1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2011 NetApp, Inc. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 * 28 * $FreeBSD$ 29 */ 30 /* 31 * This file and its contents are supplied under the terms of the 32 * Common Development and Distribution License ("CDDL"), version 1.0. 33 * You may only use this file in accordance with the terms of version 34 * 1.0 of the CDDL. 35 * 36 * A full copy of the text of the CDDL should have accompanied this 37 * source. A copy of the CDDL is also available via the Internet at 38 * http://www.illumos.org/license/CDDL. 39 * 40 * Copyright 2015 Pluribus Networks Inc. 41 * Copyright 2019 Joyent, Inc. 42 * Copyright 2023 Oxide Computer Company 43 * Copyright 2021 OmniOS Community Edition (OmniOSce) Association. 44 */ 45 46 #ifndef _VMM_KERNEL_H_ 47 #define _VMM_KERNEL_H_ 48 49 #include <sys/sdt.h> 50 #include <x86/segments.h> 51 #include <sys/vmm.h> 52 #include <sys/vmm_data.h> 53 #include <sys/linker_set.h> 54 55 SDT_PROVIDER_DECLARE(vmm); 56 57 struct vm; 58 struct vm_exception; 59 struct seg_desc; 60 struct vm_exit; 61 struct vie; 62 struct vm_run; 63 struct vhpet; 64 struct vioapic; 65 struct vlapic; 66 struct vmspace; 67 struct vm_client; 68 struct vm_object; 69 struct vm_guest_paging; 70 struct vmm_data_req; 71 72 /* Return values for architecture-specific calculation of the TSC multiplier */ 73 typedef enum { 74 FR_VALID, /* valid multiplier, scaling needed */ 75 FR_SCALING_NOT_NEEDED, /* scaling not required */ 76 FR_SCALING_NOT_SUPPORTED, /* scaling not supported by platform */ 77 FR_OUT_OF_RANGE, /* freq ratio out of supported range */ 78 } freqratio_res_t; 79 80 typedef int (*vmm_init_func_t)(void); 81 typedef int (*vmm_cleanup_func_t)(void); 82 typedef void (*vmm_resume_func_t)(void); 83 typedef void * (*vmi_init_func_t)(struct vm *vm); 84 typedef int (*vmi_run_func_t)(void *vmi, int vcpu, uint64_t rip); 85 typedef void (*vmi_cleanup_func_t)(void *vmi); 86 typedef int (*vmi_get_register_t)(void *vmi, int vcpu, int num, 87 uint64_t *retval); 88 typedef int (*vmi_set_register_t)(void *vmi, int vcpu, int num, 89 uint64_t val); 90 typedef int (*vmi_get_desc_t)(void *vmi, int vcpu, int num, 91 struct seg_desc *desc); 92 typedef int (*vmi_set_desc_t)(void *vmi, int vcpu, int num, 93 const struct seg_desc *desc); 94 typedef int (*vmi_get_cap_t)(void *vmi, int vcpu, int num, int *retval); 95 typedef int (*vmi_set_cap_t)(void *vmi, int vcpu, int num, int val); 96 typedef struct vlapic *(*vmi_vlapic_init)(void *vmi, int vcpu); 97 typedef void (*vmi_vlapic_cleanup)(void *vmi, struct vlapic *vlapic); 98 typedef void (*vmi_savectx)(void *vmi, int vcpu); 99 typedef void (*vmi_restorectx)(void *vmi, int vcpu); 100 typedef void (*vmi_pause_t)(void *vmi, int vcpu); 101 102 typedef int (*vmi_get_msr_t)(void *vmi, int vcpu, uint32_t msr, 103 uint64_t *valp); 104 typedef int (*vmi_set_msr_t)(void *vmi, int vcpu, uint32_t msr, 105 uint64_t val); 106 typedef freqratio_res_t (*vmi_freqratio_t)(uint64_t guest_hz, 107 uint64_t host_hz, uint64_t *mult); 108 109 struct vmm_ops { 110 vmm_init_func_t init; /* module wide initialization */ 111 vmm_cleanup_func_t cleanup; 112 vmm_resume_func_t resume; 113 114 vmi_init_func_t vminit; /* vm-specific initialization */ 115 vmi_run_func_t vmrun; 116 vmi_cleanup_func_t vmcleanup; 117 vmi_get_register_t vmgetreg; 118 vmi_set_register_t vmsetreg; 119 vmi_get_desc_t vmgetdesc; 120 vmi_set_desc_t vmsetdesc; 121 vmi_get_cap_t vmgetcap; 122 vmi_set_cap_t vmsetcap; 123 vmi_vlapic_init vlapic_init; 124 vmi_vlapic_cleanup vlapic_cleanup; 125 vmi_pause_t vmpause; 126 127 vmi_savectx vmsavectx; 128 vmi_restorectx vmrestorectx; 129 130 vmi_get_msr_t vmgetmsr; 131 vmi_set_msr_t vmsetmsr; 132 133 vmi_freqratio_t vmfreqratio; 134 uint32_t fr_intsize; 135 uint32_t fr_fracsize; 136 }; 137 138 extern struct vmm_ops vmm_ops_intel; 139 extern struct vmm_ops vmm_ops_amd; 140 141 int vm_create(uint64_t flags, struct vm **retvm); 142 void vm_destroy(struct vm *vm); 143 int vm_reinit(struct vm *vm, uint64_t); 144 uint16_t vm_get_maxcpus(struct vm *vm); 145 void vm_get_topology(struct vm *vm, uint16_t *sockets, uint16_t *cores, 146 uint16_t *threads, uint16_t *maxcpus); 147 int vm_set_topology(struct vm *vm, uint16_t sockets, uint16_t cores, 148 uint16_t threads, uint16_t maxcpus); 149 150 int vm_pause_instance(struct vm *); 151 int vm_resume_instance(struct vm *); 152 bool vm_is_paused(struct vm *); 153 154 /* 155 * APIs that race against hardware. 156 */ 157 int vm_track_dirty_pages(struct vm *, uint64_t, size_t, uint8_t *); 158 159 /* 160 * APIs that modify the guest memory map require all vcpus to be frozen. 161 */ 162 int vm_mmap_memseg(struct vm *vm, vm_paddr_t gpa, int segid, vm_ooffset_t off, 163 size_t len, int prot, int flags); 164 int vm_munmap_memseg(struct vm *vm, vm_paddr_t gpa, size_t len); 165 int vm_alloc_memseg(struct vm *vm, int ident, size_t len, bool sysmem); 166 void vm_free_memseg(struct vm *vm, int ident); 167 int vm_map_mmio(struct vm *vm, vm_paddr_t gpa, size_t len, vm_paddr_t hpa); 168 int vm_unmap_mmio(struct vm *vm, vm_paddr_t gpa, size_t len); 169 int vm_assign_pptdev(struct vm *vm, int pptfd); 170 int vm_unassign_pptdev(struct vm *vm, int pptfd); 171 172 /* 173 * APIs that inspect the guest memory map require only a *single* vcpu to 174 * be frozen. This acts like a read lock on the guest memory map since any 175 * modification requires *all* vcpus to be frozen. 176 */ 177 int vm_mmap_getnext(struct vm *vm, vm_paddr_t *gpa, int *segid, 178 vm_ooffset_t *segoff, size_t *len, int *prot, int *flags); 179 int vm_get_memseg(struct vm *vm, int ident, size_t *len, bool *sysmem, 180 struct vm_object **objptr); 181 vm_paddr_t vmm_sysmem_maxaddr(struct vm *vm); 182 bool vm_mem_allocated(struct vm *vm, int vcpuid, vm_paddr_t gpa); 183 184 int vm_get_register(struct vm *vm, int vcpu, int reg, uint64_t *retval); 185 int vm_set_register(struct vm *vm, int vcpu, int reg, uint64_t val); 186 int vm_get_seg_desc(struct vm *vm, int vcpu, int reg, 187 struct seg_desc *ret_desc); 188 int vm_set_seg_desc(struct vm *vm, int vcpu, int reg, 189 const struct seg_desc *desc); 190 int vm_get_run_state(struct vm *vm, int vcpuid, uint32_t *state, 191 uint8_t *sipi_vec); 192 int vm_set_run_state(struct vm *vm, int vcpuid, uint32_t state, 193 uint8_t sipi_vec); 194 int vm_get_fpu(struct vm *vm, int vcpuid, void *buf, size_t len); 195 int vm_set_fpu(struct vm *vm, int vcpuid, void *buf, size_t len); 196 int vm_run(struct vm *vm, int vcpuid, const struct vm_entry *); 197 int vm_suspend(struct vm *, enum vm_suspend_how, int); 198 int vm_inject_nmi(struct vm *vm, int vcpu); 199 bool vm_nmi_pending(struct vm *vm, int vcpuid); 200 void vm_nmi_clear(struct vm *vm, int vcpuid); 201 int vm_inject_extint(struct vm *vm, int vcpu); 202 bool vm_extint_pending(struct vm *vm, int vcpuid); 203 void vm_extint_clear(struct vm *vm, int vcpuid); 204 int vm_inject_init(struct vm *vm, int vcpuid); 205 int vm_inject_sipi(struct vm *vm, int vcpuid, uint8_t vec); 206 struct vlapic *vm_lapic(struct vm *vm, int cpu); 207 struct vioapic *vm_ioapic(struct vm *vm); 208 struct vhpet *vm_hpet(struct vm *vm); 209 int vm_get_capability(struct vm *vm, int vcpu, int type, int *val); 210 int vm_set_capability(struct vm *vm, int vcpu, int type, int val); 211 int vm_get_x2apic_state(struct vm *vm, int vcpu, enum x2apic_state *state); 212 int vm_set_x2apic_state(struct vm *vm, int vcpu, enum x2apic_state state); 213 int vm_apicid2vcpuid(struct vm *vm, int apicid); 214 int vm_activate_cpu(struct vm *vm, int vcpu); 215 int vm_suspend_cpu(struct vm *vm, int vcpu); 216 int vm_resume_cpu(struct vm *vm, int vcpu); 217 struct vm_exit *vm_exitinfo(struct vm *vm, int vcpuid); 218 struct vie *vm_vie_ctx(struct vm *vm, int vcpuid); 219 void vm_exit_suspended(struct vm *vm, int vcpuid, uint64_t rip); 220 void vm_exit_debug(struct vm *vm, int vcpuid, uint64_t rip); 221 void vm_exit_astpending(struct vm *vm, int vcpuid, uint64_t rip); 222 void vm_exit_reqidle(struct vm *vm, int vcpuid, uint64_t rip); 223 void vm_exit_run_state(struct vm *vm, int vcpuid, uint64_t rip); 224 int vm_service_mmio_read(struct vm *vm, int cpuid, uint64_t gpa, uint64_t *rval, 225 int rsize); 226 int vm_service_mmio_write(struct vm *vm, int cpuid, uint64_t gpa, uint64_t wval, 227 int wsize); 228 229 #ifdef _SYS__CPUSET_H_ 230 cpuset_t vm_active_cpus(struct vm *vm); 231 cpuset_t vm_debug_cpus(struct vm *vm); 232 #endif /* _SYS__CPUSET_H_ */ 233 234 bool vcpu_entry_bailout_checks(struct vm *vm, int vcpuid, uint64_t rip); 235 bool vcpu_run_state_pending(struct vm *vm, int vcpuid); 236 int vcpu_arch_reset(struct vm *vm, int vcpuid, bool init_only); 237 int vm_vcpu_barrier(struct vm *, int); 238 239 /* 240 * Return true if device indicated by bus/slot/func is supposed to be a 241 * pci passthrough device. 242 * 243 * Return false otherwise. 244 */ 245 bool vmm_is_pptdev(int bus, int slot, int func); 246 247 void *vm_iommu_domain(struct vm *vm); 248 249 enum vcpu_state { 250 VCPU_IDLE, 251 VCPU_FROZEN, 252 VCPU_RUNNING, 253 VCPU_SLEEPING, 254 }; 255 256 int vcpu_set_state(struct vm *vm, int vcpu, enum vcpu_state state, 257 bool from_idle); 258 enum vcpu_state vcpu_get_state(struct vm *vm, int vcpu, int *hostcpu); 259 void vcpu_block_run(struct vm *, int); 260 void vcpu_unblock_run(struct vm *, int); 261 262 uint64_t vcpu_tsc_offset(struct vm *vm, int vcpuid, bool phys_adj); 263 hrtime_t vm_normalize_hrtime(struct vm *, hrtime_t); 264 hrtime_t vm_denormalize_hrtime(struct vm *, hrtime_t); 265 uint64_t vm_get_freq_multiplier(struct vm *); 266 267 static __inline bool 268 vcpu_is_running(struct vm *vm, int vcpu, int *hostcpu) 269 { 270 return (vcpu_get_state(vm, vcpu, hostcpu) == VCPU_RUNNING); 271 } 272 273 #ifdef _SYS_THREAD_H 274 static __inline int 275 vcpu_should_yield(struct vm *vm, int vcpu) 276 { 277 278 if (curthread->t_astflag) 279 return (1); 280 else if (CPU->cpu_runrun) 281 return (1); 282 else 283 return (0); 284 } 285 #endif /* _SYS_THREAD_H */ 286 287 typedef enum vcpu_notify { 288 VCPU_NOTIFY_NONE, 289 VCPU_NOTIFY_APIC, /* Posted intr notification (if possible) */ 290 VCPU_NOTIFY_EXIT, /* IPI to cause VM exit */ 291 } vcpu_notify_t; 292 293 void *vcpu_stats(struct vm *vm, int vcpu); 294 void vcpu_notify_event(struct vm *vm, int vcpuid); 295 void vcpu_notify_event_type(struct vm *vm, int vcpuid, vcpu_notify_t); 296 struct vmspace *vm_get_vmspace(struct vm *vm); 297 struct vm_client *vm_get_vmclient(struct vm *vm, int vcpuid); 298 struct vatpic *vm_atpic(struct vm *vm); 299 struct vatpit *vm_atpit(struct vm *vm); 300 struct vpmtmr *vm_pmtmr(struct vm *vm); 301 struct vrtc *vm_rtc(struct vm *vm); 302 303 /* 304 * Inject exception 'vector' into the guest vcpu. This function returns 0 on 305 * success and non-zero on failure. 306 * 307 * Wrapper functions like 'vm_inject_gp()' should be preferred to calling 308 * this function directly because they enforce the trap-like or fault-like 309 * behavior of an exception. 310 * 311 * This function should only be called in the context of the thread that is 312 * executing this vcpu. 313 */ 314 int vm_inject_exception(struct vm *vm, int vcpuid, uint8_t vector, 315 bool err_valid, uint32_t errcode, bool restart_instruction); 316 317 /* 318 * This function is called after a VM-exit that occurred during exception or 319 * interrupt delivery through the IDT. The format of 'intinfo' is described 320 * in Figure 15-1, "EXITINTINFO for All Intercepts", APM, Vol 2. 321 * 322 * If a VM-exit handler completes the event delivery successfully then it 323 * should call vm_exit_intinfo() to extinguish the pending event. For e.g., 324 * if the task switch emulation is triggered via a task gate then it should 325 * call this function with 'intinfo=0' to indicate that the external event 326 * is not pending anymore. 327 * 328 * Return value is 0 on success and non-zero on failure. 329 */ 330 int vm_exit_intinfo(struct vm *vm, int vcpuid, uint64_t intinfo); 331 332 /* 333 * This function is called before every VM-entry to retrieve a pending 334 * event that should be injected into the guest. This function combines 335 * nested events into a double or triple fault. 336 * 337 * Returns false if there are no events that need to be injected into the guest. 338 */ 339 bool vm_entry_intinfo(struct vm *vm, int vcpuid, uint64_t *info); 340 341 int vm_get_intinfo(struct vm *vm, int vcpuid, uint64_t *info1, uint64_t *info2); 342 343 enum vm_reg_name vm_segment_name(int seg_encoding); 344 345 struct vm_copyinfo { 346 uint64_t gpa; 347 size_t len; 348 int prot; 349 void *hva; 350 void *cookie; 351 }; 352 353 /* 354 * Set up 'copyinfo[]' to copy to/from guest linear address space starting 355 * at 'gla' and 'len' bytes long. The 'prot' should be set to PROT_READ for 356 * a copyin or PROT_WRITE for a copyout. 357 * 358 * retval is_fault Interpretation 359 * 0 0 Success 360 * 0 1 An exception was injected into the guest 361 * EFAULT N/A Unrecoverable error 362 * 363 * The 'copyinfo[]' can be passed to 'vm_copyin()' or 'vm_copyout()' only if 364 * the return value is 0. The 'copyinfo[]' resources should be freed by calling 365 * 'vm_copy_teardown()' after the copy is done. 366 */ 367 int vm_copy_setup(struct vm *vm, int vcpuid, struct vm_guest_paging *paging, 368 uint64_t gla, size_t len, int prot, struct vm_copyinfo *copyinfo, 369 uint_t num_copyinfo, int *is_fault); 370 void vm_copy_teardown(struct vm *vm, int vcpuid, struct vm_copyinfo *copyinfo, 371 uint_t num_copyinfo); 372 void vm_copyin(struct vm *vm, int vcpuid, struct vm_copyinfo *copyinfo, 373 void *kaddr, size_t len); 374 void vm_copyout(struct vm *vm, int vcpuid, const void *kaddr, 375 struct vm_copyinfo *copyinfo, size_t len); 376 377 int vcpu_trace_exceptions(struct vm *vm, int vcpuid); 378 int vcpu_trap_wbinvd(struct vm *vm, int vcpuid); 379 380 void vm_inject_ud(struct vm *vm, int vcpuid); 381 void vm_inject_gp(struct vm *vm, int vcpuid); 382 void vm_inject_ac(struct vm *vm, int vcpuid, uint32_t errcode); 383 void vm_inject_ss(struct vm *vm, int vcpuid, uint32_t errcode); 384 void vm_inject_pf(struct vm *vm, int vcpuid, uint32_t errcode, uint64_t cr2); 385 386 /* 387 * Both SVM and VMX have complex logic for injecting events such as exceptions 388 * or interrupts into the guest. Within those two backends, the progress of 389 * event injection is tracked by event_inject_state, hopefully making it easier 390 * to reason about. 391 */ 392 enum event_inject_state { 393 EIS_CAN_INJECT = 0, /* exception/interrupt can be injected */ 394 EIS_EV_EXISTING = 1, /* blocked by existing event */ 395 EIS_EV_INJECTED = 2, /* blocked by injected event */ 396 EIS_GI_BLOCK = 3, /* blocked by guest interruptability */ 397 398 /* 399 * Flag to request an immediate exit from VM context after event 400 * injection in order to perform more processing 401 */ 402 EIS_REQ_EXIT = (1 << 15), 403 }; 404 405 /* Possible result codes for MSR access emulation */ 406 typedef enum vm_msr_result { 407 VMR_OK = 0, /* succesfully emulated */ 408 VMR_GP = 1, /* #GP should be injected */ 409 VMR_UNHANLDED = 2, /* handle in userspace, kernel cannot emulate */ 410 } vm_msr_result_t; 411 412 enum vm_cpuid_capability { 413 VCC_NONE, 414 VCC_NO_EXECUTE, 415 VCC_FFXSR, 416 VCC_TCE, 417 VCC_LAST 418 }; 419 420 /* Possible flags and entry count limit definited in sys/vmm.h */ 421 typedef struct vcpu_cpuid_config { 422 uint32_t vcc_flags; 423 uint32_t vcc_nent; 424 struct vcpu_cpuid_entry *vcc_entries; 425 } vcpu_cpuid_config_t; 426 427 vcpu_cpuid_config_t *vm_cpuid_config(struct vm *, int); 428 int vm_get_cpuid(struct vm *, int, vcpu_cpuid_config_t *); 429 int vm_set_cpuid(struct vm *, int, const vcpu_cpuid_config_t *); 430 void vcpu_emulate_cpuid(struct vm *, int, uint64_t *, uint64_t *, uint64_t *, 431 uint64_t *); 432 void legacy_emulate_cpuid(struct vm *, int, uint32_t *, uint32_t *, uint32_t *, 433 uint32_t *); 434 void vcpu_cpuid_init(vcpu_cpuid_config_t *); 435 void vcpu_cpuid_cleanup(vcpu_cpuid_config_t *); 436 437 bool vm_cpuid_capability(struct vm *, int, enum vm_cpuid_capability); 438 bool validate_guest_xcr0(uint64_t, uint64_t); 439 440 void vmm_sol_glue_init(void); 441 void vmm_sol_glue_cleanup(void); 442 443 void *vmm_contig_alloc(size_t); 444 void vmm_contig_free(void *, size_t); 445 446 int vmm_mod_load(void); 447 int vmm_mod_unload(void); 448 449 bool vmm_check_iommu(void); 450 451 void vmm_call_trap(uint64_t); 452 453 uint64_t vmm_host_tsc_delta(void); 454 455 /* 456 * Because of tangled headers, this is not exposed directly via the vmm_drv 457 * interface, but rather mirrored as vmm_drv_iop_cb_t in vmm_drv.h. 458 */ 459 typedef int (*ioport_handler_t)(void *, bool, uint16_t, uint8_t, uint32_t *); 460 461 int vm_ioport_access(struct vm *vm, int vcpuid, bool in, uint16_t port, 462 uint8_t bytes, uint32_t *val); 463 464 int vm_ioport_attach(struct vm *vm, uint16_t port, ioport_handler_t func, 465 void *arg, void **cookie); 466 int vm_ioport_detach(struct vm *vm, void **cookie, ioport_handler_t *old_func, 467 void **old_arg); 468 469 int vm_ioport_hook(struct vm *, uint16_t, ioport_handler_t, void *, void **); 470 void vm_ioport_unhook(struct vm *, void **); 471 472 enum vcpu_ustate { 473 VU_INIT = 0, /* initialized but has not yet attempted to run */ 474 VU_RUN, /* running in guest context */ 475 VU_IDLE, /* idle (HLTed, wait-for-SIPI, etc) */ 476 VU_EMU_KERN, /* emulation performed in-kernel */ 477 VU_EMU_USER, /* emulation performed in userspace */ 478 VU_SCHED, /* off-cpu for interrupt, preempt, lock contention */ 479 VU_MAX 480 }; 481 482 void vcpu_ustate_change(struct vm *, int, enum vcpu_ustate); 483 484 typedef struct vmm_kstats { 485 kstat_named_t vk_name; 486 } vmm_kstats_t; 487 488 typedef struct vmm_vcpu_kstats { 489 kstat_named_t vvk_vcpu; 490 kstat_named_t vvk_time_init; 491 kstat_named_t vvk_time_run; 492 kstat_named_t vvk_time_idle; 493 kstat_named_t vvk_time_emu_kern; 494 kstat_named_t vvk_time_emu_user; 495 kstat_named_t vvk_time_sched; 496 } vmm_vcpu_kstats_t; 497 498 #define VMM_KSTAT_CLASS "misc" 499 500 int vmm_kstat_update_vcpu(struct kstat *, int); 501 502 typedef struct vmm_data_req { 503 uint16_t vdr_class; 504 uint16_t vdr_version; 505 uint32_t vdr_flags; 506 uint32_t vdr_len; 507 void *vdr_data; 508 uint32_t *vdr_result_len; 509 } vmm_data_req_t; 510 511 typedef int (*vmm_data_writef_t)(void *, const vmm_data_req_t *); 512 typedef int (*vmm_data_readf_t)(void *, const vmm_data_req_t *); 513 typedef int (*vmm_data_vcpu_writef_t)(struct vm *, int, const vmm_data_req_t *); 514 typedef int (*vmm_data_vcpu_readf_t)(struct vm *, int, const vmm_data_req_t *); 515 516 typedef struct vmm_data_version_entry { 517 uint16_t vdve_class; 518 uint16_t vdve_version; 519 520 /* 521 * If these handlers accept/emit a single item of a fixed length, it 522 * should be specified in vdve_len_expect. The vmm-data logic will then 523 * ensure that requests possess at least that specified length before 524 * calling into the defined handlers. 525 */ 526 uint16_t vdve_len_expect; 527 528 /* 529 * For handlers which deal with (potentially) multiple items of a fixed 530 * length, vdve_len_per_item is used to hint (via the VDC_VERSION class) 531 * to userspace what that item size is. Although not strictly mutually 532 * exclusive with vdve_len_expect, it is nonsensical to set them both. 533 */ 534 uint16_t vdve_len_per_item; 535 536 /* 537 * A vmm-data handler is expected to provide read/write functions which 538 * are either VM-wide (via vdve_readf and vdve_writef) or per-vCPU 539 * (via vdve_vcpu_readf and vdve_vcpu_writef). Providing both is not 540 * allowed (but is not currently checked at compile time). 541 */ 542 543 /* VM-wide handlers */ 544 vmm_data_readf_t vdve_readf; 545 vmm_data_writef_t vdve_writef; 546 547 /* Per-vCPU handlers */ 548 vmm_data_vcpu_readf_t vdve_vcpu_readf; 549 vmm_data_vcpu_writef_t vdve_vcpu_writef; 550 551 /* 552 * The vdve_vcpu_readf/writef handlers can rely on vcpuid to be within 553 * the [0, VM_MAXCPU) bounds. If they also can handle vcpuid == -1 (for 554 * VM-wide data), then they can opt into such cases by setting 555 * vdve_vcpu_wildcard to true. 556 * 557 * At a later time, it would make sense to improve the logic so a 558 * vmm-data class could define both the VM-wide and per-vCPU handlers, 559 * letting the incoming vcpuid determine which would be called. Until 560 * then, vdve_vcpu_wildcard is the stopgap. 561 */ 562 bool vdve_vcpu_wildcard; 563 } vmm_data_version_entry_t; 564 565 #define VMM_DATA_VERSION(sym) SET_ENTRY(vmm_data_version_entries, sym) 566 567 int vmm_data_read(struct vm *, int, const vmm_data_req_t *); 568 int vmm_data_write(struct vm *, int, const vmm_data_req_t *); 569 570 /* 571 * TSC Scaling 572 */ 573 uint64_t vmm_calc_freq_multiplier(uint64_t guest_hz, uint64_t host_hz, 574 uint32_t frac); 575 576 /* represents a multiplier for a guest in which no scaling is required */ 577 #define VM_TSCM_NOSCALE 0 578 579 #endif /* _VMM_KERNEL_H_ */ 580