xref: /illumos-gate/usr/src/uts/i86pc/io/rootnex.c (revision 4745263a792e84bbd9e36b3ceb07d1275762cf9b)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * x86 root nexus driver
31  */
32 
33 #include <sys/sysmacros.h>
34 #include <sys/conf.h>
35 #include <sys/autoconf.h>
36 #include <sys/sysmacros.h>
37 #include <sys/debug.h>
38 #include <sys/psw.h>
39 #include <sys/ddidmareq.h>
40 #include <sys/promif.h>
41 #include <sys/devops.h>
42 #include <sys/kmem.h>
43 #include <sys/cmn_err.h>
44 #include <vm/seg.h>
45 #include <vm/seg_kmem.h>
46 #include <vm/seg_dev.h>
47 #include <sys/vmem.h>
48 #include <sys/mman.h>
49 #include <vm/hat.h>
50 #include <vm/as.h>
51 #include <vm/page.h>
52 #include <sys/avintr.h>
53 #include <sys/errno.h>
54 #include <sys/modctl.h>
55 #include <sys/ddi_impldefs.h>
56 #include <sys/sunddi.h>
57 #include <sys/sunndi.h>
58 #include <sys/psm.h>
59 #include <sys/ontrap.h>
60 #include <sys/atomic.h>
61 #include <sys/sdt.h>
62 #include <sys/rootnex.h>
63 #include <vm/hat_i86.h>
64 
65 
66 /*
67  * enable/disable extra checking of function parameters. Useful for debugging
68  * drivers.
69  */
70 #ifdef	DEBUG
71 int rootnex_alloc_check_parms = 1;
72 int rootnex_bind_check_parms = 1;
73 int rootnex_bind_check_inuse = 1;
74 int rootnex_unbind_verify_buffer = 0;
75 int rootnex_sync_check_parms = 1;
76 #else
77 int rootnex_alloc_check_parms = 0;
78 int rootnex_bind_check_parms = 0;
79 int rootnex_bind_check_inuse = 0;
80 int rootnex_unbind_verify_buffer = 0;
81 int rootnex_sync_check_parms = 0;
82 #endif
83 
84 /* Semi-temporary patchables to phase in bug fixes, test drivers, etc. */
85 int rootnex_bind_fail = 1;
86 int rootnex_bind_warn = 1;
87 uint8_t *rootnex_warn_list;
88 /* bitmasks for rootnex_warn_list. Up to 8 different warnings with uint8_t */
89 #define	ROOTNEX_BIND_WARNING	(0x1 << 0)
90 
91 /*
92  * revert back to old broken behavior of always sync'ing entire copy buffer.
93  * This is useful if be have a buggy driver which doesn't correctly pass in
94  * the offset and size into ddi_dma_sync().
95  */
96 int rootnex_sync_ignore_params = 0;
97 
98 /*
99  * maximum size that we will allow for a copy buffer. Can be patched on the
100  * fly
101  */
102 size_t rootnex_max_copybuf_size = 0x100000;
103 
104 /*
105  * For the 64-bit kernel, pre-alloc enough cookies for a 256K buffer plus 1
106  * page for alignment. For the 32-bit kernel, pre-alloc enough cookies for a
107  * 64K buffer plus 1 page for alignment (we have less kernel space in a 32-bit
108  * kernel). Allocate enough windows to handle a 256K buffer w/ at least 65
109  * sgllen DMA engine, and enough copybuf buffer state pages to handle 2 pages
110  * (< 8K). We will still need to allocate the copy buffer during bind though
111  * (if we need one). These can only be modified in /etc/system before rootnex
112  * attach.
113  */
114 #if defined(__amd64)
115 int rootnex_prealloc_cookies = 65;
116 int rootnex_prealloc_windows = 4;
117 int rootnex_prealloc_copybuf = 2;
118 #else
119 int rootnex_prealloc_cookies = 33;
120 int rootnex_prealloc_windows = 4;
121 int rootnex_prealloc_copybuf = 2;
122 #endif
123 
124 /* driver global state */
125 static rootnex_state_t *rootnex_state;
126 
127 /* shortcut to rootnex counters */
128 static uint64_t *rootnex_cnt;
129 
130 /*
131  * XXX - does x86 even need these or are they left over from the SPARC days?
132  */
133 /* statically defined integer/boolean properties for the root node */
134 static rootnex_intprop_t rootnex_intprp[] = {
135 	{ "PAGESIZE",			PAGESIZE },
136 	{ "MMU_PAGESIZE",		MMU_PAGESIZE },
137 	{ "MMU_PAGEOFFSET",		MMU_PAGEOFFSET },
138 	{ DDI_RELATIVE_ADDRESSING,	1 },
139 };
140 #define	NROOT_INTPROPS	(sizeof (rootnex_intprp) / sizeof (rootnex_intprop_t))
141 
142 
143 static struct cb_ops rootnex_cb_ops = {
144 	nodev,		/* open */
145 	nodev,		/* close */
146 	nodev,		/* strategy */
147 	nodev,		/* print */
148 	nodev,		/* dump */
149 	nodev,		/* read */
150 	nodev,		/* write */
151 	nodev,		/* ioctl */
152 	nodev,		/* devmap */
153 	nodev,		/* mmap */
154 	nodev,		/* segmap */
155 	nochpoll,	/* chpoll */
156 	ddi_prop_op,	/* cb_prop_op */
157 	NULL,		/* struct streamtab */
158 	D_NEW | D_MP | D_HOTPLUG, /* compatibility flags */
159 	CB_REV,		/* Rev */
160 	nodev,		/* cb_aread */
161 	nodev		/* cb_awrite */
162 };
163 
164 static int rootnex_map(dev_info_t *dip, dev_info_t *rdip, ddi_map_req_t *mp,
165     off_t offset, off_t len, caddr_t *vaddrp);
166 static int rootnex_map_fault(dev_info_t *dip, dev_info_t *rdip,
167     struct hat *hat, struct seg *seg, caddr_t addr,
168     struct devpage *dp, pfn_t pfn, uint_t prot, uint_t lock);
169 static int rootnex_dma_map(dev_info_t *dip, dev_info_t *rdip,
170     struct ddi_dma_req *dmareq, ddi_dma_handle_t *handlep);
171 static int rootnex_dma_allochdl(dev_info_t *dip, dev_info_t *rdip,
172     ddi_dma_attr_t *attr, int (*waitfp)(caddr_t), caddr_t arg,
173     ddi_dma_handle_t *handlep);
174 static int rootnex_dma_freehdl(dev_info_t *dip, dev_info_t *rdip,
175     ddi_dma_handle_t handle);
176 static int rootnex_dma_bindhdl(dev_info_t *dip, dev_info_t *rdip,
177     ddi_dma_handle_t handle, struct ddi_dma_req *dmareq,
178     ddi_dma_cookie_t *cookiep, uint_t *ccountp);
179 static int rootnex_dma_unbindhdl(dev_info_t *dip, dev_info_t *rdip,
180     ddi_dma_handle_t handle);
181 static int rootnex_dma_sync(dev_info_t *dip, dev_info_t *rdip,
182     ddi_dma_handle_t handle, off_t off, size_t len, uint_t cache_flags);
183 static int rootnex_dma_win(dev_info_t *dip, dev_info_t *rdip,
184     ddi_dma_handle_t handle, uint_t win, off_t *offp, size_t *lenp,
185     ddi_dma_cookie_t *cookiep, uint_t *ccountp);
186 static int rootnex_dma_mctl(dev_info_t *dip, dev_info_t *rdip,
187     ddi_dma_handle_t handle, enum ddi_dma_ctlops request,
188     off_t *offp, size_t *lenp, caddr_t *objp, uint_t cache_flags);
189 static int rootnex_ctlops(dev_info_t *dip, dev_info_t *rdip,
190     ddi_ctl_enum_t ctlop, void *arg, void *result);
191 static int rootnex_intr_ops(dev_info_t *pdip, dev_info_t *rdip,
192     ddi_intr_op_t intr_op, ddi_intr_handle_impl_t *hdlp, void *result);
193 
194 
195 static struct bus_ops rootnex_bus_ops = {
196 	BUSO_REV,
197 	rootnex_map,
198 	NULL,
199 	NULL,
200 	NULL,
201 	rootnex_map_fault,
202 	rootnex_dma_map,
203 	rootnex_dma_allochdl,
204 	rootnex_dma_freehdl,
205 	rootnex_dma_bindhdl,
206 	rootnex_dma_unbindhdl,
207 	rootnex_dma_sync,
208 	rootnex_dma_win,
209 	rootnex_dma_mctl,
210 	rootnex_ctlops,
211 	ddi_bus_prop_op,
212 	i_ddi_rootnex_get_eventcookie,
213 	i_ddi_rootnex_add_eventcall,
214 	i_ddi_rootnex_remove_eventcall,
215 	i_ddi_rootnex_post_event,
216 	0,			/* bus_intr_ctl */
217 	0,			/* bus_config */
218 	0,			/* bus_unconfig */
219 	NULL,			/* bus_fm_init */
220 	NULL,			/* bus_fm_fini */
221 	NULL,			/* bus_fm_access_enter */
222 	NULL,			/* bus_fm_access_exit */
223 	NULL,			/* bus_powr */
224 	rootnex_intr_ops	/* bus_intr_op */
225 };
226 
227 static int rootnex_attach(dev_info_t *dip, ddi_attach_cmd_t cmd);
228 static int rootnex_detach(dev_info_t *dip, ddi_detach_cmd_t cmd);
229 
230 static struct dev_ops rootnex_ops = {
231 	DEVO_REV,
232 	0,
233 	ddi_no_info,
234 	nulldev,
235 	nulldev,
236 	rootnex_attach,
237 	rootnex_detach,
238 	nulldev,
239 	&rootnex_cb_ops,
240 	&rootnex_bus_ops
241 };
242 
243 static struct modldrv rootnex_modldrv = {
244 	&mod_driverops,
245 	"i86pc root nexus %I%",
246 	&rootnex_ops
247 };
248 
249 static struct modlinkage rootnex_modlinkage = {
250 	MODREV_1,
251 	(void *)&rootnex_modldrv,
252 	NULL
253 };
254 
255 
256 /*
257  *  extern hacks
258  */
259 extern struct seg_ops segdev_ops;
260 extern int ignore_hardware_nodes;	/* force flag from ddi_impl.c */
261 #ifdef	DDI_MAP_DEBUG
262 extern int ddi_map_debug_flag;
263 #define	ddi_map_debug	if (ddi_map_debug_flag) prom_printf
264 #endif
265 #define	ptob64(x)	(((uint64_t)(x)) << MMU_PAGESHIFT)
266 extern void i86_pp_map(page_t *pp, caddr_t kaddr);
267 extern void i86_va_map(caddr_t vaddr, struct as *asp, caddr_t kaddr);
268 extern int (*psm_intr_ops)(dev_info_t *, ddi_intr_handle_impl_t *,
269     psm_intr_op_t, int *);
270 extern int impl_ddi_sunbus_initchild(dev_info_t *dip);
271 extern void impl_ddi_sunbus_removechild(dev_info_t *dip);
272 /*
273  * Use device arena to use for device control register mappings.
274  * Various kernel memory walkers (debugger, dtrace) need to know
275  * to avoid this address range to prevent undesired device activity.
276  */
277 extern void *device_arena_alloc(size_t size, int vm_flag);
278 extern void device_arena_free(void * vaddr, size_t size);
279 
280 
281 /*
282  *  Internal functions
283  */
284 static int rootnex_dma_init();
285 static void rootnex_add_props(dev_info_t *);
286 static int rootnex_ctl_reportdev(dev_info_t *dip);
287 static struct intrspec *rootnex_get_ispec(dev_info_t *rdip, int inum);
288 static int rootnex_ctlops_poke(peekpoke_ctlops_t *in_args);
289 static int rootnex_ctlops_peek(peekpoke_ctlops_t *in_args, void *result);
290 static int rootnex_map_regspec(ddi_map_req_t *mp, caddr_t *vaddrp);
291 static int rootnex_unmap_regspec(ddi_map_req_t *mp, caddr_t *vaddrp);
292 static int rootnex_map_handle(ddi_map_req_t *mp);
293 static void rootnex_clean_dmahdl(ddi_dma_impl_t *hp);
294 static int rootnex_valid_alloc_parms(ddi_dma_attr_t *attr, uint_t maxsegsize);
295 static int rootnex_valid_bind_parms(ddi_dma_req_t *dmareq,
296     ddi_dma_attr_t *attr);
297 static void rootnex_get_sgl(ddi_dma_obj_t *dmar_object, ddi_dma_cookie_t *sgl,
298     rootnex_sglinfo_t *sglinfo);
299 static int rootnex_bind_slowpath(ddi_dma_impl_t *hp, struct ddi_dma_req *dmareq,
300     rootnex_dma_t *dma, ddi_dma_attr_t *attr, int kmflag);
301 static int rootnex_setup_copybuf(ddi_dma_impl_t *hp, struct ddi_dma_req *dmareq,
302     rootnex_dma_t *dma, ddi_dma_attr_t *attr);
303 static void rootnex_teardown_copybuf(rootnex_dma_t *dma);
304 static int rootnex_setup_windows(ddi_dma_impl_t *hp, rootnex_dma_t *dma,
305     ddi_dma_attr_t *attr, int kmflag);
306 static void rootnex_teardown_windows(rootnex_dma_t *dma);
307 static void rootnex_init_win(ddi_dma_impl_t *hp, rootnex_dma_t *dma,
308     rootnex_window_t *window, ddi_dma_cookie_t *cookie, off_t cur_offset);
309 static void rootnex_setup_cookie(ddi_dma_obj_t *dmar_object,
310     rootnex_dma_t *dma, ddi_dma_cookie_t *cookie, off_t cur_offset,
311     size_t *copybuf_used, page_t **cur_pp);
312 static int rootnex_sgllen_window_boundary(ddi_dma_impl_t *hp,
313     rootnex_dma_t *dma, rootnex_window_t **windowp, ddi_dma_cookie_t *cookie,
314     ddi_dma_attr_t *attr, off_t cur_offset);
315 static int rootnex_copybuf_window_boundary(ddi_dma_impl_t *hp,
316     rootnex_dma_t *dma, rootnex_window_t **windowp,
317     ddi_dma_cookie_t *cookie, off_t cur_offset, size_t *copybuf_used);
318 static int rootnex_maxxfer_window_boundary(ddi_dma_impl_t *hp,
319     rootnex_dma_t *dma, rootnex_window_t **windowp, ddi_dma_cookie_t *cookie);
320 static int rootnex_valid_sync_parms(ddi_dma_impl_t *hp, rootnex_window_t *win,
321     off_t offset, size_t size, uint_t cache_flags);
322 static int rootnex_verify_buffer(rootnex_dma_t *dma);
323 
324 
325 /*
326  * _init()
327  *
328  */
329 int
330 _init(void)
331 {
332 
333 	rootnex_state = NULL;
334 	return (mod_install(&rootnex_modlinkage));
335 }
336 
337 
338 /*
339  * _info()
340  *
341  */
342 int
343 _info(struct modinfo *modinfop)
344 {
345 	return (mod_info(&rootnex_modlinkage, modinfop));
346 }
347 
348 
349 /*
350  * _fini()
351  *
352  */
353 int
354 _fini(void)
355 {
356 	return (EBUSY);
357 }
358 
359 
360 /*
361  * rootnex_attach()
362  *
363  */
364 static int
365 rootnex_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
366 {
367 	int e;
368 
369 
370 	switch (cmd) {
371 	case DDI_ATTACH:
372 		break;
373 	case DDI_RESUME:
374 		return (DDI_SUCCESS);
375 	default:
376 		return (DDI_FAILURE);
377 	}
378 
379 	/*
380 	 * We should only have one instance of rootnex. Save it away since we
381 	 * don't have an easy way to get it back later.
382 	 */
383 	ASSERT(rootnex_state == NULL);
384 	rootnex_state = kmem_zalloc(sizeof (rootnex_state_t), KM_SLEEP);
385 
386 	rootnex_state->r_dip = dip;
387 	rootnex_state->r_reserved_msg_printed = B_FALSE;
388 	rootnex_cnt = &rootnex_state->r_counters[0];
389 
390 	mutex_init(&rootnex_state->r_peekpoke_mutex, NULL, MUTEX_SPIN,
391 	    (void *)ipltospl(15));
392 
393 	/* initialize DMA related state */
394 	e = rootnex_dma_init();
395 	if (e != DDI_SUCCESS) {
396 		mutex_destroy(&rootnex_state->r_peekpoke_mutex);
397 		kmem_free(rootnex_state, sizeof (rootnex_state_t));
398 		return (DDI_FAILURE);
399 	}
400 
401 	/* Add static root node properties */
402 	rootnex_add_props(dip);
403 
404 	/* since we can't call ddi_report_dev() */
405 	cmn_err(CE_CONT, "?root nexus = %s\n", ddi_get_name(dip));
406 
407 	/* Initialize rootnex event handle */
408 	i_ddi_rootnex_init_events(dip);
409 
410 	return (DDI_SUCCESS);
411 }
412 
413 
414 /*
415  * rootnex_detach()
416  *
417  */
418 /*ARGSUSED*/
419 static int
420 rootnex_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
421 {
422 	switch (cmd) {
423 	case DDI_SUSPEND:
424 		break;
425 	default:
426 		return (DDI_FAILURE);
427 	}
428 
429 	return (DDI_SUCCESS);
430 }
431 
432 
433 /*
434  * rootnex_dma_init()
435  *
436  */
437 /*ARGSUSED*/
438 static int
439 rootnex_dma_init()
440 {
441 	size_t bufsize;
442 
443 
444 	/*
445 	 * size of our cookie/window/copybuf state needed in dma bind that we
446 	 * pre-alloc in dma_alloc_handle
447 	 */
448 	rootnex_state->r_prealloc_cookies = rootnex_prealloc_cookies;
449 	rootnex_state->r_prealloc_size =
450 	    (rootnex_state->r_prealloc_cookies * sizeof (ddi_dma_cookie_t)) +
451 	    (rootnex_prealloc_windows * sizeof (rootnex_window_t)) +
452 	    (rootnex_prealloc_copybuf * sizeof (rootnex_pgmap_t));
453 
454 	/*
455 	 * setup DDI DMA handle kmem cache, align each handle on 64 bytes,
456 	 * allocate 16 extra bytes for struct pointer alignment
457 	 * (p->dmai_private & dma->dp_prealloc_buffer)
458 	 */
459 	bufsize = sizeof (ddi_dma_impl_t) + sizeof (rootnex_dma_t) +
460 	    rootnex_state->r_prealloc_size + 0x10;
461 	rootnex_state->r_dmahdl_cache = kmem_cache_create("rootnex_dmahdl",
462 	    bufsize, 64, NULL, NULL, NULL, NULL, NULL, 0);
463 	if (rootnex_state->r_dmahdl_cache == NULL) {
464 		return (DDI_FAILURE);
465 	}
466 
467 	/*
468 	 * allocate array to track which major numbers we have printed warnings
469 	 * for.
470 	 */
471 	rootnex_warn_list = kmem_zalloc(devcnt * sizeof (*rootnex_warn_list),
472 	    KM_SLEEP);
473 
474 	return (DDI_SUCCESS);
475 }
476 
477 
478 /*
479  * rootnex_add_props()
480  *
481  */
482 static void
483 rootnex_add_props(dev_info_t *dip)
484 {
485 	rootnex_intprop_t *rpp;
486 	int i;
487 
488 	/* Add static integer/boolean properties to the root node */
489 	rpp = rootnex_intprp;
490 	for (i = 0; i < NROOT_INTPROPS; i++) {
491 		(void) e_ddi_prop_update_int(DDI_DEV_T_NONE, dip,
492 		    rpp[i].prop_name, rpp[i].prop_value);
493 	}
494 }
495 
496 
497 
498 /*
499  * *************************
500  *  ctlops related routines
501  * *************************
502  */
503 
504 /*
505  * rootnex_ctlops()
506  *
507  */
508 /*ARGSUSED*/
509 static int
510 rootnex_ctlops(dev_info_t *dip, dev_info_t *rdip, ddi_ctl_enum_t ctlop,
511     void *arg, void *result)
512 {
513 	int n, *ptr;
514 	struct ddi_parent_private_data *pdp;
515 
516 	switch (ctlop) {
517 	case DDI_CTLOPS_DMAPMAPC:
518 		/*
519 		 * Return 'partial' to indicate that dma mapping
520 		 * has to be done in the main MMU.
521 		 */
522 		return (DDI_DMA_PARTIAL);
523 
524 	case DDI_CTLOPS_BTOP:
525 		/*
526 		 * Convert byte count input to physical page units.
527 		 * (byte counts that are not a page-size multiple
528 		 * are rounded down)
529 		 */
530 		*(ulong_t *)result = btop(*(ulong_t *)arg);
531 		return (DDI_SUCCESS);
532 
533 	case DDI_CTLOPS_PTOB:
534 		/*
535 		 * Convert size in physical pages to bytes
536 		 */
537 		*(ulong_t *)result = ptob(*(ulong_t *)arg);
538 		return (DDI_SUCCESS);
539 
540 	case DDI_CTLOPS_BTOPR:
541 		/*
542 		 * Convert byte count input to physical page units
543 		 * (byte counts that are not a page-size multiple
544 		 * are rounded up)
545 		 */
546 		*(ulong_t *)result = btopr(*(ulong_t *)arg);
547 		return (DDI_SUCCESS);
548 
549 	case DDI_CTLOPS_POKE:
550 		return (rootnex_ctlops_poke((peekpoke_ctlops_t *)arg));
551 
552 	case DDI_CTLOPS_PEEK:
553 		return (rootnex_ctlops_peek((peekpoke_ctlops_t *)arg, result));
554 
555 	case DDI_CTLOPS_INITCHILD:
556 		return (impl_ddi_sunbus_initchild(arg));
557 
558 	case DDI_CTLOPS_UNINITCHILD:
559 		impl_ddi_sunbus_removechild(arg);
560 		return (DDI_SUCCESS);
561 
562 	case DDI_CTLOPS_REPORTDEV:
563 		return (rootnex_ctl_reportdev(rdip));
564 
565 	case DDI_CTLOPS_IOMIN:
566 		/*
567 		 * Nothing to do here but reflect back..
568 		 */
569 		return (DDI_SUCCESS);
570 
571 	case DDI_CTLOPS_REGSIZE:
572 	case DDI_CTLOPS_NREGS:
573 		break;
574 
575 	case DDI_CTLOPS_SIDDEV:
576 		if (ndi_dev_is_prom_node(rdip))
577 			return (DDI_SUCCESS);
578 		if (ndi_dev_is_persistent_node(rdip))
579 			return (DDI_SUCCESS);
580 		return (DDI_FAILURE);
581 
582 	case DDI_CTLOPS_POWER:
583 		return ((*pm_platform_power)((power_req_t *)arg));
584 
585 	case DDI_CTLOPS_RESERVED0: /* Was DDI_CTLOPS_NINTRS, obsolete */
586 	case DDI_CTLOPS_RESERVED1: /* Was DDI_CTLOPS_POKE_INIT, obsolete */
587 	case DDI_CTLOPS_RESERVED2: /* Was DDI_CTLOPS_POKE_FLUSH, obsolete */
588 	case DDI_CTLOPS_RESERVED3: /* Was DDI_CTLOPS_POKE_FINI, obsolete */
589 	case DDI_CTLOPS_RESERVED4: /* Was DDI_CTLOPS_INTR_HILEVEL, obsolete */
590 	case DDI_CTLOPS_RESERVED5: /* Was DDI_CTLOPS_XLATE_INTRS, obsolete */
591 		if (!rootnex_state->r_reserved_msg_printed) {
592 			rootnex_state->r_reserved_msg_printed = B_TRUE;
593 			cmn_err(CE_WARN, "Failing ddi_ctlops call(s) for "
594 			    "1 or more reserved/obsolete operations.");
595 		}
596 		return (DDI_FAILURE);
597 
598 	default:
599 		return (DDI_FAILURE);
600 	}
601 	/*
602 	 * The rest are for "hardware" properties
603 	 */
604 	if ((pdp = ddi_get_parent_data(rdip)) == NULL)
605 		return (DDI_FAILURE);
606 
607 	if (ctlop == DDI_CTLOPS_NREGS) {
608 		ptr = (int *)result;
609 		*ptr = pdp->par_nreg;
610 	} else {
611 		off_t *size = (off_t *)result;
612 
613 		ptr = (int *)arg;
614 		n = *ptr;
615 		if (n >= pdp->par_nreg) {
616 			return (DDI_FAILURE);
617 		}
618 		*size = (off_t)pdp->par_reg[n].regspec_size;
619 	}
620 	return (DDI_SUCCESS);
621 }
622 
623 
624 /*
625  * rootnex_ctl_reportdev()
626  *
627  */
628 static int
629 rootnex_ctl_reportdev(dev_info_t *dev)
630 {
631 	int i, n, len, f_len = 0;
632 	char *buf;
633 
634 	buf = kmem_alloc(REPORTDEV_BUFSIZE, KM_SLEEP);
635 	f_len += snprintf(buf, REPORTDEV_BUFSIZE,
636 	    "%s%d at root", ddi_driver_name(dev), ddi_get_instance(dev));
637 	len = strlen(buf);
638 
639 	for (i = 0; i < sparc_pd_getnreg(dev); i++) {
640 
641 		struct regspec *rp = sparc_pd_getreg(dev, i);
642 
643 		if (i == 0)
644 			f_len += snprintf(buf + len, REPORTDEV_BUFSIZE - len,
645 			    ": ");
646 		else
647 			f_len += snprintf(buf + len, REPORTDEV_BUFSIZE - len,
648 			    " and ");
649 		len = strlen(buf);
650 
651 		switch (rp->regspec_bustype) {
652 
653 		case BTEISA:
654 			f_len += snprintf(buf + len, REPORTDEV_BUFSIZE - len,
655 			    "%s 0x%x", DEVI_EISA_NEXNAME, rp->regspec_addr);
656 			break;
657 
658 		case BTISA:
659 			f_len += snprintf(buf + len, REPORTDEV_BUFSIZE - len,
660 			    "%s 0x%x", DEVI_ISA_NEXNAME, rp->regspec_addr);
661 			break;
662 
663 		default:
664 			f_len += snprintf(buf + len, REPORTDEV_BUFSIZE - len,
665 			    "space %x offset %x",
666 			    rp->regspec_bustype, rp->regspec_addr);
667 			break;
668 		}
669 		len = strlen(buf);
670 	}
671 	for (i = 0, n = sparc_pd_getnintr(dev); i < n; i++) {
672 		int pri;
673 
674 		if (i != 0) {
675 			f_len += snprintf(buf + len, REPORTDEV_BUFSIZE - len,
676 			    ",");
677 			len = strlen(buf);
678 		}
679 		pri = INT_IPL(sparc_pd_getintr(dev, i)->intrspec_pri);
680 		f_len += snprintf(buf + len, REPORTDEV_BUFSIZE - len,
681 		    " sparc ipl %d", pri);
682 		len = strlen(buf);
683 	}
684 #ifdef DEBUG
685 	if (f_len + 1 >= REPORTDEV_BUFSIZE) {
686 		cmn_err(CE_NOTE, "next message is truncated: "
687 		    "printed length 1024, real length %d", f_len);
688 	}
689 #endif /* DEBUG */
690 	cmn_err(CE_CONT, "?%s\n", buf);
691 	kmem_free(buf, REPORTDEV_BUFSIZE);
692 	return (DDI_SUCCESS);
693 }
694 
695 
696 /*
697  * rootnex_ctlops_poke()
698  *
699  */
700 static int
701 rootnex_ctlops_poke(peekpoke_ctlops_t *in_args)
702 {
703 	int err = DDI_SUCCESS;
704 	on_trap_data_t otd;
705 
706 	/* Cautious access not supported. */
707 	if (in_args->handle != NULL)
708 		return (DDI_FAILURE);
709 
710 	mutex_enter(&rootnex_state->r_peekpoke_mutex);
711 
712 	/* Set up protected environment. */
713 	if (!on_trap(&otd, OT_DATA_ACCESS)) {
714 		switch (in_args->size) {
715 		case sizeof (uint8_t):
716 			*(uint8_t *)in_args->dev_addr = *(uint8_t *)
717 			    in_args->host_addr;
718 			break;
719 
720 		case sizeof (uint16_t):
721 			*(uint16_t *)in_args->dev_addr =
722 			    *(uint16_t *)in_args->host_addr;
723 			break;
724 
725 		case sizeof (uint32_t):
726 			*(uint32_t *)in_args->dev_addr =
727 			    *(uint32_t *)in_args->host_addr;
728 			break;
729 
730 		case sizeof (uint64_t):
731 			*(uint64_t *)in_args->dev_addr =
732 			    *(uint64_t *)in_args->host_addr;
733 			break;
734 
735 		default:
736 			err = DDI_FAILURE;
737 			break;
738 		}
739 	} else
740 		err = DDI_FAILURE;
741 
742 	/* Take down protected environment. */
743 	no_trap();
744 	mutex_exit(&rootnex_state->r_peekpoke_mutex);
745 
746 	return (err);
747 }
748 
749 
750 /*
751  * rootnex_ctlops_peek()
752  *
753  */
754 static int
755 rootnex_ctlops_peek(peekpoke_ctlops_t *in_args, void *result)
756 {
757 	int err = DDI_SUCCESS;
758 	on_trap_data_t otd;
759 
760 	/* Cautious access not supported. */
761 	if (in_args->handle != NULL)
762 		return (DDI_FAILURE);
763 
764 	mutex_enter(&rootnex_state->r_peekpoke_mutex);
765 
766 	if (!on_trap(&otd, OT_DATA_ACCESS)) {
767 		switch (in_args->size) {
768 		case sizeof (uint8_t):
769 			*(uint8_t *)in_args->host_addr =
770 			    *(uint8_t *)in_args->dev_addr;
771 			break;
772 
773 		case sizeof (uint16_t):
774 			*(uint16_t *)in_args->host_addr =
775 			    *(uint16_t *)in_args->dev_addr;
776 			break;
777 
778 		case sizeof (uint32_t):
779 			*(uint32_t *)in_args->host_addr =
780 			    *(uint32_t *)in_args->dev_addr;
781 			break;
782 
783 		case sizeof (uint64_t):
784 			*(uint64_t *)in_args->host_addr =
785 			    *(uint64_t *)in_args->dev_addr;
786 			break;
787 
788 		default:
789 			err = DDI_FAILURE;
790 			break;
791 		}
792 		result = (void *)in_args->host_addr;
793 	} else
794 		err = DDI_FAILURE;
795 
796 	no_trap();
797 	mutex_exit(&rootnex_state->r_peekpoke_mutex);
798 
799 	return (err);
800 }
801 
802 
803 
804 /*
805  * ******************
806  *  map related code
807  * ******************
808  */
809 
810 /*
811  * rootnex_map()
812  *
813  */
814 static int
815 rootnex_map(dev_info_t *dip, dev_info_t *rdip, ddi_map_req_t *mp, off_t offset,
816     off_t len, caddr_t *vaddrp)
817 {
818 	struct regspec *rp, tmp_reg;
819 	ddi_map_req_t mr = *mp;		/* Get private copy of request */
820 	int error;
821 
822 	mp = &mr;
823 
824 	switch (mp->map_op)  {
825 	case DDI_MO_MAP_LOCKED:
826 	case DDI_MO_UNMAP:
827 	case DDI_MO_MAP_HANDLE:
828 		break;
829 	default:
830 #ifdef	DDI_MAP_DEBUG
831 		cmn_err(CE_WARN, "rootnex_map: unimplemented map op %d.",
832 		    mp->map_op);
833 #endif	/* DDI_MAP_DEBUG */
834 		return (DDI_ME_UNIMPLEMENTED);
835 	}
836 
837 	if (mp->map_flags & DDI_MF_USER_MAPPING)  {
838 #ifdef	DDI_MAP_DEBUG
839 		cmn_err(CE_WARN, "rootnex_map: unimplemented map type: user.");
840 #endif	/* DDI_MAP_DEBUG */
841 		return (DDI_ME_UNIMPLEMENTED);
842 	}
843 
844 	/*
845 	 * First, if given an rnumber, convert it to a regspec...
846 	 * (Presumably, this is on behalf of a child of the root node?)
847 	 */
848 
849 	if (mp->map_type == DDI_MT_RNUMBER)  {
850 
851 		int rnumber = mp->map_obj.rnumber;
852 #ifdef	DDI_MAP_DEBUG
853 		static char *out_of_range =
854 		    "rootnex_map: Out of range rnumber <%d>, device <%s>";
855 #endif	/* DDI_MAP_DEBUG */
856 
857 		rp = i_ddi_rnumber_to_regspec(rdip, rnumber);
858 		if (rp == NULL)  {
859 #ifdef	DDI_MAP_DEBUG
860 			cmn_err(CE_WARN, out_of_range, rnumber,
861 			    ddi_get_name(rdip));
862 #endif	/* DDI_MAP_DEBUG */
863 			return (DDI_ME_RNUMBER_RANGE);
864 		}
865 
866 		/*
867 		 * Convert the given ddi_map_req_t from rnumber to regspec...
868 		 */
869 
870 		mp->map_type = DDI_MT_REGSPEC;
871 		mp->map_obj.rp = rp;
872 	}
873 
874 	/*
875 	 * Adjust offset and length correspnding to called values...
876 	 * XXX: A non-zero length means override the one in the regspec
877 	 * XXX: (regardless of what's in the parent's range?)
878 	 */
879 
880 	tmp_reg = *(mp->map_obj.rp);		/* Preserve underlying data */
881 	rp = mp->map_obj.rp = &tmp_reg;		/* Use tmp_reg in request */
882 
883 #ifdef	DDI_MAP_DEBUG
884 	cmn_err(CE_CONT,
885 		"rootnex: <%s,%s> <0x%x, 0x%x, 0x%d>"
886 		" offset %d len %d handle 0x%x\n",
887 		ddi_get_name(dip), ddi_get_name(rdip),
888 		rp->regspec_bustype, rp->regspec_addr, rp->regspec_size,
889 		offset, len, mp->map_handlep);
890 #endif	/* DDI_MAP_DEBUG */
891 
892 	/*
893 	 * I/O or memory mapping:
894 	 *
895 	 *	<bustype=0, addr=x, len=x>: memory
896 	 *	<bustype=1, addr=x, len=x>: i/o
897 	 *	<bustype>1, addr=0, len=x>: x86-compatibility i/o
898 	 */
899 
900 	if (rp->regspec_bustype > 1 && rp->regspec_addr != 0) {
901 		cmn_err(CE_WARN, "<%s,%s> invalid register spec"
902 		    " <0x%x, 0x%x, 0x%x>", ddi_get_name(dip),
903 		    ddi_get_name(rdip), rp->regspec_bustype,
904 		    rp->regspec_addr, rp->regspec_size);
905 		return (DDI_ME_INVAL);
906 	}
907 
908 	if (rp->regspec_bustype > 1 && rp->regspec_addr == 0) {
909 		/*
910 		 * compatibility i/o mapping
911 		 */
912 		rp->regspec_bustype += (uint_t)offset;
913 	} else {
914 		/*
915 		 * Normal memory or i/o mapping
916 		 */
917 		rp->regspec_addr += (uint_t)offset;
918 	}
919 
920 	if (len != 0)
921 		rp->regspec_size = (uint_t)len;
922 
923 #ifdef	DDI_MAP_DEBUG
924 	cmn_err(CE_CONT,
925 		"             <%s,%s> <0x%x, 0x%x, 0x%d>"
926 		" offset %d len %d handle 0x%x\n",
927 		ddi_get_name(dip), ddi_get_name(rdip),
928 		rp->regspec_bustype, rp->regspec_addr, rp->regspec_size,
929 		offset, len, mp->map_handlep);
930 #endif	/* DDI_MAP_DEBUG */
931 
932 	/*
933 	 * Apply any parent ranges at this level, if applicable.
934 	 * (This is where nexus specific regspec translation takes place.
935 	 * Use of this function is implicit agreement that translation is
936 	 * provided via ddi_apply_range.)
937 	 */
938 
939 #ifdef	DDI_MAP_DEBUG
940 	ddi_map_debug("applying range of parent <%s> to child <%s>...\n",
941 	    ddi_get_name(dip), ddi_get_name(rdip));
942 #endif	/* DDI_MAP_DEBUG */
943 
944 	if ((error = i_ddi_apply_range(dip, rdip, mp->map_obj.rp)) != 0)
945 		return (error);
946 
947 	switch (mp->map_op)  {
948 	case DDI_MO_MAP_LOCKED:
949 
950 		/*
951 		 * Set up the locked down kernel mapping to the regspec...
952 		 */
953 
954 		return (rootnex_map_regspec(mp, vaddrp));
955 
956 	case DDI_MO_UNMAP:
957 
958 		/*
959 		 * Release mapping...
960 		 */
961 
962 		return (rootnex_unmap_regspec(mp, vaddrp));
963 
964 	case DDI_MO_MAP_HANDLE:
965 
966 		return (rootnex_map_handle(mp));
967 
968 	default:
969 		return (DDI_ME_UNIMPLEMENTED);
970 	}
971 }
972 
973 
974 /*
975  * rootnex_map_fault()
976  *
977  *	fault in mappings for requestors
978  */
979 /*ARGSUSED*/
980 static int
981 rootnex_map_fault(dev_info_t *dip, dev_info_t *rdip, struct hat *hat,
982     struct seg *seg, caddr_t addr, struct devpage *dp, pfn_t pfn, uint_t prot,
983     uint_t lock)
984 {
985 
986 #ifdef	DDI_MAP_DEBUG
987 	ddi_map_debug("rootnex_map_fault: address <%x> pfn <%x>", addr, pfn);
988 	ddi_map_debug(" Seg <%s>\n",
989 	    seg->s_ops == &segdev_ops ? "segdev" :
990 	    seg == &kvseg ? "segkmem" : "NONE!");
991 #endif	/* DDI_MAP_DEBUG */
992 
993 	/*
994 	 * This is all terribly broken, but it is a start
995 	 *
996 	 * XXX	Note that this test means that segdev_ops
997 	 *	must be exported from seg_dev.c.
998 	 * XXX	What about devices with their own segment drivers?
999 	 */
1000 	if (seg->s_ops == &segdev_ops) {
1001 		struct segdev_data *sdp =
1002 			(struct segdev_data *)seg->s_data;
1003 
1004 		if (hat == NULL) {
1005 			/*
1006 			 * This is one plausible interpretation of
1007 			 * a null hat i.e. use the first hat on the
1008 			 * address space hat list which by convention is
1009 			 * the hat of the system MMU.  At alternative
1010 			 * would be to panic .. this might well be better ..
1011 			 */
1012 			ASSERT(AS_READ_HELD(seg->s_as, &seg->s_as->a_lock));
1013 			hat = seg->s_as->a_hat;
1014 			cmn_err(CE_NOTE, "rootnex_map_fault: nil hat");
1015 		}
1016 		hat_devload(hat, addr, MMU_PAGESIZE, pfn, prot | sdp->hat_attr,
1017 		    (lock ? HAT_LOAD_LOCK : HAT_LOAD));
1018 	} else if (seg == &kvseg && dp == NULL) {
1019 		hat_devload(kas.a_hat, addr, MMU_PAGESIZE, pfn, prot,
1020 		    HAT_LOAD_LOCK);
1021 	} else
1022 		return (DDI_FAILURE);
1023 	return (DDI_SUCCESS);
1024 }
1025 
1026 
1027 /*
1028  * rootnex_map_regspec()
1029  *     we don't support mapping of I/O cards above 4Gb
1030  */
1031 static int
1032 rootnex_map_regspec(ddi_map_req_t *mp, caddr_t *vaddrp)
1033 {
1034 	ulong_t base;
1035 	void *cvaddr;
1036 	uint_t npages, pgoffset;
1037 	struct regspec *rp;
1038 	ddi_acc_hdl_t *hp;
1039 	ddi_acc_impl_t *ap;
1040 	uint_t	hat_acc_flags;
1041 
1042 	rp = mp->map_obj.rp;
1043 	hp = mp->map_handlep;
1044 
1045 #ifdef	DDI_MAP_DEBUG
1046 	ddi_map_debug(
1047 	    "rootnex_map_regspec: <0x%x 0x%x 0x%x> handle 0x%x\n",
1048 	    rp->regspec_bustype, rp->regspec_addr,
1049 	    rp->regspec_size, mp->map_handlep);
1050 #endif	/* DDI_MAP_DEBUG */
1051 
1052 	/*
1053 	 * I/O or memory mapping
1054 	 *
1055 	 *	<bustype=0, addr=x, len=x>: memory
1056 	 *	<bustype=1, addr=x, len=x>: i/o
1057 	 *	<bustype>1, addr=0, len=x>: x86-compatibility i/o
1058 	 */
1059 
1060 	if (rp->regspec_bustype > 1 && rp->regspec_addr != 0) {
1061 		cmn_err(CE_WARN, "rootnex: invalid register spec"
1062 		    " <0x%x, 0x%x, 0x%x>", rp->regspec_bustype,
1063 		    rp->regspec_addr, rp->regspec_size);
1064 		return (DDI_FAILURE);
1065 	}
1066 
1067 	if (rp->regspec_bustype != 0) {
1068 		/*
1069 		 * I/O space - needs a handle.
1070 		 */
1071 		if (hp == NULL) {
1072 			return (DDI_FAILURE);
1073 		}
1074 		ap = (ddi_acc_impl_t *)hp->ah_platform_private;
1075 		ap->ahi_acc_attr |= DDI_ACCATTR_IO_SPACE;
1076 		impl_acc_hdl_init(hp);
1077 
1078 		if (mp->map_flags & DDI_MF_DEVICE_MAPPING) {
1079 #ifdef  DDI_MAP_DEBUG
1080 			ddi_map_debug("rootnex_map_regspec: mmap() \
1081 to I/O space is not supported.\n");
1082 #endif  /* DDI_MAP_DEBUG */
1083 			return (DDI_ME_INVAL);
1084 		} else {
1085 			/*
1086 			 * 1275-compliant vs. compatibility i/o mapping
1087 			 */
1088 			*vaddrp =
1089 			    (rp->regspec_bustype > 1 && rp->regspec_addr == 0) ?
1090 				((caddr_t)(uintptr_t)rp->regspec_bustype) :
1091 				((caddr_t)(uintptr_t)rp->regspec_addr);
1092 		}
1093 
1094 #ifdef	DDI_MAP_DEBUG
1095 		ddi_map_debug(
1096 	    "rootnex_map_regspec: \"Mapping\" %d bytes I/O space at 0x%x\n",
1097 		    rp->regspec_size, *vaddrp);
1098 #endif	/* DDI_MAP_DEBUG */
1099 		return (DDI_SUCCESS);
1100 	}
1101 
1102 	/*
1103 	 * Memory space
1104 	 */
1105 
1106 	if (hp != NULL) {
1107 		/*
1108 		 * hat layer ignores
1109 		 * hp->ah_acc.devacc_attr_endian_flags.
1110 		 */
1111 		switch (hp->ah_acc.devacc_attr_dataorder) {
1112 		case DDI_STRICTORDER_ACC:
1113 			hat_acc_flags = HAT_STRICTORDER;
1114 			break;
1115 		case DDI_UNORDERED_OK_ACC:
1116 			hat_acc_flags = HAT_UNORDERED_OK;
1117 			break;
1118 		case DDI_MERGING_OK_ACC:
1119 			hat_acc_flags = HAT_MERGING_OK;
1120 			break;
1121 		case DDI_LOADCACHING_OK_ACC:
1122 			hat_acc_flags = HAT_LOADCACHING_OK;
1123 			break;
1124 		case DDI_STORECACHING_OK_ACC:
1125 			hat_acc_flags = HAT_STORECACHING_OK;
1126 			break;
1127 		}
1128 		ap = (ddi_acc_impl_t *)hp->ah_platform_private;
1129 		ap->ahi_acc_attr |= DDI_ACCATTR_CPU_VADDR;
1130 		impl_acc_hdl_init(hp);
1131 		hp->ah_hat_flags = hat_acc_flags;
1132 	} else {
1133 		hat_acc_flags = HAT_STRICTORDER;
1134 	}
1135 
1136 	base = (ulong_t)rp->regspec_addr & (~MMU_PAGEOFFSET); /* base addr */
1137 	pgoffset = (ulong_t)rp->regspec_addr & MMU_PAGEOFFSET; /* offset */
1138 
1139 	if (rp->regspec_size == 0) {
1140 #ifdef  DDI_MAP_DEBUG
1141 		ddi_map_debug("rootnex_map_regspec: zero regspec_size\n");
1142 #endif  /* DDI_MAP_DEBUG */
1143 		return (DDI_ME_INVAL);
1144 	}
1145 
1146 	if (mp->map_flags & DDI_MF_DEVICE_MAPPING) {
1147 		*vaddrp = (caddr_t)mmu_btop(base);
1148 	} else {
1149 		npages = mmu_btopr(rp->regspec_size + pgoffset);
1150 
1151 #ifdef	DDI_MAP_DEBUG
1152 		ddi_map_debug("rootnex_map_regspec: Mapping %d pages \
1153 physical %x ",
1154 		    npages, base);
1155 #endif	/* DDI_MAP_DEBUG */
1156 
1157 		cvaddr = device_arena_alloc(ptob(npages), VM_NOSLEEP);
1158 		if (cvaddr == NULL)
1159 			return (DDI_ME_NORESOURCES);
1160 
1161 		/*
1162 		 * Now map in the pages we've allocated...
1163 		 */
1164 		hat_devload(kas.a_hat, cvaddr, mmu_ptob(npages), mmu_btop(base),
1165 		    mp->map_prot | hat_acc_flags, HAT_LOAD_LOCK);
1166 		*vaddrp = (caddr_t)cvaddr + pgoffset;
1167 	}
1168 
1169 #ifdef	DDI_MAP_DEBUG
1170 	ddi_map_debug("at virtual 0x%x\n", *vaddrp);
1171 #endif	/* DDI_MAP_DEBUG */
1172 	return (DDI_SUCCESS);
1173 }
1174 
1175 
1176 /*
1177  * rootnex_unmap_regspec()
1178  *
1179  */
1180 static int
1181 rootnex_unmap_regspec(ddi_map_req_t *mp, caddr_t *vaddrp)
1182 {
1183 	caddr_t addr = (caddr_t)*vaddrp;
1184 	uint_t npages, pgoffset;
1185 	struct regspec *rp;
1186 
1187 	if (mp->map_flags & DDI_MF_DEVICE_MAPPING)
1188 		return (0);
1189 
1190 	rp = mp->map_obj.rp;
1191 
1192 	if (rp->regspec_size == 0) {
1193 #ifdef  DDI_MAP_DEBUG
1194 		ddi_map_debug("rootnex_unmap_regspec: zero regspec_size\n");
1195 #endif  /* DDI_MAP_DEBUG */
1196 		return (DDI_ME_INVAL);
1197 	}
1198 
1199 	/*
1200 	 * I/O or memory mapping:
1201 	 *
1202 	 *	<bustype=0, addr=x, len=x>: memory
1203 	 *	<bustype=1, addr=x, len=x>: i/o
1204 	 *	<bustype>1, addr=0, len=x>: x86-compatibility i/o
1205 	 */
1206 	if (rp->regspec_bustype != 0) {
1207 		/*
1208 		 * This is I/O space, which requires no particular
1209 		 * processing on unmap since it isn't mapped in the
1210 		 * first place.
1211 		 */
1212 		return (DDI_SUCCESS);
1213 	}
1214 
1215 	/*
1216 	 * Memory space
1217 	 */
1218 	pgoffset = (uintptr_t)addr & MMU_PAGEOFFSET;
1219 	npages = mmu_btopr(rp->regspec_size + pgoffset);
1220 	hat_unload(kas.a_hat, addr - pgoffset, ptob(npages), HAT_UNLOAD_UNLOCK);
1221 	device_arena_free(addr - pgoffset, ptob(npages));
1222 
1223 	/*
1224 	 * Destroy the pointer - the mapping has logically gone
1225 	 */
1226 	*vaddrp = NULL;
1227 
1228 	return (DDI_SUCCESS);
1229 }
1230 
1231 
1232 /*
1233  * rootnex_map_handle()
1234  *
1235  */
1236 static int
1237 rootnex_map_handle(ddi_map_req_t *mp)
1238 {
1239 	ddi_acc_hdl_t *hp;
1240 	ulong_t base;
1241 	uint_t pgoffset;
1242 	struct regspec *rp;
1243 
1244 	rp = mp->map_obj.rp;
1245 
1246 #ifdef	DDI_MAP_DEBUG
1247 	ddi_map_debug(
1248 	    "rootnex_map_handle: <0x%x 0x%x 0x%x> handle 0x%x\n",
1249 	    rp->regspec_bustype, rp->regspec_addr,
1250 	    rp->regspec_size, mp->map_handlep);
1251 #endif	/* DDI_MAP_DEBUG */
1252 
1253 	/*
1254 	 * I/O or memory mapping:
1255 	 *
1256 	 *	<bustype=0, addr=x, len=x>: memory
1257 	 *	<bustype=1, addr=x, len=x>: i/o
1258 	 *	<bustype>1, addr=0, len=x>: x86-compatibility i/o
1259 	 */
1260 	if (rp->regspec_bustype != 0) {
1261 		/*
1262 		 * This refers to I/O space, and we don't support "mapping"
1263 		 * I/O space to a user.
1264 		 */
1265 		return (DDI_FAILURE);
1266 	}
1267 
1268 	/*
1269 	 * Set up the hat_flags for the mapping.
1270 	 */
1271 	hp = mp->map_handlep;
1272 
1273 	switch (hp->ah_acc.devacc_attr_endian_flags) {
1274 	case DDI_NEVERSWAP_ACC:
1275 		hp->ah_hat_flags = HAT_NEVERSWAP | HAT_STRICTORDER;
1276 		break;
1277 	case DDI_STRUCTURE_LE_ACC:
1278 		hp->ah_hat_flags = HAT_STRUCTURE_LE;
1279 		break;
1280 	case DDI_STRUCTURE_BE_ACC:
1281 		return (DDI_FAILURE);
1282 	default:
1283 		return (DDI_REGS_ACC_CONFLICT);
1284 	}
1285 
1286 	switch (hp->ah_acc.devacc_attr_dataorder) {
1287 	case DDI_STRICTORDER_ACC:
1288 		break;
1289 	case DDI_UNORDERED_OK_ACC:
1290 		hp->ah_hat_flags |= HAT_UNORDERED_OK;
1291 		break;
1292 	case DDI_MERGING_OK_ACC:
1293 		hp->ah_hat_flags |= HAT_MERGING_OK;
1294 		break;
1295 	case DDI_LOADCACHING_OK_ACC:
1296 		hp->ah_hat_flags |= HAT_LOADCACHING_OK;
1297 		break;
1298 	case DDI_STORECACHING_OK_ACC:
1299 		hp->ah_hat_flags |= HAT_STORECACHING_OK;
1300 		break;
1301 	default:
1302 		return (DDI_FAILURE);
1303 	}
1304 
1305 	base = (ulong_t)rp->regspec_addr & (~MMU_PAGEOFFSET); /* base addr */
1306 	pgoffset = (ulong_t)rp->regspec_addr & MMU_PAGEOFFSET; /* offset */
1307 
1308 	if (rp->regspec_size == 0)
1309 		return (DDI_ME_INVAL);
1310 
1311 	hp->ah_pfn = mmu_btop(base);
1312 	hp->ah_pnum = mmu_btopr(rp->regspec_size + pgoffset);
1313 
1314 	return (DDI_SUCCESS);
1315 }
1316 
1317 
1318 
1319 /*
1320  * ************************
1321  *  interrupt related code
1322  * ************************
1323  */
1324 
1325 /*
1326  * rootnex_intr_ops()
1327  *	bus_intr_op() function for interrupt support
1328  */
1329 /* ARGSUSED */
1330 static int
1331 rootnex_intr_ops(dev_info_t *pdip, dev_info_t *rdip, ddi_intr_op_t intr_op,
1332     ddi_intr_handle_impl_t *hdlp, void *result)
1333 {
1334 	struct intrspec			*ispec;
1335 	struct ddi_parent_private_data	*pdp;
1336 
1337 	DDI_INTR_NEXDBG((CE_CONT,
1338 	    "rootnex_intr_ops: pdip = %p, rdip = %p, intr_op = %x, hdlp = %p\n",
1339 	    (void *)pdip, (void *)rdip, intr_op, (void *)hdlp));
1340 
1341 	/* Process the interrupt operation */
1342 	switch (intr_op) {
1343 	case DDI_INTROP_GETCAP:
1344 		/* First check with pcplusmp */
1345 		if (psm_intr_ops == NULL)
1346 			return (DDI_FAILURE);
1347 
1348 		if ((*psm_intr_ops)(rdip, hdlp, PSM_INTR_OP_GET_CAP, result)) {
1349 			*(int *)result = 0;
1350 			return (DDI_FAILURE);
1351 		}
1352 		break;
1353 	case DDI_INTROP_SETCAP:
1354 		if (psm_intr_ops == NULL)
1355 			return (DDI_FAILURE);
1356 
1357 		if ((*psm_intr_ops)(rdip, hdlp, PSM_INTR_OP_SET_CAP, result))
1358 			return (DDI_FAILURE);
1359 		break;
1360 	case DDI_INTROP_ALLOC:
1361 		if ((ispec = rootnex_get_ispec(rdip, hdlp->ih_inum)) == NULL)
1362 			return (DDI_FAILURE);
1363 		hdlp->ih_pri = ispec->intrspec_pri;
1364 		*(int *)result = hdlp->ih_scratch1;
1365 		break;
1366 	case DDI_INTROP_FREE:
1367 		pdp = ddi_get_parent_data(rdip);
1368 		/*
1369 		 * Special case for 'pcic' driver' only.
1370 		 * If an intrspec was created for it, clean it up here
1371 		 * See detailed comments on this in the function
1372 		 * rootnex_get_ispec().
1373 		 */
1374 		if (pdp->par_intr && strcmp(ddi_get_name(rdip), "pcic") == 0) {
1375 			kmem_free(pdp->par_intr, sizeof (struct intrspec) *
1376 			    pdp->par_nintr);
1377 			/*
1378 			 * Set it to zero; so that
1379 			 * DDI framework doesn't free it again
1380 			 */
1381 			pdp->par_intr = NULL;
1382 			pdp->par_nintr = 0;
1383 		}
1384 		break;
1385 	case DDI_INTROP_GETPRI:
1386 		if ((ispec = rootnex_get_ispec(rdip, hdlp->ih_inum)) == NULL)
1387 			return (DDI_FAILURE);
1388 		*(int *)result = ispec->intrspec_pri;
1389 		break;
1390 	case DDI_INTROP_SETPRI:
1391 		/* Validate the interrupt priority passed to us */
1392 		if (*(int *)result > LOCK_LEVEL)
1393 			return (DDI_FAILURE);
1394 
1395 		/* Ensure that PSM is all initialized and ispec is ok */
1396 		if ((psm_intr_ops == NULL) ||
1397 		    ((ispec = rootnex_get_ispec(rdip, hdlp->ih_inum)) == NULL))
1398 			return (DDI_FAILURE);
1399 
1400 		/* Change the priority */
1401 		if ((*psm_intr_ops)(rdip, hdlp, PSM_INTR_OP_SET_PRI, result) ==
1402 		    PSM_FAILURE)
1403 			return (DDI_FAILURE);
1404 
1405 		/* update the ispec with the new priority */
1406 		ispec->intrspec_pri =  *(int *)result;
1407 		break;
1408 	case DDI_INTROP_ADDISR:
1409 		if ((ispec = rootnex_get_ispec(rdip, hdlp->ih_inum)) == NULL)
1410 			return (DDI_FAILURE);
1411 		ispec->intrspec_func = hdlp->ih_cb_func;
1412 		break;
1413 	case DDI_INTROP_REMISR:
1414 		if ((ispec = rootnex_get_ispec(rdip, hdlp->ih_inum)) == NULL)
1415 			return (DDI_FAILURE);
1416 		ispec->intrspec_func = (uint_t (*)()) 0;
1417 		break;
1418 	case DDI_INTROP_ENABLE:
1419 		if ((ispec = rootnex_get_ispec(rdip, hdlp->ih_inum)) == NULL)
1420 			return (DDI_FAILURE);
1421 
1422 		/* Call psmi to translate irq with the dip */
1423 		if (psm_intr_ops == NULL)
1424 			return (DDI_FAILURE);
1425 
1426 		hdlp->ih_private = (void *)ispec;
1427 		(void) (*psm_intr_ops)(rdip, hdlp, PSM_INTR_OP_XLATE_VECTOR,
1428 		    (int *)&hdlp->ih_vector);
1429 
1430 		/* Add the interrupt handler */
1431 		if (!add_avintr((void *)hdlp, ispec->intrspec_pri,
1432 		    hdlp->ih_cb_func, DEVI(rdip)->devi_name, hdlp->ih_vector,
1433 		    hdlp->ih_cb_arg1, hdlp->ih_cb_arg2, rdip))
1434 			return (DDI_FAILURE);
1435 		break;
1436 	case DDI_INTROP_DISABLE:
1437 		if ((ispec = rootnex_get_ispec(rdip, hdlp->ih_inum)) == NULL)
1438 			return (DDI_FAILURE);
1439 
1440 		/* Call psm_ops() to translate irq with the dip */
1441 		if (psm_intr_ops == NULL)
1442 			return (DDI_FAILURE);
1443 
1444 		hdlp->ih_private = (void *)ispec;
1445 		(void) (*psm_intr_ops)(rdip, hdlp,
1446 		    PSM_INTR_OP_XLATE_VECTOR, (int *)&hdlp->ih_vector);
1447 
1448 		/* Remove the interrupt handler */
1449 		rem_avintr((void *)hdlp, ispec->intrspec_pri,
1450 		    hdlp->ih_cb_func, hdlp->ih_vector);
1451 		break;
1452 	case DDI_INTROP_SETMASK:
1453 		if (psm_intr_ops == NULL)
1454 			return (DDI_FAILURE);
1455 
1456 		if ((*psm_intr_ops)(rdip, hdlp, PSM_INTR_OP_SET_MASK, NULL))
1457 			return (DDI_FAILURE);
1458 		break;
1459 	case DDI_INTROP_CLRMASK:
1460 		if (psm_intr_ops == NULL)
1461 			return (DDI_FAILURE);
1462 
1463 		if ((*psm_intr_ops)(rdip, hdlp, PSM_INTR_OP_CLEAR_MASK, NULL))
1464 			return (DDI_FAILURE);
1465 		break;
1466 	case DDI_INTROP_GETPENDING:
1467 		if (psm_intr_ops == NULL)
1468 			return (DDI_FAILURE);
1469 
1470 		if ((*psm_intr_ops)(rdip, hdlp, PSM_INTR_OP_GET_PENDING,
1471 		    result)) {
1472 			*(int *)result = 0;
1473 			return (DDI_FAILURE);
1474 		}
1475 		break;
1476 	case DDI_INTROP_NINTRS:
1477 		if ((pdp = ddi_get_parent_data(rdip)) == NULL)
1478 			return (DDI_FAILURE);
1479 		*(int *)result = pdp->par_nintr;
1480 		if (pdp->par_nintr == 0) {
1481 			/*
1482 			 * Special case for 'pcic' driver' only. This driver
1483 			 * driver is a child of 'isa' and 'rootnex' drivers.
1484 			 *
1485 			 * See detailed comments on this in the function
1486 			 * rootnex_get_ispec().
1487 			 *
1488 			 * Children of 'pcic' send 'NINITR' request all the
1489 			 * way to rootnex driver. But, the 'pdp->par_nintr'
1490 			 * field may not initialized. So, we fake it here
1491 			 * to return 1 (a la what PCMCIA nexus does).
1492 			 */
1493 			if (strcmp(ddi_get_name(rdip), "pcic") == 0)
1494 				*(int *)result = 1;
1495 		}
1496 		break;
1497 	case DDI_INTROP_SUPPORTED_TYPES:
1498 		*(int *)result = 0;
1499 		*(int *)result |= DDI_INTR_TYPE_FIXED;	/* Always ... */
1500 		break;
1501 	case DDI_INTROP_NAVAIL:
1502 		if ((ispec = rootnex_get_ispec(rdip, hdlp->ih_inum)) == NULL)
1503 			return (DDI_FAILURE);
1504 
1505 		if (psm_intr_ops == NULL) {
1506 			*(int *)result = 1;
1507 			break;
1508 		}
1509 
1510 		/* Priority in the handle not initialized yet */
1511 		hdlp->ih_pri = ispec->intrspec_pri;
1512 		(void) (*psm_intr_ops)(rdip, hdlp,
1513 		    PSM_INTR_OP_NAVAIL_VECTORS, result);
1514 		break;
1515 	default:
1516 		return (DDI_FAILURE);
1517 	}
1518 
1519 	return (DDI_SUCCESS);
1520 }
1521 
1522 
1523 /*
1524  * rootnex_get_ispec()
1525  *	convert an interrupt number to an interrupt specification.
1526  *	The interrupt number determines which interrupt spec will be
1527  *	returned if more than one exists.
1528  *
1529  *	Look into the parent private data area of the 'rdip' to find out
1530  *	the interrupt specification.  First check to make sure there is
1531  *	one that matchs "inumber" and then return a pointer to it.
1532  *
1533  *	Return NULL if one could not be found.
1534  *
1535  *	NOTE: This is needed for rootnex_intr_ops()
1536  */
1537 static struct intrspec *
1538 rootnex_get_ispec(dev_info_t *rdip, int inum)
1539 {
1540 	struct ddi_parent_private_data *pdp = ddi_get_parent_data(rdip);
1541 
1542 	/*
1543 	 * Special case handling for drivers that provide their own
1544 	 * intrspec structures instead of relying on the DDI framework.
1545 	 *
1546 	 * A broken hardware driver in ON could potentially provide its
1547 	 * own intrspec structure, instead of relying on the hardware.
1548 	 * If these drivers are children of 'rootnex' then we need to
1549 	 * continue to provide backward compatibility to them here.
1550 	 *
1551 	 * Following check is a special case for 'pcic' driver which
1552 	 * was found to have broken hardwre andby provides its own intrspec.
1553 	 *
1554 	 * Verbatim comments from this driver are shown here:
1555 	 * "Don't use the ddi_add_intr since we don't have a
1556 	 * default intrspec in all cases."
1557 	 *
1558 	 * Since an 'ispec' may not be always created for it,
1559 	 * check for that and create one if so.
1560 	 *
1561 	 * NOTE: Currently 'pcic' is the only driver found to do this.
1562 	 */
1563 	if (!pdp->par_intr && strcmp(ddi_get_name(rdip), "pcic") == 0) {
1564 		pdp->par_nintr = 1;
1565 		pdp->par_intr = kmem_zalloc(sizeof (struct intrspec) *
1566 		    pdp->par_nintr, KM_SLEEP);
1567 	}
1568 
1569 	/* Validate the interrupt number */
1570 	if (inum >= pdp->par_nintr)
1571 		return (NULL);
1572 
1573 	/* Get the interrupt structure pointer and return that */
1574 	return ((struct intrspec *)&pdp->par_intr[inum]);
1575 }
1576 
1577 
1578 /*
1579  * ******************
1580  *  dma related code
1581  * ******************
1582  */
1583 
1584 /*
1585  * rootnex_dma_allochdl()
1586  *    called from ddi_dma_alloc_handle().
1587  */
1588 /*ARGSUSED*/
1589 static int
1590 rootnex_dma_allochdl(dev_info_t *dip, dev_info_t *rdip, ddi_dma_attr_t *attr,
1591     int (*waitfp)(caddr_t), caddr_t arg, ddi_dma_handle_t *handlep)
1592 {
1593 	uint64_t maxsegmentsize_ll;
1594 	uint_t maxsegmentsize;
1595 	ddi_dma_impl_t *hp;
1596 	rootnex_dma_t *dma;
1597 	uint64_t count_max;
1598 	uint64_t seg;
1599 	int kmflag;
1600 	int e;
1601 
1602 
1603 	/* convert our sleep flags */
1604 	if (waitfp == DDI_DMA_SLEEP) {
1605 		kmflag = KM_SLEEP;
1606 	} else {
1607 		kmflag = KM_NOSLEEP;
1608 	}
1609 
1610 	/*
1611 	 * We try to do only one memory allocation here. We'll do a little
1612 	 * pointer manipulation later. If the bind ends up taking more than
1613 	 * our prealloc's space, we'll have to allocate more memory in the
1614 	 * bind operation. Not great, but much better than before and the
1615 	 * best we can do with the current bind interfaces.
1616 	 */
1617 	hp = kmem_cache_alloc(rootnex_state->r_dmahdl_cache, kmflag);
1618 	if (hp == NULL) {
1619 		if (waitfp != DDI_DMA_DONTWAIT) {
1620 			ddi_set_callback(waitfp, arg,
1621 			    &rootnex_state->r_dvma_call_list_id);
1622 		}
1623 		return (DDI_DMA_NORESOURCES);
1624 	}
1625 
1626 	/* Do our pointer manipulation now, align the structures */
1627 	hp->dmai_private = (void *)(((uintptr_t)hp +
1628 	    (uintptr_t)sizeof (ddi_dma_impl_t) + 0x7) & ~0x7);
1629 	dma = (rootnex_dma_t *)hp->dmai_private;
1630 	dma->dp_prealloc_buffer = (uchar_t *)(((uintptr_t)dma +
1631 	    sizeof (rootnex_dma_t) + 0x7) & ~0x7);
1632 
1633 	/* setup the handle */
1634 	rootnex_clean_dmahdl(hp);
1635 	dma->dp_dip = rdip;
1636 	dma->dp_sglinfo.si_min_addr = attr->dma_attr_addr_lo;
1637 	dma->dp_sglinfo.si_max_addr = attr->dma_attr_addr_hi;
1638 	hp->dmai_minxfer = attr->dma_attr_minxfer;
1639 	hp->dmai_burstsizes = attr->dma_attr_burstsizes;
1640 	hp->dmai_rdip = rdip;
1641 	hp->dmai_attr = *attr;
1642 
1643 	/* we don't need to worry about the SPL since we do a tryenter */
1644 	mutex_init(&dma->dp_mutex, NULL, MUTEX_DRIVER, NULL);
1645 
1646 	/*
1647 	 * Figure out our maximum segment size. If the segment size is greater
1648 	 * than 4G, we will limit it to (4G - 1) since the max size of a dma
1649 	 * object (ddi_dma_obj_t.dmao_size) is 32 bits. dma_attr_seg and
1650 	 * dma_attr_count_max are size-1 type values.
1651 	 *
1652 	 * Maximum segment size is the largest physically contiguous chunk of
1653 	 * memory that we can return from a bind (i.e. the maximum size of a
1654 	 * single cookie).
1655 	 */
1656 
1657 	/* handle the rollover cases */
1658 	seg = attr->dma_attr_seg + 1;
1659 	if (seg < attr->dma_attr_seg) {
1660 		seg = attr->dma_attr_seg;
1661 	}
1662 	count_max = attr->dma_attr_count_max + 1;
1663 	if (count_max < attr->dma_attr_count_max) {
1664 		count_max = attr->dma_attr_count_max;
1665 	}
1666 
1667 	/*
1668 	 * granularity may or may not be a power of two. If it isn't, we can't
1669 	 * use a simple mask.
1670 	 */
1671 	if (attr->dma_attr_granular & (attr->dma_attr_granular - 1)) {
1672 		dma->dp_granularity_power_2 = B_FALSE;
1673 	} else {
1674 		dma->dp_granularity_power_2 = B_TRUE;
1675 	}
1676 
1677 	/*
1678 	 * maxxfer should be a whole multiple of granularity. If we're going to
1679 	 * break up a window because we're greater than maxxfer, we might as
1680 	 * well make sure it's maxxfer is a whole multiple so we don't have to
1681 	 * worry about triming the window later on for this case.
1682 	 */
1683 	if (attr->dma_attr_granular > 1) {
1684 		if (dma->dp_granularity_power_2) {
1685 			dma->dp_maxxfer = attr->dma_attr_maxxfer -
1686 			    (attr->dma_attr_maxxfer &
1687 			    (attr->dma_attr_granular - 1));
1688 		} else {
1689 			dma->dp_maxxfer = attr->dma_attr_maxxfer -
1690 			    (attr->dma_attr_maxxfer % attr->dma_attr_granular);
1691 		}
1692 	} else {
1693 		dma->dp_maxxfer = attr->dma_attr_maxxfer;
1694 	}
1695 
1696 	maxsegmentsize_ll = MIN(seg, dma->dp_maxxfer);
1697 	maxsegmentsize_ll = MIN(maxsegmentsize_ll, count_max);
1698 	if (maxsegmentsize_ll == 0 || (maxsegmentsize_ll > 0xFFFFFFFF)) {
1699 		maxsegmentsize = 0xFFFFFFFF;
1700 	} else {
1701 		maxsegmentsize = maxsegmentsize_ll;
1702 	}
1703 	dma->dp_sglinfo.si_max_cookie_size = maxsegmentsize;
1704 	dma->dp_sglinfo.si_segmask = attr->dma_attr_seg;
1705 
1706 	/* check the ddi_dma_attr arg to make sure it makes a little sense */
1707 	if (rootnex_alloc_check_parms) {
1708 		e = rootnex_valid_alloc_parms(attr, maxsegmentsize);
1709 		if (e != DDI_SUCCESS) {
1710 			ROOTNEX_PROF_INC(&rootnex_cnt[ROOTNEX_CNT_ALLOC_FAIL]);
1711 			(void) rootnex_dma_freehdl(dip, rdip,
1712 			    (ddi_dma_handle_t)hp);
1713 			return (e);
1714 		}
1715 	}
1716 
1717 	*handlep = (ddi_dma_handle_t)hp;
1718 
1719 	ROOTNEX_PROF_INC(&rootnex_cnt[ROOTNEX_CNT_ACTIVE_HDLS]);
1720 	DTRACE_PROBE1(rootnex__alloc__handle, uint64_t,
1721 	    rootnex_cnt[ROOTNEX_CNT_ACTIVE_HDLS]);
1722 
1723 	return (DDI_SUCCESS);
1724 }
1725 
1726 
1727 /*
1728  * rootnex_dma_freehdl()
1729  *    called from ddi_dma_free_handle().
1730  */
1731 /*ARGSUSED*/
1732 static int
1733 rootnex_dma_freehdl(dev_info_t *dip, dev_info_t *rdip, ddi_dma_handle_t handle)
1734 {
1735 	ddi_dma_impl_t *hp;
1736 	rootnex_dma_t *dma;
1737 
1738 
1739 	hp = (ddi_dma_impl_t *)handle;
1740 	dma = (rootnex_dma_t *)hp->dmai_private;
1741 
1742 	/* unbind should have been called first */
1743 	ASSERT(!dma->dp_inuse);
1744 
1745 	mutex_destroy(&dma->dp_mutex);
1746 	kmem_cache_free(rootnex_state->r_dmahdl_cache, hp);
1747 
1748 	ROOTNEX_PROF_DEC(&rootnex_cnt[ROOTNEX_CNT_ACTIVE_HDLS]);
1749 	DTRACE_PROBE1(rootnex__free__handle, uint64_t,
1750 	    rootnex_cnt[ROOTNEX_CNT_ACTIVE_HDLS]);
1751 
1752 	if (rootnex_state->r_dvma_call_list_id)
1753 		ddi_run_callback(&rootnex_state->r_dvma_call_list_id);
1754 
1755 	return (DDI_SUCCESS);
1756 }
1757 
1758 
1759 /*
1760  * rootnex_dma_bindhdl()
1761  *    called from ddi_dma_addr_bind_handle() and ddi_dma_buf_bind_handle().
1762  */
1763 /*ARGSUSED*/
1764 static int
1765 rootnex_dma_bindhdl(dev_info_t *dip, dev_info_t *rdip, ddi_dma_handle_t handle,
1766     struct ddi_dma_req *dmareq, ddi_dma_cookie_t *cookiep, uint_t *ccountp)
1767 {
1768 	rootnex_sglinfo_t *sinfo;
1769 	ddi_dma_attr_t *attr;
1770 	ddi_dma_impl_t *hp;
1771 	rootnex_dma_t *dma;
1772 	int kmflag;
1773 	int e;
1774 
1775 
1776 	hp = (ddi_dma_impl_t *)handle;
1777 	dma = (rootnex_dma_t *)hp->dmai_private;
1778 	sinfo = &dma->dp_sglinfo;
1779 	attr = &hp->dmai_attr;
1780 
1781 	hp->dmai_rflags = dmareq->dmar_flags & DMP_DDIFLAGS;
1782 
1783 	/*
1784 	 * This is useful for debugging a driver. Not as useful in a production
1785 	 * system. The only time this will fail is if you have a driver bug.
1786 	 */
1787 	if (rootnex_bind_check_inuse) {
1788 		/*
1789 		 * No one else should ever have this lock unless someone else
1790 		 * is trying to use this handle. So contention on the lock
1791 		 * is the same as inuse being set.
1792 		 */
1793 		e = mutex_tryenter(&dma->dp_mutex);
1794 		if (e == 0) {
1795 			ROOTNEX_PROF_INC(&rootnex_cnt[ROOTNEX_CNT_BIND_FAIL]);
1796 			return (DDI_DMA_INUSE);
1797 		}
1798 		if (dma->dp_inuse) {
1799 			mutex_exit(&dma->dp_mutex);
1800 			ROOTNEX_PROF_INC(&rootnex_cnt[ROOTNEX_CNT_BIND_FAIL]);
1801 			return (DDI_DMA_INUSE);
1802 		}
1803 		dma->dp_inuse = B_TRUE;
1804 		mutex_exit(&dma->dp_mutex);
1805 	}
1806 
1807 	/* check the ddi_dma_attr arg to make sure it makes a little sense */
1808 	if (rootnex_bind_check_parms) {
1809 		e = rootnex_valid_bind_parms(dmareq, attr);
1810 		if (e != DDI_SUCCESS) {
1811 			ROOTNEX_PROF_INC(&rootnex_cnt[ROOTNEX_CNT_BIND_FAIL]);
1812 			rootnex_clean_dmahdl(hp);
1813 			return (e);
1814 		}
1815 	}
1816 
1817 	/* save away the original bind info */
1818 	dma->dp_dma = dmareq->dmar_object;
1819 
1820 	/*
1821 	 * Figure out a rough estimate of what maximum number of pages this
1822 	 * buffer could use (a high estimate of course).
1823 	 */
1824 	sinfo->si_max_pages = mmu_btopr(dma->dp_dma.dmao_size) + 1;
1825 
1826 	/*
1827 	 * We'll use the pre-allocated cookies for any bind that will *always*
1828 	 * fit (more important to be consistent, we don't want to create
1829 	 * additional degenerate cases).
1830 	 */
1831 	if (sinfo->si_max_pages <= rootnex_state->r_prealloc_cookies) {
1832 		dma->dp_cookies = (ddi_dma_cookie_t *)dma->dp_prealloc_buffer;
1833 		dma->dp_need_to_free_cookie = B_FALSE;
1834 		DTRACE_PROBE2(rootnex__bind__prealloc, dev_info_t *, rdip,
1835 		    uint_t, sinfo->si_max_pages);
1836 
1837 	/*
1838 	 * For anything larger than that, we'll go ahead and allocate the
1839 	 * maximum number of pages we expect to see. Hopefuly, we won't be
1840 	 * seeing this path in the fast path for high performance devices very
1841 	 * frequently.
1842 	 *
1843 	 * a ddi bind interface that allowed the driver to provide storage to
1844 	 * the bind interface would speed this case up.
1845 	 */
1846 	} else {
1847 		/* convert the sleep flags */
1848 		if (dmareq->dmar_fp == DDI_DMA_SLEEP) {
1849 			kmflag =  KM_SLEEP;
1850 		} else {
1851 			kmflag =  KM_NOSLEEP;
1852 		}
1853 
1854 		/*
1855 		 * Save away how much memory we allocated. If we're doing a
1856 		 * nosleep, the alloc could fail...
1857 		 */
1858 		dma->dp_cookie_size = sinfo->si_max_pages *
1859 		    sizeof (ddi_dma_cookie_t);
1860 		dma->dp_cookies = kmem_alloc(dma->dp_cookie_size, kmflag);
1861 		if (dma->dp_cookies == NULL) {
1862 			ROOTNEX_PROF_INC(&rootnex_cnt[ROOTNEX_CNT_BIND_FAIL]);
1863 			rootnex_clean_dmahdl(hp);
1864 			return (DDI_DMA_NORESOURCES);
1865 		}
1866 		dma->dp_need_to_free_cookie = B_TRUE;
1867 		DTRACE_PROBE2(rootnex__bind__alloc, dev_info_t *, rdip, uint_t,
1868 		    sinfo->si_max_pages);
1869 	}
1870 	hp->dmai_cookie = dma->dp_cookies;
1871 
1872 	/*
1873 	 * Get the real sgl. rootnex_get_sgl will fill in cookie array while
1874 	 * looking at the contraints in the dma structure. It will then put some
1875 	 * additional state about the sgl in the dma struct (i.e. is the sgl
1876 	 * clean, or do we need to do some munging; how many pages need to be
1877 	 * copied, etc.)
1878 	 */
1879 	rootnex_get_sgl(&dmareq->dmar_object, dma->dp_cookies,
1880 	    &dma->dp_sglinfo);
1881 	ASSERT(sinfo->si_sgl_size <= sinfo->si_max_pages);
1882 
1883 	/* if we don't need a copy buffer, we don't need to sync */
1884 	if (sinfo->si_copybuf_req == 0) {
1885 		hp->dmai_rflags |= DMP_NOSYNC;
1886 	}
1887 
1888 	/*
1889 	 * if we don't need the copybuf and we don't need to do a partial,  we
1890 	 * hit the fast path. All the high performance devices should be trying
1891 	 * to hit this path. To hit this path, a device should be able to reach
1892 	 * all of memory, shouldn't try to bind more than it can transfer, and
1893 	 * the buffer shouldn't require more cookies than the driver/device can
1894 	 * handle [sgllen]).
1895 	 */
1896 	if ((sinfo->si_copybuf_req == 0) &&
1897 	    (sinfo->si_sgl_size <= attr->dma_attr_sgllen) &&
1898 	    (dma->dp_dma.dmao_size < dma->dp_maxxfer)) {
1899 		/*
1900 		 * copy out the first cookie and ccountp, set the cookie
1901 		 * pointer to the second cookie. The first cookie is passed
1902 		 * back on the stack. Additional cookies are accessed via
1903 		 * ddi_dma_nextcookie()
1904 		 */
1905 		*cookiep = dma->dp_cookies[0];
1906 		*ccountp = sinfo->si_sgl_size;
1907 		hp->dmai_cookie++;
1908 		hp->dmai_rflags &= ~DDI_DMA_PARTIAL;
1909 		hp->dmai_nwin = 1;
1910 		ROOTNEX_PROF_INC(&rootnex_cnt[ROOTNEX_CNT_ACTIVE_BINDS]);
1911 		DTRACE_PROBE3(rootnex__bind__fast, dev_info_t *, rdip, uint64_t,
1912 		    rootnex_cnt[ROOTNEX_CNT_ACTIVE_BINDS], uint_t,
1913 		    dma->dp_dma.dmao_size);
1914 		return (DDI_DMA_MAPPED);
1915 	}
1916 
1917 	/*
1918 	 * go to the slow path, we may need to alloc more memory, create
1919 	 * multiple windows, and munge up a sgl to make the device happy.
1920 	 */
1921 	e = rootnex_bind_slowpath(hp, dmareq, dma, attr, kmflag);
1922 	if ((e != DDI_DMA_MAPPED) && (e != DDI_DMA_PARTIAL_MAP)) {
1923 		if (dma->dp_need_to_free_cookie) {
1924 			kmem_free(dma->dp_cookies, dma->dp_cookie_size);
1925 		}
1926 		ROOTNEX_PROF_INC(&rootnex_cnt[ROOTNEX_CNT_BIND_FAIL]);
1927 		rootnex_clean_dmahdl(hp); /* must be after free cookie */
1928 		return (e);
1929 	}
1930 
1931 	/* if the first window uses the copy buffer, sync it for the device */
1932 	if ((dma->dp_window[dma->dp_current_win].wd_dosync) &&
1933 	    (hp->dmai_rflags & DDI_DMA_WRITE)) {
1934 		(void) rootnex_dma_sync(dip, rdip, handle, 0, 0,
1935 		    DDI_DMA_SYNC_FORDEV);
1936 	}
1937 
1938 	/*
1939 	 * copy out the first cookie and ccountp, set the cookie pointer to the
1940 	 * second cookie. Make sure the partial flag is set/cleared correctly.
1941 	 * If we have a partial map (i.e. multiple windows), the number of
1942 	 * cookies we return is the number of cookies in the first window.
1943 	 */
1944 	if (e == DDI_DMA_MAPPED) {
1945 		hp->dmai_rflags &= ~DDI_DMA_PARTIAL;
1946 		*ccountp = sinfo->si_sgl_size;
1947 	} else {
1948 		hp->dmai_rflags |= DDI_DMA_PARTIAL;
1949 		*ccountp = dma->dp_window[dma->dp_current_win].wd_cookie_cnt;
1950 		ASSERT(hp->dmai_nwin <= dma->dp_max_win);
1951 	}
1952 	*cookiep = dma->dp_cookies[0];
1953 	hp->dmai_cookie++;
1954 
1955 	ROOTNEX_PROF_INC(&rootnex_cnt[ROOTNEX_CNT_ACTIVE_BINDS]);
1956 	DTRACE_PROBE3(rootnex__bind__slow, dev_info_t *, rdip, uint64_t,
1957 	    rootnex_cnt[ROOTNEX_CNT_ACTIVE_BINDS], uint_t,
1958 	    dma->dp_dma.dmao_size);
1959 	return (e);
1960 }
1961 
1962 
1963 /*
1964  * rootnex_dma_unbindhdl()
1965  *    called from ddi_dma_unbind_handle()
1966  */
1967 /*ARGSUSED*/
1968 static int
1969 rootnex_dma_unbindhdl(dev_info_t *dip, dev_info_t *rdip,
1970     ddi_dma_handle_t handle)
1971 {
1972 	ddi_dma_impl_t *hp;
1973 	rootnex_dma_t *dma;
1974 	int e;
1975 
1976 
1977 	hp = (ddi_dma_impl_t *)handle;
1978 	dma = (rootnex_dma_t *)hp->dmai_private;
1979 
1980 	/* make sure the buffer wasn't free'd before calling unbind */
1981 	if (rootnex_unbind_verify_buffer) {
1982 		e = rootnex_verify_buffer(dma);
1983 		if (e != DDI_SUCCESS) {
1984 			ASSERT(0);
1985 			return (DDI_FAILURE);
1986 		}
1987 	}
1988 
1989 	/* sync the current window before unbinding the buffer */
1990 	if (dma->dp_window && dma->dp_window[dma->dp_current_win].wd_dosync &&
1991 	    (hp->dmai_rflags & DDI_DMA_READ)) {
1992 		(void) rootnex_dma_sync(dip, rdip, handle, 0, 0,
1993 		    DDI_DMA_SYNC_FORCPU);
1994 	}
1995 
1996 	/*
1997 	 * cleanup and copy buffer or window state. if we didn't use the copy
1998 	 * buffer or windows, there won't be much to do :-)
1999 	 */
2000 	rootnex_teardown_copybuf(dma);
2001 	rootnex_teardown_windows(dma);
2002 
2003 	/*
2004 	 * If we had to allocate space to for the worse case sgl (it didn't
2005 	 * fit into our pre-allocate buffer), free that up now
2006 	 */
2007 	if (dma->dp_need_to_free_cookie) {
2008 		kmem_free(dma->dp_cookies, dma->dp_cookie_size);
2009 	}
2010 
2011 	/*
2012 	 * clean up the handle so it's ready for the next bind (i.e. if the
2013 	 * handle is reused).
2014 	 */
2015 	rootnex_clean_dmahdl(hp);
2016 
2017 	if (rootnex_state->r_dvma_call_list_id)
2018 		ddi_run_callback(&rootnex_state->r_dvma_call_list_id);
2019 
2020 	ROOTNEX_PROF_DEC(&rootnex_cnt[ROOTNEX_CNT_ACTIVE_BINDS]);
2021 	DTRACE_PROBE1(rootnex__unbind, uint64_t,
2022 	    rootnex_cnt[ROOTNEX_CNT_ACTIVE_BINDS]);
2023 
2024 	return (DDI_SUCCESS);
2025 }
2026 
2027 
2028 /*
2029  * rootnex_verify_buffer()
2030  *   verify buffer wasn't free'd
2031  */
2032 static int
2033 rootnex_verify_buffer(rootnex_dma_t *dma)
2034 {
2035 	peekpoke_ctlops_t peek;
2036 	page_t **pplist;
2037 	caddr_t vaddr;
2038 	uint_t pcnt;
2039 	uint_t poff;
2040 	page_t *pp;
2041 	uint8_t b;
2042 	int i;
2043 	int e;
2044 
2045 
2046 	/* Figure out how many pages this buffer occupies */
2047 	if (dma->dp_dma.dmao_type == DMA_OTYP_PAGES) {
2048 		poff = dma->dp_dma.dmao_obj.pp_obj.pp_offset & MMU_PAGEOFFSET;
2049 	} else {
2050 		vaddr = dma->dp_dma.dmao_obj.virt_obj.v_addr;
2051 		poff = (uintptr_t)vaddr & MMU_PAGEOFFSET;
2052 	}
2053 	pcnt = mmu_btopr(dma->dp_dma.dmao_size + poff);
2054 
2055 	switch (dma->dp_dma.dmao_type) {
2056 	case DMA_OTYP_PAGES:
2057 		/*
2058 		 * for a linked list of pp's walk through them to make sure
2059 		 * they're locked and not free.
2060 		 */
2061 		pp = dma->dp_dma.dmao_obj.pp_obj.pp_pp;
2062 		for (i = 0; i < pcnt; i++) {
2063 			if (PP_ISFREE(pp) || !PAGE_LOCKED(pp)) {
2064 				return (DDI_FAILURE);
2065 			}
2066 			pp = pp->p_next;
2067 		}
2068 		break;
2069 
2070 	case DMA_OTYP_VADDR:
2071 	case DMA_OTYP_BUFVADDR:
2072 		pplist = dma->dp_dma.dmao_obj.virt_obj.v_priv;
2073 		/*
2074 		 * for an array of pp's walk through them to make sure they're
2075 		 * not free. It's possible that they may not be locked.
2076 		 */
2077 		if (pplist) {
2078 			for (i = 0; i < pcnt; i++) {
2079 				if (PP_ISFREE(pplist[i])) {
2080 					return (DDI_FAILURE);
2081 				}
2082 			}
2083 
2084 		/* For a virtual address, try to peek at each page */
2085 		} else {
2086 			if (dma->dp_sglinfo.si_asp == &kas) {
2087 				bzero(&peek, sizeof (peekpoke_ctlops_t));
2088 				peek.host_addr = (uintptr_t)&b;
2089 				peek.size = sizeof (uint8_t);
2090 				peek.dev_addr = (uintptr_t)vaddr;
2091 				for (i = 0; i < pcnt; i++) {
2092 					e = rootnex_ctlops_peek(&peek, &b);
2093 					if (e != DDI_SUCCESS) {
2094 						return (DDI_FAILURE);
2095 					}
2096 					peek.dev_addr += MMU_PAGESIZE;
2097 				}
2098 			}
2099 		}
2100 		break;
2101 
2102 	default:
2103 		ASSERT(0);
2104 		break;
2105 	}
2106 
2107 	return (DDI_SUCCESS);
2108 }
2109 
2110 
2111 /*
2112  * rootnex_clean_dmahdl()
2113  *    Clean the dma handle. This should be called on a handle alloc and an
2114  *    unbind handle. Set the handle state to the default settings.
2115  */
2116 static void
2117 rootnex_clean_dmahdl(ddi_dma_impl_t *hp)
2118 {
2119 	rootnex_dma_t *dma;
2120 
2121 
2122 	dma = (rootnex_dma_t *)hp->dmai_private;
2123 
2124 	hp->dmai_nwin = 0;
2125 	dma->dp_current_cookie = 0;
2126 	dma->dp_copybuf_size = 0;
2127 	dma->dp_window = NULL;
2128 	dma->dp_cbaddr = NULL;
2129 	dma->dp_inuse = B_FALSE;
2130 	dma->dp_need_to_free_cookie = B_FALSE;
2131 	dma->dp_need_to_free_window = B_FALSE;
2132 	dma->dp_partial_required = B_FALSE;
2133 	dma->dp_trim_required = B_FALSE;
2134 	dma->dp_sglinfo.si_copybuf_req = 0;
2135 #if !defined(__amd64)
2136 	dma->dp_cb_remaping = B_FALSE;
2137 	dma->dp_kva = NULL;
2138 #endif
2139 
2140 	/* FMA related initialization */
2141 	hp->dmai_fault = 0;
2142 	hp->dmai_fault_check = NULL;
2143 	hp->dmai_fault_notify = NULL;
2144 	hp->dmai_error.err_ena = 0;
2145 	hp->dmai_error.err_status = DDI_FM_OK;
2146 	hp->dmai_error.err_expected = DDI_FM_ERR_UNEXPECTED;
2147 	hp->dmai_error.err_ontrap = NULL;
2148 	hp->dmai_error.err_fep = NULL;
2149 }
2150 
2151 
2152 /*
2153  * rootnex_valid_alloc_parms()
2154  *    Called in ddi_dma_alloc_handle path to validate its parameters.
2155  */
2156 static int
2157 rootnex_valid_alloc_parms(ddi_dma_attr_t *attr, uint_t maxsegmentsize)
2158 {
2159 	if ((attr->dma_attr_seg < MMU_PAGEOFFSET) ||
2160 	    (attr->dma_attr_count_max < MMU_PAGEOFFSET) ||
2161 	    (attr->dma_attr_granular > MMU_PAGESIZE) ||
2162 	    (attr->dma_attr_maxxfer < MMU_PAGESIZE)) {
2163 		return (DDI_DMA_BADATTR);
2164 	}
2165 
2166 	if (attr->dma_attr_addr_hi <= attr->dma_attr_addr_lo) {
2167 		return (DDI_DMA_BADATTR);
2168 	}
2169 
2170 	if ((attr->dma_attr_seg & MMU_PAGEOFFSET) != MMU_PAGEOFFSET ||
2171 	    MMU_PAGESIZE & (attr->dma_attr_granular - 1) ||
2172 	    attr->dma_attr_sgllen <= 0) {
2173 		return (DDI_DMA_BADATTR);
2174 	}
2175 
2176 	/* We should be able to DMA into every byte offset in a page */
2177 	if (maxsegmentsize < MMU_PAGESIZE) {
2178 		return (DDI_DMA_BADATTR);
2179 	}
2180 
2181 	return (DDI_SUCCESS);
2182 }
2183 
2184 
2185 /*
2186  * rootnex_valid_bind_parms()
2187  *    Called in ddi_dma_*_bind_handle path to validate its parameters.
2188  */
2189 /* ARGSUSED */
2190 static int
2191 rootnex_valid_bind_parms(ddi_dma_req_t *dmareq, ddi_dma_attr_t *attr)
2192 {
2193 #if !defined(__amd64)
2194 	/*
2195 	 * we only support up to a 2G-1 transfer size on 32-bit kernels so
2196 	 * we can track the offset for the obsoleted interfaces.
2197 	 */
2198 	if (dmareq->dmar_object.dmao_size > 0x7FFFFFFF) {
2199 		return (DDI_DMA_TOOBIG);
2200 	}
2201 #endif
2202 
2203 	return (DDI_SUCCESS);
2204 }
2205 
2206 
2207 /*
2208  * rootnex_get_sgl()
2209  *    Called in bind fastpath to get the sgl. Most of this will be replaced
2210  *    with a call to the vm layer when vm2.0 comes around...
2211  */
2212 static void
2213 rootnex_get_sgl(ddi_dma_obj_t *dmar_object, ddi_dma_cookie_t *sgl,
2214     rootnex_sglinfo_t *sglinfo)
2215 {
2216 	ddi_dma_atyp_t buftype;
2217 	uint64_t last_page;
2218 	uint64_t offset;
2219 	uint64_t addrhi;
2220 	uint64_t addrlo;
2221 	uint64_t maxseg;
2222 	page_t **pplist;
2223 	uint64_t paddr;
2224 	uint32_t psize;
2225 	uint32_t size;
2226 	caddr_t vaddr;
2227 	uint_t pcnt;
2228 	page_t *pp;
2229 	uint_t cnt;
2230 
2231 
2232 	/* shortcuts */
2233 	pplist = dmar_object->dmao_obj.virt_obj.v_priv;
2234 	vaddr = dmar_object->dmao_obj.virt_obj.v_addr;
2235 	maxseg = sglinfo->si_max_cookie_size;
2236 	buftype = dmar_object->dmao_type;
2237 	addrhi = sglinfo->si_max_addr;
2238 	addrlo = sglinfo->si_min_addr;
2239 	size = dmar_object->dmao_size;
2240 
2241 	pcnt = 0;
2242 	cnt = 0;
2243 
2244 	/*
2245 	 * if we were passed down a linked list of pages, i.e. pointer to
2246 	 * page_t, use this to get our physical address and buf offset.
2247 	 */
2248 	if (buftype == DMA_OTYP_PAGES) {
2249 		pp = dmar_object->dmao_obj.pp_obj.pp_pp;
2250 		ASSERT(!PP_ISFREE(pp) && PAGE_LOCKED(pp));
2251 		offset =  dmar_object->dmao_obj.pp_obj.pp_offset &
2252 		    MMU_PAGEOFFSET;
2253 		paddr = ptob64(pp->p_pagenum) + offset;
2254 		psize = MIN(size, (MMU_PAGESIZE - offset));
2255 		pp = pp->p_next;
2256 		sglinfo->si_asp = NULL;
2257 
2258 	/*
2259 	 * We weren't passed down a linked list of pages, but if we were passed
2260 	 * down an array of pages, use this to get our physical address and buf
2261 	 * offset.
2262 	 */
2263 	} else if (pplist != NULL) {
2264 		ASSERT((buftype == DMA_OTYP_VADDR) ||
2265 		    (buftype == DMA_OTYP_BUFVADDR));
2266 
2267 		offset = (uintptr_t)vaddr & MMU_PAGEOFFSET;
2268 		sglinfo->si_asp = dmar_object->dmao_obj.virt_obj.v_as;
2269 		if (sglinfo->si_asp == NULL) {
2270 			sglinfo->si_asp = &kas;
2271 		}
2272 
2273 		ASSERT(!PP_ISFREE(pplist[pcnt]));
2274 		paddr = ptob64(pplist[pcnt]->p_pagenum);
2275 		paddr += offset;
2276 		psize = MIN(size, (MMU_PAGESIZE - offset));
2277 		pcnt++;
2278 
2279 	/*
2280 	 * All we have is a virtual address, we'll need to call into the VM
2281 	 * to get the physical address.
2282 	 */
2283 	} else {
2284 		ASSERT((buftype == DMA_OTYP_VADDR) ||
2285 		    (buftype == DMA_OTYP_BUFVADDR));
2286 
2287 		offset = (uintptr_t)vaddr & MMU_PAGEOFFSET;
2288 		sglinfo->si_asp = dmar_object->dmao_obj.virt_obj.v_as;
2289 		if (sglinfo->si_asp == NULL) {
2290 			sglinfo->si_asp = &kas;
2291 		}
2292 
2293 		paddr = ptob64(hat_getpfnum(sglinfo->si_asp->a_hat, vaddr));
2294 		paddr += offset;
2295 		psize = MIN(size, (MMU_PAGESIZE - offset));
2296 		vaddr += psize;
2297 	}
2298 
2299 	/*
2300 	 * Setup the first cookie with the physical address of the page and the
2301 	 * size of the page (which takes into account the initial offset into
2302 	 * the page.
2303 	 */
2304 	sgl[cnt].dmac_laddress = paddr;
2305 	sgl[cnt].dmac_size = psize;
2306 	sgl[cnt].dmac_type = 0;
2307 
2308 	/*
2309 	 * Save away the buffer offset into the page. We'll need this later in
2310 	 * the copy buffer code to help figure out the page index within the
2311 	 * buffer and the offset into the current page.
2312 	 */
2313 	sglinfo->si_buf_offset = offset;
2314 
2315 	/*
2316 	 * If the DMA engine can't reach the physical address, increase how
2317 	 * much copy buffer we need. We always increase by pagesize so we don't
2318 	 * have to worry about converting offsets. Set a flag in the cookies
2319 	 * dmac_type to indicate that it uses the copy buffer. If this isn't the
2320 	 * last cookie, go to the next cookie (since we separate each page which
2321 	 * uses the copy buffer in case the copy buffer is not physically
2322 	 * contiguous.
2323 	 */
2324 	if ((paddr < addrlo) || ((paddr + psize) > addrhi)) {
2325 		sglinfo->si_copybuf_req += MMU_PAGESIZE;
2326 		sgl[cnt].dmac_type = ROOTNEX_USES_COPYBUF;
2327 		if ((cnt + 1) < sglinfo->si_max_pages) {
2328 			cnt++;
2329 			sgl[cnt].dmac_laddress = 0;
2330 			sgl[cnt].dmac_size = 0;
2331 			sgl[cnt].dmac_type = 0;
2332 		}
2333 	}
2334 
2335 	/*
2336 	 * save this page's physical address so we can figure out if the next
2337 	 * page is physically contiguous. Keep decrementing size until we are
2338 	 * done with the buffer.
2339 	 */
2340 	last_page = paddr & MMU_PAGEMASK;
2341 	size -= psize;
2342 
2343 	while (size > 0) {
2344 		/* Get the size for this page (i.e. partial or full page) */
2345 		psize = MIN(size, MMU_PAGESIZE);
2346 
2347 		if (buftype == DMA_OTYP_PAGES) {
2348 			/* get the paddr from the page_t */
2349 			ASSERT(!PP_ISFREE(pp) && PAGE_LOCKED(pp));
2350 			paddr = ptob64(pp->p_pagenum);
2351 			pp = pp->p_next;
2352 		} else if (pplist != NULL) {
2353 			/* index into the array of page_t's to get the paddr */
2354 			ASSERT(!PP_ISFREE(pplist[pcnt]));
2355 			paddr = ptob64(pplist[pcnt]->p_pagenum);
2356 			pcnt++;
2357 		} else {
2358 			/* call into the VM to get the paddr */
2359 			paddr =  ptob64(hat_getpfnum(sglinfo->si_asp->a_hat,
2360 			    vaddr));
2361 			vaddr += psize;
2362 		}
2363 
2364 		/* check to see if this page needs the copy buffer */
2365 		if ((paddr < addrlo) || ((paddr + psize) > addrhi)) {
2366 			sglinfo->si_copybuf_req += MMU_PAGESIZE;
2367 
2368 			/*
2369 			 * if there is something in the current cookie, go to
2370 			 * the next one. We only want one page in a cookie which
2371 			 * uses the copybuf since the copybuf doesn't have to
2372 			 * be physically contiguous.
2373 			 */
2374 			if (sgl[cnt].dmac_size != 0) {
2375 				cnt++;
2376 			}
2377 			sgl[cnt].dmac_laddress = paddr;
2378 			sgl[cnt].dmac_size = psize;
2379 #if defined(__amd64)
2380 			sgl[cnt].dmac_type = ROOTNEX_USES_COPYBUF;
2381 #else
2382 			/*
2383 			 * save the buf offset for 32-bit kernel. used in the
2384 			 * obsoleted interfaces.
2385 			 */
2386 			sgl[cnt].dmac_type = ROOTNEX_USES_COPYBUF |
2387 			    (dmar_object->dmao_size - size);
2388 #endif
2389 			/* if this isn't the last cookie, go to the next one */
2390 			if ((cnt + 1) < sglinfo->si_max_pages) {
2391 				cnt++;
2392 				sgl[cnt].dmac_laddress = 0;
2393 				sgl[cnt].dmac_size = 0;
2394 				sgl[cnt].dmac_type = 0;
2395 			}
2396 
2397 		/*
2398 		 * this page didn't need the copy buffer, if it's not physically
2399 		 * contiguous, or it would put us over a segment boundary, or it
2400 		 * puts us over the max cookie size, or the current sgl doesn't
2401 		 * have anything in it.
2402 		 */
2403 		} else if (((last_page + MMU_PAGESIZE) != paddr) ||
2404 		    !(paddr & sglinfo->si_segmask) ||
2405 		    ((sgl[cnt].dmac_size + psize) > maxseg) ||
2406 		    (sgl[cnt].dmac_size == 0)) {
2407 			/*
2408 			 * if we're not already in a new cookie, go to the next
2409 			 * cookie.
2410 			 */
2411 			if (sgl[cnt].dmac_size != 0) {
2412 				cnt++;
2413 			}
2414 
2415 			/* save the cookie information */
2416 			sgl[cnt].dmac_laddress = paddr;
2417 			sgl[cnt].dmac_size = psize;
2418 #if defined(__amd64)
2419 			sgl[cnt].dmac_type = 0;
2420 #else
2421 			/*
2422 			 * save the buf offset for 32-bit kernel. used in the
2423 			 * obsoleted interfaces.
2424 			 */
2425 			sgl[cnt].dmac_type = dmar_object->dmao_size - size;
2426 #endif
2427 
2428 		/*
2429 		 * this page didn't need the copy buffer, it is physically
2430 		 * contiguous with the last page, and it's <= the max cookie
2431 		 * size.
2432 		 */
2433 		} else {
2434 			sgl[cnt].dmac_size += psize;
2435 
2436 			/*
2437 			 * if this exactly ==  the maximum cookie size, and
2438 			 * it isn't the last cookie, go to the next cookie.
2439 			 */
2440 			if (((sgl[cnt].dmac_size + psize) == maxseg) &&
2441 			    ((cnt + 1) < sglinfo->si_max_pages)) {
2442 				cnt++;
2443 				sgl[cnt].dmac_laddress = 0;
2444 				sgl[cnt].dmac_size = 0;
2445 				sgl[cnt].dmac_type = 0;
2446 			}
2447 		}
2448 
2449 		/*
2450 		 * save this page's physical address so we can figure out if the
2451 		 * next page is physically contiguous. Keep decrementing size
2452 		 * until we are done with the buffer.
2453 		 */
2454 		last_page = paddr;
2455 		size -= psize;
2456 	}
2457 
2458 	/* we're done, save away how many cookies the sgl has */
2459 	if (sgl[cnt].dmac_size == 0) {
2460 		ASSERT(cnt < sglinfo->si_max_pages);
2461 		sglinfo->si_sgl_size = cnt;
2462 	} else {
2463 		sglinfo->si_sgl_size = cnt + 1;
2464 	}
2465 }
2466 
2467 
2468 /*
2469  * rootnex_bind_slowpath()
2470  *    Call in the bind path if the calling driver can't use the sgl without
2471  *    modifying it. We either need to use the copy buffer and/or we will end up
2472  *    with a partial bind.
2473  */
2474 static int
2475 rootnex_bind_slowpath(ddi_dma_impl_t *hp, struct ddi_dma_req *dmareq,
2476     rootnex_dma_t *dma, ddi_dma_attr_t *attr, int kmflag)
2477 {
2478 	rootnex_sglinfo_t *sinfo;
2479 	rootnex_window_t *window;
2480 	ddi_dma_cookie_t *cookie;
2481 	size_t copybuf_used;
2482 	size_t dmac_size;
2483 	boolean_t partial;
2484 	off_t cur_offset;
2485 	page_t *cur_pp;
2486 	major_t mnum;
2487 	int e;
2488 	int i;
2489 
2490 
2491 	sinfo = &dma->dp_sglinfo;
2492 	copybuf_used = 0;
2493 	partial = B_FALSE;
2494 
2495 	/*
2496 	 * If we're using the copybuf, set the copybuf state in dma struct.
2497 	 * Needs to be first since it sets the copy buffer size.
2498 	 */
2499 	if (sinfo->si_copybuf_req != 0) {
2500 		e = rootnex_setup_copybuf(hp, dmareq, dma, attr);
2501 		if (e != DDI_SUCCESS) {
2502 			return (e);
2503 		}
2504 	} else {
2505 		dma->dp_copybuf_size = 0;
2506 	}
2507 
2508 	/*
2509 	 * Figure out if we need to do a partial mapping. If so, figure out
2510 	 * if we need to trim the buffers when we munge the sgl.
2511 	 */
2512 	if ((dma->dp_copybuf_size < sinfo->si_copybuf_req) ||
2513 	    (dma->dp_dma.dmao_size > dma->dp_maxxfer) ||
2514 	    (attr->dma_attr_sgllen < sinfo->si_sgl_size)) {
2515 		dma->dp_partial_required = B_TRUE;
2516 		if (attr->dma_attr_granular != 1) {
2517 			dma->dp_trim_required = B_TRUE;
2518 		}
2519 	} else {
2520 		dma->dp_partial_required = B_FALSE;
2521 		dma->dp_trim_required = B_FALSE;
2522 	}
2523 
2524 	/* If we need to do a partial bind, make sure the driver supports it */
2525 	if (dma->dp_partial_required &&
2526 	    !(dmareq->dmar_flags & DDI_DMA_PARTIAL)) {
2527 
2528 		mnum = ddi_driver_major(dma->dp_dip);
2529 		/*
2530 		 * patchable which allows us to print one warning per major
2531 		 * number.
2532 		 */
2533 		if ((rootnex_bind_warn) &&
2534 		    ((rootnex_warn_list[mnum] & ROOTNEX_BIND_WARNING) == 0)) {
2535 			rootnex_warn_list[mnum] |= ROOTNEX_BIND_WARNING;
2536 			cmn_err(CE_WARN, "!%s: coding error detected, the "
2537 			    "driver is using ddi_dma_attr(9S) incorrectly. "
2538 			    "There is a small risk of data corruption in "
2539 			    "particular with large I/Os. The driver should be "
2540 			    "replaced with a corrected version for proper "
2541 			    "system operation. To disable this warning, add "
2542 			    "'set rootnex:rootnex_bind_warn=0' to "
2543 			    "/etc/system(4).", ddi_driver_name(dma->dp_dip));
2544 		}
2545 		return (DDI_DMA_TOOBIG);
2546 	}
2547 
2548 	/*
2549 	 * we might need multiple windows, setup state to handle them. In this
2550 	 * code path, we will have at least one window.
2551 	 */
2552 	e = rootnex_setup_windows(hp, dma, attr, kmflag);
2553 	if (e != DDI_SUCCESS) {
2554 		rootnex_teardown_copybuf(dma);
2555 		return (e);
2556 	}
2557 
2558 	window = &dma->dp_window[0];
2559 	cookie = &dma->dp_cookies[0];
2560 	cur_offset = 0;
2561 	rootnex_init_win(hp, dma, window, cookie, cur_offset);
2562 	if (dmareq->dmar_object.dmao_type == DMA_OTYP_PAGES) {
2563 		cur_pp = dmareq->dmar_object.dmao_obj.pp_obj.pp_pp;
2564 	}
2565 
2566 	/* loop though all the cookies we got back from get_sgl() */
2567 	for (i = 0; i < sinfo->si_sgl_size; i++) {
2568 		/*
2569 		 * If we're using the copy buffer, check this cookie and setup
2570 		 * its associated copy buffer state. If this cookie uses the
2571 		 * copy buffer, make sure we sync this window during dma_sync.
2572 		 */
2573 		if (dma->dp_copybuf_size > 0) {
2574 			rootnex_setup_cookie(&dmareq->dmar_object, dma, cookie,
2575 			    cur_offset, &copybuf_used, &cur_pp);
2576 			if (cookie->dmac_type & ROOTNEX_USES_COPYBUF) {
2577 				window->wd_dosync = B_TRUE;
2578 			}
2579 		}
2580 
2581 		/*
2582 		 * save away the cookie size, since it could be modified in
2583 		 * the windowing code.
2584 		 */
2585 		dmac_size = cookie->dmac_size;
2586 
2587 		/* if we went over max copybuf size */
2588 		if (dma->dp_copybuf_size &&
2589 		    (copybuf_used > dma->dp_copybuf_size)) {
2590 			partial = B_TRUE;
2591 			e = rootnex_copybuf_window_boundary(hp, dma, &window,
2592 			    cookie, cur_offset, &copybuf_used);
2593 			if (e != DDI_SUCCESS) {
2594 				rootnex_teardown_copybuf(dma);
2595 				rootnex_teardown_windows(dma);
2596 				return (e);
2597 			}
2598 
2599 			/*
2600 			 * if the coookie uses the copy buffer, make sure the
2601 			 * new window we just moved to is set to sync.
2602 			 */
2603 			if (cookie->dmac_type & ROOTNEX_USES_COPYBUF) {
2604 				window->wd_dosync = B_TRUE;
2605 			}
2606 			DTRACE_PROBE1(rootnex__copybuf__window, dev_info_t *,
2607 			    dma->dp_dip);
2608 
2609 		/* if the cookie cnt == max sgllen, move to the next window */
2610 		} else if (window->wd_cookie_cnt >= attr->dma_attr_sgllen) {
2611 			partial = B_TRUE;
2612 			ASSERT(window->wd_cookie_cnt == attr->dma_attr_sgllen);
2613 			e = rootnex_sgllen_window_boundary(hp, dma, &window,
2614 			    cookie, attr, cur_offset);
2615 			if (e != DDI_SUCCESS) {
2616 				rootnex_teardown_copybuf(dma);
2617 				rootnex_teardown_windows(dma);
2618 				return (e);
2619 			}
2620 
2621 			/*
2622 			 * if the coookie uses the copy buffer, make sure the
2623 			 * new window we just moved to is set to sync.
2624 			 */
2625 			if (cookie->dmac_type & ROOTNEX_USES_COPYBUF) {
2626 				window->wd_dosync = B_TRUE;
2627 			}
2628 			DTRACE_PROBE1(rootnex__sgllen__window, dev_info_t *,
2629 			    dma->dp_dip);
2630 
2631 		/* else if we will be over maxxfer */
2632 		} else if ((window->wd_size + dmac_size) >
2633 		    dma->dp_maxxfer) {
2634 			partial = B_TRUE;
2635 			e = rootnex_maxxfer_window_boundary(hp, dma, &window,
2636 			    cookie);
2637 			if (e != DDI_SUCCESS) {
2638 				rootnex_teardown_copybuf(dma);
2639 				rootnex_teardown_windows(dma);
2640 				return (e);
2641 			}
2642 
2643 			/*
2644 			 * if the coookie uses the copy buffer, make sure the
2645 			 * new window we just moved to is set to sync.
2646 			 */
2647 			if (cookie->dmac_type & ROOTNEX_USES_COPYBUF) {
2648 				window->wd_dosync = B_TRUE;
2649 			}
2650 			DTRACE_PROBE1(rootnex__maxxfer__window, dev_info_t *,
2651 			    dma->dp_dip);
2652 
2653 		/* else this cookie fits in the current window */
2654 		} else {
2655 			window->wd_cookie_cnt++;
2656 			window->wd_size += dmac_size;
2657 		}
2658 
2659 		/* track our offset into the buffer, go to the next cookie */
2660 		ASSERT(dmac_size <= dma->dp_dma.dmao_size);
2661 		ASSERT(cookie->dmac_size <= dmac_size);
2662 		cur_offset += dmac_size;
2663 		cookie++;
2664 	}
2665 
2666 	/* if we ended up with a zero sized window in the end, clean it up */
2667 	if (window->wd_size == 0) {
2668 		hp->dmai_nwin--;
2669 		window--;
2670 	}
2671 
2672 	ASSERT(window->wd_trim.tr_trim_last == B_FALSE);
2673 
2674 	if (!partial) {
2675 		return (DDI_DMA_MAPPED);
2676 	}
2677 
2678 	ASSERT(dma->dp_partial_required);
2679 	return (DDI_DMA_PARTIAL_MAP);
2680 }
2681 
2682 
2683 /*
2684  * rootnex_setup_copybuf()
2685  *    Called in bind slowpath. Figures out if we're going to use the copy
2686  *    buffer, and if we do, sets up the basic state to handle it.
2687  */
2688 static int
2689 rootnex_setup_copybuf(ddi_dma_impl_t *hp, struct ddi_dma_req *dmareq,
2690     rootnex_dma_t *dma, ddi_dma_attr_t *attr)
2691 {
2692 	rootnex_sglinfo_t *sinfo;
2693 	ddi_dma_attr_t lattr;
2694 	size_t max_copybuf;
2695 	int cansleep;
2696 	int e;
2697 #if !defined(__amd64)
2698 	int vmflag;
2699 #endif
2700 
2701 
2702 	sinfo = &dma->dp_sglinfo;
2703 
2704 	/*
2705 	 * read this first so it's consistent through the routine so we can
2706 	 * patch it on the fly.
2707 	 */
2708 	max_copybuf = rootnex_max_copybuf_size & MMU_PAGEMASK;
2709 
2710 	/* We need to call into the rootnex on ddi_dma_sync() */
2711 	hp->dmai_rflags &= ~DMP_NOSYNC;
2712 
2713 	/* make sure the copybuf size <= the max size */
2714 	dma->dp_copybuf_size = MIN(sinfo->si_copybuf_req, max_copybuf);
2715 	ASSERT((dma->dp_copybuf_size & MMU_PAGEOFFSET) == 0);
2716 
2717 #if !defined(__amd64)
2718 	/*
2719 	 * if we don't have kva space to copy to/from, allocate the KVA space
2720 	 * now. We only do this for the 32-bit kernel. We use seg kpm space for
2721 	 * the 64-bit kernel.
2722 	 */
2723 	if ((dmareq->dmar_object.dmao_type == DMA_OTYP_PAGES) ||
2724 	    (dmareq->dmar_object.dmao_obj.virt_obj.v_as != NULL)) {
2725 
2726 		/* convert the sleep flags */
2727 		if (dmareq->dmar_fp == DDI_DMA_SLEEP) {
2728 			vmflag = VM_SLEEP;
2729 		} else {
2730 			vmflag = VM_NOSLEEP;
2731 		}
2732 
2733 		/* allocate Kernel VA space that we can bcopy to/from */
2734 		dma->dp_kva = vmem_alloc(heap_arena, dma->dp_copybuf_size,
2735 		    vmflag);
2736 		if (dma->dp_kva == NULL) {
2737 			return (DDI_DMA_NORESOURCES);
2738 		}
2739 	}
2740 #endif
2741 
2742 	/* convert the sleep flags */
2743 	if (dmareq->dmar_fp == DDI_DMA_SLEEP) {
2744 		cansleep = 1;
2745 	} else {
2746 		cansleep = 0;
2747 	}
2748 
2749 	/*
2750 	 * Allocated the actual copy buffer. This needs to fit within the DMA
2751 	 * engines limits, so we can't use kmem_alloc...
2752 	 */
2753 	lattr = *attr;
2754 	lattr.dma_attr_align = MMU_PAGESIZE;
2755 	e = i_ddi_mem_alloc(dma->dp_dip, &lattr, dma->dp_copybuf_size, cansleep,
2756 	    0, NULL, &dma->dp_cbaddr, &dma->dp_cbsize, NULL);
2757 	if (e != DDI_SUCCESS) {
2758 #if !defined(__amd64)
2759 		if (dma->dp_kva != NULL) {
2760 			vmem_free(heap_arena, dma->dp_kva,
2761 			    dma->dp_copybuf_size);
2762 		}
2763 #endif
2764 		return (DDI_DMA_NORESOURCES);
2765 	}
2766 
2767 	DTRACE_PROBE2(rootnex__alloc__copybuf, dev_info_t *, dma->dp_dip,
2768 	    size_t, dma->dp_copybuf_size);
2769 
2770 	return (DDI_SUCCESS);
2771 }
2772 
2773 
2774 /*
2775  * rootnex_setup_windows()
2776  *    Called in bind slowpath to setup the window state. We always have windows
2777  *    in the slowpath. Even if the window count = 1.
2778  */
2779 static int
2780 rootnex_setup_windows(ddi_dma_impl_t *hp, rootnex_dma_t *dma,
2781     ddi_dma_attr_t *attr, int kmflag)
2782 {
2783 	rootnex_window_t *windowp;
2784 	rootnex_sglinfo_t *sinfo;
2785 	size_t copy_state_size;
2786 	size_t win_state_size;
2787 	size_t state_available;
2788 	size_t space_needed;
2789 	uint_t copybuf_win;
2790 	uint_t maxxfer_win;
2791 	size_t space_used;
2792 	uint_t sglwin;
2793 
2794 
2795 	sinfo = &dma->dp_sglinfo;
2796 
2797 	dma->dp_current_win = 0;
2798 	hp->dmai_nwin = 0;
2799 
2800 	/* If we don't need to do a partial, we only have one window */
2801 	if (!dma->dp_partial_required) {
2802 		dma->dp_max_win = 1;
2803 
2804 	/*
2805 	 * we need multiple windows, need to figure out the worse case number
2806 	 * of windows.
2807 	 */
2808 	} else {
2809 		/*
2810 		 * if we need windows because we need more copy buffer that
2811 		 * we allow, the worse case number of windows we could need
2812 		 * here would be (copybuf space required / copybuf space that
2813 		 * we have) plus one for remainder, and plus 2 to handle the
2814 		 * extra pages on the trim for the first and last pages of the
2815 		 * buffer (a page is the minimum window size so under the right
2816 		 * attr settings, you could have a window for each page).
2817 		 * The last page will only be hit here if the size is not a
2818 		 * multiple of the granularity (which theoretically shouldn't
2819 		 * be the case but never has been enforced, so we could have
2820 		 * broken things without it).
2821 		 */
2822 		if (sinfo->si_copybuf_req > dma->dp_copybuf_size) {
2823 			ASSERT(dma->dp_copybuf_size > 0);
2824 			copybuf_win = (sinfo->si_copybuf_req /
2825 			    dma->dp_copybuf_size) + 1 + 2;
2826 		} else {
2827 			copybuf_win = 0;
2828 		}
2829 
2830 		/*
2831 		 * if we need windows because we have more cookies than the H/W
2832 		 * can handle, the number of windows we would need here would
2833 		 * be (cookie count / cookies count H/W supports) plus one for
2834 		 * remainder, and plus 2 to handle the extra pages on the trim
2835 		 * (see above comment about trim)
2836 		 */
2837 		if (attr->dma_attr_sgllen < sinfo->si_sgl_size) {
2838 			sglwin = ((sinfo->si_sgl_size / attr->dma_attr_sgllen)
2839 			    + 1) + 2;
2840 		} else {
2841 			sglwin = 0;
2842 		}
2843 
2844 		/*
2845 		 * if we need windows because we're binding more memory than the
2846 		 * H/W can transfer at once, the number of windows we would need
2847 		 * here would be (xfer count / max xfer H/W supports) plus one
2848 		 * for remainder, and plus 2 to handle the extra pages on the
2849 		 * trim (see above comment about trim)
2850 		 */
2851 		if (dma->dp_dma.dmao_size > dma->dp_maxxfer) {
2852 			maxxfer_win = (dma->dp_dma.dmao_size /
2853 			    dma->dp_maxxfer) + 1 + 2;
2854 		} else {
2855 			maxxfer_win = 0;
2856 		}
2857 		dma->dp_max_win =  copybuf_win + sglwin + maxxfer_win;
2858 		ASSERT(dma->dp_max_win > 0);
2859 	}
2860 	win_state_size = dma->dp_max_win * sizeof (rootnex_window_t);
2861 
2862 	/*
2863 	 * Get space for window and potential copy buffer state. Before we
2864 	 * go and allocate memory, see if we can get away with using what's
2865 	 * left in the pre-allocted state or the dynamically allocated sgl.
2866 	 */
2867 	space_used = (uintptr_t)(sinfo->si_sgl_size *
2868 	    sizeof (ddi_dma_cookie_t));
2869 
2870 	/* if we dynamically allocated space for the cookies */
2871 	if (dma->dp_need_to_free_cookie) {
2872 		/* if we have more space in the pre-allocted buffer, use it */
2873 		ASSERT(space_used <= dma->dp_cookie_size);
2874 		if ((dma->dp_cookie_size - space_used) <=
2875 		    rootnex_state->r_prealloc_size) {
2876 			state_available = rootnex_state->r_prealloc_size;
2877 			windowp = (rootnex_window_t *)dma->dp_prealloc_buffer;
2878 
2879 		/*
2880 		 * else, we have more free space in the dynamically allocated
2881 		 * buffer, i.e. the buffer wasn't worse case fragmented so we
2882 		 * didn't need a lot of cookies.
2883 		 */
2884 		} else {
2885 			state_available = dma->dp_cookie_size - space_used;
2886 			windowp = (rootnex_window_t *)
2887 			    &dma->dp_cookies[sinfo->si_sgl_size];
2888 		}
2889 
2890 	/* we used the pre-alloced buffer */
2891 	} else {
2892 		ASSERT(space_used <= rootnex_state->r_prealloc_size);
2893 		state_available = rootnex_state->r_prealloc_size - space_used;
2894 		windowp = (rootnex_window_t *)
2895 		    &dma->dp_cookies[sinfo->si_sgl_size];
2896 	}
2897 
2898 	/*
2899 	 * figure out how much state we need to track the copy buffer. Add an
2900 	 * addition 8 bytes for pointer alignemnt later.
2901 	 */
2902 	if (dma->dp_copybuf_size > 0) {
2903 		copy_state_size = sinfo->si_max_pages *
2904 		    sizeof (rootnex_pgmap_t);
2905 	} else {
2906 		copy_state_size = 0;
2907 	}
2908 	/* add an additional 8 bytes for pointer alignment */
2909 	space_needed = win_state_size + copy_state_size + 0x8;
2910 
2911 	/* if we have enough space already, use it */
2912 	if (state_available >= space_needed) {
2913 		dma->dp_window = windowp;
2914 		dma->dp_need_to_free_window = B_FALSE;
2915 
2916 	/* not enough space, need to allocate more. */
2917 	} else {
2918 		dma->dp_window = kmem_alloc(space_needed, kmflag);
2919 		if (dma->dp_window == NULL) {
2920 			return (DDI_DMA_NORESOURCES);
2921 		}
2922 		dma->dp_need_to_free_window = B_TRUE;
2923 		dma->dp_window_size = space_needed;
2924 		DTRACE_PROBE2(rootnex__bind__sp__alloc, dev_info_t *,
2925 		    dma->dp_dip, size_t, space_needed);
2926 	}
2927 
2928 	/*
2929 	 * we allocate copy buffer state and window state at the same time.
2930 	 * setup our copy buffer state pointers. Make sure it's aligned.
2931 	 */
2932 	if (dma->dp_copybuf_size > 0) {
2933 		dma->dp_pgmap = (rootnex_pgmap_t *)(((uintptr_t)
2934 		    &dma->dp_window[dma->dp_max_win] + 0x7) & ~0x7);
2935 
2936 #if !defined(__amd64)
2937 		/*
2938 		 * make sure all pm_mapped, pm_vaddr, and pm_pp are set to
2939 		 * false/NULL. Should be quicker to bzero vs loop and set.
2940 		 */
2941 		bzero(dma->dp_pgmap, copy_state_size);
2942 #endif
2943 	} else {
2944 		dma->dp_pgmap = NULL;
2945 	}
2946 
2947 	return (DDI_SUCCESS);
2948 }
2949 
2950 
2951 /*
2952  * rootnex_teardown_copybuf()
2953  *    cleans up after rootnex_setup_copybuf()
2954  */
2955 static void
2956 rootnex_teardown_copybuf(rootnex_dma_t *dma)
2957 {
2958 #if !defined(__amd64)
2959 	int i;
2960 
2961 	/*
2962 	 * if we allocated kernel heap VMEM space, go through all the pages and
2963 	 * map out any of the ones that we're mapped into the kernel heap VMEM
2964 	 * arena. Then free the VMEM space.
2965 	 */
2966 	if (dma->dp_kva != NULL) {
2967 		for (i = 0; i < dma->dp_sglinfo.si_max_pages; i++) {
2968 			if (dma->dp_pgmap[i].pm_mapped) {
2969 				hat_unload(kas.a_hat, dma->dp_pgmap[i].pm_kaddr,
2970 				    MMU_PAGESIZE, HAT_UNLOAD);
2971 				dma->dp_pgmap[i].pm_mapped = B_FALSE;
2972 			}
2973 		}
2974 
2975 		vmem_free(heap_arena, dma->dp_kva, dma->dp_copybuf_size);
2976 	}
2977 
2978 #endif
2979 
2980 	/* if we allocated a copy buffer, free it */
2981 	if (dma->dp_cbaddr != NULL) {
2982 		i_ddi_mem_free(dma->dp_cbaddr, 0);
2983 	}
2984 }
2985 
2986 
2987 /*
2988  * rootnex_teardown_windows()
2989  *    cleans up after rootnex_setup_windows()
2990  */
2991 static void
2992 rootnex_teardown_windows(rootnex_dma_t *dma)
2993 {
2994 	/*
2995 	 * if we had to allocate window state on the last bind (because we
2996 	 * didn't have enough pre-allocated space in the handle), free it.
2997 	 */
2998 	if (dma->dp_need_to_free_window) {
2999 		kmem_free(dma->dp_window, dma->dp_window_size);
3000 	}
3001 }
3002 
3003 
3004 /*
3005  * rootnex_init_win()
3006  *    Called in bind slow path during creation of a new window. Initializes
3007  *    window state to default values.
3008  */
3009 /*ARGSUSED*/
3010 static void
3011 rootnex_init_win(ddi_dma_impl_t *hp, rootnex_dma_t *dma,
3012     rootnex_window_t *window, ddi_dma_cookie_t *cookie, off_t cur_offset)
3013 {
3014 	hp->dmai_nwin++;
3015 	window->wd_dosync = B_FALSE;
3016 	window->wd_offset = cur_offset;
3017 	window->wd_size = 0;
3018 	window->wd_first_cookie = cookie;
3019 	window->wd_cookie_cnt = 0;
3020 	window->wd_trim.tr_trim_first = B_FALSE;
3021 	window->wd_trim.tr_trim_last = B_FALSE;
3022 	window->wd_trim.tr_first_copybuf_win = B_FALSE;
3023 	window->wd_trim.tr_last_copybuf_win = B_FALSE;
3024 #if !defined(__amd64)
3025 	window->wd_remap_copybuf = dma->dp_cb_remaping;
3026 #endif
3027 }
3028 
3029 
3030 /*
3031  * rootnex_setup_cookie()
3032  *    Called in the bind slow path when the sgl uses the copy buffer. If any of
3033  *    the sgl uses the copy buffer, we need to go through each cookie, figure
3034  *    out if it uses the copy buffer, and if it does, save away everything we'll
3035  *    need during sync.
3036  */
3037 static void
3038 rootnex_setup_cookie(ddi_dma_obj_t *dmar_object, rootnex_dma_t *dma,
3039     ddi_dma_cookie_t *cookie, off_t cur_offset, size_t *copybuf_used,
3040     page_t **cur_pp)
3041 {
3042 	boolean_t copybuf_sz_power_2;
3043 	rootnex_sglinfo_t *sinfo;
3044 	uint_t pidx;
3045 	uint_t pcnt;
3046 	off_t poff;
3047 #if defined(__amd64)
3048 	pfn_t pfn;
3049 #else
3050 	page_t **pplist;
3051 #endif
3052 
3053 	sinfo = &dma->dp_sglinfo;
3054 
3055 	/*
3056 	 * Calculate the page index relative to the start of the buffer. The
3057 	 * index to the current page for our buffer is the offset into the
3058 	 * first page of the buffer plus our current offset into the buffer
3059 	 * itself, shifted of course...
3060 	 */
3061 	pidx = (sinfo->si_buf_offset + cur_offset) >> MMU_PAGESHIFT;
3062 	ASSERT(pidx < sinfo->si_max_pages);
3063 
3064 	/* if this cookie uses the copy buffer */
3065 	if (cookie->dmac_type & ROOTNEX_USES_COPYBUF) {
3066 		/*
3067 		 * NOTE: we know that since this cookie uses the copy buffer, it
3068 		 * is <= MMU_PAGESIZE.
3069 		 */
3070 
3071 		/*
3072 		 * get the offset into the page. For the 64-bit kernel, get the
3073 		 * pfn which we'll use with seg kpm.
3074 		 */
3075 		poff = cookie->_dmu._dmac_ll & MMU_PAGEOFFSET;
3076 #if defined(__amd64)
3077 		pfn = cookie->_dmu._dmac_ll >> MMU_PAGESHIFT;
3078 #endif
3079 
3080 		/* figure out if the copybuf size is a power of 2 */
3081 		if (dma->dp_copybuf_size & (dma->dp_copybuf_size - 1)) {
3082 			copybuf_sz_power_2 = B_FALSE;
3083 		} else {
3084 			copybuf_sz_power_2 = B_TRUE;
3085 		}
3086 
3087 		/* This page uses the copy buffer */
3088 		dma->dp_pgmap[pidx].pm_uses_copybuf = B_TRUE;
3089 
3090 		/*
3091 		 * save the copy buffer KVA that we'll use with this page.
3092 		 * if we still fit within the copybuf, it's a simple add.
3093 		 * otherwise, we need to wrap over using & or % accordingly.
3094 		 */
3095 		if ((*copybuf_used + MMU_PAGESIZE) <= dma->dp_copybuf_size) {
3096 			dma->dp_pgmap[pidx].pm_cbaddr = dma->dp_cbaddr +
3097 			    *copybuf_used;
3098 		} else {
3099 			if (copybuf_sz_power_2) {
3100 				dma->dp_pgmap[pidx].pm_cbaddr = (caddr_t)(
3101 				    (uintptr_t)dma->dp_cbaddr +
3102 				    (*copybuf_used &
3103 				    (dma->dp_copybuf_size - 1)));
3104 			} else {
3105 				dma->dp_pgmap[pidx].pm_cbaddr = (caddr_t)(
3106 				    (uintptr_t)dma->dp_cbaddr +
3107 				    (*copybuf_used % dma->dp_copybuf_size));
3108 			}
3109 		}
3110 
3111 		/*
3112 		 * over write the cookie physical address with the address of
3113 		 * the physical address of the copy buffer page that we will
3114 		 * use.
3115 		 */
3116 		cookie->_dmu._dmac_ll = ptob64(hat_getpfnum(kas.a_hat,
3117 		    dma->dp_pgmap[pidx].pm_cbaddr)) + poff;
3118 
3119 		/* if we have a kernel VA, it's easy, just save that address */
3120 		if ((dmar_object->dmao_type != DMA_OTYP_PAGES) &&
3121 		    (sinfo->si_asp == &kas)) {
3122 			/*
3123 			 * save away the page aligned virtual address of the
3124 			 * driver buffer. Offsets are handled in the sync code.
3125 			 */
3126 			dma->dp_pgmap[pidx].pm_kaddr = (caddr_t)(((uintptr_t)
3127 			    dmar_object->dmao_obj.virt_obj.v_addr + cur_offset)
3128 			    & MMU_PAGEMASK);
3129 #if !defined(__amd64)
3130 			/*
3131 			 * we didn't need to, and will never need to map this
3132 			 * page.
3133 			 */
3134 			dma->dp_pgmap[pidx].pm_mapped = B_FALSE;
3135 #endif
3136 
3137 		/* we don't have a kernel VA. We need one for the bcopy. */
3138 		} else {
3139 #if defined(__amd64)
3140 			/*
3141 			 * for the 64-bit kernel, it's easy. We use seg kpm to
3142 			 * get a Kernel VA for the corresponding pfn.
3143 			 */
3144 			dma->dp_pgmap[pidx].pm_kaddr = hat_kpm_pfn2va(pfn);
3145 #else
3146 			/*
3147 			 * for the 32-bit kernel, this is a pain. First we'll
3148 			 * save away the page_t or user VA for this page. This
3149 			 * is needed in rootnex_dma_win() when we switch to a
3150 			 * new window which requires us to re-map the copy
3151 			 * buffer.
3152 			 */
3153 			pplist = dmar_object->dmao_obj.virt_obj.v_priv;
3154 			if (dmar_object->dmao_type == DMA_OTYP_PAGES) {
3155 				dma->dp_pgmap[pidx].pm_pp = *cur_pp;
3156 				dma->dp_pgmap[pidx].pm_vaddr = NULL;
3157 			} else if (pplist != NULL) {
3158 				dma->dp_pgmap[pidx].pm_pp = pplist[pidx];
3159 				dma->dp_pgmap[pidx].pm_vaddr = NULL;
3160 			} else {
3161 				dma->dp_pgmap[pidx].pm_pp = NULL;
3162 				dma->dp_pgmap[pidx].pm_vaddr = (caddr_t)
3163 				    (((uintptr_t)
3164 				    dmar_object->dmao_obj.virt_obj.v_addr +
3165 				    cur_offset) & MMU_PAGEMASK);
3166 			}
3167 
3168 			/*
3169 			 * save away the page aligned virtual address which was
3170 			 * allocated from the kernel heap arena (taking into
3171 			 * account if we need more copy buffer than we alloced
3172 			 * and use multiple windows to handle this, i.e. &,%).
3173 			 * NOTE: there isn't and physical memory backing up this
3174 			 * virtual address space currently.
3175 			 */
3176 			if ((*copybuf_used + MMU_PAGESIZE) <=
3177 			    dma->dp_copybuf_size) {
3178 				dma->dp_pgmap[pidx].pm_kaddr = (caddr_t)
3179 				    (((uintptr_t)dma->dp_kva + *copybuf_used) &
3180 				    MMU_PAGEMASK);
3181 			} else {
3182 				if (copybuf_sz_power_2) {
3183 					dma->dp_pgmap[pidx].pm_kaddr = (caddr_t)
3184 					    (((uintptr_t)dma->dp_kva +
3185 					    (*copybuf_used &
3186 					    (dma->dp_copybuf_size - 1))) &
3187 					    MMU_PAGEMASK);
3188 				} else {
3189 					dma->dp_pgmap[pidx].pm_kaddr = (caddr_t)
3190 					    (((uintptr_t)dma->dp_kva +
3191 					    (*copybuf_used %
3192 					    dma->dp_copybuf_size)) &
3193 					    MMU_PAGEMASK);
3194 				}
3195 			}
3196 
3197 			/*
3198 			 * if we haven't used up the available copy buffer yet,
3199 			 * map the kva to the physical page.
3200 			 */
3201 			if (!dma->dp_cb_remaping && ((*copybuf_used +
3202 			    MMU_PAGESIZE) <= dma->dp_copybuf_size)) {
3203 				dma->dp_pgmap[pidx].pm_mapped = B_TRUE;
3204 				if (dma->dp_pgmap[pidx].pm_pp != NULL) {
3205 					i86_pp_map(dma->dp_pgmap[pidx].pm_pp,
3206 					    dma->dp_pgmap[pidx].pm_kaddr);
3207 				} else {
3208 					i86_va_map(dma->dp_pgmap[pidx].pm_vaddr,
3209 					    sinfo->si_asp,
3210 					    dma->dp_pgmap[pidx].pm_kaddr);
3211 				}
3212 
3213 			/*
3214 			 * we've used up the available copy buffer, this page
3215 			 * will have to be mapped during rootnex_dma_win() when
3216 			 * we switch to a new window which requires a re-map
3217 			 * the copy buffer. (32-bit kernel only)
3218 			 */
3219 			} else {
3220 				dma->dp_pgmap[pidx].pm_mapped = B_FALSE;
3221 			}
3222 #endif
3223 			/* go to the next page_t */
3224 			if (dmar_object->dmao_type == DMA_OTYP_PAGES) {
3225 				*cur_pp = (*cur_pp)->p_next;
3226 			}
3227 		}
3228 
3229 		/* add to the copy buffer count */
3230 		*copybuf_used += MMU_PAGESIZE;
3231 
3232 	/*
3233 	 * This cookie doesn't use the copy buffer. Walk through the pages this
3234 	 * cookie occupies to reflect this.
3235 	 */
3236 	} else {
3237 		/*
3238 		 * figure out how many pages the cookie occupies. We need to
3239 		 * use the original page offset of the buffer and the cookies
3240 		 * offset in the buffer to do this.
3241 		 */
3242 		poff = (sinfo->si_buf_offset + cur_offset) & MMU_PAGEOFFSET;
3243 		pcnt = mmu_btopr(cookie->dmac_size + poff);
3244 
3245 		while (pcnt > 0) {
3246 #if !defined(__amd64)
3247 			/*
3248 			 * the 32-bit kernel doesn't have seg kpm, so we need
3249 			 * to map in the driver buffer (if it didn't come down
3250 			 * with a kernel VA) on the fly. Since this page doesn't
3251 			 * use the copy buffer, it's not, or will it ever, have
3252 			 * to be mapped in.
3253 			 */
3254 			dma->dp_pgmap[pidx].pm_mapped = B_FALSE;
3255 #endif
3256 			dma->dp_pgmap[pidx].pm_uses_copybuf = B_FALSE;
3257 
3258 			/*
3259 			 * we need to update pidx and cur_pp or we'll loose
3260 			 * track of where we are.
3261 			 */
3262 			if (dmar_object->dmao_type == DMA_OTYP_PAGES) {
3263 				*cur_pp = (*cur_pp)->p_next;
3264 			}
3265 			pidx++;
3266 			pcnt--;
3267 		}
3268 	}
3269 }
3270 
3271 
3272 /*
3273  * rootnex_sgllen_window_boundary()
3274  *    Called in the bind slow path when the next cookie causes us to exceed (in
3275  *    this case == since we start at 0 and sgllen starts at 1) the maximum sgl
3276  *    length supported by the DMA H/W.
3277  */
3278 static int
3279 rootnex_sgllen_window_boundary(ddi_dma_impl_t *hp, rootnex_dma_t *dma,
3280     rootnex_window_t **windowp, ddi_dma_cookie_t *cookie, ddi_dma_attr_t *attr,
3281     off_t cur_offset)
3282 {
3283 	off_t new_offset;
3284 	size_t trim_sz;
3285 	off_t coffset;
3286 
3287 
3288 	/*
3289 	 * if we know we'll never have to trim, it's pretty easy. Just move to
3290 	 * the next window and init it. We're done.
3291 	 */
3292 	if (!dma->dp_trim_required) {
3293 		(*windowp)++;
3294 		rootnex_init_win(hp, dma, *windowp, cookie, cur_offset);
3295 		(*windowp)->wd_cookie_cnt++;
3296 		(*windowp)->wd_size = cookie->dmac_size;
3297 		return (DDI_SUCCESS);
3298 	}
3299 
3300 	/* figure out how much we need to trim from the window */
3301 	ASSERT(attr->dma_attr_granular != 0);
3302 	if (dma->dp_granularity_power_2) {
3303 		trim_sz = (*windowp)->wd_size & (attr->dma_attr_granular - 1);
3304 	} else {
3305 		trim_sz = (*windowp)->wd_size % attr->dma_attr_granular;
3306 	}
3307 
3308 	/* The window's a whole multiple of granularity. We're done */
3309 	if (trim_sz == 0) {
3310 		(*windowp)++;
3311 		rootnex_init_win(hp, dma, *windowp, cookie, cur_offset);
3312 		(*windowp)->wd_cookie_cnt++;
3313 		(*windowp)->wd_size = cookie->dmac_size;
3314 		return (DDI_SUCCESS);
3315 	}
3316 
3317 	/*
3318 	 * The window's not a whole multiple of granularity, since we know this
3319 	 * is due to the sgllen, we need to go back to the last cookie and trim
3320 	 * that one, add the left over part of the old cookie into the new
3321 	 * window, and then add in the new cookie into the new window.
3322 	 */
3323 
3324 	/*
3325 	 * make sure the driver isn't making us do something bad... Trimming and
3326 	 * sgllen == 1 don't go together.
3327 	 */
3328 	if (attr->dma_attr_sgllen == 1) {
3329 		return (DDI_DMA_NOMAPPING);
3330 	}
3331 
3332 	/*
3333 	 * first, setup the current window to account for the trim. Need to go
3334 	 * back to the last cookie for this.
3335 	 */
3336 	cookie--;
3337 	(*windowp)->wd_trim.tr_trim_last = B_TRUE;
3338 	(*windowp)->wd_trim.tr_last_cookie = cookie;
3339 	(*windowp)->wd_trim.tr_last_paddr = cookie->_dmu._dmac_ll;
3340 	ASSERT(cookie->dmac_size > trim_sz);
3341 	(*windowp)->wd_trim.tr_last_size = cookie->dmac_size - trim_sz;
3342 	(*windowp)->wd_size -= trim_sz;
3343 
3344 	/* save the buffer offsets for the next window */
3345 	coffset = cookie->dmac_size - trim_sz;
3346 	new_offset = (*windowp)->wd_offset + (*windowp)->wd_size;
3347 
3348 	/*
3349 	 * set this now in case this is the first window. all other cases are
3350 	 * set in dma_win()
3351 	 */
3352 	cookie->dmac_size = (*windowp)->wd_trim.tr_last_size;
3353 
3354 	/*
3355 	 * initialize the next window using what's left over in the previous
3356 	 * cookie.
3357 	 */
3358 	(*windowp)++;
3359 	rootnex_init_win(hp, dma, *windowp, cookie, new_offset);
3360 	(*windowp)->wd_cookie_cnt++;
3361 	(*windowp)->wd_trim.tr_trim_first = B_TRUE;
3362 	(*windowp)->wd_trim.tr_first_paddr = cookie->_dmu._dmac_ll + coffset;
3363 	(*windowp)->wd_trim.tr_first_size = trim_sz;
3364 	if (cookie->dmac_type & ROOTNEX_USES_COPYBUF) {
3365 		(*windowp)->wd_dosync = B_TRUE;
3366 	}
3367 
3368 	/*
3369 	 * now go back to the current cookie and add it to the new window. set
3370 	 * the new window size to the what was left over from the previous
3371 	 * cookie and what's in the current cookie.
3372 	 */
3373 	cookie++;
3374 	(*windowp)->wd_cookie_cnt++;
3375 	(*windowp)->wd_size = trim_sz + cookie->dmac_size;
3376 
3377 	/*
3378 	 * trim plus the next cookie could put us over maxxfer (a cookie can be
3379 	 * a max size of maxxfer). Handle that case.
3380 	 */
3381 	if ((*windowp)->wd_size > dma->dp_maxxfer) {
3382 		/*
3383 		 * maxxfer is already a whole multiple of granularity, and this
3384 		 * trim will be <= the previous trim (since a cookie can't be
3385 		 * larger than maxxfer). Make things simple here.
3386 		 */
3387 		trim_sz = (*windowp)->wd_size - dma->dp_maxxfer;
3388 		(*windowp)->wd_trim.tr_trim_last = B_TRUE;
3389 		(*windowp)->wd_trim.tr_last_cookie = cookie;
3390 		(*windowp)->wd_trim.tr_last_paddr = cookie->_dmu._dmac_ll;
3391 		(*windowp)->wd_trim.tr_last_size = cookie->dmac_size - trim_sz;
3392 		(*windowp)->wd_size -= trim_sz;
3393 		ASSERT((*windowp)->wd_size == dma->dp_maxxfer);
3394 
3395 		/* save the buffer offsets for the next window */
3396 		coffset = cookie->dmac_size - trim_sz;
3397 		new_offset = (*windowp)->wd_offset + (*windowp)->wd_size;
3398 
3399 		/* setup the next window */
3400 		(*windowp)++;
3401 		rootnex_init_win(hp, dma, *windowp, cookie, new_offset);
3402 		(*windowp)->wd_cookie_cnt++;
3403 		(*windowp)->wd_trim.tr_trim_first = B_TRUE;
3404 		(*windowp)->wd_trim.tr_first_paddr = cookie->_dmu._dmac_ll +
3405 		    coffset;
3406 		(*windowp)->wd_trim.tr_first_size = trim_sz;
3407 	}
3408 
3409 	return (DDI_SUCCESS);
3410 }
3411 
3412 
3413 /*
3414  * rootnex_copybuf_window_boundary()
3415  *    Called in bind slowpath when we get to a window boundary because we used
3416  *    up all the copy buffer that we have.
3417  */
3418 static int
3419 rootnex_copybuf_window_boundary(ddi_dma_impl_t *hp, rootnex_dma_t *dma,
3420     rootnex_window_t **windowp, ddi_dma_cookie_t *cookie, off_t cur_offset,
3421     size_t *copybuf_used)
3422 {
3423 	rootnex_sglinfo_t *sinfo;
3424 	off_t new_offset;
3425 	size_t trim_sz;
3426 	off_t coffset;
3427 	uint_t pidx;
3428 	off_t poff;
3429 
3430 
3431 	sinfo = &dma->dp_sglinfo;
3432 
3433 	/*
3434 	 * the copy buffer should be a whole multiple of page size. We know that
3435 	 * this cookie is <= MMU_PAGESIZE.
3436 	 */
3437 	ASSERT(cookie->dmac_size <= MMU_PAGESIZE);
3438 
3439 	/*
3440 	 * from now on, all new windows in this bind need to be re-mapped during
3441 	 * ddi_dma_getwin() (32-bit kernel only). i.e. we ran out out copybuf
3442 	 * space...
3443 	 */
3444 #if !defined(__amd64)
3445 	dma->dp_cb_remaping = B_TRUE;
3446 #endif
3447 
3448 	/* reset copybuf used */
3449 	*copybuf_used = 0;
3450 
3451 	/*
3452 	 * if we don't have to trim (since granularity is set to 1), go to the
3453 	 * next window and add the current cookie to it. We know the current
3454 	 * cookie uses the copy buffer since we're in this code path.
3455 	 */
3456 	if (!dma->dp_trim_required) {
3457 		(*windowp)++;
3458 		rootnex_init_win(hp, dma, *windowp, cookie, cur_offset);
3459 
3460 		/* Add this cookie to the new window */
3461 		(*windowp)->wd_cookie_cnt++;
3462 		(*windowp)->wd_size += cookie->dmac_size;
3463 		*copybuf_used += MMU_PAGESIZE;
3464 		return (DDI_SUCCESS);
3465 	}
3466 
3467 	/*
3468 	 * *** may need to trim, figure it out.
3469 	 */
3470 
3471 	/* figure out how much we need to trim from the window */
3472 	if (dma->dp_granularity_power_2) {
3473 		trim_sz = (*windowp)->wd_size &
3474 		    (hp->dmai_attr.dma_attr_granular - 1);
3475 	} else {
3476 		trim_sz = (*windowp)->wd_size % hp->dmai_attr.dma_attr_granular;
3477 	}
3478 
3479 	/*
3480 	 * if the window's a whole multiple of granularity, go to the next
3481 	 * window, init it, then add in the current cookie. We know the current
3482 	 * cookie uses the copy buffer since we're in this code path.
3483 	 */
3484 	if (trim_sz == 0) {
3485 		(*windowp)++;
3486 		rootnex_init_win(hp, dma, *windowp, cookie, cur_offset);
3487 
3488 		/* Add this cookie to the new window */
3489 		(*windowp)->wd_cookie_cnt++;
3490 		(*windowp)->wd_size += cookie->dmac_size;
3491 		*copybuf_used += MMU_PAGESIZE;
3492 		return (DDI_SUCCESS);
3493 	}
3494 
3495 	/*
3496 	 * *** We figured it out, we definitly need to trim
3497 	 */
3498 
3499 	/*
3500 	 * make sure the driver isn't making us do something bad...
3501 	 * Trimming and sgllen == 1 don't go together.
3502 	 */
3503 	if (hp->dmai_attr.dma_attr_sgllen == 1) {
3504 		return (DDI_DMA_NOMAPPING);
3505 	}
3506 
3507 	/*
3508 	 * first, setup the current window to account for the trim. Need to go
3509 	 * back to the last cookie for this. Some of the last cookie will be in
3510 	 * the current window, and some of the last cookie will be in the new
3511 	 * window. All of the current cookie will be in the new window.
3512 	 */
3513 	cookie--;
3514 	(*windowp)->wd_trim.tr_trim_last = B_TRUE;
3515 	(*windowp)->wd_trim.tr_last_cookie = cookie;
3516 	(*windowp)->wd_trim.tr_last_paddr = cookie->_dmu._dmac_ll;
3517 	ASSERT(cookie->dmac_size > trim_sz);
3518 	(*windowp)->wd_trim.tr_last_size = cookie->dmac_size - trim_sz;
3519 	(*windowp)->wd_size -= trim_sz;
3520 
3521 	/*
3522 	 * we're trimming the last cookie (not the current cookie). So that
3523 	 * last cookie may have or may not have been using the copy buffer (
3524 	 * we know the cookie passed in uses the copy buffer since we're in
3525 	 * this code path).
3526 	 *
3527 	 * If the last cookie doesn't use the copy buffer, nothing special to
3528 	 * do. However, if it does uses the copy buffer, it will be both the
3529 	 * last page in the current window and the first page in the next
3530 	 * window. Since we are reusing the copy buffer (and KVA space on the
3531 	 * 32-bit kernel), this page will use the end of the copy buffer in the
3532 	 * current window, and the start of the copy buffer in the next window.
3533 	 * Track that info... The cookie physical address was already set to
3534 	 * the copy buffer physical address in setup_cookie..
3535 	 */
3536 	if (cookie->dmac_type & ROOTNEX_USES_COPYBUF) {
3537 		pidx = (sinfo->si_buf_offset + (*windowp)->wd_offset +
3538 		    (*windowp)->wd_size) >> MMU_PAGESHIFT;
3539 		(*windowp)->wd_trim.tr_last_copybuf_win = B_TRUE;
3540 		(*windowp)->wd_trim.tr_last_pidx = pidx;
3541 		(*windowp)->wd_trim.tr_last_cbaddr =
3542 		    dma->dp_pgmap[pidx].pm_cbaddr;
3543 #if !defined(__amd64)
3544 		(*windowp)->wd_trim.tr_last_kaddr =
3545 		    dma->dp_pgmap[pidx].pm_kaddr;
3546 #endif
3547 	}
3548 
3549 	/* save the buffer offsets for the next window */
3550 	coffset = cookie->dmac_size - trim_sz;
3551 	new_offset = (*windowp)->wd_offset + (*windowp)->wd_size;
3552 
3553 	/*
3554 	 * set this now in case this is the first window. all other cases are
3555 	 * set in dma_win()
3556 	 */
3557 	cookie->dmac_size = (*windowp)->wd_trim.tr_last_size;
3558 
3559 	/*
3560 	 * initialize the next window using what's left over in the previous
3561 	 * cookie.
3562 	 */
3563 	(*windowp)++;
3564 	rootnex_init_win(hp, dma, *windowp, cookie, new_offset);
3565 	(*windowp)->wd_cookie_cnt++;
3566 	(*windowp)->wd_trim.tr_trim_first = B_TRUE;
3567 	(*windowp)->wd_trim.tr_first_paddr = cookie->_dmu._dmac_ll + coffset;
3568 	(*windowp)->wd_trim.tr_first_size = trim_sz;
3569 
3570 	/*
3571 	 * again, we're tracking if the last cookie uses the copy buffer.
3572 	 * read the comment above for more info on why we need to track
3573 	 * additional state.
3574 	 *
3575 	 * For the first cookie in the new window, we need reset the physical
3576 	 * address to DMA into to the start of the copy buffer plus any
3577 	 * initial page offset which may be present.
3578 	 */
3579 	if (cookie->dmac_type & ROOTNEX_USES_COPYBUF) {
3580 		(*windowp)->wd_dosync = B_TRUE;
3581 		(*windowp)->wd_trim.tr_first_copybuf_win = B_TRUE;
3582 		(*windowp)->wd_trim.tr_first_pidx = pidx;
3583 		(*windowp)->wd_trim.tr_first_cbaddr = dma->dp_cbaddr;
3584 		poff = (*windowp)->wd_trim.tr_first_paddr & MMU_PAGEOFFSET;
3585 		(*windowp)->wd_trim.tr_first_paddr = ptob64(hat_getpfnum(
3586 		    kas.a_hat, dma->dp_cbaddr)) + poff;
3587 #if !defined(__amd64)
3588 		(*windowp)->wd_trim.tr_first_kaddr = dma->dp_kva;
3589 #endif
3590 		/* account for the cookie copybuf usage in the new window */
3591 		*copybuf_used += MMU_PAGESIZE;
3592 
3593 		/*
3594 		 * every piece of code has to have a hack, and here is this
3595 		 * ones :-)
3596 		 *
3597 		 * There is a complex interaction between setup_cookie and the
3598 		 * copybuf window boundary. The complexity had to be in either
3599 		 * the maxxfer window, or the copybuf window, and I chose the
3600 		 * copybuf code.
3601 		 *
3602 		 * So in this code path, we have taken the last cookie,
3603 		 * virtually broken it in half due to the trim, and it happens
3604 		 * to use the copybuf which further complicates life. At the
3605 		 * same time, we have already setup the current cookie, which
3606 		 * is now wrong. More background info: the current cookie uses
3607 		 * the copybuf, so it is only a page long max. So we need to
3608 		 * fix the current cookies copy buffer address, physical
3609 		 * address, and kva for the 32-bit kernel. We due this by
3610 		 * bumping them by page size (of course, we can't due this on
3611 		 * the physical address since the copy buffer may not be
3612 		 * physically contiguous).
3613 		 */
3614 		cookie++;
3615 		dma->dp_pgmap[pidx + 1].pm_cbaddr += MMU_PAGESIZE;
3616 		poff = cookie->_dmu._dmac_ll & MMU_PAGEOFFSET;
3617 		cookie->_dmu._dmac_ll = ptob64(hat_getpfnum(kas.a_hat,
3618 		    dma->dp_pgmap[pidx + 1].pm_cbaddr)) + poff;
3619 #if !defined(__amd64)
3620 		ASSERT(dma->dp_pgmap[pidx + 1].pm_mapped == B_FALSE);
3621 		dma->dp_pgmap[pidx + 1].pm_kaddr += MMU_PAGESIZE;
3622 #endif
3623 	} else {
3624 		/* go back to the current cookie */
3625 		cookie++;
3626 	}
3627 
3628 	/*
3629 	 * add the current cookie to the new window. set the new window size to
3630 	 * the what was left over from the previous cookie and what's in the
3631 	 * current cookie.
3632 	 */
3633 	(*windowp)->wd_cookie_cnt++;
3634 	(*windowp)->wd_size = trim_sz + cookie->dmac_size;
3635 	ASSERT((*windowp)->wd_size < dma->dp_maxxfer);
3636 
3637 	/*
3638 	 * we know that the cookie passed in always uses the copy buffer. We
3639 	 * wouldn't be here if it didn't.
3640 	 */
3641 	*copybuf_used += MMU_PAGESIZE;
3642 
3643 	return (DDI_SUCCESS);
3644 }
3645 
3646 
3647 /*
3648  * rootnex_maxxfer_window_boundary()
3649  *    Called in bind slowpath when we get to a window boundary because we will
3650  *    go over maxxfer.
3651  */
3652 static int
3653 rootnex_maxxfer_window_boundary(ddi_dma_impl_t *hp, rootnex_dma_t *dma,
3654     rootnex_window_t **windowp, ddi_dma_cookie_t *cookie)
3655 {
3656 	size_t dmac_size;
3657 	off_t new_offset;
3658 	size_t trim_sz;
3659 	off_t coffset;
3660 
3661 
3662 	/*
3663 	 * calculate how much we have to trim off of the current cookie to equal
3664 	 * maxxfer. We don't have to account for granularity here since our
3665 	 * maxxfer already takes that into account.
3666 	 */
3667 	trim_sz = ((*windowp)->wd_size + cookie->dmac_size) - dma->dp_maxxfer;
3668 	ASSERT(trim_sz <= cookie->dmac_size);
3669 	ASSERT(trim_sz <= dma->dp_maxxfer);
3670 
3671 	/* save cookie size since we need it later and we might change it */
3672 	dmac_size = cookie->dmac_size;
3673 
3674 	/*
3675 	 * if we're not trimming the entire cookie, setup the current window to
3676 	 * account for the trim.
3677 	 */
3678 	if (trim_sz < cookie->dmac_size) {
3679 		(*windowp)->wd_cookie_cnt++;
3680 		(*windowp)->wd_trim.tr_trim_last = B_TRUE;
3681 		(*windowp)->wd_trim.tr_last_cookie = cookie;
3682 		(*windowp)->wd_trim.tr_last_paddr = cookie->_dmu._dmac_ll;
3683 		(*windowp)->wd_trim.tr_last_size = cookie->dmac_size - trim_sz;
3684 		(*windowp)->wd_size = dma->dp_maxxfer;
3685 
3686 		/*
3687 		 * set the adjusted cookie size now in case this is the first
3688 		 * window. All other windows are taken care of in get win
3689 		 */
3690 		cookie->dmac_size = (*windowp)->wd_trim.tr_last_size;
3691 	}
3692 
3693 	/*
3694 	 * coffset is the current offset within the cookie, new_offset is the
3695 	 * current offset with the entire buffer.
3696 	 */
3697 	coffset = dmac_size - trim_sz;
3698 	new_offset = (*windowp)->wd_offset + (*windowp)->wd_size;
3699 
3700 	/* initialize the next window */
3701 	(*windowp)++;
3702 	rootnex_init_win(hp, dma, *windowp, cookie, new_offset);
3703 	(*windowp)->wd_cookie_cnt++;
3704 	(*windowp)->wd_size = trim_sz;
3705 	if (trim_sz < dmac_size) {
3706 		(*windowp)->wd_trim.tr_trim_first = B_TRUE;
3707 		(*windowp)->wd_trim.tr_first_paddr = cookie->_dmu._dmac_ll +
3708 		    coffset;
3709 		(*windowp)->wd_trim.tr_first_size = trim_sz;
3710 	}
3711 
3712 	return (DDI_SUCCESS);
3713 }
3714 
3715 
3716 /*
3717  * rootnex_dma_sync()
3718  *    called from ddi_dma_sync() if DMP_NOSYNC is not set in hp->dmai_rflags.
3719  *    We set DMP_NOSYNC if we're not using the copy buffer. If DMP_NOSYNC
3720  *    is set, ddi_dma_sync() returns immediately passing back success.
3721  */
3722 /*ARGSUSED*/
3723 static int
3724 rootnex_dma_sync(dev_info_t *dip, dev_info_t *rdip, ddi_dma_handle_t handle,
3725     off_t off, size_t len, uint_t cache_flags)
3726 {
3727 	rootnex_sglinfo_t *sinfo;
3728 	rootnex_pgmap_t *cbpage;
3729 	rootnex_window_t *win;
3730 	ddi_dma_impl_t *hp;
3731 	rootnex_dma_t *dma;
3732 	caddr_t fromaddr;
3733 	caddr_t toaddr;
3734 	uint_t psize;
3735 	off_t offset;
3736 	uint_t pidx;
3737 	size_t size;
3738 	off_t poff;
3739 	int e;
3740 
3741 
3742 	hp = (ddi_dma_impl_t *)handle;
3743 	dma = (rootnex_dma_t *)hp->dmai_private;
3744 	sinfo = &dma->dp_sglinfo;
3745 
3746 	/*
3747 	 * if we don't have any windows, we don't need to sync. A copybuf
3748 	 * will cause us to have at least one window.
3749 	 */
3750 	if (dma->dp_window == NULL) {
3751 		return (DDI_SUCCESS);
3752 	}
3753 
3754 	/* This window may not need to be sync'd */
3755 	win = &dma->dp_window[dma->dp_current_win];
3756 	if (!win->wd_dosync) {
3757 		return (DDI_SUCCESS);
3758 	}
3759 
3760 	/* handle off and len special cases */
3761 	if ((off == 0) || (rootnex_sync_ignore_params)) {
3762 		offset = win->wd_offset;
3763 	} else {
3764 		offset = off;
3765 	}
3766 	if ((len == 0) || (rootnex_sync_ignore_params)) {
3767 		size = win->wd_size;
3768 	} else {
3769 		size = len;
3770 	}
3771 
3772 	/* check the sync args to make sure they make a little sense */
3773 	if (rootnex_sync_check_parms) {
3774 		e = rootnex_valid_sync_parms(hp, win, offset, size,
3775 		    cache_flags);
3776 		if (e != DDI_SUCCESS) {
3777 			ROOTNEX_PROF_INC(&rootnex_cnt[ROOTNEX_CNT_SYNC_FAIL]);
3778 			return (DDI_FAILURE);
3779 		}
3780 	}
3781 
3782 	/*
3783 	 * special case the first page to handle the offset into the page. The
3784 	 * offset to the current page for our buffer is the offset into the
3785 	 * first page of the buffer plus our current offset into the buffer
3786 	 * itself, masked of course.
3787 	 */
3788 	poff = (sinfo->si_buf_offset + offset) & MMU_PAGEOFFSET;
3789 	psize = MIN((MMU_PAGESIZE - poff), size);
3790 
3791 	/* go through all the pages that we want to sync */
3792 	while (size > 0) {
3793 		/*
3794 		 * Calculate the page index relative to the start of the buffer.
3795 		 * The index to the current page for our buffer is the offset
3796 		 * into the first page of the buffer plus our current offset
3797 		 * into the buffer itself, shifted of course...
3798 		 */
3799 		pidx = (sinfo->si_buf_offset + offset) >> MMU_PAGESHIFT;
3800 		ASSERT(pidx < sinfo->si_max_pages);
3801 
3802 		/*
3803 		 * if this page uses the copy buffer, we need to sync it,
3804 		 * otherwise, go on to the next page.
3805 		 */
3806 		cbpage = &dma->dp_pgmap[pidx];
3807 		ASSERT((cbpage->pm_uses_copybuf == B_TRUE) ||
3808 		    (cbpage->pm_uses_copybuf == B_FALSE));
3809 		if (cbpage->pm_uses_copybuf) {
3810 			/* cbaddr and kaddr should be page aligned */
3811 			ASSERT(((uintptr_t)cbpage->pm_cbaddr &
3812 			    MMU_PAGEOFFSET) == 0);
3813 			ASSERT(((uintptr_t)cbpage->pm_kaddr &
3814 			    MMU_PAGEOFFSET) == 0);
3815 
3816 			/*
3817 			 * if we're copying for the device, we are going to
3818 			 * copy from the drivers buffer and to the rootnex
3819 			 * allocated copy buffer.
3820 			 */
3821 			if (cache_flags == DDI_DMA_SYNC_FORDEV) {
3822 				fromaddr = cbpage->pm_kaddr + poff;
3823 				toaddr = cbpage->pm_cbaddr + poff;
3824 				DTRACE_PROBE2(rootnex__sync__dev,
3825 				    dev_info_t *, dma->dp_dip, size_t, psize);
3826 
3827 			/*
3828 			 * if we're copying for the cpu/kernel, we are going to
3829 			 * copy from the rootnex allocated copy buffer to the
3830 			 * drivers buffer.
3831 			 */
3832 			} else {
3833 				fromaddr = cbpage->pm_cbaddr + poff;
3834 				toaddr = cbpage->pm_kaddr + poff;
3835 				DTRACE_PROBE2(rootnex__sync__cpu,
3836 				    dev_info_t *, dma->dp_dip, size_t, psize);
3837 			}
3838 
3839 			bcopy(fromaddr, toaddr, psize);
3840 		}
3841 
3842 		/*
3843 		 * decrement size until we're done, update our offset into the
3844 		 * buffer, and get the next page size.
3845 		 */
3846 		size -= psize;
3847 		offset += psize;
3848 		psize = MIN(MMU_PAGESIZE, size);
3849 
3850 		/* page offset is zero for the rest of this loop */
3851 		poff = 0;
3852 	}
3853 
3854 	return (DDI_SUCCESS);
3855 }
3856 
3857 
3858 /*
3859  * rootnex_valid_sync_parms()
3860  *    checks the parameters passed to sync to verify they are correct.
3861  */
3862 static int
3863 rootnex_valid_sync_parms(ddi_dma_impl_t *hp, rootnex_window_t *win,
3864     off_t offset, size_t size, uint_t cache_flags)
3865 {
3866 	off_t woffset;
3867 
3868 
3869 	/*
3870 	 * the first part of the test to make sure the offset passed in is
3871 	 * within the window.
3872 	 */
3873 	if (offset < win->wd_offset) {
3874 		return (DDI_FAILURE);
3875 	}
3876 
3877 	/*
3878 	 * second and last part of the test to make sure the offset and length
3879 	 * passed in is within the window.
3880 	 */
3881 	woffset = offset - win->wd_offset;
3882 	if ((woffset + size) > win->wd_size) {
3883 		return (DDI_FAILURE);
3884 	}
3885 
3886 	/*
3887 	 * if we are sync'ing for the device, the DDI_DMA_WRITE flag should
3888 	 * be set too.
3889 	 */
3890 	if ((cache_flags == DDI_DMA_SYNC_FORDEV) &&
3891 	    (hp->dmai_rflags & DDI_DMA_WRITE)) {
3892 		return (DDI_SUCCESS);
3893 	}
3894 
3895 	/*
3896 	 * at this point, either DDI_DMA_SYNC_FORCPU or DDI_DMA_SYNC_FORKERNEL
3897 	 * should be set. Also DDI_DMA_READ should be set in the flags.
3898 	 */
3899 	if (((cache_flags == DDI_DMA_SYNC_FORCPU) ||
3900 	    (cache_flags == DDI_DMA_SYNC_FORKERNEL)) &&
3901 	    (hp->dmai_rflags & DDI_DMA_READ)) {
3902 		return (DDI_SUCCESS);
3903 	}
3904 
3905 	return (DDI_FAILURE);
3906 }
3907 
3908 
3909 /*
3910  * rootnex_dma_win()
3911  *    called from ddi_dma_getwin()
3912  */
3913 /*ARGSUSED*/
3914 static int
3915 rootnex_dma_win(dev_info_t *dip, dev_info_t *rdip, ddi_dma_handle_t handle,
3916     uint_t win, off_t *offp, size_t *lenp, ddi_dma_cookie_t *cookiep,
3917     uint_t *ccountp)
3918 {
3919 	rootnex_window_t *window;
3920 	rootnex_trim_t *trim;
3921 	ddi_dma_impl_t *hp;
3922 	rootnex_dma_t *dma;
3923 #if !defined(__amd64)
3924 	rootnex_sglinfo_t *sinfo;
3925 	rootnex_pgmap_t *pmap;
3926 	uint_t pidx;
3927 	uint_t pcnt;
3928 	off_t poff;
3929 	int i;
3930 #endif
3931 
3932 
3933 	hp = (ddi_dma_impl_t *)handle;
3934 	dma = (rootnex_dma_t *)hp->dmai_private;
3935 #if !defined(__amd64)
3936 	sinfo = &dma->dp_sglinfo;
3937 #endif
3938 
3939 	/* If we try and get a window which doesn't exist, return failure */
3940 	if (win >= hp->dmai_nwin) {
3941 		ROOTNEX_PROF_INC(&rootnex_cnt[ROOTNEX_CNT_GETWIN_FAIL]);
3942 		return (DDI_FAILURE);
3943 	}
3944 
3945 	/*
3946 	 * if we don't have any windows, and they're asking for the first
3947 	 * window, setup the cookie pointer to the first cookie in the bind.
3948 	 * setup our return values, then increment the cookie since we return
3949 	 * the first cookie on the stack.
3950 	 */
3951 	if (dma->dp_window == NULL) {
3952 		if (win != 0) {
3953 			ROOTNEX_PROF_INC(&rootnex_cnt[ROOTNEX_CNT_GETWIN_FAIL]);
3954 			return (DDI_FAILURE);
3955 		}
3956 		hp->dmai_cookie = dma->dp_cookies;
3957 		*offp = 0;
3958 		*lenp = dma->dp_dma.dmao_size;
3959 		*ccountp = dma->dp_sglinfo.si_sgl_size;
3960 		*cookiep = hp->dmai_cookie[0];
3961 		hp->dmai_cookie++;
3962 		return (DDI_SUCCESS);
3963 	}
3964 
3965 	/* sync the old window before moving on to the new one */
3966 	window = &dma->dp_window[dma->dp_current_win];
3967 	if ((window->wd_dosync) && (hp->dmai_rflags & DDI_DMA_READ)) {
3968 		(void) rootnex_dma_sync(dip, rdip, handle, 0, 0,
3969 		    DDI_DMA_SYNC_FORCPU);
3970 	}
3971 
3972 #if !defined(__amd64)
3973 	/*
3974 	 * before we move to the next window, if we need to re-map, unmap all
3975 	 * the pages in this window.
3976 	 */
3977 	if (dma->dp_cb_remaping) {
3978 		/*
3979 		 * If we switch to this window again, we'll need to map in
3980 		 * on the fly next time.
3981 		 */
3982 		window->wd_remap_copybuf = B_TRUE;
3983 
3984 		/*
3985 		 * calculate the page index into the buffer where this window
3986 		 * starts, and the number of pages this window takes up.
3987 		 */
3988 		pidx = (sinfo->si_buf_offset + window->wd_offset) >>
3989 		    MMU_PAGESHIFT;
3990 		poff = (sinfo->si_buf_offset + window->wd_offset) &
3991 		    MMU_PAGEOFFSET;
3992 		pcnt = mmu_btopr(window->wd_size + poff);
3993 		ASSERT((pidx + pcnt) <= sinfo->si_max_pages);
3994 
3995 		/* unmap pages which are currently mapped in this window */
3996 		for (i = 0; i < pcnt; i++) {
3997 			if (dma->dp_pgmap[pidx].pm_mapped) {
3998 				hat_unload(kas.a_hat,
3999 				    dma->dp_pgmap[pidx].pm_kaddr, MMU_PAGESIZE,
4000 				    HAT_UNLOAD);
4001 				dma->dp_pgmap[pidx].pm_mapped = B_FALSE;
4002 			}
4003 			pidx++;
4004 		}
4005 	}
4006 #endif
4007 
4008 	/*
4009 	 * Move to the new window.
4010 	 * NOTE: current_win must be set for sync to work right
4011 	 */
4012 	dma->dp_current_win = win;
4013 	window = &dma->dp_window[win];
4014 
4015 	/* if needed, adjust the first and/or last cookies for trim */
4016 	trim = &window->wd_trim;
4017 	if (trim->tr_trim_first) {
4018 		window->wd_first_cookie->_dmu._dmac_ll = trim->tr_first_paddr;
4019 		window->wd_first_cookie->dmac_size = trim->tr_first_size;
4020 #if !defined(__amd64)
4021 		window->wd_first_cookie->dmac_type =
4022 		    (window->wd_first_cookie->dmac_type &
4023 		    ROOTNEX_USES_COPYBUF) + window->wd_offset;
4024 #endif
4025 		if (trim->tr_first_copybuf_win) {
4026 			dma->dp_pgmap[trim->tr_first_pidx].pm_cbaddr =
4027 			    trim->tr_first_cbaddr;
4028 #if !defined(__amd64)
4029 			dma->dp_pgmap[trim->tr_first_pidx].pm_kaddr =
4030 			    trim->tr_first_kaddr;
4031 #endif
4032 		}
4033 	}
4034 	if (trim->tr_trim_last) {
4035 		trim->tr_last_cookie->_dmu._dmac_ll = trim->tr_last_paddr;
4036 		trim->tr_last_cookie->dmac_size = trim->tr_last_size;
4037 		if (trim->tr_last_copybuf_win) {
4038 			dma->dp_pgmap[trim->tr_last_pidx].pm_cbaddr =
4039 			    trim->tr_last_cbaddr;
4040 #if !defined(__amd64)
4041 			dma->dp_pgmap[trim->tr_last_pidx].pm_kaddr =
4042 			    trim->tr_last_kaddr;
4043 #endif
4044 		}
4045 	}
4046 
4047 	/*
4048 	 * setup the cookie pointer to the first cookie in the window. setup
4049 	 * our return values, then increment the cookie since we return the
4050 	 * first cookie on the stack.
4051 	 */
4052 	hp->dmai_cookie = window->wd_first_cookie;
4053 	*offp = window->wd_offset;
4054 	*lenp = window->wd_size;
4055 	*ccountp = window->wd_cookie_cnt;
4056 	*cookiep = hp->dmai_cookie[0];
4057 	hp->dmai_cookie++;
4058 
4059 #if !defined(__amd64)
4060 	/* re-map copybuf if required for this window */
4061 	if (dma->dp_cb_remaping) {
4062 		/*
4063 		 * calculate the page index into the buffer where this
4064 		 * window starts.
4065 		 */
4066 		pidx = (sinfo->si_buf_offset + window->wd_offset) >>
4067 		    MMU_PAGESHIFT;
4068 		ASSERT(pidx < sinfo->si_max_pages);
4069 
4070 		/*
4071 		 * the first page can get unmapped if it's shared with the
4072 		 * previous window. Even if the rest of this window is already
4073 		 * mapped in, we need to still check this one.
4074 		 */
4075 		pmap = &dma->dp_pgmap[pidx];
4076 		if ((pmap->pm_uses_copybuf) && (pmap->pm_mapped == B_FALSE)) {
4077 			if (pmap->pm_pp != NULL) {
4078 				pmap->pm_mapped = B_TRUE;
4079 				i86_pp_map(pmap->pm_pp, pmap->pm_kaddr);
4080 			} else if (pmap->pm_vaddr != NULL) {
4081 				pmap->pm_mapped = B_TRUE;
4082 				i86_va_map(pmap->pm_vaddr, sinfo->si_asp,
4083 				    pmap->pm_kaddr);
4084 			}
4085 		}
4086 		pidx++;
4087 
4088 		/* map in the rest of the pages if required */
4089 		if (window->wd_remap_copybuf) {
4090 			window->wd_remap_copybuf = B_FALSE;
4091 
4092 			/* figure out many pages this window takes up */
4093 			poff = (sinfo->si_buf_offset + window->wd_offset) &
4094 			    MMU_PAGEOFFSET;
4095 			pcnt = mmu_btopr(window->wd_size + poff);
4096 			ASSERT(((pidx - 1) + pcnt) <= sinfo->si_max_pages);
4097 
4098 			/* map pages which require it */
4099 			for (i = 1; i < pcnt; i++) {
4100 				pmap = &dma->dp_pgmap[pidx];
4101 				if (pmap->pm_uses_copybuf) {
4102 					ASSERT(pmap->pm_mapped == B_FALSE);
4103 					if (pmap->pm_pp != NULL) {
4104 						pmap->pm_mapped = B_TRUE;
4105 						i86_pp_map(pmap->pm_pp,
4106 						    pmap->pm_kaddr);
4107 					} else if (pmap->pm_vaddr != NULL) {
4108 						pmap->pm_mapped = B_TRUE;
4109 						i86_va_map(pmap->pm_vaddr,
4110 						    sinfo->si_asp,
4111 						    pmap->pm_kaddr);
4112 					}
4113 				}
4114 				pidx++;
4115 			}
4116 		}
4117 	}
4118 #endif
4119 
4120 	/* if the new window uses the copy buffer, sync it for the device */
4121 	if ((window->wd_dosync) && (hp->dmai_rflags & DDI_DMA_WRITE)) {
4122 		(void) rootnex_dma_sync(dip, rdip, handle, 0, 0,
4123 		    DDI_DMA_SYNC_FORDEV);
4124 	}
4125 
4126 	return (DDI_SUCCESS);
4127 }
4128 
4129 
4130 
4131 /*
4132  * ************************
4133  *  obsoleted dma routines
4134  * ************************
4135  */
4136 
4137 /*
4138  * rootnex_dma_map()
4139  *    called from ddi_dma_setup()
4140  */
4141 /* ARGSUSED */
4142 static int
4143 rootnex_dma_map(dev_info_t *dip, dev_info_t *rdip, struct ddi_dma_req *dmareq,
4144     ddi_dma_handle_t *handlep)
4145 {
4146 #if defined(__amd64)
4147 	/*
4148 	 * this interface is not supported in 64-bit x86 kernel. See comment in
4149 	 * rootnex_dma_mctl()
4150 	 */
4151 	ASSERT(0);
4152 	return (DDI_DMA_NORESOURCES);
4153 
4154 #else /* 32-bit x86 kernel */
4155 	ddi_dma_handle_t *lhandlep;
4156 	ddi_dma_handle_t lhandle;
4157 	ddi_dma_cookie_t cookie;
4158 	ddi_dma_attr_t dma_attr;
4159 	ddi_dma_lim_t *dma_lim;
4160 	uint_t ccnt;
4161 	int e;
4162 
4163 
4164 	/*
4165 	 * if the driver is just testing to see if it's possible to do the bind,
4166 	 * we'll use local state. Otherwise, use the handle pointer passed in.
4167 	 */
4168 	if (handlep == NULL) {
4169 		lhandlep = &lhandle;
4170 	} else {
4171 		lhandlep = handlep;
4172 	}
4173 
4174 	/* convert the limit structure to a dma_attr one */
4175 	dma_lim = dmareq->dmar_limits;
4176 	dma_attr.dma_attr_version = DMA_ATTR_V0;
4177 	dma_attr.dma_attr_addr_lo = dma_lim->dlim_addr_lo;
4178 	dma_attr.dma_attr_addr_hi = dma_lim->dlim_addr_hi;
4179 	dma_attr.dma_attr_minxfer = dma_lim->dlim_minxfer;
4180 	dma_attr.dma_attr_seg = dma_lim->dlim_adreg_max;
4181 	dma_attr.dma_attr_count_max = dma_lim->dlim_ctreg_max;
4182 	dma_attr.dma_attr_granular = dma_lim->dlim_granular;
4183 	dma_attr.dma_attr_sgllen = dma_lim->dlim_sgllen;
4184 	dma_attr.dma_attr_maxxfer = dma_lim->dlim_reqsize;
4185 	dma_attr.dma_attr_burstsizes = dma_lim->dlim_burstsizes;
4186 	dma_attr.dma_attr_align = MMU_PAGESIZE;
4187 	dma_attr.dma_attr_flags = 0;
4188 
4189 	e = rootnex_dma_allochdl(dip, rdip, &dma_attr, dmareq->dmar_fp,
4190 	    dmareq->dmar_arg, lhandlep);
4191 	if (e != DDI_SUCCESS) {
4192 		return (e);
4193 	}
4194 
4195 	e = rootnex_dma_bindhdl(dip, rdip, *lhandlep, dmareq, &cookie, &ccnt);
4196 	if ((e != DDI_DMA_MAPPED) && (e != DDI_DMA_PARTIAL_MAP)) {
4197 		(void) rootnex_dma_freehdl(dip, rdip, *lhandlep);
4198 		return (e);
4199 	}
4200 
4201 	/*
4202 	 * if the driver is just testing to see if it's possible to do the bind,
4203 	 * free up the local state and return the result.
4204 	 */
4205 	if (handlep == NULL) {
4206 		(void) rootnex_dma_unbindhdl(dip, rdip, *lhandlep);
4207 		(void) rootnex_dma_freehdl(dip, rdip, *lhandlep);
4208 		if (e == DDI_DMA_MAPPED) {
4209 			return (DDI_DMA_MAPOK);
4210 		} else {
4211 			return (DDI_DMA_NOMAPPING);
4212 		}
4213 	}
4214 
4215 	return (e);
4216 #endif /* defined(__amd64) */
4217 }
4218 
4219 
4220 /*
4221  * rootnex_dma_mctl()
4222  *
4223  */
4224 /* ARGSUSED */
4225 static int
4226 rootnex_dma_mctl(dev_info_t *dip, dev_info_t *rdip, ddi_dma_handle_t handle,
4227     enum ddi_dma_ctlops request, off_t *offp, size_t *lenp, caddr_t *objpp,
4228     uint_t cache_flags)
4229 {
4230 #if defined(__amd64)
4231 	/*
4232 	 * DDI_DMA_SMEM_ALLOC & DDI_DMA_IOPB_ALLOC we're changed to have a
4233 	 * common implementation in genunix, so they no longer have x86
4234 	 * specific functionality which called into dma_ctl.
4235 	 *
4236 	 * The rest of the obsoleted interfaces were never supported in the
4237 	 * 64-bit x86 kernel. For s10, the obsoleted DDI_DMA_SEGTOC interface
4238 	 * was not ported to the x86 64-bit kernel do to serious x86 rootnex
4239 	 * implementation issues.
4240 	 *
4241 	 * If you can't use DDI_DMA_SEGTOC; DDI_DMA_NEXTSEG, DDI_DMA_FREE, and
4242 	 * DDI_DMA_NEXTWIN are useless since you can get to the cookie, so we
4243 	 * reflect that now too...
4244 	 *
4245 	 * Even though we fixed the pointer problem in DDI_DMA_SEGTOC, we are
4246 	 * not going to put this functionality into the 64-bit x86 kernel now.
4247 	 * It wasn't ported to the 64-bit kernel for s10, no reason to change
4248 	 * that in a future release.
4249 	 */
4250 	ASSERT(0);
4251 	return (DDI_FAILURE);
4252 
4253 #else /* 32-bit x86 kernel */
4254 	ddi_dma_cookie_t lcookie;
4255 	ddi_dma_cookie_t *cookie;
4256 	rootnex_window_t *window;
4257 	ddi_dma_impl_t *hp;
4258 	rootnex_dma_t *dma;
4259 	uint_t nwin;
4260 	uint_t ccnt;
4261 	size_t len;
4262 	off_t off;
4263 	int e;
4264 
4265 
4266 	/*
4267 	 * DDI_DMA_SEGTOC, DDI_DMA_NEXTSEG, and DDI_DMA_NEXTWIN are a little
4268 	 * hacky since were optimizing for the current interfaces and so we can
4269 	 * cleanup the mess in genunix. Hopefully we will remove the this
4270 	 * obsoleted routines someday soon.
4271 	 */
4272 
4273 	switch (request) {
4274 
4275 	case DDI_DMA_SEGTOC: /* ddi_dma_segtocookie() */
4276 		hp = (ddi_dma_impl_t *)handle;
4277 		cookie = (ddi_dma_cookie_t *)objpp;
4278 
4279 		/*
4280 		 * convert segment to cookie. We don't distinguish between the
4281 		 * two :-)
4282 		 */
4283 		*cookie = *hp->dmai_cookie;
4284 		*lenp = cookie->dmac_size;
4285 		*offp = cookie->dmac_type & ~ROOTNEX_USES_COPYBUF;
4286 		return (DDI_SUCCESS);
4287 
4288 	case DDI_DMA_NEXTSEG: /* ddi_dma_nextseg() */
4289 		hp = (ddi_dma_impl_t *)handle;
4290 		dma = (rootnex_dma_t *)hp->dmai_private;
4291 
4292 		if ((*lenp != NULL) && ((uintptr_t)*lenp != (uintptr_t)hp)) {
4293 			return (DDI_DMA_STALE);
4294 		}
4295 
4296 		/* handle the case where we don't have any windows */
4297 		if (dma->dp_window == NULL) {
4298 			/*
4299 			 * if seg == NULL, and we don't have any windows,
4300 			 * return the first cookie in the sgl.
4301 			 */
4302 			if (*lenp == NULL) {
4303 				dma->dp_current_cookie = 0;
4304 				hp->dmai_cookie = dma->dp_cookies;
4305 				*objpp = (caddr_t)handle;
4306 				return (DDI_SUCCESS);
4307 
4308 			/* if we have more cookies, go to the next cookie */
4309 			} else {
4310 				if ((dma->dp_current_cookie + 1) >=
4311 				    dma->dp_sglinfo.si_sgl_size) {
4312 					return (DDI_DMA_DONE);
4313 				}
4314 				dma->dp_current_cookie++;
4315 				hp->dmai_cookie++;
4316 				return (DDI_SUCCESS);
4317 			}
4318 		}
4319 
4320 		/* We have one or more windows */
4321 		window = &dma->dp_window[dma->dp_current_win];
4322 
4323 		/*
4324 		 * if seg == NULL, return the first cookie in the current
4325 		 * window
4326 		 */
4327 		if (*lenp == NULL) {
4328 			dma->dp_current_cookie = 0;
4329 			hp->dmai_cookie = window->wd_first_cookie;
4330 
4331 		/*
4332 		 * go to the next cookie in the window then see if we done with
4333 		 * this window.
4334 		 */
4335 		} else {
4336 			if ((dma->dp_current_cookie + 1) >=
4337 			    window->wd_cookie_cnt) {
4338 				return (DDI_DMA_DONE);
4339 			}
4340 			dma->dp_current_cookie++;
4341 			hp->dmai_cookie++;
4342 		}
4343 		*objpp = (caddr_t)handle;
4344 		return (DDI_SUCCESS);
4345 
4346 	case DDI_DMA_NEXTWIN: /* ddi_dma_nextwin() */
4347 		hp = (ddi_dma_impl_t *)handle;
4348 		dma = (rootnex_dma_t *)hp->dmai_private;
4349 
4350 		if ((*offp != NULL) && ((uintptr_t)*offp != (uintptr_t)hp)) {
4351 			return (DDI_DMA_STALE);
4352 		}
4353 
4354 		/* if win == NULL, return the first window in the bind */
4355 		if (*offp == NULL) {
4356 			nwin = 0;
4357 
4358 		/*
4359 		 * else, go to the next window then see if we're done with all
4360 		 * the windows.
4361 		 */
4362 		} else {
4363 			nwin = dma->dp_current_win + 1;
4364 			if (nwin >= hp->dmai_nwin) {
4365 				return (DDI_DMA_DONE);
4366 			}
4367 		}
4368 
4369 		/* switch to the next window */
4370 		e = rootnex_dma_win(dip, rdip, handle, nwin, &off, &len,
4371 		    &lcookie, &ccnt);
4372 		ASSERT(e == DDI_SUCCESS);
4373 		if (e != DDI_SUCCESS) {
4374 			return (DDI_DMA_STALE);
4375 		}
4376 
4377 		/* reset the cookie back to the first cookie in the window */
4378 		if (dma->dp_window != NULL) {
4379 			window = &dma->dp_window[dma->dp_current_win];
4380 			hp->dmai_cookie = window->wd_first_cookie;
4381 		} else {
4382 			hp->dmai_cookie = dma->dp_cookies;
4383 		}
4384 
4385 		*objpp = (caddr_t)handle;
4386 		return (DDI_SUCCESS);
4387 
4388 	case DDI_DMA_FREE: /* ddi_dma_free() */
4389 		(void) rootnex_dma_unbindhdl(dip, rdip, handle);
4390 		(void) rootnex_dma_freehdl(dip, rdip, handle);
4391 		if (rootnex_state->r_dvma_call_list_id) {
4392 			ddi_run_callback(&rootnex_state->r_dvma_call_list_id);
4393 		}
4394 		return (DDI_SUCCESS);
4395 
4396 	case DDI_DMA_IOPB_ALLOC:	/* get contiguous DMA-able memory */
4397 	case DDI_DMA_SMEM_ALLOC:	/* get contiguous DMA-able memory */
4398 		/* should never get here, handled in genunix */
4399 		ASSERT(0);
4400 		return (DDI_FAILURE);
4401 
4402 	case DDI_DMA_KVADDR:
4403 	case DDI_DMA_GETERR:
4404 	case DDI_DMA_COFF:
4405 		return (DDI_FAILURE);
4406 	}
4407 
4408 	return (DDI_FAILURE);
4409 #endif /* defined(__amd64) */
4410 }
4411