1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 22 /* All Rights Reserved */ 23 24 25 /* 26 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 27 * Use is subject to license terms. 28 * 29 * Copyright 2013 Nexenta Systems, Inc. All rights reserved. 30 * 31 * Copyright 2018 Joyent Inc. 32 */ 33 34 #ifndef _SYS_SYSMACROS_H 35 #define _SYS_SYSMACROS_H 36 37 #include <sys/param.h> 38 #include <sys/stddef.h> 39 40 #ifdef __cplusplus 41 extern "C" { 42 #endif 43 44 /* 45 * Some macros for units conversion 46 */ 47 /* 48 * Disk blocks (sectors) and bytes. 49 */ 50 #define dtob(DD) ((DD) << DEV_BSHIFT) 51 #define btod(BB) (((BB) + DEV_BSIZE - 1) >> DEV_BSHIFT) 52 #define btodt(BB) ((BB) >> DEV_BSHIFT) 53 #define lbtod(BB) (((offset_t)(BB) + DEV_BSIZE - 1) >> DEV_BSHIFT) 54 55 /* common macros */ 56 #ifndef MIN 57 #define MIN(a, b) ((a) < (b) ? (a) : (b)) 58 #endif 59 #ifndef MAX 60 #define MAX(a, b) ((a) < (b) ? (b) : (a)) 61 #endif 62 #ifndef ABS 63 #define ABS(a) ((a) < 0 ? -(a) : (a)) 64 #endif 65 #ifndef SIGNOF 66 #define SIGNOF(a) ((a) < 0 ? -1 : (a) > 0) 67 #endif 68 69 #ifndef __DECONST 70 #define __DECONST(type, var) ((type)(uintptr_t)(const void *)(var)) 71 #endif 72 73 #ifdef _KERNEL 74 75 /* 76 * Convert a single byte to/from binary-coded decimal (BCD). 77 */ 78 extern unsigned char byte_to_bcd[256]; 79 extern unsigned char bcd_to_byte[256]; 80 81 #define BYTE_TO_BCD(x) byte_to_bcd[(x) & 0xff] 82 #define BCD_TO_BYTE(x) bcd_to_byte[(x) & 0xff] 83 84 #endif /* _KERNEL */ 85 86 /* 87 * WARNING: The device number macros defined here should not be used by device 88 * drivers or user software. Device drivers should use the device functions 89 * defined in the DDI/DKI interface (see also ddi.h). Application software 90 * should make use of the library routines available in makedev(3). A set of 91 * new device macros are provided to operate on the expanded device number 92 * format supported in SVR4. Macro versions of the DDI device functions are 93 * provided for use by kernel proper routines only. Macro routines bmajor(), 94 * major(), minor(), emajor(), eminor(), and makedev() will be removed or 95 * their definitions changed at the next major release following SVR4. 96 */ 97 98 #define O_BITSMAJOR 7 /* # of SVR3 major device bits */ 99 #define O_BITSMINOR 8 /* # of SVR3 minor device bits */ 100 #define O_MAXMAJ 0x7f /* SVR3 max major value */ 101 #define O_MAXMIN 0xff /* SVR3 max minor value */ 102 103 104 #define L_BITSMAJOR32 14 /* # of SVR4 major device bits */ 105 #define L_BITSMINOR32 18 /* # of SVR4 minor device bits */ 106 #define L_MAXMAJ32 0x3fff /* SVR4 max major value */ 107 #define L_MAXMIN32 0x3ffff /* MAX minor for 3b2 software drivers. */ 108 /* For 3b2 hardware devices the minor is */ 109 /* restricted to 256 (0-255) */ 110 111 #ifdef _LP64 112 #define L_BITSMAJOR 32 /* # of major device bits in 64-bit Solaris */ 113 #define L_BITSMINOR 32 /* # of minor device bits in 64-bit Solaris */ 114 #define L_MAXMAJ 0xfffffffful /* max major value */ 115 #define L_MAXMIN 0xfffffffful /* max minor value */ 116 #else 117 #define L_BITSMAJOR L_BITSMAJOR32 118 #define L_BITSMINOR L_BITSMINOR32 119 #define L_MAXMAJ L_MAXMAJ32 120 #define L_MAXMIN L_MAXMIN32 121 #endif 122 123 #ifdef _KERNEL 124 125 /* major part of a device internal to the kernel */ 126 127 #define major(x) (major_t)((((unsigned)(x)) >> O_BITSMINOR) & O_MAXMAJ) 128 #define bmajor(x) (major_t)((((unsigned)(x)) >> O_BITSMINOR) & O_MAXMAJ) 129 130 /* get internal major part of expanded device number */ 131 132 #define getmajor(x) (major_t)((((dev_t)(x)) >> L_BITSMINOR) & L_MAXMAJ) 133 134 /* minor part of a device internal to the kernel */ 135 136 #define minor(x) (minor_t)((x) & O_MAXMIN) 137 138 /* get internal minor part of expanded device number */ 139 140 #define getminor(x) (minor_t)((x) & L_MAXMIN) 141 142 #else /* _KERNEL */ 143 144 /* major part of a device external from the kernel (same as emajor below) */ 145 146 #define major(x) (major_t)((((unsigned)(x)) >> O_BITSMINOR) & O_MAXMAJ) 147 148 /* minor part of a device external from the kernel (same as eminor below) */ 149 150 #define minor(x) (minor_t)((x) & O_MAXMIN) 151 152 #endif /* _KERNEL */ 153 154 /* create old device number */ 155 156 #define makedev(x, y) (unsigned short)(((x) << O_BITSMINOR) | ((y) & O_MAXMIN)) 157 158 /* make an new device number */ 159 160 #define makedevice(x, y) (dev_t)(((dev_t)(x) << L_BITSMINOR) | ((y) & L_MAXMIN)) 161 162 163 /* 164 * emajor() allows kernel/driver code to print external major numbers 165 * eminor() allows kernel/driver code to print external minor numbers 166 */ 167 168 #define emajor(x) \ 169 (major_t)(((unsigned int)(x) >> O_BITSMINOR) > O_MAXMAJ) ? \ 170 NODEV : (((unsigned int)(x) >> O_BITSMINOR) & O_MAXMAJ) 171 172 #define eminor(x) \ 173 (minor_t)((x) & O_MAXMIN) 174 175 /* 176 * get external major and minor device 177 * components from expanded device number 178 */ 179 #define getemajor(x) (major_t)((((dev_t)(x) >> L_BITSMINOR) > L_MAXMAJ) ? \ 180 NODEV : (((dev_t)(x) >> L_BITSMINOR) & L_MAXMAJ)) 181 #define geteminor(x) (minor_t)((x) & L_MAXMIN) 182 183 /* 184 * These are versions of the kernel routines for compressing and 185 * expanding long device numbers that don't return errors. 186 */ 187 #if (L_BITSMAJOR32 == L_BITSMAJOR) && (L_BITSMINOR32 == L_BITSMINOR) 188 189 #define DEVCMPL(x) (x) 190 #define DEVEXPL(x) (x) 191 192 #else 193 194 #define DEVCMPL(x) \ 195 (dev32_t)((((x) >> L_BITSMINOR) > L_MAXMAJ32 || \ 196 ((x) & L_MAXMIN) > L_MAXMIN32) ? NODEV32 : \ 197 ((((x) >> L_BITSMINOR) << L_BITSMINOR32) | ((x) & L_MAXMIN32))) 198 199 #define DEVEXPL(x) \ 200 (((x) == NODEV32) ? NODEV : \ 201 makedevice(((x) >> L_BITSMINOR32) & L_MAXMAJ32, (x) & L_MAXMIN32)) 202 203 #endif /* L_BITSMAJOR32 ... */ 204 205 /* convert to old (SVR3.2) dev format */ 206 207 #define cmpdev(x) \ 208 (o_dev_t)((((x) >> L_BITSMINOR) > O_MAXMAJ || \ 209 ((x) & L_MAXMIN) > O_MAXMIN) ? NODEV : \ 210 ((((x) >> L_BITSMINOR) << O_BITSMINOR) | ((x) & O_MAXMIN))) 211 212 /* convert to new (SVR4) dev format */ 213 214 #define expdev(x) \ 215 (dev_t)(((dev_t)(((x) >> O_BITSMINOR) & O_MAXMAJ) << L_BITSMINOR) | \ 216 ((x) & O_MAXMIN)) 217 218 /* 219 * Macro for checking power of 2 address alignment. 220 */ 221 #define IS_P2ALIGNED(v, a) ((((uintptr_t)(v)) & ((uintptr_t)(a) - 1)) == 0) 222 223 /* 224 * Macros for counting and rounding. 225 */ 226 #define howmany(x, y) (((x)+((y)-1))/(y)) 227 #define roundup(x, y) ((((x)+((y)-1))/(y))*(y)) 228 229 /* 230 * Macro to determine if value is a power of 2 231 */ 232 #define ISP2(x) (((x) & ((x) - 1)) == 0) 233 234 /* 235 * Macros for various sorts of alignment and rounding. The "align" must 236 * be a power of 2. Often times it is a block, sector, or page. 237 */ 238 239 /* 240 * return x rounded down to an align boundary 241 * eg, P2ALIGN(1200, 1024) == 1024 (1*align) 242 * eg, P2ALIGN(1024, 1024) == 1024 (1*align) 243 * eg, P2ALIGN(0x1234, 0x100) == 0x1200 (0x12*align) 244 * eg, P2ALIGN(0x5600, 0x100) == 0x5600 (0x56*align) 245 */ 246 #define P2ALIGN(x, align) ((x) & -(align)) 247 248 /* 249 * return x % (mod) align 250 * eg, P2PHASE(0x1234, 0x100) == 0x34 (x-0x12*align) 251 * eg, P2PHASE(0x5600, 0x100) == 0x00 (x-0x56*align) 252 */ 253 #define P2PHASE(x, align) ((x) & ((align) - 1)) 254 255 /* 256 * return how much space is left in this block (but if it's perfectly 257 * aligned, return 0). 258 * eg, P2NPHASE(0x1234, 0x100) == 0xcc (0x13*align-x) 259 * eg, P2NPHASE(0x5600, 0x100) == 0x00 (0x56*align-x) 260 */ 261 #define P2NPHASE(x, align) (-(x) & ((align) - 1)) 262 263 /* 264 * return x rounded up to an align boundary 265 * eg, P2ROUNDUP(0x1234, 0x100) == 0x1300 (0x13*align) 266 * eg, P2ROUNDUP(0x5600, 0x100) == 0x5600 (0x56*align) 267 */ 268 #define P2ROUNDUP(x, align) (-(-(x) & -(align))) 269 270 /* 271 * return the ending address of the block that x is in 272 * eg, P2END(0x1234, 0x100) == 0x12ff (0x13*align - 1) 273 * eg, P2END(0x5600, 0x100) == 0x56ff (0x57*align - 1) 274 */ 275 #define P2END(x, align) (-(~(x) & -(align))) 276 277 /* 278 * return x rounded up to the next phase (offset) within align. 279 * phase should be < align. 280 * eg, P2PHASEUP(0x1234, 0x100, 0x10) == 0x1310 (0x13*align + phase) 281 * eg, P2PHASEUP(0x5600, 0x100, 0x10) == 0x5610 (0x56*align + phase) 282 */ 283 #define P2PHASEUP(x, align, phase) ((phase) - (((phase) - (x)) & -(align))) 284 285 /* 286 * return TRUE if adding len to off would cause it to cross an align 287 * boundary. 288 * eg, P2BOUNDARY(0x1234, 0xe0, 0x100) == TRUE (0x1234 + 0xe0 == 0x1314) 289 * eg, P2BOUNDARY(0x1234, 0x50, 0x100) == FALSE (0x1234 + 0x50 == 0x1284) 290 */ 291 #define P2BOUNDARY(off, len, align) \ 292 (((off) ^ ((off) + (len) - 1)) > (align) - 1) 293 294 /* 295 * Return TRUE if they have the same highest bit set. 296 * eg, P2SAMEHIGHBIT(0x1234, 0x1001) == TRUE (the high bit is 0x1000) 297 * eg, P2SAMEHIGHBIT(0x1234, 0x3010) == FALSE (high bit of 0x3010 is 0x2000) 298 */ 299 #define P2SAMEHIGHBIT(x, y) (((x) ^ (y)) < ((x) & (y))) 300 301 /* 302 * Typed version of the P2* macros. These macros should be used to ensure 303 * that the result is correctly calculated based on the data type of (x), 304 * which is passed in as the last argument, regardless of the data 305 * type of the alignment. For example, if (x) is of type uint64_t, 306 * and we want to round it up to a page boundary using "PAGESIZE" as 307 * the alignment, we can do either 308 * P2ROUNDUP(x, (uint64_t)PAGESIZE) 309 * or 310 * P2ROUNDUP_TYPED(x, PAGESIZE, uint64_t) 311 */ 312 #define P2ALIGN_TYPED(x, align, type) \ 313 ((type)(x) & -(type)(align)) 314 #define P2PHASE_TYPED(x, align, type) \ 315 ((type)(x) & ((type)(align) - 1)) 316 #define P2NPHASE_TYPED(x, align, type) \ 317 (-(type)(x) & ((type)(align) - 1)) 318 #define P2ROUNDUP_TYPED(x, align, type) \ 319 (-(-(type)(x) & -(type)(align))) 320 #define P2END_TYPED(x, align, type) \ 321 (-(~(type)(x) & -(type)(align))) 322 #define P2PHASEUP_TYPED(x, align, phase, type) \ 323 ((type)(phase) - (((type)(phase) - (type)(x)) & -(type)(align))) 324 #define P2CROSS_TYPED(x, y, align, type) \ 325 (((type)(x) ^ (type)(y)) > (type)(align) - 1) 326 #define P2SAMEHIGHBIT_TYPED(x, y, type) \ 327 (((type)(x) ^ (type)(y)) < ((type)(x) & (type)(y))) 328 329 /* 330 * Macros to atomically increment/decrement a variable. mutex and var 331 * must be pointers. 332 */ 333 #define INCR_COUNT(var, mutex) mutex_enter(mutex), (*(var))++, mutex_exit(mutex) 334 #define DECR_COUNT(var, mutex) mutex_enter(mutex), (*(var))--, mutex_exit(mutex) 335 336 /* 337 * Macros to declare bitfields - the order in the parameter list is 338 * Low to High - that is, declare bit 0 first. We only support 8-bit bitfields 339 * because if a field crosses a byte boundary it's not likely to be meaningful 340 * without reassembly in its nonnative endianness. 341 */ 342 #if defined(_BIT_FIELDS_LTOH) 343 #define DECL_BITFIELD2(_a, _b) \ 344 uint8_t _a, _b 345 #define DECL_BITFIELD3(_a, _b, _c) \ 346 uint8_t _a, _b, _c 347 #define DECL_BITFIELD4(_a, _b, _c, _d) \ 348 uint8_t _a, _b, _c, _d 349 #define DECL_BITFIELD5(_a, _b, _c, _d, _e) \ 350 uint8_t _a, _b, _c, _d, _e 351 #define DECL_BITFIELD6(_a, _b, _c, _d, _e, _f) \ 352 uint8_t _a, _b, _c, _d, _e, _f 353 #define DECL_BITFIELD7(_a, _b, _c, _d, _e, _f, _g) \ 354 uint8_t _a, _b, _c, _d, _e, _f, _g 355 #define DECL_BITFIELD8(_a, _b, _c, _d, _e, _f, _g, _h) \ 356 uint8_t _a, _b, _c, _d, _e, _f, _g, _h 357 #elif defined(_BIT_FIELDS_HTOL) 358 #define DECL_BITFIELD2(_a, _b) \ 359 uint8_t _b, _a 360 #define DECL_BITFIELD3(_a, _b, _c) \ 361 uint8_t _c, _b, _a 362 #define DECL_BITFIELD4(_a, _b, _c, _d) \ 363 uint8_t _d, _c, _b, _a 364 #define DECL_BITFIELD5(_a, _b, _c, _d, _e) \ 365 uint8_t _e, _d, _c, _b, _a 366 #define DECL_BITFIELD6(_a, _b, _c, _d, _e, _f) \ 367 uint8_t _f, _e, _d, _c, _b, _a 368 #define DECL_BITFIELD7(_a, _b, _c, _d, _e, _f, _g) \ 369 uint8_t _g, _f, _e, _d, _c, _b, _a 370 #define DECL_BITFIELD8(_a, _b, _c, _d, _e, _f, _g, _h) \ 371 uint8_t _h, _g, _f, _e, _d, _c, _b, _a 372 #else 373 #error One of _BIT_FIELDS_LTOH or _BIT_FIELDS_HTOL must be defined 374 #endif /* _BIT_FIELDS_LTOH */ 375 376 #if !defined(ARRAY_SIZE) 377 #define ARRAY_SIZE(x) (sizeof (x) / sizeof (x[0])) 378 #endif 379 380 /* 381 * Add a value to a uint64_t that saturates at UINT64_MAX instead of wrapping 382 * around. 383 */ 384 #define UINT64_OVERFLOW_ADD(val, add) \ 385 ((val) > ((val) + (add)) ? (UINT64_MAX) : ((val) + (add))) 386 387 /* 388 * Convert to an int64, saturating at INT64_MAX. 389 */ 390 #define UINT64_OVERFLOW_TO_INT64(uval) \ 391 (((uval) > INT64_MAX) ? INT64_MAX : (int64_t)(uval)) 392 393 #ifdef __cplusplus 394 } 395 #endif 396 397 #endif /* _SYS_SYSMACROS_H */ 398