xref: /illumos-gate/usr/src/uts/i86pc/os/mp_pc.c (revision a6bde1a23b60f140c7ed78df979c2e22b1ed9b2c)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
23  */
24 /*
25  * Copyright (c) 2010, Intel Corporation.
26  * All rights reserved.
27  */
28 /*
29  * Copyright 2011 Joyent, Inc. All rights reserved.
30  */
31 
32 /*
33  * Welcome to the world of the "real mode platter".
34  * See also startup.c, mpcore.s and apic.c for related routines.
35  */
36 
37 #include <sys/types.h>
38 #include <sys/systm.h>
39 #include <sys/cpuvar.h>
40 #include <sys/cpu_module.h>
41 #include <sys/kmem.h>
42 #include <sys/archsystm.h>
43 #include <sys/machsystm.h>
44 #include <sys/controlregs.h>
45 #include <sys/x86_archext.h>
46 #include <sys/smp_impldefs.h>
47 #include <sys/sysmacros.h>
48 #include <sys/mach_mmu.h>
49 #include <sys/promif.h>
50 #include <sys/cpu.h>
51 #include <sys/cpu_event.h>
52 #include <sys/sunndi.h>
53 #include <sys/fs/dv_node.h>
54 #include <vm/hat_i86.h>
55 #include <vm/as.h>
56 
57 extern cpuset_t cpu_ready_set;
58 
59 extern int  mp_start_cpu_common(cpu_t *cp, boolean_t boot);
60 extern void real_mode_start_cpu(void);
61 extern void real_mode_start_cpu_end(void);
62 extern void real_mode_stop_cpu_stage1(void);
63 extern void real_mode_stop_cpu_stage1_end(void);
64 extern void real_mode_stop_cpu_stage2(void);
65 extern void real_mode_stop_cpu_stage2_end(void);
66 
67 void rmp_gdt_init(rm_platter_t *);
68 
69 /*
70  * Fill up the real mode platter to make it easy for real mode code to
71  * kick it off. This area should really be one passed by boot to kernel
72  * and guaranteed to be below 1MB and aligned to 16 bytes. Should also
73  * have identical physical and virtual address in paged mode.
74  */
75 static ushort_t *warm_reset_vector = NULL;
76 
77 int
78 mach_cpucontext_init(void)
79 {
80 	ushort_t *vec;
81 	ulong_t addr;
82 	struct rm_platter *rm = (struct rm_platter *)rm_platter_va;
83 
84 	if (!(vec = (ushort_t *)psm_map_phys(WARM_RESET_VECTOR,
85 	    sizeof (vec), PROT_READ | PROT_WRITE)))
86 		return (-1);
87 
88 	/*
89 	 * setup secondary cpu bios boot up vector
90 	 * Write page offset to 0x467 and page frame number to 0x469.
91 	 */
92 	addr = (ulong_t)((caddr_t)rm->rm_code - (caddr_t)rm) + rm_platter_pa;
93 	vec[0] = (ushort_t)(addr & PAGEOFFSET);
94 	vec[1] = (ushort_t)((addr & (0xfffff & PAGEMASK)) >> 4);
95 	warm_reset_vector = vec;
96 
97 	/* Map real mode platter into kas so kernel can access it. */
98 	hat_devload(kas.a_hat,
99 	    (caddr_t)(uintptr_t)rm_platter_pa, MMU_PAGESIZE,
100 	    btop(rm_platter_pa), PROT_READ | PROT_WRITE | PROT_EXEC,
101 	    HAT_LOAD_NOCONSIST);
102 
103 	/* Copy CPU startup code to rm_platter if it's still during boot. */
104 	if (!plat_dr_enabled()) {
105 		ASSERT((size_t)real_mode_start_cpu_end -
106 		    (size_t)real_mode_start_cpu <= RM_PLATTER_CODE_SIZE);
107 		bcopy((caddr_t)real_mode_start_cpu, (caddr_t)rm->rm_code,
108 		    (size_t)real_mode_start_cpu_end -
109 		    (size_t)real_mode_start_cpu);
110 	}
111 
112 	return (0);
113 }
114 
115 void
116 mach_cpucontext_fini(void)
117 {
118 	if (warm_reset_vector)
119 		psm_unmap_phys((caddr_t)warm_reset_vector,
120 		    sizeof (warm_reset_vector));
121 	hat_unload(kas.a_hat, (caddr_t)(uintptr_t)rm_platter_pa, MMU_PAGESIZE,
122 	    HAT_UNLOAD);
123 }
124 
125 #if defined(__amd64)
126 extern void *long_mode_64(void);
127 #endif	/* __amd64 */
128 
129 /*ARGSUSED*/
130 void
131 rmp_gdt_init(rm_platter_t *rm)
132 {
133 
134 #if defined(__amd64)
135 	/* Use the kas address space for the CPU startup thread. */
136 	if (MAKECR3(kas.a_hat->hat_htable->ht_pfn) > 0xffffffffUL)
137 		panic("Cannot initialize CPUs; kernel's 64-bit page tables\n"
138 		    "located above 4G in physical memory (@ 0x%lx)",
139 		    MAKECR3(kas.a_hat->hat_htable->ht_pfn));
140 
141 	/*
142 	 * Setup pseudo-descriptors for temporary GDT and IDT for use ONLY
143 	 * by code in real_mode_start_cpu():
144 	 *
145 	 * GDT[0]:  NULL selector
146 	 * GDT[1]:  64-bit CS: Long = 1, Present = 1, bits 12, 11 = 1
147 	 *
148 	 * Clear the IDT as interrupts will be off and a limit of 0 will cause
149 	 * the CPU to triple fault and reset on an NMI, seemingly as reasonable
150 	 * a course of action as any other, though it may cause the entire
151 	 * platform to reset in some cases...
152 	 */
153 	rm->rm_temp_gdt[0] = 0;
154 	rm->rm_temp_gdt[TEMPGDT_KCODE64] = 0x20980000000000ULL;
155 
156 	rm->rm_temp_gdt_lim = (ushort_t)(sizeof (rm->rm_temp_gdt) - 1);
157 	rm->rm_temp_gdt_base = rm_platter_pa +
158 	    (uint32_t)offsetof(rm_platter_t, rm_temp_gdt);
159 	rm->rm_temp_idt_lim = 0;
160 	rm->rm_temp_idt_base = 0;
161 
162 	/*
163 	 * Since the CPU needs to jump to protected mode using an identity
164 	 * mapped address, we need to calculate it here.
165 	 */
166 	rm->rm_longmode64_addr = rm_platter_pa +
167 	    (uint32_t)((uintptr_t)long_mode_64 -
168 	    (uintptr_t)real_mode_start_cpu);
169 #endif	/* __amd64 */
170 }
171 
172 static void *
173 mach_cpucontext_alloc_tables(struct cpu *cp)
174 {
175 	tss_t *ntss;
176 	struct cpu_tables *ct;
177 
178 	/*
179 	 * Allocate space for stack, tss, gdt and idt. We round the size
180 	 * allotted for cpu_tables up, so that the TSS is on a unique page.
181 	 * This is more efficient when running in virtual machines.
182 	 */
183 	ct = kmem_zalloc(P2ROUNDUP(sizeof (*ct), PAGESIZE), KM_SLEEP);
184 	if ((uintptr_t)ct & PAGEOFFSET)
185 		panic("mach_cpucontext_alloc_tables: cpu%d misaligned tables",
186 		    cp->cpu_id);
187 
188 	ntss = cp->cpu_tss = &ct->ct_tss;
189 
190 #if defined(__amd64)
191 
192 	/*
193 	 * #DF (double fault).
194 	 */
195 	ntss->tss_ist1 = (uint64_t)&ct->ct_stack[sizeof (ct->ct_stack)];
196 
197 #elif defined(__i386)
198 
199 	ntss->tss_esp0 = ntss->tss_esp1 = ntss->tss_esp2 = ntss->tss_esp =
200 	    (uint32_t)&ct->ct_stack[sizeof (ct->ct_stack)];
201 
202 	ntss->tss_ss0 = ntss->tss_ss1 = ntss->tss_ss2 = ntss->tss_ss = KDS_SEL;
203 
204 	ntss->tss_eip = (uint32_t)cp->cpu_thread->t_pc;
205 
206 	ntss->tss_cs = KCS_SEL;
207 	ntss->tss_ds = ntss->tss_es = KDS_SEL;
208 	ntss->tss_fs = KFS_SEL;
209 	ntss->tss_gs = KGS_SEL;
210 
211 #endif	/* __i386 */
212 
213 	/*
214 	 * Set I/O bit map offset equal to size of TSS segment limit
215 	 * for no I/O permission map. This will cause all user I/O
216 	 * instructions to generate #gp fault.
217 	 */
218 	ntss->tss_bitmapbase = sizeof (*ntss);
219 
220 	/*
221 	 * Setup kernel tss.
222 	 */
223 	set_syssegd((system_desc_t *)&cp->cpu_gdt[GDT_KTSS], cp->cpu_tss,
224 	    sizeof (*cp->cpu_tss) - 1, SDT_SYSTSS, SEL_KPL);
225 
226 	return (ct);
227 }
228 
229 void *
230 mach_cpucontext_xalloc(struct cpu *cp, int optype)
231 {
232 	size_t len;
233 	struct cpu_tables *ct;
234 	rm_platter_t *rm = (rm_platter_t *)rm_platter_va;
235 	static int cpu_halt_code_ready;
236 
237 	if (optype == MACH_CPUCONTEXT_OP_STOP) {
238 		ASSERT(plat_dr_enabled());
239 
240 		/*
241 		 * The WARM_RESET_VECTOR has a limitation that the physical
242 		 * address written to it must be page-aligned. To work around
243 		 * this limitation, the CPU stop code has been splitted into
244 		 * two stages.
245 		 * The stage 2 code, which implements the real logic to halt
246 		 * CPUs, is copied to the rm_cpu_halt_code field in the real
247 		 * mode platter. The stage 1 code, which simply jumps to the
248 		 * stage 2 code in the rm_cpu_halt_code field, is copied to
249 		 * rm_code field in the real mode platter and it may be
250 		 * overwritten after the CPU has been stopped.
251 		 */
252 		if (!cpu_halt_code_ready) {
253 			/*
254 			 * The rm_cpu_halt_code field in the real mode platter
255 			 * is used by the CPU stop code only. So only copy the
256 			 * CPU stop stage 2 code into the rm_cpu_halt_code
257 			 * field on the first call.
258 			 */
259 			len = (size_t)real_mode_stop_cpu_stage2_end -
260 			    (size_t)real_mode_stop_cpu_stage2;
261 			ASSERT(len <= RM_PLATTER_CPU_HALT_CODE_SIZE);
262 			bcopy((caddr_t)real_mode_stop_cpu_stage2,
263 			    (caddr_t)rm->rm_cpu_halt_code, len);
264 			cpu_halt_code_ready = 1;
265 		}
266 
267 		/*
268 		 * The rm_code field in the real mode platter is shared by
269 		 * the CPU start, CPU stop, CPR and fast reboot code. So copy
270 		 * the CPU stop stage 1 code into the rm_code field every time.
271 		 */
272 		len = (size_t)real_mode_stop_cpu_stage1_end -
273 		    (size_t)real_mode_stop_cpu_stage1;
274 		ASSERT(len <= RM_PLATTER_CODE_SIZE);
275 		bcopy((caddr_t)real_mode_stop_cpu_stage1,
276 		    (caddr_t)rm->rm_code, len);
277 		rm->rm_cpu_halted = 0;
278 
279 		return (cp->cpu_m.mcpu_mach_ctx_ptr);
280 	} else if (optype != MACH_CPUCONTEXT_OP_START) {
281 		return (NULL);
282 	}
283 
284 	/*
285 	 * Only need to allocate tables when starting CPU.
286 	 * Tables allocated when starting CPU will be reused when stopping CPU.
287 	 */
288 	ct = mach_cpucontext_alloc_tables(cp);
289 	if (ct == NULL) {
290 		return (NULL);
291 	}
292 
293 	/* Copy CPU startup code to rm_platter for CPU hot-add operations. */
294 	if (plat_dr_enabled()) {
295 		bcopy((caddr_t)real_mode_start_cpu, (caddr_t)rm->rm_code,
296 		    (size_t)real_mode_start_cpu_end -
297 		    (size_t)real_mode_start_cpu);
298 	}
299 
300 	/*
301 	 * Now copy all that we've set up onto the real mode platter
302 	 * for the real mode code to digest as part of starting the cpu.
303 	 */
304 	rm->rm_idt_base = cp->cpu_idt;
305 	rm->rm_idt_lim = sizeof (*cp->cpu_idt) * NIDT - 1;
306 	rm->rm_gdt_base = cp->cpu_gdt;
307 	rm->rm_gdt_lim = sizeof (*cp->cpu_gdt) * NGDT - 1;
308 
309 	/*
310 	 * CPU needs to access kernel address space after powering on.
311 	 * When hot-adding CPU at runtime, directly use top level page table
312 	 * of kas other than the return value of getcr3(). getcr3() returns
313 	 * current process's top level page table, which may be different from
314 	 * the one of kas.
315 	 */
316 	rm->rm_pdbr = MAKECR3(kas.a_hat->hat_htable->ht_pfn);
317 	rm->rm_cpu = cp->cpu_id;
318 
319 	/*
320 	 * For hot-adding CPU at runtime, Machine Check and Performance Counter
321 	 * should be disabled. They will be enabled on demand after CPU powers
322 	 * on successfully
323 	 */
324 	rm->rm_cr4 = getcr4();
325 	rm->rm_cr4 &= ~(CR4_MCE | CR4_PCE);
326 
327 	rmp_gdt_init(rm);
328 
329 	return (ct);
330 }
331 
332 void
333 mach_cpucontext_xfree(struct cpu *cp, void *arg, int err, int optype)
334 {
335 	struct cpu_tables *ct = arg;
336 
337 	ASSERT(&ct->ct_tss == cp->cpu_tss);
338 	if (optype == MACH_CPUCONTEXT_OP_START) {
339 		switch (err) {
340 		case 0:
341 			/*
342 			 * Save pointer for reuse when stopping CPU.
343 			 */
344 			cp->cpu_m.mcpu_mach_ctx_ptr = arg;
345 			break;
346 		case ETIMEDOUT:
347 			/*
348 			 * The processor was poked, but failed to start before
349 			 * we gave up waiting for it.  In case it starts later,
350 			 * don't free anything.
351 			 */
352 			cp->cpu_m.mcpu_mach_ctx_ptr = arg;
353 			break;
354 		default:
355 			/*
356 			 * Some other, passive, error occurred.
357 			 */
358 			kmem_free(ct, P2ROUNDUP(sizeof (*ct), PAGESIZE));
359 			cp->cpu_tss = NULL;
360 			break;
361 		}
362 	} else if (optype == MACH_CPUCONTEXT_OP_STOP) {
363 		switch (err) {
364 		case 0:
365 			/*
366 			 * Free resources allocated when starting CPU.
367 			 */
368 			kmem_free(ct, P2ROUNDUP(sizeof (*ct), PAGESIZE));
369 			cp->cpu_tss = NULL;
370 			cp->cpu_m.mcpu_mach_ctx_ptr = NULL;
371 			break;
372 		default:
373 			/*
374 			 * Don't touch table pointer in case of failure.
375 			 */
376 			break;
377 		}
378 	} else {
379 		ASSERT(0);
380 	}
381 }
382 
383 void *
384 mach_cpucontext_alloc(struct cpu *cp)
385 {
386 	return (mach_cpucontext_xalloc(cp, MACH_CPUCONTEXT_OP_START));
387 }
388 
389 void
390 mach_cpucontext_free(struct cpu *cp, void *arg, int err)
391 {
392 	mach_cpucontext_xfree(cp, arg, err, MACH_CPUCONTEXT_OP_START);
393 }
394 
395 /*
396  * "Enter monitor."  Called via cross-call from stop_other_cpus().
397  */
398 void
399 mach_cpu_halt(char *msg)
400 {
401 	if (msg)
402 		prom_printf("%s\n", msg);
403 
404 	/*CONSTANTCONDITION*/
405 	while (1)
406 		;
407 }
408 
409 void
410 mach_cpu_idle(void)
411 {
412 	i86_halt();
413 }
414 
415 void
416 mach_cpu_pause(volatile char *safe)
417 {
418 	/*
419 	 * This cpu is now safe.
420 	 */
421 	*safe = PAUSE_WAIT;
422 	membar_enter(); /* make sure stores are flushed */
423 
424 	/*
425 	 * Now we wait.  When we are allowed to continue, safe
426 	 * will be set to PAUSE_IDLE.
427 	 */
428 	while (*safe != PAUSE_IDLE)
429 		SMT_PAUSE();
430 }
431 
432 /*
433  * Power on the target CPU.
434  */
435 int
436 mp_cpu_poweron(struct cpu *cp)
437 {
438 	int error;
439 	cpuset_t tempset;
440 	processorid_t cpuid;
441 
442 	ASSERT(cp != NULL);
443 	cpuid = cp->cpu_id;
444 	if (use_mp == 0 || plat_dr_support_cpu() == 0) {
445 		return (ENOTSUP);
446 	} else if (cpuid < 0 || cpuid >= max_ncpus) {
447 		return (EINVAL);
448 	}
449 
450 	/*
451 	 * The currrent x86 implementaiton of mp_cpu_configure() and
452 	 * mp_cpu_poweron() have a limitation that mp_cpu_poweron() could only
453 	 * be called once after calling mp_cpu_configure() for a specific CPU.
454 	 * It's because mp_cpu_poweron() will destroy data structure created
455 	 * by mp_cpu_configure(). So reject the request if the CPU has already
456 	 * been powered on once after calling mp_cpu_configure().
457 	 * This limitaiton only affects the p_online syscall and the DR driver
458 	 * won't be affected because the DR driver always invoke public CPU
459 	 * management interfaces in the predefined order:
460 	 * cpu_configure()->cpu_poweron()...->cpu_poweroff()->cpu_unconfigure()
461 	 */
462 	if (cpuid_checkpass(cp, 4) || cp->cpu_thread == cp->cpu_idle_thread) {
463 		return (ENOTSUP);
464 	}
465 
466 	/*
467 	 * Check if there's at least a Mbyte of kmem available
468 	 * before attempting to start the cpu.
469 	 */
470 	if (kmem_avail() < 1024 * 1024) {
471 		/*
472 		 * Kick off a reap in case that helps us with
473 		 * later attempts ..
474 		 */
475 		kmem_reap();
476 		return (ENOMEM);
477 	}
478 
479 	affinity_set(CPU->cpu_id);
480 
481 	/*
482 	 * Start the target CPU. No need to call mach_cpucontext_fini()
483 	 * if mach_cpucontext_init() fails.
484 	 */
485 	if ((error = mach_cpucontext_init()) == 0) {
486 		error = mp_start_cpu_common(cp, B_FALSE);
487 		mach_cpucontext_fini();
488 	}
489 	if (error != 0) {
490 		affinity_clear();
491 		return (error);
492 	}
493 
494 	/* Wait for the target cpu to reach READY state. */
495 	tempset = cpu_ready_set;
496 	while (!CPU_IN_SET(tempset, cpuid)) {
497 		delay(1);
498 		tempset = *((volatile cpuset_t *)&cpu_ready_set);
499 	}
500 
501 	/* Mark the target CPU as available for mp operation. */
502 	CPUSET_ATOMIC_ADD(mp_cpus, cpuid);
503 
504 	/* Free the space allocated to hold the microcode file */
505 	ucode_cleanup();
506 
507 	affinity_clear();
508 
509 	return (0);
510 }
511 
512 #define	MP_CPU_DETACH_MAX_TRIES		5
513 #define	MP_CPU_DETACH_DELAY		100
514 
515 static int
516 mp_cpu_detach_driver(dev_info_t *dip)
517 {
518 	int i;
519 	int rv = EBUSY;
520 	dev_info_t *pdip;
521 
522 	pdip = ddi_get_parent(dip);
523 	ASSERT(pdip != NULL);
524 	/*
525 	 * Check if caller holds pdip busy - can cause deadlocks in
526 	 * e_ddi_branch_unconfigure(), which calls devfs_clean().
527 	 */
528 	if (DEVI_BUSY_OWNED(pdip)) {
529 		return (EDEADLOCK);
530 	}
531 
532 	for (i = 0; i < MP_CPU_DETACH_MAX_TRIES; i++) {
533 		if (e_ddi_branch_unconfigure(dip, NULL, 0) == 0) {
534 			rv = 0;
535 			break;
536 		}
537 		DELAY(MP_CPU_DETACH_DELAY);
538 	}
539 
540 	return (rv);
541 }
542 
543 /*
544  * Power off the target CPU.
545  * Note: cpu_lock will be released and then reacquired.
546  */
547 int
548 mp_cpu_poweroff(struct cpu *cp)
549 {
550 	int rv = 0;
551 	void *ctx;
552 	dev_info_t *dip = NULL;
553 	rm_platter_t *rm = (rm_platter_t *)rm_platter_va;
554 	extern void cpupm_start(cpu_t *);
555 	extern void cpupm_stop(cpu_t *);
556 
557 	ASSERT(cp != NULL);
558 	ASSERT((cp->cpu_flags & CPU_OFFLINE) != 0);
559 	ASSERT((cp->cpu_flags & CPU_QUIESCED) != 0);
560 
561 	if (use_mp == 0 || plat_dr_support_cpu() == 0) {
562 		return (ENOTSUP);
563 	}
564 	/*
565 	 * There is no support for powering off cpu0 yet.
566 	 * There are many pieces of code which have a hard dependency on cpu0.
567 	 */
568 	if (cp->cpu_id == 0) {
569 		return (ENOTSUP);
570 	};
571 
572 	if (mach_cpu_get_device_node(cp, &dip) != PSM_SUCCESS) {
573 		return (ENXIO);
574 	}
575 	ASSERT(dip != NULL);
576 	if (mp_cpu_detach_driver(dip) != 0) {
577 		rv = EBUSY;
578 		goto out_online;
579 	}
580 
581 	/* Allocate CPU context for stopping */
582 	if (mach_cpucontext_init() != 0) {
583 		rv = ENXIO;
584 		goto out_online;
585 	}
586 	ctx = mach_cpucontext_xalloc(cp, MACH_CPUCONTEXT_OP_STOP);
587 	if (ctx == NULL) {
588 		rv = ENXIO;
589 		goto out_context_fini;
590 	}
591 
592 	cpupm_stop(cp);
593 	cpu_event_fini_cpu(cp);
594 
595 	if (cp->cpu_m.mcpu_cmi_hdl != NULL) {
596 		cmi_fini(cp->cpu_m.mcpu_cmi_hdl);
597 		cp->cpu_m.mcpu_cmi_hdl = NULL;
598 	}
599 
600 	rv = mach_cpu_stop(cp, ctx);
601 	if (rv != 0) {
602 		goto out_enable_cmi;
603 	}
604 
605 	/* Wait until the target CPU has been halted. */
606 	while (*(volatile ushort_t *)&(rm->rm_cpu_halted) != 0xdead) {
607 		delay(1);
608 	}
609 	rm->rm_cpu_halted = 0xffff;
610 
611 	/* CPU_READY has been cleared by mach_cpu_stop. */
612 	ASSERT((cp->cpu_flags & CPU_READY) == 0);
613 	ASSERT((cp->cpu_flags & CPU_RUNNING) == 0);
614 	cp->cpu_flags = CPU_OFFLINE | CPU_QUIESCED | CPU_POWEROFF;
615 	CPUSET_ATOMIC_DEL(mp_cpus, cp->cpu_id);
616 
617 	mach_cpucontext_xfree(cp, ctx, 0, MACH_CPUCONTEXT_OP_STOP);
618 	mach_cpucontext_fini();
619 
620 	return (0);
621 
622 out_enable_cmi:
623 	{
624 		cmi_hdl_t hdl;
625 
626 		if ((hdl = cmi_init(CMI_HDL_NATIVE, cmi_ntv_hwchipid(cp),
627 		    cmi_ntv_hwcoreid(cp), cmi_ntv_hwstrandid(cp))) != NULL) {
628 			if (is_x86_feature(x86_featureset, X86FSET_MCA))
629 				cmi_mca_init(hdl);
630 			cp->cpu_m.mcpu_cmi_hdl = hdl;
631 		}
632 	}
633 	cpu_event_init_cpu(cp);
634 	cpupm_start(cp);
635 	mach_cpucontext_xfree(cp, ctx, rv, MACH_CPUCONTEXT_OP_STOP);
636 
637 out_context_fini:
638 	mach_cpucontext_fini();
639 
640 out_online:
641 	(void) e_ddi_branch_configure(dip, NULL, 0);
642 
643 	if (rv != EAGAIN && rv != ETIME) {
644 		rv = ENXIO;
645 	}
646 
647 	return (rv);
648 }
649 
650 /*
651  * Return vcpu state, since this could be a virtual environment that we
652  * are unaware of, return "unknown".
653  */
654 /* ARGSUSED */
655 int
656 vcpu_on_pcpu(processorid_t cpu)
657 {
658 	return (VCPU_STATE_UNKNOWN);
659 }
660