xref: /illumos-gate/usr/src/uts/i86pc/os/ddi_impl.c (revision 1ed6b69a5ca1ca3ee5e9a4931f74e2237c7e1c9f)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright 2012 Garrett D'Amore <garrett@damore.org>
25  * Copyright 2014 Pluribus Networks, Inc.
26  */
27 
28 /*
29  * PC specific DDI implementation
30  */
31 #include <sys/types.h>
32 #include <sys/autoconf.h>
33 #include <sys/avintr.h>
34 #include <sys/bootconf.h>
35 #include <sys/conf.h>
36 #include <sys/cpuvar.h>
37 #include <sys/ddi_impldefs.h>
38 #include <sys/ddi_subrdefs.h>
39 #include <sys/ethernet.h>
40 #include <sys/fp.h>
41 #include <sys/instance.h>
42 #include <sys/kmem.h>
43 #include <sys/machsystm.h>
44 #include <sys/modctl.h>
45 #include <sys/promif.h>
46 #include <sys/prom_plat.h>
47 #include <sys/sunndi.h>
48 #include <sys/ndi_impldefs.h>
49 #include <sys/ddi_impldefs.h>
50 #include <sys/sysmacros.h>
51 #include <sys/systeminfo.h>
52 #include <sys/utsname.h>
53 #include <sys/atomic.h>
54 #include <sys/spl.h>
55 #include <sys/archsystm.h>
56 #include <vm/seg_kmem.h>
57 #include <sys/ontrap.h>
58 #include <sys/fm/protocol.h>
59 #include <sys/ramdisk.h>
60 #include <sys/sunndi.h>
61 #include <sys/vmem.h>
62 #include <sys/pci_impl.h>
63 #if defined(__xpv)
64 #include <sys/hypervisor.h>
65 #endif
66 #include <sys/mach_intr.h>
67 #include <vm/hat_i86.h>
68 #include <sys/x86_archext.h>
69 #include <sys/avl.h>
70 
71 /*
72  * DDI Boot Configuration
73  */
74 
75 /*
76  * Platform drivers on this platform
77  */
78 char *platform_module_list[] = {
79 	"acpippm",
80 	"ppm",
81 	(char *)0
82 };
83 
84 /* pci bus resource maps */
85 struct pci_bus_resource *pci_bus_res;
86 
87 size_t dma_max_copybuf_size = 0x101000;		/* 1M + 4K */
88 
89 uint64_t ramdisk_start, ramdisk_end;
90 
91 int pseudo_isa = 0;
92 
93 /*
94  * Forward declarations
95  */
96 static int getlongprop_buf();
97 static void get_boot_properties(void);
98 static void impl_bus_initialprobe(void);
99 static void impl_bus_reprobe(void);
100 
101 static int poke_mem(peekpoke_ctlops_t *in_args);
102 static int peek_mem(peekpoke_ctlops_t *in_args);
103 
104 static int kmem_override_cache_attrs(caddr_t, size_t, uint_t);
105 
106 #if defined(__amd64) && !defined(__xpv)
107 extern void immu_init(void);
108 #endif
109 
110 /*
111  * We use an AVL tree to store contiguous address allocations made with the
112  * kalloca() routine, so that we can return the size to free with kfreea().
113  * Note that in the future it would be vastly faster if we could eliminate
114  * this lookup by insisting that all callers keep track of their own sizes,
115  * just as for kmem_alloc().
116  */
117 struct ctgas {
118 	avl_node_t ctg_link;
119 	void *ctg_addr;
120 	size_t ctg_size;
121 };
122 
123 static avl_tree_t ctgtree;
124 
125 static kmutex_t		ctgmutex;
126 #define	CTGLOCK()	mutex_enter(&ctgmutex)
127 #define	CTGUNLOCK()	mutex_exit(&ctgmutex)
128 
129 /*
130  * Minimum pfn value of page_t's put on the free list.  This is to simplify
131  * support of ddi dma memory requests which specify small, non-zero addr_lo
132  * values.
133  *
134  * The default value of 2, which corresponds to the only known non-zero addr_lo
135  * value used, means a single page will be sacrificed (pfn typically starts
136  * at 1).  ddiphysmin can be set to 0 to disable. It cannot be set above 0x100
137  * otherwise mp startup panics.
138  */
139 pfn_t	ddiphysmin = 2;
140 
141 static void
142 check_driver_disable(void)
143 {
144 	int proplen = 128;
145 	char *prop_name;
146 	char *drv_name, *propval;
147 	major_t major;
148 
149 	prop_name = kmem_alloc(proplen, KM_SLEEP);
150 	for (major = 0; major < devcnt; major++) {
151 		drv_name = ddi_major_to_name(major);
152 		if (drv_name == NULL)
153 			continue;
154 		(void) snprintf(prop_name, proplen, "disable-%s", drv_name);
155 		if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(),
156 		    DDI_PROP_DONTPASS, prop_name, &propval) == DDI_SUCCESS) {
157 			if (strcmp(propval, "true") == 0) {
158 				devnamesp[major].dn_flags |= DN_DRIVER_REMOVED;
159 				cmn_err(CE_NOTE, "driver %s disabled",
160 				    drv_name);
161 			}
162 			ddi_prop_free(propval);
163 		}
164 	}
165 	kmem_free(prop_name, proplen);
166 }
167 
168 
169 /*
170  * Configure the hardware on the system.
171  * Called before the rootfs is mounted
172  */
173 void
174 configure(void)
175 {
176 	extern void i_ddi_init_root();
177 
178 #if defined(__i386)
179 	extern int fpu_pentium_fdivbug;
180 #endif	/* __i386 */
181 	extern int fpu_ignored;
182 
183 	/*
184 	 * Determine if an FPU is attached
185 	 */
186 
187 	fpu_probe();
188 
189 #if defined(__i386)
190 	if (fpu_pentium_fdivbug) {
191 		printf("\
192 FP hardware exhibits Pentium floating point divide problem\n");
193 	}
194 #endif	/* __i386 */
195 
196 	if (fpu_ignored) {
197 		printf("FP hardware will not be used\n");
198 	} else if (!fpu_exists) {
199 		printf("No FPU in configuration\n");
200 	}
201 
202 	/*
203 	 * Initialize devices on the machine.
204 	 * Uses configuration tree built by the PROMs to determine what
205 	 * is present, and builds a tree of prototype dev_info nodes
206 	 * corresponding to the hardware which identified itself.
207 	 */
208 
209 	/*
210 	 * Initialize root node.
211 	 */
212 	i_ddi_init_root();
213 
214 	/* reprogram devices not set up by firmware (BIOS) */
215 	impl_bus_reprobe();
216 
217 #if defined(__amd64) && !defined(__xpv)
218 	/*
219 	 * Setup but don't startup the IOMMU
220 	 * Startup happens later via a direct call
221 	 * to IOMMU code by boot code.
222 	 * At this point, all PCI bus renumbering
223 	 * is done, so safe to init the IMMU
224 	 * AKA Intel IOMMU.
225 	 */
226 	immu_init();
227 #endif
228 
229 	/*
230 	 * attach the isa nexus to get ACPI resource usage
231 	 * isa is "kind of" a pseudo node
232 	 */
233 #if defined(__xpv)
234 	if (DOMAIN_IS_INITDOMAIN(xen_info)) {
235 		if (pseudo_isa)
236 			(void) i_ddi_attach_pseudo_node("isa");
237 		else
238 			(void) i_ddi_attach_hw_nodes("isa");
239 	}
240 #else
241 	if (pseudo_isa)
242 		(void) i_ddi_attach_pseudo_node("isa");
243 	else
244 		(void) i_ddi_attach_hw_nodes("isa");
245 #endif
246 }
247 
248 /*
249  * The "status" property indicates the operational status of a device.
250  * If this property is present, the value is a string indicating the
251  * status of the device as follows:
252  *
253  *	"okay"		operational.
254  *	"disabled"	not operational, but might become operational.
255  *	"fail"		not operational because a fault has been detected,
256  *			and it is unlikely that the device will become
257  *			operational without repair. no additional details
258  *			are available.
259  *	"fail-xxx"	not operational because a fault has been detected,
260  *			and it is unlikely that the device will become
261  *			operational without repair. "xxx" is additional
262  *			human-readable information about the particular
263  *			fault condition that was detected.
264  *
265  * The absence of this property means that the operational status is
266  * unknown or okay.
267  *
268  * This routine checks the status property of the specified device node
269  * and returns 0 if the operational status indicates failure, and 1 otherwise.
270  *
271  * The property may exist on plug-in cards the existed before IEEE 1275-1994.
272  * And, in that case, the property may not even be a string. So we carefully
273  * check for the value "fail", in the beginning of the string, noting
274  * the property length.
275  */
276 int
277 status_okay(int id, char *buf, int buflen)
278 {
279 	char status_buf[OBP_MAXPROPNAME];
280 	char *bufp = buf;
281 	int len = buflen;
282 	int proplen;
283 	static const char *status = "status";
284 	static const char *fail = "fail";
285 	int fail_len = (int)strlen(fail);
286 
287 	/*
288 	 * Get the proplen ... if it's smaller than "fail",
289 	 * or doesn't exist ... then we don't care, since
290 	 * the value can't begin with the char string "fail".
291 	 *
292 	 * NB: proplen, if it's a string, includes the NULL in the
293 	 * the size of the property, and fail_len does not.
294 	 */
295 	proplen = prom_getproplen((pnode_t)id, (caddr_t)status);
296 	if (proplen <= fail_len)	/* nonexistant or uninteresting len */
297 		return (1);
298 
299 	/*
300 	 * if a buffer was provided, use it
301 	 */
302 	if ((buf == (char *)NULL) || (buflen <= 0)) {
303 		bufp = status_buf;
304 		len = sizeof (status_buf);
305 	}
306 	*bufp = (char)0;
307 
308 	/*
309 	 * Get the property into the buffer, to the extent of the buffer,
310 	 * and in case the buffer is smaller than the property size,
311 	 * NULL terminate the buffer. (This handles the case where
312 	 * a buffer was passed in and the caller wants to print the
313 	 * value, but the buffer was too small).
314 	 */
315 	(void) prom_bounded_getprop((pnode_t)id, (caddr_t)status,
316 	    (caddr_t)bufp, len);
317 	*(bufp + len - 1) = (char)0;
318 
319 	/*
320 	 * If the value begins with the char string "fail",
321 	 * then it means the node is failed. We don't care
322 	 * about any other values. We assume the node is ok
323 	 * although it might be 'disabled'.
324 	 */
325 	if (strncmp(bufp, fail, fail_len) == 0)
326 		return (0);
327 
328 	return (1);
329 }
330 
331 /*
332  * Check the status of the device node passed as an argument.
333  *
334  *	if ((status is OKAY) || (status is DISABLED))
335  *		return DDI_SUCCESS
336  *	else
337  *		print a warning and return DDI_FAILURE
338  */
339 /*ARGSUSED1*/
340 int
341 check_status(int id, char *name, dev_info_t *parent)
342 {
343 	char status_buf[64];
344 	char devtype_buf[OBP_MAXPROPNAME];
345 	int retval = DDI_FAILURE;
346 
347 	/*
348 	 * is the status okay?
349 	 */
350 	if (status_okay(id, status_buf, sizeof (status_buf)))
351 		return (DDI_SUCCESS);
352 
353 	/*
354 	 * a status property indicating bad memory will be associated
355 	 * with a node which has a "device_type" property with a value of
356 	 * "memory-controller". in this situation, return DDI_SUCCESS
357 	 */
358 	if (getlongprop_buf(id, OBP_DEVICETYPE, devtype_buf,
359 	    sizeof (devtype_buf)) > 0) {
360 		if (strcmp(devtype_buf, "memory-controller") == 0)
361 			retval = DDI_SUCCESS;
362 	}
363 
364 	/*
365 	 * print the status property information
366 	 */
367 	cmn_err(CE_WARN, "status '%s' for '%s'", status_buf, name);
368 	return (retval);
369 }
370 
371 /*ARGSUSED*/
372 uint_t
373 softlevel1(caddr_t arg1, caddr_t arg2)
374 {
375 	softint();
376 	return (1);
377 }
378 
379 /*
380  * Allow for implementation specific correction of PROM property values.
381  */
382 
383 /*ARGSUSED*/
384 void
385 impl_fix_props(dev_info_t *dip, dev_info_t *ch_dip, char *name, int len,
386     caddr_t buffer)
387 {
388 	/*
389 	 * There are no adjustments needed in this implementation.
390 	 */
391 }
392 
393 static int
394 getlongprop_buf(int id, char *name, char *buf, int maxlen)
395 {
396 	int size;
397 
398 	size = prom_getproplen((pnode_t)id, name);
399 	if (size <= 0 || (size > maxlen - 1))
400 		return (-1);
401 
402 	if (-1 == prom_getprop((pnode_t)id, name, buf))
403 		return (-1);
404 
405 	if (strcmp("name", name) == 0) {
406 		if (buf[size - 1] != '\0') {
407 			buf[size] = '\0';
408 			size += 1;
409 		}
410 	}
411 
412 	return (size);
413 }
414 
415 static int
416 get_prop_int_array(dev_info_t *di, char *pname, int **pval, uint_t *plen)
417 {
418 	int ret;
419 
420 	if ((ret = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, di,
421 	    DDI_PROP_DONTPASS, pname, pval, plen))
422 	    == DDI_PROP_SUCCESS) {
423 		*plen = (*plen) * (sizeof (int));
424 	}
425 	return (ret);
426 }
427 
428 
429 /*
430  * Node Configuration
431  */
432 
433 struct prop_ispec {
434 	uint_t	pri, vec;
435 };
436 
437 /*
438  * For the x86, we're prepared to claim that the interrupt string
439  * is in the form of a list of <ipl,vec> specifications.
440  */
441 
442 #define	VEC_MIN	1
443 #define	VEC_MAX	255
444 
445 static int
446 impl_xlate_intrs(dev_info_t *child, int *in,
447     struct ddi_parent_private_data *pdptr)
448 {
449 	size_t size;
450 	int n;
451 	struct intrspec *new;
452 	caddr_t got_prop;
453 	int *inpri;
454 	int got_len;
455 	extern int ignore_hardware_nodes;	/* force flag from ddi_impl.c */
456 
457 	static char bad_intr_fmt[] =
458 	    "bad interrupt spec from %s%d - ipl %d, irq %d\n";
459 
460 	/*
461 	 * determine if the driver is expecting the new style "interrupts"
462 	 * property which just contains the IRQ, or the old style which
463 	 * contains pairs of <IPL,IRQ>.  if it is the new style, we always
464 	 * assign IPL 5 unless an "interrupt-priorities" property exists.
465 	 * in that case, the "interrupt-priorities" property contains the
466 	 * IPL values that match, one for one, the IRQ values in the
467 	 * "interrupts" property.
468 	 */
469 	inpri = NULL;
470 	if ((ddi_getprop(DDI_DEV_T_ANY, child, DDI_PROP_DONTPASS,
471 	    "ignore-hardware-nodes", -1) != -1) || ignore_hardware_nodes) {
472 		/* the old style "interrupts" property... */
473 
474 		/*
475 		 * The list consists of <ipl,vec> elements
476 		 */
477 		if ((n = (*in++ >> 1)) < 1)
478 			return (DDI_FAILURE);
479 
480 		pdptr->par_nintr = n;
481 		size = n * sizeof (struct intrspec);
482 		new = pdptr->par_intr = kmem_zalloc(size, KM_SLEEP);
483 
484 		while (n--) {
485 			int level = *in++;
486 			int vec = *in++;
487 
488 			if (level < 1 || level > MAXIPL ||
489 			    vec < VEC_MIN || vec > VEC_MAX) {
490 				cmn_err(CE_CONT, bad_intr_fmt,
491 				    DEVI(child)->devi_name,
492 				    DEVI(child)->devi_instance, level, vec);
493 				goto broken;
494 			}
495 			new->intrspec_pri = level;
496 			if (vec != 2)
497 				new->intrspec_vec = vec;
498 			else
499 				/*
500 				 * irq 2 on the PC bus is tied to irq 9
501 				 * on ISA, EISA and MicroChannel
502 				 */
503 				new->intrspec_vec = 9;
504 			new++;
505 		}
506 
507 		return (DDI_SUCCESS);
508 	} else {
509 		/* the new style "interrupts" property... */
510 
511 		/*
512 		 * The list consists of <vec> elements
513 		 */
514 		if ((n = (*in++)) < 1)
515 			return (DDI_FAILURE);
516 
517 		pdptr->par_nintr = n;
518 		size = n * sizeof (struct intrspec);
519 		new = pdptr->par_intr = kmem_zalloc(size, KM_SLEEP);
520 
521 		/* XXX check for "interrupt-priorities" property... */
522 		if (ddi_getlongprop(DDI_DEV_T_ANY, child, DDI_PROP_DONTPASS,
523 		    "interrupt-priorities", (caddr_t)&got_prop, &got_len)
524 		    == DDI_PROP_SUCCESS) {
525 			if (n != (got_len / sizeof (int))) {
526 				cmn_err(CE_CONT,
527 				    "bad interrupt-priorities length"
528 				    " from %s%d: expected %d, got %d\n",
529 				    DEVI(child)->devi_name,
530 				    DEVI(child)->devi_instance, n,
531 				    (int)(got_len / sizeof (int)));
532 				goto broken;
533 			}
534 			inpri = (int *)got_prop;
535 		}
536 
537 		while (n--) {
538 			int level;
539 			int vec = *in++;
540 
541 			if (inpri == NULL)
542 				level = 5;
543 			else
544 				level = *inpri++;
545 
546 			if (level < 1 || level > MAXIPL ||
547 			    vec < VEC_MIN || vec > VEC_MAX) {
548 				cmn_err(CE_CONT, bad_intr_fmt,
549 				    DEVI(child)->devi_name,
550 				    DEVI(child)->devi_instance, level, vec);
551 				goto broken;
552 			}
553 			new->intrspec_pri = level;
554 			if (vec != 2)
555 				new->intrspec_vec = vec;
556 			else
557 				/*
558 				 * irq 2 on the PC bus is tied to irq 9
559 				 * on ISA, EISA and MicroChannel
560 				 */
561 				new->intrspec_vec = 9;
562 			new++;
563 		}
564 
565 		if (inpri != NULL)
566 			kmem_free(got_prop, got_len);
567 		return (DDI_SUCCESS);
568 	}
569 
570 broken:
571 	kmem_free(pdptr->par_intr, size);
572 	pdptr->par_intr = NULL;
573 	pdptr->par_nintr = 0;
574 	if (inpri != NULL)
575 		kmem_free(got_prop, got_len);
576 
577 	return (DDI_FAILURE);
578 }
579 
580 /*
581  * Create a ddi_parent_private_data structure from the ddi properties of
582  * the dev_info node.
583  *
584  * The "reg" and either an "intr" or "interrupts" properties are required
585  * if the driver wishes to create mappings or field interrupts on behalf
586  * of the device.
587  *
588  * The "reg" property is assumed to be a list of at least one triple
589  *
590  *	<bustype, address, size>*1
591  *
592  * The "intr" property is assumed to be a list of at least one duple
593  *
594  *	<SPARC ipl, vector#>*1
595  *
596  * The "interrupts" property is assumed to be a list of at least one
597  * n-tuples that describes the interrupt capabilities of the bus the device
598  * is connected to.  For SBus, this looks like
599  *
600  *	<SBus-level>*1
601  *
602  * (This property obsoletes the 'intr' property).
603  *
604  * The "ranges" property is optional.
605  */
606 void
607 make_ddi_ppd(dev_info_t *child, struct ddi_parent_private_data **ppd)
608 {
609 	struct ddi_parent_private_data *pdptr;
610 	int n;
611 	int *reg_prop, *rng_prop, *intr_prop, *irupts_prop;
612 	uint_t reg_len, rng_len, intr_len, irupts_len;
613 
614 	*ppd = pdptr = kmem_zalloc(sizeof (*pdptr), KM_SLEEP);
615 
616 	/*
617 	 * Handle the 'reg' property.
618 	 */
619 	if ((get_prop_int_array(child, "reg", &reg_prop, &reg_len) ==
620 	    DDI_PROP_SUCCESS) && (reg_len != 0)) {
621 		pdptr->par_nreg = reg_len / (int)sizeof (struct regspec);
622 		pdptr->par_reg = (struct regspec *)reg_prop;
623 	}
624 
625 	/*
626 	 * See if I have a range (adding one where needed - this
627 	 * means to add one for sbus node in sun4c, when romvec > 0,
628 	 * if no range is already defined in the PROM node.
629 	 * (Currently no sun4c PROMS define range properties,
630 	 * but they should and may in the future.)  For the SBus
631 	 * node, the range is defined by the SBus reg property.
632 	 */
633 	if (get_prop_int_array(child, "ranges", &rng_prop, &rng_len)
634 	    == DDI_PROP_SUCCESS) {
635 		pdptr->par_nrng = rng_len / (int)(sizeof (struct rangespec));
636 		pdptr->par_rng = (struct rangespec *)rng_prop;
637 	}
638 
639 	/*
640 	 * Handle the 'intr' and 'interrupts' properties
641 	 */
642 
643 	/*
644 	 * For backwards compatibility
645 	 * we first look for the 'intr' property for the device.
646 	 */
647 	if (get_prop_int_array(child, "intr", &intr_prop, &intr_len)
648 	    != DDI_PROP_SUCCESS) {
649 		intr_len = 0;
650 	}
651 
652 	/*
653 	 * If we're to support bus adapters and future platforms cleanly,
654 	 * we need to support the generalized 'interrupts' property.
655 	 */
656 	if (get_prop_int_array(child, "interrupts", &irupts_prop,
657 	    &irupts_len) != DDI_PROP_SUCCESS) {
658 		irupts_len = 0;
659 	} else if (intr_len != 0) {
660 		/*
661 		 * If both 'intr' and 'interrupts' are defined,
662 		 * then 'interrupts' wins and we toss the 'intr' away.
663 		 */
664 		ddi_prop_free((void *)intr_prop);
665 		intr_len = 0;
666 	}
667 
668 	if (intr_len != 0) {
669 
670 		/*
671 		 * Translate the 'intr' property into an array
672 		 * an array of struct intrspec's.  There's not really
673 		 * very much to do here except copy what's out there.
674 		 */
675 
676 		struct intrspec *new;
677 		struct prop_ispec *l;
678 
679 		n = pdptr->par_nintr = intr_len / sizeof (struct prop_ispec);
680 		l = (struct prop_ispec *)intr_prop;
681 		pdptr->par_intr =
682 		    new = kmem_zalloc(n * sizeof (struct intrspec), KM_SLEEP);
683 		while (n--) {
684 			new->intrspec_pri = l->pri;
685 			new->intrspec_vec = l->vec;
686 			new++;
687 			l++;
688 		}
689 		ddi_prop_free((void *)intr_prop);
690 
691 	} else if ((n = irupts_len) != 0) {
692 		size_t size;
693 		int *out;
694 
695 		/*
696 		 * Translate the 'interrupts' property into an array
697 		 * of intrspecs for the rest of the DDI framework to
698 		 * toy with.  Only our ancestors really know how to
699 		 * do this, so ask 'em.  We massage the 'interrupts'
700 		 * property so that it is pre-pended by a count of
701 		 * the number of integers in the argument.
702 		 */
703 		size = sizeof (int) + n;
704 		out = kmem_alloc(size, KM_SLEEP);
705 		*out = n / sizeof (int);
706 		bcopy(irupts_prop, out + 1, (size_t)n);
707 		ddi_prop_free((void *)irupts_prop);
708 		if (impl_xlate_intrs(child, out, pdptr) != DDI_SUCCESS) {
709 			cmn_err(CE_CONT,
710 			    "Unable to translate 'interrupts' for %s%d\n",
711 			    DEVI(child)->devi_binding_name,
712 			    DEVI(child)->devi_instance);
713 		}
714 		kmem_free(out, size);
715 	}
716 }
717 
718 /*
719  * Name a child
720  */
721 static int
722 impl_sunbus_name_child(dev_info_t *child, char *name, int namelen)
723 {
724 	/*
725 	 * Fill in parent-private data and this function returns to us
726 	 * an indication if it used "registers" to fill in the data.
727 	 */
728 	if (ddi_get_parent_data(child) == NULL) {
729 		struct ddi_parent_private_data *pdptr;
730 		make_ddi_ppd(child, &pdptr);
731 		ddi_set_parent_data(child, pdptr);
732 	}
733 
734 	name[0] = '\0';
735 	if (sparc_pd_getnreg(child) > 0) {
736 		(void) snprintf(name, namelen, "%x,%x",
737 		    (uint_t)sparc_pd_getreg(child, 0)->regspec_bustype,
738 		    (uint_t)sparc_pd_getreg(child, 0)->regspec_addr);
739 	}
740 
741 	return (DDI_SUCCESS);
742 }
743 
744 /*
745  * Called from the bus_ctl op of sunbus (sbus, obio, etc) nexus drivers
746  * to implement the DDI_CTLOPS_INITCHILD operation.  That is, it names
747  * the children of sun busses based on the reg spec.
748  *
749  * Handles the following properties (in make_ddi_ppd):
750  *	Property		value
751  *	  Name			type
752  *	reg		register spec
753  *	intr		old-form interrupt spec
754  *	interrupts	new (bus-oriented) interrupt spec
755  *	ranges		range spec
756  */
757 int
758 impl_ddi_sunbus_initchild(dev_info_t *child)
759 {
760 	char name[MAXNAMELEN];
761 	void impl_ddi_sunbus_removechild(dev_info_t *);
762 
763 	/*
764 	 * Name the child, also makes parent private data
765 	 */
766 	(void) impl_sunbus_name_child(child, name, MAXNAMELEN);
767 	ddi_set_name_addr(child, name);
768 
769 	/*
770 	 * Attempt to merge a .conf node; if successful, remove the
771 	 * .conf node.
772 	 */
773 	if ((ndi_dev_is_persistent_node(child) == 0) &&
774 	    (ndi_merge_node(child, impl_sunbus_name_child) == DDI_SUCCESS)) {
775 		/*
776 		 * Return failure to remove node
777 		 */
778 		impl_ddi_sunbus_removechild(child);
779 		return (DDI_FAILURE);
780 	}
781 	return (DDI_SUCCESS);
782 }
783 
784 void
785 impl_free_ddi_ppd(dev_info_t *dip)
786 {
787 	struct ddi_parent_private_data *pdptr;
788 	size_t n;
789 
790 	if ((pdptr = ddi_get_parent_data(dip)) == NULL)
791 		return;
792 
793 	if ((n = (size_t)pdptr->par_nintr) != 0)
794 		/*
795 		 * Note that kmem_free is used here (instead of
796 		 * ddi_prop_free) because the contents of the
797 		 * property were placed into a separate buffer and
798 		 * mucked with a bit before being stored in par_intr.
799 		 * The actual return value from the prop lookup
800 		 * was freed with ddi_prop_free previously.
801 		 */
802 		kmem_free(pdptr->par_intr, n * sizeof (struct intrspec));
803 
804 	if ((n = (size_t)pdptr->par_nrng) != 0)
805 		ddi_prop_free((void *)pdptr->par_rng);
806 
807 	if ((n = pdptr->par_nreg) != 0)
808 		ddi_prop_free((void *)pdptr->par_reg);
809 
810 	kmem_free(pdptr, sizeof (*pdptr));
811 	ddi_set_parent_data(dip, NULL);
812 }
813 
814 void
815 impl_ddi_sunbus_removechild(dev_info_t *dip)
816 {
817 	impl_free_ddi_ppd(dip);
818 	ddi_set_name_addr(dip, NULL);
819 	/*
820 	 * Strip the node to properly convert it back to prototype form
821 	 */
822 	impl_rem_dev_props(dip);
823 }
824 
825 /*
826  * DDI Interrupt
827  */
828 
829 /*
830  * turn this on to force isa, eisa, and mca device to ignore the new
831  * hardware nodes in the device tree (normally turned on only for
832  * drivers that need it by setting the property "ignore-hardware-nodes"
833  * in their driver.conf file).
834  *
835  * 7/31/96 -- Turned off globally.  Leaving variable in for the moment
836  *		as safety valve.
837  */
838 int ignore_hardware_nodes = 0;
839 
840 /*
841  * Local data
842  */
843 static struct impl_bus_promops *impl_busp;
844 
845 
846 /*
847  * New DDI interrupt framework
848  */
849 
850 /*
851  * i_ddi_intr_ops:
852  *
853  * This is the interrupt operator function wrapper for the bus function
854  * bus_intr_op.
855  */
856 int
857 i_ddi_intr_ops(dev_info_t *dip, dev_info_t *rdip, ddi_intr_op_t op,
858     ddi_intr_handle_impl_t *hdlp, void * result)
859 {
860 	dev_info_t	*pdip = (dev_info_t *)DEVI(dip)->devi_parent;
861 	int		ret = DDI_FAILURE;
862 
863 	/* request parent to process this interrupt op */
864 	if (NEXUS_HAS_INTR_OP(pdip))
865 		ret = (*(DEVI(pdip)->devi_ops->devo_bus_ops->bus_intr_op))(
866 		    pdip, rdip, op, hdlp, result);
867 	else
868 		cmn_err(CE_WARN, "Failed to process interrupt "
869 		    "for %s%d due to down-rev nexus driver %s%d",
870 		    ddi_get_name(rdip), ddi_get_instance(rdip),
871 		    ddi_get_name(pdip), ddi_get_instance(pdip));
872 	return (ret);
873 }
874 
875 /*
876  * i_ddi_add_softint - allocate and add a soft interrupt to the system
877  */
878 int
879 i_ddi_add_softint(ddi_softint_hdl_impl_t *hdlp)
880 {
881 	int ret;
882 
883 	/* add soft interrupt handler */
884 	ret = add_avsoftintr((void *)hdlp, hdlp->ih_pri, hdlp->ih_cb_func,
885 	    DEVI(hdlp->ih_dip)->devi_name, hdlp->ih_cb_arg1, hdlp->ih_cb_arg2);
886 	return (ret ? DDI_SUCCESS : DDI_FAILURE);
887 }
888 
889 
890 void
891 i_ddi_remove_softint(ddi_softint_hdl_impl_t *hdlp)
892 {
893 	(void) rem_avsoftintr((void *)hdlp, hdlp->ih_pri, hdlp->ih_cb_func);
894 }
895 
896 
897 extern void (*setsoftint)(int, struct av_softinfo *);
898 extern boolean_t av_check_softint_pending(struct av_softinfo *, boolean_t);
899 
900 int
901 i_ddi_trigger_softint(ddi_softint_hdl_impl_t *hdlp, void *arg2)
902 {
903 	if (av_check_softint_pending(hdlp->ih_pending, B_FALSE))
904 		return (DDI_EPENDING);
905 
906 	update_avsoftintr_args((void *)hdlp, hdlp->ih_pri, arg2);
907 
908 	(*setsoftint)(hdlp->ih_pri, hdlp->ih_pending);
909 	return (DDI_SUCCESS);
910 }
911 
912 /*
913  * i_ddi_set_softint_pri:
914  *
915  * The way this works is that it first tries to add a softint vector
916  * at the new priority in hdlp. If that succeeds; then it removes the
917  * existing softint vector at the old priority.
918  */
919 int
920 i_ddi_set_softint_pri(ddi_softint_hdl_impl_t *hdlp, uint_t old_pri)
921 {
922 	int ret;
923 
924 	/*
925 	 * If a softint is pending at the old priority then fail the request.
926 	 */
927 	if (av_check_softint_pending(hdlp->ih_pending, B_TRUE))
928 		return (DDI_FAILURE);
929 
930 	ret = av_softint_movepri((void *)hdlp, old_pri);
931 	return (ret ? DDI_SUCCESS : DDI_FAILURE);
932 }
933 
934 void
935 i_ddi_alloc_intr_phdl(ddi_intr_handle_impl_t *hdlp)
936 {
937 	hdlp->ih_private = (void *)kmem_zalloc(sizeof (ihdl_plat_t), KM_SLEEP);
938 }
939 
940 void
941 i_ddi_free_intr_phdl(ddi_intr_handle_impl_t *hdlp)
942 {
943 	kmem_free(hdlp->ih_private, sizeof (ihdl_plat_t));
944 	hdlp->ih_private = NULL;
945 }
946 
947 int
948 i_ddi_get_intx_nintrs(dev_info_t *dip)
949 {
950 	struct ddi_parent_private_data *pdp;
951 
952 	if ((pdp = ddi_get_parent_data(dip)) == NULL)
953 		return (0);
954 
955 	return (pdp->par_nintr);
956 }
957 
958 /*
959  * DDI Memory/DMA
960  */
961 
962 /*
963  * Support for allocating DMAable memory to implement
964  * ddi_dma_mem_alloc(9F) interface.
965  */
966 
967 #define	KA_ALIGN_SHIFT	7
968 #define	KA_ALIGN	(1 << KA_ALIGN_SHIFT)
969 #define	KA_NCACHE	(PAGESHIFT + 1 - KA_ALIGN_SHIFT)
970 
971 /*
972  * Dummy DMA attribute template for kmem_io[].kmem_io_attr.  We only
973  * care about addr_lo, addr_hi, and align.  addr_hi will be dynamically set.
974  */
975 
976 static ddi_dma_attr_t kmem_io_attr = {
977 	DMA_ATTR_V0,
978 	0x0000000000000000ULL,		/* dma_attr_addr_lo */
979 	0x0000000000000000ULL,		/* dma_attr_addr_hi */
980 	0x00ffffff,
981 	0x1000,				/* dma_attr_align */
982 	1, 1, 0xffffffffULL, 0xffffffffULL, 0x1, 1, 0
983 };
984 
985 /* kmem io memory ranges and indices */
986 enum {
987 	IO_4P, IO_64G, IO_4G, IO_2G, IO_1G, IO_512M,
988 	IO_256M, IO_128M, IO_64M, IO_32M, IO_16M, MAX_MEM_RANGES
989 };
990 
991 static struct {
992 	vmem_t		*kmem_io_arena;
993 	kmem_cache_t	*kmem_io_cache[KA_NCACHE];
994 	ddi_dma_attr_t	kmem_io_attr;
995 } kmem_io[MAX_MEM_RANGES];
996 
997 static int kmem_io_idx;		/* index of first populated kmem_io[] */
998 
999 static page_t *
1000 page_create_io_wrapper(void *addr, size_t len, int vmflag, void *arg)
1001 {
1002 	extern page_t *page_create_io(vnode_t *, u_offset_t, uint_t,
1003 	    uint_t, struct as *, caddr_t, ddi_dma_attr_t *);
1004 
1005 	return (page_create_io(&kvp, (u_offset_t)(uintptr_t)addr, len,
1006 	    PG_EXCL | ((vmflag & VM_NOSLEEP) ? 0 : PG_WAIT), &kas, addr, arg));
1007 }
1008 
1009 #ifdef __xpv
1010 static void
1011 segkmem_free_io(vmem_t *vmp, void * ptr, size_t size)
1012 {
1013 	extern void page_destroy_io(page_t *);
1014 	segkmem_xfree(vmp, ptr, size, page_destroy_io);
1015 }
1016 #endif
1017 
1018 static void *
1019 segkmem_alloc_io_4P(vmem_t *vmp, size_t size, int vmflag)
1020 {
1021 	return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
1022 	    page_create_io_wrapper, &kmem_io[IO_4P].kmem_io_attr));
1023 }
1024 
1025 static void *
1026 segkmem_alloc_io_64G(vmem_t *vmp, size_t size, int vmflag)
1027 {
1028 	return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
1029 	    page_create_io_wrapper, &kmem_io[IO_64G].kmem_io_attr));
1030 }
1031 
1032 static void *
1033 segkmem_alloc_io_4G(vmem_t *vmp, size_t size, int vmflag)
1034 {
1035 	return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
1036 	    page_create_io_wrapper, &kmem_io[IO_4G].kmem_io_attr));
1037 }
1038 
1039 static void *
1040 segkmem_alloc_io_2G(vmem_t *vmp, size_t size, int vmflag)
1041 {
1042 	return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
1043 	    page_create_io_wrapper, &kmem_io[IO_2G].kmem_io_attr));
1044 }
1045 
1046 static void *
1047 segkmem_alloc_io_1G(vmem_t *vmp, size_t size, int vmflag)
1048 {
1049 	return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
1050 	    page_create_io_wrapper, &kmem_io[IO_1G].kmem_io_attr));
1051 }
1052 
1053 static void *
1054 segkmem_alloc_io_512M(vmem_t *vmp, size_t size, int vmflag)
1055 {
1056 	return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
1057 	    page_create_io_wrapper, &kmem_io[IO_512M].kmem_io_attr));
1058 }
1059 
1060 static void *
1061 segkmem_alloc_io_256M(vmem_t *vmp, size_t size, int vmflag)
1062 {
1063 	return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
1064 	    page_create_io_wrapper, &kmem_io[IO_256M].kmem_io_attr));
1065 }
1066 
1067 static void *
1068 segkmem_alloc_io_128M(vmem_t *vmp, size_t size, int vmflag)
1069 {
1070 	return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
1071 	    page_create_io_wrapper, &kmem_io[IO_128M].kmem_io_attr));
1072 }
1073 
1074 static void *
1075 segkmem_alloc_io_64M(vmem_t *vmp, size_t size, int vmflag)
1076 {
1077 	return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
1078 	    page_create_io_wrapper, &kmem_io[IO_64M].kmem_io_attr));
1079 }
1080 
1081 static void *
1082 segkmem_alloc_io_32M(vmem_t *vmp, size_t size, int vmflag)
1083 {
1084 	return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
1085 	    page_create_io_wrapper, &kmem_io[IO_32M].kmem_io_attr));
1086 }
1087 
1088 static void *
1089 segkmem_alloc_io_16M(vmem_t *vmp, size_t size, int vmflag)
1090 {
1091 	return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
1092 	    page_create_io_wrapper, &kmem_io[IO_16M].kmem_io_attr));
1093 }
1094 
1095 struct {
1096 	uint64_t	io_limit;
1097 	char		*io_name;
1098 	void		*(*io_alloc)(vmem_t *, size_t, int);
1099 	int		io_initial;	/* kmem_io_init during startup */
1100 } io_arena_params[MAX_MEM_RANGES] = {
1101 	{0x000fffffffffffffULL,	"kmem_io_4P",	segkmem_alloc_io_4P,	1},
1102 	{0x0000000fffffffffULL,	"kmem_io_64G",	segkmem_alloc_io_64G,	0},
1103 	{0x00000000ffffffffULL,	"kmem_io_4G",	segkmem_alloc_io_4G,	1},
1104 	{0x000000007fffffffULL,	"kmem_io_2G",	segkmem_alloc_io_2G,	1},
1105 	{0x000000003fffffffULL,	"kmem_io_1G",	segkmem_alloc_io_1G,	0},
1106 	{0x000000001fffffffULL,	"kmem_io_512M",	segkmem_alloc_io_512M,	0},
1107 	{0x000000000fffffffULL,	"kmem_io_256M",	segkmem_alloc_io_256M,	0},
1108 	{0x0000000007ffffffULL,	"kmem_io_128M",	segkmem_alloc_io_128M,	0},
1109 	{0x0000000003ffffffULL,	"kmem_io_64M",	segkmem_alloc_io_64M,	0},
1110 	{0x0000000001ffffffULL,	"kmem_io_32M",	segkmem_alloc_io_32M,	0},
1111 	{0x0000000000ffffffULL,	"kmem_io_16M",	segkmem_alloc_io_16M,	1}
1112 };
1113 
1114 void
1115 kmem_io_init(int a)
1116 {
1117 	int	c;
1118 	char name[40];
1119 
1120 	kmem_io[a].kmem_io_arena = vmem_create(io_arena_params[a].io_name,
1121 	    NULL, 0, PAGESIZE, io_arena_params[a].io_alloc,
1122 #ifdef __xpv
1123 	    segkmem_free_io,
1124 #else
1125 	    segkmem_free,
1126 #endif
1127 	    heap_arena, 0, VM_SLEEP);
1128 
1129 	for (c = 0; c < KA_NCACHE; c++) {
1130 		size_t size = KA_ALIGN << c;
1131 		(void) sprintf(name, "%s_%lu",
1132 		    io_arena_params[a].io_name, size);
1133 		kmem_io[a].kmem_io_cache[c] = kmem_cache_create(name,
1134 		    size, size, NULL, NULL, NULL, NULL,
1135 		    kmem_io[a].kmem_io_arena, 0);
1136 	}
1137 }
1138 
1139 /*
1140  * Return the index of the highest memory range for addr.
1141  */
1142 static int
1143 kmem_io_index(uint64_t addr)
1144 {
1145 	int n;
1146 
1147 	for (n = kmem_io_idx; n < MAX_MEM_RANGES; n++) {
1148 		if (kmem_io[n].kmem_io_attr.dma_attr_addr_hi <= addr) {
1149 			if (kmem_io[n].kmem_io_arena == NULL)
1150 				kmem_io_init(n);
1151 			return (n);
1152 		}
1153 	}
1154 	panic("kmem_io_index: invalid addr - must be at least 16m");
1155 
1156 	/*NOTREACHED*/
1157 }
1158 
1159 /*
1160  * Return the index of the next kmem_io populated memory range
1161  * after curindex.
1162  */
1163 static int
1164 kmem_io_index_next(int curindex)
1165 {
1166 	int n;
1167 
1168 	for (n = curindex + 1; n < MAX_MEM_RANGES; n++) {
1169 		if (kmem_io[n].kmem_io_arena)
1170 			return (n);
1171 	}
1172 	return (-1);
1173 }
1174 
1175 /*
1176  * allow kmem to be mapped in with different PTE cache attribute settings.
1177  * Used by i_ddi_mem_alloc()
1178  */
1179 int
1180 kmem_override_cache_attrs(caddr_t kva, size_t size, uint_t order)
1181 {
1182 	uint_t hat_flags;
1183 	caddr_t kva_end;
1184 	uint_t hat_attr;
1185 	pfn_t pfn;
1186 
1187 	if (hat_getattr(kas.a_hat, kva, &hat_attr) == -1) {
1188 		return (-1);
1189 	}
1190 
1191 	hat_attr &= ~HAT_ORDER_MASK;
1192 	hat_attr |= order | HAT_NOSYNC;
1193 	hat_flags = HAT_LOAD_LOCK;
1194 
1195 	kva_end = (caddr_t)(((uintptr_t)kva + size + PAGEOFFSET) &
1196 	    (uintptr_t)PAGEMASK);
1197 	kva = (caddr_t)((uintptr_t)kva & (uintptr_t)PAGEMASK);
1198 
1199 	while (kva < kva_end) {
1200 		pfn = hat_getpfnum(kas.a_hat, kva);
1201 		hat_unload(kas.a_hat, kva, PAGESIZE, HAT_UNLOAD_UNLOCK);
1202 		hat_devload(kas.a_hat, kva, PAGESIZE, pfn, hat_attr, hat_flags);
1203 		kva += MMU_PAGESIZE;
1204 	}
1205 
1206 	return (0);
1207 }
1208 
1209 static int
1210 ctgcompare(const void *a1, const void *a2)
1211 {
1212 	/* we just want to compare virtual addresses */
1213 	a1 = ((struct ctgas *)a1)->ctg_addr;
1214 	a2 = ((struct ctgas *)a2)->ctg_addr;
1215 	return (a1 == a2 ? 0 : (a1 < a2 ? -1 : 1));
1216 }
1217 
1218 void
1219 ka_init(void)
1220 {
1221 	int a;
1222 	paddr_t maxphysaddr;
1223 #if !defined(__xpv)
1224 	extern pfn_t physmax;
1225 
1226 	maxphysaddr = mmu_ptob((paddr_t)physmax) + MMU_PAGEOFFSET;
1227 #else
1228 	maxphysaddr = mmu_ptob((paddr_t)HYPERVISOR_memory_op(
1229 	    XENMEM_maximum_ram_page, NULL)) + MMU_PAGEOFFSET;
1230 #endif
1231 
1232 	ASSERT(maxphysaddr <= io_arena_params[0].io_limit);
1233 
1234 	for (a = 0; a < MAX_MEM_RANGES; a++) {
1235 		if (maxphysaddr >= io_arena_params[a + 1].io_limit) {
1236 			if (maxphysaddr > io_arena_params[a + 1].io_limit)
1237 				io_arena_params[a].io_limit = maxphysaddr;
1238 			else
1239 				a++;
1240 			break;
1241 		}
1242 	}
1243 	kmem_io_idx = a;
1244 
1245 	for (; a < MAX_MEM_RANGES; a++) {
1246 		kmem_io[a].kmem_io_attr = kmem_io_attr;
1247 		kmem_io[a].kmem_io_attr.dma_attr_addr_hi =
1248 		    io_arena_params[a].io_limit;
1249 		/*
1250 		 * initialize kmem_io[] arena/cache corresponding to
1251 		 * maxphysaddr and to the "common" io memory ranges that
1252 		 * have io_initial set to a non-zero value.
1253 		 */
1254 		if (io_arena_params[a].io_initial || a == kmem_io_idx)
1255 			kmem_io_init(a);
1256 	}
1257 
1258 	/* initialize ctgtree */
1259 	avl_create(&ctgtree, ctgcompare, sizeof (struct ctgas),
1260 	    offsetof(struct ctgas, ctg_link));
1261 }
1262 
1263 /*
1264  * put contig address/size
1265  */
1266 static void *
1267 putctgas(void *addr, size_t size)
1268 {
1269 	struct ctgas    *ctgp;
1270 	if ((ctgp = kmem_zalloc(sizeof (*ctgp), KM_NOSLEEP)) != NULL) {
1271 		ctgp->ctg_addr = addr;
1272 		ctgp->ctg_size = size;
1273 		CTGLOCK();
1274 		avl_add(&ctgtree, ctgp);
1275 		CTGUNLOCK();
1276 	}
1277 	return (ctgp);
1278 }
1279 
1280 /*
1281  * get contig size by addr
1282  */
1283 static size_t
1284 getctgsz(void *addr)
1285 {
1286 	struct ctgas    *ctgp;
1287 	struct ctgas    find;
1288 	size_t		sz = 0;
1289 
1290 	find.ctg_addr = addr;
1291 	CTGLOCK();
1292 	if ((ctgp = avl_find(&ctgtree, &find, NULL)) != NULL) {
1293 		avl_remove(&ctgtree, ctgp);
1294 	}
1295 	CTGUNLOCK();
1296 
1297 	if (ctgp != NULL) {
1298 		sz = ctgp->ctg_size;
1299 		kmem_free(ctgp, sizeof (*ctgp));
1300 	}
1301 
1302 	return (sz);
1303 }
1304 
1305 /*
1306  * contig_alloc:
1307  *
1308  *	allocates contiguous memory to satisfy the 'size' and dma attributes
1309  *	specified in 'attr'.
1310  *
1311  *	Not all of memory need to be physically contiguous if the
1312  *	scatter-gather list length is greater than 1.
1313  */
1314 
1315 /*ARGSUSED*/
1316 void *
1317 contig_alloc(size_t size, ddi_dma_attr_t *attr, uintptr_t align, int cansleep)
1318 {
1319 	pgcnt_t		pgcnt = btopr(size);
1320 	size_t		asize = pgcnt * PAGESIZE;
1321 	page_t		*ppl;
1322 	int		pflag;
1323 	void		*addr;
1324 
1325 	extern page_t *page_create_io(vnode_t *, u_offset_t, uint_t,
1326 	    uint_t, struct as *, caddr_t, ddi_dma_attr_t *);
1327 
1328 	/* segkmem_xalloc */
1329 
1330 	if (align <= PAGESIZE)
1331 		addr = vmem_alloc(heap_arena, asize,
1332 		    (cansleep) ? VM_SLEEP : VM_NOSLEEP);
1333 	else
1334 		addr = vmem_xalloc(heap_arena, asize, align, 0, 0, NULL, NULL,
1335 		    (cansleep) ? VM_SLEEP : VM_NOSLEEP);
1336 	if (addr) {
1337 		ASSERT(!((uintptr_t)addr & (align - 1)));
1338 
1339 		if (page_resv(pgcnt, (cansleep) ? KM_SLEEP : KM_NOSLEEP) == 0) {
1340 			vmem_free(heap_arena, addr, asize);
1341 			return (NULL);
1342 		}
1343 		pflag = PG_EXCL;
1344 
1345 		if (cansleep)
1346 			pflag |= PG_WAIT;
1347 
1348 		/* 4k req gets from freelists rather than pfn search */
1349 		if (pgcnt > 1 || align > PAGESIZE)
1350 			pflag |= PG_PHYSCONTIG;
1351 
1352 		ppl = page_create_io(&kvp, (u_offset_t)(uintptr_t)addr,
1353 		    asize, pflag, &kas, (caddr_t)addr, attr);
1354 
1355 		if (!ppl) {
1356 			vmem_free(heap_arena, addr, asize);
1357 			page_unresv(pgcnt);
1358 			return (NULL);
1359 		}
1360 
1361 		while (ppl != NULL) {
1362 			page_t	*pp = ppl;
1363 			page_sub(&ppl, pp);
1364 			ASSERT(page_iolock_assert(pp));
1365 			page_io_unlock(pp);
1366 			page_downgrade(pp);
1367 			hat_memload(kas.a_hat, (caddr_t)(uintptr_t)pp->p_offset,
1368 			    pp, (PROT_ALL & ~PROT_USER) |
1369 			    HAT_NOSYNC, HAT_LOAD_LOCK);
1370 		}
1371 	}
1372 	return (addr);
1373 }
1374 
1375 void
1376 contig_free(void *addr, size_t size)
1377 {
1378 	pgcnt_t	pgcnt = btopr(size);
1379 	size_t	asize = pgcnt * PAGESIZE;
1380 	caddr_t	a, ea;
1381 	page_t	*pp;
1382 
1383 	hat_unload(kas.a_hat, addr, asize, HAT_UNLOAD_UNLOCK);
1384 
1385 	for (a = addr, ea = a + asize; a < ea; a += PAGESIZE) {
1386 		pp = page_find(&kvp, (u_offset_t)(uintptr_t)a);
1387 		if (!pp)
1388 			panic("contig_free: contig pp not found");
1389 
1390 		if (!page_tryupgrade(pp)) {
1391 			page_unlock(pp);
1392 			pp = page_lookup(&kvp,
1393 			    (u_offset_t)(uintptr_t)a, SE_EXCL);
1394 			if (pp == NULL)
1395 				panic("contig_free: page freed");
1396 		}
1397 		page_destroy(pp, 0);
1398 	}
1399 
1400 	page_unresv(pgcnt);
1401 	vmem_free(heap_arena, addr, asize);
1402 }
1403 
1404 /*
1405  * Allocate from the system, aligned on a specific boundary.
1406  * The alignment, if non-zero, must be a power of 2.
1407  */
1408 static void *
1409 kalloca(size_t size, size_t align, int cansleep, int physcontig,
1410 	ddi_dma_attr_t *attr)
1411 {
1412 	size_t *addr, *raddr, rsize;
1413 	size_t hdrsize = 4 * sizeof (size_t);	/* must be power of 2 */
1414 	int a, i, c;
1415 	vmem_t *vmp;
1416 	kmem_cache_t *cp = NULL;
1417 
1418 	if (attr->dma_attr_addr_lo > mmu_ptob((uint64_t)ddiphysmin))
1419 		return (NULL);
1420 
1421 	align = MAX(align, hdrsize);
1422 	ASSERT((align & (align - 1)) == 0);
1423 
1424 	/*
1425 	 * All of our allocators guarantee 16-byte alignment, so we don't
1426 	 * need to reserve additional space for the header.
1427 	 * To simplify picking the correct kmem_io_cache, we round up to
1428 	 * a multiple of KA_ALIGN.
1429 	 */
1430 	rsize = P2ROUNDUP_TYPED(size + align, KA_ALIGN, size_t);
1431 
1432 	if (physcontig && rsize > PAGESIZE) {
1433 		if (addr = contig_alloc(size, attr, align, cansleep)) {
1434 			if (!putctgas(addr, size))
1435 				contig_free(addr, size);
1436 			else
1437 				return (addr);
1438 		}
1439 		return (NULL);
1440 	}
1441 
1442 	a = kmem_io_index(attr->dma_attr_addr_hi);
1443 
1444 	if (rsize > PAGESIZE) {
1445 		vmp = kmem_io[a].kmem_io_arena;
1446 		raddr = vmem_alloc(vmp, rsize,
1447 		    (cansleep) ? VM_SLEEP : VM_NOSLEEP);
1448 	} else {
1449 		c = highbit((rsize >> KA_ALIGN_SHIFT) - 1);
1450 		cp = kmem_io[a].kmem_io_cache[c];
1451 		raddr = kmem_cache_alloc(cp, (cansleep) ? KM_SLEEP :
1452 		    KM_NOSLEEP);
1453 	}
1454 
1455 	if (raddr == NULL) {
1456 		int	na;
1457 
1458 		ASSERT(cansleep == 0);
1459 		if (rsize > PAGESIZE)
1460 			return (NULL);
1461 		/*
1462 		 * System does not have memory in the requested range.
1463 		 * Try smaller kmem io ranges and larger cache sizes
1464 		 * to see if there might be memory available in
1465 		 * these other caches.
1466 		 */
1467 
1468 		for (na = kmem_io_index_next(a); na >= 0;
1469 		    na = kmem_io_index_next(na)) {
1470 			ASSERT(kmem_io[na].kmem_io_arena);
1471 			cp = kmem_io[na].kmem_io_cache[c];
1472 			raddr = kmem_cache_alloc(cp, KM_NOSLEEP);
1473 			if (raddr)
1474 				goto kallocdone;
1475 		}
1476 		/* now try the larger kmem io cache sizes */
1477 		for (na = a; na >= 0; na = kmem_io_index_next(na)) {
1478 			for (i = c + 1; i < KA_NCACHE; i++) {
1479 				cp = kmem_io[na].kmem_io_cache[i];
1480 				raddr = kmem_cache_alloc(cp, KM_NOSLEEP);
1481 				if (raddr)
1482 					goto kallocdone;
1483 			}
1484 		}
1485 		return (NULL);
1486 	}
1487 
1488 kallocdone:
1489 	ASSERT(!P2BOUNDARY((uintptr_t)raddr, rsize, PAGESIZE) ||
1490 	    rsize > PAGESIZE);
1491 
1492 	addr = (size_t *)P2ROUNDUP((uintptr_t)raddr + hdrsize, align);
1493 	ASSERT((uintptr_t)addr + size - (uintptr_t)raddr <= rsize);
1494 
1495 	addr[-4] = (size_t)cp;
1496 	addr[-3] = (size_t)vmp;
1497 	addr[-2] = (size_t)raddr;
1498 	addr[-1] = rsize;
1499 
1500 	return (addr);
1501 }
1502 
1503 static void
1504 kfreea(void *addr)
1505 {
1506 	size_t		size;
1507 
1508 	if (!((uintptr_t)addr & PAGEOFFSET) && (size = getctgsz(addr))) {
1509 		contig_free(addr, size);
1510 	} else {
1511 		size_t	*saddr = addr;
1512 		if (saddr[-4] == 0)
1513 			vmem_free((vmem_t *)saddr[-3], (void *)saddr[-2],
1514 			    saddr[-1]);
1515 		else
1516 			kmem_cache_free((kmem_cache_t *)saddr[-4],
1517 			    (void *)saddr[-2]);
1518 	}
1519 }
1520 
1521 /*ARGSUSED*/
1522 void
1523 i_ddi_devacc_to_hatacc(ddi_device_acc_attr_t *devaccp, uint_t *hataccp)
1524 {
1525 }
1526 
1527 /*
1528  * Check if the specified cache attribute is supported on the platform.
1529  * This function must be called before i_ddi_cacheattr_to_hatacc().
1530  */
1531 boolean_t
1532 i_ddi_check_cache_attr(uint_t flags)
1533 {
1534 	/*
1535 	 * The cache attributes are mutually exclusive. Any combination of
1536 	 * the attributes leads to a failure.
1537 	 */
1538 	uint_t cache_attr = IOMEM_CACHE_ATTR(flags);
1539 	if ((cache_attr != 0) && !ISP2(cache_attr))
1540 		return (B_FALSE);
1541 
1542 	/* All cache attributes are supported on X86/X64 */
1543 	if (cache_attr & (IOMEM_DATA_UNCACHED | IOMEM_DATA_CACHED |
1544 	    IOMEM_DATA_UC_WR_COMBINE))
1545 		return (B_TRUE);
1546 
1547 	/* undefined attributes */
1548 	return (B_FALSE);
1549 }
1550 
1551 /* set HAT cache attributes from the cache attributes */
1552 void
1553 i_ddi_cacheattr_to_hatacc(uint_t flags, uint_t *hataccp)
1554 {
1555 	uint_t cache_attr = IOMEM_CACHE_ATTR(flags);
1556 	static char *fname = "i_ddi_cacheattr_to_hatacc";
1557 
1558 	/*
1559 	 * If write-combining is not supported, then it falls back
1560 	 * to uncacheable.
1561 	 */
1562 	if (cache_attr == IOMEM_DATA_UC_WR_COMBINE &&
1563 	    !is_x86_feature(x86_featureset, X86FSET_PAT))
1564 		cache_attr = IOMEM_DATA_UNCACHED;
1565 
1566 	/*
1567 	 * set HAT attrs according to the cache attrs.
1568 	 */
1569 	switch (cache_attr) {
1570 	case IOMEM_DATA_UNCACHED:
1571 		*hataccp &= ~HAT_ORDER_MASK;
1572 		*hataccp |= (HAT_STRICTORDER | HAT_PLAT_NOCACHE);
1573 		break;
1574 	case IOMEM_DATA_UC_WR_COMBINE:
1575 		*hataccp &= ~HAT_ORDER_MASK;
1576 		*hataccp |= (HAT_MERGING_OK | HAT_PLAT_NOCACHE);
1577 		break;
1578 	case IOMEM_DATA_CACHED:
1579 		*hataccp &= ~HAT_ORDER_MASK;
1580 		*hataccp |= HAT_UNORDERED_OK;
1581 		break;
1582 	/*
1583 	 * This case must not occur because the cache attribute is scrutinized
1584 	 * before this function is called.
1585 	 */
1586 	default:
1587 		/*
1588 		 * set cacheable to hat attrs.
1589 		 */
1590 		*hataccp &= ~HAT_ORDER_MASK;
1591 		*hataccp |= HAT_UNORDERED_OK;
1592 		cmn_err(CE_WARN, "%s: cache_attr=0x%x is ignored.",
1593 		    fname, cache_attr);
1594 	}
1595 }
1596 
1597 /*
1598  * This should actually be called i_ddi_dma_mem_alloc. There should
1599  * also be an i_ddi_pio_mem_alloc. i_ddi_dma_mem_alloc should call
1600  * through the device tree with the DDI_CTLOPS_DMA_ALIGN ctl ops to
1601  * get alignment requirements for DMA memory. i_ddi_pio_mem_alloc
1602  * should use DDI_CTLOPS_PIO_ALIGN. Since we only have i_ddi_mem_alloc
1603  * so far which is used for both, DMA and PIO, we have to use the DMA
1604  * ctl ops to make everybody happy.
1605  */
1606 /*ARGSUSED*/
1607 int
1608 i_ddi_mem_alloc(dev_info_t *dip, ddi_dma_attr_t *attr,
1609 	size_t length, int cansleep, int flags,
1610 	ddi_device_acc_attr_t *accattrp, caddr_t *kaddrp,
1611 	size_t *real_length, ddi_acc_hdl_t *ap)
1612 {
1613 	caddr_t a;
1614 	int iomin;
1615 	ddi_acc_impl_t *iap;
1616 	int physcontig = 0;
1617 	pgcnt_t npages;
1618 	pgcnt_t minctg;
1619 	uint_t order;
1620 	int e;
1621 
1622 	/*
1623 	 * Check legality of arguments
1624 	 */
1625 	if (length == 0 || kaddrp == NULL || attr == NULL) {
1626 		return (DDI_FAILURE);
1627 	}
1628 
1629 	if (attr->dma_attr_minxfer == 0 || attr->dma_attr_align == 0 ||
1630 	    !ISP2(attr->dma_attr_align) || !ISP2(attr->dma_attr_minxfer)) {
1631 		return (DDI_FAILURE);
1632 	}
1633 
1634 	/*
1635 	 * figure out most restrictive alignment requirement
1636 	 */
1637 	iomin = attr->dma_attr_minxfer;
1638 	iomin = maxbit(iomin, attr->dma_attr_align);
1639 	if (iomin == 0)
1640 		return (DDI_FAILURE);
1641 
1642 	ASSERT((iomin & (iomin - 1)) == 0);
1643 
1644 	/*
1645 	 * if we allocate memory with IOMEM_DATA_UNCACHED or
1646 	 * IOMEM_DATA_UC_WR_COMBINE, make sure we allocate a page aligned
1647 	 * memory that ends on a page boundry.
1648 	 * Don't want to have to different cache mappings to the same
1649 	 * physical page.
1650 	 */
1651 	if (OVERRIDE_CACHE_ATTR(flags)) {
1652 		iomin = (iomin + MMU_PAGEOFFSET) & MMU_PAGEMASK;
1653 		length = (length + MMU_PAGEOFFSET) & (size_t)MMU_PAGEMASK;
1654 	}
1655 
1656 	/*
1657 	 * Determine if we need to satisfy the request for physically
1658 	 * contiguous memory or alignments larger than pagesize.
1659 	 */
1660 	npages = btopr(length + attr->dma_attr_align);
1661 	minctg = howmany(npages, attr->dma_attr_sgllen);
1662 
1663 	if (minctg > 1) {
1664 		uint64_t pfnseg = attr->dma_attr_seg >> PAGESHIFT;
1665 		/*
1666 		 * verify that the minimum contig requirement for the
1667 		 * actual length does not cross segment boundary.
1668 		 */
1669 		length = P2ROUNDUP_TYPED(length, attr->dma_attr_minxfer,
1670 		    size_t);
1671 		npages = btopr(length);
1672 		minctg = howmany(npages, attr->dma_attr_sgllen);
1673 		if (minctg > pfnseg + 1)
1674 			return (DDI_FAILURE);
1675 		physcontig = 1;
1676 	} else {
1677 		length = P2ROUNDUP_TYPED(length, iomin, size_t);
1678 	}
1679 
1680 	/*
1681 	 * Allocate the requested amount from the system.
1682 	 */
1683 	a = kalloca(length, iomin, cansleep, physcontig, attr);
1684 
1685 	if ((*kaddrp = a) == NULL)
1686 		return (DDI_FAILURE);
1687 
1688 	/*
1689 	 * if we to modify the cache attributes, go back and muck with the
1690 	 * mappings.
1691 	 */
1692 	if (OVERRIDE_CACHE_ATTR(flags)) {
1693 		order = 0;
1694 		i_ddi_cacheattr_to_hatacc(flags, &order);
1695 		e = kmem_override_cache_attrs(a, length, order);
1696 		if (e != 0) {
1697 			kfreea(a);
1698 			return (DDI_FAILURE);
1699 		}
1700 	}
1701 
1702 	if (real_length) {
1703 		*real_length = length;
1704 	}
1705 	if (ap) {
1706 		/*
1707 		 * initialize access handle
1708 		 */
1709 		iap = (ddi_acc_impl_t *)ap->ah_platform_private;
1710 		iap->ahi_acc_attr |= DDI_ACCATTR_CPU_VADDR;
1711 		impl_acc_hdl_init(ap);
1712 	}
1713 
1714 	return (DDI_SUCCESS);
1715 }
1716 
1717 /* ARGSUSED */
1718 void
1719 i_ddi_mem_free(caddr_t kaddr, ddi_acc_hdl_t *ap)
1720 {
1721 	if (ap != NULL) {
1722 		/*
1723 		 * if we modified the cache attributes on alloc, go back and
1724 		 * fix them since this memory could be returned to the
1725 		 * general pool.
1726 		 */
1727 		if (OVERRIDE_CACHE_ATTR(ap->ah_xfermodes)) {
1728 			uint_t order = 0;
1729 			int e;
1730 			i_ddi_cacheattr_to_hatacc(IOMEM_DATA_CACHED, &order);
1731 			e = kmem_override_cache_attrs(kaddr, ap->ah_len, order);
1732 			if (e != 0) {
1733 				cmn_err(CE_WARN, "i_ddi_mem_free() failed to "
1734 				    "override cache attrs, memory leaked\n");
1735 				return;
1736 			}
1737 		}
1738 	}
1739 	kfreea(kaddr);
1740 }
1741 
1742 /*
1743  * Access Barriers
1744  *
1745  */
1746 /*ARGSUSED*/
1747 int
1748 i_ddi_ontrap(ddi_acc_handle_t hp)
1749 {
1750 	return (DDI_FAILURE);
1751 }
1752 
1753 /*ARGSUSED*/
1754 void
1755 i_ddi_notrap(ddi_acc_handle_t hp)
1756 {
1757 }
1758 
1759 
1760 /*
1761  * Misc Functions
1762  */
1763 
1764 /*
1765  * Implementation instance override functions
1766  *
1767  * No override on i86pc
1768  */
1769 /*ARGSUSED*/
1770 uint_t
1771 impl_assign_instance(dev_info_t *dip)
1772 {
1773 	return ((uint_t)-1);
1774 }
1775 
1776 /*ARGSUSED*/
1777 int
1778 impl_keep_instance(dev_info_t *dip)
1779 {
1780 
1781 #if defined(__xpv)
1782 	/*
1783 	 * Do not persist instance numbers assigned to devices in dom0
1784 	 */
1785 	dev_info_t *pdip;
1786 	if (DOMAIN_IS_INITDOMAIN(xen_info)) {
1787 		if (((pdip = ddi_get_parent(dip)) != NULL) &&
1788 		    (strcmp(ddi_get_name(pdip), "xpvd") == 0))
1789 			return (DDI_SUCCESS);
1790 	}
1791 #endif
1792 	return (DDI_FAILURE);
1793 }
1794 
1795 /*ARGSUSED*/
1796 int
1797 impl_free_instance(dev_info_t *dip)
1798 {
1799 	return (DDI_FAILURE);
1800 }
1801 
1802 /*ARGSUSED*/
1803 int
1804 impl_check_cpu(dev_info_t *devi)
1805 {
1806 	return (DDI_SUCCESS);
1807 }
1808 
1809 /*
1810  * Referenced in common/cpr_driver.c: Power off machine.
1811  * Don't know how to power off i86pc.
1812  */
1813 void
1814 arch_power_down()
1815 {}
1816 
1817 /*
1818  * Copy name to property_name, since name
1819  * is in the low address range below kernelbase.
1820  */
1821 static void
1822 copy_boot_str(const char *boot_str, char *kern_str, int len)
1823 {
1824 	int i = 0;
1825 
1826 	while (i < len - 1 && boot_str[i] != '\0') {
1827 		kern_str[i] = boot_str[i];
1828 		i++;
1829 	}
1830 
1831 	kern_str[i] = 0;	/* null terminate */
1832 	if (boot_str[i] != '\0')
1833 		cmn_err(CE_WARN,
1834 		    "boot property string is truncated to %s", kern_str);
1835 }
1836 
1837 static void
1838 get_boot_properties(void)
1839 {
1840 	extern char hw_provider[];
1841 	dev_info_t *devi;
1842 	char *name;
1843 	int length;
1844 	char property_name[50], property_val[50];
1845 	void *bop_staging_area;
1846 
1847 	bop_staging_area = kmem_zalloc(MMU_PAGESIZE, KM_NOSLEEP);
1848 
1849 	/*
1850 	 * Import "root" properties from the boot.
1851 	 *
1852 	 * We do this by invoking BOP_NEXTPROP until the list
1853 	 * is completely copied in.
1854 	 */
1855 
1856 	devi = ddi_root_node();
1857 	for (name = BOP_NEXTPROP(bootops, "");		/* get first */
1858 	    name;					/* NULL => DONE */
1859 	    name = BOP_NEXTPROP(bootops, name)) {	/* get next */
1860 
1861 		/* copy string to memory above kernelbase */
1862 		copy_boot_str(name, property_name, 50);
1863 
1864 		/*
1865 		 * Skip vga properties. They will be picked up later
1866 		 * by get_vga_properties.
1867 		 */
1868 		if (strcmp(property_name, "display-edif-block") == 0 ||
1869 		    strcmp(property_name, "display-edif-id") == 0) {
1870 			continue;
1871 		}
1872 
1873 		length = BOP_GETPROPLEN(bootops, property_name);
1874 		if (length == 0)
1875 			continue;
1876 		if (length > MMU_PAGESIZE) {
1877 			cmn_err(CE_NOTE,
1878 			    "boot property %s longer than 0x%x, ignored\n",
1879 			    property_name, MMU_PAGESIZE);
1880 			continue;
1881 		}
1882 		BOP_GETPROP(bootops, property_name, bop_staging_area);
1883 
1884 		/*
1885 		 * special properties:
1886 		 * si-machine, si-hw-provider
1887 		 *	goes to kernel data structures.
1888 		 * bios-boot-device and stdout
1889 		 *	goes to hardware property list so it may show up
1890 		 *	in the prtconf -vp output. This is needed by
1891 		 *	Install/Upgrade. Once we fix install upgrade,
1892 		 *	this can be taken out.
1893 		 */
1894 		if (strcmp(name, "si-machine") == 0) {
1895 			(void) strncpy(utsname.machine, bop_staging_area,
1896 			    SYS_NMLN);
1897 			utsname.machine[SYS_NMLN - 1] = (char)NULL;
1898 		} else if (strcmp(name, "si-hw-provider") == 0) {
1899 			(void) strncpy(hw_provider, bop_staging_area, SYS_NMLN);
1900 			hw_provider[SYS_NMLN - 1] = (char)NULL;
1901 		} else if (strcmp(name, "bios-boot-device") == 0) {
1902 			copy_boot_str(bop_staging_area, property_val, 50);
1903 			(void) ndi_prop_update_string(DDI_DEV_T_NONE, devi,
1904 			    property_name, property_val);
1905 		} else if (strcmp(name, "stdout") == 0) {
1906 			(void) ndi_prop_update_int(DDI_DEV_T_NONE, devi,
1907 			    property_name, *((int *)bop_staging_area));
1908 		} else {
1909 			/* Property type unknown, use old prop interface */
1910 			(void) e_ddi_prop_create(DDI_DEV_T_NONE, devi,
1911 			    DDI_PROP_CANSLEEP, property_name, bop_staging_area,
1912 			    length);
1913 		}
1914 	}
1915 
1916 	kmem_free(bop_staging_area, MMU_PAGESIZE);
1917 }
1918 
1919 static void
1920 get_vga_properties(void)
1921 {
1922 	dev_info_t *devi;
1923 	major_t major;
1924 	char *name;
1925 	int length;
1926 	char property_val[50];
1927 	void *bop_staging_area;
1928 
1929 	/*
1930 	 * XXXX Hack Allert!
1931 	 * There really needs to be a better way for identifying various
1932 	 * console framebuffers and their related issues.  Till then,
1933 	 * check for this one as a replacement to vgatext.
1934 	 */
1935 	major = ddi_name_to_major("ragexl");
1936 	if (major == (major_t)-1) {
1937 		major = ddi_name_to_major("vgatext");
1938 		if (major == (major_t)-1)
1939 			return;
1940 	}
1941 	devi = devnamesp[major].dn_head;
1942 	if (devi == NULL)
1943 		return;
1944 
1945 	bop_staging_area = kmem_zalloc(MMU_PAGESIZE, KM_SLEEP);
1946 
1947 	/*
1948 	 * Import "vga" properties from the boot.
1949 	 */
1950 	name = "display-edif-block";
1951 	length = BOP_GETPROPLEN(bootops, name);
1952 	if (length > 0 && length < MMU_PAGESIZE) {
1953 		BOP_GETPROP(bootops, name, bop_staging_area);
1954 		(void) ndi_prop_update_byte_array(DDI_DEV_T_NONE,
1955 		    devi, name, bop_staging_area, length);
1956 	}
1957 
1958 	/*
1959 	 * kdmconfig is also looking for display-type and
1960 	 * video-adapter-type. We default to color and svga.
1961 	 *
1962 	 * Could it be "monochrome", "vga"?
1963 	 * Nah, you've got to come to the 21st century...
1964 	 * And you can set monitor type manually in kdmconfig
1965 	 * if you are really an old junky.
1966 	 */
1967 	(void) ndi_prop_update_string(DDI_DEV_T_NONE,
1968 	    devi, "display-type", "color");
1969 	(void) ndi_prop_update_string(DDI_DEV_T_NONE,
1970 	    devi, "video-adapter-type", "svga");
1971 
1972 	name = "display-edif-id";
1973 	length = BOP_GETPROPLEN(bootops, name);
1974 	if (length > 0 && length < MMU_PAGESIZE) {
1975 		BOP_GETPROP(bootops, name, bop_staging_area);
1976 		copy_boot_str(bop_staging_area, property_val, length);
1977 		(void) ndi_prop_update_string(DDI_DEV_T_NONE,
1978 		    devi, name, property_val);
1979 	}
1980 
1981 	kmem_free(bop_staging_area, MMU_PAGESIZE);
1982 }
1983 
1984 
1985 /*
1986  * This is temporary, but absolutely necessary.  If we are being
1987  * booted with a device tree created by the DevConf project's bootconf
1988  * program, then we have device information nodes that reflect
1989  * reality.  At this point in time in the Solaris release schedule, the
1990  * kernel drivers aren't prepared for reality.  They still depend on their
1991  * own ad-hoc interpretations of the properties created when their .conf
1992  * files were interpreted. These drivers use an "ignore-hardware-nodes"
1993  * property to prevent them from using the nodes passed up from the bootconf
1994  * device tree.
1995  *
1996  * Trying to assemble root file system drivers as we are booting from
1997  * devconf will fail if the kernel driver is basing its name_addr's on the
1998  * psuedo-node device info while the bootpath passed up from bootconf is using
1999  * reality-based name_addrs.  We help the boot along in this case by
2000  * looking at the pre-bootconf bootpath and determining if we would have
2001  * successfully matched if that had been the bootpath we had chosen.
2002  *
2003  * Note that we only even perform this extra check if we've booted
2004  * using bootconf's 1275 compliant bootpath, this is the boot device, and
2005  * we're trying to match the name_addr specified in the 1275 bootpath.
2006  */
2007 
2008 #define	MAXCOMPONENTLEN	32
2009 
2010 int
2011 x86_old_bootpath_name_addr_match(dev_info_t *cdip, char *caddr, char *naddr)
2012 {
2013 	/*
2014 	 *  There are multiple criteria to be met before we can even
2015 	 *  consider allowing a name_addr match here.
2016 	 *
2017 	 *  1) We must have been booted such that the bootconf program
2018 	 *	created device tree nodes and properties.  This can be
2019 	 *	determined by examining the 'bootpath' property.  This
2020 	 *	property will be a non-null string iff bootconf was
2021 	 *	involved in the boot.
2022 	 *
2023 	 *  2) The module that we want to match must be the boot device.
2024 	 *
2025 	 *  3) The instance of the module we are thinking of letting be
2026 	 *	our match must be ignoring hardware nodes.
2027 	 *
2028 	 *  4) The name_addr we want to match must be the name_addr
2029 	 *	specified in the 1275 bootpath.
2030 	 */
2031 	static char bootdev_module[MAXCOMPONENTLEN];
2032 	static char bootdev_oldmod[MAXCOMPONENTLEN];
2033 	static char bootdev_newaddr[MAXCOMPONENTLEN];
2034 	static char bootdev_oldaddr[MAXCOMPONENTLEN];
2035 	static int  quickexit;
2036 
2037 	char *daddr;
2038 	int dlen;
2039 
2040 	char	*lkupname;
2041 	int	rv = DDI_FAILURE;
2042 
2043 	if ((ddi_getlongprop(DDI_DEV_T_ANY, cdip, DDI_PROP_DONTPASS,
2044 	    "devconf-addr", (caddr_t)&daddr, &dlen) == DDI_PROP_SUCCESS) &&
2045 	    (ddi_getprop(DDI_DEV_T_ANY, cdip, DDI_PROP_DONTPASS,
2046 	    "ignore-hardware-nodes", -1) != -1)) {
2047 		if (strcmp(daddr, caddr) == 0) {
2048 			return (DDI_SUCCESS);
2049 		}
2050 	}
2051 
2052 	if (quickexit)
2053 		return (rv);
2054 
2055 	if (bootdev_module[0] == '\0') {
2056 		char *addrp, *eoaddrp;
2057 		char *busp, *modp, *atp;
2058 		char *bp1275, *bp;
2059 		int  bp1275len, bplen;
2060 
2061 		bp1275 = bp = addrp = eoaddrp = busp = modp = atp = NULL;
2062 
2063 		if (ddi_getlongprop(DDI_DEV_T_ANY,
2064 		    ddi_root_node(), 0, "bootpath",
2065 		    (caddr_t)&bp1275, &bp1275len) != DDI_PROP_SUCCESS ||
2066 		    bp1275len <= 1) {
2067 			/*
2068 			 * We didn't boot from bootconf so we never need to
2069 			 * do any special matches.
2070 			 */
2071 			quickexit = 1;
2072 			if (bp1275)
2073 				kmem_free(bp1275, bp1275len);
2074 			return (rv);
2075 		}
2076 
2077 		if (ddi_getlongprop(DDI_DEV_T_ANY,
2078 		    ddi_root_node(), 0, "boot-path",
2079 		    (caddr_t)&bp, &bplen) != DDI_PROP_SUCCESS || bplen <= 1) {
2080 			/*
2081 			 * No fallback position for matching. This is
2082 			 * certainly unexpected, but we'll handle it
2083 			 * just in case.
2084 			 */
2085 			quickexit = 1;
2086 			kmem_free(bp1275, bp1275len);
2087 			if (bp)
2088 				kmem_free(bp, bplen);
2089 			return (rv);
2090 		}
2091 
2092 		/*
2093 		 *  Determine boot device module and 1275 name_addr
2094 		 *
2095 		 *  bootpath assumed to be of the form /bus/module@name_addr
2096 		 */
2097 		if (busp = strchr(bp1275, '/')) {
2098 			if (modp = strchr(busp + 1, '/')) {
2099 				if (atp = strchr(modp + 1, '@')) {
2100 					*atp = '\0';
2101 					addrp = atp + 1;
2102 					if (eoaddrp = strchr(addrp, '/'))
2103 						*eoaddrp = '\0';
2104 				}
2105 			}
2106 		}
2107 
2108 		if (modp && addrp) {
2109 			(void) strncpy(bootdev_module, modp + 1,
2110 			    MAXCOMPONENTLEN);
2111 			bootdev_module[MAXCOMPONENTLEN - 1] = '\0';
2112 
2113 			(void) strncpy(bootdev_newaddr, addrp, MAXCOMPONENTLEN);
2114 			bootdev_newaddr[MAXCOMPONENTLEN - 1] = '\0';
2115 		} else {
2116 			quickexit = 1;
2117 			kmem_free(bp1275, bp1275len);
2118 			kmem_free(bp, bplen);
2119 			return (rv);
2120 		}
2121 
2122 		/*
2123 		 *  Determine fallback name_addr
2124 		 *
2125 		 *  10/3/96 - Also save fallback module name because it
2126 		 *  might actually be different than the current module
2127 		 *  name.  E.G., ISA pnp drivers have new names.
2128 		 *
2129 		 *  bootpath assumed to be of the form /bus/module@name_addr
2130 		 */
2131 		addrp = NULL;
2132 		if (busp = strchr(bp, '/')) {
2133 			if (modp = strchr(busp + 1, '/')) {
2134 				if (atp = strchr(modp + 1, '@')) {
2135 					*atp = '\0';
2136 					addrp = atp + 1;
2137 					if (eoaddrp = strchr(addrp, '/'))
2138 						*eoaddrp = '\0';
2139 				}
2140 			}
2141 		}
2142 
2143 		if (modp && addrp) {
2144 			(void) strncpy(bootdev_oldmod, modp + 1,
2145 			    MAXCOMPONENTLEN);
2146 			bootdev_module[MAXCOMPONENTLEN - 1] = '\0';
2147 
2148 			(void) strncpy(bootdev_oldaddr, addrp, MAXCOMPONENTLEN);
2149 			bootdev_oldaddr[MAXCOMPONENTLEN - 1] = '\0';
2150 		}
2151 
2152 		/* Free up the bootpath storage now that we're done with it. */
2153 		kmem_free(bp1275, bp1275len);
2154 		kmem_free(bp, bplen);
2155 
2156 		if (bootdev_oldaddr[0] == '\0') {
2157 			quickexit = 1;
2158 			return (rv);
2159 		}
2160 	}
2161 
2162 	if (((lkupname = ddi_get_name(cdip)) != NULL) &&
2163 	    (strcmp(bootdev_module, lkupname) == 0 ||
2164 	    strcmp(bootdev_oldmod, lkupname) == 0) &&
2165 	    ((ddi_getprop(DDI_DEV_T_ANY, cdip, DDI_PROP_DONTPASS,
2166 	    "ignore-hardware-nodes", -1) != -1) ||
2167 	    ignore_hardware_nodes) &&
2168 	    strcmp(bootdev_newaddr, caddr) == 0 &&
2169 	    strcmp(bootdev_oldaddr, naddr) == 0) {
2170 		rv = DDI_SUCCESS;
2171 	}
2172 
2173 	return (rv);
2174 }
2175 
2176 /*
2177  * Perform a copy from a memory mapped device (whose devinfo pointer is devi)
2178  * separately mapped at devaddr in the kernel to a kernel buffer at kaddr.
2179  */
2180 /*ARGSUSED*/
2181 int
2182 e_ddi_copyfromdev(dev_info_t *devi,
2183     off_t off, const void *devaddr, void *kaddr, size_t len)
2184 {
2185 	bcopy(devaddr, kaddr, len);
2186 	return (0);
2187 }
2188 
2189 /*
2190  * Perform a copy to a memory mapped device (whose devinfo pointer is devi)
2191  * separately mapped at devaddr in the kernel from a kernel buffer at kaddr.
2192  */
2193 /*ARGSUSED*/
2194 int
2195 e_ddi_copytodev(dev_info_t *devi,
2196     off_t off, const void *kaddr, void *devaddr, size_t len)
2197 {
2198 	bcopy(kaddr, devaddr, len);
2199 	return (0);
2200 }
2201 
2202 
2203 static int
2204 poke_mem(peekpoke_ctlops_t *in_args)
2205 {
2206 	int err = DDI_SUCCESS;
2207 	on_trap_data_t otd;
2208 
2209 	/* Set up protected environment. */
2210 	if (!on_trap(&otd, OT_DATA_ACCESS)) {
2211 		switch (in_args->size) {
2212 		case sizeof (uint8_t):
2213 			*(uint8_t *)(in_args->dev_addr) =
2214 			    *(uint8_t *)in_args->host_addr;
2215 			break;
2216 
2217 		case sizeof (uint16_t):
2218 			*(uint16_t *)(in_args->dev_addr) =
2219 			    *(uint16_t *)in_args->host_addr;
2220 			break;
2221 
2222 		case sizeof (uint32_t):
2223 			*(uint32_t *)(in_args->dev_addr) =
2224 			    *(uint32_t *)in_args->host_addr;
2225 			break;
2226 
2227 		case sizeof (uint64_t):
2228 			*(uint64_t *)(in_args->dev_addr) =
2229 			    *(uint64_t *)in_args->host_addr;
2230 			break;
2231 
2232 		default:
2233 			err = DDI_FAILURE;
2234 			break;
2235 		}
2236 	} else
2237 		err = DDI_FAILURE;
2238 
2239 	/* Take down protected environment. */
2240 	no_trap();
2241 
2242 	return (err);
2243 }
2244 
2245 
2246 static int
2247 peek_mem(peekpoke_ctlops_t *in_args)
2248 {
2249 	int err = DDI_SUCCESS;
2250 	on_trap_data_t otd;
2251 
2252 	if (!on_trap(&otd, OT_DATA_ACCESS)) {
2253 		switch (in_args->size) {
2254 		case sizeof (uint8_t):
2255 			*(uint8_t *)in_args->host_addr =
2256 			    *(uint8_t *)in_args->dev_addr;
2257 			break;
2258 
2259 		case sizeof (uint16_t):
2260 			*(uint16_t *)in_args->host_addr =
2261 			    *(uint16_t *)in_args->dev_addr;
2262 			break;
2263 
2264 		case sizeof (uint32_t):
2265 			*(uint32_t *)in_args->host_addr =
2266 			    *(uint32_t *)in_args->dev_addr;
2267 			break;
2268 
2269 		case sizeof (uint64_t):
2270 			*(uint64_t *)in_args->host_addr =
2271 			    *(uint64_t *)in_args->dev_addr;
2272 			break;
2273 
2274 		default:
2275 			err = DDI_FAILURE;
2276 			break;
2277 		}
2278 	} else
2279 		err = DDI_FAILURE;
2280 
2281 	no_trap();
2282 	return (err);
2283 }
2284 
2285 
2286 /*
2287  * This is called only to process peek/poke when the DIP is NULL.
2288  * Assume that this is for memory, as nexi take care of device safe accesses.
2289  */
2290 int
2291 peekpoke_mem(ddi_ctl_enum_t cmd, peekpoke_ctlops_t *in_args)
2292 {
2293 	return (cmd == DDI_CTLOPS_PEEK ? peek_mem(in_args) : poke_mem(in_args));
2294 }
2295 
2296 /*
2297  * we've just done a cautious put/get. Check if it was successful by
2298  * calling pci_ereport_post() on all puts and for any gets that return -1
2299  */
2300 static int
2301 pci_peekpoke_check_fma(dev_info_t *dip, void *arg, ddi_ctl_enum_t ctlop,
2302     void (*scan)(dev_info_t *, ddi_fm_error_t *))
2303 {
2304 	int	rval = DDI_SUCCESS;
2305 	peekpoke_ctlops_t *in_args = (peekpoke_ctlops_t *)arg;
2306 	ddi_fm_error_t de;
2307 	ddi_acc_impl_t *hp = (ddi_acc_impl_t *)in_args->handle;
2308 	ddi_acc_hdl_t *hdlp = (ddi_acc_hdl_t *)in_args->handle;
2309 	int check_err = 0;
2310 	int repcount = in_args->repcount;
2311 
2312 	if (ctlop == DDI_CTLOPS_POKE &&
2313 	    hdlp->ah_acc.devacc_attr_access != DDI_CAUTIOUS_ACC)
2314 		return (DDI_SUCCESS);
2315 
2316 	if (ctlop == DDI_CTLOPS_PEEK &&
2317 	    hdlp->ah_acc.devacc_attr_access != DDI_CAUTIOUS_ACC) {
2318 		for (; repcount; repcount--) {
2319 			switch (in_args->size) {
2320 			case sizeof (uint8_t):
2321 				if (*(uint8_t *)in_args->host_addr == 0xff)
2322 					check_err = 1;
2323 				break;
2324 			case sizeof (uint16_t):
2325 				if (*(uint16_t *)in_args->host_addr == 0xffff)
2326 					check_err = 1;
2327 				break;
2328 			case sizeof (uint32_t):
2329 				if (*(uint32_t *)in_args->host_addr ==
2330 				    0xffffffff)
2331 					check_err = 1;
2332 				break;
2333 			case sizeof (uint64_t):
2334 				if (*(uint64_t *)in_args->host_addr ==
2335 				    0xffffffffffffffff)
2336 					check_err = 1;
2337 				break;
2338 			}
2339 		}
2340 		if (check_err == 0)
2341 			return (DDI_SUCCESS);
2342 	}
2343 	/*
2344 	 * for a cautious put or get or a non-cautious get that returned -1 call
2345 	 * io framework to see if there really was an error
2346 	 */
2347 	bzero(&de, sizeof (ddi_fm_error_t));
2348 	de.fme_version = DDI_FME_VERSION;
2349 	de.fme_ena = fm_ena_generate(0, FM_ENA_FMT1);
2350 	if (hdlp->ah_acc.devacc_attr_access == DDI_CAUTIOUS_ACC) {
2351 		de.fme_flag = DDI_FM_ERR_EXPECTED;
2352 		de.fme_acc_handle = in_args->handle;
2353 	} else if (hdlp->ah_acc.devacc_attr_access == DDI_DEFAULT_ACC) {
2354 		/*
2355 		 * We only get here with DDI_DEFAULT_ACC for config space gets.
2356 		 * Non-hardened drivers may be probing the hardware and
2357 		 * expecting -1 returned. So need to treat errors on
2358 		 * DDI_DEFAULT_ACC as DDI_FM_ERR_EXPECTED.
2359 		 */
2360 		de.fme_flag = DDI_FM_ERR_EXPECTED;
2361 		de.fme_acc_handle = in_args->handle;
2362 	} else {
2363 		/*
2364 		 * Hardened driver doing protected accesses shouldn't
2365 		 * get errors unless there's a hardware problem. Treat
2366 		 * as nonfatal if there's an error, but set UNEXPECTED
2367 		 * so we raise ereports on any errors and potentially
2368 		 * fault the device
2369 		 */
2370 		de.fme_flag = DDI_FM_ERR_UNEXPECTED;
2371 	}
2372 	(void) scan(dip, &de);
2373 	if (hdlp->ah_acc.devacc_attr_access != DDI_DEFAULT_ACC &&
2374 	    de.fme_status != DDI_FM_OK) {
2375 		ndi_err_t *errp = (ndi_err_t *)hp->ahi_err;
2376 		rval = DDI_FAILURE;
2377 		errp->err_ena = de.fme_ena;
2378 		errp->err_expected = de.fme_flag;
2379 		errp->err_status = DDI_FM_NONFATAL;
2380 	}
2381 	return (rval);
2382 }
2383 
2384 /*
2385  * pci_peekpoke_check_nofma() is for when an error occurs on a register access
2386  * during pci_ereport_post(). We can't call pci_ereport_post() again or we'd
2387  * recurse, so assume all puts are OK and gets have failed if they return -1
2388  */
2389 static int
2390 pci_peekpoke_check_nofma(void *arg, ddi_ctl_enum_t ctlop)
2391 {
2392 	int rval = DDI_SUCCESS;
2393 	peekpoke_ctlops_t *in_args = (peekpoke_ctlops_t *)arg;
2394 	ddi_acc_impl_t *hp = (ddi_acc_impl_t *)in_args->handle;
2395 	ddi_acc_hdl_t *hdlp = (ddi_acc_hdl_t *)in_args->handle;
2396 	int repcount = in_args->repcount;
2397 
2398 	if (ctlop == DDI_CTLOPS_POKE)
2399 		return (rval);
2400 
2401 	for (; repcount; repcount--) {
2402 		switch (in_args->size) {
2403 		case sizeof (uint8_t):
2404 			if (*(uint8_t *)in_args->host_addr == 0xff)
2405 				rval = DDI_FAILURE;
2406 			break;
2407 		case sizeof (uint16_t):
2408 			if (*(uint16_t *)in_args->host_addr == 0xffff)
2409 				rval = DDI_FAILURE;
2410 			break;
2411 		case sizeof (uint32_t):
2412 			if (*(uint32_t *)in_args->host_addr == 0xffffffff)
2413 				rval = DDI_FAILURE;
2414 			break;
2415 		case sizeof (uint64_t):
2416 			if (*(uint64_t *)in_args->host_addr ==
2417 			    0xffffffffffffffff)
2418 				rval = DDI_FAILURE;
2419 			break;
2420 		}
2421 	}
2422 	if (hdlp->ah_acc.devacc_attr_access != DDI_DEFAULT_ACC &&
2423 	    rval == DDI_FAILURE) {
2424 		ndi_err_t *errp = (ndi_err_t *)hp->ahi_err;
2425 		errp->err_ena = fm_ena_generate(0, FM_ENA_FMT1);
2426 		errp->err_expected = DDI_FM_ERR_UNEXPECTED;
2427 		errp->err_status = DDI_FM_NONFATAL;
2428 	}
2429 	return (rval);
2430 }
2431 
2432 int
2433 pci_peekpoke_check(dev_info_t *dip, dev_info_t *rdip,
2434 	ddi_ctl_enum_t ctlop, void *arg, void *result,
2435 	int (*handler)(dev_info_t *, dev_info_t *, ddi_ctl_enum_t, void *,
2436 	void *), kmutex_t *err_mutexp, kmutex_t *peek_poke_mutexp,
2437 	void (*scan)(dev_info_t *, ddi_fm_error_t *))
2438 {
2439 	int rval;
2440 	peekpoke_ctlops_t *in_args = (peekpoke_ctlops_t *)arg;
2441 	ddi_acc_impl_t *hp = (ddi_acc_impl_t *)in_args->handle;
2442 
2443 	/*
2444 	 * this function only supports cautious accesses, not peeks/pokes
2445 	 * which don't have a handle
2446 	 */
2447 	if (hp == NULL)
2448 		return (DDI_FAILURE);
2449 
2450 	if (hp->ahi_acc_attr & DDI_ACCATTR_CONFIG_SPACE) {
2451 		if (!mutex_tryenter(err_mutexp)) {
2452 			/*
2453 			 * As this may be a recursive call from within
2454 			 * pci_ereport_post() we can't wait for the mutexes.
2455 			 * Fortunately we know someone is already calling
2456 			 * pci_ereport_post() which will handle the error bits
2457 			 * for us, and as this is a config space access we can
2458 			 * just do the access and check return value for -1
2459 			 * using pci_peekpoke_check_nofma().
2460 			 */
2461 			rval = handler(dip, rdip, ctlop, arg, result);
2462 			if (rval == DDI_SUCCESS)
2463 				rval = pci_peekpoke_check_nofma(arg, ctlop);
2464 			return (rval);
2465 		}
2466 		/*
2467 		 * This can't be a recursive call. Drop the err_mutex and get
2468 		 * both mutexes in the right order. If an error hasn't already
2469 		 * been detected by the ontrap code, use pci_peekpoke_check_fma
2470 		 * which will call pci_ereport_post() to check error status.
2471 		 */
2472 		mutex_exit(err_mutexp);
2473 	}
2474 	mutex_enter(peek_poke_mutexp);
2475 	rval = handler(dip, rdip, ctlop, arg, result);
2476 	if (rval == DDI_SUCCESS) {
2477 		mutex_enter(err_mutexp);
2478 		rval = pci_peekpoke_check_fma(dip, arg, ctlop, scan);
2479 		mutex_exit(err_mutexp);
2480 	}
2481 	mutex_exit(peek_poke_mutexp);
2482 	return (rval);
2483 }
2484 
2485 void
2486 impl_setup_ddi(void)
2487 {
2488 #if !defined(__xpv)
2489 	extern void startup_bios_disk(void);
2490 	extern int post_fastreboot;
2491 #endif
2492 	dev_info_t *xdip, *isa_dip;
2493 	rd_existing_t rd_mem_prop;
2494 	int err;
2495 
2496 	ndi_devi_alloc_sleep(ddi_root_node(), "ramdisk",
2497 	    (pnode_t)DEVI_SID_NODEID, &xdip);
2498 
2499 	(void) BOP_GETPROP(bootops,
2500 	    "ramdisk_start", (void *)&ramdisk_start);
2501 	(void) BOP_GETPROP(bootops,
2502 	    "ramdisk_end", (void *)&ramdisk_end);
2503 
2504 #ifdef __xpv
2505 	ramdisk_start -= ONE_GIG;
2506 	ramdisk_end -= ONE_GIG;
2507 #endif
2508 	rd_mem_prop.phys = ramdisk_start;
2509 	rd_mem_prop.size = ramdisk_end - ramdisk_start + 1;
2510 
2511 	(void) ndi_prop_update_byte_array(DDI_DEV_T_NONE, xdip,
2512 	    RD_EXISTING_PROP_NAME, (uchar_t *)&rd_mem_prop,
2513 	    sizeof (rd_mem_prop));
2514 	err = ndi_devi_bind_driver(xdip, 0);
2515 	ASSERT(err == 0);
2516 
2517 	/* isa node */
2518 	if (pseudo_isa) {
2519 		ndi_devi_alloc_sleep(ddi_root_node(), "isa",
2520 		    (pnode_t)DEVI_SID_NODEID, &isa_dip);
2521 		(void) ndi_prop_update_string(DDI_DEV_T_NONE, isa_dip,
2522 		    "device_type", "isa");
2523 		(void) ndi_prop_update_string(DDI_DEV_T_NONE, isa_dip,
2524 		    "bus-type", "isa");
2525 		(void) ndi_devi_bind_driver(isa_dip, 0);
2526 	}
2527 
2528 	/*
2529 	 * Read in the properties from the boot.
2530 	 */
2531 	get_boot_properties();
2532 
2533 	/* not framebuffer should be enumerated, if present */
2534 	get_vga_properties();
2535 
2536 	/*
2537 	 * Check for administratively disabled drivers.
2538 	 */
2539 	check_driver_disable();
2540 
2541 #if !defined(__xpv)
2542 	if (!post_fastreboot)
2543 		startup_bios_disk();
2544 #endif
2545 	/* do bus dependent probes. */
2546 	impl_bus_initialprobe();
2547 }
2548 
2549 dev_t
2550 getrootdev(void)
2551 {
2552 	/*
2553 	 * Precedence given to rootdev if set in /etc/system
2554 	 */
2555 	if (root_is_svm == B_TRUE) {
2556 		return (ddi_pathname_to_dev_t(svm_bootpath));
2557 	}
2558 
2559 	/*
2560 	 * Usually rootfs.bo_name is initialized by the
2561 	 * the bootpath property from bootenv.rc, but
2562 	 * defaults to "/ramdisk:a" otherwise.
2563 	 */
2564 	return (ddi_pathname_to_dev_t(rootfs.bo_name));
2565 }
2566 
2567 static struct bus_probe {
2568 	struct bus_probe *next;
2569 	void (*probe)(int);
2570 } *bus_probes;
2571 
2572 void
2573 impl_bus_add_probe(void (*func)(int))
2574 {
2575 	struct bus_probe *probe;
2576 	struct bus_probe *lastprobe = NULL;
2577 
2578 	probe = kmem_alloc(sizeof (*probe), KM_SLEEP);
2579 	probe->probe = func;
2580 	probe->next = NULL;
2581 
2582 	if (!bus_probes) {
2583 		bus_probes = probe;
2584 		return;
2585 	}
2586 
2587 	lastprobe = bus_probes;
2588 	while (lastprobe->next)
2589 		lastprobe = lastprobe->next;
2590 	lastprobe->next = probe;
2591 }
2592 
2593 /*ARGSUSED*/
2594 void
2595 impl_bus_delete_probe(void (*func)(int))
2596 {
2597 	struct bus_probe *prev = NULL;
2598 	struct bus_probe *probe = bus_probes;
2599 
2600 	while (probe) {
2601 		if (probe->probe == func)
2602 			break;
2603 		prev = probe;
2604 		probe = probe->next;
2605 	}
2606 
2607 	if (probe == NULL)
2608 		return;
2609 
2610 	if (prev)
2611 		prev->next = probe->next;
2612 	else
2613 		bus_probes = probe->next;
2614 
2615 	kmem_free(probe, sizeof (struct bus_probe));
2616 }
2617 
2618 /*
2619  * impl_bus_initialprobe
2620  *	Modload the prom simulator, then let it probe to verify existence
2621  *	and type of PCI support.
2622  */
2623 static void
2624 impl_bus_initialprobe(void)
2625 {
2626 	struct bus_probe *probe;
2627 
2628 	/* load modules to install bus probes */
2629 #if defined(__xpv)
2630 	if (DOMAIN_IS_INITDOMAIN(xen_info)) {
2631 		if (modload("misc", "pci_autoconfig") < 0) {
2632 			panic("failed to load misc/pci_autoconfig");
2633 		}
2634 
2635 		if (modload("drv", "isa") < 0)
2636 			panic("failed to load drv/isa");
2637 	}
2638 
2639 	(void) modload("misc", "xpv_autoconfig");
2640 #else
2641 	if (modload("misc", "pci_autoconfig") < 0) {
2642 		panic("failed to load misc/pci_autoconfig");
2643 	}
2644 
2645 	(void) modload("misc", "acpidev");
2646 
2647 	if (modload("drv", "isa") < 0)
2648 		panic("failed to load drv/isa");
2649 #endif
2650 
2651 	probe = bus_probes;
2652 	while (probe) {
2653 		/* run the probe functions */
2654 		(*probe->probe)(0);
2655 		probe = probe->next;
2656 	}
2657 }
2658 
2659 /*
2660  * impl_bus_reprobe
2661  *	Reprogram devices not set up by firmware.
2662  */
2663 static void
2664 impl_bus_reprobe(void)
2665 {
2666 	struct bus_probe *probe;
2667 
2668 	probe = bus_probes;
2669 	while (probe) {
2670 		/* run the probe function */
2671 		(*probe->probe)(1);
2672 		probe = probe->next;
2673 	}
2674 }
2675 
2676 
2677 /*
2678  * The following functions ready a cautious request to go up to the nexus
2679  * driver.  It is up to the nexus driver to decide how to process the request.
2680  * It may choose to call i_ddi_do_caut_get/put in this file, or do it
2681  * differently.
2682  */
2683 
2684 static void
2685 i_ddi_caut_getput_ctlops(ddi_acc_impl_t *hp, uint64_t host_addr,
2686     uint64_t dev_addr, size_t size, size_t repcount, uint_t flags,
2687     ddi_ctl_enum_t cmd)
2688 {
2689 	peekpoke_ctlops_t	cautacc_ctlops_arg;
2690 
2691 	cautacc_ctlops_arg.size = size;
2692 	cautacc_ctlops_arg.dev_addr = dev_addr;
2693 	cautacc_ctlops_arg.host_addr = host_addr;
2694 	cautacc_ctlops_arg.handle = (ddi_acc_handle_t)hp;
2695 	cautacc_ctlops_arg.repcount = repcount;
2696 	cautacc_ctlops_arg.flags = flags;
2697 
2698 	(void) ddi_ctlops(hp->ahi_common.ah_dip, hp->ahi_common.ah_dip, cmd,
2699 	    &cautacc_ctlops_arg, NULL);
2700 }
2701 
2702 uint8_t
2703 i_ddi_caut_get8(ddi_acc_impl_t *hp, uint8_t *addr)
2704 {
2705 	uint8_t value;
2706 	i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr,
2707 	    sizeof (uint8_t), 1, 0, DDI_CTLOPS_PEEK);
2708 
2709 	return (value);
2710 }
2711 
2712 uint16_t
2713 i_ddi_caut_get16(ddi_acc_impl_t *hp, uint16_t *addr)
2714 {
2715 	uint16_t value;
2716 	i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr,
2717 	    sizeof (uint16_t), 1, 0, DDI_CTLOPS_PEEK);
2718 
2719 	return (value);
2720 }
2721 
2722 uint32_t
2723 i_ddi_caut_get32(ddi_acc_impl_t *hp, uint32_t *addr)
2724 {
2725 	uint32_t value;
2726 	i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr,
2727 	    sizeof (uint32_t), 1, 0, DDI_CTLOPS_PEEK);
2728 
2729 	return (value);
2730 }
2731 
2732 uint64_t
2733 i_ddi_caut_get64(ddi_acc_impl_t *hp, uint64_t *addr)
2734 {
2735 	uint64_t value;
2736 	i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr,
2737 	    sizeof (uint64_t), 1, 0, DDI_CTLOPS_PEEK);
2738 
2739 	return (value);
2740 }
2741 
2742 void
2743 i_ddi_caut_put8(ddi_acc_impl_t *hp, uint8_t *addr, uint8_t value)
2744 {
2745 	i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr,
2746 	    sizeof (uint8_t), 1, 0, DDI_CTLOPS_POKE);
2747 }
2748 
2749 void
2750 i_ddi_caut_put16(ddi_acc_impl_t *hp, uint16_t *addr, uint16_t value)
2751 {
2752 	i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr,
2753 	    sizeof (uint16_t), 1, 0, DDI_CTLOPS_POKE);
2754 }
2755 
2756 void
2757 i_ddi_caut_put32(ddi_acc_impl_t *hp, uint32_t *addr, uint32_t value)
2758 {
2759 	i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr,
2760 	    sizeof (uint32_t), 1, 0, DDI_CTLOPS_POKE);
2761 }
2762 
2763 void
2764 i_ddi_caut_put64(ddi_acc_impl_t *hp, uint64_t *addr, uint64_t value)
2765 {
2766 	i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr,
2767 	    sizeof (uint64_t), 1, 0, DDI_CTLOPS_POKE);
2768 }
2769 
2770 void
2771 i_ddi_caut_rep_get8(ddi_acc_impl_t *hp, uint8_t *host_addr, uint8_t *dev_addr,
2772 	size_t repcount, uint_t flags)
2773 {
2774 	i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr,
2775 	    sizeof (uint8_t), repcount, flags, DDI_CTLOPS_PEEK);
2776 }
2777 
2778 void
2779 i_ddi_caut_rep_get16(ddi_acc_impl_t *hp, uint16_t *host_addr,
2780     uint16_t *dev_addr, size_t repcount, uint_t flags)
2781 {
2782 	i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr,
2783 	    sizeof (uint16_t), repcount, flags, DDI_CTLOPS_PEEK);
2784 }
2785 
2786 void
2787 i_ddi_caut_rep_get32(ddi_acc_impl_t *hp, uint32_t *host_addr,
2788     uint32_t *dev_addr, size_t repcount, uint_t flags)
2789 {
2790 	i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr,
2791 	    sizeof (uint32_t), repcount, flags, DDI_CTLOPS_PEEK);
2792 }
2793 
2794 void
2795 i_ddi_caut_rep_get64(ddi_acc_impl_t *hp, uint64_t *host_addr,
2796     uint64_t *dev_addr, size_t repcount, uint_t flags)
2797 {
2798 	i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr,
2799 	    sizeof (uint64_t), repcount, flags, DDI_CTLOPS_PEEK);
2800 }
2801 
2802 void
2803 i_ddi_caut_rep_put8(ddi_acc_impl_t *hp, uint8_t *host_addr, uint8_t *dev_addr,
2804 	size_t repcount, uint_t flags)
2805 {
2806 	i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr,
2807 	    sizeof (uint8_t), repcount, flags, DDI_CTLOPS_POKE);
2808 }
2809 
2810 void
2811 i_ddi_caut_rep_put16(ddi_acc_impl_t *hp, uint16_t *host_addr,
2812     uint16_t *dev_addr, size_t repcount, uint_t flags)
2813 {
2814 	i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr,
2815 	    sizeof (uint16_t), repcount, flags, DDI_CTLOPS_POKE);
2816 }
2817 
2818 void
2819 i_ddi_caut_rep_put32(ddi_acc_impl_t *hp, uint32_t *host_addr,
2820     uint32_t *dev_addr, size_t repcount, uint_t flags)
2821 {
2822 	i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr,
2823 	    sizeof (uint32_t), repcount, flags, DDI_CTLOPS_POKE);
2824 }
2825 
2826 void
2827 i_ddi_caut_rep_put64(ddi_acc_impl_t *hp, uint64_t *host_addr,
2828     uint64_t *dev_addr, size_t repcount, uint_t flags)
2829 {
2830 	i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr,
2831 	    sizeof (uint64_t), repcount, flags, DDI_CTLOPS_POKE);
2832 }
2833 
2834 boolean_t
2835 i_ddi_copybuf_required(ddi_dma_attr_t *attrp)
2836 {
2837 	uint64_t hi_pa;
2838 
2839 	hi_pa = ((uint64_t)physmax + 1ull) << PAGESHIFT;
2840 	if (attrp->dma_attr_addr_hi < hi_pa) {
2841 		return (B_TRUE);
2842 	}
2843 
2844 	return (B_FALSE);
2845 }
2846 
2847 size_t
2848 i_ddi_copybuf_size()
2849 {
2850 	return (dma_max_copybuf_size);
2851 }
2852 
2853 /*
2854  * i_ddi_dma_max()
2855  *    returns the maximum DMA size which can be performed in a single DMA
2856  *    window taking into account the devices DMA contraints (attrp), the
2857  *    maximum copy buffer size (if applicable), and the worse case buffer
2858  *    fragmentation.
2859  */
2860 /*ARGSUSED*/
2861 uint32_t
2862 i_ddi_dma_max(dev_info_t *dip, ddi_dma_attr_t *attrp)
2863 {
2864 	uint64_t maxxfer;
2865 
2866 
2867 	/*
2868 	 * take the min of maxxfer and the the worse case fragementation
2869 	 * (e.g. every cookie <= 1 page)
2870 	 */
2871 	maxxfer = MIN(attrp->dma_attr_maxxfer,
2872 	    ((uint64_t)(attrp->dma_attr_sgllen - 1) << PAGESHIFT));
2873 
2874 	/*
2875 	 * If the DMA engine can't reach all off memory, we also need to take
2876 	 * the max size of the copybuf into consideration.
2877 	 */
2878 	if (i_ddi_copybuf_required(attrp)) {
2879 		maxxfer = MIN(i_ddi_copybuf_size(), maxxfer);
2880 	}
2881 
2882 	/*
2883 	 * we only return a 32-bit value. Make sure it's not -1. Round to a
2884 	 * page so it won't be mistaken for an error value during debug.
2885 	 */
2886 	if (maxxfer >= 0xFFFFFFFF) {
2887 		maxxfer = 0xFFFFF000;
2888 	}
2889 
2890 	/*
2891 	 * make sure the value we return is a whole multiple of the
2892 	 * granlarity.
2893 	 */
2894 	if (attrp->dma_attr_granular > 1) {
2895 		maxxfer = maxxfer - (maxxfer % attrp->dma_attr_granular);
2896 	}
2897 
2898 	return ((uint32_t)maxxfer);
2899 }
2900 
2901 /*ARGSUSED*/
2902 void
2903 translate_devid(dev_info_t *dip)
2904 {
2905 }
2906 
2907 pfn_t
2908 i_ddi_paddr_to_pfn(paddr_t paddr)
2909 {
2910 	pfn_t pfn;
2911 
2912 #ifdef __xpv
2913 	if (DOMAIN_IS_INITDOMAIN(xen_info)) {
2914 		pfn = xen_assign_pfn(mmu_btop(paddr));
2915 	} else {
2916 		pfn = mmu_btop(paddr);
2917 	}
2918 #else
2919 	pfn = mmu_btop(paddr);
2920 #endif
2921 
2922 	return (pfn);
2923 }
2924