xref: /illumos-gate/usr/src/uts/common/vm/vm_pvn.c (revision ba2be53024c0b999e74ba9adcd7d80fec5df8c57)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
27 /*	  All Rights Reserved  	*/
28 
29 /*
30  * University Copyright- Copyright (c) 1982, 1986, 1988
31  * The Regents of the University of California
32  * All Rights Reserved
33  *
34  * University Acknowledgment- Portions of this document are derived from
35  * software developed by the University of California, Berkeley, and its
36  * contributors.
37  */
38 
39 #pragma ident	"%Z%%M%	%I%	%E% SMI"
40 
41 /*
42  * VM - paged vnode.
43  *
44  * This file supplies vm support for the vnode operations that deal with pages.
45  */
46 #include <sys/types.h>
47 #include <sys/t_lock.h>
48 #include <sys/param.h>
49 #include <sys/sysmacros.h>
50 #include <sys/systm.h>
51 #include <sys/time.h>
52 #include <sys/buf.h>
53 #include <sys/vnode.h>
54 #include <sys/uio.h>
55 #include <sys/vmmeter.h>
56 #include <sys/vmsystm.h>
57 #include <sys/mman.h>
58 #include <sys/vfs.h>
59 #include <sys/cred.h>
60 #include <sys/user.h>
61 #include <sys/kmem.h>
62 #include <sys/cmn_err.h>
63 #include <sys/debug.h>
64 #include <sys/cpuvar.h>
65 #include <sys/vtrace.h>
66 #include <sys/tnf_probe.h>
67 
68 #include <vm/hat.h>
69 #include <vm/as.h>
70 #include <vm/seg.h>
71 #include <vm/rm.h>
72 #include <vm/pvn.h>
73 #include <vm/page.h>
74 #include <vm/seg_map.h>
75 #include <vm/seg_kmem.h>
76 #include <sys/fs/swapnode.h>
77 
78 int pvn_nofodklust = 0;
79 int pvn_write_noklust = 0;
80 
81 uint_t pvn_vmodsort_supported = 0;	/* set if HAT supports VMODSORT */
82 uint_t pvn_vmodsort_disable = 0;	/* set in /etc/system to disable HAT */
83 					/* support for vmodsort for testing */
84 
85 static struct kmem_cache *marker_cache = NULL;
86 
87 /*
88  * Find the largest contiguous block which contains `addr' for file offset
89  * `offset' in it while living within the file system block sizes (`vp_off'
90  * and `vp_len') and the address space limits for which no pages currently
91  * exist and which map to consecutive file offsets.
92  */
93 page_t *
94 pvn_read_kluster(
95 	struct vnode *vp,
96 	u_offset_t off,
97 	struct seg *seg,
98 	caddr_t addr,
99 	u_offset_t *offp,			/* return values */
100 	size_t *lenp,				/* return values */
101 	u_offset_t vp_off,
102 	size_t vp_len,
103 	int isra)
104 {
105 	ssize_t deltaf, deltab;
106 	page_t *pp;
107 	page_t *plist = NULL;
108 	spgcnt_t pagesavail;
109 	u_offset_t vp_end;
110 
111 	ASSERT(off >= vp_off && off < vp_off + vp_len);
112 
113 	/*
114 	 * We only want to do klustering/read ahead if there
115 	 * is more than minfree pages currently available.
116 	 */
117 	pagesavail = freemem - minfree;
118 
119 	if (pagesavail <= 0)
120 		if (isra)
121 			return ((page_t *)NULL);    /* ra case - give up */
122 		else
123 			pagesavail = 1;		    /* must return a page */
124 
125 	/* We calculate in pages instead of bytes due to 32-bit overflows */
126 	if (pagesavail < (spgcnt_t)btopr(vp_len)) {
127 		/*
128 		 * Don't have enough free memory for the
129 		 * max request, try sizing down vp request.
130 		 */
131 		deltab = (ssize_t)(off - vp_off);
132 		vp_len -= deltab;
133 		vp_off += deltab;
134 		if (pagesavail < btopr(vp_len)) {
135 			/*
136 			 * Still not enough memory, just settle for
137 			 * pagesavail which is at least 1.
138 			 */
139 			vp_len = ptob(pagesavail);
140 		}
141 	}
142 
143 	vp_end = vp_off + vp_len;
144 	ASSERT(off >= vp_off && off < vp_end);
145 
146 	if (isra && SEGOP_KLUSTER(seg, addr, 0))
147 		return ((page_t *)NULL);	/* segment driver says no */
148 
149 	if ((plist = page_create_va(vp, off,
150 	    PAGESIZE, PG_EXCL | PG_WAIT, seg, addr)) == NULL)
151 		return ((page_t *)NULL);
152 
153 	if (vp_len <= PAGESIZE || pvn_nofodklust) {
154 		*offp = off;
155 		*lenp = MIN(vp_len, PAGESIZE);
156 	} else {
157 		/*
158 		 * Scan back from front by incrementing "deltab" and
159 		 * comparing "off" with "vp_off + deltab" to avoid
160 		 * "signed" versus "unsigned" conversion problems.
161 		 */
162 		for (deltab = PAGESIZE; off >= vp_off + deltab;
163 		    deltab += PAGESIZE) {
164 			/*
165 			 * Call back to the segment driver to verify that
166 			 * the klustering/read ahead operation makes sense.
167 			 */
168 			if (SEGOP_KLUSTER(seg, addr, -deltab))
169 				break;		/* page not eligible */
170 			if ((pp = page_create_va(vp, off - deltab,
171 			    PAGESIZE, PG_EXCL, seg, addr - deltab))
172 			    == NULL)
173 				break;		/* already have the page */
174 			/*
175 			 * Add page to front of page list.
176 			 */
177 			page_add(&plist, pp);
178 		}
179 		deltab -= PAGESIZE;
180 
181 		/* scan forward from front */
182 		for (deltaf = PAGESIZE; off + deltaf < vp_end;
183 		    deltaf += PAGESIZE) {
184 			/*
185 			 * Call back to the segment driver to verify that
186 			 * the klustering/read ahead operation makes sense.
187 			 */
188 			if (SEGOP_KLUSTER(seg, addr, deltaf))
189 				break;		/* page not file extension */
190 			if ((pp = page_create_va(vp, off + deltaf,
191 			    PAGESIZE, PG_EXCL, seg, addr + deltaf))
192 			    == NULL)
193 				break;		/* already have page */
194 
195 			/*
196 			 * Add page to end of page list.
197 			 */
198 			page_add(&plist, pp);
199 			plist = plist->p_next;
200 		}
201 		*offp = off = off - deltab;
202 		*lenp = deltab + deltaf;
203 		ASSERT(off >= vp_off);
204 
205 		/*
206 		 * If we ended up getting more than was actually
207 		 * requested, retract the returned length to only
208 		 * reflect what was requested.  This might happen
209 		 * if we were allowed to kluster pages across a
210 		 * span of (say) 5 frags, and frag size is less
211 		 * than PAGESIZE.  We need a whole number of
212 		 * pages to contain those frags, but the returned
213 		 * size should only allow the returned range to
214 		 * extend as far as the end of the frags.
215 		 */
216 		if ((vp_off + vp_len) < (off + *lenp)) {
217 			ASSERT(vp_end > off);
218 			*lenp = vp_end - off;
219 		}
220 	}
221 	TRACE_3(TR_FAC_VM, TR_PVN_READ_KLUSTER,
222 		"pvn_read_kluster:seg %p addr %x isra %x",
223 		seg, addr, isra);
224 	return (plist);
225 }
226 
227 /*
228  * Handle pages for this vnode on either side of the page "pp"
229  * which has been locked by the caller.  This routine will also
230  * do klustering in the range [vp_off, vp_off + vp_len] up
231  * until a page which is not found.  The offset and length
232  * of pages included is returned in "*offp" and "*lenp".
233  *
234  * Returns a list of dirty locked pages all ready to be
235  * written back.
236  */
237 page_t *
238 pvn_write_kluster(
239 	struct vnode *vp,
240 	page_t *pp,
241 	u_offset_t *offp,		/* return values */
242 	size_t *lenp,			/* return values */
243 	u_offset_t vp_off,
244 	size_t vp_len,
245 	int flags)
246 {
247 	u_offset_t off;
248 	page_t *dirty;
249 	size_t deltab, deltaf;
250 	se_t se;
251 	u_offset_t vp_end;
252 
253 	off = pp->p_offset;
254 
255 	/*
256 	 * Kustering should not be done if we are invalidating
257 	 * pages since we could destroy pages that belong to
258 	 * some other process if this is a swap vnode.
259 	 */
260 	if (pvn_write_noklust || ((flags & B_INVAL) && IS_SWAPVP(vp))) {
261 		*offp = off;
262 		*lenp = PAGESIZE;
263 		return (pp);
264 	}
265 
266 	if (flags & (B_FREE | B_INVAL))
267 		se = SE_EXCL;
268 	else
269 		se = SE_SHARED;
270 
271 	dirty = pp;
272 	/*
273 	 * Scan backwards looking for pages to kluster by incrementing
274 	 * "deltab" and comparing "off" with "vp_off + deltab" to
275 	 * avoid "signed" versus "unsigned" conversion problems.
276 	 */
277 	for (deltab = PAGESIZE; off >= vp_off + deltab; deltab += PAGESIZE) {
278 		pp = page_lookup_nowait(vp, off - deltab, se);
279 		if (pp == NULL)
280 			break;		/* page not found */
281 		if (pvn_getdirty(pp, flags | B_DELWRI) == 0)
282 			break;
283 		page_add(&dirty, pp);
284 	}
285 	deltab -= PAGESIZE;
286 
287 	vp_end = vp_off + vp_len;
288 	/* now scan forwards looking for pages to kluster */
289 	for (deltaf = PAGESIZE; off + deltaf < vp_end; deltaf += PAGESIZE) {
290 		pp = page_lookup_nowait(vp, off + deltaf, se);
291 		if (pp == NULL)
292 			break;		/* page not found */
293 		if (pvn_getdirty(pp, flags | B_DELWRI) == 0)
294 			break;
295 		page_add(&dirty, pp);
296 		dirty = dirty->p_next;
297 	}
298 
299 	*offp = off - deltab;
300 	*lenp = deltab + deltaf;
301 	return (dirty);
302 }
303 
304 /*
305  * Generic entry point used to release the "shared/exclusive" lock
306  * and the "p_iolock" on pages after i/o is complete.
307  */
308 void
309 pvn_io_done(page_t *plist)
310 {
311 	page_t *pp;
312 
313 	while (plist != NULL) {
314 		pp = plist;
315 		page_sub(&plist, pp);
316 		page_io_unlock(pp);
317 		page_unlock(pp);
318 	}
319 }
320 
321 /*
322  * Entry point to be used by file system getpage subr's and
323  * other such routines which either want to unlock pages (B_ASYNC
324  * request) or destroy a list of pages if an error occurred.
325  */
326 void
327 pvn_read_done(page_t *plist, int flags)
328 {
329 	page_t *pp;
330 
331 	while (plist != NULL) {
332 		pp = plist;
333 		page_sub(&plist, pp);
334 		page_io_unlock(pp);
335 		if (flags & B_ERROR) {
336 			/*LINTED: constant in conditional context*/
337 			VN_DISPOSE(pp, B_INVAL, 0, kcred);
338 		} else {
339 			(void) page_release(pp, 0);
340 		}
341 	}
342 }
343 
344 /*
345  * Automagic pageout.
346  * When memory gets tight, start freeing pages popping out of the
347  * write queue.
348  */
349 int	write_free = 1;
350 pgcnt_t	pages_before_pager = 200;	/* LMXXX */
351 
352 /*
353  * Routine to be called when page-out's complete.
354  * The caller, typically VOP_PUTPAGE, has to explicity call this routine
355  * after waiting for i/o to complete (biowait) to free the list of
356  * pages associated with the buffer.  These pages must be locked
357  * before i/o is initiated.
358  *
359  * If a write error occurs, the pages are marked as modified
360  * so the write will be re-tried later.
361  */
362 
363 void
364 pvn_write_done(page_t *plist, int flags)
365 {
366 	int dfree = 0;
367 	int pgrec = 0;
368 	int pgout = 0;
369 	int pgpgout = 0;
370 	int anonpgout = 0;
371 	int anonfree = 0;
372 	int fspgout = 0;
373 	int fsfree = 0;
374 	int execpgout = 0;
375 	int execfree = 0;
376 	page_t *pp;
377 	struct cpu *cpup;
378 	struct vnode *vp = NULL;	/* for probe */
379 	uint_t ppattr;
380 	kmutex_t *vphm = NULL;
381 
382 	ASSERT((flags & B_READ) == 0);
383 
384 	/*
385 	 * If we are about to start paging anyway, start freeing pages.
386 	 */
387 	if (write_free && freemem < lotsfree + pages_before_pager &&
388 	    (flags & B_ERROR) == 0) {
389 		flags |= B_FREE;
390 	}
391 
392 	/*
393 	 * Handle each page involved in the i/o operation.
394 	 */
395 	while (plist != NULL) {
396 		pp = plist;
397 		ASSERT(PAGE_LOCKED(pp) && page_iolock_assert(pp));
398 		page_sub(&plist, pp);
399 
400 		/* Kernel probe support */
401 		if (vp == NULL)
402 			vp = pp->p_vnode;
403 
404 		if (((flags & B_ERROR) == 0) && IS_VMODSORT(vp)) {
405 			/*
406 			 * Move page to the top of the v_page list.
407 			 * Skip pages modified during IO.
408 			 */
409 			vphm = page_vnode_mutex(vp);
410 			mutex_enter(vphm);
411 			if ((pp->p_vpnext != pp) && !hat_ismod(pp)) {
412 				page_vpsub(&vp->v_pages, pp);
413 				page_vpadd(&vp->v_pages, pp);
414 			}
415 			mutex_exit(vphm);
416 		}
417 
418 		if (flags & B_ERROR) {
419 			/*
420 			 * Write operation failed.  We don't want
421 			 * to destroy (or free) the page unless B_FORCE
422 			 * is set. We set the mod bit again and release
423 			 * all locks on the page so that it will get written
424 			 * back again later when things are hopefully
425 			 * better again.
426 			 * If B_INVAL and B_FORCE is set we really have
427 			 * to destroy the page.
428 			 */
429 			if ((flags & (B_INVAL|B_FORCE)) == (B_INVAL|B_FORCE)) {
430 				page_io_unlock(pp);
431 				/*LINTED: constant in conditional context*/
432 				VN_DISPOSE(pp, B_INVAL, 0, kcred);
433 			} else {
434 				hat_setmod_only(pp);
435 				page_io_unlock(pp);
436 				page_unlock(pp);
437 			}
438 		} else if (flags & B_INVAL) {
439 			/*
440 			 * XXX - Failed writes with B_INVAL set are
441 			 * not handled appropriately.
442 			 */
443 			page_io_unlock(pp);
444 			/*LINTED: constant in conditional context*/
445 			VN_DISPOSE(pp, B_INVAL, 0, kcred);
446 		} else if (flags & B_FREE ||!hat_page_is_mapped(pp)) {
447 			/*
448 			 * Update statistics for pages being paged out
449 			 */
450 			if (pp->p_vnode) {
451 				if (IS_SWAPFSVP(pp->p_vnode)) {
452 					anonpgout++;
453 				} else {
454 					if (pp->p_vnode->v_flag & VVMEXEC) {
455 						execpgout++;
456 					} else {
457 						fspgout++;
458 					}
459 				}
460 			}
461 			page_io_unlock(pp);
462 			pgout = 1;
463 			pgpgout++;
464 			TRACE_1(TR_FAC_VM, TR_PAGE_WS_OUT,
465 				"page_ws_out:pp %p", pp);
466 
467 			/*
468 			 * The page_struct_lock need not be acquired to
469 			 * examine "p_lckcnt" and "p_cowcnt" since we'll
470 			 * have an "exclusive" lock if the upgrade succeeds.
471 			 */
472 			if (page_tryupgrade(pp) &&
473 			    pp->p_lckcnt == 0 && pp->p_cowcnt == 0) {
474 				/*
475 				 * Check if someone has reclaimed the
476 				 * page.  If ref and mod are not set, no
477 				 * one is using it so we can free it.
478 				 * The rest of the system is careful
479 				 * to use the NOSYNC flag to unload
480 				 * translations set up for i/o w/o
481 				 * affecting ref and mod bits.
482 				 *
483 				 * Obtain a copy of the real hardware
484 				 * mod bit using hat_pagesync(pp, HAT_DONTZERO)
485 				 * to avoid having to flush the cache.
486 				 */
487 				ppattr = hat_pagesync(pp, HAT_SYNC_DONTZERO |
488 					HAT_SYNC_STOPON_MOD);
489 			ck_refmod:
490 				if (!(ppattr & (P_REF | P_MOD))) {
491 					if (hat_page_is_mapped(pp)) {
492 						/*
493 						 * Doesn't look like the page
494 						 * was modified so now we
495 						 * really have to unload the
496 						 * translations.  Meanwhile
497 						 * another CPU could've
498 						 * modified it so we have to
499 						 * check again.  We don't loop
500 						 * forever here because now
501 						 * the translations are gone
502 						 * and no one can get a new one
503 						 * since we have the "exclusive"
504 						 * lock on the page.
505 						 */
506 						(void) hat_pageunload(pp,
507 							HAT_FORCE_PGUNLOAD);
508 						ppattr = hat_page_getattr(pp,
509 							P_REF | P_MOD);
510 						goto ck_refmod;
511 					}
512 					/*
513 					 * Update statistics for pages being
514 					 * freed
515 					 */
516 					if (pp->p_vnode) {
517 						if (IS_SWAPFSVP(pp->p_vnode)) {
518 							anonfree++;
519 						} else {
520 							if (pp->p_vnode->v_flag
521 							    & VVMEXEC) {
522 								execfree++;
523 							} else {
524 								fsfree++;
525 							}
526 						}
527 					}
528 					/*LINTED: constant in conditional ctx*/
529 					VN_DISPOSE(pp, B_FREE,
530 						(flags & B_DONTNEED), kcred);
531 					dfree++;
532 				} else {
533 					page_unlock(pp);
534 					pgrec++;
535 					TRACE_1(TR_FAC_VM, TR_PAGE_WS_FREE,
536 					    "page_ws_free:pp %p", pp);
537 				}
538 			} else {
539 				/*
540 				 * Page is either `locked' in memory
541 				 * or was reclaimed and now has a
542 				 * "shared" lock, so release it.
543 				 */
544 				page_unlock(pp);
545 			}
546 		} else {
547 			/*
548 			 * Neither B_FREE nor B_INVAL nor B_ERROR.
549 			 * Just release locks.
550 			 */
551 			page_io_unlock(pp);
552 			page_unlock(pp);
553 		}
554 	}
555 
556 	CPU_STATS_ENTER_K();
557 	cpup = CPU;		/* get cpup now that CPU cannot change */
558 	CPU_STATS_ADDQ(cpup, vm, dfree, dfree);
559 	CPU_STATS_ADDQ(cpup, vm, pgrec, pgrec);
560 	CPU_STATS_ADDQ(cpup, vm, pgout, pgout);
561 	CPU_STATS_ADDQ(cpup, vm, pgpgout, pgpgout);
562 	CPU_STATS_ADDQ(cpup, vm, anonpgout, anonpgout);
563 	CPU_STATS_ADDQ(cpup, vm, anonfree, anonfree);
564 	CPU_STATS_ADDQ(cpup, vm, fspgout, fspgout);
565 	CPU_STATS_ADDQ(cpup, vm, fsfree, fsfree);
566 	CPU_STATS_ADDQ(cpup, vm, execpgout, execpgout);
567 	CPU_STATS_ADDQ(cpup, vm, execfree, execfree);
568 	CPU_STATS_EXIT_K();
569 
570 	/* Kernel probe */
571 	TNF_PROBE_4(pageout, "vm pageio io", /* CSTYLED */,
572 		tnf_opaque,	vnode,			vp,
573 		tnf_ulong,	pages_pageout,		pgpgout,
574 		tnf_ulong,	pages_freed,		dfree,
575 		tnf_ulong,	pages_reclaimed,	pgrec);
576 }
577 
578 /*
579  * Flags are composed of {B_ASYNC, B_INVAL, B_FREE, B_DONTNEED, B_DELWRI,
580  * B_TRUNC, B_FORCE}.  B_DELWRI indicates that this page is part of a kluster
581  * operation and is only to be considered if it doesn't involve any
582  * waiting here.  B_TRUNC indicates that the file is being truncated
583  * and so no i/o needs to be done. B_FORCE indicates that the page
584  * must be destroyed so don't try wrting it out.
585  *
586  * The caller must ensure that the page is locked.  Returns 1, if
587  * the page should be written back (the "iolock" is held in this
588  * case), or 0 if the page has been dealt with or has been
589  * unlocked.
590  */
591 int
592 pvn_getdirty(page_t *pp, int flags)
593 {
594 	ASSERT((flags & (B_INVAL | B_FREE)) ?
595 	    PAGE_EXCL(pp) : PAGE_SHARED(pp));
596 	ASSERT(PP_ISFREE(pp) == 0);
597 
598 	/*
599 	 * If trying to invalidate or free a logically `locked' page,
600 	 * forget it.  Don't need page_struct_lock to check p_lckcnt and
601 	 * p_cowcnt as the page is exclusively locked.
602 	 */
603 	if ((flags & (B_INVAL | B_FREE)) && !(flags & (B_TRUNC|B_FORCE)) &&
604 	    (pp->p_lckcnt != 0 || pp->p_cowcnt != 0)) {
605 		page_unlock(pp);
606 		return (0);
607 	}
608 
609 	/*
610 	 * Now acquire the i/o lock so we can add it to the dirty
611 	 * list (if necessary).  We avoid blocking on the i/o lock
612 	 * in the following cases:
613 	 *
614 	 *	If B_DELWRI is set, which implies that this request is
615 	 *	due to a klustering operartion.
616 	 *
617 	 *	If this is an async (B_ASYNC) operation and we are not doing
618 	 *	invalidation (B_INVAL) [The current i/o or fsflush will ensure
619 	 *	that the the page is written out].
620 	 */
621 	if ((flags & B_DELWRI) || ((flags & (B_INVAL | B_ASYNC)) == B_ASYNC)) {
622 		if (!page_io_trylock(pp)) {
623 			page_unlock(pp);
624 			return (0);
625 		}
626 	} else {
627 		page_io_lock(pp);
628 	}
629 
630 	/*
631 	 * If we want to free or invalidate the page then
632 	 * we need to unload it so that anyone who wants
633 	 * it will have to take a minor fault to get it.
634 	 * Otherwise, we're just writing the page back so we
635 	 * need to sync up the hardwre and software mod bit to
636 	 * detect any future modifications.  We clear the
637 	 * software mod bit when we put the page on the dirty
638 	 * list.
639 	 */
640 	if (flags & (B_INVAL | B_FREE)) {
641 		(void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
642 	} else {
643 		(void) hat_pagesync(pp, HAT_SYNC_ZERORM);
644 	}
645 
646 	if (!hat_ismod(pp) || (flags & B_TRUNC)) {
647 		/*
648 		 * Don't need to add it to the
649 		 * list after all.
650 		 */
651 		page_io_unlock(pp);
652 		if (flags & B_INVAL) {
653 			/*LINTED: constant in conditional context*/
654 			VN_DISPOSE(pp, B_INVAL, 0, kcred);
655 		} else if (flags & B_FREE) {
656 			/*LINTED: constant in conditional context*/
657 			VN_DISPOSE(pp, B_FREE, (flags & B_DONTNEED), kcred);
658 		} else {
659 			/*
660 			 * This is advisory path for the callers
661 			 * of VOP_PUTPAGE() who prefer freeing the
662 			 * page _only_ if no one else is accessing it.
663 			 * E.g. segmap_release()
664 			 *
665 			 * The above hat_ismod() check is useless because:
666 			 * (1) we may not be holding SE_EXCL lock;
667 			 * (2) we've not unloaded _all_ translations
668 			 *
669 			 * Let page_release() do the heavy-lifting.
670 			 */
671 			(void) page_release(pp, 1);
672 		}
673 		return (0);
674 	}
675 
676 	/*
677 	 * Page is dirty, get it ready for the write back
678 	 * and add page to the dirty list.
679 	 */
680 	hat_clrrefmod(pp);
681 
682 	/*
683 	 * If we're going to free the page when we're done
684 	 * then we can let others try to use it starting now.
685 	 * We'll detect the fact that they used it when the
686 	 * i/o is done and avoid freeing the page.
687 	 */
688 	if (flags & B_FREE)
689 		page_downgrade(pp);
690 
691 
692 	TRACE_1(TR_FAC_VM, TR_PVN_GETDIRTY, "pvn_getdirty:pp %p", pp);
693 
694 	return (1);
695 }
696 
697 
698 /*ARGSUSED*/
699 static int
700 marker_constructor(void *buf, void *cdrarg, int kmflags)
701 {
702 	page_t *mark = buf;
703 	bzero(mark, sizeof (page_t));
704 	return (0);
705 }
706 
707 void
708 pvn_init()
709 {
710 	if (pvn_vmodsort_disable == 0)
711 		pvn_vmodsort_supported = hat_supported(HAT_VMODSORT, NULL);
712 	marker_cache = kmem_cache_create("marker_cache",
713 	    sizeof (page_t), 0, marker_constructor,
714 	    NULL, NULL, NULL, NULL, 0);
715 }
716 
717 
718 /*
719  * Process a vnode's page list for all pages whose offset is >= off.
720  * Pages are to either be free'd, invalidated, or written back to disk.
721  *
722  * An "exclusive" lock is acquired for each page if B_INVAL or B_FREE
723  * is specified, otherwise they are "shared" locked.
724  *
725  * Flags are {B_ASYNC, B_INVAL, B_FREE, B_DONTNEED, B_TRUNC}
726  *
727  * Special marker page_t's are inserted in the list in order
728  * to keep track of where we are in the list when locks are dropped.
729  *
730  * Note the list is circular and insertions can happen only at the
731  * head and tail of the list. The algorithm ensures visiting all pages
732  * on the list in the following way:
733  *
734  *    Drop two marker pages at the end of the list.
735  *
736  *    Move one marker page backwards towards the start of the list until
737  *    it is at the list head, processing the pages passed along the way.
738  *
739  *    Due to race conditions when the vphm mutex is dropped, additional pages
740  *    can be added to either end of the list, so we'll continue to move
741  *    the marker and process pages until it is up against the end marker.
742  *
743  * There is one special exit condition. If we are processing a VMODSORT
744  * vnode and only writing back modified pages, we can stop as soon as
745  * we run into an unmodified page.  This makes fsync(3) operations fast.
746  */
747 int
748 pvn_vplist_dirty(
749 	vnode_t		*vp,
750 	u_offset_t	off,
751 	int		(*putapage)(vnode_t *, page_t *, u_offset_t *,
752 			size_t *, int, cred_t *),
753 	int		flags,
754 	cred_t		*cred)
755 {
756 	page_t		*pp;
757 	page_t		*mark;		/* marker page that moves toward head */
758 	page_t		*end;		/* marker page at end of list */
759 	int		err = 0;
760 	int		error;
761 	kmutex_t	*vphm;
762 	se_t		se;
763 	page_t		**where_to_move;
764 
765 	ASSERT(vp->v_type != VCHR);
766 
767 	if (vp->v_pages == NULL)
768 		return (0);
769 
770 
771 	/*
772 	 * Serialize vplist_dirty operations on this vnode by setting VVMLOCK.
773 	 *
774 	 * Don't block on VVMLOCK if B_ASYNC is set. This prevents sync()
775 	 * from getting blocked while flushing pages to a dead NFS server.
776 	 */
777 	mutex_enter(&vp->v_lock);
778 	if ((vp->v_flag & VVMLOCK) && (flags & B_ASYNC)) {
779 		mutex_exit(&vp->v_lock);
780 		return (EAGAIN);
781 	}
782 
783 	while (vp->v_flag & VVMLOCK)
784 		cv_wait(&vp->v_cv, &vp->v_lock);
785 
786 	if (vp->v_pages == NULL) {
787 		mutex_exit(&vp->v_lock);
788 		return (0);
789 	}
790 
791 	vp->v_flag |= VVMLOCK;
792 	mutex_exit(&vp->v_lock);
793 
794 
795 	/*
796 	 * Set up the marker pages used to walk the list
797 	 */
798 	end = kmem_cache_alloc(marker_cache, KM_SLEEP);
799 	end->p_vnode = vp;
800 	end->p_offset = (u_offset_t)-2;
801 	mark = kmem_cache_alloc(marker_cache, KM_SLEEP);
802 	mark->p_vnode = vp;
803 	mark->p_offset = (u_offset_t)-1;
804 
805 	/*
806 	 * Grab the lock protecting the vnode's page list
807 	 * note that this lock is dropped at times in the loop.
808 	 */
809 	vphm = page_vnode_mutex(vp);
810 	mutex_enter(vphm);
811 	if (vp->v_pages == NULL)
812 		goto leave;
813 
814 	/*
815 	 * insert the markers and loop through the list of pages
816 	 */
817 	page_vpadd(&vp->v_pages->p_vpprev->p_vpnext, mark);
818 	page_vpadd(&mark->p_vpnext, end);
819 	for (;;) {
820 
821 		/*
822 		 * If only doing an async write back, then we can
823 		 * stop as soon as we get to start of the list.
824 		 */
825 		if (flags == B_ASYNC && vp->v_pages == mark)
826 			break;
827 
828 		/*
829 		 * otherwise stop when we've gone through all the pages
830 		 */
831 		if (mark->p_vpprev == end)
832 			break;
833 
834 		pp = mark->p_vpprev;
835 		if (vp->v_pages == pp)
836 			where_to_move = &vp->v_pages;
837 		else
838 			where_to_move = &pp->p_vpprev->p_vpnext;
839 
840 		ASSERT(pp->p_vnode == vp);
841 
842 		/*
843 		 * Skip this page if the offset is out of the desired range.
844 		 * Just move the marker and continue.
845 		 */
846 		if (pp->p_offset < off) {
847 			page_vpsub(&vp->v_pages, mark);
848 			page_vpadd(where_to_move, mark);
849 			continue;
850 		}
851 
852 		/*
853 		 * If just flushing dirty pages to disk and this vnode
854 		 * is using a sorted list of pages, we can stop processing
855 		 * as soon as we find an unmodified page. Since all the
856 		 * modified pages are visited first.
857 		 */
858 		if (IS_VMODSORT(vp) &&
859 		    !(flags & (B_INVAL | B_FREE | B_TRUNC))) {
860 			if (!hat_ismod(pp) && !page_io_locked(pp)) {
861 #ifdef  DEBUG
862 				/*
863 				 * For debug kernels examine what should be
864 				 * all the remaining clean pages, asserting
865 				 * that they are not modified.
866 				 */
867 				page_t	*chk = pp;
868 				int	attr;
869 
870 				page_vpsub(&vp->v_pages, mark);
871 				page_vpadd(where_to_move, mark);
872 				do {
873 					chk = chk->p_vpprev;
874 					ASSERT(chk != end);
875 					if (chk == mark)
876 						continue;
877 					attr = hat_page_getattr(chk, P_MOD |
878 					    P_REF);
879 					if ((attr & P_MOD) == 0)
880 						continue;
881 					panic("v_pages list not all clean: "
882 					    "page_t*=%p vnode=%p off=%lx "
883 					    "attr=0x%x last clean page_t*=%p\n",
884 					    (void *)chk, (void *)chk->p_vnode,
885 					    (long)chk->p_offset, attr,
886 					    (void *)pp);
887 				} while (chk != vp->v_pages);
888 #endif
889 				break;
890 			} else if (!(flags & B_ASYNC) && !hat_ismod(pp)) {
891 				/*
892 				 * Couldn't get io lock, wait until IO is done.
893 				 * Block only for sync IO since we don't want
894 				 * to block async IO.
895 				 */
896 				mutex_exit(vphm);
897 				page_io_wait(pp);
898 				mutex_enter(vphm);
899 				continue;
900 			}
901 		}
902 
903 		/*
904 		 * If we are supposed to invalidate or free this
905 		 * page, then we need an exclusive lock.
906 		 */
907 		se = (flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED;
908 
909 		/*
910 		 * We must acquire the page lock for all synchronous
911 		 * operations (invalidate, free and write).
912 		 */
913 		if ((flags & B_INVAL) != 0 || (flags & B_ASYNC) == 0) {
914 			/*
915 			 * If the page_lock() drops the mutex
916 			 * we must retry the loop.
917 			 */
918 			if (!page_lock(pp, se, vphm, P_NO_RECLAIM))
919 				continue;
920 
921 			/*
922 			 * It's ok to move the marker page now.
923 			 */
924 			page_vpsub(&vp->v_pages, mark);
925 			page_vpadd(where_to_move, mark);
926 		} else {
927 
928 			/*
929 			 * update the marker page for all remaining cases
930 			 */
931 			page_vpsub(&vp->v_pages, mark);
932 			page_vpadd(where_to_move, mark);
933 
934 			/*
935 			 * For write backs, If we can't lock the page, it's
936 			 * invalid or in the process of being destroyed.  Skip
937 			 * it, assuming someone else is writing it.
938 			 */
939 			if (!page_trylock(pp, se))
940 				continue;
941 		}
942 
943 		ASSERT(pp->p_vnode == vp);
944 
945 		/*
946 		 * Successfully locked the page, now figure out what to
947 		 * do with it. Free pages are easily dealt with, invalidate
948 		 * if desired or just go on to the next page.
949 		 */
950 		if (PP_ISFREE(pp)) {
951 			if ((flags & B_INVAL) == 0) {
952 				page_unlock(pp);
953 				continue;
954 			}
955 
956 			/*
957 			 * Invalidate (destroy) the page.
958 			 */
959 			mutex_exit(vphm);
960 			page_destroy_free(pp);
961 			mutex_enter(vphm);
962 			continue;
963 		}
964 
965 		/*
966 		 * pvn_getdirty() figures out what do do with a dirty page.
967 		 * If the page is dirty, the putapage() routine will write it
968 		 * and will kluster any other adjacent dirty pages it can.
969 		 *
970 		 * pvn_getdirty() and `(*putapage)' unlock the page.
971 		 */
972 		mutex_exit(vphm);
973 		if (pvn_getdirty(pp, flags)) {
974 			error = (*putapage)(vp, pp, NULL, NULL, flags, cred);
975 			if (!err)
976 				err = error;
977 		}
978 		mutex_enter(vphm);
979 	}
980 	page_vpsub(&vp->v_pages, mark);
981 	page_vpsub(&vp->v_pages, end);
982 
983 leave:
984 	/*
985 	 * Release v_pages mutex, also VVMLOCK and wakeup blocked thrds
986 	 */
987 	mutex_exit(vphm);
988 	kmem_cache_free(marker_cache, mark);
989 	kmem_cache_free(marker_cache, end);
990 	mutex_enter(&vp->v_lock);
991 	vp->v_flag &= ~VVMLOCK;
992 	cv_broadcast(&vp->v_cv);
993 	mutex_exit(&vp->v_lock);
994 	return (err);
995 }
996 
997 /*
998  * Zero out zbytes worth of data. Caller should be aware that this
999  * routine may enter back into the fs layer (xxx_getpage). Locks
1000  * that the xxx_getpage routine may need should not be held while
1001  * calling this.
1002  */
1003 void
1004 pvn_vpzero(struct vnode *vp, u_offset_t vplen, size_t zbytes)
1005 {
1006 	caddr_t addr;
1007 
1008 	ASSERT(vp->v_type != VCHR);
1009 
1010 	if (vp->v_pages == NULL)
1011 		return;
1012 
1013 	/*
1014 	 * zbytes may be zero but there still may be some portion of
1015 	 * a page which needs clearing (since zbytes is a function
1016 	 * of filesystem block size, not pagesize.)
1017 	 */
1018 	if (zbytes == 0 && (PAGESIZE - (vplen & PAGEOFFSET)) == 0)
1019 		return;
1020 
1021 	/*
1022 	 * We get the last page and handle the partial
1023 	 * zeroing via kernel mappings.  This will make the page
1024 	 * dirty so that we know that when this page is written
1025 	 * back, the zeroed information will go out with it.  If
1026 	 * the page is not currently in memory, then the kzero
1027 	 * operation will cause it to be brought it.  We use kzero
1028 	 * instead of bzero so that if the page cannot be read in
1029 	 * for any reason, the system will not panic.  We need
1030 	 * to zero out a minimum of the fs given zbytes, but we
1031 	 * might also have to do more to get the entire last page.
1032 	 */
1033 
1034 	if ((zbytes + (vplen & MAXBOFFSET)) > MAXBSIZE)
1035 		panic("pvn_vptrunc zbytes");
1036 	addr = segmap_getmapflt(segkmap, vp, vplen,
1037 	    MAX(zbytes, PAGESIZE - (vplen & PAGEOFFSET)), 1, S_WRITE);
1038 	(void) kzero(addr + (vplen & MAXBOFFSET),
1039 	    MAX(zbytes, PAGESIZE - (vplen & PAGEOFFSET)));
1040 	(void) segmap_release(segkmap, addr, SM_WRITE | SM_ASYNC);
1041 }
1042 
1043 /*
1044  * Handles common work of the VOP_GETPAGE routines when more than
1045  * one page must be returned by calling a file system specific operation
1046  * to do most of the work.  Must be called with the vp already locked
1047  * by the VOP_GETPAGE routine.
1048  */
1049 int
1050 pvn_getpages(
1051 	int (*getpage)(vnode_t *, u_offset_t, size_t, uint_t *, page_t *[],
1052 		size_t, struct seg *, caddr_t, enum seg_rw, cred_t *),
1053 	struct vnode *vp,
1054 	u_offset_t off,
1055 	size_t len,
1056 	uint_t *protp,
1057 	page_t *pl[],
1058 	size_t plsz,
1059 	struct seg *seg,
1060 	caddr_t addr,
1061 	enum seg_rw rw,
1062 	struct cred *cred)
1063 {
1064 	page_t **ppp;
1065 	u_offset_t o, eoff;
1066 	size_t sz, xlen;
1067 	int err;
1068 
1069 	ASSERT(plsz >= len);		/* insure that we have enough space */
1070 
1071 	/*
1072 	 * Loop one page at a time and let getapage function fill
1073 	 * in the next page in array.  We only allow one page to be
1074 	 * returned at a time (except for the last page) so that we
1075 	 * don't have any problems with duplicates and other such
1076 	 * painful problems.  This is a very simple minded algorithm,
1077 	 * but it does the job correctly.  We hope that the cost of a
1078 	 * getapage call for a resident page that we might have been
1079 	 * able to get from an earlier call doesn't cost too much.
1080 	 */
1081 	ppp = pl;
1082 	sz = PAGESIZE;
1083 	eoff = off + len;
1084 	xlen = len;
1085 	for (o = off; o < eoff; o += PAGESIZE, addr += PAGESIZE,
1086 	    xlen -= PAGESIZE) {
1087 		if (o + PAGESIZE >= eoff) {
1088 			/*
1089 			 * Last time through - allow the all of
1090 			 * what's left of the pl[] array to be used.
1091 			 */
1092 			sz = plsz - (o - off);
1093 		}
1094 		err = (*getpage)(vp, o, xlen, protp, ppp, sz, seg, addr,
1095 		    rw, cred);
1096 		if (err) {
1097 			/*
1098 			 * Release any pages we already got.
1099 			 */
1100 			if (o > off && pl != NULL) {
1101 				for (ppp = pl; *ppp != NULL; *ppp++ = NULL)
1102 					(void) page_release(*ppp, 1);
1103 			}
1104 			break;
1105 		}
1106 		if (pl != NULL)
1107 			ppp++;
1108 	}
1109 	return (err);
1110 }
1111 
1112 /*
1113  * Initialize the page list array.
1114  */
1115 /*ARGSUSED*/
1116 void
1117 pvn_plist_init(page_t *pp, page_t *pl[], size_t plsz,
1118     u_offset_t off, size_t io_len, enum seg_rw rw)
1119 {
1120 	ssize_t sz;
1121 	page_t *ppcur, **ppp;
1122 
1123 	/*
1124 	 * Set up to load plsz worth
1125 	 * starting at the needed page.
1126 	 */
1127 	while (pp != NULL && pp->p_offset != off) {
1128 		/*
1129 		 * Remove page from the i/o list,
1130 		 * release the i/o and the page lock.
1131 		 */
1132 		ppcur = pp;
1133 		page_sub(&pp, ppcur);
1134 		page_io_unlock(ppcur);
1135 		(void) page_release(ppcur, 1);
1136 	}
1137 
1138 	if (pp == NULL) {
1139 		pl[0] = NULL;
1140 		return;
1141 	}
1142 
1143 	sz = plsz;
1144 
1145 	/*
1146 	 * Initialize the page list array.
1147 	 */
1148 	ppp = pl;
1149 	do {
1150 		ppcur = pp;
1151 		*ppp++ = ppcur;
1152 		page_sub(&pp, ppcur);
1153 		page_io_unlock(ppcur);
1154 		if (rw != S_CREATE)
1155 			page_downgrade(ppcur);
1156 		sz -= PAGESIZE;
1157 	} while (sz > 0 && pp != NULL);
1158 	*ppp = NULL;		/* terminate list */
1159 
1160 	/*
1161 	 * Now free the remaining pages that weren't
1162 	 * loaded in the page list.
1163 	 */
1164 	while (pp != NULL) {
1165 		ppcur = pp;
1166 		page_sub(&pp, ppcur);
1167 		page_io_unlock(ppcur);
1168 		(void) page_release(ppcur, 1);
1169 	}
1170 }
1171