1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* 28 * xdf.c - Xen Virtual Block Device Driver 29 * TODO: 30 * - support alternate block size (currently only DEV_BSIZE supported) 31 * - revalidate geometry for removable devices 32 * 33 * This driver export solaris disk device nodes, accepts IO requests from 34 * those nodes, and services those requests by talking to a backend device 35 * in another domain. 36 * 37 * Communication with the backend device is done via a ringbuffer (which is 38 * managed via xvdi interfaces) and dma memory (which is managed via ddi 39 * interfaces). 40 * 41 * Communication with the backend device is dependant upon establishing a 42 * connection to the backend device. This connection process involves 43 * reading device configuration information from xenbus and publishing 44 * some frontend runtime configuration parameters via the xenbus (for 45 * consumption by the backend). Once we've published runtime configuration 46 * information via the xenbus, the backend device can enter the connected 47 * state and we'll enter the XD_CONNECTED state. But before we can allow 48 * random IO to begin, we need to do IO to the backend device to determine 49 * the device label and if flush operations are supported. Once this is 50 * done we enter the XD_READY state and can process any IO operations. 51 * 52 * We recieve notifications of xenbus state changes for the backend device 53 * (aka, the "other end") via the xdf_oe_change() callback. This callback 54 * is single threaded, meaning that we can't recieve new notification of 55 * other end state changes while we're processing an outstanding 56 * notification of an other end state change. There for we can't do any 57 * blocking operations from the xdf_oe_change() callback. This is why we 58 * have a seperate taskq (xdf_ready_tq) which exists to do the necessary 59 * IO to get us from the XD_CONNECTED to the XD_READY state. All IO 60 * generated by the xdf_ready_tq thread (xdf_ready_tq_thread) will go 61 * throught xdf_lb_rdwr(), which is a synchronous IO interface. IOs 62 * generated by the xdf_ready_tq_thread thread have priority over all 63 * other IO requests. 64 * 65 * We also communicate with the backend device via the xenbus "media-req" 66 * (XBP_MEDIA_REQ) property. For more information on this see the 67 * comments in blkif.h. 68 */ 69 70 #include <io/xdf.h> 71 72 #include <sys/conf.h> 73 #include <sys/dkio.h> 74 #include <sys/promif.h> 75 #include <sys/sysmacros.h> 76 #include <sys/kstat.h> 77 #include <sys/mach_mmu.h> 78 #ifdef XPV_HVM_DRIVER 79 #include <sys/xpv_support.h> 80 #include <sys/sunndi.h> 81 #else /* !XPV_HVM_DRIVER */ 82 #include <sys/evtchn_impl.h> 83 #endif /* !XPV_HVM_DRIVER */ 84 #include <public/io/xenbus.h> 85 #include <xen/sys/xenbus_impl.h> 86 #include <sys/scsi/generic/inquiry.h> 87 #include <xen/io/blkif_impl.h> 88 #include <sys/fdio.h> 89 #include <sys/cdio.h> 90 91 /* 92 * DEBUG_EVAL can be used to include debug only statements without 93 * having to use '#ifdef DEBUG' statements 94 */ 95 #ifdef DEBUG 96 #define DEBUG_EVAL(x) (x) 97 #else /* !DEBUG */ 98 #define DEBUG_EVAL(x) 99 #endif /* !DEBUG */ 100 101 #define XDF_DRAIN_MSEC_DELAY (50*1000) /* 00.05 sec */ 102 #define XDF_DRAIN_RETRY_COUNT 200 /* 10.00 sec */ 103 104 #define INVALID_DOMID ((domid_t)-1) 105 #define FLUSH_DISKCACHE 0x1 106 #define WRITE_BARRIER 0x2 107 #define DEFAULT_FLUSH_BLOCK 156 /* block to write to cause a cache flush */ 108 #define USE_WRITE_BARRIER(vdp) \ 109 ((vdp)->xdf_feature_barrier && !(vdp)->xdf_flush_supported) 110 #define USE_FLUSH_DISKCACHE(vdp) \ 111 ((vdp)->xdf_feature_barrier && (vdp)->xdf_flush_supported) 112 #define IS_WRITE_BARRIER(vdp, bp) \ 113 (!IS_READ(bp) && USE_WRITE_BARRIER(vdp) && \ 114 ((bp)->b_un.b_addr == (vdp)->xdf_cache_flush_block)) 115 #define IS_FLUSH_DISKCACHE(bp) \ 116 (!IS_READ(bp) && USE_FLUSH_DISKCACHE(vdp) && ((bp)->b_bcount == 0)) 117 118 #define VREQ_DONE(vreq) \ 119 VOID2BOOLEAN(((vreq)->v_status == VREQ_DMAWIN_DONE) && \ 120 (((vreq)->v_flush_diskcache == FLUSH_DISKCACHE) || \ 121 (((vreq)->v_dmaw + 1) == (vreq)->v_ndmaws))) 122 123 #define BP_VREQ(bp) ((v_req_t *)((bp)->av_back)) 124 #define BP_VREQ_SET(bp, vreq) (((bp)->av_back = (buf_t *)(vreq))) 125 126 extern int do_polled_io; 127 128 /* run-time tunables that we don't want the compiler to optimize away */ 129 volatile int xdf_debug = 0; 130 volatile boolean_t xdf_barrier_flush_disable = B_FALSE; 131 132 /* per module globals */ 133 major_t xdf_major; 134 static void *xdf_ssp; 135 static kmem_cache_t *xdf_vreq_cache; 136 static kmem_cache_t *xdf_gs_cache; 137 static int xdf_maxphys = XB_MAXPHYS; 138 static diskaddr_t xdf_flush_block = DEFAULT_FLUSH_BLOCK; 139 static int xdf_fbrewrites; /* flush block re-write count */ 140 141 /* misc public functions (used by xdf_shell.c) */ 142 int xdf_lb_rdwr(dev_info_t *, uchar_t, void *, diskaddr_t, size_t, void *); 143 int xdf_lb_getinfo(dev_info_t *, int, void *, void *); 144 145 /* misc private functions */ 146 static void xdf_io_start(xdf_t *); 147 148 /* callbacks from commmon label */ 149 static cmlb_tg_ops_t xdf_lb_ops = { 150 TG_DK_OPS_VERSION_1, 151 xdf_lb_rdwr, 152 xdf_lb_getinfo 153 }; 154 155 /* 156 * I/O buffer DMA attributes 157 * Make sure: one DMA window contains BLKIF_MAX_SEGMENTS_PER_REQUEST at most 158 */ 159 static ddi_dma_attr_t xb_dma_attr = { 160 DMA_ATTR_V0, 161 (uint64_t)0, /* lowest address */ 162 (uint64_t)0xffffffffffffffff, /* highest usable address */ 163 (uint64_t)0xffffff, /* DMA counter limit max */ 164 (uint64_t)XB_BSIZE, /* alignment in bytes */ 165 XB_BSIZE - 1, /* bitmap of burst sizes */ 166 XB_BSIZE, /* min transfer */ 167 (uint64_t)XB_MAX_XFER, /* maximum transfer */ 168 (uint64_t)PAGEOFFSET, /* 1 page segment length */ 169 BLKIF_MAX_SEGMENTS_PER_REQUEST, /* maximum number of segments */ 170 XB_BSIZE, /* granularity */ 171 0, /* flags (reserved) */ 172 }; 173 174 static ddi_device_acc_attr_t xc_acc_attr = { 175 DDI_DEVICE_ATTR_V0, 176 DDI_NEVERSWAP_ACC, 177 DDI_STRICTORDER_ACC 178 }; 179 180 static void 181 xdf_timeout_handler(void *arg) 182 { 183 xdf_t *vdp = arg; 184 185 mutex_enter(&vdp->xdf_dev_lk); 186 vdp->xdf_timeout_id = 0; 187 mutex_exit(&vdp->xdf_dev_lk); 188 189 /* new timeout thread could be re-scheduled */ 190 xdf_io_start(vdp); 191 } 192 193 /* 194 * callback func when DMA/GTE resources is available 195 * 196 * Note: we only register one callback function to grant table subsystem 197 * since we only have one 'struct gnttab_free_callback' in xdf_t. 198 */ 199 static int 200 xdf_dmacallback(caddr_t arg) 201 { 202 xdf_t *vdp = (xdf_t *)arg; 203 ASSERT(vdp != NULL); 204 205 DPRINTF(DMA_DBG, ("xdf@%s: DMA callback started\n", 206 vdp->xdf_addr)); 207 208 ddi_trigger_softintr(vdp->xdf_softintr_id); 209 return (DDI_DMA_CALLBACK_DONE); 210 } 211 212 static ge_slot_t * 213 gs_get(xdf_t *vdp, int isread) 214 { 215 grant_ref_t gh; 216 ge_slot_t *gs; 217 218 /* try to alloc GTEs needed in this slot, first */ 219 if (gnttab_alloc_grant_references( 220 BLKIF_MAX_SEGMENTS_PER_REQUEST, &gh) == -1) { 221 if (vdp->xdf_gnt_callback.next == NULL) { 222 SETDMACBON(vdp); 223 gnttab_request_free_callback( 224 &vdp->xdf_gnt_callback, 225 (void (*)(void *))xdf_dmacallback, 226 (void *)vdp, 227 BLKIF_MAX_SEGMENTS_PER_REQUEST); 228 } 229 return (NULL); 230 } 231 232 gs = kmem_cache_alloc(xdf_gs_cache, KM_NOSLEEP); 233 if (gs == NULL) { 234 gnttab_free_grant_references(gh); 235 if (vdp->xdf_timeout_id == 0) 236 /* restart I/O after one second */ 237 vdp->xdf_timeout_id = 238 timeout(xdf_timeout_handler, vdp, hz); 239 return (NULL); 240 } 241 242 /* init gs_slot */ 243 gs->gs_oeid = vdp->xdf_peer; 244 gs->gs_isread = isread; 245 gs->gs_ghead = gh; 246 gs->gs_ngrefs = 0; 247 248 return (gs); 249 } 250 251 static void 252 gs_free(ge_slot_t *gs) 253 { 254 int i; 255 256 /* release all grant table entry resources used in this slot */ 257 for (i = 0; i < gs->gs_ngrefs; i++) 258 gnttab_end_foreign_access(gs->gs_ge[i], !gs->gs_isread, 0); 259 gnttab_free_grant_references(gs->gs_ghead); 260 list_remove(&gs->gs_vreq->v_gs, gs); 261 kmem_cache_free(xdf_gs_cache, gs); 262 } 263 264 static grant_ref_t 265 gs_grant(ge_slot_t *gs, mfn_t mfn) 266 { 267 grant_ref_t gr = gnttab_claim_grant_reference(&gs->gs_ghead); 268 269 ASSERT(gr != -1); 270 ASSERT(gs->gs_ngrefs < BLKIF_MAX_SEGMENTS_PER_REQUEST); 271 gs->gs_ge[gs->gs_ngrefs++] = gr; 272 gnttab_grant_foreign_access_ref(gr, gs->gs_oeid, mfn, !gs->gs_isread); 273 274 return (gr); 275 } 276 277 /* 278 * Alloc a vreq for this bp 279 * bp->av_back contains the pointer to the vreq upon return 280 */ 281 static v_req_t * 282 vreq_get(xdf_t *vdp, buf_t *bp) 283 { 284 v_req_t *vreq = NULL; 285 286 ASSERT(BP_VREQ(bp) == NULL); 287 288 vreq = kmem_cache_alloc(xdf_vreq_cache, KM_NOSLEEP); 289 if (vreq == NULL) { 290 if (vdp->xdf_timeout_id == 0) 291 /* restart I/O after one second */ 292 vdp->xdf_timeout_id = 293 timeout(xdf_timeout_handler, vdp, hz); 294 return (NULL); 295 } 296 bzero(vreq, sizeof (v_req_t)); 297 list_create(&vreq->v_gs, sizeof (ge_slot_t), 298 offsetof(ge_slot_t, gs_vreq_link)); 299 vreq->v_buf = bp; 300 vreq->v_status = VREQ_INIT; 301 vreq->v_runq = B_FALSE; 302 BP_VREQ_SET(bp, vreq); 303 /* init of other fields in vreq is up to the caller */ 304 305 list_insert_head(&vdp->xdf_vreq_act, (void *)vreq); 306 307 return (vreq); 308 } 309 310 static void 311 vreq_free(xdf_t *vdp, v_req_t *vreq) 312 { 313 buf_t *bp = vreq->v_buf; 314 315 ASSERT(MUTEX_HELD(&vdp->xdf_dev_lk)); 316 ASSERT(BP_VREQ(bp) == vreq); 317 318 list_remove(&vdp->xdf_vreq_act, vreq); 319 320 if (vreq->v_flush_diskcache == FLUSH_DISKCACHE) 321 goto done; 322 323 switch (vreq->v_status) { 324 case VREQ_DMAWIN_DONE: 325 case VREQ_GS_ALLOCED: 326 case VREQ_DMABUF_BOUND: 327 (void) ddi_dma_unbind_handle(vreq->v_dmahdl); 328 /*FALLTHRU*/ 329 case VREQ_DMAMEM_ALLOCED: 330 if (!ALIGNED_XFER(bp)) { 331 ASSERT(vreq->v_abuf != NULL); 332 if (!IS_ERROR(bp) && IS_READ(bp)) 333 bcopy(vreq->v_abuf, bp->b_un.b_addr, 334 bp->b_bcount); 335 ddi_dma_mem_free(&vreq->v_align); 336 } 337 /*FALLTHRU*/ 338 case VREQ_MEMDMAHDL_ALLOCED: 339 if (!ALIGNED_XFER(bp)) 340 ddi_dma_free_handle(&vreq->v_memdmahdl); 341 /*FALLTHRU*/ 342 case VREQ_DMAHDL_ALLOCED: 343 ddi_dma_free_handle(&vreq->v_dmahdl); 344 break; 345 default: 346 break; 347 } 348 done: 349 ASSERT(!vreq->v_runq); 350 list_destroy(&vreq->v_gs); 351 kmem_cache_free(xdf_vreq_cache, vreq); 352 } 353 354 /* 355 * Snarf new data if our flush block was re-written 356 */ 357 static void 358 check_fbwrite(xdf_t *vdp, buf_t *bp, daddr_t blkno) 359 { 360 int nblks; 361 boolean_t mapin; 362 363 if (IS_WRITE_BARRIER(vdp, bp)) 364 return; /* write was a flush write */ 365 366 mapin = B_FALSE; 367 nblks = bp->b_bcount >> DEV_BSHIFT; 368 if (xdf_flush_block >= blkno && xdf_flush_block < (blkno + nblks)) { 369 xdf_fbrewrites++; 370 if (bp->b_flags & (B_PAGEIO | B_PHYS)) { 371 mapin = B_TRUE; 372 bp_mapin(bp); 373 } 374 bcopy(bp->b_un.b_addr + 375 ((xdf_flush_block - blkno) << DEV_BSHIFT), 376 vdp->xdf_cache_flush_block, DEV_BSIZE); 377 if (mapin) 378 bp_mapout(bp); 379 } 380 } 381 382 /* 383 * Initalize the DMA and grant table resources for the buf 384 */ 385 static int 386 vreq_setup(xdf_t *vdp, v_req_t *vreq) 387 { 388 int rc; 389 ddi_dma_attr_t dmaattr; 390 uint_t ndcs, ndws; 391 ddi_dma_handle_t dh; 392 ddi_dma_handle_t mdh; 393 ddi_dma_cookie_t dc; 394 ddi_acc_handle_t abh; 395 caddr_t aba; 396 ge_slot_t *gs; 397 size_t bufsz; 398 off_t off; 399 size_t sz; 400 buf_t *bp = vreq->v_buf; 401 int dma_flags = (IS_READ(bp) ? DDI_DMA_READ : DDI_DMA_WRITE) | 402 DDI_DMA_STREAMING | DDI_DMA_PARTIAL; 403 404 switch (vreq->v_status) { 405 case VREQ_INIT: 406 if (IS_FLUSH_DISKCACHE(bp)) { 407 if ((gs = gs_get(vdp, IS_READ(bp))) == NULL) { 408 DPRINTF(DMA_DBG, ("xdf@%s: " 409 "get ge_slotfailed\n", vdp->xdf_addr)); 410 return (DDI_FAILURE); 411 } 412 vreq->v_blkno = 0; 413 vreq->v_nslots = 1; 414 vreq->v_flush_diskcache = FLUSH_DISKCACHE; 415 vreq->v_status = VREQ_GS_ALLOCED; 416 gs->gs_vreq = vreq; 417 list_insert_head(&vreq->v_gs, gs); 418 return (DDI_SUCCESS); 419 } 420 421 if (IS_WRITE_BARRIER(vdp, bp)) 422 vreq->v_flush_diskcache = WRITE_BARRIER; 423 vreq->v_blkno = bp->b_blkno + 424 (diskaddr_t)(uintptr_t)bp->b_private; 425 /* See if we wrote new data to our flush block */ 426 if (!IS_READ(bp) && USE_WRITE_BARRIER(vdp)) 427 check_fbwrite(vdp, bp, vreq->v_blkno); 428 vreq->v_status = VREQ_INIT_DONE; 429 /*FALLTHRU*/ 430 431 case VREQ_INIT_DONE: 432 /* 433 * alloc DMA handle 434 */ 435 rc = ddi_dma_alloc_handle(vdp->xdf_dip, &xb_dma_attr, 436 xdf_dmacallback, (caddr_t)vdp, &dh); 437 if (rc != DDI_SUCCESS) { 438 SETDMACBON(vdp); 439 DPRINTF(DMA_DBG, ("xdf@%s: DMA handle alloc failed\n", 440 vdp->xdf_addr)); 441 return (DDI_FAILURE); 442 } 443 444 vreq->v_dmahdl = dh; 445 vreq->v_status = VREQ_DMAHDL_ALLOCED; 446 /*FALLTHRU*/ 447 448 case VREQ_DMAHDL_ALLOCED: 449 /* 450 * alloc dma handle for 512-byte aligned buf 451 */ 452 if (!ALIGNED_XFER(bp)) { 453 /* 454 * XXPV: we need to temporarily enlarge the seg 455 * boundary and s/g length to work round CR6381968 456 */ 457 dmaattr = xb_dma_attr; 458 dmaattr.dma_attr_seg = (uint64_t)-1; 459 dmaattr.dma_attr_sgllen = INT_MAX; 460 rc = ddi_dma_alloc_handle(vdp->xdf_dip, &dmaattr, 461 xdf_dmacallback, (caddr_t)vdp, &mdh); 462 if (rc != DDI_SUCCESS) { 463 SETDMACBON(vdp); 464 DPRINTF(DMA_DBG, ("xdf@%s: " 465 "unaligned buf DMAhandle alloc failed\n", 466 vdp->xdf_addr)); 467 return (DDI_FAILURE); 468 } 469 vreq->v_memdmahdl = mdh; 470 vreq->v_status = VREQ_MEMDMAHDL_ALLOCED; 471 } 472 /*FALLTHRU*/ 473 474 case VREQ_MEMDMAHDL_ALLOCED: 475 /* 476 * alloc 512-byte aligned buf 477 */ 478 if (!ALIGNED_XFER(bp)) { 479 if (bp->b_flags & (B_PAGEIO | B_PHYS)) 480 bp_mapin(bp); 481 rc = ddi_dma_mem_alloc(vreq->v_memdmahdl, 482 roundup(bp->b_bcount, XB_BSIZE), &xc_acc_attr, 483 DDI_DMA_STREAMING, xdf_dmacallback, (caddr_t)vdp, 484 &aba, &bufsz, &abh); 485 if (rc != DDI_SUCCESS) { 486 SETDMACBON(vdp); 487 DPRINTF(DMA_DBG, ("xdf@%s: " 488 "DMA mem allocation failed\n", 489 vdp->xdf_addr)); 490 return (DDI_FAILURE); 491 } 492 493 vreq->v_abuf = aba; 494 vreq->v_align = abh; 495 vreq->v_status = VREQ_DMAMEM_ALLOCED; 496 497 ASSERT(bufsz >= bp->b_bcount); 498 if (!IS_READ(bp)) 499 bcopy(bp->b_un.b_addr, vreq->v_abuf, 500 bp->b_bcount); 501 } 502 /*FALLTHRU*/ 503 504 case VREQ_DMAMEM_ALLOCED: 505 /* 506 * dma bind 507 */ 508 if (ALIGNED_XFER(bp)) { 509 rc = ddi_dma_buf_bind_handle(vreq->v_dmahdl, bp, 510 dma_flags, xdf_dmacallback, (caddr_t)vdp, 511 &dc, &ndcs); 512 } else { 513 rc = ddi_dma_addr_bind_handle(vreq->v_dmahdl, 514 NULL, vreq->v_abuf, bp->b_bcount, dma_flags, 515 xdf_dmacallback, (caddr_t)vdp, &dc, &ndcs); 516 } 517 if (rc == DDI_DMA_MAPPED || rc == DDI_DMA_PARTIAL_MAP) { 518 /* get num of dma windows */ 519 if (rc == DDI_DMA_PARTIAL_MAP) { 520 rc = ddi_dma_numwin(vreq->v_dmahdl, &ndws); 521 ASSERT(rc == DDI_SUCCESS); 522 } else { 523 ndws = 1; 524 } 525 } else { 526 SETDMACBON(vdp); 527 DPRINTF(DMA_DBG, ("xdf@%s: DMA bind failed\n", 528 vdp->xdf_addr)); 529 return (DDI_FAILURE); 530 } 531 532 vreq->v_dmac = dc; 533 vreq->v_dmaw = 0; 534 vreq->v_ndmacs = ndcs; 535 vreq->v_ndmaws = ndws; 536 vreq->v_nslots = ndws; 537 vreq->v_status = VREQ_DMABUF_BOUND; 538 /*FALLTHRU*/ 539 540 case VREQ_DMABUF_BOUND: 541 /* 542 * get ge_slot, callback is set upon failure from gs_get(), 543 * if not set previously 544 */ 545 if ((gs = gs_get(vdp, IS_READ(bp))) == NULL) { 546 DPRINTF(DMA_DBG, ("xdf@%s: get ge_slot failed\n", 547 vdp->xdf_addr)); 548 return (DDI_FAILURE); 549 } 550 551 vreq->v_status = VREQ_GS_ALLOCED; 552 gs->gs_vreq = vreq; 553 list_insert_head(&vreq->v_gs, gs); 554 break; 555 556 case VREQ_GS_ALLOCED: 557 /* nothing need to be done */ 558 break; 559 560 case VREQ_DMAWIN_DONE: 561 /* 562 * move to the next dma window 563 */ 564 ASSERT((vreq->v_dmaw + 1) < vreq->v_ndmaws); 565 566 /* get a ge_slot for this DMA window */ 567 if ((gs = gs_get(vdp, IS_READ(bp))) == NULL) { 568 DPRINTF(DMA_DBG, ("xdf@%s: get ge_slot failed\n", 569 vdp->xdf_addr)); 570 return (DDI_FAILURE); 571 } 572 573 vreq->v_dmaw++; 574 VERIFY(ddi_dma_getwin(vreq->v_dmahdl, vreq->v_dmaw, &off, &sz, 575 &vreq->v_dmac, &vreq->v_ndmacs) == DDI_SUCCESS); 576 vreq->v_status = VREQ_GS_ALLOCED; 577 gs->gs_vreq = vreq; 578 list_insert_head(&vreq->v_gs, gs); 579 break; 580 581 default: 582 return (DDI_FAILURE); 583 } 584 585 return (DDI_SUCCESS); 586 } 587 588 static int 589 xdf_cmlb_attach(xdf_t *vdp) 590 { 591 dev_info_t *dip = vdp->xdf_dip; 592 593 return (cmlb_attach(dip, &xdf_lb_ops, 594 XD_IS_CD(vdp) ? DTYPE_RODIRECT : DTYPE_DIRECT, 595 XD_IS_RM(vdp), 596 B_TRUE, 597 XD_IS_CD(vdp) ? DDI_NT_CD_XVMD : DDI_NT_BLOCK_XVMD, 598 #if defined(XPV_HVM_DRIVER) 599 (XD_IS_CD(vdp) ? 0 : CMLB_CREATE_ALTSLICE_VTOC_16_DTYPE_DIRECT), 600 #else /* !XPV_HVM_DRIVER */ 601 XD_IS_CD(vdp) ? 0 : CMLB_FAKE_LABEL_ONE_PARTITION, 602 #endif /* !XPV_HVM_DRIVER */ 603 vdp->xdf_vd_lbl, NULL)); 604 } 605 606 static void 607 xdf_io_err(buf_t *bp, int err, size_t resid) 608 { 609 bioerror(bp, err); 610 if (resid == 0) 611 bp->b_resid = bp->b_bcount; 612 biodone(bp); 613 } 614 615 static void 616 xdf_kstat_enter(xdf_t *vdp, buf_t *bp) 617 { 618 v_req_t *vreq = BP_VREQ(bp); 619 620 ASSERT(MUTEX_HELD(&vdp->xdf_dev_lk)); 621 622 if (vdp->xdf_xdev_iostat == NULL) 623 return; 624 if ((vreq != NULL) && vreq->v_runq) { 625 kstat_runq_enter(KSTAT_IO_PTR(vdp->xdf_xdev_iostat)); 626 } else { 627 kstat_waitq_enter(KSTAT_IO_PTR(vdp->xdf_xdev_iostat)); 628 } 629 } 630 631 static void 632 xdf_kstat_exit(xdf_t *vdp, buf_t *bp) 633 { 634 v_req_t *vreq = BP_VREQ(bp); 635 636 ASSERT(MUTEX_HELD(&vdp->xdf_dev_lk)); 637 638 if (vdp->xdf_xdev_iostat == NULL) 639 return; 640 641 if ((vreq != NULL) && vreq->v_runq) { 642 kstat_runq_exit(KSTAT_IO_PTR(vdp->xdf_xdev_iostat)); 643 } else { 644 kstat_waitq_exit(KSTAT_IO_PTR(vdp->xdf_xdev_iostat)); 645 } 646 647 if (bp->b_flags & B_READ) { 648 KSTAT_IO_PTR(vdp->xdf_xdev_iostat)->reads++; 649 KSTAT_IO_PTR(vdp->xdf_xdev_iostat)->nread += bp->b_bcount; 650 } else if (bp->b_flags & B_WRITE) { 651 KSTAT_IO_PTR(vdp->xdf_xdev_iostat)->writes++; 652 KSTAT_IO_PTR(vdp->xdf_xdev_iostat)->nwritten += bp->b_bcount; 653 } 654 } 655 656 static void 657 xdf_kstat_waitq_to_runq(xdf_t *vdp, buf_t *bp) 658 { 659 v_req_t *vreq = BP_VREQ(bp); 660 661 ASSERT(MUTEX_HELD(&vdp->xdf_dev_lk)); 662 ASSERT(!vreq->v_runq); 663 664 vreq->v_runq = B_TRUE; 665 if (vdp->xdf_xdev_iostat == NULL) 666 return; 667 kstat_waitq_to_runq(KSTAT_IO_PTR(vdp->xdf_xdev_iostat)); 668 } 669 670 static void 671 xdf_kstat_runq_to_waitq(xdf_t *vdp, buf_t *bp) 672 { 673 v_req_t *vreq = BP_VREQ(bp); 674 675 ASSERT(MUTEX_HELD(&vdp->xdf_dev_lk)); 676 ASSERT(vreq->v_runq); 677 678 vreq->v_runq = B_FALSE; 679 if (vdp->xdf_xdev_iostat == NULL) 680 return; 681 kstat_runq_back_to_waitq(KSTAT_IO_PTR(vdp->xdf_xdev_iostat)); 682 } 683 684 int 685 xdf_kstat_create(dev_info_t *dip, char *ks_module, int instance) 686 { 687 xdf_t *vdp = (xdf_t *)ddi_get_driver_private(dip); 688 kstat_t *kstat; 689 buf_t *bp; 690 691 if ((kstat = kstat_create( 692 ks_module, instance, NULL, "disk", 693 KSTAT_TYPE_IO, 1, KSTAT_FLAG_PERSISTENT)) == NULL) 694 return (-1); 695 696 /* See comment about locking in xdf_kstat_delete(). */ 697 mutex_enter(&vdp->xdf_iostat_lk); 698 mutex_enter(&vdp->xdf_dev_lk); 699 700 /* only one kstat can exist at a time */ 701 if (vdp->xdf_xdev_iostat != NULL) { 702 mutex_exit(&vdp->xdf_dev_lk); 703 mutex_exit(&vdp->xdf_iostat_lk); 704 kstat_delete(kstat); 705 return (-1); 706 } 707 708 vdp->xdf_xdev_iostat = kstat; 709 vdp->xdf_xdev_iostat->ks_lock = &vdp->xdf_dev_lk; 710 kstat_install(vdp->xdf_xdev_iostat); 711 712 /* 713 * Now that we've created a kstat, we need to update the waitq and 714 * runq counts for the kstat to reflect our current state. 715 * 716 * For a buf_t structure to be on the runq, it must have a ring 717 * buffer slot associated with it. To get a ring buffer slot the 718 * buf must first have a v_req_t and a ge_slot_t associated with it. 719 * Then when it is granted a ring buffer slot, v_runq will be set to 720 * true. 721 * 722 * For a buf_t structure to be on the waitq, it must not be on the 723 * runq. So to find all the buf_t's that should be on waitq, we 724 * walk the active buf list and add any buf_t's which aren't on the 725 * runq to the waitq. 726 */ 727 bp = vdp->xdf_f_act; 728 while (bp != NULL) { 729 xdf_kstat_enter(vdp, bp); 730 bp = bp->av_forw; 731 } 732 if (vdp->xdf_ready_tq_bp != NULL) 733 xdf_kstat_enter(vdp, vdp->xdf_ready_tq_bp); 734 735 mutex_exit(&vdp->xdf_dev_lk); 736 mutex_exit(&vdp->xdf_iostat_lk); 737 return (0); 738 } 739 740 void 741 xdf_kstat_delete(dev_info_t *dip) 742 { 743 xdf_t *vdp = (xdf_t *)ddi_get_driver_private(dip); 744 kstat_t *kstat; 745 buf_t *bp; 746 747 /* 748 * The locking order here is xdf_iostat_lk and then xdf_dev_lk. 749 * xdf_dev_lk is used to protect the xdf_xdev_iostat pointer 750 * and the contents of the our kstat. xdf_iostat_lk is used 751 * to protect the allocation and freeing of the actual kstat. 752 * xdf_dev_lk can't be used for this purpose because kstat 753 * readers use it to access the contents of the kstat and 754 * hence it can't be held when calling kstat_delete(). 755 */ 756 mutex_enter(&vdp->xdf_iostat_lk); 757 mutex_enter(&vdp->xdf_dev_lk); 758 759 if (vdp->xdf_xdev_iostat == NULL) { 760 mutex_exit(&vdp->xdf_dev_lk); 761 mutex_exit(&vdp->xdf_iostat_lk); 762 return; 763 } 764 765 /* 766 * We're about to destroy the kstat structures, so it isn't really 767 * necessary to update the runq and waitq counts. But, since this 768 * isn't a hot code path we can afford to be a little pedantic and 769 * go ahead and decrement the runq and waitq kstat counters to zero 770 * before free'ing them. This helps us ensure that we've gotten all 771 * our accounting correct. 772 * 773 * For an explanation of how we determine which buffers go on the 774 * runq vs which go on the waitq, see the comments in 775 * xdf_kstat_create(). 776 */ 777 bp = vdp->xdf_f_act; 778 while (bp != NULL) { 779 xdf_kstat_exit(vdp, bp); 780 bp = bp->av_forw; 781 } 782 if (vdp->xdf_ready_tq_bp != NULL) 783 xdf_kstat_exit(vdp, vdp->xdf_ready_tq_bp); 784 785 kstat = vdp->xdf_xdev_iostat; 786 vdp->xdf_xdev_iostat = NULL; 787 mutex_exit(&vdp->xdf_dev_lk); 788 kstat_delete(kstat); 789 mutex_exit(&vdp->xdf_iostat_lk); 790 } 791 792 /* 793 * Add an IO requests onto the active queue. 794 * 795 * We have to detect IOs generated by xdf_ready_tq_thread. These IOs 796 * are used to establish a connection to the backend, so they recieve 797 * priority over all other IOs. Since xdf_ready_tq_thread only does 798 * synchronous IO, there can only be one xdf_ready_tq_thread request at any 799 * given time and we record the buf associated with that request in 800 * xdf_ready_tq_bp. 801 */ 802 static void 803 xdf_bp_push(xdf_t *vdp, buf_t *bp) 804 { 805 ASSERT(MUTEX_HELD(&vdp->xdf_dev_lk)); 806 ASSERT(bp->av_forw == NULL); 807 808 xdf_kstat_enter(vdp, bp); 809 810 if (curthread == vdp->xdf_ready_tq_thread) { 811 /* new IO requests from the ready thread */ 812 ASSERT(vdp->xdf_ready_tq_bp == NULL); 813 vdp->xdf_ready_tq_bp = bp; 814 return; 815 } 816 817 /* this is normal IO request */ 818 ASSERT(bp != vdp->xdf_ready_tq_bp); 819 820 if (vdp->xdf_f_act == NULL) { 821 /* this is only only IO on the active queue */ 822 ASSERT(vdp->xdf_l_act == NULL); 823 ASSERT(vdp->xdf_i_act == NULL); 824 vdp->xdf_f_act = vdp->xdf_l_act = vdp->xdf_i_act = bp; 825 return; 826 } 827 828 /* add this IO to the tail of the active queue */ 829 vdp->xdf_l_act->av_forw = bp; 830 vdp->xdf_l_act = bp; 831 if (vdp->xdf_i_act == NULL) 832 vdp->xdf_i_act = bp; 833 } 834 835 static void 836 xdf_bp_pop(xdf_t *vdp, buf_t *bp) 837 { 838 buf_t *bp_iter; 839 840 ASSERT(MUTEX_HELD(&vdp->xdf_dev_lk)); 841 ASSERT(VREQ_DONE(BP_VREQ(bp))); 842 843 if (vdp->xdf_ready_tq_bp == bp) { 844 /* we're done with a ready thread IO request */ 845 ASSERT(bp->av_forw == NULL); 846 vdp->xdf_ready_tq_bp = NULL; 847 return; 848 } 849 850 /* we're done with a normal IO request */ 851 ASSERT((bp->av_forw != NULL) || (bp == vdp->xdf_l_act)); 852 ASSERT((bp->av_forw == NULL) || (bp != vdp->xdf_l_act)); 853 ASSERT(VREQ_DONE(BP_VREQ(vdp->xdf_f_act))); 854 ASSERT(vdp->xdf_f_act != vdp->xdf_i_act); 855 856 if (bp == vdp->xdf_f_act) { 857 /* This IO was at the head of our active queue. */ 858 vdp->xdf_f_act = bp->av_forw; 859 if (bp == vdp->xdf_l_act) 860 vdp->xdf_l_act = NULL; 861 } else { 862 /* There IO finished before some other pending IOs. */ 863 bp_iter = vdp->xdf_f_act; 864 while (bp != bp_iter->av_forw) { 865 bp_iter = bp_iter->av_forw; 866 ASSERT(VREQ_DONE(BP_VREQ(bp_iter))); 867 ASSERT(bp_iter != vdp->xdf_i_act); 868 } 869 bp_iter->av_forw = bp->av_forw; 870 if (bp == vdp->xdf_l_act) 871 vdp->xdf_l_act = bp_iter; 872 } 873 bp->av_forw = NULL; 874 } 875 876 static buf_t * 877 xdf_bp_next(xdf_t *vdp) 878 { 879 v_req_t *vreq; 880 buf_t *bp; 881 882 if (vdp->xdf_state == XD_CONNECTED) { 883 /* 884 * If we're in the XD_CONNECTED state, we only service IOs 885 * from the xdf_ready_tq_thread thread. 886 */ 887 if ((bp = vdp->xdf_ready_tq_bp) == NULL) 888 return (NULL); 889 if (((vreq = BP_VREQ(bp)) == NULL) || (!VREQ_DONE(vreq))) 890 return (bp); 891 return (NULL); 892 } 893 894 /* if we're not in the XD_CONNECTED or XD_READY state we can't do IO */ 895 if (vdp->xdf_state != XD_READY) 896 return (NULL); 897 898 ASSERT(vdp->xdf_ready_tq_bp == NULL); 899 for (;;) { 900 if ((bp = vdp->xdf_i_act) == NULL) 901 return (NULL); 902 if (((vreq = BP_VREQ(bp)) == NULL) || (!VREQ_DONE(vreq))) 903 return (bp); 904 905 /* advance the active buf index pointer */ 906 vdp->xdf_i_act = bp->av_forw; 907 } 908 } 909 910 static void 911 xdf_io_fini(xdf_t *vdp, uint64_t id, int bioerr) 912 { 913 ge_slot_t *gs = (ge_slot_t *)(uintptr_t)id; 914 v_req_t *vreq = gs->gs_vreq; 915 buf_t *bp = vreq->v_buf; 916 917 ASSERT(MUTEX_HELD(&vdp->xdf_dev_lk)); 918 ASSERT(BP_VREQ(bp) == vreq); 919 920 gs_free(gs); 921 922 if (bioerr != 0) 923 bioerror(bp, bioerr); 924 ASSERT(vreq->v_nslots > 0); 925 if (--vreq->v_nslots > 0) 926 return; 927 928 /* remove this IO from our active queue */ 929 xdf_bp_pop(vdp, bp); 930 931 ASSERT(vreq->v_runq); 932 xdf_kstat_exit(vdp, bp); 933 vreq->v_runq = B_FALSE; 934 vreq_free(vdp, vreq); 935 936 if (IS_ERROR(bp)) { 937 xdf_io_err(bp, geterror(bp), 0); 938 } else if (bp->b_resid != 0) { 939 /* Partial transfers are an error */ 940 xdf_io_err(bp, EIO, bp->b_resid); 941 } else { 942 biodone(bp); 943 } 944 } 945 946 /* 947 * xdf interrupt handler 948 */ 949 static uint_t 950 xdf_intr_locked(xdf_t *vdp) 951 { 952 xendev_ring_t *xbr; 953 blkif_response_t *resp; 954 int bioerr; 955 uint64_t id; 956 uint8_t op; 957 uint16_t status; 958 ddi_acc_handle_t acchdl; 959 960 ASSERT(MUTEX_HELD(&vdp->xdf_dev_lk)); 961 962 if ((xbr = vdp->xdf_xb_ring) == NULL) 963 return (DDI_INTR_UNCLAIMED); 964 965 acchdl = vdp->xdf_xb_ring_hdl; 966 967 /* 968 * complete all requests which have a response 969 */ 970 while (resp = xvdi_ring_get_response(xbr)) { 971 id = ddi_get64(acchdl, &resp->id); 972 op = ddi_get8(acchdl, &resp->operation); 973 status = ddi_get16(acchdl, (uint16_t *)&resp->status); 974 DPRINTF(INTR_DBG, ("resp: op %d id %"PRIu64" status %d\n", 975 op, id, status)); 976 977 if (status != BLKIF_RSP_OKAY) { 978 DPRINTF(IO_DBG, ("xdf@%s: I/O error while %s", 979 vdp->xdf_addr, 980 (op == BLKIF_OP_READ) ? "reading" : "writing")); 981 bioerr = EIO; 982 } else { 983 bioerr = 0; 984 } 985 986 xdf_io_fini(vdp, id, bioerr); 987 } 988 return (DDI_INTR_CLAIMED); 989 } 990 991 /* 992 * xdf_intr runs at PIL 5, so no one else can grab xdf_dev_lk and 993 * block at a lower pil. 994 */ 995 static uint_t 996 xdf_intr(caddr_t arg) 997 { 998 xdf_t *vdp = (xdf_t *)arg; 999 int rv; 1000 1001 mutex_enter(&vdp->xdf_dev_lk); 1002 rv = xdf_intr_locked(vdp); 1003 mutex_exit(&vdp->xdf_dev_lk); 1004 1005 if (!do_polled_io) 1006 xdf_io_start(vdp); 1007 1008 return (rv); 1009 } 1010 1011 static void 1012 xdf_ring_push(xdf_t *vdp) 1013 { 1014 ASSERT(MUTEX_HELD(&vdp->xdf_dev_lk)); 1015 1016 if (vdp->xdf_xb_ring == NULL) 1017 return; 1018 1019 if (xvdi_ring_push_request(vdp->xdf_xb_ring)) { 1020 DPRINTF(IO_DBG, ( 1021 "xdf@%s: xdf_ring_push: sent request(s) to backend\n", 1022 vdp->xdf_addr)); 1023 } 1024 1025 if (xvdi_get_evtchn(vdp->xdf_dip) != INVALID_EVTCHN) 1026 xvdi_notify_oe(vdp->xdf_dip); 1027 } 1028 1029 static int 1030 xdf_ring_drain_locked(xdf_t *vdp) 1031 { 1032 int pollc, rv = 0; 1033 1034 ASSERT(MUTEX_HELD(&vdp->xdf_dev_lk)); 1035 1036 if (xdf_debug & SUSRES_DBG) 1037 xen_printf("xdf_ring_drain: start\n"); 1038 1039 for (pollc = 0; pollc < XDF_DRAIN_RETRY_COUNT; pollc++) { 1040 if (vdp->xdf_xb_ring == NULL) 1041 goto out; 1042 1043 if (xvdi_ring_has_unconsumed_responses(vdp->xdf_xb_ring)) 1044 (void) xdf_intr_locked(vdp); 1045 if (!xvdi_ring_has_incomp_request(vdp->xdf_xb_ring)) 1046 goto out; 1047 xdf_ring_push(vdp); 1048 1049 /* file-backed devices can be slow */ 1050 mutex_exit(&vdp->xdf_dev_lk); 1051 #ifdef XPV_HVM_DRIVER 1052 (void) HYPERVISOR_yield(); 1053 #endif /* XPV_HVM_DRIVER */ 1054 delay(drv_usectohz(XDF_DRAIN_MSEC_DELAY)); 1055 mutex_enter(&vdp->xdf_dev_lk); 1056 } 1057 cmn_err(CE_WARN, "xdf@%s: xdf_ring_drain: timeout", vdp->xdf_addr); 1058 1059 out: 1060 if (vdp->xdf_xb_ring != NULL) { 1061 if (xvdi_ring_has_incomp_request(vdp->xdf_xb_ring) || 1062 xvdi_ring_has_unconsumed_responses(vdp->xdf_xb_ring)) 1063 rv = EIO; 1064 } 1065 if (xdf_debug & SUSRES_DBG) 1066 xen_printf("xdf@%s: xdf_ring_drain: end, err=%d\n", 1067 vdp->xdf_addr, rv); 1068 return (rv); 1069 } 1070 1071 static int 1072 xdf_ring_drain(xdf_t *vdp) 1073 { 1074 int rv; 1075 mutex_enter(&vdp->xdf_dev_lk); 1076 rv = xdf_ring_drain_locked(vdp); 1077 mutex_exit(&vdp->xdf_dev_lk); 1078 return (rv); 1079 } 1080 1081 /* 1082 * Destroy all v_req_t, grant table entries, and our ring buffer. 1083 */ 1084 static void 1085 xdf_ring_destroy(xdf_t *vdp) 1086 { 1087 v_req_t *vreq; 1088 buf_t *bp; 1089 ge_slot_t *gs; 1090 1091 ASSERT(MUTEX_HELD(&vdp->xdf_cb_lk)); 1092 ASSERT(MUTEX_HELD(&vdp->xdf_dev_lk)); 1093 1094 if ((vdp->xdf_state != XD_INIT) && 1095 (vdp->xdf_state != XD_CONNECTED) && 1096 (vdp->xdf_state != XD_READY)) { 1097 ASSERT(vdp->xdf_xb_ring == NULL); 1098 ASSERT(vdp->xdf_xb_ring_hdl == NULL); 1099 ASSERT(vdp->xdf_peer == INVALID_DOMID); 1100 ASSERT(vdp->xdf_evtchn == INVALID_EVTCHN); 1101 ASSERT(list_is_empty(&vdp->xdf_vreq_act)); 1102 return; 1103 } 1104 1105 /* 1106 * We don't want to recieve async notifications from the backend 1107 * when it finishes processing ring entries. 1108 */ 1109 #ifdef XPV_HVM_DRIVER 1110 ec_unbind_evtchn(vdp->xdf_evtchn); 1111 #else /* !XPV_HVM_DRIVER */ 1112 (void) ddi_remove_intr(vdp->xdf_dip, 0, NULL); 1113 #endif /* !XPV_HVM_DRIVER */ 1114 1115 /* 1116 * Drain any requests in the ring. We need to do this before we 1117 * can free grant table entries, because if active ring entries 1118 * point to grants, then the backend could be trying to access 1119 * those grants. 1120 */ 1121 (void) xdf_ring_drain_locked(vdp); 1122 1123 /* We're done talking to the backend so free up our event channel */ 1124 xvdi_free_evtchn(vdp->xdf_dip); 1125 vdp->xdf_evtchn = INVALID_EVTCHN; 1126 1127 while ((vreq = list_head(&vdp->xdf_vreq_act)) != NULL) { 1128 bp = vreq->v_buf; 1129 ASSERT(BP_VREQ(bp) == vreq); 1130 1131 /* Free up any grant table entries associaed with this IO */ 1132 while ((gs = list_head(&vreq->v_gs)) != NULL) 1133 gs_free(gs); 1134 1135 /* If this IO was on the runq, move it back to the waitq. */ 1136 if (vreq->v_runq) 1137 xdf_kstat_runq_to_waitq(vdp, bp); 1138 1139 /* 1140 * Reset any buf IO state since we're going to re-issue the 1141 * IO when we reconnect. 1142 */ 1143 vreq_free(vdp, vreq); 1144 BP_VREQ_SET(bp, NULL); 1145 bioerror(bp, 0); 1146 } 1147 1148 /* reset the active queue index pointer */ 1149 vdp->xdf_i_act = vdp->xdf_f_act; 1150 1151 /* Destroy the ring */ 1152 xvdi_free_ring(vdp->xdf_xb_ring); 1153 vdp->xdf_xb_ring = NULL; 1154 vdp->xdf_xb_ring_hdl = NULL; 1155 vdp->xdf_peer = INVALID_DOMID; 1156 } 1157 1158 void 1159 xdfmin(struct buf *bp) 1160 { 1161 if (bp->b_bcount > xdf_maxphys) 1162 bp->b_bcount = xdf_maxphys; 1163 } 1164 1165 /* 1166 * Check if we have a pending "eject" media request. 1167 */ 1168 static int 1169 xdf_eject_pending(xdf_t *vdp) 1170 { 1171 dev_info_t *dip = vdp->xdf_dip; 1172 char *xsname, *str; 1173 1174 if (!vdp->xdf_media_req_supported) 1175 return (B_FALSE); 1176 1177 if (((xsname = xvdi_get_xsname(dip)) == NULL) || 1178 (xenbus_read_str(xsname, XBP_MEDIA_REQ, &str) != 0)) 1179 return (B_FALSE); 1180 1181 if (strcmp(str, XBV_MEDIA_REQ_EJECT) != 0) { 1182 strfree(str); 1183 return (B_FALSE); 1184 } 1185 strfree(str); 1186 return (B_TRUE); 1187 } 1188 1189 /* 1190 * Generate a media request. 1191 */ 1192 static int 1193 xdf_media_req(xdf_t *vdp, char *req, boolean_t media_required) 1194 { 1195 dev_info_t *dip = vdp->xdf_dip; 1196 char *xsname; 1197 1198 /* 1199 * we can't be holding xdf_dev_lk because xenbus_printf() can 1200 * block while waiting for a PIL 1 interrupt message. this 1201 * would cause a deadlock with xdf_intr() which needs to grab 1202 * xdf_dev_lk as well and runs at PIL 5. 1203 */ 1204 ASSERT(MUTEX_HELD(&vdp->xdf_cb_lk)); 1205 ASSERT(MUTEX_NOT_HELD(&vdp->xdf_dev_lk)); 1206 1207 if ((xsname = xvdi_get_xsname(dip)) == NULL) 1208 return (ENXIO); 1209 1210 /* Check if we support media requests */ 1211 if (!XD_IS_CD(vdp) || !vdp->xdf_media_req_supported) 1212 return (ENOTTY); 1213 1214 /* If an eject is pending then don't allow any new requests */ 1215 if (xdf_eject_pending(vdp)) 1216 return (ENXIO); 1217 1218 /* Make sure that there is media present */ 1219 if (media_required && (vdp->xdf_xdev_nblocks == 0)) 1220 return (ENXIO); 1221 1222 /* We only allow operations when the device is ready and connected */ 1223 if (vdp->xdf_state != XD_READY) 1224 return (EIO); 1225 1226 if (xenbus_printf(XBT_NULL, xsname, XBP_MEDIA_REQ, "%s", req) != 0) 1227 return (EIO); 1228 1229 return (0); 1230 } 1231 1232 /* 1233 * populate a single blkif_request_t w/ a buf 1234 */ 1235 static void 1236 xdf_process_rreq(xdf_t *vdp, struct buf *bp, blkif_request_t *rreq) 1237 { 1238 grant_ref_t gr; 1239 uint8_t fsect, lsect; 1240 size_t bcnt; 1241 paddr_t dma_addr; 1242 off_t blk_off; 1243 dev_info_t *dip = vdp->xdf_dip; 1244 blkif_vdev_t vdev = xvdi_get_vdevnum(dip); 1245 v_req_t *vreq = BP_VREQ(bp); 1246 uint64_t blkno = vreq->v_blkno; 1247 uint_t ndmacs = vreq->v_ndmacs; 1248 ddi_acc_handle_t acchdl = vdp->xdf_xb_ring_hdl; 1249 int seg = 0; 1250 int isread = IS_READ(bp); 1251 ge_slot_t *gs = list_head(&vreq->v_gs); 1252 1253 ASSERT(MUTEX_HELD(&vdp->xdf_dev_lk)); 1254 ASSERT(vreq->v_status == VREQ_GS_ALLOCED); 1255 1256 if (isread) 1257 ddi_put8(acchdl, &rreq->operation, BLKIF_OP_READ); 1258 else { 1259 switch (vreq->v_flush_diskcache) { 1260 case FLUSH_DISKCACHE: 1261 ddi_put8(acchdl, &rreq->operation, 1262 BLKIF_OP_FLUSH_DISKCACHE); 1263 ddi_put16(acchdl, &rreq->handle, vdev); 1264 ddi_put64(acchdl, &rreq->id, 1265 (uint64_t)(uintptr_t)(gs)); 1266 ddi_put8(acchdl, &rreq->nr_segments, 0); 1267 vreq->v_status = VREQ_DMAWIN_DONE; 1268 return; 1269 case WRITE_BARRIER: 1270 ddi_put8(acchdl, &rreq->operation, 1271 BLKIF_OP_WRITE_BARRIER); 1272 break; 1273 default: 1274 if (!vdp->xdf_wce) 1275 ddi_put8(acchdl, &rreq->operation, 1276 BLKIF_OP_WRITE_BARRIER); 1277 else 1278 ddi_put8(acchdl, &rreq->operation, 1279 BLKIF_OP_WRITE); 1280 break; 1281 } 1282 } 1283 1284 ddi_put16(acchdl, &rreq->handle, vdev); 1285 ddi_put64(acchdl, &rreq->sector_number, blkno); 1286 ddi_put64(acchdl, &rreq->id, (uint64_t)(uintptr_t)(gs)); 1287 1288 /* 1289 * loop until all segments are populated or no more dma cookie in buf 1290 */ 1291 for (;;) { 1292 /* 1293 * Each segment of a blkif request can transfer up to 1294 * one 4K page of data. 1295 */ 1296 bcnt = vreq->v_dmac.dmac_size; 1297 dma_addr = vreq->v_dmac.dmac_laddress; 1298 blk_off = (uint_t)((paddr_t)XB_SEGOFFSET & dma_addr); 1299 fsect = blk_off >> XB_BSHIFT; 1300 lsect = fsect + (bcnt >> XB_BSHIFT) - 1; 1301 1302 ASSERT(bcnt <= PAGESIZE); 1303 ASSERT((bcnt % XB_BSIZE) == 0); 1304 ASSERT((blk_off & XB_BMASK) == 0); 1305 ASSERT(fsect < XB_MAX_SEGLEN / XB_BSIZE && 1306 lsect < XB_MAX_SEGLEN / XB_BSIZE); 1307 1308 gr = gs_grant(gs, PATOMA(dma_addr) >> PAGESHIFT); 1309 ddi_put32(acchdl, &rreq->seg[seg].gref, gr); 1310 ddi_put8(acchdl, &rreq->seg[seg].first_sect, fsect); 1311 ddi_put8(acchdl, &rreq->seg[seg].last_sect, lsect); 1312 1313 DPRINTF(IO_DBG, ( 1314 "xdf@%s: seg%d: dmacS %lu blk_off %ld\n", 1315 vdp->xdf_addr, seg, vreq->v_dmac.dmac_size, blk_off)); 1316 DPRINTF(IO_DBG, ( 1317 "xdf@%s: seg%d: fs %d ls %d gr %d dma 0x%"PRIx64"\n", 1318 vdp->xdf_addr, seg, fsect, lsect, gr, dma_addr)); 1319 1320 blkno += (bcnt >> XB_BSHIFT); 1321 seg++; 1322 ASSERT(seg <= BLKIF_MAX_SEGMENTS_PER_REQUEST); 1323 if (--ndmacs) { 1324 ddi_dma_nextcookie(vreq->v_dmahdl, &vreq->v_dmac); 1325 continue; 1326 } 1327 1328 vreq->v_status = VREQ_DMAWIN_DONE; 1329 vreq->v_blkno = blkno; 1330 break; 1331 } 1332 ddi_put8(acchdl, &rreq->nr_segments, seg); 1333 DPRINTF(IO_DBG, ( 1334 "xdf@%s: xdf_process_rreq: request id=%"PRIx64" ready\n", 1335 vdp->xdf_addr, rreq->id)); 1336 } 1337 1338 static void 1339 xdf_io_start(xdf_t *vdp) 1340 { 1341 struct buf *bp; 1342 v_req_t *vreq; 1343 blkif_request_t *rreq; 1344 boolean_t rreqready = B_FALSE; 1345 1346 mutex_enter(&vdp->xdf_dev_lk); 1347 1348 /* 1349 * Populate the ring request(s). Loop until there is no buf to 1350 * transfer or no free slot available in I/O ring. 1351 */ 1352 for (;;) { 1353 /* don't start any new IO if we're suspending */ 1354 if (vdp->xdf_suspending) 1355 break; 1356 if ((bp = xdf_bp_next(vdp)) == NULL) 1357 break; 1358 1359 /* if the buf doesn't already have a vreq, allocate one */ 1360 if (((vreq = BP_VREQ(bp)) == NULL) && 1361 ((vreq = vreq_get(vdp, bp)) == NULL)) 1362 break; 1363 1364 /* alloc DMA/GTE resources */ 1365 if (vreq_setup(vdp, vreq) != DDI_SUCCESS) 1366 break; 1367 1368 /* get next blkif_request in the ring */ 1369 if ((rreq = xvdi_ring_get_request(vdp->xdf_xb_ring)) == NULL) 1370 break; 1371 bzero(rreq, sizeof (blkif_request_t)); 1372 rreqready = B_TRUE; 1373 1374 /* populate blkif_request with this buf */ 1375 xdf_process_rreq(vdp, bp, rreq); 1376 1377 /* 1378 * This buffer/vreq pair is has been allocated a ring buffer 1379 * resources, so if it isn't already in our runq, add it. 1380 */ 1381 if (!vreq->v_runq) 1382 xdf_kstat_waitq_to_runq(vdp, bp); 1383 } 1384 1385 /* Send the request(s) to the backend */ 1386 if (rreqready) 1387 xdf_ring_push(vdp); 1388 1389 mutex_exit(&vdp->xdf_dev_lk); 1390 } 1391 1392 1393 /* check if partition is open, -1 - check all partitions on the disk */ 1394 static boolean_t 1395 xdf_isopen(xdf_t *vdp, int partition) 1396 { 1397 int i; 1398 ulong_t parbit; 1399 boolean_t rval = B_FALSE; 1400 1401 ASSERT((partition == -1) || 1402 ((partition >= 0) || (partition < XDF_PEXT))); 1403 1404 if (partition == -1) 1405 parbit = (ulong_t)-1; 1406 else 1407 parbit = 1 << partition; 1408 1409 for (i = 0; i < OTYPCNT; i++) { 1410 if (vdp->xdf_vd_open[i] & parbit) 1411 rval = B_TRUE; 1412 } 1413 1414 return (rval); 1415 } 1416 1417 /* 1418 * The connection should never be closed as long as someone is holding 1419 * us open, there is pending IO, or someone is waiting waiting for a 1420 * connection. 1421 */ 1422 static boolean_t 1423 xdf_busy(xdf_t *vdp) 1424 { 1425 ASSERT(MUTEX_HELD(&vdp->xdf_dev_lk)); 1426 1427 if ((vdp->xdf_xb_ring != NULL) && 1428 xvdi_ring_has_unconsumed_responses(vdp->xdf_xb_ring)) { 1429 ASSERT(vdp->xdf_state != XD_CLOSED); 1430 return (B_TRUE); 1431 } 1432 1433 if (!list_is_empty(&vdp->xdf_vreq_act) || (vdp->xdf_f_act != NULL)) { 1434 ASSERT(vdp->xdf_state != XD_CLOSED); 1435 return (B_TRUE); 1436 } 1437 1438 if (xdf_isopen(vdp, -1)) { 1439 ASSERT(vdp->xdf_state != XD_CLOSED); 1440 return (B_TRUE); 1441 } 1442 1443 if (vdp->xdf_connect_req > 0) { 1444 ASSERT(vdp->xdf_state != XD_CLOSED); 1445 return (B_TRUE); 1446 } 1447 1448 return (B_FALSE); 1449 } 1450 1451 static void 1452 xdf_set_state(xdf_t *vdp, xdf_state_t new_state) 1453 { 1454 ASSERT(MUTEX_HELD(&vdp->xdf_cb_lk)); 1455 ASSERT(MUTEX_HELD(&vdp->xdf_dev_lk)); 1456 DPRINTF(DDI_DBG, ("xdf@%s: state change %d -> %d\n", 1457 vdp->xdf_addr, vdp->xdf_state, new_state)); 1458 vdp->xdf_state = new_state; 1459 cv_broadcast(&vdp->xdf_dev_cv); 1460 } 1461 1462 static void 1463 xdf_disconnect(xdf_t *vdp, xdf_state_t new_state, boolean_t quiet) 1464 { 1465 dev_info_t *dip = vdp->xdf_dip; 1466 boolean_t busy; 1467 1468 ASSERT(MUTEX_HELD(&vdp->xdf_cb_lk)); 1469 ASSERT(MUTEX_NOT_HELD(&vdp->xdf_dev_lk)); 1470 ASSERT((new_state == XD_UNKNOWN) || (new_state == XD_CLOSED)); 1471 1472 /* Check if we're already there. */ 1473 if (vdp->xdf_state == new_state) 1474 return; 1475 1476 mutex_enter(&vdp->xdf_dev_lk); 1477 busy = xdf_busy(vdp); 1478 1479 /* If we're already closed then there's nothing todo. */ 1480 if (vdp->xdf_state == XD_CLOSED) { 1481 ASSERT(!busy); 1482 xdf_set_state(vdp, new_state); 1483 mutex_exit(&vdp->xdf_dev_lk); 1484 return; 1485 } 1486 1487 #ifdef DEBUG 1488 /* UhOh. Warn the user that something bad has happened. */ 1489 if (!quiet && busy && (vdp->xdf_state == XD_READY) && 1490 (vdp->xdf_xdev_nblocks != 0)) { 1491 cmn_err(CE_WARN, "xdf@%s: disconnected while in use", 1492 vdp->xdf_addr); 1493 } 1494 #endif /* DEBUG */ 1495 1496 xdf_ring_destroy(vdp); 1497 1498 /* If we're busy then we can only go into the unknown state */ 1499 xdf_set_state(vdp, (busy) ? XD_UNKNOWN : new_state); 1500 mutex_exit(&vdp->xdf_dev_lk); 1501 1502 /* if we're closed now, let the other end know */ 1503 if (vdp->xdf_state == XD_CLOSED) 1504 (void) xvdi_switch_state(dip, XBT_NULL, XenbusStateClosed); 1505 } 1506 1507 1508 /* 1509 * Kick-off connect process 1510 * Status should be XD_UNKNOWN or XD_CLOSED 1511 * On success, status will be changed to XD_INIT 1512 * On error, it will be changed to XD_UNKNOWN 1513 */ 1514 static int 1515 xdf_setstate_init(xdf_t *vdp) 1516 { 1517 dev_info_t *dip = vdp->xdf_dip; 1518 xenbus_transaction_t xbt; 1519 grant_ref_t gref; 1520 char *xsname, *str; 1521 int rv; 1522 1523 ASSERT(MUTEX_HELD(&vdp->xdf_cb_lk)); 1524 ASSERT(MUTEX_NOT_HELD(&vdp->xdf_dev_lk)); 1525 ASSERT((vdp->xdf_state == XD_UNKNOWN) || 1526 (vdp->xdf_state == XD_CLOSED)); 1527 1528 DPRINTF(DDI_DBG, 1529 ("xdf@%s: starting connection process\n", vdp->xdf_addr)); 1530 1531 /* 1532 * If an eject is pending then don't allow a new connection. 1533 * (Only the backend can clear media request eject request.) 1534 */ 1535 if (xdf_eject_pending(vdp)) 1536 return (DDI_FAILURE); 1537 1538 if ((xsname = xvdi_get_xsname(dip)) == NULL) 1539 goto errout; 1540 1541 if ((vdp->xdf_peer = xvdi_get_oeid(dip)) == INVALID_DOMID) 1542 goto errout; 1543 1544 (void) xvdi_switch_state(dip, XBT_NULL, XenbusStateInitialising); 1545 1546 /* 1547 * Sanity check for the existance of the xenbus device-type property. 1548 * This property might not exist if we our xenbus device nodes was 1549 * force destroyed while we were still connected to the backend. 1550 */ 1551 if (xenbus_read_str(xsname, XBP_DEV_TYPE, &str) != 0) 1552 goto errout; 1553 strfree(str); 1554 1555 if (xvdi_alloc_evtchn(dip) != DDI_SUCCESS) 1556 goto errout; 1557 1558 vdp->xdf_evtchn = xvdi_get_evtchn(dip); 1559 #ifdef XPV_HVM_DRIVER 1560 ec_bind_evtchn_to_handler(vdp->xdf_evtchn, IPL_VBD, xdf_intr, vdp); 1561 #else /* !XPV_HVM_DRIVER */ 1562 if (ddi_add_intr(dip, 0, NULL, NULL, xdf_intr, (caddr_t)vdp) != 1563 DDI_SUCCESS) { 1564 cmn_err(CE_WARN, "xdf@%s: xdf_setstate_init: " 1565 "failed to add intr handler", vdp->xdf_addr); 1566 goto errout1; 1567 } 1568 #endif /* !XPV_HVM_DRIVER */ 1569 1570 if (xvdi_alloc_ring(dip, BLKIF_RING_SIZE, 1571 sizeof (union blkif_sring_entry), &gref, &vdp->xdf_xb_ring) != 1572 DDI_SUCCESS) { 1573 cmn_err(CE_WARN, "xdf@%s: failed to alloc comm ring", 1574 vdp->xdf_addr); 1575 goto errout2; 1576 } 1577 vdp->xdf_xb_ring_hdl = vdp->xdf_xb_ring->xr_acc_hdl; /* ugly!! */ 1578 1579 /* 1580 * Write into xenstore the info needed by backend 1581 */ 1582 trans_retry: 1583 if (xenbus_transaction_start(&xbt)) { 1584 cmn_err(CE_WARN, "xdf@%s: failed to start transaction", 1585 vdp->xdf_addr); 1586 xvdi_fatal_error(dip, EIO, "connect transaction init"); 1587 goto fail_trans; 1588 } 1589 1590 /* 1591 * XBP_PROTOCOL is written by the domain builder in the case of PV 1592 * domains. However, it is not written for HVM domains, so let's 1593 * write it here. 1594 */ 1595 if (((rv = xenbus_printf(xbt, xsname, 1596 XBP_MEDIA_REQ, "%s", XBV_MEDIA_REQ_NONE)) != 0) || 1597 ((rv = xenbus_printf(xbt, xsname, 1598 XBP_RING_REF, "%u", gref)) != 0) || 1599 ((rv = xenbus_printf(xbt, xsname, 1600 XBP_EVENT_CHAN, "%u", vdp->xdf_evtchn)) != 0) || 1601 ((rv = xenbus_printf(xbt, xsname, 1602 XBP_PROTOCOL, "%s", XEN_IO_PROTO_ABI_NATIVE)) != 0) || 1603 ((rv = xvdi_switch_state(dip, xbt, XenbusStateInitialised)) > 0)) { 1604 (void) xenbus_transaction_end(xbt, 1); 1605 xvdi_fatal_error(dip, rv, "connect transaction setup"); 1606 goto fail_trans; 1607 } 1608 1609 /* kick-off connect process */ 1610 if (rv = xenbus_transaction_end(xbt, 0)) { 1611 if (rv == EAGAIN) 1612 goto trans_retry; 1613 xvdi_fatal_error(dip, rv, "connect transaction commit"); 1614 goto fail_trans; 1615 } 1616 1617 ASSERT(MUTEX_HELD(&vdp->xdf_cb_lk)); 1618 mutex_enter(&vdp->xdf_dev_lk); 1619 xdf_set_state(vdp, XD_INIT); 1620 mutex_exit(&vdp->xdf_dev_lk); 1621 1622 return (DDI_SUCCESS); 1623 1624 fail_trans: 1625 xvdi_free_ring(vdp->xdf_xb_ring); 1626 errout2: 1627 #ifdef XPV_HVM_DRIVER 1628 ec_unbind_evtchn(vdp->xdf_evtchn); 1629 #else /* !XPV_HVM_DRIVER */ 1630 (void) ddi_remove_intr(vdp->xdf_dip, 0, NULL); 1631 #endif /* !XPV_HVM_DRIVER */ 1632 errout1: 1633 xvdi_free_evtchn(dip); 1634 vdp->xdf_evtchn = INVALID_EVTCHN; 1635 errout: 1636 xdf_disconnect(vdp, XD_UNKNOWN, B_FALSE); 1637 cmn_err(CE_WARN, "xdf@%s: failed to start connection to backend", 1638 vdp->xdf_addr); 1639 return (DDI_FAILURE); 1640 } 1641 1642 int 1643 xdf_get_flush_block(xdf_t *vdp) 1644 { 1645 /* 1646 * Get a DEV_BSIZE aligned bufer 1647 */ 1648 vdp->xdf_flush_mem = kmem_alloc(vdp->xdf_xdev_secsize * 2, KM_SLEEP); 1649 vdp->xdf_cache_flush_block = 1650 (char *)P2ROUNDUP((uintptr_t)(vdp->xdf_flush_mem), 1651 (int)vdp->xdf_xdev_secsize); 1652 1653 if (xdf_lb_rdwr(vdp->xdf_dip, TG_READ, vdp->xdf_cache_flush_block, 1654 xdf_flush_block, vdp->xdf_xdev_secsize, NULL) != 0) 1655 return (DDI_FAILURE); 1656 return (DDI_SUCCESS); 1657 } 1658 1659 static void 1660 xdf_setstate_ready(void *arg) 1661 { 1662 xdf_t *vdp = (xdf_t *)arg; 1663 1664 vdp->xdf_ready_tq_thread = curthread; 1665 1666 /* 1667 * We've created all the minor nodes via cmlb_attach() using default 1668 * value in xdf_attach() to make it possible to block in xdf_open(), 1669 * in case there's anyone (say, booting thread) ever trying to open 1670 * it before connected to backend. We will refresh all those minor 1671 * nodes w/ latest info we've got now when we are almost connected. 1672 */ 1673 mutex_enter(&vdp->xdf_dev_lk); 1674 if (vdp->xdf_cmbl_reattach) { 1675 vdp->xdf_cmbl_reattach = B_FALSE; 1676 1677 mutex_exit(&vdp->xdf_dev_lk); 1678 if (xdf_cmlb_attach(vdp) != 0) { 1679 xdf_disconnect(vdp, XD_UNKNOWN, B_FALSE); 1680 return; 1681 } 1682 mutex_enter(&vdp->xdf_dev_lk); 1683 } 1684 1685 /* If we're not still trying to get to the ready state, then bail. */ 1686 if (vdp->xdf_state != XD_CONNECTED) { 1687 mutex_exit(&vdp->xdf_dev_lk); 1688 return; 1689 } 1690 mutex_exit(&vdp->xdf_dev_lk); 1691 1692 /* 1693 * If backend has feature-barrier, see if it supports disk 1694 * cache flush op. 1695 */ 1696 vdp->xdf_flush_supported = B_FALSE; 1697 if (vdp->xdf_feature_barrier) { 1698 /* 1699 * Pretend we already know flush is supported so probe 1700 * will attempt the correct op. 1701 */ 1702 vdp->xdf_flush_supported = B_TRUE; 1703 if (xdf_lb_rdwr(vdp->xdf_dip, TG_WRITE, NULL, 0, 0, 0) == 0) { 1704 vdp->xdf_flush_supported = B_TRUE; 1705 } else { 1706 vdp->xdf_flush_supported = B_FALSE; 1707 /* 1708 * If the other end does not support the cache flush op 1709 * then we must use a barrier-write to force disk 1710 * cache flushing. Barrier writes require that a data 1711 * block actually be written. 1712 * Cache a block to barrier-write when we are 1713 * asked to perform a flush. 1714 * XXX - would it be better to just copy 1 block 1715 * (512 bytes) from whatever write we did last 1716 * and rewrite that block? 1717 */ 1718 if (xdf_get_flush_block(vdp) != DDI_SUCCESS) { 1719 xdf_disconnect(vdp, XD_UNKNOWN, B_FALSE); 1720 return; 1721 } 1722 } 1723 } 1724 1725 mutex_enter(&vdp->xdf_cb_lk); 1726 mutex_enter(&vdp->xdf_dev_lk); 1727 if (vdp->xdf_state == XD_CONNECTED) 1728 xdf_set_state(vdp, XD_READY); 1729 mutex_exit(&vdp->xdf_dev_lk); 1730 1731 /* Restart any currently queued up io */ 1732 xdf_io_start(vdp); 1733 1734 mutex_exit(&vdp->xdf_cb_lk); 1735 } 1736 1737 /* 1738 * synthetic geometry 1739 */ 1740 #define XDF_NSECTS 256 1741 #define XDF_NHEADS 16 1742 1743 static void 1744 xdf_synthetic_pgeom(dev_info_t *dip, cmlb_geom_t *geomp) 1745 { 1746 xdf_t *vdp; 1747 uint_t ncyl; 1748 1749 vdp = ddi_get_soft_state(xdf_ssp, ddi_get_instance(dip)); 1750 1751 ncyl = vdp->xdf_xdev_nblocks / (XDF_NHEADS * XDF_NSECTS); 1752 1753 bzero(geomp, sizeof (*geomp)); 1754 geomp->g_ncyl = ncyl == 0 ? 1 : ncyl; 1755 geomp->g_acyl = 0; 1756 geomp->g_nhead = XDF_NHEADS; 1757 geomp->g_nsect = XDF_NSECTS; 1758 geomp->g_secsize = vdp->xdf_xdev_secsize; 1759 geomp->g_capacity = vdp->xdf_xdev_nblocks; 1760 geomp->g_intrlv = 0; 1761 geomp->g_rpm = 7200; 1762 } 1763 1764 /* 1765 * Finish other initialization after we've connected to backend 1766 * Status should be XD_INIT before calling this routine 1767 * On success, status should be changed to XD_CONNECTED. 1768 * On error, status should stay XD_INIT 1769 */ 1770 static int 1771 xdf_setstate_connected(xdf_t *vdp) 1772 { 1773 dev_info_t *dip = vdp->xdf_dip; 1774 cmlb_geom_t pgeom; 1775 diskaddr_t nblocks = 0; 1776 uint_t secsize = 0; 1777 char *oename, *xsname, *str; 1778 uint_t dinfo; 1779 1780 ASSERT(MUTEX_HELD(&vdp->xdf_cb_lk)); 1781 ASSERT(MUTEX_NOT_HELD(&vdp->xdf_dev_lk)); 1782 ASSERT(vdp->xdf_state == XD_INIT); 1783 1784 if (((xsname = xvdi_get_xsname(dip)) == NULL) || 1785 ((oename = xvdi_get_oename(dip)) == NULL)) 1786 return (DDI_FAILURE); 1787 1788 /* Make sure the other end is XenbusStateConnected */ 1789 if (xenbus_read_driver_state(oename) != XenbusStateConnected) 1790 return (DDI_FAILURE); 1791 1792 /* Determine if feature barrier is supported by backend */ 1793 if (!(vdp->xdf_feature_barrier = xenbus_exists(oename, XBP_FB))) 1794 cmn_err(CE_NOTE, "!xdf@%s: feature-barrier not supported", 1795 vdp->xdf_addr); 1796 1797 /* 1798 * Probe backend. Read the device size into xdf_xdev_nblocks 1799 * and set the VDISK_READONLY, VDISK_CDROM, and VDISK_REMOVABLE 1800 * flags in xdf_dinfo. If the emulated device type is "cdrom", 1801 * we always set VDISK_CDROM, regardless of if it's present in 1802 * the xenbus info parameter. 1803 */ 1804 if (xenbus_gather(XBT_NULL, oename, 1805 XBP_SECTORS, "%"SCNu64, &nblocks, 1806 XBP_SECTOR_SIZE, "%u", &secsize, 1807 XBP_INFO, "%u", &dinfo, 1808 NULL) != 0) { 1809 cmn_err(CE_WARN, "xdf@%s: xdf_setstate_connected: " 1810 "cannot read backend info", vdp->xdf_addr); 1811 return (DDI_FAILURE); 1812 } 1813 if (xenbus_read_str(xsname, XBP_DEV_TYPE, &str) != 0) { 1814 cmn_err(CE_WARN, "xdf@%s: cannot read device-type", 1815 vdp->xdf_addr); 1816 return (DDI_FAILURE); 1817 } 1818 if (strcmp(str, XBV_DEV_TYPE_CD) == 0) 1819 dinfo |= VDISK_CDROM; 1820 strfree(str); 1821 1822 if (secsize == 0 || !(ISP2(secsize / DEV_BSIZE))) 1823 secsize = DEV_BSIZE; 1824 vdp->xdf_xdev_nblocks = nblocks; 1825 vdp->xdf_xdev_secsize = secsize; 1826 #ifdef _ILP32 1827 if (vdp->xdf_xdev_nblocks > DK_MAX_BLOCKS) { 1828 cmn_err(CE_WARN, "xdf@%s: xdf_setstate_connected: " 1829 "backend disk device too large with %llu blocks for" 1830 " 32-bit kernel", vdp->xdf_addr, vdp->xdf_xdev_nblocks); 1831 xvdi_fatal_error(dip, EFBIG, "reading backend info"); 1832 return (DDI_FAILURE); 1833 } 1834 #endif 1835 1836 /* 1837 * If the physical geometry for a fixed disk has been explicity 1838 * set then make sure that the specified physical geometry isn't 1839 * larger than the device we connected to. 1840 */ 1841 if (vdp->xdf_pgeom_fixed && 1842 (vdp->xdf_pgeom.g_capacity > vdp->xdf_xdev_nblocks)) { 1843 cmn_err(CE_WARN, 1844 "xdf@%s: connect failed, fixed geometry too large", 1845 vdp->xdf_addr); 1846 return (DDI_FAILURE); 1847 } 1848 1849 vdp->xdf_media_req_supported = xenbus_exists(oename, XBP_MEDIA_REQ_SUP); 1850 1851 /* mark vbd is ready for I/O */ 1852 mutex_enter(&vdp->xdf_dev_lk); 1853 xdf_set_state(vdp, XD_CONNECTED); 1854 1855 /* check if the cmlb label should be updated */ 1856 xdf_synthetic_pgeom(dip, &pgeom); 1857 if ((vdp->xdf_dinfo != dinfo) || 1858 (!vdp->xdf_pgeom_fixed && 1859 (memcmp(&vdp->xdf_pgeom, &pgeom, sizeof (pgeom)) != 0))) { 1860 vdp->xdf_cmbl_reattach = B_TRUE; 1861 1862 vdp->xdf_dinfo = dinfo; 1863 if (!vdp->xdf_pgeom_fixed) 1864 vdp->xdf_pgeom = pgeom; 1865 } 1866 1867 if (XD_IS_CD(vdp) || XD_IS_RM(vdp)) { 1868 if (vdp->xdf_xdev_nblocks == 0) { 1869 vdp->xdf_mstate = DKIO_EJECTED; 1870 cv_broadcast(&vdp->xdf_mstate_cv); 1871 } else { 1872 vdp->xdf_mstate = DKIO_INSERTED; 1873 cv_broadcast(&vdp->xdf_mstate_cv); 1874 } 1875 } else { 1876 if (vdp->xdf_mstate != DKIO_NONE) { 1877 vdp->xdf_mstate = DKIO_NONE; 1878 cv_broadcast(&vdp->xdf_mstate_cv); 1879 } 1880 } 1881 1882 mutex_exit(&vdp->xdf_dev_lk); 1883 1884 cmn_err(CE_CONT, "?xdf@%s: %"PRIu64" blocks", vdp->xdf_addr, 1885 (uint64_t)vdp->xdf_xdev_nblocks); 1886 1887 /* Restart any currently queued up io */ 1888 xdf_io_start(vdp); 1889 1890 /* 1891 * To get to the ready state we have to do IO to the backend device, 1892 * but we can't initiate IO from the other end change callback thread 1893 * (which is the current context we're executing in.) This is because 1894 * if the other end disconnects while we're doing IO from the callback 1895 * thread, then we can't recieve that disconnect event and we hang 1896 * waiting for an IO that can never complete. 1897 */ 1898 (void) ddi_taskq_dispatch(vdp->xdf_ready_tq, xdf_setstate_ready, vdp, 1899 DDI_SLEEP); 1900 1901 (void) xvdi_switch_state(dip, XBT_NULL, XenbusStateConnected); 1902 return (DDI_SUCCESS); 1903 } 1904 1905 /*ARGSUSED*/ 1906 static void 1907 xdf_oe_change(dev_info_t *dip, ddi_eventcookie_t id, void *arg, void *impl_data) 1908 { 1909 XenbusState new_state = *(XenbusState *)impl_data; 1910 xdf_t *vdp = (xdf_t *)ddi_get_driver_private(dip); 1911 1912 DPRINTF(DDI_DBG, ("xdf@%s: otherend state change to %d!\n", 1913 vdp->xdf_addr, new_state)); 1914 1915 mutex_enter(&vdp->xdf_cb_lk); 1916 1917 /* We assume that this callback is single threaded */ 1918 ASSERT(vdp->xdf_oe_change_thread == NULL); 1919 DEBUG_EVAL(vdp->xdf_oe_change_thread = curthread); 1920 1921 /* ignore any backend state changes if we're suspending/suspended */ 1922 if (vdp->xdf_suspending || (vdp->xdf_state == XD_SUSPEND)) { 1923 DEBUG_EVAL(vdp->xdf_oe_change_thread = NULL); 1924 mutex_exit(&vdp->xdf_cb_lk); 1925 return; 1926 } 1927 1928 switch (new_state) { 1929 case XenbusStateUnknown: 1930 case XenbusStateInitialising: 1931 case XenbusStateInitWait: 1932 case XenbusStateInitialised: 1933 if (vdp->xdf_state == XD_INIT) 1934 break; 1935 1936 xdf_disconnect(vdp, XD_UNKNOWN, B_FALSE); 1937 if (xdf_setstate_init(vdp) != DDI_SUCCESS) 1938 break; 1939 ASSERT(vdp->xdf_state == XD_INIT); 1940 break; 1941 1942 case XenbusStateConnected: 1943 if ((vdp->xdf_state == XD_CONNECTED) || 1944 (vdp->xdf_state == XD_READY)) 1945 break; 1946 1947 if (vdp->xdf_state != XD_INIT) { 1948 xdf_disconnect(vdp, XD_UNKNOWN, B_FALSE); 1949 if (xdf_setstate_init(vdp) != DDI_SUCCESS) 1950 break; 1951 ASSERT(vdp->xdf_state == XD_INIT); 1952 } 1953 1954 if (xdf_setstate_connected(vdp) != DDI_SUCCESS) { 1955 xdf_disconnect(vdp, XD_UNKNOWN, B_FALSE); 1956 break; 1957 } 1958 ASSERT(vdp->xdf_state == XD_CONNECTED); 1959 break; 1960 1961 case XenbusStateClosing: 1962 if (xdf_isopen(vdp, -1)) { 1963 cmn_err(CE_NOTE, 1964 "xdf@%s: hot-unplug failed, still in use", 1965 vdp->xdf_addr); 1966 break; 1967 } 1968 /*FALLTHROUGH*/ 1969 case XenbusStateClosed: 1970 xdf_disconnect(vdp, XD_CLOSED, B_FALSE); 1971 break; 1972 } 1973 1974 /* notify anybody waiting for oe state change */ 1975 cv_broadcast(&vdp->xdf_dev_cv); 1976 DEBUG_EVAL(vdp->xdf_oe_change_thread = NULL); 1977 mutex_exit(&vdp->xdf_cb_lk); 1978 } 1979 1980 static int 1981 xdf_connect_locked(xdf_t *vdp, boolean_t wait) 1982 { 1983 int rv, timeouts = 0, reset = 20; 1984 1985 ASSERT(MUTEX_HELD(&vdp->xdf_cb_lk)); 1986 ASSERT(MUTEX_HELD(&vdp->xdf_dev_lk)); 1987 1988 /* we can't connect once we're in the closed state */ 1989 if (vdp->xdf_state == XD_CLOSED) 1990 return (XD_CLOSED); 1991 1992 vdp->xdf_connect_req++; 1993 while (vdp->xdf_state != XD_READY) { 1994 mutex_exit(&vdp->xdf_dev_lk); 1995 1996 /* only one thread at a time can be the connection thread */ 1997 if (vdp->xdf_connect_thread == NULL) 1998 vdp->xdf_connect_thread = curthread; 1999 2000 if (vdp->xdf_connect_thread == curthread) { 2001 if ((timeouts > 0) && ((timeouts % reset) == 0)) { 2002 /* 2003 * If we haven't establised a connection 2004 * within the reset time, then disconnect 2005 * so we can try again, and double the reset 2006 * time. The reset time starts at 2 sec. 2007 */ 2008 (void) xdf_disconnect(vdp, XD_UNKNOWN, B_TRUE); 2009 reset *= 2; 2010 } 2011 if (vdp->xdf_state == XD_UNKNOWN) 2012 (void) xdf_setstate_init(vdp); 2013 if (vdp->xdf_state == XD_INIT) 2014 (void) xdf_setstate_connected(vdp); 2015 } 2016 2017 mutex_enter(&vdp->xdf_dev_lk); 2018 if (!wait || (vdp->xdf_state == XD_READY)) 2019 goto out; 2020 2021 mutex_exit((&vdp->xdf_cb_lk)); 2022 if (vdp->xdf_connect_thread != curthread) { 2023 rv = cv_wait_sig(&vdp->xdf_dev_cv, &vdp->xdf_dev_lk); 2024 } else { 2025 /* delay for 0.1 sec */ 2026 rv = cv_reltimedwait_sig(&vdp->xdf_dev_cv, 2027 &vdp->xdf_dev_lk, drv_usectohz(100*1000), 2028 TR_CLOCK_TICK); 2029 if (rv == -1) 2030 timeouts++; 2031 } 2032 mutex_exit((&vdp->xdf_dev_lk)); 2033 mutex_enter((&vdp->xdf_cb_lk)); 2034 mutex_enter((&vdp->xdf_dev_lk)); 2035 if (rv == 0) 2036 goto out; 2037 } 2038 2039 out: 2040 ASSERT(MUTEX_HELD(&vdp->xdf_cb_lk)); 2041 ASSERT(MUTEX_HELD(&vdp->xdf_dev_lk)); 2042 2043 if (vdp->xdf_connect_thread == curthread) { 2044 /* 2045 * wake up someone else so they can become the connection 2046 * thread. 2047 */ 2048 cv_signal(&vdp->xdf_dev_cv); 2049 vdp->xdf_connect_thread = NULL; 2050 } 2051 2052 /* Try to lock the media */ 2053 mutex_exit((&vdp->xdf_dev_lk)); 2054 (void) xdf_media_req(vdp, XBV_MEDIA_REQ_LOCK, B_TRUE); 2055 mutex_enter((&vdp->xdf_dev_lk)); 2056 2057 vdp->xdf_connect_req--; 2058 return (vdp->xdf_state); 2059 } 2060 2061 static uint_t 2062 xdf_iorestart(caddr_t arg) 2063 { 2064 xdf_t *vdp = (xdf_t *)arg; 2065 2066 ASSERT(vdp != NULL); 2067 2068 mutex_enter(&vdp->xdf_dev_lk); 2069 ASSERT(ISDMACBON(vdp)); 2070 SETDMACBOFF(vdp); 2071 mutex_exit(&vdp->xdf_dev_lk); 2072 2073 xdf_io_start(vdp); 2074 2075 return (DDI_INTR_CLAIMED); 2076 } 2077 2078 #if defined(XPV_HVM_DRIVER) 2079 2080 typedef struct xdf_hvm_entry { 2081 list_node_t xdf_he_list; 2082 char *xdf_he_path; 2083 dev_info_t *xdf_he_dip; 2084 } xdf_hvm_entry_t; 2085 2086 static list_t xdf_hvm_list; 2087 static kmutex_t xdf_hvm_list_lock; 2088 2089 static xdf_hvm_entry_t * 2090 i_xdf_hvm_find(const char *path, dev_info_t *dip) 2091 { 2092 xdf_hvm_entry_t *i; 2093 2094 ASSERT((path != NULL) || (dip != NULL)); 2095 ASSERT(MUTEX_HELD(&xdf_hvm_list_lock)); 2096 2097 i = list_head(&xdf_hvm_list); 2098 while (i != NULL) { 2099 if ((path != NULL) && strcmp(i->xdf_he_path, path) != 0) { 2100 i = list_next(&xdf_hvm_list, i); 2101 continue; 2102 } 2103 if ((dip != NULL) && (i->xdf_he_dip != dip)) { 2104 i = list_next(&xdf_hvm_list, i); 2105 continue; 2106 } 2107 break; 2108 } 2109 return (i); 2110 } 2111 2112 dev_info_t * 2113 xdf_hvm_hold(const char *path) 2114 { 2115 xdf_hvm_entry_t *i; 2116 dev_info_t *dip; 2117 2118 mutex_enter(&xdf_hvm_list_lock); 2119 i = i_xdf_hvm_find(path, NULL); 2120 if (i == NULL) { 2121 mutex_exit(&xdf_hvm_list_lock); 2122 return (B_FALSE); 2123 } 2124 ndi_hold_devi(dip = i->xdf_he_dip); 2125 mutex_exit(&xdf_hvm_list_lock); 2126 return (dip); 2127 } 2128 2129 static void 2130 xdf_hvm_add(dev_info_t *dip) 2131 { 2132 xdf_hvm_entry_t *i; 2133 char *path; 2134 2135 /* figure out the path for the dip */ 2136 path = kmem_zalloc(MAXPATHLEN, KM_SLEEP); 2137 (void) ddi_pathname(dip, path); 2138 2139 i = kmem_alloc(sizeof (*i), KM_SLEEP); 2140 i->xdf_he_dip = dip; 2141 i->xdf_he_path = i_ddi_strdup(path, KM_SLEEP); 2142 2143 mutex_enter(&xdf_hvm_list_lock); 2144 ASSERT(i_xdf_hvm_find(path, NULL) == NULL); 2145 ASSERT(i_xdf_hvm_find(NULL, dip) == NULL); 2146 list_insert_head(&xdf_hvm_list, i); 2147 mutex_exit(&xdf_hvm_list_lock); 2148 2149 kmem_free(path, MAXPATHLEN); 2150 } 2151 2152 static void 2153 xdf_hvm_rm(dev_info_t *dip) 2154 { 2155 xdf_hvm_entry_t *i; 2156 2157 mutex_enter(&xdf_hvm_list_lock); 2158 VERIFY((i = i_xdf_hvm_find(NULL, dip)) != NULL); 2159 list_remove(&xdf_hvm_list, i); 2160 mutex_exit(&xdf_hvm_list_lock); 2161 2162 kmem_free(i->xdf_he_path, strlen(i->xdf_he_path) + 1); 2163 kmem_free(i, sizeof (*i)); 2164 } 2165 2166 static void 2167 xdf_hvm_init(void) 2168 { 2169 list_create(&xdf_hvm_list, sizeof (xdf_hvm_entry_t), 2170 offsetof(xdf_hvm_entry_t, xdf_he_list)); 2171 mutex_init(&xdf_hvm_list_lock, NULL, MUTEX_DEFAULT, NULL); 2172 } 2173 2174 static void 2175 xdf_hvm_fini(void) 2176 { 2177 ASSERT(list_head(&xdf_hvm_list) == NULL); 2178 list_destroy(&xdf_hvm_list); 2179 mutex_destroy(&xdf_hvm_list_lock); 2180 } 2181 2182 boolean_t 2183 xdf_hvm_connect(dev_info_t *dip) 2184 { 2185 xdf_t *vdp = (xdf_t *)ddi_get_driver_private(dip); 2186 char *oename, *str; 2187 int rv; 2188 2189 mutex_enter(&vdp->xdf_cb_lk); 2190 2191 /* 2192 * Before try to establish a connection we need to wait for the 2193 * backend hotplug scripts to have run. Once they are run the 2194 * "<oename>/hotplug-status" property will be set to "connected". 2195 */ 2196 for (;;) { 2197 ASSERT(MUTEX_HELD(&vdp->xdf_cb_lk)); 2198 2199 /* 2200 * Get the xenbus path to the backend device. Note that 2201 * we can't cache this path (and we look it up on each pass 2202 * through this loop) because it could change during 2203 * suspend, resume, and migration operations. 2204 */ 2205 if ((oename = xvdi_get_oename(dip)) == NULL) { 2206 mutex_exit(&vdp->xdf_cb_lk); 2207 return (B_FALSE); 2208 } 2209 2210 str = NULL; 2211 if ((xenbus_read_str(oename, XBP_HP_STATUS, &str) == 0) && 2212 (strcmp(str, XBV_HP_STATUS_CONN) == 0)) 2213 break; 2214 2215 if (str != NULL) 2216 strfree(str); 2217 2218 /* wait for an update to "<oename>/hotplug-status" */ 2219 if (cv_wait_sig(&vdp->xdf_hp_status_cv, &vdp->xdf_cb_lk) == 0) { 2220 /* we got interrupted by a signal */ 2221 mutex_exit(&vdp->xdf_cb_lk); 2222 return (B_FALSE); 2223 } 2224 } 2225 2226 /* Good news. The backend hotplug scripts have been run. */ 2227 ASSERT(MUTEX_HELD(&vdp->xdf_cb_lk)); 2228 ASSERT(strcmp(str, XBV_HP_STATUS_CONN) == 0); 2229 strfree(str); 2230 2231 /* 2232 * If we're emulating a cd device and if the backend doesn't support 2233 * media request opreations, then we're not going to bother trying 2234 * to establish a connection for a couple reasons. First off, media 2235 * requests support is required to support operations like eject and 2236 * media locking. Second, other backend platforms like Linux don't 2237 * support hvm pv cdrom access. They don't even have a backend pv 2238 * driver for cdrom device nodes, so we don't want to block forever 2239 * waiting for a connection to a backend driver that doesn't exist. 2240 */ 2241 if (XD_IS_CD(vdp) && !xenbus_exists(oename, XBP_MEDIA_REQ_SUP)) { 2242 mutex_exit(&vdp->xdf_cb_lk); 2243 return (B_FALSE); 2244 } 2245 2246 mutex_enter(&vdp->xdf_dev_lk); 2247 rv = xdf_connect_locked(vdp, B_TRUE); 2248 mutex_exit(&vdp->xdf_dev_lk); 2249 mutex_exit(&vdp->xdf_cb_lk); 2250 2251 return ((rv == XD_READY) ? B_TRUE : B_FALSE); 2252 } 2253 2254 int 2255 xdf_hvm_setpgeom(dev_info_t *dip, cmlb_geom_t *geomp) 2256 { 2257 xdf_t *vdp = (xdf_t *)ddi_get_driver_private(dip); 2258 2259 /* sanity check the requested physical geometry */ 2260 mutex_enter(&vdp->xdf_dev_lk); 2261 if ((geomp->g_secsize != XB_BSIZE) || 2262 (geomp->g_capacity == 0)) { 2263 mutex_exit(&vdp->xdf_dev_lk); 2264 return (EINVAL); 2265 } 2266 2267 /* 2268 * If we've already connected to the backend device then make sure 2269 * we're not defining a physical geometry larger than our backend 2270 * device. 2271 */ 2272 if ((vdp->xdf_xdev_nblocks != 0) && 2273 (geomp->g_capacity > vdp->xdf_xdev_nblocks)) { 2274 mutex_exit(&vdp->xdf_dev_lk); 2275 return (EINVAL); 2276 } 2277 2278 bzero(&vdp->xdf_pgeom, sizeof (vdp->xdf_pgeom)); 2279 vdp->xdf_pgeom.g_ncyl = geomp->g_ncyl; 2280 vdp->xdf_pgeom.g_acyl = geomp->g_acyl; 2281 vdp->xdf_pgeom.g_nhead = geomp->g_nhead; 2282 vdp->xdf_pgeom.g_nsect = geomp->g_nsect; 2283 vdp->xdf_pgeom.g_secsize = geomp->g_secsize; 2284 vdp->xdf_pgeom.g_capacity = geomp->g_capacity; 2285 vdp->xdf_pgeom.g_intrlv = geomp->g_intrlv; 2286 vdp->xdf_pgeom.g_rpm = geomp->g_rpm; 2287 2288 vdp->xdf_pgeom_fixed = B_TRUE; 2289 mutex_exit(&vdp->xdf_dev_lk); 2290 2291 /* force a re-validation */ 2292 cmlb_invalidate(vdp->xdf_vd_lbl, NULL); 2293 2294 return (0); 2295 } 2296 2297 boolean_t 2298 xdf_is_cd(dev_info_t *dip) 2299 { 2300 xdf_t *vdp = (xdf_t *)ddi_get_driver_private(dip); 2301 boolean_t rv; 2302 2303 mutex_enter(&vdp->xdf_cb_lk); 2304 rv = XD_IS_CD(vdp); 2305 mutex_exit(&vdp->xdf_cb_lk); 2306 return (rv); 2307 } 2308 2309 boolean_t 2310 xdf_is_rm(dev_info_t *dip) 2311 { 2312 xdf_t *vdp = (xdf_t *)ddi_get_driver_private(dip); 2313 boolean_t rv; 2314 2315 mutex_enter(&vdp->xdf_cb_lk); 2316 rv = XD_IS_RM(vdp); 2317 mutex_exit(&vdp->xdf_cb_lk); 2318 return (rv); 2319 } 2320 2321 boolean_t 2322 xdf_media_req_supported(dev_info_t *dip) 2323 { 2324 xdf_t *vdp = (xdf_t *)ddi_get_driver_private(dip); 2325 boolean_t rv; 2326 2327 mutex_enter(&vdp->xdf_cb_lk); 2328 rv = vdp->xdf_media_req_supported; 2329 mutex_exit(&vdp->xdf_cb_lk); 2330 return (rv); 2331 } 2332 2333 #endif /* XPV_HVM_DRIVER */ 2334 2335 static int 2336 xdf_lb_getcap(dev_info_t *dip, diskaddr_t *capp) 2337 { 2338 xdf_t *vdp; 2339 vdp = ddi_get_soft_state(xdf_ssp, ddi_get_instance(dip)); 2340 2341 if (vdp == NULL) 2342 return (ENXIO); 2343 2344 mutex_enter(&vdp->xdf_dev_lk); 2345 *capp = vdp->xdf_pgeom.g_capacity; 2346 DPRINTF(LBL_DBG, ("xdf@%s:capacity %llu\n", vdp->xdf_addr, *capp)); 2347 mutex_exit(&vdp->xdf_dev_lk); 2348 return (0); 2349 } 2350 2351 static int 2352 xdf_lb_getpgeom(dev_info_t *dip, cmlb_geom_t *geomp) 2353 { 2354 xdf_t *vdp; 2355 2356 if ((vdp = ddi_get_soft_state(xdf_ssp, ddi_get_instance(dip))) == NULL) 2357 return (ENXIO); 2358 *geomp = vdp->xdf_pgeom; 2359 return (0); 2360 } 2361 2362 /* 2363 * No real HBA, no geometry available from it 2364 */ 2365 /*ARGSUSED*/ 2366 static int 2367 xdf_lb_getvgeom(dev_info_t *dip, cmlb_geom_t *geomp) 2368 { 2369 return (EINVAL); 2370 } 2371 2372 static int 2373 xdf_lb_getattribute(dev_info_t *dip, tg_attribute_t *tgattributep) 2374 { 2375 xdf_t *vdp; 2376 2377 if (!(vdp = ddi_get_soft_state(xdf_ssp, ddi_get_instance(dip)))) 2378 return (ENXIO); 2379 2380 if (XD_IS_RO(vdp)) 2381 tgattributep->media_is_writable = 0; 2382 else 2383 tgattributep->media_is_writable = 1; 2384 tgattributep->media_is_rotational = 0; 2385 return (0); 2386 } 2387 2388 /* ARGSUSED3 */ 2389 int 2390 xdf_lb_getinfo(dev_info_t *dip, int cmd, void *arg, void *tg_cookie) 2391 { 2392 int instance; 2393 xdf_t *vdp; 2394 2395 instance = ddi_get_instance(dip); 2396 2397 if ((vdp = ddi_get_soft_state(xdf_ssp, instance)) == NULL) 2398 return (ENXIO); 2399 2400 switch (cmd) { 2401 case TG_GETPHYGEOM: 2402 return (xdf_lb_getpgeom(dip, (cmlb_geom_t *)arg)); 2403 case TG_GETVIRTGEOM: 2404 return (xdf_lb_getvgeom(dip, (cmlb_geom_t *)arg)); 2405 case TG_GETCAPACITY: 2406 return (xdf_lb_getcap(dip, (diskaddr_t *)arg)); 2407 case TG_GETBLOCKSIZE: 2408 mutex_enter(&vdp->xdf_cb_lk); 2409 *(uint32_t *)arg = vdp->xdf_xdev_secsize; 2410 mutex_exit(&vdp->xdf_cb_lk); 2411 return (0); 2412 case TG_GETATTR: 2413 return (xdf_lb_getattribute(dip, (tg_attribute_t *)arg)); 2414 default: 2415 return (ENOTTY); 2416 } 2417 } 2418 2419 /* ARGSUSED5 */ 2420 int 2421 xdf_lb_rdwr(dev_info_t *dip, uchar_t cmd, void *bufp, 2422 diskaddr_t start, size_t reqlen, void *tg_cookie) 2423 { 2424 xdf_t *vdp; 2425 struct buf *bp; 2426 int err = 0; 2427 2428 vdp = ddi_get_soft_state(xdf_ssp, ddi_get_instance(dip)); 2429 2430 /* We don't allow IO from the oe_change callback thread */ 2431 ASSERT(curthread != vdp->xdf_oe_change_thread); 2432 2433 if ((start + ((reqlen / (vdp->xdf_xdev_secsize / DEV_BSIZE)) 2434 >> DEV_BSHIFT)) > vdp->xdf_pgeom.g_capacity) 2435 return (EINVAL); 2436 2437 bp = getrbuf(KM_SLEEP); 2438 if (cmd == TG_READ) 2439 bp->b_flags = B_BUSY | B_READ; 2440 else 2441 bp->b_flags = B_BUSY | B_WRITE; 2442 2443 bp->b_un.b_addr = bufp; 2444 bp->b_bcount = reqlen; 2445 bp->b_blkno = start * (vdp->xdf_xdev_secsize / DEV_BSIZE); 2446 bp->b_edev = DDI_DEV_T_NONE; /* don't have dev_t */ 2447 2448 mutex_enter(&vdp->xdf_dev_lk); 2449 xdf_bp_push(vdp, bp); 2450 mutex_exit(&vdp->xdf_dev_lk); 2451 xdf_io_start(vdp); 2452 if (curthread == vdp->xdf_ready_tq_thread) 2453 (void) xdf_ring_drain(vdp); 2454 err = biowait(bp); 2455 ASSERT(bp->b_flags & B_DONE); 2456 freerbuf(bp); 2457 return (err); 2458 } 2459 2460 /* 2461 * Lock the current media. Set the media state to "lock". 2462 * (Media locks are only respected by the backend driver.) 2463 */ 2464 static int 2465 xdf_ioctl_mlock(xdf_t *vdp) 2466 { 2467 int rv; 2468 mutex_enter(&vdp->xdf_cb_lk); 2469 rv = xdf_media_req(vdp, XBV_MEDIA_REQ_LOCK, B_TRUE); 2470 mutex_exit(&vdp->xdf_cb_lk); 2471 return (rv); 2472 } 2473 2474 /* 2475 * Release a media lock. Set the media state to "none". 2476 */ 2477 static int 2478 xdf_ioctl_munlock(xdf_t *vdp) 2479 { 2480 int rv; 2481 mutex_enter(&vdp->xdf_cb_lk); 2482 rv = xdf_media_req(vdp, XBV_MEDIA_REQ_NONE, B_TRUE); 2483 mutex_exit(&vdp->xdf_cb_lk); 2484 return (rv); 2485 } 2486 2487 /* 2488 * Eject the current media. Ignores any media locks. (Media locks 2489 * are only for benifit of the the backend.) 2490 */ 2491 static int 2492 xdf_ioctl_eject(xdf_t *vdp) 2493 { 2494 int rv; 2495 2496 mutex_enter(&vdp->xdf_cb_lk); 2497 if ((rv = xdf_media_req(vdp, XBV_MEDIA_REQ_EJECT, B_FALSE)) != 0) { 2498 mutex_exit(&vdp->xdf_cb_lk); 2499 return (rv); 2500 } 2501 2502 /* 2503 * We've set the media requests xenbus parameter to eject, so now 2504 * disconnect from the backend, wait for the backend to clear 2505 * the media requets xenbus paramter, and then we can reconnect 2506 * to the backend. 2507 */ 2508 (void) xdf_disconnect(vdp, XD_UNKNOWN, B_TRUE); 2509 mutex_enter(&vdp->xdf_dev_lk); 2510 if (xdf_connect_locked(vdp, B_TRUE) != XD_READY) { 2511 mutex_exit(&vdp->xdf_dev_lk); 2512 mutex_exit(&vdp->xdf_cb_lk); 2513 return (EIO); 2514 } 2515 mutex_exit(&vdp->xdf_dev_lk); 2516 mutex_exit(&vdp->xdf_cb_lk); 2517 return (0); 2518 } 2519 2520 /* 2521 * Watch for media state changes. This can be an insertion of a device 2522 * (triggered by a 'xm block-configure' request in another domain) or 2523 * the ejection of a device (triggered by a local "eject" operation). 2524 * For a full description of the DKIOCSTATE ioctl behavior see dkio(7I). 2525 */ 2526 static int 2527 xdf_dkstate(xdf_t *vdp, enum dkio_state mstate) 2528 { 2529 enum dkio_state prev_state; 2530 2531 mutex_enter(&vdp->xdf_cb_lk); 2532 prev_state = vdp->xdf_mstate; 2533 2534 if (vdp->xdf_mstate == mstate) { 2535 while (vdp->xdf_mstate == prev_state) { 2536 if (cv_wait_sig(&vdp->xdf_mstate_cv, 2537 &vdp->xdf_cb_lk) == 0) { 2538 mutex_exit(&vdp->xdf_cb_lk); 2539 return (EINTR); 2540 } 2541 } 2542 } 2543 2544 if ((prev_state != DKIO_INSERTED) && 2545 (vdp->xdf_mstate == DKIO_INSERTED)) { 2546 (void) xdf_media_req(vdp, XBV_MEDIA_REQ_LOCK, B_TRUE); 2547 mutex_exit(&vdp->xdf_cb_lk); 2548 return (0); 2549 } 2550 2551 mutex_exit(&vdp->xdf_cb_lk); 2552 return (0); 2553 } 2554 2555 /*ARGSUSED*/ 2556 static int 2557 xdf_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *credp, 2558 int *rvalp) 2559 { 2560 minor_t minor = getminor(dev); 2561 int part = XDF_PART(minor); 2562 xdf_t *vdp; 2563 int rv; 2564 2565 if (((vdp = ddi_get_soft_state(xdf_ssp, XDF_INST(minor))) == NULL) || 2566 (!xdf_isopen(vdp, part))) 2567 return (ENXIO); 2568 2569 DPRINTF(IOCTL_DBG, ("xdf@%s:ioctl: cmd %d (0x%x)\n", 2570 vdp->xdf_addr, cmd, cmd)); 2571 2572 switch (cmd) { 2573 default: 2574 return (ENOTTY); 2575 case DKIOCG_PHYGEOM: 2576 case DKIOCG_VIRTGEOM: 2577 case DKIOCGGEOM: 2578 case DKIOCSGEOM: 2579 case DKIOCGAPART: 2580 case DKIOCSAPART: 2581 case DKIOCGVTOC: 2582 case DKIOCSVTOC: 2583 case DKIOCPARTINFO: 2584 case DKIOCGEXTVTOC: 2585 case DKIOCSEXTVTOC: 2586 case DKIOCEXTPARTINFO: 2587 case DKIOCGMBOOT: 2588 case DKIOCSMBOOT: 2589 case DKIOCGETEFI: 2590 case DKIOCSETEFI: 2591 case DKIOCSETEXTPART: 2592 case DKIOCPARTITION: 2593 return (cmlb_ioctl(vdp->xdf_vd_lbl, dev, cmd, arg, mode, credp, 2594 rvalp, NULL)); 2595 case FDEJECT: 2596 case DKIOCEJECT: 2597 case CDROMEJECT: 2598 return (xdf_ioctl_eject(vdp)); 2599 case DKIOCLOCK: 2600 return (xdf_ioctl_mlock(vdp)); 2601 case DKIOCUNLOCK: 2602 return (xdf_ioctl_munlock(vdp)); 2603 case CDROMREADOFFSET: { 2604 int offset = 0; 2605 if (!XD_IS_CD(vdp)) 2606 return (ENOTTY); 2607 if (ddi_copyout(&offset, (void *)arg, sizeof (int), mode)) 2608 return (EFAULT); 2609 return (0); 2610 } 2611 case DKIOCGMEDIAINFO: { 2612 struct dk_minfo media_info; 2613 2614 media_info.dki_lbsize = vdp->xdf_xdev_secsize; 2615 media_info.dki_capacity = vdp->xdf_pgeom.g_capacity; 2616 if (XD_IS_CD(vdp)) 2617 media_info.dki_media_type = DK_CDROM; 2618 else 2619 media_info.dki_media_type = DK_FIXED_DISK; 2620 2621 if (ddi_copyout(&media_info, (void *)arg, 2622 sizeof (struct dk_minfo), mode)) 2623 return (EFAULT); 2624 return (0); 2625 } 2626 case DKIOCINFO: { 2627 struct dk_cinfo info; 2628 2629 /* controller information */ 2630 if (XD_IS_CD(vdp)) 2631 info.dki_ctype = DKC_CDROM; 2632 else 2633 info.dki_ctype = DKC_VBD; 2634 2635 info.dki_cnum = 0; 2636 (void) strncpy((char *)(&info.dki_cname), "xdf", 8); 2637 2638 /* unit information */ 2639 info.dki_unit = ddi_get_instance(vdp->xdf_dip); 2640 (void) strncpy((char *)(&info.dki_dname), "xdf", 8); 2641 info.dki_flags = DKI_FMTVOL; 2642 info.dki_partition = part; 2643 info.dki_maxtransfer = maxphys / DEV_BSIZE; 2644 info.dki_addr = 0; 2645 info.dki_space = 0; 2646 info.dki_prio = 0; 2647 info.dki_vec = 0; 2648 2649 if (ddi_copyout(&info, (void *)arg, sizeof (info), mode)) 2650 return (EFAULT); 2651 return (0); 2652 } 2653 case DKIOCSTATE: { 2654 enum dkio_state mstate; 2655 2656 if (ddi_copyin((void *)arg, &mstate, 2657 sizeof (mstate), mode) != 0) 2658 return (EFAULT); 2659 if ((rv = xdf_dkstate(vdp, mstate)) != 0) 2660 return (rv); 2661 mstate = vdp->xdf_mstate; 2662 if (ddi_copyout(&mstate, (void *)arg, 2663 sizeof (mstate), mode) != 0) 2664 return (EFAULT); 2665 return (0); 2666 } 2667 case DKIOCREMOVABLE: { 2668 int i = BOOLEAN2VOID(XD_IS_RM(vdp)); 2669 if (ddi_copyout(&i, (caddr_t)arg, sizeof (i), mode)) 2670 return (EFAULT); 2671 return (0); 2672 } 2673 case DKIOCGETWCE: { 2674 int i = BOOLEAN2VOID(XD_IS_RM(vdp)); 2675 if (ddi_copyout(&i, (void *)arg, sizeof (i), mode)) 2676 return (EFAULT); 2677 return (0); 2678 } 2679 case DKIOCSETWCE: { 2680 int i; 2681 if (ddi_copyin((void *)arg, &i, sizeof (i), mode)) 2682 return (EFAULT); 2683 vdp->xdf_wce = VOID2BOOLEAN(i); 2684 return (0); 2685 } 2686 case DKIOCFLUSHWRITECACHE: { 2687 struct dk_callback *dkc = (struct dk_callback *)arg; 2688 2689 if (vdp->xdf_flush_supported) { 2690 rv = xdf_lb_rdwr(vdp->xdf_dip, TG_WRITE, 2691 NULL, 0, 0, (void *)dev); 2692 } else if (vdp->xdf_feature_barrier && 2693 !xdf_barrier_flush_disable) { 2694 rv = xdf_lb_rdwr(vdp->xdf_dip, TG_WRITE, 2695 vdp->xdf_cache_flush_block, xdf_flush_block, 2696 vdp->xdf_xdev_secsize, (void *)dev); 2697 } else { 2698 return (ENOTTY); 2699 } 2700 if ((mode & FKIOCTL) && (dkc != NULL) && 2701 (dkc->dkc_callback != NULL)) { 2702 (*dkc->dkc_callback)(dkc->dkc_cookie, rv); 2703 /* need to return 0 after calling callback */ 2704 rv = 0; 2705 } 2706 return (rv); 2707 } 2708 } 2709 /*NOTREACHED*/ 2710 } 2711 2712 static int 2713 xdf_strategy(struct buf *bp) 2714 { 2715 xdf_t *vdp; 2716 minor_t minor; 2717 diskaddr_t p_blkct, p_blkst; 2718 daddr_t blkno; 2719 ulong_t nblks; 2720 int part; 2721 2722 minor = getminor(bp->b_edev); 2723 part = XDF_PART(minor); 2724 vdp = ddi_get_soft_state(xdf_ssp, XDF_INST(minor)); 2725 2726 mutex_enter(&vdp->xdf_dev_lk); 2727 if (!xdf_isopen(vdp, part)) { 2728 mutex_exit(&vdp->xdf_dev_lk); 2729 xdf_io_err(bp, ENXIO, 0); 2730 return (0); 2731 } 2732 2733 /* We don't allow IO from the oe_change callback thread */ 2734 ASSERT(curthread != vdp->xdf_oe_change_thread); 2735 2736 /* Check for writes to a read only device */ 2737 if (!IS_READ(bp) && XD_IS_RO(vdp)) { 2738 mutex_exit(&vdp->xdf_dev_lk); 2739 xdf_io_err(bp, EROFS, 0); 2740 return (0); 2741 } 2742 2743 /* Check if this I/O is accessing a partition or the entire disk */ 2744 if ((long)bp->b_private == XB_SLICE_NONE) { 2745 /* This I/O is using an absolute offset */ 2746 p_blkct = vdp->xdf_xdev_nblocks; 2747 p_blkst = 0; 2748 } else { 2749 /* This I/O is using a partition relative offset */ 2750 mutex_exit(&vdp->xdf_dev_lk); 2751 if (cmlb_partinfo(vdp->xdf_vd_lbl, part, &p_blkct, 2752 &p_blkst, NULL, NULL, NULL)) { 2753 xdf_io_err(bp, ENXIO, 0); 2754 return (0); 2755 } 2756 mutex_enter(&vdp->xdf_dev_lk); 2757 } 2758 2759 /* 2760 * Adjust the real blkno and bcount according to the underline 2761 * physical sector size. 2762 */ 2763 blkno = bp->b_blkno / (vdp->xdf_xdev_secsize / XB_BSIZE); 2764 2765 /* check for a starting block beyond the disk or partition limit */ 2766 if (blkno > p_blkct) { 2767 DPRINTF(IO_DBG, ("xdf@%s: block %lld exceeds VBD size %"PRIu64, 2768 vdp->xdf_addr, (longlong_t)blkno, (uint64_t)p_blkct)); 2769 mutex_exit(&vdp->xdf_dev_lk); 2770 xdf_io_err(bp, EINVAL, 0); 2771 return (0); 2772 } 2773 2774 /* Legacy: don't set error flag at this case */ 2775 if (blkno == p_blkct) { 2776 mutex_exit(&vdp->xdf_dev_lk); 2777 bp->b_resid = bp->b_bcount; 2778 biodone(bp); 2779 return (0); 2780 } 2781 2782 /* sanitize the input buf */ 2783 bioerror(bp, 0); 2784 bp->b_resid = 0; 2785 bp->av_back = bp->av_forw = NULL; 2786 2787 /* Adjust for partial transfer, this will result in an error later */ 2788 if (vdp->xdf_xdev_secsize != 0 && 2789 vdp->xdf_xdev_secsize != XB_BSIZE) { 2790 nblks = bp->b_bcount / vdp->xdf_xdev_secsize; 2791 } else { 2792 nblks = bp->b_bcount >> XB_BSHIFT; 2793 } 2794 2795 if ((blkno + nblks) > p_blkct) { 2796 if (vdp->xdf_xdev_secsize != 0 && 2797 vdp->xdf_xdev_secsize != XB_BSIZE) { 2798 bp->b_resid = 2799 ((blkno + nblks) - p_blkct) * 2800 vdp->xdf_xdev_secsize; 2801 } else { 2802 bp->b_resid = 2803 ((blkno + nblks) - p_blkct) << 2804 XB_BSHIFT; 2805 } 2806 bp->b_bcount -= bp->b_resid; 2807 } 2808 2809 DPRINTF(IO_DBG, ("xdf@%s: strategy blk %lld len %lu\n", 2810 vdp->xdf_addr, (longlong_t)blkno, (ulong_t)bp->b_bcount)); 2811 2812 /* Fix up the buf struct */ 2813 bp->b_flags |= B_BUSY; 2814 bp->b_private = (void *)(uintptr_t)p_blkst; 2815 2816 xdf_bp_push(vdp, bp); 2817 mutex_exit(&vdp->xdf_dev_lk); 2818 xdf_io_start(vdp); 2819 if (do_polled_io) 2820 (void) xdf_ring_drain(vdp); 2821 return (0); 2822 } 2823 2824 /*ARGSUSED*/ 2825 static int 2826 xdf_read(dev_t dev, struct uio *uiop, cred_t *credp) 2827 { 2828 xdf_t *vdp; 2829 minor_t minor; 2830 diskaddr_t p_blkcnt; 2831 int part; 2832 2833 minor = getminor(dev); 2834 if ((vdp = ddi_get_soft_state(xdf_ssp, XDF_INST(minor))) == NULL) 2835 return (ENXIO); 2836 2837 DPRINTF(IO_DBG, ("xdf@%s: read offset 0x%"PRIx64"\n", 2838 vdp->xdf_addr, (int64_t)uiop->uio_offset)); 2839 2840 part = XDF_PART(minor); 2841 if (!xdf_isopen(vdp, part)) 2842 return (ENXIO); 2843 2844 if (cmlb_partinfo(vdp->xdf_vd_lbl, part, &p_blkcnt, 2845 NULL, NULL, NULL, NULL)) 2846 return (ENXIO); 2847 2848 if (uiop->uio_loffset >= XB_DTOB(p_blkcnt, vdp)) 2849 return (ENOSPC); 2850 2851 if (U_INVAL(uiop)) 2852 return (EINVAL); 2853 2854 return (physio(xdf_strategy, NULL, dev, B_READ, xdfmin, uiop)); 2855 } 2856 2857 /*ARGSUSED*/ 2858 static int 2859 xdf_write(dev_t dev, struct uio *uiop, cred_t *credp) 2860 { 2861 xdf_t *vdp; 2862 minor_t minor; 2863 diskaddr_t p_blkcnt; 2864 int part; 2865 2866 minor = getminor(dev); 2867 if ((vdp = ddi_get_soft_state(xdf_ssp, XDF_INST(minor))) == NULL) 2868 return (ENXIO); 2869 2870 DPRINTF(IO_DBG, ("xdf@%s: write offset 0x%"PRIx64"\n", 2871 vdp->xdf_addr, (int64_t)uiop->uio_offset)); 2872 2873 part = XDF_PART(minor); 2874 if (!xdf_isopen(vdp, part)) 2875 return (ENXIO); 2876 2877 if (cmlb_partinfo(vdp->xdf_vd_lbl, part, &p_blkcnt, 2878 NULL, NULL, NULL, NULL)) 2879 return (ENXIO); 2880 2881 if (uiop->uio_loffset >= XB_DTOB(p_blkcnt, vdp)) 2882 return (ENOSPC); 2883 2884 if (U_INVAL(uiop)) 2885 return (EINVAL); 2886 2887 return (physio(xdf_strategy, NULL, dev, B_WRITE, xdfmin, uiop)); 2888 } 2889 2890 /*ARGSUSED*/ 2891 static int 2892 xdf_aread(dev_t dev, struct aio_req *aiop, cred_t *credp) 2893 { 2894 xdf_t *vdp; 2895 minor_t minor; 2896 struct uio *uiop = aiop->aio_uio; 2897 diskaddr_t p_blkcnt; 2898 int part; 2899 2900 minor = getminor(dev); 2901 if ((vdp = ddi_get_soft_state(xdf_ssp, XDF_INST(minor))) == NULL) 2902 return (ENXIO); 2903 2904 part = XDF_PART(minor); 2905 if (!xdf_isopen(vdp, part)) 2906 return (ENXIO); 2907 2908 if (cmlb_partinfo(vdp->xdf_vd_lbl, part, &p_blkcnt, 2909 NULL, NULL, NULL, NULL)) 2910 return (ENXIO); 2911 2912 if (uiop->uio_loffset >= XB_DTOB(p_blkcnt, vdp)) 2913 return (ENOSPC); 2914 2915 if (U_INVAL(uiop)) 2916 return (EINVAL); 2917 2918 return (aphysio(xdf_strategy, anocancel, dev, B_READ, xdfmin, aiop)); 2919 } 2920 2921 /*ARGSUSED*/ 2922 static int 2923 xdf_awrite(dev_t dev, struct aio_req *aiop, cred_t *credp) 2924 { 2925 xdf_t *vdp; 2926 minor_t minor; 2927 struct uio *uiop = aiop->aio_uio; 2928 diskaddr_t p_blkcnt; 2929 int part; 2930 2931 minor = getminor(dev); 2932 if ((vdp = ddi_get_soft_state(xdf_ssp, XDF_INST(minor))) == NULL) 2933 return (ENXIO); 2934 2935 part = XDF_PART(minor); 2936 if (!xdf_isopen(vdp, part)) 2937 return (ENXIO); 2938 2939 if (cmlb_partinfo(vdp->xdf_vd_lbl, part, &p_blkcnt, 2940 NULL, NULL, NULL, NULL)) 2941 return (ENXIO); 2942 2943 if (uiop->uio_loffset >= XB_DTOB(p_blkcnt, vdp)) 2944 return (ENOSPC); 2945 2946 if (U_INVAL(uiop)) 2947 return (EINVAL); 2948 2949 return (aphysio(xdf_strategy, anocancel, dev, B_WRITE, xdfmin, aiop)); 2950 } 2951 2952 static int 2953 xdf_dump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk) 2954 { 2955 struct buf dumpbuf, *dbp = &dumpbuf; 2956 xdf_t *vdp; 2957 minor_t minor; 2958 int err = 0; 2959 int part; 2960 diskaddr_t p_blkcnt, p_blkst; 2961 2962 minor = getminor(dev); 2963 if ((vdp = ddi_get_soft_state(xdf_ssp, XDF_INST(minor))) == NULL) 2964 return (ENXIO); 2965 2966 DPRINTF(IO_DBG, ("xdf@%s: dump addr (0x%p) blk (%ld) nblks (%d)\n", 2967 vdp->xdf_addr, (void *)addr, blkno, nblk)); 2968 2969 /* We don't allow IO from the oe_change callback thread */ 2970 ASSERT(curthread != vdp->xdf_oe_change_thread); 2971 2972 part = XDF_PART(minor); 2973 if (!xdf_isopen(vdp, part)) 2974 return (ENXIO); 2975 2976 if (cmlb_partinfo(vdp->xdf_vd_lbl, part, &p_blkcnt, &p_blkst, 2977 NULL, NULL, NULL)) 2978 return (ENXIO); 2979 2980 if ((blkno + nblk) > 2981 (p_blkcnt * (vdp->xdf_xdev_secsize / XB_BSIZE))) { 2982 cmn_err(CE_WARN, "xdf@%s: block %ld exceeds VBD size %"PRIu64, 2983 vdp->xdf_addr, (daddr_t)((blkno + nblk) / 2984 (vdp->xdf_xdev_secsize / XB_BSIZE)), (uint64_t)p_blkcnt); 2985 return (EINVAL); 2986 } 2987 2988 bioinit(dbp); 2989 dbp->b_flags = B_BUSY; 2990 dbp->b_un.b_addr = addr; 2991 dbp->b_bcount = nblk << DEV_BSHIFT; 2992 dbp->b_blkno = blkno; 2993 dbp->b_edev = dev; 2994 dbp->b_private = (void *)(uintptr_t)p_blkst; 2995 2996 mutex_enter(&vdp->xdf_dev_lk); 2997 xdf_bp_push(vdp, dbp); 2998 mutex_exit(&vdp->xdf_dev_lk); 2999 xdf_io_start(vdp); 3000 err = xdf_ring_drain(vdp); 3001 biofini(dbp); 3002 return (err); 3003 } 3004 3005 /*ARGSUSED*/ 3006 static int 3007 xdf_close(dev_t dev, int flag, int otyp, struct cred *credp) 3008 { 3009 minor_t minor; 3010 xdf_t *vdp; 3011 int part; 3012 ulong_t parbit; 3013 3014 minor = getminor(dev); 3015 if ((vdp = ddi_get_soft_state(xdf_ssp, XDF_INST(minor))) == NULL) 3016 return (ENXIO); 3017 3018 mutex_enter(&vdp->xdf_dev_lk); 3019 part = XDF_PART(minor); 3020 if (!xdf_isopen(vdp, part)) { 3021 mutex_exit(&vdp->xdf_dev_lk); 3022 return (ENXIO); 3023 } 3024 parbit = 1 << part; 3025 3026 ASSERT((vdp->xdf_vd_open[otyp] & parbit) != 0); 3027 if (otyp == OTYP_LYR) { 3028 ASSERT(vdp->xdf_vd_lyropen[part] > 0); 3029 if (--vdp->xdf_vd_lyropen[part] == 0) 3030 vdp->xdf_vd_open[otyp] &= ~parbit; 3031 } else { 3032 vdp->xdf_vd_open[otyp] &= ~parbit; 3033 } 3034 vdp->xdf_vd_exclopen &= ~parbit; 3035 3036 mutex_exit(&vdp->xdf_dev_lk); 3037 return (0); 3038 } 3039 3040 static int 3041 xdf_open(dev_t *devp, int flag, int otyp, cred_t *credp) 3042 { 3043 minor_t minor; 3044 xdf_t *vdp; 3045 int part; 3046 ulong_t parbit; 3047 diskaddr_t p_blkct = 0; 3048 boolean_t firstopen; 3049 boolean_t nodelay; 3050 3051 minor = getminor(*devp); 3052 if ((vdp = ddi_get_soft_state(xdf_ssp, XDF_INST(minor))) == NULL) 3053 return (ENXIO); 3054 3055 nodelay = (flag & (FNDELAY | FNONBLOCK)); 3056 3057 DPRINTF(DDI_DBG, ("xdf@%s: opening\n", vdp->xdf_addr)); 3058 3059 /* do cv_wait until connected or failed */ 3060 mutex_enter(&vdp->xdf_cb_lk); 3061 mutex_enter(&vdp->xdf_dev_lk); 3062 if (!nodelay && (xdf_connect_locked(vdp, B_TRUE) != XD_READY)) { 3063 mutex_exit(&vdp->xdf_dev_lk); 3064 mutex_exit(&vdp->xdf_cb_lk); 3065 return (ENXIO); 3066 } 3067 mutex_exit(&vdp->xdf_cb_lk); 3068 3069 if ((flag & FWRITE) && XD_IS_RO(vdp)) { 3070 mutex_exit(&vdp->xdf_dev_lk); 3071 return (EROFS); 3072 } 3073 3074 part = XDF_PART(minor); 3075 parbit = 1 << part; 3076 if ((vdp->xdf_vd_exclopen & parbit) || 3077 ((flag & FEXCL) && xdf_isopen(vdp, part))) { 3078 mutex_exit(&vdp->xdf_dev_lk); 3079 return (EBUSY); 3080 } 3081 3082 /* are we the first one to open this node? */ 3083 firstopen = !xdf_isopen(vdp, -1); 3084 3085 if (otyp == OTYP_LYR) 3086 vdp->xdf_vd_lyropen[part]++; 3087 3088 vdp->xdf_vd_open[otyp] |= parbit; 3089 3090 if (flag & FEXCL) 3091 vdp->xdf_vd_exclopen |= parbit; 3092 3093 mutex_exit(&vdp->xdf_dev_lk); 3094 3095 /* force a re-validation */ 3096 if (firstopen) 3097 cmlb_invalidate(vdp->xdf_vd_lbl, NULL); 3098 3099 /* If this is a non-blocking open then we're done */ 3100 if (nodelay) 3101 return (0); 3102 3103 /* 3104 * This is a blocking open, so we require: 3105 * - that the disk have a valid label on it 3106 * - that the size of the partition that we're opening is non-zero 3107 */ 3108 if ((cmlb_partinfo(vdp->xdf_vd_lbl, part, &p_blkct, 3109 NULL, NULL, NULL, NULL) != 0) || (p_blkct == 0)) { 3110 (void) xdf_close(*devp, flag, otyp, credp); 3111 return (ENXIO); 3112 } 3113 3114 return (0); 3115 } 3116 3117 /*ARGSUSED*/ 3118 static void 3119 xdf_watch_hp_status_cb(dev_info_t *dip, const char *path, void *arg) 3120 { 3121 xdf_t *vdp = (xdf_t *)ddi_get_driver_private(dip); 3122 cv_broadcast(&vdp->xdf_hp_status_cv); 3123 } 3124 3125 static int 3126 xdf_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int flags, 3127 char *name, caddr_t valuep, int *lengthp) 3128 { 3129 xdf_t *vdp = ddi_get_soft_state(xdf_ssp, ddi_get_instance(dip)); 3130 3131 /* 3132 * Sanity check that if a dev_t or dip were specified that they 3133 * correspond to this device driver. On debug kernels we'll 3134 * panic and on non-debug kernels we'll return failure. 3135 */ 3136 ASSERT(ddi_driver_major(dip) == xdf_major); 3137 ASSERT((dev == DDI_DEV_T_ANY) || (getmajor(dev) == xdf_major)); 3138 if ((ddi_driver_major(dip) != xdf_major) || 3139 ((dev != DDI_DEV_T_ANY) && (getmajor(dev) != xdf_major))) 3140 return (DDI_PROP_NOT_FOUND); 3141 3142 if (vdp == NULL) 3143 return (ddi_prop_op(dev, dip, prop_op, flags, 3144 name, valuep, lengthp)); 3145 3146 return (cmlb_prop_op(vdp->xdf_vd_lbl, 3147 dev, dip, prop_op, flags, name, valuep, lengthp, 3148 XDF_PART(getminor(dev)), NULL)); 3149 } 3150 3151 /*ARGSUSED*/ 3152 static int 3153 xdf_getinfo(dev_info_t *dip, ddi_info_cmd_t cmd, void *arg, void **rp) 3154 { 3155 int instance = XDF_INST(getminor((dev_t)arg)); 3156 xdf_t *vbdp; 3157 3158 switch (cmd) { 3159 case DDI_INFO_DEVT2DEVINFO: 3160 if ((vbdp = ddi_get_soft_state(xdf_ssp, instance)) == NULL) { 3161 *rp = NULL; 3162 return (DDI_FAILURE); 3163 } 3164 *rp = vbdp->xdf_dip; 3165 return (DDI_SUCCESS); 3166 3167 case DDI_INFO_DEVT2INSTANCE: 3168 *rp = (void *)(uintptr_t)instance; 3169 return (DDI_SUCCESS); 3170 3171 default: 3172 return (DDI_FAILURE); 3173 } 3174 } 3175 3176 /*ARGSUSED*/ 3177 static int 3178 xdf_resume(dev_info_t *dip) 3179 { 3180 xdf_t *vdp; 3181 char *oename; 3182 3183 if ((vdp = ddi_get_soft_state(xdf_ssp, ddi_get_instance(dip))) == NULL) 3184 goto err; 3185 3186 if (xdf_debug & SUSRES_DBG) 3187 xen_printf("xdf@%s: xdf_resume\n", vdp->xdf_addr); 3188 3189 mutex_enter(&vdp->xdf_cb_lk); 3190 3191 if (xvdi_resume(dip) != DDI_SUCCESS) { 3192 mutex_exit(&vdp->xdf_cb_lk); 3193 goto err; 3194 } 3195 3196 if (((oename = xvdi_get_oename(dip)) == NULL) || 3197 (xvdi_add_xb_watch_handler(dip, oename, XBP_HP_STATUS, 3198 xdf_watch_hp_status_cb, NULL) != DDI_SUCCESS)) { 3199 mutex_exit(&vdp->xdf_cb_lk); 3200 goto err; 3201 } 3202 3203 mutex_enter(&vdp->xdf_dev_lk); 3204 ASSERT(vdp->xdf_state != XD_READY); 3205 xdf_set_state(vdp, XD_UNKNOWN); 3206 mutex_exit(&vdp->xdf_dev_lk); 3207 3208 if (xdf_setstate_init(vdp) != DDI_SUCCESS) { 3209 mutex_exit(&vdp->xdf_cb_lk); 3210 goto err; 3211 } 3212 3213 mutex_exit(&vdp->xdf_cb_lk); 3214 3215 if (xdf_debug & SUSRES_DBG) 3216 xen_printf("xdf@%s: xdf_resume: done\n", vdp->xdf_addr); 3217 return (DDI_SUCCESS); 3218 err: 3219 if (xdf_debug & SUSRES_DBG) 3220 xen_printf("xdf@%s: xdf_resume: fail\n", vdp->xdf_addr); 3221 return (DDI_FAILURE); 3222 } 3223 3224 static int 3225 xdf_attach(dev_info_t *dip, ddi_attach_cmd_t cmd) 3226 { 3227 int n, instance = ddi_get_instance(dip); 3228 ddi_iblock_cookie_t ibc, softibc; 3229 boolean_t dev_iscd = B_FALSE; 3230 xdf_t *vdp; 3231 char *oename, *xsname, *str; 3232 3233 if ((n = ddi_prop_get_int(DDI_DEV_T_ANY, dip, DDI_PROP_NOTPROM, 3234 "xdf_debug", 0)) != 0) 3235 xdf_debug = n; 3236 3237 switch (cmd) { 3238 case DDI_RESUME: 3239 return (xdf_resume(dip)); 3240 case DDI_ATTACH: 3241 break; 3242 default: 3243 return (DDI_FAILURE); 3244 } 3245 /* DDI_ATTACH */ 3246 3247 if (((xsname = xvdi_get_xsname(dip)) == NULL) || 3248 ((oename = xvdi_get_oename(dip)) == NULL)) 3249 return (DDI_FAILURE); 3250 3251 /* 3252 * Disable auto-detach. This is necessary so that we don't get 3253 * detached while we're disconnected from the back end. 3254 */ 3255 if ((ddi_prop_update_int(DDI_DEV_T_NONE, dip, 3256 DDI_NO_AUTODETACH, 1) != DDI_PROP_SUCCESS)) 3257 return (DDI_FAILURE); 3258 3259 /* driver handles kernel-issued IOCTLs */ 3260 if (ddi_prop_create(DDI_DEV_T_NONE, dip, 3261 DDI_PROP_CANSLEEP, DDI_KERNEL_IOCTL, NULL, 0) != DDI_PROP_SUCCESS) 3262 return (DDI_FAILURE); 3263 3264 if (ddi_get_iblock_cookie(dip, 0, &ibc) != DDI_SUCCESS) 3265 return (DDI_FAILURE); 3266 3267 if (ddi_get_soft_iblock_cookie(dip, 3268 DDI_SOFTINT_LOW, &softibc) != DDI_SUCCESS) 3269 return (DDI_FAILURE); 3270 3271 if (xenbus_read_str(xsname, XBP_DEV_TYPE, &str) != 0) { 3272 cmn_err(CE_WARN, "xdf@%s: cannot read device-type", 3273 ddi_get_name_addr(dip)); 3274 return (DDI_FAILURE); 3275 } 3276 if (strcmp(str, XBV_DEV_TYPE_CD) == 0) 3277 dev_iscd = B_TRUE; 3278 strfree(str); 3279 3280 if (ddi_soft_state_zalloc(xdf_ssp, instance) != DDI_SUCCESS) 3281 return (DDI_FAILURE); 3282 3283 DPRINTF(DDI_DBG, ("xdf@%s: attaching\n", ddi_get_name_addr(dip))); 3284 vdp = ddi_get_soft_state(xdf_ssp, instance); 3285 ddi_set_driver_private(dip, vdp); 3286 vdp->xdf_dip = dip; 3287 vdp->xdf_addr = ddi_get_name_addr(dip); 3288 vdp->xdf_suspending = B_FALSE; 3289 vdp->xdf_media_req_supported = B_FALSE; 3290 vdp->xdf_peer = INVALID_DOMID; 3291 vdp->xdf_evtchn = INVALID_EVTCHN; 3292 list_create(&vdp->xdf_vreq_act, sizeof (v_req_t), 3293 offsetof(v_req_t, v_link)); 3294 cv_init(&vdp->xdf_dev_cv, NULL, CV_DEFAULT, NULL); 3295 cv_init(&vdp->xdf_hp_status_cv, NULL, CV_DEFAULT, NULL); 3296 cv_init(&vdp->xdf_mstate_cv, NULL, CV_DEFAULT, NULL); 3297 mutex_init(&vdp->xdf_dev_lk, NULL, MUTEX_DRIVER, (void *)ibc); 3298 mutex_init(&vdp->xdf_cb_lk, NULL, MUTEX_DRIVER, (void *)ibc); 3299 mutex_init(&vdp->xdf_iostat_lk, NULL, MUTEX_DRIVER, (void *)ibc); 3300 vdp->xdf_cmbl_reattach = B_TRUE; 3301 if (dev_iscd) { 3302 vdp->xdf_dinfo |= VDISK_CDROM; 3303 vdp->xdf_mstate = DKIO_EJECTED; 3304 } else { 3305 vdp->xdf_mstate = DKIO_NONE; 3306 } 3307 3308 if ((vdp->xdf_ready_tq = ddi_taskq_create(dip, "xdf_ready_tq", 3309 1, TASKQ_DEFAULTPRI, 0)) == NULL) 3310 goto errout0; 3311 3312 if (xvdi_add_xb_watch_handler(dip, oename, XBP_HP_STATUS, 3313 xdf_watch_hp_status_cb, NULL) != DDI_SUCCESS) 3314 goto errout0; 3315 3316 if (ddi_add_softintr(dip, DDI_SOFTINT_LOW, &vdp->xdf_softintr_id, 3317 &softibc, NULL, xdf_iorestart, (caddr_t)vdp) != DDI_SUCCESS) { 3318 cmn_err(CE_WARN, "xdf@%s: failed to add softintr", 3319 ddi_get_name_addr(dip)); 3320 goto errout0; 3321 } 3322 3323 /* 3324 * Initialize the physical geometry stucture. Note that currently 3325 * we don't know the size of the backend device so the number 3326 * of blocks on the device will be initialized to zero. Once 3327 * we connect to the backend device we'll update the physical 3328 * geometry to reflect the real size of the device. 3329 */ 3330 xdf_synthetic_pgeom(dip, &vdp->xdf_pgeom); 3331 vdp->xdf_pgeom_fixed = B_FALSE; 3332 3333 /* 3334 * create default device minor nodes: non-removable disk 3335 * we will adjust minor nodes after we are connected w/ backend 3336 */ 3337 cmlb_alloc_handle(&vdp->xdf_vd_lbl); 3338 if (xdf_cmlb_attach(vdp) != 0) { 3339 cmn_err(CE_WARN, 3340 "xdf@%s: attach failed, cmlb attach failed", 3341 ddi_get_name_addr(dip)); 3342 goto errout0; 3343 } 3344 3345 /* 3346 * We ship with cache-enabled disks 3347 */ 3348 vdp->xdf_wce = B_TRUE; 3349 3350 mutex_enter(&vdp->xdf_cb_lk); 3351 /* Watch backend XenbusState change */ 3352 if (xvdi_add_event_handler(dip, 3353 XS_OE_STATE, xdf_oe_change, NULL) != DDI_SUCCESS) { 3354 mutex_exit(&vdp->xdf_cb_lk); 3355 goto errout0; 3356 } 3357 3358 if (xdf_setstate_init(vdp) != DDI_SUCCESS) { 3359 cmn_err(CE_WARN, "xdf@%s: start connection failed", 3360 ddi_get_name_addr(dip)); 3361 mutex_exit(&vdp->xdf_cb_lk); 3362 goto errout1; 3363 } 3364 mutex_exit(&vdp->xdf_cb_lk); 3365 3366 #if defined(XPV_HVM_DRIVER) 3367 3368 xdf_hvm_add(dip); 3369 3370 /* Report our version to dom0. */ 3371 if (xenbus_printf(XBT_NULL, "guest/xdf", "version", "%d", 3372 HVMPV_XDF_VERS)) 3373 cmn_err(CE_WARN, "xdf: couldn't write version\n"); 3374 3375 #endif /* XPV_HVM_DRIVER */ 3376 3377 /* create kstat for iostat(1M) */ 3378 if (xdf_kstat_create(dip, "xdf", instance) != 0) { 3379 cmn_err(CE_WARN, "xdf@%s: failed to create kstat", 3380 ddi_get_name_addr(dip)); 3381 goto errout1; 3382 } 3383 3384 3385 ddi_report_dev(dip); 3386 DPRINTF(DDI_DBG, ("xdf@%s: attached\n", vdp->xdf_addr)); 3387 return (DDI_SUCCESS); 3388 3389 errout1: 3390 (void) xvdi_switch_state(vdp->xdf_dip, XBT_NULL, XenbusStateClosed); 3391 xvdi_remove_event_handler(dip, XS_OE_STATE); 3392 errout0: 3393 if (vdp->xdf_vd_lbl != NULL) { 3394 cmlb_detach(vdp->xdf_vd_lbl, NULL); 3395 cmlb_free_handle(&vdp->xdf_vd_lbl); 3396 vdp->xdf_vd_lbl = NULL; 3397 } 3398 if (vdp->xdf_softintr_id != NULL) 3399 ddi_remove_softintr(vdp->xdf_softintr_id); 3400 xvdi_remove_xb_watch_handlers(dip); 3401 if (vdp->xdf_ready_tq != NULL) 3402 ddi_taskq_destroy(vdp->xdf_ready_tq); 3403 mutex_destroy(&vdp->xdf_cb_lk); 3404 mutex_destroy(&vdp->xdf_dev_lk); 3405 cv_destroy(&vdp->xdf_dev_cv); 3406 cv_destroy(&vdp->xdf_hp_status_cv); 3407 ddi_soft_state_free(xdf_ssp, instance); 3408 ddi_set_driver_private(dip, NULL); 3409 ddi_prop_remove_all(dip); 3410 cmn_err(CE_WARN, "xdf@%s: attach failed", ddi_get_name_addr(dip)); 3411 return (DDI_FAILURE); 3412 } 3413 3414 static int 3415 xdf_suspend(dev_info_t *dip) 3416 { 3417 int instance = ddi_get_instance(dip); 3418 xdf_t *vdp; 3419 3420 if ((vdp = ddi_get_soft_state(xdf_ssp, instance)) == NULL) 3421 return (DDI_FAILURE); 3422 3423 if (xdf_debug & SUSRES_DBG) 3424 xen_printf("xdf@%s: xdf_suspend\n", vdp->xdf_addr); 3425 3426 xvdi_suspend(dip); 3427 3428 mutex_enter(&vdp->xdf_cb_lk); 3429 mutex_enter(&vdp->xdf_dev_lk); 3430 3431 vdp->xdf_suspending = B_TRUE; 3432 xdf_ring_destroy(vdp); 3433 xdf_set_state(vdp, XD_SUSPEND); 3434 vdp->xdf_suspending = B_FALSE; 3435 3436 mutex_exit(&vdp->xdf_dev_lk); 3437 mutex_exit(&vdp->xdf_cb_lk); 3438 3439 if (xdf_debug & SUSRES_DBG) 3440 xen_printf("xdf@%s: xdf_suspend: done\n", vdp->xdf_addr); 3441 3442 return (DDI_SUCCESS); 3443 } 3444 3445 static int 3446 xdf_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) 3447 { 3448 xdf_t *vdp; 3449 int instance; 3450 3451 switch (cmd) { 3452 3453 case DDI_PM_SUSPEND: 3454 break; 3455 3456 case DDI_SUSPEND: 3457 return (xdf_suspend(dip)); 3458 3459 case DDI_DETACH: 3460 break; 3461 3462 default: 3463 return (DDI_FAILURE); 3464 } 3465 3466 instance = ddi_get_instance(dip); 3467 DPRINTF(DDI_DBG, ("xdf@%s: detaching\n", ddi_get_name_addr(dip))); 3468 vdp = ddi_get_soft_state(xdf_ssp, instance); 3469 3470 if (vdp == NULL) 3471 return (DDI_FAILURE); 3472 3473 mutex_enter(&vdp->xdf_cb_lk); 3474 xdf_disconnect(vdp, XD_CLOSED, B_FALSE); 3475 if (vdp->xdf_state != XD_CLOSED) { 3476 mutex_exit(&vdp->xdf_cb_lk); 3477 return (DDI_FAILURE); 3478 } 3479 mutex_exit(&vdp->xdf_cb_lk); 3480 3481 ASSERT(!ISDMACBON(vdp)); 3482 3483 #if defined(XPV_HVM_DRIVER) 3484 xdf_hvm_rm(dip); 3485 #endif /* XPV_HVM_DRIVER */ 3486 3487 if (vdp->xdf_timeout_id != 0) 3488 (void) untimeout(vdp->xdf_timeout_id); 3489 3490 xvdi_remove_event_handler(dip, XS_OE_STATE); 3491 ddi_taskq_destroy(vdp->xdf_ready_tq); 3492 3493 cmlb_detach(vdp->xdf_vd_lbl, NULL); 3494 cmlb_free_handle(&vdp->xdf_vd_lbl); 3495 3496 /* we'll support backend running in domU later */ 3497 #ifdef DOMU_BACKEND 3498 (void) xvdi_post_event(dip, XEN_HP_REMOVE); 3499 #endif 3500 3501 list_destroy(&vdp->xdf_vreq_act); 3502 ddi_prop_remove_all(dip); 3503 xdf_kstat_delete(dip); 3504 ddi_remove_softintr(vdp->xdf_softintr_id); 3505 xvdi_remove_xb_watch_handlers(dip); 3506 ddi_set_driver_private(dip, NULL); 3507 cv_destroy(&vdp->xdf_dev_cv); 3508 mutex_destroy(&vdp->xdf_cb_lk); 3509 mutex_destroy(&vdp->xdf_dev_lk); 3510 if (vdp->xdf_cache_flush_block != NULL) 3511 kmem_free(vdp->xdf_flush_mem, 2 * vdp->xdf_xdev_secsize); 3512 ddi_soft_state_free(xdf_ssp, instance); 3513 return (DDI_SUCCESS); 3514 } 3515 3516 /* 3517 * Driver linkage structures. 3518 */ 3519 static struct cb_ops xdf_cbops = { 3520 xdf_open, 3521 xdf_close, 3522 xdf_strategy, 3523 nodev, 3524 xdf_dump, 3525 xdf_read, 3526 xdf_write, 3527 xdf_ioctl, 3528 nodev, 3529 nodev, 3530 nodev, 3531 nochpoll, 3532 xdf_prop_op, 3533 NULL, 3534 D_MP | D_NEW | D_64BIT, 3535 CB_REV, 3536 xdf_aread, 3537 xdf_awrite 3538 }; 3539 3540 struct dev_ops xdf_devops = { 3541 DEVO_REV, /* devo_rev */ 3542 0, /* devo_refcnt */ 3543 xdf_getinfo, /* devo_getinfo */ 3544 nulldev, /* devo_identify */ 3545 nulldev, /* devo_probe */ 3546 xdf_attach, /* devo_attach */ 3547 xdf_detach, /* devo_detach */ 3548 nodev, /* devo_reset */ 3549 &xdf_cbops, /* devo_cb_ops */ 3550 NULL, /* devo_bus_ops */ 3551 NULL, /* devo_power */ 3552 ddi_quiesce_not_supported, /* devo_quiesce */ 3553 }; 3554 3555 /* 3556 * Module linkage structures. 3557 */ 3558 static struct modldrv modldrv = { 3559 &mod_driverops, /* Type of module. This one is a driver */ 3560 "virtual block driver", /* short description */ 3561 &xdf_devops /* driver specific ops */ 3562 }; 3563 3564 static struct modlinkage xdf_modlinkage = { 3565 MODREV_1, (void *)&modldrv, NULL 3566 }; 3567 3568 /* 3569 * standard module entry points 3570 */ 3571 int 3572 _init(void) 3573 { 3574 int rc; 3575 3576 xdf_major = ddi_name_to_major("xdf"); 3577 if (xdf_major == (major_t)-1) 3578 return (EINVAL); 3579 3580 if ((rc = ddi_soft_state_init(&xdf_ssp, sizeof (xdf_t), 0)) != 0) 3581 return (rc); 3582 3583 xdf_vreq_cache = kmem_cache_create("xdf_vreq_cache", 3584 sizeof (v_req_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 3585 xdf_gs_cache = kmem_cache_create("xdf_gs_cache", 3586 sizeof (ge_slot_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 3587 3588 #if defined(XPV_HVM_DRIVER) 3589 xdf_hvm_init(); 3590 #endif /* XPV_HVM_DRIVER */ 3591 3592 if ((rc = mod_install(&xdf_modlinkage)) != 0) { 3593 #if defined(XPV_HVM_DRIVER) 3594 xdf_hvm_fini(); 3595 #endif /* XPV_HVM_DRIVER */ 3596 kmem_cache_destroy(xdf_vreq_cache); 3597 kmem_cache_destroy(xdf_gs_cache); 3598 ddi_soft_state_fini(&xdf_ssp); 3599 return (rc); 3600 } 3601 3602 return (rc); 3603 } 3604 3605 int 3606 _fini(void) 3607 { 3608 int err; 3609 if ((err = mod_remove(&xdf_modlinkage)) != 0) 3610 return (err); 3611 3612 #if defined(XPV_HVM_DRIVER) 3613 xdf_hvm_fini(); 3614 #endif /* XPV_HVM_DRIVER */ 3615 3616 kmem_cache_destroy(xdf_vreq_cache); 3617 kmem_cache_destroy(xdf_gs_cache); 3618 ddi_soft_state_fini(&xdf_ssp); 3619 3620 return (0); 3621 } 3622 3623 int 3624 _info(struct modinfo *modinfop) 3625 { 3626 return (mod_info(&xdf_modlinkage, modinfop)); 3627 } 3628