xref: /illumos-gate/usr/src/uts/i86pc/dboot/dboot_startkern.c (revision 4d9fdb46b215739778ebc12079842c9905586999)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  *
26  * Copyright 2020 Joyent, Inc.
27  */
28 
29 
30 #include <sys/types.h>
31 #include <sys/machparam.h>
32 #include <sys/x86_archext.h>
33 #include <sys/systm.h>
34 #include <sys/mach_mmu.h>
35 #include <sys/multiboot.h>
36 #include <sys/multiboot2.h>
37 #include <sys/multiboot2_impl.h>
38 #include <sys/sysmacros.h>
39 #include <sys/framebuffer.h>
40 #include <sys/sha1.h>
41 #include <util/string.h>
42 #include <util/strtolctype.h>
43 #include <sys/efi.h>
44 
45 /*
46  * Compile time debug knob. We do not have any early mechanism to control it
47  * as the boot is the earliest mechanism we have, and we do not want to have
48  * it being switched on by default.
49  */
50 int dboot_debug = 0;
51 
52 #if defined(__xpv)
53 
54 #include <sys/hypervisor.h>
55 uintptr_t xen_virt_start;
56 pfn_t *mfn_to_pfn_mapping;
57 
58 #else /* !__xpv */
59 
60 extern multiboot_header_t mb_header;
61 extern uint32_t mb2_load_addr;
62 extern int have_cpuid(void);
63 
64 #endif /* !__xpv */
65 
66 #include <sys/inttypes.h>
67 #include <sys/bootinfo.h>
68 #include <sys/mach_mmu.h>
69 #include <sys/boot_console.h>
70 
71 #include "dboot_asm.h"
72 #include "dboot_printf.h"
73 #include "dboot_xboot.h"
74 #include "dboot_elfload.h"
75 
76 #define	SHA1_ASCII_LENGTH	(SHA1_DIGEST_LENGTH * 2)
77 
78 /*
79  * This file contains code that runs to transition us from either a multiboot
80  * compliant loader (32 bit non-paging) or a XPV domain loader to
81  * regular kernel execution. Its task is to setup the kernel memory image
82  * and page tables.
83  *
84  * The code executes as:
85  *	- 32 bits under GRUB (for 32 or 64 bit Solaris)
86  *	- a 32 bit program for the 32-bit PV hypervisor
87  *	- a 64 bit program for the 64-bit PV hypervisor (at least for now)
88  *
89  * Under the PV hypervisor, we must create mappings for any memory beyond the
90  * initial start of day allocation (such as the kernel itself).
91  *
92  * When on the metal, the mapping between maddr_t and paddr_t is 1:1.
93  * Since we are running in real mode, so all such memory is accessible.
94  */
95 
96 /*
97  * Standard bits used in PTE (page level) and PTP (internal levels)
98  */
99 x86pte_t ptp_bits = PT_VALID | PT_REF | PT_WRITABLE | PT_USER;
100 x86pte_t pte_bits = PT_VALID | PT_REF | PT_WRITABLE | PT_MOD | PT_NOCONSIST;
101 
102 /*
103  * This is the target addresses (physical) where the kernel text and data
104  * nucleus pages will be unpacked. On the hypervisor this is actually a
105  * virtual address.
106  */
107 paddr_t ktext_phys;
108 uint32_t ksize = 2 * FOUR_MEG;	/* kernel nucleus is 8Meg */
109 
110 static uint64_t target_kernel_text;	/* value to use for KERNEL_TEXT */
111 
112 /*
113  * The stack is setup in assembler before entering startup_kernel()
114  */
115 char stack_space[STACK_SIZE];
116 
117 /*
118  * Used to track physical memory allocation
119  */
120 static paddr_t next_avail_addr = 0;
121 
122 #if defined(__xpv)
123 /*
124  * Additional information needed for hypervisor memory allocation.
125  * Only memory up to scratch_end is mapped by page tables.
126  * mfn_base is the start of the hypervisor virtual image. It's ONE_GIG, so
127  * to derive a pfn from a pointer, you subtract mfn_base.
128  */
129 
130 static paddr_t scratch_end = 0;	/* we can't write all of mem here */
131 static paddr_t mfn_base;		/* addr corresponding to mfn_list[0] */
132 start_info_t *xen_info;
133 
134 #else	/* __xpv */
135 
136 /*
137  * If on the metal, then we have a multiboot loader.
138  */
139 uint32_t mb_magic;			/* magic from boot loader */
140 uint32_t mb_addr;			/* multiboot info package from loader */
141 int multiboot_version;
142 multiboot_info_t *mb_info;
143 multiboot2_info_header_t *mb2_info;
144 multiboot_tag_mmap_t *mb2_mmap_tagp;
145 int num_entries;			/* mmap entry count */
146 boolean_t num_entries_set;		/* is mmap entry count set */
147 uintptr_t load_addr;
148 static boot_framebuffer_t framebuffer __aligned(16);
149 static boot_framebuffer_t *fb;
150 
151 /* can not be automatic variables because of alignment */
152 static efi_guid_t smbios3 = SMBIOS3_TABLE_GUID;
153 static efi_guid_t smbios = SMBIOS_TABLE_GUID;
154 static efi_guid_t acpi2 = EFI_ACPI_TABLE_GUID;
155 static efi_guid_t acpi1 = ACPI_10_TABLE_GUID;
156 #endif	/* __xpv */
157 
158 /*
159  * This contains information passed to the kernel
160  */
161 struct xboot_info boot_info __aligned(16);
162 struct xboot_info *bi;
163 
164 /*
165  * Page table and memory stuff.
166  */
167 static paddr_t max_mem;			/* maximum memory address */
168 
169 /*
170  * Information about processor MMU
171  */
172 int amd64_support = 0;
173 int largepage_support = 0;
174 int pae_support = 0;
175 int pge_support = 0;
176 int NX_support = 0;
177 int PAT_support = 0;
178 
179 /*
180  * Low 32 bits of kernel entry address passed back to assembler.
181  * When running a 64 bit kernel, the high 32 bits are 0xffffffff.
182  */
183 uint32_t entry_addr_low;
184 
185 /*
186  * Memlists for the kernel. We shouldn't need a lot of these.
187  */
188 #define	MAX_MEMLIST (50)
189 struct boot_memlist memlists[MAX_MEMLIST];
190 uint_t memlists_used = 0;
191 struct boot_memlist pcimemlists[MAX_MEMLIST];
192 uint_t pcimemlists_used = 0;
193 struct boot_memlist rsvdmemlists[MAX_MEMLIST];
194 uint_t rsvdmemlists_used = 0;
195 
196 /*
197  * This should match what's in the bootloader.  It's arbitrary, but GRUB
198  * in particular has limitations on how much space it can use before it
199  * stops working properly.  This should be enough.
200  */
201 struct boot_modules modules[MAX_BOOT_MODULES];
202 uint_t modules_used = 0;
203 
204 #ifdef __xpv
205 /*
206  * Xen strips the size field out of the mb_memory_map_t, see struct e820entry
207  * definition in Xen source.
208  */
209 typedef struct {
210 	uint32_t	base_addr_low;
211 	uint32_t	base_addr_high;
212 	uint32_t	length_low;
213 	uint32_t	length_high;
214 	uint32_t	type;
215 } mmap_t;
216 
217 /*
218  * There is 512KB of scratch area after the boot stack page.
219  * We'll use that for everything except the kernel nucleus pages which are too
220  * big to fit there and are allocated last anyway.
221  */
222 #define	MAXMAPS	100
223 static mmap_t map_buffer[MAXMAPS];
224 #else
225 typedef mb_memory_map_t mmap_t;
226 #endif
227 
228 /*
229  * Debugging macros
230  */
231 uint_t prom_debug = 0;
232 uint_t map_debug = 0;
233 
234 static char noname[2] = "-";
235 
236 /*
237  * Either hypervisor-specific or grub-specific code builds the initial
238  * memlists. This code does the sort/merge/link for final use.
239  */
240 static void
241 sort_physinstall(void)
242 {
243 	int i;
244 #if !defined(__xpv)
245 	int j;
246 	struct boot_memlist tmp;
247 
248 	/*
249 	 * Now sort the memlists, in case they weren't in order.
250 	 * Yeah, this is a bubble sort; small, simple and easy to get right.
251 	 */
252 	DBG_MSG("Sorting phys-installed list\n");
253 	for (j = memlists_used - 1; j > 0; --j) {
254 		for (i = 0; i < j; ++i) {
255 			if (memlists[i].addr < memlists[i + 1].addr)
256 				continue;
257 			tmp = memlists[i];
258 			memlists[i] = memlists[i + 1];
259 			memlists[i + 1] = tmp;
260 		}
261 	}
262 
263 	/*
264 	 * Merge any memlists that don't have holes between them.
265 	 */
266 	for (i = 0; i <= memlists_used - 1; ++i) {
267 		if (memlists[i].addr + memlists[i].size != memlists[i + 1].addr)
268 			continue;
269 
270 		if (prom_debug)
271 			dboot_printf(
272 			    "merging mem segs %" PRIx64 "...%" PRIx64
273 			    " w/ %" PRIx64 "...%" PRIx64 "\n",
274 			    memlists[i].addr,
275 			    memlists[i].addr + memlists[i].size,
276 			    memlists[i + 1].addr,
277 			    memlists[i + 1].addr + memlists[i + 1].size);
278 
279 		memlists[i].size += memlists[i + 1].size;
280 		for (j = i + 1; j < memlists_used - 1; ++j)
281 			memlists[j] = memlists[j + 1];
282 		--memlists_used;
283 		DBG(memlists_used);
284 		--i;	/* after merging we need to reexamine, so do this */
285 	}
286 #endif	/* __xpv */
287 
288 	if (prom_debug) {
289 		dboot_printf("\nFinal memlists:\n");
290 		for (i = 0; i < memlists_used; ++i) {
291 			dboot_printf("\t%d: addr=%" PRIx64 " size=%"
292 			    PRIx64 "\n", i, memlists[i].addr, memlists[i].size);
293 		}
294 	}
295 
296 	/*
297 	 * link together the memlists with native size pointers
298 	 */
299 	memlists[0].next = 0;
300 	memlists[0].prev = 0;
301 	for (i = 1; i < memlists_used; ++i) {
302 		memlists[i].prev = (native_ptr_t)(uintptr_t)(memlists + i - 1);
303 		memlists[i].next = 0;
304 		memlists[i - 1].next = (native_ptr_t)(uintptr_t)(memlists + i);
305 	}
306 	bi->bi_phys_install = (native_ptr_t)(uintptr_t)memlists;
307 	DBG(bi->bi_phys_install);
308 }
309 
310 /*
311  * build bios reserved memlists
312  */
313 static void
314 build_rsvdmemlists(void)
315 {
316 	int i;
317 
318 	rsvdmemlists[0].next = 0;
319 	rsvdmemlists[0].prev = 0;
320 	for (i = 1; i < rsvdmemlists_used; ++i) {
321 		rsvdmemlists[i].prev =
322 		    (native_ptr_t)(uintptr_t)(rsvdmemlists + i - 1);
323 		rsvdmemlists[i].next = 0;
324 		rsvdmemlists[i - 1].next =
325 		    (native_ptr_t)(uintptr_t)(rsvdmemlists + i);
326 	}
327 	bi->bi_rsvdmem = (native_ptr_t)(uintptr_t)rsvdmemlists;
328 	DBG(bi->bi_rsvdmem);
329 }
330 
331 #if defined(__xpv)
332 
333 /*
334  * halt on the hypervisor after a delay to drain console output
335  */
336 void
337 dboot_halt(void)
338 {
339 	uint_t i = 10000;
340 
341 	while (--i)
342 		(void) HYPERVISOR_yield();
343 	(void) HYPERVISOR_shutdown(SHUTDOWN_poweroff);
344 }
345 
346 /*
347  * From a machine address, find the corresponding pseudo-physical address.
348  * Pseudo-physical address are contiguous and run from mfn_base in each VM.
349  * Machine addresses are the real underlying hardware addresses.
350  * These are needed for page table entries. Note that this routine is
351  * poorly protected. A bad value of "ma" will cause a page fault.
352  */
353 paddr_t
354 ma_to_pa(maddr_t ma)
355 {
356 	ulong_t pgoff = ma & MMU_PAGEOFFSET;
357 	ulong_t pfn = mfn_to_pfn_mapping[mmu_btop(ma)];
358 	paddr_t pa;
359 
360 	if (pfn >= xen_info->nr_pages)
361 		return (-(paddr_t)1);
362 	pa = mfn_base + mmu_ptob((paddr_t)pfn) + pgoff;
363 #ifdef DEBUG
364 	if (ma != pa_to_ma(pa))
365 		dboot_printf("ma_to_pa(%" PRIx64 ") got %" PRIx64 ", "
366 		    "pa_to_ma() says %" PRIx64 "\n", ma, pa, pa_to_ma(pa));
367 #endif
368 	return (pa);
369 }
370 
371 /*
372  * From a pseudo-physical address, find the corresponding machine address.
373  */
374 maddr_t
375 pa_to_ma(paddr_t pa)
376 {
377 	pfn_t pfn;
378 	ulong_t mfn;
379 
380 	pfn = mmu_btop(pa - mfn_base);
381 	if (pa < mfn_base || pfn >= xen_info->nr_pages)
382 		dboot_panic("pa_to_ma(): illegal address 0x%lx", (ulong_t)pa);
383 	mfn = ((ulong_t *)xen_info->mfn_list)[pfn];
384 #ifdef DEBUG
385 	if (mfn_to_pfn_mapping[mfn] != pfn)
386 		dboot_printf("pa_to_ma(pfn=%lx) got %lx ma_to_pa() says %lx\n",
387 		    pfn, mfn, mfn_to_pfn_mapping[mfn]);
388 #endif
389 	return (mfn_to_ma(mfn) | (pa & MMU_PAGEOFFSET));
390 }
391 
392 #endif	/* __xpv */
393 
394 x86pte_t
395 get_pteval(paddr_t table, uint_t index)
396 {
397 	if (pae_support)
398 		return (((x86pte_t *)(uintptr_t)table)[index]);
399 	return (((x86pte32_t *)(uintptr_t)table)[index]);
400 }
401 
402 /*ARGSUSED*/
403 void
404 set_pteval(paddr_t table, uint_t index, uint_t level, x86pte_t pteval)
405 {
406 #ifdef __xpv
407 	mmu_update_t t;
408 	maddr_t mtable = pa_to_ma(table);
409 	int retcnt;
410 
411 	t.ptr = (mtable + index * pte_size) | MMU_NORMAL_PT_UPDATE;
412 	t.val = pteval;
413 	if (HYPERVISOR_mmu_update(&t, 1, &retcnt, DOMID_SELF) || retcnt != 1)
414 		dboot_panic("HYPERVISOR_mmu_update() failed");
415 #else /* __xpv */
416 	uintptr_t tab_addr = (uintptr_t)table;
417 
418 	if (pae_support)
419 		((x86pte_t *)tab_addr)[index] = pteval;
420 	else
421 		((x86pte32_t *)tab_addr)[index] = (x86pte32_t)pteval;
422 	if (level == top_level && level == 2)
423 		reload_cr3();
424 #endif /* __xpv */
425 }
426 
427 paddr_t
428 make_ptable(x86pte_t *pteval, uint_t level)
429 {
430 	paddr_t new_table = (paddr_t)(uintptr_t)mem_alloc(MMU_PAGESIZE);
431 
432 	if (level == top_level && level == 2)
433 		*pteval = pa_to_ma((uintptr_t)new_table) | PT_VALID;
434 	else
435 		*pteval = pa_to_ma((uintptr_t)new_table) | ptp_bits;
436 
437 #ifdef __xpv
438 	/* Remove write permission to the new page table. */
439 	if (HYPERVISOR_update_va_mapping(new_table,
440 	    *pteval & ~(x86pte_t)PT_WRITABLE, UVMF_INVLPG | UVMF_LOCAL))
441 		dboot_panic("HYP_update_va_mapping error");
442 #endif
443 
444 	if (map_debug)
445 		dboot_printf("new page table lvl=%d paddr=0x%lx ptp=0x%"
446 		    PRIx64 "\n", level, (ulong_t)new_table, *pteval);
447 	return (new_table);
448 }
449 
450 x86pte_t *
451 map_pte(paddr_t table, uint_t index)
452 {
453 	return ((x86pte_t *)(uintptr_t)(table + index * pte_size));
454 }
455 
456 /*
457  * dump out the contents of page tables...
458  */
459 static void
460 dump_tables(void)
461 {
462 	uint_t save_index[4];	/* for recursion */
463 	char *save_table[4];	/* for recursion */
464 	uint_t	l;
465 	uint64_t va;
466 	uint64_t pgsize;
467 	int index;
468 	int i;
469 	x86pte_t pteval;
470 	char *table;
471 	static char *tablist = "\t\t\t";
472 	char *tabs = tablist + 3 - top_level;
473 	uint_t pa, pa1;
474 #if !defined(__xpv)
475 #define	maddr_t paddr_t
476 #endif /* !__xpv */
477 
478 	dboot_printf("Finished pagetables:\n");
479 	table = (char *)(uintptr_t)top_page_table;
480 	l = top_level;
481 	va = 0;
482 	for (index = 0; index < ptes_per_table; ++index) {
483 		pgsize = 1ull << shift_amt[l];
484 		if (pae_support)
485 			pteval = ((x86pte_t *)table)[index];
486 		else
487 			pteval = ((x86pte32_t *)table)[index];
488 		if (pteval == 0)
489 			goto next_entry;
490 
491 		dboot_printf("%s %p[0x%x] = %" PRIx64 ", va=%" PRIx64,
492 		    tabs + l, (void *)table, index, (uint64_t)pteval, va);
493 		pa = ma_to_pa(pteval & MMU_PAGEMASK);
494 		dboot_printf(" physaddr=%x\n", pa);
495 
496 		/*
497 		 * Don't try to walk hypervisor private pagetables
498 		 */
499 		if ((l > 1 || (l == 1 && (pteval & PT_PAGESIZE) == 0))) {
500 			save_table[l] = table;
501 			save_index[l] = index;
502 			--l;
503 			index = -1;
504 			table = (char *)(uintptr_t)
505 			    ma_to_pa(pteval & MMU_PAGEMASK);
506 			goto recursion;
507 		}
508 
509 		/*
510 		 * shorten dump for consecutive mappings
511 		 */
512 		for (i = 1; index + i < ptes_per_table; ++i) {
513 			if (pae_support)
514 				pteval = ((x86pte_t *)table)[index + i];
515 			else
516 				pteval = ((x86pte32_t *)table)[index + i];
517 			if (pteval == 0)
518 				break;
519 			pa1 = ma_to_pa(pteval & MMU_PAGEMASK);
520 			if (pa1 != pa + i * pgsize)
521 				break;
522 		}
523 		if (i > 2) {
524 			dboot_printf("%s...\n", tabs + l);
525 			va += pgsize * (i - 2);
526 			index += i - 2;
527 		}
528 next_entry:
529 		va += pgsize;
530 		if (l == 3 && index == 256)	/* VA hole */
531 			va = 0xffff800000000000ull;
532 recursion:
533 		;
534 	}
535 	if (l < top_level) {
536 		++l;
537 		index = save_index[l];
538 		table = save_table[l];
539 		goto recursion;
540 	}
541 }
542 
543 /*
544  * Add a mapping for the machine page at the given virtual address.
545  */
546 static void
547 map_ma_at_va(maddr_t ma, native_ptr_t va, uint_t level)
548 {
549 	x86pte_t *ptep;
550 	x86pte_t pteval;
551 
552 	pteval = ma | pte_bits;
553 	if (level > 0)
554 		pteval |= PT_PAGESIZE;
555 	if (va >= target_kernel_text && pge_support)
556 		pteval |= PT_GLOBAL;
557 
558 	if (map_debug && ma != va)
559 		dboot_printf("mapping ma=0x%" PRIx64 " va=0x%" PRIx64
560 		    " pte=0x%" PRIx64 " l=%d\n",
561 		    (uint64_t)ma, (uint64_t)va, pteval, level);
562 
563 #if defined(__xpv)
564 	/*
565 	 * see if we can avoid find_pte() on the hypervisor
566 	 */
567 	if (HYPERVISOR_update_va_mapping(va, pteval,
568 	    UVMF_INVLPG | UVMF_LOCAL) == 0)
569 		return;
570 #endif
571 
572 	/*
573 	 * Find the pte that will map this address. This creates any
574 	 * missing intermediate level page tables
575 	 */
576 	ptep = find_pte(va, NULL, level, 0);
577 
578 	/*
579 	 * When paravirtualized, we must use hypervisor calls to modify the
580 	 * PTE, since paging is active. On real hardware we just write to
581 	 * the pagetables which aren't in use yet.
582 	 */
583 #if defined(__xpv)
584 	ptep = ptep;	/* shut lint up */
585 	if (HYPERVISOR_update_va_mapping(va, pteval, UVMF_INVLPG | UVMF_LOCAL))
586 		dboot_panic("mmu_update failed-map_pa_at_va va=0x%" PRIx64
587 		    " l=%d ma=0x%" PRIx64 ", pte=0x%" PRIx64 "",
588 		    (uint64_t)va, level, (uint64_t)ma, pteval);
589 #else
590 	if (va < 1024 * 1024)
591 		pteval |= PT_NOCACHE;		/* for video RAM */
592 	if (pae_support)
593 		*ptep = pteval;
594 	else
595 		*((x86pte32_t *)ptep) = (x86pte32_t)pteval;
596 #endif
597 }
598 
599 /*
600  * Add a mapping for the physical page at the given virtual address.
601  */
602 static void
603 map_pa_at_va(paddr_t pa, native_ptr_t va, uint_t level)
604 {
605 	map_ma_at_va(pa_to_ma(pa), va, level);
606 }
607 
608 /*
609  * This is called to remove start..end from the
610  * possible range of PCI addresses.
611  */
612 const uint64_t pci_lo_limit = 0x00100000ul;
613 const uint64_t pci_hi_limit = 0xfff00000ul;
614 static void
615 exclude_from_pci(uint64_t start, uint64_t end)
616 {
617 	int i;
618 	int j;
619 	struct boot_memlist *ml;
620 
621 	for (i = 0; i < pcimemlists_used; ++i) {
622 		ml = &pcimemlists[i];
623 
624 		/* delete the entire range? */
625 		if (start <= ml->addr && ml->addr + ml->size <= end) {
626 			--pcimemlists_used;
627 			for (j = i; j < pcimemlists_used; ++j)
628 				pcimemlists[j] = pcimemlists[j + 1];
629 			--i;	/* to revisit the new one at this index */
630 		}
631 
632 		/* split a range? */
633 		else if (ml->addr < start && end < ml->addr + ml->size) {
634 
635 			++pcimemlists_used;
636 			if (pcimemlists_used > MAX_MEMLIST)
637 				dboot_panic("too many pcimemlists");
638 
639 			for (j = pcimemlists_used - 1; j > i; --j)
640 				pcimemlists[j] = pcimemlists[j - 1];
641 			ml->size = start - ml->addr;
642 
643 			++ml;
644 			ml->size = (ml->addr + ml->size) - end;
645 			ml->addr = end;
646 			++i;	/* skip on to next one */
647 		}
648 
649 		/* cut memory off the start? */
650 		else if (ml->addr < end && end < ml->addr + ml->size) {
651 			ml->size -= end - ml->addr;
652 			ml->addr = end;
653 		}
654 
655 		/* cut memory off the end? */
656 		else if (ml->addr <= start && start < ml->addr + ml->size) {
657 			ml->size = start - ml->addr;
658 		}
659 	}
660 }
661 
662 /*
663  * During memory allocation, find the highest address not used yet.
664  */
665 static void
666 check_higher(paddr_t a)
667 {
668 	if (a < next_avail_addr)
669 		return;
670 	next_avail_addr = RNDUP(a + 1, MMU_PAGESIZE);
671 	DBG(next_avail_addr);
672 }
673 
674 static int
675 dboot_loader_mmap_entries(void)
676 {
677 #if !defined(__xpv)
678 	if (num_entries_set == B_TRUE)
679 		return (num_entries);
680 
681 	switch (multiboot_version) {
682 	case 1:
683 		DBG(mb_info->flags);
684 		if (mb_info->flags & 0x40) {
685 			mb_memory_map_t *mmap;
686 			caddr32_t mmap_addr;
687 
688 			DBG(mb_info->mmap_addr);
689 			DBG(mb_info->mmap_length);
690 			check_higher(mb_info->mmap_addr + mb_info->mmap_length);
691 
692 			for (mmap_addr = mb_info->mmap_addr;
693 			    mmap_addr < mb_info->mmap_addr +
694 			    mb_info->mmap_length;
695 			    mmap_addr += mmap->size + sizeof (mmap->size)) {
696 				mmap = (mb_memory_map_t *)(uintptr_t)mmap_addr;
697 				++num_entries;
698 			}
699 
700 			num_entries_set = B_TRUE;
701 		}
702 		break;
703 	case 2:
704 		num_entries_set = B_TRUE;
705 		num_entries = dboot_multiboot2_mmap_nentries(mb2_info,
706 		    mb2_mmap_tagp);
707 		break;
708 	default:
709 		dboot_panic("Unknown multiboot version: %d\n",
710 		    multiboot_version);
711 		break;
712 	}
713 	return (num_entries);
714 #else
715 	return (MAXMAPS);
716 #endif
717 }
718 
719 static uint32_t
720 dboot_loader_mmap_get_type(int index)
721 {
722 #if !defined(__xpv)
723 	mb_memory_map_t *mp, *mpend;
724 	caddr32_t mmap_addr;
725 	int i;
726 
727 	switch (multiboot_version) {
728 	case 1:
729 		mp = (mb_memory_map_t *)(uintptr_t)mb_info->mmap_addr;
730 		mpend = (mb_memory_map_t *)(uintptr_t)
731 		    (mb_info->mmap_addr + mb_info->mmap_length);
732 
733 		for (i = 0; mp < mpend && i != index; i++)
734 			mp = (mb_memory_map_t *)((uintptr_t)mp + mp->size +
735 			    sizeof (mp->size));
736 		if (mp >= mpend) {
737 			dboot_panic("dboot_loader_mmap_get_type(): index "
738 			    "out of bounds: %d\n", index);
739 		}
740 		return (mp->type);
741 
742 	case 2:
743 		return (dboot_multiboot2_mmap_get_type(mb2_info,
744 		    mb2_mmap_tagp, index));
745 
746 	default:
747 		dboot_panic("Unknown multiboot version: %d\n",
748 		    multiboot_version);
749 		break;
750 	}
751 	return (0);
752 #else
753 	return (map_buffer[index].type);
754 #endif
755 }
756 
757 static uint64_t
758 dboot_loader_mmap_get_base(int index)
759 {
760 #if !defined(__xpv)
761 	mb_memory_map_t *mp, *mpend;
762 	int i;
763 
764 	switch (multiboot_version) {
765 	case 1:
766 		mp = (mb_memory_map_t *)mb_info->mmap_addr;
767 		mpend = (mb_memory_map_t *)
768 		    (mb_info->mmap_addr + mb_info->mmap_length);
769 
770 		for (i = 0; mp < mpend && i != index; i++)
771 			mp = (mb_memory_map_t *)((uintptr_t)mp + mp->size +
772 			    sizeof (mp->size));
773 		if (mp >= mpend) {
774 			dboot_panic("dboot_loader_mmap_get_base(): index "
775 			    "out of bounds: %d\n", index);
776 		}
777 		return (((uint64_t)mp->base_addr_high << 32) +
778 		    (uint64_t)mp->base_addr_low);
779 
780 	case 2:
781 		return (dboot_multiboot2_mmap_get_base(mb2_info,
782 		    mb2_mmap_tagp, index));
783 
784 	default:
785 		dboot_panic("Unknown multiboot version: %d\n",
786 		    multiboot_version);
787 		break;
788 	}
789 	return (0);
790 #else
791 	return (((uint64_t)map_buffer[index].base_addr_high << 32) +
792 	    (uint64_t)map_buffer[index].base_addr_low);
793 #endif
794 }
795 
796 static uint64_t
797 dboot_loader_mmap_get_length(int index)
798 {
799 #if !defined(__xpv)
800 	mb_memory_map_t *mp, *mpend;
801 	int i;
802 
803 	switch (multiboot_version) {
804 	case 1:
805 		mp = (mb_memory_map_t *)mb_info->mmap_addr;
806 		mpend = (mb_memory_map_t *)
807 		    (mb_info->mmap_addr + mb_info->mmap_length);
808 
809 		for (i = 0; mp < mpend && i != index; i++)
810 			mp = (mb_memory_map_t *)((uintptr_t)mp + mp->size +
811 			    sizeof (mp->size));
812 		if (mp >= mpend) {
813 			dboot_panic("dboot_loader_mmap_get_length(): index "
814 			    "out of bounds: %d\n", index);
815 		}
816 		return (((uint64_t)mp->length_high << 32) +
817 		    (uint64_t)mp->length_low);
818 
819 	case 2:
820 		return (dboot_multiboot2_mmap_get_length(mb2_info,
821 		    mb2_mmap_tagp, index));
822 
823 	default:
824 		dboot_panic("Unknown multiboot version: %d\n",
825 		    multiboot_version);
826 		break;
827 	}
828 	return (0);
829 #else
830 	return (((uint64_t)map_buffer[index].length_high << 32) +
831 	    (uint64_t)map_buffer[index].length_low);
832 #endif
833 }
834 
835 static void
836 build_pcimemlists(void)
837 {
838 	uint64_t page_offset = MMU_PAGEOFFSET;	/* needs to be 64 bits */
839 	uint64_t start;
840 	uint64_t end;
841 	int i, num;
842 
843 	/*
844 	 * initialize
845 	 */
846 	pcimemlists[0].addr = pci_lo_limit;
847 	pcimemlists[0].size = pci_hi_limit - pci_lo_limit;
848 	pcimemlists_used = 1;
849 
850 	num = dboot_loader_mmap_entries();
851 	/*
852 	 * Fill in PCI memlists.
853 	 */
854 	for (i = 0; i < num; ++i) {
855 		start = dboot_loader_mmap_get_base(i);
856 		end = start + dboot_loader_mmap_get_length(i);
857 
858 		if (prom_debug)
859 			dboot_printf("\ttype: %d %" PRIx64 "..%"
860 			    PRIx64 "\n", dboot_loader_mmap_get_type(i),
861 			    start, end);
862 
863 		/*
864 		 * page align start and end
865 		 */
866 		start = (start + page_offset) & ~page_offset;
867 		end &= ~page_offset;
868 		if (end <= start)
869 			continue;
870 
871 		exclude_from_pci(start, end);
872 	}
873 
874 	/*
875 	 * Finish off the pcimemlist
876 	 */
877 	if (prom_debug) {
878 		for (i = 0; i < pcimemlists_used; ++i) {
879 			dboot_printf("pcimemlist entry 0x%" PRIx64 "..0x%"
880 			    PRIx64 "\n", pcimemlists[i].addr,
881 			    pcimemlists[i].addr + pcimemlists[i].size);
882 		}
883 	}
884 	pcimemlists[0].next = 0;
885 	pcimemlists[0].prev = 0;
886 	for (i = 1; i < pcimemlists_used; ++i) {
887 		pcimemlists[i].prev =
888 		    (native_ptr_t)(uintptr_t)(pcimemlists + i - 1);
889 		pcimemlists[i].next = 0;
890 		pcimemlists[i - 1].next =
891 		    (native_ptr_t)(uintptr_t)(pcimemlists + i);
892 	}
893 	bi->bi_pcimem = (native_ptr_t)(uintptr_t)pcimemlists;
894 	DBG(bi->bi_pcimem);
895 }
896 
897 #if defined(__xpv)
898 /*
899  * Initialize memory allocator stuff from hypervisor-supplied start info.
900  */
901 static void
902 init_mem_alloc(void)
903 {
904 	int	local;	/* variables needed to find start region */
905 	paddr_t	scratch_start;
906 	xen_memory_map_t map;
907 
908 	DBG_MSG("Entered init_mem_alloc()\n");
909 
910 	/*
911 	 * Free memory follows the stack. There's at least 512KB of scratch
912 	 * space, rounded up to at least 2Mb alignment.  That should be enough
913 	 * for the page tables we'll need to build.  The nucleus memory is
914 	 * allocated last and will be outside the addressible range.  We'll
915 	 * switch to new page tables before we unpack the kernel
916 	 */
917 	scratch_start = RNDUP((paddr_t)(uintptr_t)&local, MMU_PAGESIZE);
918 	DBG(scratch_start);
919 	scratch_end = RNDUP((paddr_t)scratch_start + 512 * 1024, TWO_MEG);
920 	DBG(scratch_end);
921 
922 	/*
923 	 * For paranoia, leave some space between hypervisor data and ours.
924 	 * Use 500 instead of 512.
925 	 */
926 	next_avail_addr = scratch_end - 500 * 1024;
927 	DBG(next_avail_addr);
928 
929 	/*
930 	 * The domain builder gives us at most 1 module
931 	 */
932 	DBG(xen_info->mod_len);
933 	if (xen_info->mod_len > 0) {
934 		DBG(xen_info->mod_start);
935 		modules[0].bm_addr =
936 		    (native_ptr_t)(uintptr_t)xen_info->mod_start;
937 		modules[0].bm_size = xen_info->mod_len;
938 		bi->bi_module_cnt = 1;
939 		bi->bi_modules = (native_ptr_t)(uintptr_t)modules;
940 	} else {
941 		bi->bi_module_cnt = 0;
942 		bi->bi_modules = (native_ptr_t)(uintptr_t)NULL;
943 	}
944 	DBG(bi->bi_module_cnt);
945 	DBG(bi->bi_modules);
946 
947 	DBG(xen_info->mfn_list);
948 	DBG(xen_info->nr_pages);
949 	max_mem = (paddr_t)xen_info->nr_pages << MMU_PAGESHIFT;
950 	DBG(max_mem);
951 
952 	/*
953 	 * Using pseudo-physical addresses, so only 1 memlist element
954 	 */
955 	memlists[0].addr = 0;
956 	DBG(memlists[0].addr);
957 	memlists[0].size = max_mem;
958 	DBG(memlists[0].size);
959 	memlists_used = 1;
960 	DBG(memlists_used);
961 
962 	/*
963 	 * finish building physinstall list
964 	 */
965 	sort_physinstall();
966 
967 	/*
968 	 * build bios reserved memlists
969 	 */
970 	build_rsvdmemlists();
971 
972 	if (DOMAIN_IS_INITDOMAIN(xen_info)) {
973 		/*
974 		 * build PCI Memory list
975 		 */
976 		map.nr_entries = MAXMAPS;
977 		/*LINTED: constant in conditional context*/
978 		set_xen_guest_handle(map.buffer, map_buffer);
979 		if (HYPERVISOR_memory_op(XENMEM_machine_memory_map, &map) != 0)
980 			dboot_panic("getting XENMEM_machine_memory_map failed");
981 		build_pcimemlists();
982 	}
983 }
984 
985 #else	/* !__xpv */
986 
987 static void
988 dboot_multiboot1_xboot_consinfo(void)
989 {
990 	fb->framebuffer = 0;
991 }
992 
993 static void
994 dboot_multiboot2_xboot_consinfo(void)
995 {
996 	multiboot_tag_framebuffer_t *fbtag;
997 	fbtag = dboot_multiboot2_find_tag(mb2_info,
998 	    MULTIBOOT_TAG_TYPE_FRAMEBUFFER);
999 	fb->framebuffer = (uint64_t)(uintptr_t)fbtag;
1000 }
1001 
1002 static int
1003 dboot_multiboot_modcount(void)
1004 {
1005 	switch (multiboot_version) {
1006 	case 1:
1007 		return (mb_info->mods_count);
1008 
1009 	case 2:
1010 		return (dboot_multiboot2_modcount(mb2_info));
1011 
1012 	default:
1013 		dboot_panic("Unknown multiboot version: %d\n",
1014 		    multiboot_version);
1015 		break;
1016 	}
1017 	return (0);
1018 }
1019 
1020 static uint32_t
1021 dboot_multiboot_modstart(int index)
1022 {
1023 	switch (multiboot_version) {
1024 	case 1:
1025 		return (((mb_module_t *)mb_info->mods_addr)[index].mod_start);
1026 
1027 	case 2:
1028 		return (dboot_multiboot2_modstart(mb2_info, index));
1029 
1030 	default:
1031 		dboot_panic("Unknown multiboot version: %d\n",
1032 		    multiboot_version);
1033 		break;
1034 	}
1035 	return (0);
1036 }
1037 
1038 static uint32_t
1039 dboot_multiboot_modend(int index)
1040 {
1041 	switch (multiboot_version) {
1042 	case 1:
1043 		return (((mb_module_t *)mb_info->mods_addr)[index].mod_end);
1044 
1045 	case 2:
1046 		return (dboot_multiboot2_modend(mb2_info, index));
1047 
1048 	default:
1049 		dboot_panic("Unknown multiboot version: %d\n",
1050 		    multiboot_version);
1051 		break;
1052 	}
1053 	return (0);
1054 }
1055 
1056 static char *
1057 dboot_multiboot_modcmdline(int index)
1058 {
1059 	switch (multiboot_version) {
1060 	case 1:
1061 		return ((char *)((mb_module_t *)
1062 		    mb_info->mods_addr)[index].mod_name);
1063 
1064 	case 2:
1065 		return (dboot_multiboot2_modcmdline(mb2_info, index));
1066 
1067 	default:
1068 		dboot_panic("Unknown multiboot version: %d\n",
1069 		    multiboot_version);
1070 		break;
1071 	}
1072 	return (0);
1073 }
1074 
1075 /*
1076  * Find the modules used by console setup.
1077  * Since we need the console to print early boot messages, the console is set up
1078  * before anything else and therefore we need to pick up the needed modules.
1079  *
1080  * Note, we just will search for and if found, will pass the modules
1081  * to console setup, the proper module list processing will happen later.
1082  * Currently used modules are boot environment and console font.
1083  */
1084 static void
1085 dboot_find_console_modules(void)
1086 {
1087 	int i, modcount;
1088 	uint32_t mod_start, mod_end;
1089 	char *cmdline;
1090 
1091 	modcount = dboot_multiboot_modcount();
1092 	bi->bi_module_cnt = 0;
1093 	for (i = 0; i < modcount; ++i) {
1094 		cmdline = dboot_multiboot_modcmdline(i);
1095 		if (cmdline == NULL)
1096 			continue;
1097 
1098 		if (strstr(cmdline, "type=console-font") != NULL)
1099 			modules[bi->bi_module_cnt].bm_type = BMT_FONT;
1100 		else if (strstr(cmdline, "type=environment") != NULL)
1101 			modules[bi->bi_module_cnt].bm_type = BMT_ENV;
1102 		else
1103 			continue;
1104 
1105 		mod_start = dboot_multiboot_modstart(i);
1106 		mod_end = dboot_multiboot_modend(i);
1107 		modules[bi->bi_module_cnt].bm_addr =
1108 		    (native_ptr_t)(uintptr_t)mod_start;
1109 		modules[bi->bi_module_cnt].bm_size = mod_end - mod_start;
1110 		modules[bi->bi_module_cnt].bm_name =
1111 		    (native_ptr_t)(uintptr_t)NULL;
1112 		modules[bi->bi_module_cnt].bm_hash =
1113 		    (native_ptr_t)(uintptr_t)NULL;
1114 		bi->bi_module_cnt++;
1115 	}
1116 	if (bi->bi_module_cnt != 0)
1117 		bi->bi_modules = (native_ptr_t)(uintptr_t)modules;
1118 }
1119 
1120 static boolean_t
1121 dboot_multiboot_basicmeminfo(uint32_t *lower, uint32_t *upper)
1122 {
1123 	boolean_t rv = B_FALSE;
1124 
1125 	switch (multiboot_version) {
1126 	case 1:
1127 		if (mb_info->flags & 0x01) {
1128 			*lower = mb_info->mem_lower;
1129 			*upper = mb_info->mem_upper;
1130 			rv = B_TRUE;
1131 		}
1132 		break;
1133 
1134 	case 2:
1135 		return (dboot_multiboot2_basicmeminfo(mb2_info, lower, upper));
1136 
1137 	default:
1138 		dboot_panic("Unknown multiboot version: %d\n",
1139 		    multiboot_version);
1140 		break;
1141 	}
1142 	return (rv);
1143 }
1144 
1145 static uint8_t
1146 dboot_a2h(char v)
1147 {
1148 	if (v >= 'a')
1149 		return (v - 'a' + 0xa);
1150 	else if (v >= 'A')
1151 		return (v - 'A' + 0xa);
1152 	else if (v >= '0')
1153 		return (v - '0');
1154 	else
1155 		dboot_panic("bad ASCII hex character %c\n", v);
1156 
1157 	return (0);
1158 }
1159 
1160 static void
1161 digest_a2h(const char *ascii, uint8_t *digest)
1162 {
1163 	unsigned int i;
1164 
1165 	for (i = 0; i < SHA1_DIGEST_LENGTH; i++) {
1166 		digest[i] = dboot_a2h(ascii[i * 2]) << 4;
1167 		digest[i] |= dboot_a2h(ascii[i * 2 + 1]);
1168 	}
1169 }
1170 
1171 /*
1172  * Generate a SHA-1 hash of the first len bytes of image, and compare it with
1173  * the ASCII-format hash found in the 40-byte buffer at ascii.  If they
1174  * match, return 0, otherwise -1.  This works only for images smaller than
1175  * 4 GB, which should not be a problem.
1176  */
1177 static int
1178 check_image_hash(uint_t midx)
1179 {
1180 	const char *ascii;
1181 	const void *image;
1182 	size_t len;
1183 	SHA1_CTX ctx;
1184 	uint8_t digest[SHA1_DIGEST_LENGTH];
1185 	uint8_t baseline[SHA1_DIGEST_LENGTH];
1186 	unsigned int i;
1187 
1188 	ascii = (const char *)(uintptr_t)modules[midx].bm_hash;
1189 	image = (const void *)(uintptr_t)modules[midx].bm_addr;
1190 	len = (size_t)modules[midx].bm_size;
1191 
1192 	digest_a2h(ascii, baseline);
1193 
1194 	SHA1Init(&ctx);
1195 	SHA1Update(&ctx, image, len);
1196 	SHA1Final(digest, &ctx);
1197 
1198 	for (i = 0; i < SHA1_DIGEST_LENGTH; i++) {
1199 		if (digest[i] != baseline[i])
1200 			return (-1);
1201 	}
1202 
1203 	return (0);
1204 }
1205 
1206 static const char *
1207 type_to_str(boot_module_type_t type)
1208 {
1209 	switch (type) {
1210 	case BMT_ROOTFS:
1211 		return ("rootfs");
1212 	case BMT_FILE:
1213 		return ("file");
1214 	case BMT_HASH:
1215 		return ("hash");
1216 	case BMT_ENV:
1217 		return ("environment");
1218 	case BMT_FONT:
1219 		return ("console-font");
1220 	default:
1221 		return ("unknown");
1222 	}
1223 }
1224 
1225 static void
1226 check_images(void)
1227 {
1228 	uint_t i;
1229 	char displayhash[SHA1_ASCII_LENGTH + 1];
1230 
1231 	for (i = 0; i < modules_used; i++) {
1232 		if (prom_debug) {
1233 			dboot_printf("module #%d: name %s type %s "
1234 			    "addr %lx size %lx\n",
1235 			    i, (char *)(uintptr_t)modules[i].bm_name,
1236 			    type_to_str(modules[i].bm_type),
1237 			    (ulong_t)modules[i].bm_addr,
1238 			    (ulong_t)modules[i].bm_size);
1239 		}
1240 
1241 		if (modules[i].bm_type == BMT_HASH ||
1242 		    modules[i].bm_hash == (native_ptr_t)(uintptr_t)NULL) {
1243 			DBG_MSG("module has no hash; skipping check\n");
1244 			continue;
1245 		}
1246 		(void) memcpy(displayhash,
1247 		    (void *)(uintptr_t)modules[i].bm_hash,
1248 		    SHA1_ASCII_LENGTH);
1249 		displayhash[SHA1_ASCII_LENGTH] = '\0';
1250 		if (prom_debug) {
1251 			dboot_printf("checking expected hash [%s]: ",
1252 			    displayhash);
1253 		}
1254 
1255 		if (check_image_hash(i) != 0)
1256 			dboot_panic("hash mismatch!\n");
1257 		else
1258 			DBG_MSG("OK\n");
1259 	}
1260 }
1261 
1262 /*
1263  * Determine the module's starting address, size, name, and type, and fill the
1264  * boot_modules structure.  This structure is used by the bop code, except for
1265  * hashes which are checked prior to transferring control to the kernel.
1266  */
1267 static void
1268 process_module(int midx)
1269 {
1270 	uint32_t mod_start = dboot_multiboot_modstart(midx);
1271 	uint32_t mod_end = dboot_multiboot_modend(midx);
1272 	char *cmdline = dboot_multiboot_modcmdline(midx);
1273 	char *p, *q;
1274 
1275 	check_higher(mod_end);
1276 	if (prom_debug) {
1277 		dboot_printf("\tmodule #%d: '%s' at 0x%lx, end 0x%lx\n",
1278 		    midx, cmdline, (ulong_t)mod_start, (ulong_t)mod_end);
1279 	}
1280 
1281 	if (mod_start > mod_end) {
1282 		dboot_panic("module #%d: module start address 0x%lx greater "
1283 		    "than end address 0x%lx", midx,
1284 		    (ulong_t)mod_start, (ulong_t)mod_end);
1285 	}
1286 
1287 	/*
1288 	 * A brief note on lengths and sizes: GRUB, for reasons unknown, passes
1289 	 * the address of the last valid byte in a module plus 1 as mod_end.
1290 	 * This is of course a bug; the multiboot specification simply states
1291 	 * that mod_start and mod_end "contain the start and end addresses of
1292 	 * the boot module itself" which is pretty obviously not what GRUB is
1293 	 * doing.  However, fixing it requires that not only this code be
1294 	 * changed but also that other code consuming this value and values
1295 	 * derived from it be fixed, and that the kernel and GRUB must either
1296 	 * both have the bug or neither.  While there are a lot of combinations
1297 	 * that will work, there are also some that won't, so for simplicity
1298 	 * we'll just cope with the bug.  That means we won't actually hash the
1299 	 * byte at mod_end, and we will expect that mod_end for the hash file
1300 	 * itself is one greater than some multiple of 41 (40 bytes of ASCII
1301 	 * hash plus a newline for each module).  We set bm_size to the true
1302 	 * correct number of bytes in each module, achieving exactly this.
1303 	 */
1304 
1305 	modules[midx].bm_addr = (native_ptr_t)(uintptr_t)mod_start;
1306 	modules[midx].bm_size = mod_end - mod_start;
1307 	modules[midx].bm_name = (native_ptr_t)(uintptr_t)cmdline;
1308 	modules[midx].bm_hash = (native_ptr_t)(uintptr_t)NULL;
1309 	modules[midx].bm_type = BMT_FILE;
1310 
1311 	if (cmdline == NULL) {
1312 		modules[midx].bm_name = (native_ptr_t)(uintptr_t)noname;
1313 		return;
1314 	}
1315 
1316 	p = cmdline;
1317 	modules[midx].bm_name =
1318 	    (native_ptr_t)(uintptr_t)strsep(&p, " \t\f\n\r");
1319 
1320 	while (p != NULL) {
1321 		q = strsep(&p, " \t\f\n\r");
1322 		if (strncmp(q, "name=", 5) == 0) {
1323 			if (q[5] != '\0' && !isspace(q[5])) {
1324 				modules[midx].bm_name =
1325 				    (native_ptr_t)(uintptr_t)(q + 5);
1326 			}
1327 			continue;
1328 		}
1329 
1330 		if (strncmp(q, "type=", 5) == 0) {
1331 			if (q[5] == '\0' || isspace(q[5]))
1332 				continue;
1333 			q += 5;
1334 			if (strcmp(q, "rootfs") == 0) {
1335 				modules[midx].bm_type = BMT_ROOTFS;
1336 			} else if (strcmp(q, "hash") == 0) {
1337 				modules[midx].bm_type = BMT_HASH;
1338 			} else if (strcmp(q, "environment") == 0) {
1339 				modules[midx].bm_type = BMT_ENV;
1340 			} else if (strcmp(q, "console-font") == 0) {
1341 				modules[midx].bm_type = BMT_FONT;
1342 			} else if (strcmp(q, "file") != 0) {
1343 				dboot_printf("\tmodule #%d: unknown module "
1344 				    "type '%s'; defaulting to 'file'\n",
1345 				    midx, q);
1346 			}
1347 			continue;
1348 		}
1349 
1350 		if (strncmp(q, "hash=", 5) == 0) {
1351 			if (q[5] != '\0' && !isspace(q[5])) {
1352 				modules[midx].bm_hash =
1353 				    (native_ptr_t)(uintptr_t)(q + 5);
1354 			}
1355 			continue;
1356 		}
1357 
1358 		dboot_printf("ignoring unknown option '%s'\n", q);
1359 	}
1360 }
1361 
1362 /*
1363  * Backward compatibility: if there are exactly one or two modules, both
1364  * of type 'file' and neither with an embedded hash value, we have been
1365  * given the legacy style modules.  In this case we need to treat the first
1366  * module as a rootfs and the second as a hash referencing that module.
1367  * Otherwise, even if the configuration is invalid, we assume that the
1368  * operator knows what he's doing or at least isn't being bitten by this
1369  * interface change.
1370  */
1371 static void
1372 fixup_modules(void)
1373 {
1374 	if (modules_used == 0 || modules_used > 2)
1375 		return;
1376 
1377 	if (modules[0].bm_type != BMT_FILE ||
1378 	    modules_used > 1 && modules[1].bm_type != BMT_FILE) {
1379 		return;
1380 	}
1381 
1382 	if (modules[0].bm_hash != (native_ptr_t)(uintptr_t)NULL ||
1383 	    modules_used > 1 &&
1384 	    modules[1].bm_hash != (native_ptr_t)(uintptr_t)NULL) {
1385 		return;
1386 	}
1387 
1388 	modules[0].bm_type = BMT_ROOTFS;
1389 	if (modules_used > 1) {
1390 		modules[1].bm_type = BMT_HASH;
1391 		modules[1].bm_name = modules[0].bm_name;
1392 	}
1393 }
1394 
1395 /*
1396  * For modules that do not have assigned hashes but have a separate hash module,
1397  * find the assigned hash module and set the primary module's bm_hash to point
1398  * to the hash data from that module.  We will then ignore modules of type
1399  * BMT_HASH from this point forward.
1400  */
1401 static void
1402 assign_module_hashes(void)
1403 {
1404 	uint_t i, j;
1405 
1406 	for (i = 0; i < modules_used; i++) {
1407 		if (modules[i].bm_type == BMT_HASH ||
1408 		    modules[i].bm_hash != (native_ptr_t)(uintptr_t)NULL) {
1409 			continue;
1410 		}
1411 
1412 		for (j = 0; j < modules_used; j++) {
1413 			if (modules[j].bm_type != BMT_HASH ||
1414 			    strcmp((char *)(uintptr_t)modules[j].bm_name,
1415 			    (char *)(uintptr_t)modules[i].bm_name) != 0) {
1416 				continue;
1417 			}
1418 
1419 			if (modules[j].bm_size < SHA1_ASCII_LENGTH) {
1420 				dboot_printf("Short hash module of length "
1421 				    "0x%lx bytes; ignoring\n",
1422 				    (ulong_t)modules[j].bm_size);
1423 			} else {
1424 				modules[i].bm_hash = modules[j].bm_addr;
1425 			}
1426 			break;
1427 		}
1428 	}
1429 }
1430 
1431 /*
1432  * Walk through the module information finding the last used address.
1433  * The first available address will become the top level page table.
1434  */
1435 static void
1436 dboot_process_modules(void)
1437 {
1438 	int i, modcount;
1439 	extern char _end[];
1440 
1441 	DBG_MSG("\nFinding Modules\n");
1442 	modcount = dboot_multiboot_modcount();
1443 	if (modcount > MAX_BOOT_MODULES) {
1444 		dboot_panic("Too many modules (%d) -- the maximum is %d.",
1445 		    modcount, MAX_BOOT_MODULES);
1446 	}
1447 	/*
1448 	 * search the modules to find the last used address
1449 	 * we'll build the module list while we're walking through here
1450 	 */
1451 	check_higher((paddr_t)(uintptr_t)&_end);
1452 	for (i = 0; i < modcount; ++i) {
1453 		process_module(i);
1454 		modules_used++;
1455 	}
1456 	bi->bi_modules = (native_ptr_t)(uintptr_t)modules;
1457 	DBG(bi->bi_modules);
1458 	bi->bi_module_cnt = modcount;
1459 	DBG(bi->bi_module_cnt);
1460 
1461 	fixup_modules();
1462 	assign_module_hashes();
1463 	check_images();
1464 }
1465 
1466 /*
1467  * We then build the phys_install memlist from the multiboot information.
1468  */
1469 static void
1470 dboot_process_mmap(void)
1471 {
1472 	uint64_t start;
1473 	uint64_t end;
1474 	uint64_t page_offset = MMU_PAGEOFFSET;	/* needs to be 64 bits */
1475 	uint32_t lower, upper;
1476 	int i, mmap_entries;
1477 
1478 	/*
1479 	 * Walk through the memory map from multiboot and build our memlist
1480 	 * structures. Note these will have native format pointers.
1481 	 */
1482 	DBG_MSG("\nFinding Memory Map\n");
1483 	num_entries = 0;
1484 	num_entries_set = B_FALSE;
1485 	max_mem = 0;
1486 	if ((mmap_entries = dboot_loader_mmap_entries()) > 0) {
1487 		for (i = 0; i < mmap_entries; i++) {
1488 			uint32_t type = dboot_loader_mmap_get_type(i);
1489 			start = dboot_loader_mmap_get_base(i);
1490 			end = start + dboot_loader_mmap_get_length(i);
1491 
1492 			if (prom_debug)
1493 				dboot_printf("\ttype: %d %" PRIx64 "..%"
1494 				    PRIx64 "\n", type, start, end);
1495 
1496 			/*
1497 			 * page align start and end
1498 			 */
1499 			start = (start + page_offset) & ~page_offset;
1500 			end &= ~page_offset;
1501 			if (end <= start)
1502 				continue;
1503 
1504 			/*
1505 			 * only type 1 is usable RAM
1506 			 */
1507 			switch (type) {
1508 			case 1:
1509 				if (end > max_mem)
1510 					max_mem = end;
1511 				memlists[memlists_used].addr = start;
1512 				memlists[memlists_used].size = end - start;
1513 				++memlists_used;
1514 				if (memlists_used > MAX_MEMLIST)
1515 					dboot_panic("too many memlists");
1516 				break;
1517 			case 2:
1518 				rsvdmemlists[rsvdmemlists_used].addr = start;
1519 				rsvdmemlists[rsvdmemlists_used].size =
1520 				    end - start;
1521 				++rsvdmemlists_used;
1522 				if (rsvdmemlists_used > MAX_MEMLIST)
1523 					dboot_panic("too many rsvdmemlists");
1524 				break;
1525 			default:
1526 				continue;
1527 			}
1528 		}
1529 		build_pcimemlists();
1530 	} else if (dboot_multiboot_basicmeminfo(&lower, &upper)) {
1531 		DBG(lower);
1532 		memlists[memlists_used].addr = 0;
1533 		memlists[memlists_used].size = lower * 1024;
1534 		++memlists_used;
1535 		DBG(upper);
1536 		memlists[memlists_used].addr = 1024 * 1024;
1537 		memlists[memlists_used].size = upper * 1024;
1538 		++memlists_used;
1539 
1540 		/*
1541 		 * Old platform - assume I/O space at the end of memory.
1542 		 */
1543 		pcimemlists[0].addr = (upper * 1024) + (1024 * 1024);
1544 		pcimemlists[0].size = pci_hi_limit - pcimemlists[0].addr;
1545 		pcimemlists[0].next = 0;
1546 		pcimemlists[0].prev = 0;
1547 		bi->bi_pcimem = (native_ptr_t)(uintptr_t)pcimemlists;
1548 		DBG(bi->bi_pcimem);
1549 	} else {
1550 		dboot_panic("No memory info from boot loader!!!");
1551 	}
1552 
1553 	/*
1554 	 * finish processing the physinstall list
1555 	 */
1556 	sort_physinstall();
1557 
1558 	/*
1559 	 * build bios reserved mem lists
1560 	 */
1561 	build_rsvdmemlists();
1562 }
1563 
1564 /*
1565  * The highest address is used as the starting point for dboot's simple
1566  * memory allocator.
1567  *
1568  * Finding the highest address in case of Multiboot 1 protocol is
1569  * quite painful in the sense that some information provided by
1570  * the multiboot info structure points to BIOS data, and some to RAM.
1571  *
1572  * The module list was processed and checked already by dboot_process_modules(),
1573  * so we will check the command line string and the memory map.
1574  *
1575  * This list of to be checked items is based on our current knowledge of
1576  * allocations made by grub1 and will need to be reviewed if there
1577  * are updates about the information provided by Multiboot 1.
1578  *
1579  * In the case of the Multiboot 2, our life is much simpler, as the MB2
1580  * information tag list is one contiguous chunk of memory.
1581  */
1582 static paddr_t
1583 dboot_multiboot1_highest_addr(void)
1584 {
1585 	paddr_t addr = (paddr_t)(uintptr_t)NULL;
1586 	char *cmdl = (char *)mb_info->cmdline;
1587 
1588 	if (mb_info->flags & MB_INFO_CMDLINE)
1589 		addr = ((paddr_t)((uintptr_t)cmdl + strlen(cmdl) + 1));
1590 
1591 	if (mb_info->flags & MB_INFO_MEM_MAP)
1592 		addr = MAX(addr,
1593 		    ((paddr_t)(mb_info->mmap_addr + mb_info->mmap_length)));
1594 	return (addr);
1595 }
1596 
1597 static void
1598 dboot_multiboot_highest_addr(void)
1599 {
1600 	paddr_t addr;
1601 
1602 	switch (multiboot_version) {
1603 	case 1:
1604 		addr = dboot_multiboot1_highest_addr();
1605 		if (addr != (paddr_t)(uintptr_t)NULL)
1606 			check_higher(addr);
1607 		break;
1608 	case 2:
1609 		addr = dboot_multiboot2_highest_addr(mb2_info);
1610 		if (addr != (paddr_t)(uintptr_t)NULL)
1611 			check_higher(addr);
1612 		break;
1613 	default:
1614 		dboot_panic("Unknown multiboot version: %d\n",
1615 		    multiboot_version);
1616 		break;
1617 	}
1618 }
1619 
1620 /*
1621  * Walk the boot loader provided information and find the highest free address.
1622  */
1623 static void
1624 init_mem_alloc(void)
1625 {
1626 	DBG_MSG("Entered init_mem_alloc()\n");
1627 	dboot_process_modules();
1628 	dboot_process_mmap();
1629 	dboot_multiboot_highest_addr();
1630 }
1631 
1632 static int
1633 dboot_same_guids(efi_guid_t *g1, efi_guid_t *g2)
1634 {
1635 	int i;
1636 
1637 	if (g1->time_low != g2->time_low)
1638 		return (0);
1639 	if (g1->time_mid != g2->time_mid)
1640 		return (0);
1641 	if (g1->time_hi_and_version != g2->time_hi_and_version)
1642 		return (0);
1643 	if (g1->clock_seq_hi_and_reserved != g2->clock_seq_hi_and_reserved)
1644 		return (0);
1645 	if (g1->clock_seq_low != g2->clock_seq_low)
1646 		return (0);
1647 
1648 	for (i = 0; i < 6; i++) {
1649 		if (g1->node_addr[i] != g2->node_addr[i])
1650 			return (0);
1651 	}
1652 	return (1);
1653 }
1654 
1655 static void
1656 process_efi32(EFI_SYSTEM_TABLE32 *efi)
1657 {
1658 	uint32_t entries;
1659 	EFI_CONFIGURATION_TABLE32 *config;
1660 	efi_guid_t VendorGuid;
1661 	int i;
1662 
1663 	entries = efi->NumberOfTableEntries;
1664 	config = (EFI_CONFIGURATION_TABLE32 *)(uintptr_t)
1665 	    efi->ConfigurationTable;
1666 
1667 	for (i = 0; i < entries; i++) {
1668 		(void) memcpy(&VendorGuid, &config[i].VendorGuid,
1669 		    sizeof (VendorGuid));
1670 		if (dboot_same_guids(&VendorGuid, &smbios3)) {
1671 			bi->bi_smbios = (native_ptr_t)(uintptr_t)
1672 			    config[i].VendorTable;
1673 		}
1674 		if (bi->bi_smbios == 0 &&
1675 		    dboot_same_guids(&VendorGuid, &smbios)) {
1676 			bi->bi_smbios = (native_ptr_t)(uintptr_t)
1677 			    config[i].VendorTable;
1678 		}
1679 		if (dboot_same_guids(&VendorGuid, &acpi2)) {
1680 			bi->bi_acpi_rsdp = (native_ptr_t)(uintptr_t)
1681 			    config[i].VendorTable;
1682 		}
1683 		if (bi->bi_acpi_rsdp == 0 &&
1684 		    dboot_same_guids(&VendorGuid, &acpi1)) {
1685 			bi->bi_acpi_rsdp = (native_ptr_t)(uintptr_t)
1686 			    config[i].VendorTable;
1687 		}
1688 	}
1689 }
1690 
1691 static void
1692 process_efi64(EFI_SYSTEM_TABLE64 *efi)
1693 {
1694 	uint64_t entries;
1695 	EFI_CONFIGURATION_TABLE64 *config;
1696 	efi_guid_t VendorGuid;
1697 	int i;
1698 
1699 	entries = efi->NumberOfTableEntries;
1700 	config = (EFI_CONFIGURATION_TABLE64 *)(uintptr_t)
1701 	    efi->ConfigurationTable;
1702 
1703 	for (i = 0; i < entries; i++) {
1704 		(void) memcpy(&VendorGuid, &config[i].VendorGuid,
1705 		    sizeof (VendorGuid));
1706 		if (dboot_same_guids(&VendorGuid, &smbios3)) {
1707 			bi->bi_smbios = (native_ptr_t)(uintptr_t)
1708 			    config[i].VendorTable;
1709 		}
1710 		if (bi->bi_smbios == 0 &&
1711 		    dboot_same_guids(&VendorGuid, &smbios)) {
1712 			bi->bi_smbios = (native_ptr_t)(uintptr_t)
1713 			    config[i].VendorTable;
1714 		}
1715 		/* Prefer acpi v2+ over v1. */
1716 		if (dboot_same_guids(&VendorGuid, &acpi2)) {
1717 			bi->bi_acpi_rsdp = (native_ptr_t)(uintptr_t)
1718 			    config[i].VendorTable;
1719 		}
1720 		if (bi->bi_acpi_rsdp == 0 &&
1721 		    dboot_same_guids(&VendorGuid, &acpi1)) {
1722 			bi->bi_acpi_rsdp = (native_ptr_t)(uintptr_t)
1723 			    config[i].VendorTable;
1724 		}
1725 	}
1726 }
1727 
1728 static void
1729 dboot_multiboot_get_fwtables(void)
1730 {
1731 	multiboot_tag_new_acpi_t *nacpitagp;
1732 	multiboot_tag_old_acpi_t *oacpitagp;
1733 	multiboot_tag_efi64_t *efi64tagp = NULL;
1734 	multiboot_tag_efi32_t *efi32tagp = NULL;
1735 
1736 	/* no fw tables from multiboot 1 */
1737 	if (multiboot_version != 2)
1738 		return;
1739 
1740 	efi64tagp = (multiboot_tag_efi64_t *)
1741 	    dboot_multiboot2_find_tag(mb2_info, MULTIBOOT_TAG_TYPE_EFI64);
1742 	if (efi64tagp != NULL) {
1743 		bi->bi_uefi_arch = XBI_UEFI_ARCH_64;
1744 		bi->bi_uefi_systab = (native_ptr_t)(uintptr_t)
1745 		    efi64tagp->mb_pointer;
1746 		process_efi64((EFI_SYSTEM_TABLE64 *)(uintptr_t)
1747 		    efi64tagp->mb_pointer);
1748 	} else {
1749 		efi32tagp = (multiboot_tag_efi32_t *)
1750 		    dboot_multiboot2_find_tag(mb2_info,
1751 		    MULTIBOOT_TAG_TYPE_EFI32);
1752 		if (efi32tagp != NULL) {
1753 			bi->bi_uefi_arch = XBI_UEFI_ARCH_32;
1754 			bi->bi_uefi_systab = (native_ptr_t)(uintptr_t)
1755 			    efi32tagp->mb_pointer;
1756 			process_efi32((EFI_SYSTEM_TABLE32 *)(uintptr_t)
1757 			    efi32tagp->mb_pointer);
1758 		}
1759 	}
1760 
1761 	/*
1762 	 * The multiboot2 info contains a copy of the RSDP; stash a pointer to
1763 	 * it (see find_rsdp() in fakebop).
1764 	 */
1765 	nacpitagp = (multiboot_tag_new_acpi_t *)
1766 	    dboot_multiboot2_find_tag(mb2_info, MULTIBOOT_TAG_TYPE_ACPI_NEW);
1767 	oacpitagp = (multiboot_tag_old_acpi_t *)
1768 	    dboot_multiboot2_find_tag(mb2_info, MULTIBOOT_TAG_TYPE_ACPI_OLD);
1769 
1770 	if (nacpitagp != NULL) {
1771 		bi->bi_acpi_rsdp_copy = (native_ptr_t)(uintptr_t)
1772 		    &nacpitagp->mb_rsdp[0];
1773 	} else if (oacpitagp != NULL) {
1774 		bi->bi_acpi_rsdp_copy = (native_ptr_t)(uintptr_t)
1775 		    &oacpitagp->mb_rsdp[0];
1776 	}
1777 }
1778 
1779 /* print out EFI version string with newline */
1780 static void
1781 dboot_print_efi_version(uint32_t ver)
1782 {
1783 	int rev;
1784 
1785 	dboot_printf("%d.", EFI_REV_MAJOR(ver));
1786 
1787 	rev = EFI_REV_MINOR(ver);
1788 	if ((rev % 10) != 0) {
1789 		dboot_printf("%d.%d\n", rev / 10, rev % 10);
1790 	} else {
1791 		dboot_printf("%d\n", rev / 10);
1792 	}
1793 }
1794 
1795 static void
1796 print_efi32(EFI_SYSTEM_TABLE32 *efi)
1797 {
1798 	uint16_t *data;
1799 	EFI_CONFIGURATION_TABLE32 *conf;
1800 	int i;
1801 
1802 	dboot_printf("EFI32 signature: %llx\n",
1803 	    (unsigned long long)efi->Hdr.Signature);
1804 	dboot_printf("EFI system version: ");
1805 	dboot_print_efi_version(efi->Hdr.Revision);
1806 	dboot_printf("EFI system vendor: ");
1807 	data = (uint16_t *)(uintptr_t)efi->FirmwareVendor;
1808 	for (i = 0; data[i] != 0; i++)
1809 		dboot_printf("%c", (char)data[i]);
1810 	dboot_printf("\nEFI firmware revision: ");
1811 	dboot_print_efi_version(efi->FirmwareRevision);
1812 	dboot_printf("EFI system table number of entries: %d\n",
1813 	    efi->NumberOfTableEntries);
1814 	conf = (EFI_CONFIGURATION_TABLE32 *)(uintptr_t)
1815 	    efi->ConfigurationTable;
1816 	for (i = 0; i < (int)efi->NumberOfTableEntries; i++) {
1817 		dboot_printf("%d: 0x%x 0x%x 0x%x 0x%x 0x%x", i,
1818 		    conf[i].VendorGuid.time_low,
1819 		    conf[i].VendorGuid.time_mid,
1820 		    conf[i].VendorGuid.time_hi_and_version,
1821 		    conf[i].VendorGuid.clock_seq_hi_and_reserved,
1822 		    conf[i].VendorGuid.clock_seq_low);
1823 		dboot_printf(" 0x%x 0x%x 0x%x 0x%x 0x%x 0x%x\n",
1824 		    conf[i].VendorGuid.node_addr[0],
1825 		    conf[i].VendorGuid.node_addr[1],
1826 		    conf[i].VendorGuid.node_addr[2],
1827 		    conf[i].VendorGuid.node_addr[3],
1828 		    conf[i].VendorGuid.node_addr[4],
1829 		    conf[i].VendorGuid.node_addr[5]);
1830 	}
1831 }
1832 
1833 static void
1834 print_efi64(EFI_SYSTEM_TABLE64 *efi)
1835 {
1836 	uint16_t *data;
1837 	EFI_CONFIGURATION_TABLE64 *conf;
1838 	int i;
1839 
1840 	dboot_printf("EFI64 signature: %llx\n",
1841 	    (unsigned long long)efi->Hdr.Signature);
1842 	dboot_printf("EFI system version: ");
1843 	dboot_print_efi_version(efi->Hdr.Revision);
1844 	dboot_printf("EFI system vendor: ");
1845 	data = (uint16_t *)(uintptr_t)efi->FirmwareVendor;
1846 	for (i = 0; data[i] != 0; i++)
1847 		dboot_printf("%c", (char)data[i]);
1848 	dboot_printf("\nEFI firmware revision: ");
1849 	dboot_print_efi_version(efi->FirmwareRevision);
1850 	dboot_printf("EFI system table number of entries: %" PRIu64 "\n",
1851 	    efi->NumberOfTableEntries);
1852 	conf = (EFI_CONFIGURATION_TABLE64 *)(uintptr_t)
1853 	    efi->ConfigurationTable;
1854 	for (i = 0; i < (int)efi->NumberOfTableEntries; i++) {
1855 		dboot_printf("%d: 0x%x 0x%x 0x%x 0x%x 0x%x", i,
1856 		    conf[i].VendorGuid.time_low,
1857 		    conf[i].VendorGuid.time_mid,
1858 		    conf[i].VendorGuid.time_hi_and_version,
1859 		    conf[i].VendorGuid.clock_seq_hi_and_reserved,
1860 		    conf[i].VendorGuid.clock_seq_low);
1861 		dboot_printf(" 0x%x 0x%x 0x%x 0x%x 0x%x 0x%x\n",
1862 		    conf[i].VendorGuid.node_addr[0],
1863 		    conf[i].VendorGuid.node_addr[1],
1864 		    conf[i].VendorGuid.node_addr[2],
1865 		    conf[i].VendorGuid.node_addr[3],
1866 		    conf[i].VendorGuid.node_addr[4],
1867 		    conf[i].VendorGuid.node_addr[5]);
1868 	}
1869 }
1870 #endif /* !__xpv */
1871 
1872 /*
1873  * Simple memory allocator, allocates aligned physical memory.
1874  * Note that startup_kernel() only allocates memory, never frees.
1875  * Memory usage just grows in an upward direction.
1876  */
1877 static void *
1878 do_mem_alloc(uint32_t size, uint32_t align)
1879 {
1880 	uint_t i;
1881 	uint64_t best;
1882 	uint64_t start;
1883 	uint64_t end;
1884 
1885 	/*
1886 	 * make sure size is a multiple of pagesize
1887 	 */
1888 	size = RNDUP(size, MMU_PAGESIZE);
1889 	next_avail_addr = RNDUP(next_avail_addr, align);
1890 
1891 	/*
1892 	 * XXPV fixme joe
1893 	 *
1894 	 * a really large bootarchive that causes you to run out of memory
1895 	 * may cause this to blow up
1896 	 */
1897 	/* LINTED E_UNEXPECTED_UINT_PROMOTION */
1898 	best = (uint64_t)-size;
1899 	for (i = 0; i < memlists_used; ++i) {
1900 		start = memlists[i].addr;
1901 #if defined(__xpv)
1902 		start += mfn_base;
1903 #endif
1904 		end = start + memlists[i].size;
1905 
1906 		/*
1907 		 * did we find the desired address?
1908 		 */
1909 		if (start <= next_avail_addr && next_avail_addr + size <= end) {
1910 			best = next_avail_addr;
1911 			goto done;
1912 		}
1913 
1914 		/*
1915 		 * if not is this address the best so far?
1916 		 */
1917 		if (start > next_avail_addr && start < best &&
1918 		    RNDUP(start, align) + size <= end)
1919 			best = RNDUP(start, align);
1920 	}
1921 
1922 	/*
1923 	 * We didn't find exactly the address we wanted, due to going off the
1924 	 * end of a memory region. Return the best found memory address.
1925 	 */
1926 done:
1927 	next_avail_addr = best + size;
1928 #if defined(__xpv)
1929 	if (next_avail_addr > scratch_end)
1930 		dboot_panic("Out of mem next_avail: 0x%lx, scratch_end: "
1931 		    "0x%lx", (ulong_t)next_avail_addr,
1932 		    (ulong_t)scratch_end);
1933 #endif
1934 	(void) memset((void *)(uintptr_t)best, 0, size);
1935 	return ((void *)(uintptr_t)best);
1936 }
1937 
1938 void *
1939 mem_alloc(uint32_t size)
1940 {
1941 	return (do_mem_alloc(size, MMU_PAGESIZE));
1942 }
1943 
1944 
1945 /*
1946  * Build page tables to map all of memory used so far as well as the kernel.
1947  */
1948 static void
1949 build_page_tables(void)
1950 {
1951 	uint32_t psize;
1952 	uint32_t level;
1953 	uint32_t off;
1954 	uint64_t start;
1955 #if !defined(__xpv)
1956 	uint32_t i;
1957 	uint64_t end;
1958 #endif	/* __xpv */
1959 
1960 	/*
1961 	 * If we're on metal, we need to create the top level pagetable.
1962 	 */
1963 #if defined(__xpv)
1964 	top_page_table = (paddr_t)(uintptr_t)xen_info->pt_base;
1965 #else /* __xpv */
1966 	top_page_table = (paddr_t)(uintptr_t)mem_alloc(MMU_PAGESIZE);
1967 #endif /* __xpv */
1968 	DBG((uintptr_t)top_page_table);
1969 
1970 	/*
1971 	 * Determine if we'll use large mappings for kernel, then map it.
1972 	 */
1973 	if (largepage_support) {
1974 		psize = lpagesize;
1975 		level = 1;
1976 	} else {
1977 		psize = MMU_PAGESIZE;
1978 		level = 0;
1979 	}
1980 
1981 	DBG_MSG("Mapping kernel\n");
1982 	DBG(ktext_phys);
1983 	DBG(target_kernel_text);
1984 	DBG(ksize);
1985 	DBG(psize);
1986 	for (off = 0; off < ksize; off += psize)
1987 		map_pa_at_va(ktext_phys + off, target_kernel_text + off, level);
1988 
1989 	/*
1990 	 * The kernel will need a 1 page window to work with page tables
1991 	 */
1992 	bi->bi_pt_window = (native_ptr_t)(uintptr_t)mem_alloc(MMU_PAGESIZE);
1993 	DBG(bi->bi_pt_window);
1994 	bi->bi_pte_to_pt_window =
1995 	    (native_ptr_t)(uintptr_t)find_pte(bi->bi_pt_window, NULL, 0, 0);
1996 	DBG(bi->bi_pte_to_pt_window);
1997 
1998 #if defined(__xpv)
1999 	if (!DOMAIN_IS_INITDOMAIN(xen_info)) {
2000 		/* If this is a domU we're done. */
2001 		DBG_MSG("\nPage tables constructed\n");
2002 		return;
2003 	}
2004 #endif /* __xpv */
2005 
2006 	/*
2007 	 * We need 1:1 mappings for the lower 1M of memory to access
2008 	 * BIOS tables used by a couple of drivers during boot.
2009 	 *
2010 	 * The following code works because our simple memory allocator
2011 	 * only grows usage in an upwards direction.
2012 	 *
2013 	 * Note that by this point in boot some mappings for low memory
2014 	 * may already exist because we've already accessed device in low
2015 	 * memory.  (Specifically the video frame buffer and keyboard
2016 	 * status ports.)  If we're booting on raw hardware then GRUB
2017 	 * created these mappings for us.  If we're booting under a
2018 	 * hypervisor then we went ahead and remapped these devices into
2019 	 * memory allocated within dboot itself.
2020 	 */
2021 	if (map_debug)
2022 		dboot_printf("1:1 map pa=0..1Meg\n");
2023 	for (start = 0; start < 1024 * 1024; start += MMU_PAGESIZE) {
2024 #if defined(__xpv)
2025 		map_ma_at_va(start, start, 0);
2026 #else /* __xpv */
2027 		map_pa_at_va(start, start, 0);
2028 #endif /* __xpv */
2029 	}
2030 
2031 #if !defined(__xpv)
2032 
2033 	for (i = 0; i < memlists_used; ++i) {
2034 		start = memlists[i].addr;
2035 		end = start + memlists[i].size;
2036 
2037 		if (map_debug)
2038 			dboot_printf("1:1 map pa=%" PRIx64 "..%" PRIx64 "\n",
2039 			    start, end);
2040 		while (start < end && start < next_avail_addr) {
2041 			map_pa_at_va(start, start, 0);
2042 			start += MMU_PAGESIZE;
2043 		}
2044 		if (start >= next_avail_addr)
2045 			break;
2046 	}
2047 
2048 	/*
2049 	 * Map framebuffer memory as PT_NOCACHE as this is memory from a
2050 	 * device and therefore must not be cached.
2051 	 */
2052 	if (fb != NULL && fb->framebuffer != 0) {
2053 		multiboot_tag_framebuffer_t *fb_tagp;
2054 		fb_tagp = (multiboot_tag_framebuffer_t *)(uintptr_t)
2055 		    fb->framebuffer;
2056 
2057 		start = fb_tagp->framebuffer_common.framebuffer_addr;
2058 		end = start + fb_tagp->framebuffer_common.framebuffer_height *
2059 		    fb_tagp->framebuffer_common.framebuffer_pitch;
2060 
2061 		if (map_debug)
2062 			dboot_printf("FB 1:1 map pa=%" PRIx64 "..%" PRIx64 "\n",
2063 			    start, end);
2064 		pte_bits |= PT_NOCACHE;
2065 		if (PAT_support != 0)
2066 			pte_bits |= PT_PAT_4K;
2067 
2068 		while (start < end) {
2069 			map_pa_at_va(start, start, 0);
2070 			start += MMU_PAGESIZE;
2071 		}
2072 		pte_bits &= ~PT_NOCACHE;
2073 		if (PAT_support != 0)
2074 			pte_bits &= ~PT_PAT_4K;
2075 	}
2076 #endif /* !__xpv */
2077 
2078 	DBG_MSG("\nPage tables constructed\n");
2079 }
2080 
2081 #define	NO_MULTIBOOT	\
2082 "multiboot is no longer used to boot the Solaris Operating System.\n\
2083 The grub entry should be changed to:\n\
2084 kernel$ /platform/i86pc/kernel/$ISADIR/unix\n\
2085 module$ /platform/i86pc/$ISADIR/boot_archive\n\
2086 See http://illumos.org/msg/SUNOS-8000-AK for details.\n"
2087 
2088 static void
2089 dboot_init_xboot_consinfo(void)
2090 {
2091 	bi = &boot_info;
2092 
2093 #if !defined(__xpv)
2094 	fb = &framebuffer;
2095 	bi->bi_framebuffer = (native_ptr_t)(uintptr_t)fb;
2096 
2097 	switch (multiboot_version) {
2098 	case 1:
2099 		dboot_multiboot1_xboot_consinfo();
2100 		break;
2101 	case 2:
2102 		dboot_multiboot2_xboot_consinfo();
2103 		break;
2104 	default:
2105 		dboot_panic("Unknown multiboot version: %d\n",
2106 		    multiboot_version);
2107 		break;
2108 	}
2109 	dboot_find_console_modules();
2110 #endif
2111 }
2112 
2113 /*
2114  * Set up basic data from the boot loader.
2115  * The load_addr is part of AOUT kludge setup in dboot_grub.s, to support
2116  * 32-bit dboot code setup used to set up and start 64-bit kernel.
2117  * AOUT kludge does allow 32-bit boot loader, such as grub1, to load and
2118  * start 64-bit illumos kernel.
2119  */
2120 static void
2121 dboot_loader_init(void)
2122 {
2123 #if !defined(__xpv)
2124 	mb_info = NULL;
2125 	mb2_info = NULL;
2126 
2127 	switch (mb_magic) {
2128 	case MB_BOOTLOADER_MAGIC:
2129 		multiboot_version = 1;
2130 		mb_info = (multiboot_info_t *)(uintptr_t)mb_addr;
2131 #if defined(_BOOT_TARGET_amd64)
2132 		load_addr = mb_header.load_addr;
2133 #endif
2134 		break;
2135 
2136 	case MULTIBOOT2_BOOTLOADER_MAGIC:
2137 		multiboot_version = 2;
2138 		mb2_info = (multiboot2_info_header_t *)(uintptr_t)mb_addr;
2139 		mb2_mmap_tagp = dboot_multiboot2_get_mmap_tagp(mb2_info);
2140 #if defined(_BOOT_TARGET_amd64)
2141 		load_addr = mb2_load_addr;
2142 #endif
2143 		break;
2144 
2145 	default:
2146 		dboot_panic("Unknown bootloader magic: 0x%x\n", mb_magic);
2147 		break;
2148 	}
2149 #endif	/* !defined(__xpv) */
2150 }
2151 
2152 /* Extract the kernel command line from [multi]boot information. */
2153 static char *
2154 dboot_loader_cmdline(void)
2155 {
2156 	char *line = NULL;
2157 
2158 #if defined(__xpv)
2159 	line = (char *)xen_info->cmd_line;
2160 #else /* __xpv */
2161 
2162 	switch (multiboot_version) {
2163 	case 1:
2164 		if (mb_info->flags & MB_INFO_CMDLINE)
2165 			line = (char *)mb_info->cmdline;
2166 		break;
2167 
2168 	case 2:
2169 		line = dboot_multiboot2_cmdline(mb2_info);
2170 		break;
2171 
2172 	default:
2173 		dboot_panic("Unknown multiboot version: %d\n",
2174 		    multiboot_version);
2175 		break;
2176 	}
2177 
2178 #endif /* __xpv */
2179 
2180 	/*
2181 	 * Make sure we have valid pointer so the string operations
2182 	 * will not crash us.
2183 	 */
2184 	if (line == NULL)
2185 		line = "";
2186 
2187 	return (line);
2188 }
2189 
2190 static char *
2191 dboot_loader_name(void)
2192 {
2193 #if defined(__xpv)
2194 	return (NULL);
2195 #else /* __xpv */
2196 	multiboot_tag_string_t *tag;
2197 
2198 	switch (multiboot_version) {
2199 	case 1:
2200 		return ((char *)(uintptr_t)mb_info->boot_loader_name);
2201 
2202 	case 2:
2203 		tag = dboot_multiboot2_find_tag(mb2_info,
2204 		    MULTIBOOT_TAG_TYPE_BOOT_LOADER_NAME);
2205 		return (tag->mb_string);
2206 	default:
2207 		dboot_panic("Unknown multiboot version: %d\n",
2208 		    multiboot_version);
2209 		break;
2210 	}
2211 
2212 	return (NULL);
2213 #endif /* __xpv */
2214 }
2215 
2216 /*
2217  * startup_kernel has a pretty simple job. It builds pagetables which reflect
2218  * 1:1 mappings for all memory in use. It then also adds mappings for
2219  * the kernel nucleus at virtual address of target_kernel_text using large page
2220  * mappings. The page table pages are also accessible at 1:1 mapped
2221  * virtual addresses.
2222  */
2223 /*ARGSUSED*/
2224 void
2225 startup_kernel(void)
2226 {
2227 	char *cmdline;
2228 	char *bootloader;
2229 #if defined(__xpv)
2230 	physdev_set_iopl_t set_iopl;
2231 #endif /* __xpv */
2232 
2233 	if (dboot_debug == 1)
2234 		bcons_init(NULL);	/* Set very early console to ttya. */
2235 	dboot_loader_init();
2236 	/*
2237 	 * At this point we are executing in a 32 bit real mode.
2238 	 */
2239 
2240 	bootloader = dboot_loader_name();
2241 	cmdline = dboot_loader_cmdline();
2242 
2243 #if defined(__xpv)
2244 	/*
2245 	 * For dom0, before we initialize the console subsystem we'll
2246 	 * need to enable io operations, so set I/O priveldge level to 1.
2247 	 */
2248 	if (DOMAIN_IS_INITDOMAIN(xen_info)) {
2249 		set_iopl.iopl = 1;
2250 		(void) HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
2251 	}
2252 #endif /* __xpv */
2253 
2254 	dboot_init_xboot_consinfo();
2255 	bi->bi_cmdline = (native_ptr_t)(uintptr_t)cmdline;
2256 	bcons_init(bi);		/* Now we can set the real console. */
2257 
2258 	prom_debug = (find_boot_prop("prom_debug") != NULL);
2259 	map_debug = (find_boot_prop("map_debug") != NULL);
2260 
2261 #if !defined(__xpv)
2262 	dboot_multiboot_get_fwtables();
2263 #endif
2264 	DBG_MSG("\n\nillumos prekernel set: ");
2265 	DBG_MSG(cmdline);
2266 	DBG_MSG("\n");
2267 
2268 	if (bootloader != NULL && prom_debug) {
2269 		dboot_printf("Kernel loaded by: %s\n", bootloader);
2270 #if !defined(__xpv)
2271 		dboot_printf("Using multiboot %d boot protocol.\n",
2272 		    multiboot_version);
2273 #endif
2274 	}
2275 
2276 	if (strstr(cmdline, "multiboot") != NULL) {
2277 		dboot_panic(NO_MULTIBOOT);
2278 	}
2279 
2280 	DBG((uintptr_t)bi);
2281 #if !defined(__xpv)
2282 	DBG((uintptr_t)mb_info);
2283 	DBG((uintptr_t)mb2_info);
2284 	if (mb2_info != NULL)
2285 		DBG(mb2_info->mbi_total_size);
2286 	DBG(bi->bi_acpi_rsdp);
2287 	DBG(bi->bi_acpi_rsdp_copy);
2288 	DBG(bi->bi_smbios);
2289 	DBG(bi->bi_uefi_arch);
2290 	DBG(bi->bi_uefi_systab);
2291 
2292 	if (bi->bi_uefi_systab && prom_debug) {
2293 		if (bi->bi_uefi_arch == XBI_UEFI_ARCH_64) {
2294 			print_efi64((EFI_SYSTEM_TABLE64 *)(uintptr_t)
2295 			    bi->bi_uefi_systab);
2296 		} else {
2297 			print_efi32((EFI_SYSTEM_TABLE32 *)(uintptr_t)
2298 			    bi->bi_uefi_systab);
2299 		}
2300 	}
2301 #endif
2302 
2303 	/*
2304 	 * Need correct target_kernel_text value
2305 	 */
2306 	target_kernel_text = KERNEL_TEXT;
2307 	DBG(target_kernel_text);
2308 
2309 #if defined(__xpv)
2310 
2311 	/*
2312 	 * XXPV	Derive this stuff from CPUID / what the hypervisor has enabled
2313 	 */
2314 
2315 #if defined(_BOOT_TARGET_amd64)
2316 	/*
2317 	 * 64-bit hypervisor.
2318 	 */
2319 	amd64_support = 1;
2320 	pae_support = 1;
2321 
2322 #else	/* _BOOT_TARGET_amd64 */
2323 
2324 	/*
2325 	 * See if we are running on a PAE Hypervisor
2326 	 */
2327 	{
2328 		xen_capabilities_info_t caps;
2329 
2330 		if (HYPERVISOR_xen_version(XENVER_capabilities, &caps) != 0)
2331 			dboot_panic("HYPERVISOR_xen_version(caps) failed");
2332 		caps[sizeof (caps) - 1] = 0;
2333 		if (prom_debug)
2334 			dboot_printf("xen capabilities %s\n", caps);
2335 		if (strstr(caps, "x86_32p") != NULL)
2336 			pae_support = 1;
2337 	}
2338 
2339 #endif	/* _BOOT_TARGET_amd64 */
2340 	{
2341 		xen_platform_parameters_t p;
2342 
2343 		if (HYPERVISOR_xen_version(XENVER_platform_parameters, &p) != 0)
2344 			dboot_panic("HYPERVISOR_xen_version(parms) failed");
2345 		DBG(p.virt_start);
2346 		mfn_to_pfn_mapping = (pfn_t *)(xen_virt_start = p.virt_start);
2347 	}
2348 
2349 	/*
2350 	 * The hypervisor loads stuff starting at 1Gig
2351 	 */
2352 	mfn_base = ONE_GIG;
2353 	DBG(mfn_base);
2354 
2355 	/*
2356 	 * enable writable page table mode for the hypervisor
2357 	 */
2358 	if (HYPERVISOR_vm_assist(VMASST_CMD_enable,
2359 	    VMASST_TYPE_writable_pagetables) < 0)
2360 		dboot_panic("HYPERVISOR_vm_assist(writable_pagetables) failed");
2361 
2362 	/*
2363 	 * check for NX support
2364 	 */
2365 	if (pae_support) {
2366 		uint32_t eax = 0x80000000;
2367 		uint32_t edx = get_cpuid_edx(&eax);
2368 
2369 		if (eax >= 0x80000001) {
2370 			eax = 0x80000001;
2371 			edx = get_cpuid_edx(&eax);
2372 			if (edx & CPUID_AMD_EDX_NX)
2373 				NX_support = 1;
2374 		}
2375 	}
2376 
2377 	/*
2378 	 * check for PAT support
2379 	 */
2380 	{
2381 		uint32_t eax = 1;
2382 		uint32_t edx = get_cpuid_edx(&eax);
2383 
2384 		if (edx & CPUID_INTC_EDX_PAT)
2385 			PAT_support = 1;
2386 	}
2387 #if !defined(_BOOT_TARGET_amd64)
2388 
2389 	/*
2390 	 * The 32-bit hypervisor uses segmentation to protect itself from
2391 	 * guests. This means when a guest attempts to install a flat 4GB
2392 	 * code or data descriptor the 32-bit hypervisor will protect itself
2393 	 * by silently shrinking the segment such that if the guest attempts
2394 	 * any access where the hypervisor lives a #gp fault is generated.
2395 	 * The problem is that some applications expect a full 4GB flat
2396 	 * segment for their current thread pointer and will use negative
2397 	 * offset segment wrap around to access data. TLS support in linux
2398 	 * brand is one example of this.
2399 	 *
2400 	 * The 32-bit hypervisor can catch the #gp fault in these cases
2401 	 * and emulate the access without passing the #gp fault to the guest
2402 	 * but only if VMASST_TYPE_4gb_segments is explicitly turned on.
2403 	 * Seems like this should have been the default.
2404 	 * Either way, we want the hypervisor -- and not Solaris -- to deal
2405 	 * to deal with emulating these accesses.
2406 	 */
2407 	if (HYPERVISOR_vm_assist(VMASST_CMD_enable,
2408 	    VMASST_TYPE_4gb_segments) < 0)
2409 		dboot_panic("HYPERVISOR_vm_assist(4gb_segments) failed");
2410 #endif	/* !_BOOT_TARGET_amd64 */
2411 
2412 #else	/* __xpv */
2413 
2414 	/*
2415 	 * use cpuid to enable MMU features
2416 	 */
2417 	if (have_cpuid()) {
2418 		uint32_t eax, edx;
2419 
2420 		eax = 1;
2421 		edx = get_cpuid_edx(&eax);
2422 		if (edx & CPUID_INTC_EDX_PSE)
2423 			largepage_support = 1;
2424 		if (edx & CPUID_INTC_EDX_PGE)
2425 			pge_support = 1;
2426 		if (edx & CPUID_INTC_EDX_PAE)
2427 			pae_support = 1;
2428 		if (edx & CPUID_INTC_EDX_PAT)
2429 			PAT_support = 1;
2430 
2431 		eax = 0x80000000;
2432 		edx = get_cpuid_edx(&eax);
2433 		if (eax >= 0x80000001) {
2434 			eax = 0x80000001;
2435 			edx = get_cpuid_edx(&eax);
2436 			if (edx & CPUID_AMD_EDX_LM)
2437 				amd64_support = 1;
2438 			if (edx & CPUID_AMD_EDX_NX)
2439 				NX_support = 1;
2440 		}
2441 	} else {
2442 		dboot_printf("cpuid not supported\n");
2443 	}
2444 #endif /* __xpv */
2445 
2446 
2447 #if defined(_BOOT_TARGET_amd64)
2448 	if (amd64_support == 0)
2449 		dboot_panic("long mode not supported, rebooting");
2450 	else if (pae_support == 0)
2451 		dboot_panic("long mode, but no PAE; rebooting");
2452 #else
2453 	/*
2454 	 * Allow the command line to over-ride use of PAE for 32 bit.
2455 	 */
2456 	if (strstr(cmdline, "disablePAE=true") != NULL) {
2457 		pae_support = 0;
2458 		NX_support = 0;
2459 		amd64_support = 0;
2460 	}
2461 #endif
2462 
2463 	/*
2464 	 * initialize the simple memory allocator
2465 	 */
2466 	init_mem_alloc();
2467 
2468 #if !defined(__xpv) && !defined(_BOOT_TARGET_amd64)
2469 	/*
2470 	 * disable PAE on 32 bit h/w w/o NX and < 4Gig of memory
2471 	 */
2472 	if (max_mem < FOUR_GIG && NX_support == 0)
2473 		pae_support = 0;
2474 #endif
2475 
2476 	/*
2477 	 * configure mmu information
2478 	 */
2479 	if (pae_support) {
2480 		shift_amt = shift_amt_pae;
2481 		ptes_per_table = 512;
2482 		pte_size = 8;
2483 		lpagesize = TWO_MEG;
2484 #if defined(_BOOT_TARGET_amd64)
2485 		top_level = 3;
2486 #else
2487 		top_level = 2;
2488 #endif
2489 	} else {
2490 		pae_support = 0;
2491 		NX_support = 0;
2492 		shift_amt = shift_amt_nopae;
2493 		ptes_per_table = 1024;
2494 		pte_size = 4;
2495 		lpagesize = FOUR_MEG;
2496 		top_level = 1;
2497 	}
2498 
2499 	DBG(PAT_support);
2500 	DBG(pge_support);
2501 	DBG(NX_support);
2502 	DBG(largepage_support);
2503 	DBG(amd64_support);
2504 	DBG(top_level);
2505 	DBG(pte_size);
2506 	DBG(ptes_per_table);
2507 	DBG(lpagesize);
2508 
2509 #if defined(__xpv)
2510 	ktext_phys = ONE_GIG;		/* from UNIX Mapfile */
2511 #else
2512 	ktext_phys = FOUR_MEG;		/* from UNIX Mapfile */
2513 #endif
2514 
2515 #if !defined(__xpv) && defined(_BOOT_TARGET_amd64)
2516 	/*
2517 	 * For grub, copy kernel bits from the ELF64 file to final place.
2518 	 */
2519 	DBG_MSG("\nAllocating nucleus pages.\n");
2520 	ktext_phys = (uintptr_t)do_mem_alloc(ksize, FOUR_MEG);
2521 
2522 	if (ktext_phys == 0)
2523 		dboot_panic("failed to allocate aligned kernel memory");
2524 	DBG(load_addr);
2525 	if (dboot_elfload64(load_addr) != 0)
2526 		dboot_panic("failed to parse kernel ELF image, rebooting");
2527 #endif
2528 
2529 	DBG(ktext_phys);
2530 
2531 	/*
2532 	 * Allocate page tables.
2533 	 */
2534 	build_page_tables();
2535 
2536 	/*
2537 	 * return to assembly code to switch to running kernel
2538 	 */
2539 	entry_addr_low = (uint32_t)target_kernel_text;
2540 	DBG(entry_addr_low);
2541 	bi->bi_use_largepage = largepage_support;
2542 	bi->bi_use_pae = pae_support;
2543 	bi->bi_use_pge = pge_support;
2544 	bi->bi_use_nx = NX_support;
2545 
2546 #if defined(__xpv)
2547 
2548 	bi->bi_next_paddr = next_avail_addr - mfn_base;
2549 	DBG(bi->bi_next_paddr);
2550 	bi->bi_next_vaddr = (native_ptr_t)(uintptr_t)next_avail_addr;
2551 	DBG(bi->bi_next_vaddr);
2552 
2553 	/*
2554 	 * unmap unused pages in start area to make them available for DMA
2555 	 */
2556 	while (next_avail_addr < scratch_end) {
2557 		(void) HYPERVISOR_update_va_mapping(next_avail_addr,
2558 		    0, UVMF_INVLPG | UVMF_LOCAL);
2559 		next_avail_addr += MMU_PAGESIZE;
2560 	}
2561 
2562 	bi->bi_xen_start_info = (native_ptr_t)(uintptr_t)xen_info;
2563 	DBG((uintptr_t)HYPERVISOR_shared_info);
2564 	bi->bi_shared_info = (native_ptr_t)HYPERVISOR_shared_info;
2565 	bi->bi_top_page_table = (uintptr_t)top_page_table - mfn_base;
2566 
2567 #else /* __xpv */
2568 
2569 	bi->bi_next_paddr = next_avail_addr;
2570 	DBG(bi->bi_next_paddr);
2571 	bi->bi_next_vaddr = (native_ptr_t)(uintptr_t)next_avail_addr;
2572 	DBG(bi->bi_next_vaddr);
2573 	bi->bi_mb_version = multiboot_version;
2574 
2575 	switch (multiboot_version) {
2576 	case 1:
2577 		bi->bi_mb_info = (native_ptr_t)(uintptr_t)mb_info;
2578 		break;
2579 	case 2:
2580 		bi->bi_mb_info = (native_ptr_t)(uintptr_t)mb2_info;
2581 		break;
2582 	default:
2583 		dboot_panic("Unknown multiboot version: %d\n",
2584 		    multiboot_version);
2585 		break;
2586 	}
2587 	bi->bi_top_page_table = (uintptr_t)top_page_table;
2588 
2589 #endif /* __xpv */
2590 
2591 	bi->bi_kseg_size = FOUR_MEG;
2592 	DBG(bi->bi_kseg_size);
2593 
2594 #ifndef __xpv
2595 	if (map_debug)
2596 		dump_tables();
2597 #endif
2598 
2599 	DBG_MSG("\n\n*** DBOOT DONE -- back to asm to jump to kernel\n\n");
2600 
2601 #ifndef __xpv
2602 	/* Update boot info with FB data */
2603 	fb->cursor.origin.x = fb_info.cursor.origin.x;
2604 	fb->cursor.origin.y = fb_info.cursor.origin.y;
2605 	fb->cursor.pos.x = fb_info.cursor.pos.x;
2606 	fb->cursor.pos.y = fb_info.cursor.pos.y;
2607 	fb->cursor.visible = fb_info.cursor.visible;
2608 #endif
2609 }
2610