xref: /illumos-gate/usr/src/uts/i86pc/sys/rootnex.h (revision e5803b76927480e8f9b67b22201c484ccf4c2bcf)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
23  */
24 
25 #ifndef	_SYS_ROOTNEX_H
26 #define	_SYS_ROOTNEX_H
27 
28 /*
29  * x86 root nexus implementation specific state
30  */
31 
32 #include <sys/types.h>
33 #include <sys/conf.h>
34 #include <sys/modctl.h>
35 #include <sys/sunddi.h>
36 #include <sys/iommulib.h>
37 #include <sys/sdt.h>
38 
39 #ifdef	__cplusplus
40 extern "C" {
41 #endif
42 
43 
44 /* size of buffer used for ctlop reportdev */
45 #define	REPORTDEV_BUFSIZE	1024
46 
47 /* min and max interrupt vectors */
48 #define	VEC_MIN			1
49 #define	VEC_MAX			255
50 
51 /* atomic increment/decrement to keep track of outstanding binds, etc */
52 #ifdef DEBUG
53 #define	ROOTNEX_DPROF_INC(addr)		atomic_inc_64(addr)
54 #define	ROOTNEX_DPROF_DEC(addr)		atomic_add_64(addr, -1)
55 #define	ROOTNEX_DPROBE1(name, type1, arg1) \
56 	DTRACE_PROBE1(name, type1, arg1)
57 #define	ROOTNEX_DPROBE2(name, type1, arg1, type2, arg2) \
58 	DTRACE_PROBE2(name, type1, arg1, type2, arg2)
59 #define	ROOTNEX_DPROBE3(name, type1, arg1, type2, arg2, type3, arg3) \
60 	DTRACE_PROBE3(name, type1, arg1, type2, arg2, type3, arg3)
61 #define	ROOTNEX_DPROBE4(name, type1, arg1, type2, arg2, type3, arg3, \
62     type4, arg4) \
63 	DTRACE_PROBE4(name, type1, arg1, type2, arg2, type3, arg3, type4, arg4)
64 #else
65 #define	ROOTNEX_DPROF_INC(addr)
66 #define	ROOTNEX_DPROF_DEC(addr)
67 #define	ROOTNEX_DPROBE1(name, type1, arg1)
68 #define	ROOTNEX_DPROBE2(name, type1, arg1, type2, arg2)
69 #define	ROOTNEX_DPROBE3(name, type1, arg1, type2, arg2, type3, arg3)
70 #define	ROOTNEX_DPROBE4(name, type1, arg1, type2, arg2, type3, arg3, \
71     type4, arg4)
72 #endif
73 
74 /* set in dmac_type to signify that this cookie uses the copy buffer */
75 #define	ROOTNEX_USES_COPYBUF		0x80000000
76 
77 /*
78  * integer or boolean property name and value. A few static rootnex properties
79  * are created during rootnex attach from an array of rootnex_intprop_t..
80  */
81 typedef struct rootnex_intprop_s {
82 	char	*prop_name;
83 	int	prop_value;
84 } rootnex_intprop_t;
85 
86 /*
87  * sgl related information which is visible to rootnex_get_sgl(). Trying to
88  * isolate get_sgl() as much as possible so it can be easily replaced.
89  */
90 typedef struct rootnex_sglinfo_s {
91 	/*
92 	 * Used to simplify calculations to get the maximum number
93 	 * of cookies.
94 	 */
95 	boolean_t	si_cancross;
96 
97 	/*
98 	 * These are passed into rootnex_get_sgl().
99 	 *
100 	 * si_min_addr - the minimum physical address
101 	 * si_max_addr - the maximum physical address
102 	 * si_max_cookie_size - the maximum size of a physically contiguous
103 	 *    piece of memory that we can handle in a sgl.
104 	 * si_segmask - segment mask to determine if we cross a segment boundary
105 	 * si_flags - dma_attr_flags
106 	 * si_max_pages - max number of pages this sgl could occupy (which
107 	 *    is also the maximum number of cookies we might see.
108 	 */
109 	uint64_t	si_min_addr;
110 	uint64_t	si_max_addr;
111 	uint64_t	si_max_cookie_size;
112 	uint64_t	si_segmask;
113 	uint_t		si_flags;
114 	uint_t		si_max_pages;
115 
116 	/*
117 	 * these are returned by rootnex_get_sgl()
118 	 *
119 	 * si_bounce_on_seg - if we need to use bounce buffer for pages above
120 	 *    ddi_dma_seg
121 	 * si_copybuf_req - amount of copy buffer needed by the buffer.
122 	 * si_buf_offset - The initial offset into the first page of the buffer.
123 	 *    It's set in get sgl and used in the bind slow path to help
124 	 *    calculate the current page index & offset from the current offset
125 	 *    which is relative to the start of the buffer.
126 	 * si_asp - address space of buffer passed in.
127 	 * si_sgl_size - The actual number of cookies in the sgl. This does
128 	 *    not reflect and sharing that we might do on window boundaries.
129 	 */
130 	boolean_t	si_bounce_on_seg;
131 	size_t		si_copybuf_req;
132 	off_t		si_buf_offset;
133 	struct as	*si_asp;
134 	uint_t		si_sgl_size;
135 } rootnex_sglinfo_t;
136 
137 /*
138  * When we have to use the copy buffer, we allocate one of these structures per
139  * buffer page to track which pages need the copy buffer, what the kernel
140  * virtual address is (which the device can't reach), and what the copy buffer
141  * virtual address is (where the device dma's to/from). For 32-bit kernels,
142  * since we can't use seg kpm, we also need to keep the page_t around and state
143  * if we've currently mapped in the page into KVA space for buffers which don't
144  * have kva already and when we have multiple windows because we used up all our
145  * copy buffer space.
146  */
147 typedef struct rootnex_pgmap_s {
148 	boolean_t	pm_uses_copybuf;
149 #if !defined(__amd64)
150 	boolean_t	pm_mapped;
151 	page_t		*pm_pp;
152 	caddr_t		pm_vaddr;
153 #endif
154 	caddr_t		pm_kaddr;
155 	caddr_t		pm_cbaddr;
156 } rootnex_pgmap_t;
157 
158 /*
159  * We only need to trim a buffer when we have multiple windows. Each window has
160  * trim state. We might have trimmed the end of the previous window, leaving the
161  * first cookie of this window trimmed[tr_trim_first] (which basically means we
162  * won't start with a new cookie), or we might need to trim the end of the
163  * current window [tr_trim_last] (which basically means we won't end with a
164  * complete cookie). We keep the same state for the first & last cookie in a
165  * window (a window can have one or more cookies). However, when we trim the
166  * last cookie, we keep a pointer to the last cookie in the trim state since we
167  * only need this info when we trim. The pointer to the first cookie in the
168  * window is in the window state since we need to know what the first cookie in
169  * the window is in various places.
170  *
171  * If we do trim a cookie, we save away the physical address and size of the
172  * cookie so that we can over write the cookie when we switch windows (the
173  * space for a cookie which is in two windows is shared between the windows.
174  * We keep around the same information for the last page in a window.
175  *
176  * if we happened to trim on a page that uses the copy buffer, and that page
177  * is also in the middle of a window boundary because we have filled up the
178  * copy buffer, we need to remember the copy buffer address for both windows
179  * since the same page will have different copy buffer addresses in the two
180  * windows. We need to due the same for kaddr in the 32-bit kernel since we
181  * have a limited kva space which we map to.
182  */
183 typedef struct rootnex_trim_s {
184 	boolean_t		tr_trim_first;
185 	boolean_t		tr_trim_last;
186 	ddi_dma_cookie_t	*tr_last_cookie;
187 	uint64_t		tr_first_paddr;
188 	uint64_t		tr_last_paddr;
189 	size_t			tr_first_size;
190 	size_t			tr_last_size;
191 
192 	boolean_t		tr_first_copybuf_win;
193 	boolean_t		tr_last_copybuf_win;
194 	uint_t			tr_first_pidx;
195 	uint_t			tr_last_pidx;
196 	caddr_t			tr_first_cbaddr;
197 	caddr_t			tr_last_cbaddr;
198 #if !defined(__amd64)
199 	caddr_t			tr_first_kaddr;
200 	caddr_t			tr_last_kaddr;
201 #endif
202 } rootnex_trim_t;
203 
204 /*
205  * per window state. A bound DMA handle can have multiple windows. Each window
206  * will have the following state. We track if this window needs to sync,
207  * the offset into the buffer where the window starts, the size of the window.
208  * a pointer to the first cookie in the window, the number of cookies in the
209  * window, and the trim state for the window. For the 32-bit kernel, we keep
210  * track of if we need to remap the copy buffer when we switch to a this window
211  */
212 typedef struct rootnex_window_s {
213 	boolean_t		wd_dosync;
214 	uint_t			wd_cookie_cnt;
215 	off_t			wd_offset;
216 	size_t			wd_size;
217 	ddi_dma_cookie_t	*wd_first_cookie;
218 	rootnex_trim_t		wd_trim;
219 #if !defined(__amd64)
220 	boolean_t		wd_remap_copybuf;
221 #endif
222 } rootnex_window_t;
223 
224 /* per dma handle private state */
225 typedef struct rootnex_dma_s {
226 	/*
227 	 * sgl related state used to build and describe the sgl.
228 	 *
229 	 * dp_partial_required - used in the bind slow path to identify if we
230 	 *    need to do a partial mapping or not.
231 	 * dp_trim_required - used in the bind slow path to identify if we
232 	 *    need to trim when switching to a new window. This should only be
233 	 *    set when partial is set.
234 	 * dp_granularity_power_2 - set in alloc handle and used in bind slow
235 	 *    path to determine if we & or % to calculate the trim.
236 	 * dp_dma - copy of dma "object" passed in during bind
237 	 * dp_maxxfer - trimmed dma_attr_maxxfer so that it is a whole
238 	 *    multiple of granularity
239 	 * dp_sglinfo - See rootnex_sglinfo_t above.
240 	 */
241 	boolean_t		dp_partial_required;
242 	boolean_t		dp_trim_required;
243 	boolean_t		dp_granularity_power_2;
244 	uint64_t		dp_maxxfer;
245 
246 	boolean_t		dp_dvma_used;
247 	ddi_dma_obj_t		dp_dma;
248 	ddi_dma_obj_t		dp_dvma;
249 	rootnex_sglinfo_t	dp_sglinfo;
250 
251 	/*
252 	 * Copy buffer related state
253 	 *
254 	 * dp_copybuf_size - the actual size of the copy buffer that we are
255 	 *    using. This can be smaller that dp_copybuf_req, i.e. bind size >
256 	 *    max copy buffer size.
257 	 * dp_cbaddr - kernel address of copy buffer. Used to determine where
258 	 *    where to copy to/from.
259 	 * dp_cbsize - the "real" size returned from the copy buffer alloc.
260 	 *    Set in the copybuf alloc and used to free copybuf.
261 	 * dp_pgmap - page map used in sync to determine which pages in the
262 	 *    buffer use the copy buffer and what addresses to use to copy to/
263 	 *    from.
264 	 * dp_cb_remaping - status if this bind causes us to have to remap
265 	 *    the copybuf when switching to new windows. This is only used in
266 	 *    the 32-bit kernel since we use seg kpm in the 64-bit kernel for
267 	 *    this case.
268 	 * dp_kva - kernel heap arena vmem space for mapping to buffers which
269 	 *    we don't have a kernel VA to bcopy to/from. This is only used in
270 	 *    the 32-bit kernel since we use seg kpm in the 64-bit kernel for
271 	 *    this case.
272 	 */
273 	size_t			dp_copybuf_size;
274 	caddr_t			dp_cbaddr;
275 	size_t			dp_cbsize;
276 	rootnex_pgmap_t		*dp_pgmap;
277 #if !defined(__amd64)
278 	boolean_t		dp_cb_remaping;
279 	caddr_t			dp_kva;
280 #endif
281 
282 	/*
283 	 * window related state. The pointer to the window state array which may
284 	 * be a pointer into the pre allocated state, or we may have had to
285 	 * allocate the window array on the fly because it wouldn't fit. If
286 	 * we allocate it, we'll use dp_need_to_free_window and dp_window_size
287 	 * during cleanup. dp_current_win keeps track of the current window.
288 	 * dp_max_win is the maximum number of windows we could have.
289 	 */
290 	uint_t			dp_current_win;
291 	rootnex_window_t	*dp_window;
292 	boolean_t		dp_need_to_free_window;
293 	uint_t			dp_window_size;
294 	uint_t			dp_max_win;
295 
296 	/* dip of driver which "owns" handle. set to rdip in alloc_handle() */
297 	dev_info_t		*dp_dip;
298 
299 	/*
300 	 * dp_mutex and dp_inuse are only used to see if a driver is trying to
301 	 * bind to an already bound dma handle. dp_mutex only used for dp_inuse
302 	 */
303 	kmutex_t		dp_mutex;
304 	boolean_t		dp_inuse;
305 
306 	/*
307 	 * cookie related state. The pointer to the cookies (dp_cookies) may
308 	 * be a pointer into the pre allocated state, or we may have had to
309 	 * allocate the cookie array on the fly because it wouldn't fit. If
310 	 * we allocate it, we'll use dp_need_to_free_cookie and dp_cookie_size
311 	 * during cleanup. dp_current_cookie is only used in the obsoleted
312 	 * interfaces to determine when we've used up all the cookies in a
313 	 * window during nextseg()..
314 	 */
315 	size_t			dp_cookie_size;
316 	ddi_dma_cookie_t	*dp_cookies;
317 	boolean_t		dp_need_to_free_cookie;
318 	uint_t			dp_current_cookie; /* for obsoleted I/Fs */
319 	ddi_dma_cookie_t	*dp_saved_cookies;
320 	boolean_t		dp_need_to_switch_cookies;
321 
322 	void			*dp_iommu_private;
323 
324 	/*
325 	 * pre allocated space for the bind state, allocated during alloc
326 	 * handle. For a lot of devices, this will save us from having to do
327 	 * kmem_alloc's during the bind most of the time. kmem_alloc's can be
328 	 * expensive on x86 when the cpu count goes up since xcalls are
329 	 * expensive on x86.
330 	 */
331 	uchar_t			*dp_prealloc_buffer;
332 
333 	/*
334 	 * sleep flags set on bind and unset on unbind
335 	 */
336 	int			dp_sleep_flags;
337 } rootnex_dma_t;
338 
339 /*
340  * profile/performance counters. Most things will be dtrace probes, but there
341  * are a couple of things we want to keep track all the time. We track the
342  * total number of active handles and binds (i.e. an alloc without a free or
343  * a bind without an unbind) since rootnex attach. We also track the total
344  * number of binds which have failed since rootnex attach.
345  */
346 typedef enum {
347 	ROOTNEX_CNT_ACTIVE_HDLS = 0,
348 	ROOTNEX_CNT_ACTIVE_BINDS = 1,
349 	ROOTNEX_CNT_ALLOC_FAIL = 2,
350 	ROOTNEX_CNT_BIND_FAIL = 3,
351 	ROOTNEX_CNT_SYNC_FAIL = 4,
352 	ROOTNEX_CNT_GETWIN_FAIL = 5,
353 
354 	/* This one must be last */
355 	ROOTNEX_CNT_LAST
356 } rootnex_cnt_t;
357 
358 /*
359  * global driver state.
360  *   r_dmahdl_cache - dma_handle kmem_cache
361  *   r_dvma_call_list_id - ddi_set_callback() id
362  *   r_peekpoke_mutex - serialize peeks and pokes.
363  *   r_dip - rootnex dip
364  *   r_reserved_msg_printed - ctlops reserve message threshold
365  *   r_counters - profile/performance counters
366  */
367 typedef struct rootnex_state_s {
368 	uint_t			r_prealloc_cookies;
369 	uint_t			r_prealloc_size;
370 	kmem_cache_t		*r_dmahdl_cache;
371 	uintptr_t		r_dvma_call_list_id;
372 	kmutex_t		r_peekpoke_mutex;
373 	dev_info_t		*r_dip;
374 	ddi_iblock_cookie_t	r_err_ibc;
375 	boolean_t		r_reserved_msg_printed;
376 	uint64_t		r_counters[ROOTNEX_CNT_LAST];
377 	iommulib_nexhandle_t    r_iommulib_handle;
378 } rootnex_state_t;
379 
380 #ifdef	__cplusplus
381 }
382 #endif
383 
384 #endif	/* _SYS_ROOTNEX_H */
385