7008 	    DDI_PROP_SUCCESS) {
7009 		PRN("failed to set \"%s\" property for instance %u",
7010 		    DDI_NO_AUTODETACH, instance);
7011 	}
7012 
7013 	/* read any user defined driver types from conf file and update list */
7014 	vds_driver_types_update(vds);
7015 
7016 	ddi_report_dev(dip);
7017 	return (DDI_SUCCESS);
7018 }
7019 
7020 static int
7021 vds_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
7022 {
7023 	int	status;
7024 
7025 	switch (cmd) {
7026 	case DDI_ATTACH:
7027 		PR0("Attaching");
7028 		if ((status = vds_do_attach(dip)) != DDI_SUCCESS)
7029 			(void) vds_detach(dip, DDI_DETACH);
7030 		return (status);
7031 	case DDI_RESUME:
7032 		PR0("No action required for DDI_RESUME");
7033 		return (DDI_SUCCESS);
7034 	default:
7035 		return (DDI_FAILURE);
7036 	}
7037 }
7038 
7039 static struct dev_ops vds_ops = {
7040 	DEVO_REV,	/* devo_rev */
7041 	0,		/* devo_refcnt */
7042 	ddi_no_info,	/* devo_getinfo */
7043 	nulldev,	/* devo_identify */
7044 	nulldev,	/* devo_probe */
7045 	vds_attach,	/* devo_attach */
7046 	vds_detach,	/* devo_detach */
7047 	nodev,		/* devo_reset */
7048 	NULL,		/* devo_cb_ops */
7049 	NULL,		/* devo_bus_ops */
7050 	nulldev		/* devo_power */
7051 };
7052 
7053 static struct modldrv modldrv = {
7054 	&mod_driverops,
7055 	"virtual disk server",
7056 	&vds_ops,
7057 };
7058 
7059 static struct modlinkage modlinkage = {
7060 	MODREV_1,
7061 	&modldrv,
7062 	NULL
7063 };
7064 
7065 
7066 int
7067 _init(void)
7068 {
7069 	int		status;
7070 
7071 	if ((status = ddi_soft_state_init(&vds_state, sizeof (vds_t), 1)) != 0)
7072 		return (status);
7073 
7074 	if ((status = mod_install(&modlinkage)) != 0) {
7075 		ddi_soft_state_fini(&vds_state);
7076 		return (status);
7077 	}
7078 
7079 	return (0);
7080 }
7081 
7082 int
7083 _info(struct modinfo *modinfop)
7084 {
7085 	return (mod_info(&modlinkage, modinfop));
7086 }
7087 
7088 int
7089 _fini(void)
7090 {
7091 	int	status;
7092 
7093 	if ((status = mod_remove(&modlinkage)) != 0)
7094 		return (status);
7095 	ddi_soft_state_fini(&vds_state);
7096 	return (0);
7097 }
7098