1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 28 * Copyright (c) 2017 by Delphix. All rights reserved. 29 * Copyright 2018, Joyent, Inc. 30 */ 31 32 /* 33 * Kernel task queues: general-purpose asynchronous task scheduling. 34 * 35 * A common problem in kernel programming is the need to schedule tasks 36 * to be performed later, by another thread. There are several reasons 37 * you may want or need to do this: 38 * 39 * (1) The task isn't time-critical, but your current code path is. 40 * 41 * (2) The task may require grabbing locks that you already hold. 42 * 43 * (3) The task may need to block (e.g. to wait for memory), but you 44 * cannot block in your current context. 45 * 46 * (4) Your code path can't complete because of some condition, but you can't 47 * sleep or fail, so you queue the task for later execution when condition 48 * disappears. 49 * 50 * (5) You just want a simple way to launch multiple tasks in parallel. 51 * 52 * Task queues provide such a facility. In its simplest form (used when 53 * performance is not a critical consideration) a task queue consists of a 54 * single list of tasks, together with one or more threads to service the 55 * list. There are some cases when this simple queue is not sufficient: 56 * 57 * (1) The task queues are very hot and there is a need to avoid data and lock 58 * contention over global resources. 59 * 60 * (2) Some tasks may depend on other tasks to complete, so they can't be put in 61 * the same list managed by the same thread. 62 * 63 * (3) Some tasks may block for a long time, and this should not block other 64 * tasks in the queue. 65 * 66 * To provide useful service in such cases we define a "dynamic task queue" 67 * which has an individual thread for each of the tasks. These threads are 68 * dynamically created as they are needed and destroyed when they are not in 69 * use. The API for managing task pools is the same as for managing task queues 70 * with the exception of a taskq creation flag TASKQ_DYNAMIC which tells that 71 * dynamic task pool behavior is desired. 72 * 73 * Dynamic task queues may also place tasks in the normal queue (called "backing 74 * queue") when task pool runs out of resources. Users of task queues may 75 * disallow such queued scheduling by specifying TQ_NOQUEUE in the dispatch 76 * flags. 77 * 78 * The backing task queue is also used for scheduling internal tasks needed for 79 * dynamic task queue maintenance. 80 * 81 * INTERFACES ================================================================== 82 * 83 * taskq_t *taskq_create(name, nthreads, pri, minalloc, maxalloc, flags); 84 * 85 * Create a taskq with specified properties. 86 * Possible 'flags': 87 * 88 * TASKQ_DYNAMIC: Create task pool for task management. If this flag is 89 * specified, 'nthreads' specifies the maximum number of threads in 90 * the task queue. Task execution order for dynamic task queues is 91 * not predictable. 92 * 93 * If this flag is not specified (default case) a 94 * single-list task queue is created with 'nthreads' threads 95 * servicing it. Entries in this queue are managed by 96 * taskq_ent_alloc() and taskq_ent_free() which try to keep the 97 * task population between 'minalloc' and 'maxalloc', but the 98 * latter limit is only advisory for TQ_SLEEP dispatches and the 99 * former limit is only advisory for TQ_NOALLOC dispatches. If 100 * TASKQ_PREPOPULATE is set in 'flags', the taskq will be 101 * prepopulated with 'minalloc' task structures. 102 * 103 * Since non-DYNAMIC taskqs are queues, tasks are guaranteed to be 104 * executed in the order they are scheduled if nthreads == 1. 105 * If nthreads > 1, task execution order is not predictable. 106 * 107 * TASKQ_PREPOPULATE: Prepopulate task queue with threads. 108 * Also prepopulate the task queue with 'minalloc' task structures. 109 * 110 * TASKQ_THREADS_CPU_PCT: This flag specifies that 'nthreads' should be 111 * interpreted as a percentage of the # of online CPUs on the 112 * system. The taskq subsystem will automatically adjust the 113 * number of threads in the taskq in response to CPU online 114 * and offline events, to keep the ratio. nthreads must be in 115 * the range [0,100]. 116 * 117 * The calculation used is: 118 * 119 * MAX((ncpus_online * percentage)/100, 1) 120 * 121 * This flag is not supported for DYNAMIC task queues. 122 * This flag is not compatible with TASKQ_CPR_SAFE. 123 * 124 * TASKQ_CPR_SAFE: This flag specifies that users of the task queue will 125 * use their own protocol for handling CPR issues. This flag is not 126 * supported for DYNAMIC task queues. This flag is not compatible 127 * with TASKQ_THREADS_CPU_PCT. 128 * 129 * The 'pri' field specifies the default priority for the threads that 130 * service all scheduled tasks. 131 * 132 * taskq_t *taskq_create_instance(name, instance, nthreads, pri, minalloc, 133 * maxalloc, flags); 134 * 135 * Like taskq_create(), but takes an instance number (or -1 to indicate 136 * no instance). 137 * 138 * taskq_t *taskq_create_proc(name, nthreads, pri, minalloc, maxalloc, proc, 139 * flags); 140 * 141 * Like taskq_create(), but creates the taskq threads in the specified 142 * system process. If proc != &p0, this must be called from a thread 143 * in that process. 144 * 145 * taskq_t *taskq_create_sysdc(name, nthreads, minalloc, maxalloc, proc, 146 * dc, flags); 147 * 148 * Like taskq_create_proc(), but the taskq threads will use the 149 * System Duty Cycle (SDC) scheduling class with a duty cycle of dc. 150 * 151 * void taskq_destroy(tap): 152 * 153 * Waits for any scheduled tasks to complete, then destroys the taskq. 154 * Caller should guarantee that no new tasks are scheduled in the closing 155 * taskq. 156 * 157 * taskqid_t taskq_dispatch(tq, func, arg, flags): 158 * 159 * Dispatches the task "func(arg)" to taskq. The 'flags' indicates whether 160 * the caller is willing to block for memory. The function returns an 161 * opaque value which is zero iff dispatch fails. If flags is TQ_NOSLEEP 162 * or TQ_NOALLOC and the task can't be dispatched, taskq_dispatch() fails 163 * and returns TASKQID_INVALID. 164 * 165 * ASSUMES: func != NULL. 166 * 167 * Possible flags: 168 * TQ_NOSLEEP: Do not wait for resources; may fail. 169 * 170 * TQ_NOALLOC: Do not allocate memory; may fail. May only be used with 171 * non-dynamic task queues. 172 * 173 * TQ_NOQUEUE: Do not enqueue a task if it can't dispatch it due to 174 * lack of available resources and fail. If this flag is not 175 * set, and the task pool is exhausted, the task may be scheduled 176 * in the backing queue. This flag may ONLY be used with dynamic 177 * task queues. 178 * 179 * NOTE: This flag should always be used when a task queue is used 180 * for tasks that may depend on each other for completion. 181 * Enqueueing dependent tasks may create deadlocks. 182 * 183 * TQ_SLEEP: May block waiting for resources. May still fail for 184 * dynamic task queues if TQ_NOQUEUE is also specified, otherwise 185 * always succeed. 186 * 187 * TQ_FRONT: Puts the new task at the front of the queue. Be careful. 188 * 189 * NOTE: Dynamic task queues are much more likely to fail in 190 * taskq_dispatch() (especially if TQ_NOQUEUE was specified), so it 191 * is important to have backup strategies handling such failures. 192 * 193 * void taskq_dispatch_ent(tq, func, arg, flags, tqent) 194 * 195 * This is a light-weight form of taskq_dispatch(), that uses a 196 * preallocated taskq_ent_t structure for scheduling. As a 197 * result, it does not perform allocations and cannot ever fail. 198 * Note especially that it cannot be used with TASKQ_DYNAMIC 199 * taskqs. The memory for the tqent must not be modified or used 200 * until the function (func) is called. (However, func itself 201 * may safely modify or free this memory, once it is called.) 202 * Note that the taskq framework will NOT free this memory. 203 * 204 * boolean_t taskq_empty(tq) 205 * 206 * Queries if there are tasks pending on the queue. 207 * 208 * void taskq_wait(tq): 209 * 210 * Waits for all previously scheduled tasks to complete. 211 * 212 * NOTE: It does not stop any new task dispatches. 213 * Do NOT call taskq_wait() from a task: it will cause deadlock. 214 * 215 * void taskq_suspend(tq) 216 * 217 * Suspend all task execution. Tasks already scheduled for a dynamic task 218 * queue will still be executed, but all new scheduled tasks will be 219 * suspended until taskq_resume() is called. 220 * 221 * int taskq_suspended(tq) 222 * 223 * Returns 1 if taskq is suspended and 0 otherwise. It is intended to 224 * ASSERT that the task queue is suspended. 225 * 226 * void taskq_resume(tq) 227 * 228 * Resume task queue execution. 229 * 230 * int taskq_member(tq, thread) 231 * 232 * Returns 1 if 'thread' belongs to taskq 'tq' and 0 otherwise. The 233 * intended use is to ASSERT that a given function is called in taskq 234 * context only. 235 * 236 * system_taskq 237 * 238 * Global system-wide dynamic task queue for common uses. It may be used by 239 * any subsystem that needs to schedule tasks and does not need to manage 240 * its own task queues. It is initialized quite early during system boot. 241 * 242 * IMPLEMENTATION ============================================================== 243 * 244 * This is schematic representation of the task queue structures. 245 * 246 * taskq: 247 * +-------------+ 248 * | tq_lock | +---< taskq_ent_free() 249 * +-------------+ | 250 * |... | | tqent: tqent: 251 * +-------------+ | +------------+ +------------+ 252 * | tq_freelist |-->| tqent_next |--> ... ->| tqent_next | 253 * +-------------+ +------------+ +------------+ 254 * |... | | ... | | ... | 255 * +-------------+ +------------+ +------------+ 256 * | tq_task | | 257 * | | +-------------->taskq_ent_alloc() 258 * +--------------------------------------------------------------------------+ 259 * | | | tqent tqent | 260 * | +---------------------+ +--> +------------+ +--> +------------+ | 261 * | | ... | | | func, arg | | | func, arg | | 262 * +>+---------------------+ <---|-+ +------------+ <---|-+ +------------+ | 263 * | tq_taskq.tqent_next | ----+ | | tqent_next | --->+ | | tqent_next |--+ 264 * +---------------------+ | +------------+ ^ | +------------+ 265 * +-| tq_task.tqent_prev | +--| tqent_prev | | +--| tqent_prev | ^ 266 * | +---------------------+ +------------+ | +------------+ | 267 * | |... | | ... | | | ... | | 268 * | +---------------------+ +------------+ | +------------+ | 269 * | ^ | | 270 * | | | | 271 * +--------------------------------------+--------------+ TQ_APPEND() -+ 272 * | | | 273 * |... | taskq_thread()-----+ 274 * +-------------+ 275 * | tq_buckets |--+-------> [ NULL ] (for regular task queues) 276 * +-------------+ | 277 * | DYNAMIC TASK QUEUES: 278 * | 279 * +-> taskq_bucket[nCPU] taskq_bucket_dispatch() 280 * +-------------------+ ^ 281 * +--->| tqbucket_lock | | 282 * | +-------------------+ +--------+ +--------+ 283 * | | tqbucket_freelist |-->| tqent |-->...| tqent | ^ 284 * | +-------------------+<--+--------+<--...+--------+ | 285 * | | ... | | thread | | thread | | 286 * | +-------------------+ +--------+ +--------+ | 287 * | +-------------------+ | 288 * taskq_dispatch()--+--->| tqbucket_lock | TQ_APPEND()------+ 289 * TQ_HASH() | +-------------------+ +--------+ +--------+ 290 * | | tqbucket_freelist |-->| tqent |-->...| tqent | 291 * | +-------------------+<--+--------+<--...+--------+ 292 * | | ... | | thread | | thread | 293 * | +-------------------+ +--------+ +--------+ 294 * +---> ... 295 * 296 * 297 * Task queues use tq_task field to link new entry in the queue. The queue is a 298 * circular doubly-linked list. Entries are put in the end of the list with 299 * TQ_APPEND() and processed from the front of the list by taskq_thread() in 300 * FIFO order. Task queue entries are cached in the free list managed by 301 * taskq_ent_alloc() and taskq_ent_free() functions. 302 * 303 * All threads used by task queues mark t_taskq field of the thread to 304 * point to the task queue. 305 * 306 * Taskq Thread Management ----------------------------------------------------- 307 * 308 * Taskq's non-dynamic threads are managed with several variables and flags: 309 * 310 * * tq_nthreads - The number of threads in taskq_thread() for the 311 * taskq. 312 * 313 * * tq_active - The number of threads not waiting on a CV in 314 * taskq_thread(); includes newly created threads 315 * not yet counted in tq_nthreads. 316 * 317 * * tq_nthreads_target 318 * - The number of threads desired for the taskq. 319 * 320 * * tq_flags & TASKQ_CHANGING 321 * - Indicates that tq_nthreads != tq_nthreads_target. 322 * 323 * * tq_flags & TASKQ_THREAD_CREATED 324 * - Indicates that a thread is being created in the taskq. 325 * 326 * During creation, tq_nthreads and tq_active are set to 0, and 327 * tq_nthreads_target is set to the number of threads desired. The 328 * TASKQ_CHANGING flag is set, and taskq_thread_create() is called to 329 * create the first thread. taskq_thread_create() increments tq_active, 330 * sets TASKQ_THREAD_CREATED, and creates the new thread. 331 * 332 * Each thread starts in taskq_thread(), clears the TASKQ_THREAD_CREATED 333 * flag, and increments tq_nthreads. It stores the new value of 334 * tq_nthreads as its "thread_id", and stores its thread pointer in the 335 * tq_threadlist at the (thread_id - 1). We keep the thread_id space 336 * densely packed by requiring that only the largest thread_id can exit during 337 * normal adjustment. The exception is during the destruction of the 338 * taskq; once tq_nthreads_target is set to zero, no new threads will be created 339 * for the taskq queue, so every thread can exit without any ordering being 340 * necessary. 341 * 342 * Threads will only process work if their thread id is <= tq_nthreads_target. 343 * 344 * When TASKQ_CHANGING is set, threads will check the current thread target 345 * whenever they wake up, and do whatever they can to apply its effects. 346 * 347 * TASKQ_THREAD_CPU_PCT -------------------------------------------------------- 348 * 349 * When a taskq is created with TASKQ_THREAD_CPU_PCT, we store their requested 350 * percentage in tq_threads_ncpus_pct, start them off with the correct thread 351 * target, and add them to the taskq_cpupct_list for later adjustment. 352 * 353 * We register taskq_cpu_setup() to be called whenever a CPU changes state. It 354 * walks the list of TASKQ_THREAD_CPU_PCT taskqs, adjusts their nthread_target 355 * if need be, and wakes up all of the threads to process the change. 356 * 357 * Dynamic Task Queues Implementation ------------------------------------------ 358 * 359 * For a dynamic task queues there is a 1-to-1 mapping between a thread and 360 * taskq_ent_structure. Each entry is serviced by its own thread and each thread 361 * is controlled by a single entry. 362 * 363 * Entries are distributed over a set of buckets. To avoid using modulo 364 * arithmetics the number of buckets is 2^n and is determined as the nearest 365 * power of two roundown of the number of CPUs in the system. Tunable 366 * variable 'taskq_maxbuckets' limits the maximum number of buckets. Each entry 367 * is attached to a bucket for its lifetime and can't migrate to other buckets. 368 * 369 * Entries that have scheduled tasks are not placed in any list. The dispatch 370 * function sets their "func" and "arg" fields and signals the corresponding 371 * thread to execute the task. Once the thread executes the task it clears the 372 * "func" field and places an entry on the bucket cache of free entries pointed 373 * by "tqbucket_freelist" field. ALL entries on the free list should have "func" 374 * field equal to NULL. The free list is a circular doubly-linked list identical 375 * in structure to the tq_task list above, but entries are taken from it in LIFO 376 * order - the last freed entry is the first to be allocated. The 377 * taskq_bucket_dispatch() function gets the most recently used entry from the 378 * free list, sets its "func" and "arg" fields and signals a worker thread. 379 * 380 * After executing each task a per-entry thread taskq_d_thread() places its 381 * entry on the bucket free list and goes to a timed sleep. If it wakes up 382 * without getting new task it removes the entry from the free list and destroys 383 * itself. The thread sleep time is controlled by a tunable variable 384 * `taskq_thread_timeout'. 385 * 386 * There are various statistics kept in the bucket which allows for later 387 * analysis of taskq usage patterns. Also, a global copy of taskq creation and 388 * death statistics is kept in the global taskq data structure. Since thread 389 * creation and death happen rarely, updating such global data does not present 390 * a performance problem. 391 * 392 * NOTE: Threads are not bound to any CPU and there is absolutely no association 393 * between the bucket and actual thread CPU, so buckets are used only to 394 * split resources and reduce resource contention. Having threads attached 395 * to the CPU denoted by a bucket may reduce number of times the job 396 * switches between CPUs. 397 * 398 * Current algorithm creates a thread whenever a bucket has no free 399 * entries. It would be nice to know how many threads are in the running 400 * state and don't create threads if all CPUs are busy with existing 401 * tasks, but it is unclear how such strategy can be implemented. 402 * 403 * Currently buckets are created statically as an array attached to task 404 * queue. On some system with nCPUs < max_ncpus it may waste system 405 * memory. One solution may be allocation of buckets when they are first 406 * touched, but it is not clear how useful it is. 407 * 408 * SUSPEND/RESUME implementation ----------------------------------------------- 409 * 410 * Before executing a task taskq_thread() (executing non-dynamic task 411 * queues) obtains taskq's thread lock as a reader. The taskq_suspend() 412 * function gets the same lock as a writer blocking all non-dynamic task 413 * execution. The taskq_resume() function releases the lock allowing 414 * taskq_thread to continue execution. 415 * 416 * For dynamic task queues, each bucket is marked as TQBUCKET_SUSPEND by 417 * taskq_suspend() function. After that taskq_bucket_dispatch() always 418 * fails, so that taskq_dispatch() will either enqueue tasks for a 419 * suspended backing queue or fail if TQ_NOQUEUE is specified in dispatch 420 * flags. 421 * 422 * NOTE: taskq_suspend() does not immediately block any tasks already 423 * scheduled for dynamic task queues. It only suspends new tasks 424 * scheduled after taskq_suspend() was called. 425 * 426 * taskq_member() function works by comparing a thread t_taskq pointer with 427 * the passed thread pointer. 428 * 429 * LOCKS and LOCK Hierarchy ---------------------------------------------------- 430 * 431 * There are three locks used in task queues: 432 * 433 * 1) The taskq_t's tq_lock, protecting global task queue state. 434 * 435 * 2) Each per-CPU bucket has a lock for bucket management. 436 * 437 * 3) The global taskq_cpupct_lock, which protects the list of 438 * TASKQ_THREADS_CPU_PCT taskqs. 439 * 440 * If both (1) and (2) are needed, tq_lock should be taken *after* the bucket 441 * lock. 442 * 443 * If both (1) and (3) are needed, tq_lock should be taken *after* 444 * taskq_cpupct_lock. 445 * 446 * DEBUG FACILITIES ------------------------------------------------------------ 447 * 448 * For DEBUG kernels it is possible to induce random failures to 449 * taskq_dispatch() function when it is given TQ_NOSLEEP argument. The value of 450 * taskq_dmtbf and taskq_smtbf tunables control the mean time between induced 451 * failures for dynamic and static task queues respectively. 452 * 453 * Setting TASKQ_STATISTIC to 0 will disable per-bucket statistics. 454 * 455 * TUNABLES -------------------------------------------------------------------- 456 * 457 * system_taskq_size - Size of the global system_taskq. 458 * This value is multiplied by nCPUs to determine 459 * actual size. 460 * Default value: 64 461 * 462 * taskq_minimum_nthreads_max 463 * - Minimum size of the thread list for a taskq. 464 * Useful for testing different thread pool 465 * sizes by overwriting tq_nthreads_target. 466 * 467 * taskq_thread_timeout - Maximum idle time for taskq_d_thread() 468 * Default value: 5 minutes 469 * 470 * taskq_maxbuckets - Maximum number of buckets in any task queue 471 * Default value: 128 472 * 473 * taskq_search_depth - Maximum # of buckets searched for a free entry 474 * Default value: 4 475 * 476 * taskq_dmtbf - Mean time between induced dispatch failures 477 * for dynamic task queues. 478 * Default value: UINT_MAX (no induced failures) 479 * 480 * taskq_smtbf - Mean time between induced dispatch failures 481 * for static task queues. 482 * Default value: UINT_MAX (no induced failures) 483 * 484 * CONDITIONAL compilation ----------------------------------------------------- 485 * 486 * TASKQ_STATISTIC - If set will enable bucket statistic (default). 487 * 488 */ 489 490 #include <sys/taskq_impl.h> 491 #include <sys/thread.h> 492 #include <sys/proc.h> 493 #include <sys/kmem.h> 494 #include <sys/vmem.h> 495 #include <sys/callb.h> 496 #include <sys/class.h> 497 #include <sys/systm.h> 498 #include <sys/cmn_err.h> 499 #include <sys/debug.h> 500 #include <sys/vmsystm.h> /* For throttlefree */ 501 #include <sys/sysmacros.h> 502 #include <sys/cpuvar.h> 503 #include <sys/cpupart.h> 504 #include <sys/sdt.h> 505 #include <sys/sysdc.h> 506 #include <sys/note.h> 507 508 static kmem_cache_t *taskq_ent_cache, *taskq_cache; 509 510 /* 511 * Pseudo instance numbers for taskqs without explicitly provided instance. 512 */ 513 static vmem_t *taskq_id_arena; 514 515 /* Global system task queue for common use */ 516 taskq_t *system_taskq; 517 518 /* 519 * Maximum number of entries in global system taskq is 520 * system_taskq_size * max_ncpus 521 */ 522 #define SYSTEM_TASKQ_SIZE 64 523 int system_taskq_size = SYSTEM_TASKQ_SIZE; 524 525 /* 526 * Minimum size for tq_nthreads_max; useful for those who want to play around 527 * with increasing a taskq's tq_nthreads_target. 528 */ 529 int taskq_minimum_nthreads_max = 1; 530 531 /* 532 * We want to ensure that when taskq_create() returns, there is at least 533 * one thread ready to handle requests. To guarantee this, we have to wait 534 * for the second thread, since the first one cannot process requests until 535 * the second thread has been created. 536 */ 537 #define TASKQ_CREATE_ACTIVE_THREADS 2 538 539 /* Maximum percentage allowed for TASKQ_THREADS_CPU_PCT */ 540 #define TASKQ_CPUPCT_MAX_PERCENT 1000 541 int taskq_cpupct_max_percent = TASKQ_CPUPCT_MAX_PERCENT; 542 543 /* 544 * Dynamic task queue threads that don't get any work within 545 * taskq_thread_timeout destroy themselves 546 */ 547 #define TASKQ_THREAD_TIMEOUT (60 * 5) 548 int taskq_thread_timeout = TASKQ_THREAD_TIMEOUT; 549 550 #define TASKQ_MAXBUCKETS 128 551 int taskq_maxbuckets = TASKQ_MAXBUCKETS; 552 553 /* 554 * When a bucket has no available entries another buckets are tried. 555 * taskq_search_depth parameter limits the amount of buckets that we search 556 * before failing. This is mostly useful in systems with many CPUs where we may 557 * spend too much time scanning busy buckets. 558 */ 559 #define TASKQ_SEARCH_DEPTH 4 560 int taskq_search_depth = TASKQ_SEARCH_DEPTH; 561 562 /* 563 * Hashing function: mix various bits of x. May be pretty much anything. 564 */ 565 #define TQ_HASH(x) ((x) ^ ((x) >> 11) ^ ((x) >> 17) ^ ((x) ^ 27)) 566 567 /* 568 * We do not create any new threads when the system is low on memory and start 569 * throttling memory allocations. The following macro tries to estimate such 570 * condition. 571 */ 572 #define ENOUGH_MEMORY() (freemem > throttlefree) 573 574 /* 575 * Static functions. 576 */ 577 static taskq_t *taskq_create_common(const char *, int, int, pri_t, int, 578 int, proc_t *, uint_t, uint_t); 579 static void taskq_thread(void *); 580 static void taskq_d_thread(taskq_ent_t *); 581 static void taskq_bucket_extend(void *); 582 static int taskq_constructor(void *, void *, int); 583 static void taskq_destructor(void *, void *); 584 static int taskq_ent_constructor(void *, void *, int); 585 static void taskq_ent_destructor(void *, void *); 586 static taskq_ent_t *taskq_ent_alloc(taskq_t *, int); 587 static void taskq_ent_free(taskq_t *, taskq_ent_t *); 588 static int taskq_ent_exists(taskq_t *, task_func_t, void *); 589 static taskq_ent_t *taskq_bucket_dispatch(taskq_bucket_t *, task_func_t, 590 void *); 591 592 /* 593 * Task queues kstats. 594 */ 595 struct taskq_kstat { 596 kstat_named_t tq_pid; 597 kstat_named_t tq_tasks; 598 kstat_named_t tq_executed; 599 kstat_named_t tq_maxtasks; 600 kstat_named_t tq_totaltime; 601 kstat_named_t tq_nalloc; 602 kstat_named_t tq_nactive; 603 kstat_named_t tq_pri; 604 kstat_named_t tq_nthreads; 605 kstat_named_t tq_nomem; 606 } taskq_kstat = { 607 { "pid", KSTAT_DATA_UINT64 }, 608 { "tasks", KSTAT_DATA_UINT64 }, 609 { "executed", KSTAT_DATA_UINT64 }, 610 { "maxtasks", KSTAT_DATA_UINT64 }, 611 { "totaltime", KSTAT_DATA_UINT64 }, 612 { "nalloc", KSTAT_DATA_UINT64 }, 613 { "nactive", KSTAT_DATA_UINT64 }, 614 { "priority", KSTAT_DATA_UINT64 }, 615 { "threads", KSTAT_DATA_UINT64 }, 616 { "nomem", KSTAT_DATA_UINT64 }, 617 }; 618 619 struct taskq_d_kstat { 620 kstat_named_t tqd_pri; 621 kstat_named_t tqd_btasks; 622 kstat_named_t tqd_bexecuted; 623 kstat_named_t tqd_bmaxtasks; 624 kstat_named_t tqd_bnalloc; 625 kstat_named_t tqd_bnactive; 626 kstat_named_t tqd_btotaltime; 627 kstat_named_t tqd_hits; 628 kstat_named_t tqd_misses; 629 kstat_named_t tqd_overflows; 630 kstat_named_t tqd_tcreates; 631 kstat_named_t tqd_tdeaths; 632 kstat_named_t tqd_maxthreads; 633 kstat_named_t tqd_nomem; 634 kstat_named_t tqd_disptcreates; 635 kstat_named_t tqd_totaltime; 636 kstat_named_t tqd_nalloc; 637 kstat_named_t tqd_nfree; 638 } taskq_d_kstat = { 639 { "priority", KSTAT_DATA_UINT64 }, 640 { "btasks", KSTAT_DATA_UINT64 }, 641 { "bexecuted", KSTAT_DATA_UINT64 }, 642 { "bmaxtasks", KSTAT_DATA_UINT64 }, 643 { "bnalloc", KSTAT_DATA_UINT64 }, 644 { "bnactive", KSTAT_DATA_UINT64 }, 645 { "btotaltime", KSTAT_DATA_UINT64 }, 646 { "hits", KSTAT_DATA_UINT64 }, 647 { "misses", KSTAT_DATA_UINT64 }, 648 { "overflows", KSTAT_DATA_UINT64 }, 649 { "tcreates", KSTAT_DATA_UINT64 }, 650 { "tdeaths", KSTAT_DATA_UINT64 }, 651 { "maxthreads", KSTAT_DATA_UINT64 }, 652 { "nomem", KSTAT_DATA_UINT64 }, 653 { "disptcreates", KSTAT_DATA_UINT64 }, 654 { "totaltime", KSTAT_DATA_UINT64 }, 655 { "nalloc", KSTAT_DATA_UINT64 }, 656 { "nfree", KSTAT_DATA_UINT64 }, 657 }; 658 659 static kmutex_t taskq_kstat_lock; 660 static kmutex_t taskq_d_kstat_lock; 661 static int taskq_kstat_update(kstat_t *, int); 662 static int taskq_d_kstat_update(kstat_t *, int); 663 664 /* 665 * List of all TASKQ_THREADS_CPU_PCT taskqs. 666 */ 667 static list_t taskq_cpupct_list; /* protected by cpu_lock */ 668 669 /* 670 * Collect per-bucket statistic when TASKQ_STATISTIC is defined. 671 */ 672 #define TASKQ_STATISTIC 1 673 674 #if TASKQ_STATISTIC 675 #define TQ_STAT(b, x) b->tqbucket_stat.x++ 676 #else 677 #define TQ_STAT(b, x) 678 #endif 679 680 /* 681 * Random fault injection. 682 */ 683 uint_t taskq_random; 684 uint_t taskq_dmtbf = UINT_MAX; /* mean time between injected failures */ 685 uint_t taskq_smtbf = UINT_MAX; /* mean time between injected failures */ 686 687 /* 688 * TQ_NOSLEEP dispatches on dynamic task queues are always allowed to fail. 689 * 690 * TQ_NOSLEEP dispatches on static task queues can't arbitrarily fail because 691 * they could prepopulate the cache and make sure that they do not use more 692 * then minalloc entries. So, fault injection in this case insures that 693 * either TASKQ_PREPOPULATE is not set or there are more entries allocated 694 * than is specified by minalloc. TQ_NOALLOC dispatches are always allowed 695 * to fail, but for simplicity we treat them identically to TQ_NOSLEEP 696 * dispatches. 697 */ 698 #ifdef DEBUG 699 #define TASKQ_D_RANDOM_DISPATCH_FAILURE(tq, flag) \ 700 taskq_random = (taskq_random * 2416 + 374441) % 1771875;\ 701 if ((flag & TQ_NOSLEEP) && \ 702 taskq_random < 1771875 / taskq_dmtbf) { \ 703 return (TASKQID_INVALID); \ 704 } 705 706 #define TASKQ_S_RANDOM_DISPATCH_FAILURE(tq, flag) \ 707 taskq_random = (taskq_random * 2416 + 374441) % 1771875;\ 708 if ((flag & (TQ_NOSLEEP | TQ_NOALLOC)) && \ 709 (!(tq->tq_flags & TASKQ_PREPOPULATE) || \ 710 (tq->tq_nalloc > tq->tq_minalloc)) && \ 711 (taskq_random < (1771875 / taskq_smtbf))) { \ 712 mutex_exit(&tq->tq_lock); \ 713 return (TASKQID_INVALID); \ 714 } 715 #else 716 #define TASKQ_S_RANDOM_DISPATCH_FAILURE(tq, flag) 717 #define TASKQ_D_RANDOM_DISPATCH_FAILURE(tq, flag) 718 #endif 719 720 #define IS_EMPTY(l) (((l).tqent_prev == (l).tqent_next) && \ 721 ((l).tqent_prev == &(l))) 722 723 /* 724 * Append `tqe' in the end of the doubly-linked list denoted by l. 725 */ 726 #define TQ_APPEND(l, tqe) { \ 727 tqe->tqent_next = &l; \ 728 tqe->tqent_prev = l.tqent_prev; \ 729 tqe->tqent_next->tqent_prev = tqe; \ 730 tqe->tqent_prev->tqent_next = tqe; \ 731 } 732 /* 733 * Prepend 'tqe' to the beginning of l 734 */ 735 #define TQ_PREPEND(l, tqe) { \ 736 tqe->tqent_next = l.tqent_next; \ 737 tqe->tqent_prev = &l; \ 738 tqe->tqent_next->tqent_prev = tqe; \ 739 tqe->tqent_prev->tqent_next = tqe; \ 740 } 741 742 /* 743 * Schedule a task specified by func and arg into the task queue entry tqe. 744 */ 745 #define TQ_DO_ENQUEUE(tq, tqe, func, arg, front) { \ 746 ASSERT(MUTEX_HELD(&tq->tq_lock)); \ 747 _NOTE(CONSTCOND) \ 748 if (front) { \ 749 TQ_PREPEND(tq->tq_task, tqe); \ 750 } else { \ 751 TQ_APPEND(tq->tq_task, tqe); \ 752 } \ 753 tqe->tqent_func = (func); \ 754 tqe->tqent_arg = (arg); \ 755 tq->tq_tasks++; \ 756 if (tq->tq_tasks - tq->tq_executed > tq->tq_maxtasks) \ 757 tq->tq_maxtasks = tq->tq_tasks - tq->tq_executed; \ 758 cv_signal(&tq->tq_dispatch_cv); \ 759 DTRACE_PROBE2(taskq__enqueue, taskq_t *, tq, taskq_ent_t *, tqe); \ 760 } 761 762 #define TQ_ENQUEUE(tq, tqe, func, arg) \ 763 TQ_DO_ENQUEUE(tq, tqe, func, arg, 0) 764 765 #define TQ_ENQUEUE_FRONT(tq, tqe, func, arg) \ 766 TQ_DO_ENQUEUE(tq, tqe, func, arg, 1) 767 768 /* 769 * Do-nothing task which may be used to prepopulate thread caches. 770 */ 771 /*ARGSUSED*/ 772 void 773 nulltask(void *unused) 774 { 775 } 776 777 /*ARGSUSED*/ 778 static int 779 taskq_constructor(void *buf, void *cdrarg, int kmflags) 780 { 781 taskq_t *tq = buf; 782 783 bzero(tq, sizeof (taskq_t)); 784 785 mutex_init(&tq->tq_lock, NULL, MUTEX_DEFAULT, NULL); 786 rw_init(&tq->tq_threadlock, NULL, RW_DEFAULT, NULL); 787 cv_init(&tq->tq_dispatch_cv, NULL, CV_DEFAULT, NULL); 788 cv_init(&tq->tq_exit_cv, NULL, CV_DEFAULT, NULL); 789 cv_init(&tq->tq_wait_cv, NULL, CV_DEFAULT, NULL); 790 cv_init(&tq->tq_maxalloc_cv, NULL, CV_DEFAULT, NULL); 791 792 tq->tq_task.tqent_next = &tq->tq_task; 793 tq->tq_task.tqent_prev = &tq->tq_task; 794 795 return (0); 796 } 797 798 /*ARGSUSED*/ 799 static void 800 taskq_destructor(void *buf, void *cdrarg) 801 { 802 taskq_t *tq = buf; 803 804 ASSERT(tq->tq_nthreads == 0); 805 ASSERT(tq->tq_buckets == NULL); 806 ASSERT(tq->tq_tcreates == 0); 807 ASSERT(tq->tq_tdeaths == 0); 808 809 mutex_destroy(&tq->tq_lock); 810 rw_destroy(&tq->tq_threadlock); 811 cv_destroy(&tq->tq_dispatch_cv); 812 cv_destroy(&tq->tq_exit_cv); 813 cv_destroy(&tq->tq_wait_cv); 814 cv_destroy(&tq->tq_maxalloc_cv); 815 } 816 817 /*ARGSUSED*/ 818 static int 819 taskq_ent_constructor(void *buf, void *cdrarg, int kmflags) 820 { 821 taskq_ent_t *tqe = buf; 822 823 tqe->tqent_thread = NULL; 824 cv_init(&tqe->tqent_cv, NULL, CV_DEFAULT, NULL); 825 826 return (0); 827 } 828 829 /*ARGSUSED*/ 830 static void 831 taskq_ent_destructor(void *buf, void *cdrarg) 832 { 833 taskq_ent_t *tqe = buf; 834 835 ASSERT(tqe->tqent_thread == NULL); 836 cv_destroy(&tqe->tqent_cv); 837 } 838 839 void 840 taskq_init(void) 841 { 842 taskq_ent_cache = kmem_cache_create("taskq_ent_cache", 843 sizeof (taskq_ent_t), 0, taskq_ent_constructor, 844 taskq_ent_destructor, NULL, NULL, NULL, 0); 845 taskq_cache = kmem_cache_create("taskq_cache", sizeof (taskq_t), 846 0, taskq_constructor, taskq_destructor, NULL, NULL, NULL, 0); 847 taskq_id_arena = vmem_create("taskq_id_arena", 848 (void *)1, INT32_MAX, 1, NULL, NULL, NULL, 0, 849 VM_SLEEP | VMC_IDENTIFIER); 850 851 list_create(&taskq_cpupct_list, sizeof (taskq_t), 852 offsetof(taskq_t, tq_cpupct_link)); 853 } 854 855 static void 856 taskq_update_nthreads(taskq_t *tq, uint_t ncpus) 857 { 858 uint_t newtarget = TASKQ_THREADS_PCT(ncpus, tq->tq_threads_ncpus_pct); 859 860 ASSERT(MUTEX_HELD(&cpu_lock)); 861 ASSERT(MUTEX_HELD(&tq->tq_lock)); 862 863 /* We must be going from non-zero to non-zero; no exiting. */ 864 ASSERT3U(tq->tq_nthreads_target, !=, 0); 865 ASSERT3U(newtarget, !=, 0); 866 867 ASSERT3U(newtarget, <=, tq->tq_nthreads_max); 868 if (newtarget != tq->tq_nthreads_target) { 869 tq->tq_flags |= TASKQ_CHANGING; 870 tq->tq_nthreads_target = newtarget; 871 cv_broadcast(&tq->tq_dispatch_cv); 872 cv_broadcast(&tq->tq_exit_cv); 873 } 874 } 875 876 /* called during task queue creation */ 877 static void 878 taskq_cpupct_install(taskq_t *tq, cpupart_t *cpup) 879 { 880 ASSERT(tq->tq_flags & TASKQ_THREADS_CPU_PCT); 881 882 mutex_enter(&cpu_lock); 883 mutex_enter(&tq->tq_lock); 884 tq->tq_cpupart = cpup->cp_id; 885 taskq_update_nthreads(tq, cpup->cp_ncpus); 886 mutex_exit(&tq->tq_lock); 887 888 list_insert_tail(&taskq_cpupct_list, tq); 889 mutex_exit(&cpu_lock); 890 } 891 892 static void 893 taskq_cpupct_remove(taskq_t *tq) 894 { 895 ASSERT(tq->tq_flags & TASKQ_THREADS_CPU_PCT); 896 897 mutex_enter(&cpu_lock); 898 list_remove(&taskq_cpupct_list, tq); 899 mutex_exit(&cpu_lock); 900 } 901 902 /*ARGSUSED*/ 903 static int 904 taskq_cpu_setup(cpu_setup_t what, int id, void *arg) 905 { 906 taskq_t *tq; 907 cpupart_t *cp = cpu[id]->cpu_part; 908 uint_t ncpus = cp->cp_ncpus; 909 910 ASSERT(MUTEX_HELD(&cpu_lock)); 911 ASSERT(ncpus > 0); 912 913 switch (what) { 914 case CPU_OFF: 915 case CPU_CPUPART_OUT: 916 /* offlines are called *before* the cpu is offlined. */ 917 if (ncpus > 1) 918 ncpus--; 919 break; 920 921 case CPU_ON: 922 case CPU_CPUPART_IN: 923 break; 924 925 default: 926 return (0); /* doesn't affect cpu count */ 927 } 928 929 for (tq = list_head(&taskq_cpupct_list); tq != NULL; 930 tq = list_next(&taskq_cpupct_list, tq)) { 931 932 mutex_enter(&tq->tq_lock); 933 /* 934 * If the taskq is part of the cpuset which is changing, 935 * update its nthreads_target. 936 */ 937 if (tq->tq_cpupart == cp->cp_id) { 938 taskq_update_nthreads(tq, ncpus); 939 } 940 mutex_exit(&tq->tq_lock); 941 } 942 return (0); 943 } 944 945 void 946 taskq_mp_init(void) 947 { 948 mutex_enter(&cpu_lock); 949 register_cpu_setup_func(taskq_cpu_setup, NULL); 950 /* 951 * Make sure we're up to date. At this point in boot, there is only 952 * one processor set, so we only have to update the current CPU. 953 */ 954 (void) taskq_cpu_setup(CPU_ON, CPU->cpu_id, NULL); 955 mutex_exit(&cpu_lock); 956 } 957 958 /* 959 * Create global system dynamic task queue. 960 */ 961 void 962 system_taskq_init(void) 963 { 964 system_taskq = taskq_create_common("system_taskq", 0, 965 system_taskq_size * max_ncpus, minclsyspri, 4, 512, &p0, 0, 966 TASKQ_DYNAMIC | TASKQ_PREPOPULATE); 967 } 968 969 /* 970 * taskq_ent_alloc() 971 * 972 * Allocates a new taskq_ent_t structure either from the free list or from the 973 * cache. Returns NULL if it can't be allocated. 974 * 975 * Assumes: tq->tq_lock is held. 976 */ 977 static taskq_ent_t * 978 taskq_ent_alloc(taskq_t *tq, int flags) 979 { 980 int kmflags = (flags & TQ_NOSLEEP) ? KM_NOSLEEP : KM_SLEEP; 981 taskq_ent_t *tqe; 982 clock_t wait_time; 983 clock_t wait_rv; 984 985 ASSERT(MUTEX_HELD(&tq->tq_lock)); 986 987 /* 988 * TQ_NOALLOC allocations are allowed to use the freelist, even if 989 * we are below tq_minalloc. 990 */ 991 again: if ((tqe = tq->tq_freelist) != NULL && 992 ((flags & TQ_NOALLOC) || tq->tq_nalloc >= tq->tq_minalloc)) { 993 tq->tq_freelist = tqe->tqent_next; 994 } else { 995 if (flags & TQ_NOALLOC) 996 return (NULL); 997 998 if (tq->tq_nalloc >= tq->tq_maxalloc) { 999 if (kmflags & KM_NOSLEEP) 1000 return (NULL); 1001 1002 /* 1003 * We don't want to exceed tq_maxalloc, but we can't 1004 * wait for other tasks to complete (and thus free up 1005 * task structures) without risking deadlock with 1006 * the caller. So, we just delay for one second 1007 * to throttle the allocation rate. If we have tasks 1008 * complete before one second timeout expires then 1009 * taskq_ent_free will signal us and we will 1010 * immediately retry the allocation (reap free). 1011 */ 1012 wait_time = ddi_get_lbolt() + hz; 1013 while (tq->tq_freelist == NULL) { 1014 tq->tq_maxalloc_wait++; 1015 wait_rv = cv_timedwait(&tq->tq_maxalloc_cv, 1016 &tq->tq_lock, wait_time); 1017 tq->tq_maxalloc_wait--; 1018 if (wait_rv == -1) 1019 break; 1020 } 1021 if (tq->tq_freelist) 1022 goto again; /* reap freelist */ 1023 1024 } 1025 mutex_exit(&tq->tq_lock); 1026 1027 tqe = kmem_cache_alloc(taskq_ent_cache, kmflags); 1028 1029 mutex_enter(&tq->tq_lock); 1030 if (tqe != NULL) 1031 tq->tq_nalloc++; 1032 } 1033 return (tqe); 1034 } 1035 1036 /* 1037 * taskq_ent_free() 1038 * 1039 * Free taskq_ent_t structure by either putting it on the free list or freeing 1040 * it to the cache. 1041 * 1042 * Assumes: tq->tq_lock is held. 1043 */ 1044 static void 1045 taskq_ent_free(taskq_t *tq, taskq_ent_t *tqe) 1046 { 1047 ASSERT(MUTEX_HELD(&tq->tq_lock)); 1048 1049 if (tq->tq_nalloc <= tq->tq_minalloc) { 1050 tqe->tqent_next = tq->tq_freelist; 1051 tq->tq_freelist = tqe; 1052 } else { 1053 tq->tq_nalloc--; 1054 mutex_exit(&tq->tq_lock); 1055 kmem_cache_free(taskq_ent_cache, tqe); 1056 mutex_enter(&tq->tq_lock); 1057 } 1058 1059 if (tq->tq_maxalloc_wait) 1060 cv_signal(&tq->tq_maxalloc_cv); 1061 } 1062 1063 /* 1064 * taskq_ent_exists() 1065 * 1066 * Return 1 if taskq already has entry for calling 'func(arg)'. 1067 * 1068 * Assumes: tq->tq_lock is held. 1069 */ 1070 static int 1071 taskq_ent_exists(taskq_t *tq, task_func_t func, void *arg) 1072 { 1073 taskq_ent_t *tqe; 1074 1075 ASSERT(MUTEX_HELD(&tq->tq_lock)); 1076 1077 for (tqe = tq->tq_task.tqent_next; tqe != &tq->tq_task; 1078 tqe = tqe->tqent_next) 1079 if ((tqe->tqent_func == func) && (tqe->tqent_arg == arg)) 1080 return (1); 1081 return (0); 1082 } 1083 1084 /* 1085 * Dispatch a task "func(arg)" to a free entry of bucket b. 1086 * 1087 * Assumes: no bucket locks is held. 1088 * 1089 * Returns: a pointer to an entry if dispatch was successful. 1090 * NULL if there are no free entries or if the bucket is suspended. 1091 */ 1092 static taskq_ent_t * 1093 taskq_bucket_dispatch(taskq_bucket_t *b, task_func_t func, void *arg) 1094 { 1095 taskq_ent_t *tqe; 1096 1097 ASSERT(MUTEX_NOT_HELD(&b->tqbucket_lock)); 1098 ASSERT(func != NULL); 1099 1100 mutex_enter(&b->tqbucket_lock); 1101 1102 ASSERT(b->tqbucket_nfree != 0 || IS_EMPTY(b->tqbucket_freelist)); 1103 ASSERT(b->tqbucket_nfree == 0 || !IS_EMPTY(b->tqbucket_freelist)); 1104 1105 /* 1106 * Get en entry from the freelist if there is one. 1107 * Schedule task into the entry. 1108 */ 1109 if ((b->tqbucket_nfree != 0) && 1110 !(b->tqbucket_flags & TQBUCKET_SUSPEND)) { 1111 tqe = b->tqbucket_freelist.tqent_prev; 1112 1113 ASSERT(tqe != &b->tqbucket_freelist); 1114 ASSERT(tqe->tqent_thread != NULL); 1115 1116 tqe->tqent_prev->tqent_next = tqe->tqent_next; 1117 tqe->tqent_next->tqent_prev = tqe->tqent_prev; 1118 b->tqbucket_nalloc++; 1119 b->tqbucket_nfree--; 1120 tqe->tqent_func = func; 1121 tqe->tqent_arg = arg; 1122 TQ_STAT(b, tqs_hits); 1123 cv_signal(&tqe->tqent_cv); 1124 DTRACE_PROBE2(taskq__d__enqueue, taskq_bucket_t *, b, 1125 taskq_ent_t *, tqe); 1126 } else { 1127 tqe = NULL; 1128 TQ_STAT(b, tqs_misses); 1129 } 1130 mutex_exit(&b->tqbucket_lock); 1131 return (tqe); 1132 } 1133 1134 /* 1135 * Dispatch a task. 1136 * 1137 * Assumes: func != NULL 1138 * 1139 * Returns: NULL if dispatch failed. 1140 * non-NULL if task dispatched successfully. 1141 * Actual return value is the pointer to taskq entry that was used to 1142 * dispatch a task. This is useful for debugging. 1143 */ 1144 taskqid_t 1145 taskq_dispatch(taskq_t *tq, task_func_t func, void *arg, uint_t flags) 1146 { 1147 taskq_bucket_t *bucket = NULL; /* Which bucket needs extension */ 1148 taskq_ent_t *tqe = NULL; 1149 taskq_ent_t *tqe1; 1150 uint_t bsize; 1151 1152 ASSERT(tq != NULL); 1153 ASSERT(func != NULL); 1154 1155 if (!(tq->tq_flags & TASKQ_DYNAMIC)) { 1156 /* 1157 * TQ_NOQUEUE flag can't be used with non-dynamic task queues. 1158 */ 1159 ASSERT(!(flags & TQ_NOQUEUE)); 1160 /* 1161 * Enqueue the task to the underlying queue. 1162 */ 1163 mutex_enter(&tq->tq_lock); 1164 1165 TASKQ_S_RANDOM_DISPATCH_FAILURE(tq, flags); 1166 1167 if ((tqe = taskq_ent_alloc(tq, flags)) == NULL) { 1168 tq->tq_nomem++; 1169 mutex_exit(&tq->tq_lock); 1170 return ((taskqid_t)tqe); 1171 } 1172 /* Make sure we start without any flags */ 1173 tqe->tqent_un.tqent_flags = 0; 1174 1175 if (flags & TQ_FRONT) { 1176 TQ_ENQUEUE_FRONT(tq, tqe, func, arg); 1177 } else { 1178 TQ_ENQUEUE(tq, tqe, func, arg); 1179 } 1180 mutex_exit(&tq->tq_lock); 1181 return ((taskqid_t)tqe); 1182 } 1183 1184 /* 1185 * Dynamic taskq dispatching. 1186 */ 1187 ASSERT(!(flags & (TQ_NOALLOC | TQ_FRONT))); 1188 TASKQ_D_RANDOM_DISPATCH_FAILURE(tq, flags); 1189 1190 bsize = tq->tq_nbuckets; 1191 1192 if (bsize == 1) { 1193 /* 1194 * In a single-CPU case there is only one bucket, so get 1195 * entry directly from there. 1196 */ 1197 if ((tqe = taskq_bucket_dispatch(tq->tq_buckets, func, arg)) 1198 != NULL) 1199 return ((taskqid_t)tqe); /* Fastpath */ 1200 bucket = tq->tq_buckets; 1201 } else { 1202 int loopcount; 1203 taskq_bucket_t *b; 1204 uintptr_t h = ((uintptr_t)CPU + (uintptr_t)arg) >> 3; 1205 1206 h = TQ_HASH(h); 1207 1208 /* 1209 * The 'bucket' points to the original bucket that we hit. If we 1210 * can't allocate from it, we search other buckets, but only 1211 * extend this one. 1212 */ 1213 b = &tq->tq_buckets[h & (bsize - 1)]; 1214 ASSERT(b->tqbucket_taskq == tq); /* Sanity check */ 1215 1216 /* 1217 * Do a quick check before grabbing the lock. If the bucket does 1218 * not have free entries now, chances are very small that it 1219 * will after we take the lock, so we just skip it. 1220 */ 1221 if (b->tqbucket_nfree != 0) { 1222 if ((tqe = taskq_bucket_dispatch(b, func, arg)) != NULL) 1223 return ((taskqid_t)tqe); /* Fastpath */ 1224 } else { 1225 TQ_STAT(b, tqs_misses); 1226 } 1227 1228 bucket = b; 1229 loopcount = MIN(taskq_search_depth, bsize); 1230 /* 1231 * If bucket dispatch failed, search loopcount number of buckets 1232 * before we give up and fail. 1233 */ 1234 do { 1235 b = &tq->tq_buckets[++h & (bsize - 1)]; 1236 ASSERT(b->tqbucket_taskq == tq); /* Sanity check */ 1237 loopcount--; 1238 1239 if (b->tqbucket_nfree != 0) { 1240 tqe = taskq_bucket_dispatch(b, func, arg); 1241 } else { 1242 TQ_STAT(b, tqs_misses); 1243 } 1244 } while ((tqe == NULL) && (loopcount > 0)); 1245 } 1246 1247 /* 1248 * At this point we either scheduled a task and (tqe != NULL) or failed 1249 * (tqe == NULL). Try to recover from fails. 1250 */ 1251 1252 /* 1253 * For KM_SLEEP dispatches, try to extend the bucket and retry dispatch. 1254 */ 1255 if ((tqe == NULL) && !(flags & TQ_NOSLEEP)) { 1256 /* 1257 * taskq_bucket_extend() may fail to do anything, but this is 1258 * fine - we deal with it later. If the bucket was successfully 1259 * extended, there is a good chance that taskq_bucket_dispatch() 1260 * will get this new entry, unless someone is racing with us and 1261 * stealing the new entry from under our nose. 1262 * taskq_bucket_extend() may sleep. 1263 */ 1264 taskq_bucket_extend(bucket); 1265 TQ_STAT(bucket, tqs_disptcreates); 1266 if ((tqe = taskq_bucket_dispatch(bucket, func, arg)) != NULL) 1267 return ((taskqid_t)tqe); 1268 } 1269 1270 ASSERT(bucket != NULL); 1271 1272 /* 1273 * Since there are not enough free entries in the bucket, add a 1274 * taskq entry to extend it in the background using backing queue 1275 * (unless we already have a taskq entry to perform that extension). 1276 */ 1277 mutex_enter(&tq->tq_lock); 1278 if (!taskq_ent_exists(tq, taskq_bucket_extend, bucket)) { 1279 if ((tqe1 = taskq_ent_alloc(tq, TQ_NOSLEEP)) != NULL) { 1280 TQ_ENQUEUE_FRONT(tq, tqe1, taskq_bucket_extend, bucket); 1281 } else { 1282 tq->tq_nomem++; 1283 } 1284 } 1285 1286 /* 1287 * Dispatch failed and we can't find an entry to schedule a task. 1288 * Revert to the backing queue unless TQ_NOQUEUE was asked. 1289 */ 1290 if ((tqe == NULL) && !(flags & TQ_NOQUEUE)) { 1291 if ((tqe = taskq_ent_alloc(tq, flags)) != NULL) { 1292 TQ_ENQUEUE(tq, tqe, func, arg); 1293 } else { 1294 tq->tq_nomem++; 1295 } 1296 } 1297 mutex_exit(&tq->tq_lock); 1298 1299 return ((taskqid_t)tqe); 1300 } 1301 1302 void 1303 taskq_dispatch_ent(taskq_t *tq, task_func_t func, void *arg, uint_t flags, 1304 taskq_ent_t *tqe) 1305 { 1306 ASSERT(func != NULL); 1307 ASSERT(!(tq->tq_flags & TASKQ_DYNAMIC)); 1308 1309 /* 1310 * Mark it as a prealloc'd task. This is important 1311 * to ensure that we don't free it later. 1312 */ 1313 tqe->tqent_un.tqent_flags |= TQENT_FLAG_PREALLOC; 1314 /* 1315 * Enqueue the task to the underlying queue. 1316 */ 1317 mutex_enter(&tq->tq_lock); 1318 1319 if (flags & TQ_FRONT) { 1320 TQ_ENQUEUE_FRONT(tq, tqe, func, arg); 1321 } else { 1322 TQ_ENQUEUE(tq, tqe, func, arg); 1323 } 1324 mutex_exit(&tq->tq_lock); 1325 } 1326 1327 /* 1328 * Allow our caller to ask if there are tasks pending on the queue. 1329 */ 1330 boolean_t 1331 taskq_empty(taskq_t *tq) 1332 { 1333 boolean_t rv; 1334 1335 ASSERT3P(tq, !=, curthread->t_taskq); 1336 mutex_enter(&tq->tq_lock); 1337 rv = (tq->tq_task.tqent_next == &tq->tq_task) && (tq->tq_active == 0); 1338 mutex_exit(&tq->tq_lock); 1339 1340 return (rv); 1341 } 1342 1343 /* 1344 * Wait for all pending tasks to complete. 1345 * Calling taskq_wait from a task will cause deadlock. 1346 */ 1347 void 1348 taskq_wait(taskq_t *tq) 1349 { 1350 ASSERT(tq != curthread->t_taskq); 1351 1352 mutex_enter(&tq->tq_lock); 1353 while (tq->tq_task.tqent_next != &tq->tq_task || tq->tq_active != 0) 1354 cv_wait(&tq->tq_wait_cv, &tq->tq_lock); 1355 mutex_exit(&tq->tq_lock); 1356 1357 if (tq->tq_flags & TASKQ_DYNAMIC) { 1358 taskq_bucket_t *b = tq->tq_buckets; 1359 int bid = 0; 1360 for (; (b != NULL) && (bid < tq->tq_nbuckets); b++, bid++) { 1361 mutex_enter(&b->tqbucket_lock); 1362 while (b->tqbucket_nalloc > 0) 1363 cv_wait(&b->tqbucket_cv, &b->tqbucket_lock); 1364 mutex_exit(&b->tqbucket_lock); 1365 } 1366 } 1367 } 1368 1369 void 1370 taskq_wait_id(taskq_t *tq, taskqid_t id __unused) 1371 { 1372 taskq_wait(tq); 1373 } 1374 1375 /* 1376 * Suspend execution of tasks. 1377 * 1378 * Tasks in the queue part will be suspended immediately upon return from this 1379 * function. Pending tasks in the dynamic part will continue to execute, but all 1380 * new tasks will be suspended. 1381 */ 1382 void 1383 taskq_suspend(taskq_t *tq) 1384 { 1385 rw_enter(&tq->tq_threadlock, RW_WRITER); 1386 1387 if (tq->tq_flags & TASKQ_DYNAMIC) { 1388 taskq_bucket_t *b = tq->tq_buckets; 1389 int bid = 0; 1390 for (; (b != NULL) && (bid < tq->tq_nbuckets); b++, bid++) { 1391 mutex_enter(&b->tqbucket_lock); 1392 b->tqbucket_flags |= TQBUCKET_SUSPEND; 1393 mutex_exit(&b->tqbucket_lock); 1394 } 1395 } 1396 /* 1397 * Mark task queue as being suspended. Needed for taskq_suspended(). 1398 */ 1399 mutex_enter(&tq->tq_lock); 1400 ASSERT(!(tq->tq_flags & TASKQ_SUSPENDED)); 1401 tq->tq_flags |= TASKQ_SUSPENDED; 1402 mutex_exit(&tq->tq_lock); 1403 } 1404 1405 /* 1406 * returns: 1 if tq is suspended, 0 otherwise. 1407 */ 1408 int 1409 taskq_suspended(taskq_t *tq) 1410 { 1411 return ((tq->tq_flags & TASKQ_SUSPENDED) != 0); 1412 } 1413 1414 /* 1415 * Resume taskq execution. 1416 */ 1417 void 1418 taskq_resume(taskq_t *tq) 1419 { 1420 ASSERT(RW_WRITE_HELD(&tq->tq_threadlock)); 1421 1422 if (tq->tq_flags & TASKQ_DYNAMIC) { 1423 taskq_bucket_t *b = tq->tq_buckets; 1424 int bid = 0; 1425 for (; (b != NULL) && (bid < tq->tq_nbuckets); b++, bid++) { 1426 mutex_enter(&b->tqbucket_lock); 1427 b->tqbucket_flags &= ~TQBUCKET_SUSPEND; 1428 mutex_exit(&b->tqbucket_lock); 1429 } 1430 } 1431 mutex_enter(&tq->tq_lock); 1432 ASSERT(tq->tq_flags & TASKQ_SUSPENDED); 1433 tq->tq_flags &= ~TASKQ_SUSPENDED; 1434 mutex_exit(&tq->tq_lock); 1435 1436 rw_exit(&tq->tq_threadlock); 1437 } 1438 1439 int 1440 taskq_member(taskq_t *tq, kthread_t *thread) 1441 { 1442 return (thread->t_taskq == tq); 1443 } 1444 1445 /* 1446 * Creates a thread in the taskq. We only allow one outstanding create at 1447 * a time. We drop and reacquire the tq_lock in order to avoid blocking other 1448 * taskq activity while thread_create() or lwp_kernel_create() run. 1449 * 1450 * The first time we're called, we do some additional setup, and do not 1451 * return until there are enough threads to start servicing requests. 1452 */ 1453 static void 1454 taskq_thread_create(taskq_t *tq) 1455 { 1456 kthread_t *t; 1457 const boolean_t first = (tq->tq_nthreads == 0); 1458 1459 ASSERT(MUTEX_HELD(&tq->tq_lock)); 1460 ASSERT(tq->tq_flags & TASKQ_CHANGING); 1461 ASSERT(tq->tq_nthreads < tq->tq_nthreads_target); 1462 ASSERT(!(tq->tq_flags & TASKQ_THREAD_CREATED)); 1463 1464 1465 tq->tq_flags |= TASKQ_THREAD_CREATED; 1466 tq->tq_active++; 1467 mutex_exit(&tq->tq_lock); 1468 1469 /* 1470 * With TASKQ_DUTY_CYCLE the new thread must have an LWP 1471 * as explained in ../disp/sysdc.c (for the msacct data). 1472 * Otherwise simple kthreads are preferred. 1473 */ 1474 if ((tq->tq_flags & TASKQ_DUTY_CYCLE) != 0) { 1475 /* Enforced in taskq_create_common */ 1476 ASSERT3P(tq->tq_proc, !=, &p0); 1477 t = lwp_kernel_create(tq->tq_proc, taskq_thread, tq, TS_RUN, 1478 tq->tq_pri); 1479 } else { 1480 t = thread_create(NULL, 0, taskq_thread, tq, 0, tq->tq_proc, 1481 TS_RUN, tq->tq_pri); 1482 } 1483 1484 if (!first) { 1485 mutex_enter(&tq->tq_lock); 1486 return; 1487 } 1488 1489 /* 1490 * We know the thread cannot go away, since tq cannot be 1491 * destroyed until creation has completed. We can therefore 1492 * safely dereference t. 1493 */ 1494 if (tq->tq_flags & TASKQ_THREADS_CPU_PCT) { 1495 taskq_cpupct_install(tq, t->t_cpupart); 1496 } 1497 mutex_enter(&tq->tq_lock); 1498 1499 /* Wait until we can service requests. */ 1500 while (tq->tq_nthreads != tq->tq_nthreads_target && 1501 tq->tq_nthreads < TASKQ_CREATE_ACTIVE_THREADS) { 1502 cv_wait(&tq->tq_wait_cv, &tq->tq_lock); 1503 } 1504 } 1505 1506 /* 1507 * Common "sleep taskq thread" function, which handles CPR stuff, as well 1508 * as giving a nice common point for debuggers to find inactive threads. 1509 */ 1510 static clock_t 1511 taskq_thread_wait(taskq_t *tq, kmutex_t *mx, kcondvar_t *cv, 1512 callb_cpr_t *cprinfo, clock_t timeout) 1513 { 1514 clock_t ret = 0; 1515 1516 if (!(tq->tq_flags & TASKQ_CPR_SAFE)) { 1517 CALLB_CPR_SAFE_BEGIN(cprinfo); 1518 } 1519 if (timeout < 0) 1520 cv_wait(cv, mx); 1521 else 1522 ret = cv_reltimedwait(cv, mx, timeout, TR_CLOCK_TICK); 1523 1524 if (!(tq->tq_flags & TASKQ_CPR_SAFE)) { 1525 CALLB_CPR_SAFE_END(cprinfo, mx); 1526 } 1527 1528 return (ret); 1529 } 1530 1531 /* 1532 * Worker thread for processing task queue. 1533 */ 1534 static void 1535 taskq_thread(void *arg) 1536 { 1537 int thread_id; 1538 1539 taskq_t *tq = arg; 1540 taskq_ent_t *tqe; 1541 callb_cpr_t cprinfo; 1542 hrtime_t start, end; 1543 boolean_t freeit; 1544 1545 curthread->t_taskq = tq; /* mark ourselves for taskq_member() */ 1546 1547 if (curproc != &p0 && (tq->tq_flags & TASKQ_DUTY_CYCLE)) { 1548 sysdc_thread_enter(curthread, tq->tq_DC, 1549 (tq->tq_flags & TASKQ_DC_BATCH) ? SYSDC_THREAD_BATCH : 0); 1550 } 1551 1552 if (tq->tq_flags & TASKQ_CPR_SAFE) { 1553 CALLB_CPR_INIT_SAFE(curthread, tq->tq_name); 1554 } else { 1555 CALLB_CPR_INIT(&cprinfo, &tq->tq_lock, callb_generic_cpr, 1556 tq->tq_name); 1557 } 1558 mutex_enter(&tq->tq_lock); 1559 thread_id = ++tq->tq_nthreads; 1560 ASSERT(tq->tq_flags & TASKQ_THREAD_CREATED); 1561 ASSERT(tq->tq_flags & TASKQ_CHANGING); 1562 tq->tq_flags &= ~TASKQ_THREAD_CREATED; 1563 1564 VERIFY3S(thread_id, <=, tq->tq_nthreads_max); 1565 1566 if (tq->tq_nthreads_max == 1) 1567 tq->tq_thread = curthread; 1568 else 1569 tq->tq_threadlist[thread_id - 1] = curthread; 1570 1571 /* Allow taskq_create_common()'s taskq_thread_create() to return. */ 1572 if (tq->tq_nthreads == TASKQ_CREATE_ACTIVE_THREADS) 1573 cv_broadcast(&tq->tq_wait_cv); 1574 1575 for (;;) { 1576 if (tq->tq_flags & TASKQ_CHANGING) { 1577 /* See if we're no longer needed */ 1578 if (thread_id > tq->tq_nthreads_target) { 1579 /* 1580 * To preserve the one-to-one mapping between 1581 * thread_id and thread, we must exit from 1582 * highest thread ID to least. 1583 * 1584 * However, if everyone is exiting, the order 1585 * doesn't matter, so just exit immediately. 1586 * (this is safe, since you must wait for 1587 * nthreads to reach 0 after setting 1588 * tq_nthreads_target to 0) 1589 */ 1590 if (thread_id == tq->tq_nthreads || 1591 tq->tq_nthreads_target == 0) 1592 break; 1593 1594 /* Wait for higher thread_ids to exit */ 1595 (void) taskq_thread_wait(tq, &tq->tq_lock, 1596 &tq->tq_exit_cv, &cprinfo, -1); 1597 continue; 1598 } 1599 1600 /* 1601 * If no thread is starting taskq_thread(), we can 1602 * do some bookkeeping. 1603 */ 1604 if (!(tq->tq_flags & TASKQ_THREAD_CREATED)) { 1605 /* Check if we've reached our target */ 1606 if (tq->tq_nthreads == tq->tq_nthreads_target) { 1607 tq->tq_flags &= ~TASKQ_CHANGING; 1608 cv_broadcast(&tq->tq_wait_cv); 1609 } 1610 /* Check if we need to create a thread */ 1611 if (tq->tq_nthreads < tq->tq_nthreads_target) { 1612 taskq_thread_create(tq); 1613 continue; /* tq_lock was dropped */ 1614 } 1615 } 1616 } 1617 if ((tqe = tq->tq_task.tqent_next) == &tq->tq_task) { 1618 if (--tq->tq_active == 0) 1619 cv_broadcast(&tq->tq_wait_cv); 1620 (void) taskq_thread_wait(tq, &tq->tq_lock, 1621 &tq->tq_dispatch_cv, &cprinfo, -1); 1622 tq->tq_active++; 1623 continue; 1624 } 1625 1626 tqe->tqent_prev->tqent_next = tqe->tqent_next; 1627 tqe->tqent_next->tqent_prev = tqe->tqent_prev; 1628 mutex_exit(&tq->tq_lock); 1629 1630 /* 1631 * For prealloc'd tasks, we don't free anything. We 1632 * have to check this now, because once we call the 1633 * function for a prealloc'd taskq, we can't touch the 1634 * tqent any longer (calling the function returns the 1635 * ownershp of the tqent back to caller of 1636 * taskq_dispatch.) 1637 */ 1638 if ((!(tq->tq_flags & TASKQ_DYNAMIC)) && 1639 (tqe->tqent_un.tqent_flags & TQENT_FLAG_PREALLOC)) { 1640 /* clear pointers to assist assertion checks */ 1641 tqe->tqent_next = tqe->tqent_prev = NULL; 1642 freeit = B_FALSE; 1643 } else { 1644 freeit = B_TRUE; 1645 } 1646 1647 rw_enter(&tq->tq_threadlock, RW_READER); 1648 start = gethrtime(); 1649 DTRACE_PROBE2(taskq__exec__start, taskq_t *, tq, 1650 taskq_ent_t *, tqe); 1651 tqe->tqent_func(tqe->tqent_arg); 1652 DTRACE_PROBE2(taskq__exec__end, taskq_t *, tq, 1653 taskq_ent_t *, tqe); 1654 end = gethrtime(); 1655 rw_exit(&tq->tq_threadlock); 1656 1657 mutex_enter(&tq->tq_lock); 1658 tq->tq_totaltime += end - start; 1659 tq->tq_executed++; 1660 1661 if (freeit) 1662 taskq_ent_free(tq, tqe); 1663 } 1664 1665 if (tq->tq_nthreads_max == 1) 1666 tq->tq_thread = NULL; 1667 else 1668 tq->tq_threadlist[thread_id - 1] = NULL; 1669 1670 /* We're exiting, and therefore no longer active */ 1671 ASSERT(tq->tq_active > 0); 1672 tq->tq_active--; 1673 1674 ASSERT(tq->tq_nthreads > 0); 1675 tq->tq_nthreads--; 1676 1677 /* Wake up anyone waiting for us to exit */ 1678 cv_broadcast(&tq->tq_exit_cv); 1679 if (tq->tq_nthreads == tq->tq_nthreads_target) { 1680 if (!(tq->tq_flags & TASKQ_THREAD_CREATED)) 1681 tq->tq_flags &= ~TASKQ_CHANGING; 1682 1683 cv_broadcast(&tq->tq_wait_cv); 1684 } 1685 1686 ASSERT(!(tq->tq_flags & TASKQ_CPR_SAFE)); 1687 CALLB_CPR_EXIT(&cprinfo); /* drops tq->tq_lock */ 1688 if (curthread->t_lwp != NULL) { 1689 mutex_enter(&curproc->p_lock); 1690 lwp_exit(); 1691 } else { 1692 thread_exit(); 1693 } 1694 } 1695 1696 /* 1697 * Worker per-entry thread for dynamic dispatches. 1698 */ 1699 static void 1700 taskq_d_thread(taskq_ent_t *tqe) 1701 { 1702 taskq_bucket_t *bucket = tqe->tqent_un.tqent_bucket; 1703 taskq_t *tq = bucket->tqbucket_taskq; 1704 kmutex_t *lock = &bucket->tqbucket_lock; 1705 kcondvar_t *cv = &tqe->tqent_cv; 1706 callb_cpr_t cprinfo; 1707 clock_t w = 0; 1708 1709 CALLB_CPR_INIT(&cprinfo, lock, callb_generic_cpr, tq->tq_name); 1710 1711 mutex_enter(lock); 1712 1713 for (;;) { 1714 /* 1715 * If a task is scheduled (func != NULL), execute it, otherwise 1716 * sleep, waiting for a job. 1717 */ 1718 if (tqe->tqent_func != NULL) { 1719 hrtime_t start; 1720 hrtime_t end; 1721 1722 ASSERT(bucket->tqbucket_nalloc > 0); 1723 1724 /* 1725 * It is possible to free the entry right away before 1726 * actually executing the task so that subsequent 1727 * dispatches may immediately reuse it. But this, 1728 * effectively, creates a two-length queue in the entry 1729 * and may lead to a deadlock if the execution of the 1730 * current task depends on the execution of the next 1731 * scheduled task. So, we keep the entry busy until the 1732 * task is processed. 1733 */ 1734 1735 mutex_exit(lock); 1736 start = gethrtime(); 1737 DTRACE_PROBE3(taskq__d__exec__start, taskq_t *, tq, 1738 taskq_bucket_t *, bucket, taskq_ent_t *, tqe); 1739 tqe->tqent_func(tqe->tqent_arg); 1740 DTRACE_PROBE3(taskq__d__exec__end, taskq_t *, tq, 1741 taskq_bucket_t *, bucket, taskq_ent_t *, tqe); 1742 end = gethrtime(); 1743 mutex_enter(lock); 1744 bucket->tqbucket_totaltime += end - start; 1745 1746 /* 1747 * Return the entry to the bucket free list. 1748 */ 1749 tqe->tqent_func = NULL; 1750 TQ_APPEND(bucket->tqbucket_freelist, tqe); 1751 bucket->tqbucket_nalloc--; 1752 bucket->tqbucket_nfree++; 1753 ASSERT(!IS_EMPTY(bucket->tqbucket_freelist)); 1754 /* 1755 * taskq_wait() waits for nalloc to drop to zero on 1756 * tqbucket_cv. 1757 */ 1758 cv_signal(&bucket->tqbucket_cv); 1759 } 1760 1761 /* 1762 * At this point the entry must be in the bucket free list - 1763 * either because it was there initially or because it just 1764 * finished executing a task and put itself on the free list. 1765 */ 1766 ASSERT(bucket->tqbucket_nfree > 0); 1767 /* 1768 * Go to sleep unless we are closing. 1769 * If a thread is sleeping too long, it dies. 1770 */ 1771 if (! (bucket->tqbucket_flags & TQBUCKET_CLOSE)) { 1772 w = taskq_thread_wait(tq, lock, cv, 1773 &cprinfo, taskq_thread_timeout * hz); 1774 } 1775 1776 /* 1777 * At this point we may be in two different states: 1778 * 1779 * (1) tqent_func is set which means that a new task is 1780 * dispatched and we need to execute it. 1781 * 1782 * (2) Thread is sleeping for too long or we are closing. In 1783 * both cases destroy the thread and the entry. 1784 */ 1785 1786 /* If func is NULL we should be on the freelist. */ 1787 ASSERT((tqe->tqent_func != NULL) || 1788 (bucket->tqbucket_nfree > 0)); 1789 /* If func is non-NULL we should be allocated */ 1790 ASSERT((tqe->tqent_func == NULL) || 1791 (bucket->tqbucket_nalloc > 0)); 1792 1793 /* Check freelist consistency */ 1794 ASSERT((bucket->tqbucket_nfree > 0) || 1795 IS_EMPTY(bucket->tqbucket_freelist)); 1796 ASSERT((bucket->tqbucket_nfree == 0) || 1797 !IS_EMPTY(bucket->tqbucket_freelist)); 1798 1799 if ((tqe->tqent_func == NULL) && 1800 ((w == -1) || (bucket->tqbucket_flags & TQBUCKET_CLOSE))) { 1801 /* 1802 * This thread is sleeping for too long or we are 1803 * closing - time to die. 1804 * Thread creation/destruction happens rarely, 1805 * so grabbing the lock is not a big performance issue. 1806 * The bucket lock is dropped by CALLB_CPR_EXIT(). 1807 */ 1808 1809 /* Remove the entry from the free list. */ 1810 tqe->tqent_prev->tqent_next = tqe->tqent_next; 1811 tqe->tqent_next->tqent_prev = tqe->tqent_prev; 1812 ASSERT(bucket->tqbucket_nfree > 0); 1813 bucket->tqbucket_nfree--; 1814 1815 TQ_STAT(bucket, tqs_tdeaths); 1816 cv_signal(&bucket->tqbucket_cv); 1817 tqe->tqent_thread = NULL; 1818 mutex_enter(&tq->tq_lock); 1819 tq->tq_tdeaths++; 1820 mutex_exit(&tq->tq_lock); 1821 CALLB_CPR_EXIT(&cprinfo); 1822 kmem_cache_free(taskq_ent_cache, tqe); 1823 thread_exit(); 1824 } 1825 } 1826 } 1827 1828 1829 /* 1830 * Taskq creation. May sleep for memory. 1831 * Always use automatically generated instances to avoid kstat name space 1832 * collisions. 1833 */ 1834 1835 taskq_t * 1836 taskq_create(const char *name, int nthreads, pri_t pri, int minalloc, 1837 int maxalloc, uint_t flags) 1838 { 1839 ASSERT((flags & ~TASKQ_INTERFACE_FLAGS) == 0); 1840 1841 return (taskq_create_common(name, 0, nthreads, pri, minalloc, 1842 maxalloc, &p0, 0, flags | TASKQ_NOINSTANCE)); 1843 } 1844 1845 /* 1846 * Create an instance of task queue. It is legal to create task queues with the 1847 * same name and different instances. 1848 * 1849 * taskq_create_instance is used by ddi_taskq_create() where it gets the 1850 * instance from ddi_get_instance(). In some cases the instance is not 1851 * initialized and is set to -1. This case is handled as if no instance was 1852 * passed at all. 1853 */ 1854 taskq_t * 1855 taskq_create_instance(const char *name, int instance, int nthreads, pri_t pri, 1856 int minalloc, int maxalloc, uint_t flags) 1857 { 1858 ASSERT((flags & ~TASKQ_INTERFACE_FLAGS) == 0); 1859 ASSERT((instance >= 0) || (instance == -1)); 1860 1861 if (instance < 0) { 1862 flags |= TASKQ_NOINSTANCE; 1863 } 1864 1865 return (taskq_create_common(name, instance, nthreads, 1866 pri, minalloc, maxalloc, &p0, 0, flags)); 1867 } 1868 1869 taskq_t * 1870 taskq_create_proc(const char *name, int nthreads, pri_t pri, int minalloc, 1871 int maxalloc, proc_t *proc, uint_t flags) 1872 { 1873 ASSERT((flags & ~TASKQ_INTERFACE_FLAGS) == 0); 1874 ASSERT(proc->p_flag & SSYS); 1875 1876 return (taskq_create_common(name, 0, nthreads, pri, minalloc, 1877 maxalloc, proc, 0, flags | TASKQ_NOINSTANCE)); 1878 } 1879 1880 taskq_t * 1881 taskq_create_sysdc(const char *name, int nthreads, int minalloc, 1882 int maxalloc, proc_t *proc, uint_t dc, uint_t flags) 1883 { 1884 ASSERT((flags & ~TASKQ_INTERFACE_FLAGS) == 0); 1885 ASSERT(proc->p_flag & SSYS); 1886 1887 return (taskq_create_common(name, 0, nthreads, minclsyspri, minalloc, 1888 maxalloc, proc, dc, flags | TASKQ_NOINSTANCE | TASKQ_DUTY_CYCLE)); 1889 } 1890 1891 static taskq_t * 1892 taskq_create_common(const char *name, int instance, int nthreads, pri_t pri, 1893 int minalloc, int maxalloc, proc_t *proc, uint_t dc, uint_t flags) 1894 { 1895 taskq_t *tq = kmem_cache_alloc(taskq_cache, KM_SLEEP); 1896 uint_t ncpus = ((boot_max_ncpus == -1) ? max_ncpus : boot_max_ncpus); 1897 uint_t bsize; /* # of buckets - always power of 2 */ 1898 int max_nthreads; 1899 1900 /* 1901 * TASKQ_DYNAMIC, TASKQ_CPR_SAFE and TASKQ_THREADS_CPU_PCT are all 1902 * mutually incompatible. 1903 */ 1904 IMPLY((flags & TASKQ_DYNAMIC), !(flags & TASKQ_CPR_SAFE)); 1905 IMPLY((flags & TASKQ_DYNAMIC), !(flags & TASKQ_THREADS_CPU_PCT)); 1906 IMPLY((flags & TASKQ_CPR_SAFE), !(flags & TASKQ_THREADS_CPU_PCT)); 1907 1908 /* Cannot have DYNAMIC with DUTY_CYCLE */ 1909 IMPLY((flags & TASKQ_DYNAMIC), !(flags & TASKQ_DUTY_CYCLE)); 1910 1911 /* Cannot have DUTY_CYCLE with a p0 kernel process */ 1912 IMPLY((flags & TASKQ_DUTY_CYCLE), proc != &p0); 1913 1914 /* Cannot have DC_BATCH without DUTY_CYCLE */ 1915 ASSERT((flags & (TASKQ_DUTY_CYCLE|TASKQ_DC_BATCH)) != TASKQ_DC_BATCH); 1916 1917 ASSERT(proc != NULL); 1918 1919 bsize = 1 << (highbit(ncpus) - 1); 1920 ASSERT(bsize >= 1); 1921 bsize = MIN(bsize, taskq_maxbuckets); 1922 1923 if (flags & TASKQ_DYNAMIC) { 1924 ASSERT3S(nthreads, >=, 1); 1925 tq->tq_maxsize = nthreads; 1926 1927 /* For dynamic task queues use just one backup thread */ 1928 nthreads = max_nthreads = 1; 1929 1930 } else if (flags & TASKQ_THREADS_CPU_PCT) { 1931 uint_t pct; 1932 ASSERT3S(nthreads, >=, 0); 1933 pct = nthreads; 1934 1935 if (pct > taskq_cpupct_max_percent) 1936 pct = taskq_cpupct_max_percent; 1937 1938 /* 1939 * If you're using THREADS_CPU_PCT, the process for the 1940 * taskq threads must be curproc. This allows any pset 1941 * binding to be inherited correctly. If proc is &p0, 1942 * we won't be creating LWPs, so new threads will be assigned 1943 * to the default processor set. 1944 */ 1945 ASSERT(curproc == proc || proc == &p0); 1946 tq->tq_threads_ncpus_pct = pct; 1947 nthreads = 1; /* corrected in taskq_thread_create() */ 1948 max_nthreads = TASKQ_THREADS_PCT(max_ncpus, pct); 1949 1950 } else { 1951 ASSERT3S(nthreads, >=, 1); 1952 max_nthreads = nthreads; 1953 } 1954 1955 if (max_nthreads < taskq_minimum_nthreads_max) 1956 max_nthreads = taskq_minimum_nthreads_max; 1957 1958 /* 1959 * Make sure the name is 0-terminated, and conforms to the rules for 1960 * C indentifiers 1961 */ 1962 (void) strncpy(tq->tq_name, name, TASKQ_NAMELEN + 1); 1963 strident_canon(tq->tq_name, TASKQ_NAMELEN + 1); 1964 1965 tq->tq_flags = flags | TASKQ_CHANGING; 1966 tq->tq_active = 0; 1967 tq->tq_instance = instance; 1968 tq->tq_nthreads_target = nthreads; 1969 tq->tq_nthreads_max = max_nthreads; 1970 tq->tq_minalloc = minalloc; 1971 tq->tq_maxalloc = maxalloc; 1972 tq->tq_nbuckets = bsize; 1973 tq->tq_proc = proc; 1974 tq->tq_pri = pri; 1975 tq->tq_DC = dc; 1976 list_link_init(&tq->tq_cpupct_link); 1977 1978 if (max_nthreads > 1) 1979 tq->tq_threadlist = kmem_alloc( 1980 sizeof (kthread_t *) * max_nthreads, KM_SLEEP); 1981 1982 mutex_enter(&tq->tq_lock); 1983 if (flags & TASKQ_PREPOPULATE) { 1984 while (minalloc-- > 0) 1985 taskq_ent_free(tq, taskq_ent_alloc(tq, TQ_SLEEP)); 1986 } 1987 1988 /* 1989 * Before we start creating threads for this taskq, take a 1990 * zone hold so the zone can't go away before taskq_destroy 1991 * makes sure all the taskq threads are gone. This hold is 1992 * similar in purpose to those taken by zthread_create(). 1993 */ 1994 zone_hold(tq->tq_proc->p_zone); 1995 1996 /* 1997 * Create the first thread, which will create any other threads 1998 * necessary. taskq_thread_create will not return until we have 1999 * enough threads to be able to process requests. 2000 */ 2001 taskq_thread_create(tq); 2002 mutex_exit(&tq->tq_lock); 2003 2004 if (flags & TASKQ_DYNAMIC) { 2005 taskq_bucket_t *bucket = kmem_zalloc(sizeof (taskq_bucket_t) * 2006 bsize, KM_SLEEP); 2007 int b_id; 2008 2009 tq->tq_buckets = bucket; 2010 2011 /* Initialize each bucket */ 2012 for (b_id = 0; b_id < bsize; b_id++, bucket++) { 2013 mutex_init(&bucket->tqbucket_lock, NULL, MUTEX_DEFAULT, 2014 NULL); 2015 cv_init(&bucket->tqbucket_cv, NULL, CV_DEFAULT, NULL); 2016 bucket->tqbucket_taskq = tq; 2017 bucket->tqbucket_freelist.tqent_next = 2018 bucket->tqbucket_freelist.tqent_prev = 2019 &bucket->tqbucket_freelist; 2020 if (flags & TASKQ_PREPOPULATE) 2021 taskq_bucket_extend(bucket); 2022 } 2023 } 2024 2025 /* 2026 * Install kstats. 2027 * We have two cases: 2028 * 1) Instance is provided to taskq_create_instance(). In this case it 2029 * should be >= 0 and we use it. 2030 * 2031 * 2) Instance is not provided and is automatically generated 2032 */ 2033 if (flags & TASKQ_NOINSTANCE) { 2034 instance = tq->tq_instance = 2035 (int)(uintptr_t)vmem_alloc(taskq_id_arena, 1, VM_SLEEP); 2036 } 2037 2038 if (flags & TASKQ_DYNAMIC) { 2039 if ((tq->tq_kstat = kstat_create("unix", instance, 2040 tq->tq_name, "taskq_d", KSTAT_TYPE_NAMED, 2041 sizeof (taskq_d_kstat) / sizeof (kstat_named_t), 2042 KSTAT_FLAG_VIRTUAL)) != NULL) { 2043 tq->tq_kstat->ks_lock = &taskq_d_kstat_lock; 2044 tq->tq_kstat->ks_data = &taskq_d_kstat; 2045 tq->tq_kstat->ks_update = taskq_d_kstat_update; 2046 tq->tq_kstat->ks_private = tq; 2047 kstat_install(tq->tq_kstat); 2048 } 2049 } else { 2050 if ((tq->tq_kstat = kstat_create("unix", instance, tq->tq_name, 2051 "taskq", KSTAT_TYPE_NAMED, 2052 sizeof (taskq_kstat) / sizeof (kstat_named_t), 2053 KSTAT_FLAG_VIRTUAL)) != NULL) { 2054 tq->tq_kstat->ks_lock = &taskq_kstat_lock; 2055 tq->tq_kstat->ks_data = &taskq_kstat; 2056 tq->tq_kstat->ks_update = taskq_kstat_update; 2057 tq->tq_kstat->ks_private = tq; 2058 kstat_install(tq->tq_kstat); 2059 } 2060 } 2061 2062 return (tq); 2063 } 2064 2065 /* 2066 * taskq_destroy(). 2067 * 2068 * Assumes: by the time taskq_destroy is called no one will use this task queue 2069 * in any way and no one will try to dispatch entries in it. 2070 */ 2071 void 2072 taskq_destroy(taskq_t *tq) 2073 { 2074 taskq_bucket_t *b = tq->tq_buckets; 2075 int bid = 0; 2076 2077 ASSERT(! (tq->tq_flags & TASKQ_CPR_SAFE)); 2078 2079 /* 2080 * Destroy kstats. 2081 */ 2082 if (tq->tq_kstat != NULL) { 2083 kstat_delete(tq->tq_kstat); 2084 tq->tq_kstat = NULL; 2085 } 2086 2087 /* 2088 * Destroy instance if needed. 2089 */ 2090 if (tq->tq_flags & TASKQ_NOINSTANCE) { 2091 vmem_free(taskq_id_arena, (void *)(uintptr_t)(tq->tq_instance), 2092 1); 2093 tq->tq_instance = 0; 2094 } 2095 2096 /* 2097 * Unregister from the cpupct list. 2098 */ 2099 if (tq->tq_flags & TASKQ_THREADS_CPU_PCT) { 2100 taskq_cpupct_remove(tq); 2101 } 2102 2103 /* 2104 * Wait for any pending entries to complete. 2105 */ 2106 taskq_wait(tq); 2107 2108 mutex_enter(&tq->tq_lock); 2109 ASSERT((tq->tq_task.tqent_next == &tq->tq_task) && 2110 (tq->tq_active == 0)); 2111 2112 /* notify all the threads that they need to exit */ 2113 tq->tq_nthreads_target = 0; 2114 2115 tq->tq_flags |= TASKQ_CHANGING; 2116 cv_broadcast(&tq->tq_dispatch_cv); 2117 cv_broadcast(&tq->tq_exit_cv); 2118 2119 while (tq->tq_nthreads != 0) 2120 cv_wait(&tq->tq_wait_cv, &tq->tq_lock); 2121 2122 if (tq->tq_nthreads_max != 1) 2123 kmem_free(tq->tq_threadlist, sizeof (kthread_t *) * 2124 tq->tq_nthreads_max); 2125 2126 tq->tq_minalloc = 0; 2127 while (tq->tq_nalloc != 0) 2128 taskq_ent_free(tq, taskq_ent_alloc(tq, TQ_SLEEP)); 2129 2130 mutex_exit(&tq->tq_lock); 2131 2132 /* 2133 * Mark each bucket as closing and wakeup all sleeping threads. 2134 */ 2135 for (; (b != NULL) && (bid < tq->tq_nbuckets); b++, bid++) { 2136 taskq_ent_t *tqe; 2137 2138 mutex_enter(&b->tqbucket_lock); 2139 2140 b->tqbucket_flags |= TQBUCKET_CLOSE; 2141 /* Wakeup all sleeping threads */ 2142 2143 for (tqe = b->tqbucket_freelist.tqent_next; 2144 tqe != &b->tqbucket_freelist; tqe = tqe->tqent_next) 2145 cv_signal(&tqe->tqent_cv); 2146 2147 ASSERT(b->tqbucket_nalloc == 0); 2148 2149 /* 2150 * At this point we waited for all pending jobs to complete (in 2151 * both the task queue and the bucket and no new jobs should 2152 * arrive. Wait for all threads to die. 2153 */ 2154 while (b->tqbucket_nfree > 0) 2155 cv_wait(&b->tqbucket_cv, &b->tqbucket_lock); 2156 mutex_exit(&b->tqbucket_lock); 2157 mutex_destroy(&b->tqbucket_lock); 2158 cv_destroy(&b->tqbucket_cv); 2159 } 2160 2161 if (tq->tq_buckets != NULL) { 2162 ASSERT(tq->tq_flags & TASKQ_DYNAMIC); 2163 kmem_free(tq->tq_buckets, 2164 sizeof (taskq_bucket_t) * tq->tq_nbuckets); 2165 2166 /* Cleanup fields before returning tq to the cache */ 2167 tq->tq_buckets = NULL; 2168 tq->tq_tcreates = 0; 2169 tq->tq_tdeaths = 0; 2170 } else { 2171 ASSERT(!(tq->tq_flags & TASKQ_DYNAMIC)); 2172 } 2173 2174 /* 2175 * Now that all the taskq threads are gone, we can 2176 * drop the zone hold taken in taskq_create_common 2177 */ 2178 zone_rele(tq->tq_proc->p_zone); 2179 2180 tq->tq_threads_ncpus_pct = 0; 2181 tq->tq_totaltime = 0; 2182 tq->tq_tasks = 0; 2183 tq->tq_maxtasks = 0; 2184 tq->tq_executed = 0; 2185 kmem_cache_free(taskq_cache, tq); 2186 } 2187 2188 /* 2189 * Extend a bucket with a new entry on the free list and attach a worker thread 2190 * to it. 2191 * 2192 * Argument: pointer to the bucket. 2193 * 2194 * This function may quietly fail. It is only used by taskq_dispatch() which 2195 * handles such failures properly. 2196 */ 2197 static void 2198 taskq_bucket_extend(void *arg) 2199 { 2200 taskq_ent_t *tqe; 2201 taskq_bucket_t *b = (taskq_bucket_t *)arg; 2202 taskq_t *tq = b->tqbucket_taskq; 2203 int nthreads; 2204 2205 mutex_enter(&tq->tq_lock); 2206 2207 if (! ENOUGH_MEMORY()) { 2208 tq->tq_nomem++; 2209 mutex_exit(&tq->tq_lock); 2210 return; 2211 } 2212 2213 /* 2214 * Observe global taskq limits on the number of threads. 2215 */ 2216 if (tq->tq_tcreates++ - tq->tq_tdeaths > tq->tq_maxsize) { 2217 tq->tq_tcreates--; 2218 mutex_exit(&tq->tq_lock); 2219 return; 2220 } 2221 mutex_exit(&tq->tq_lock); 2222 2223 tqe = kmem_cache_alloc(taskq_ent_cache, KM_NOSLEEP); 2224 2225 if (tqe == NULL) { 2226 mutex_enter(&tq->tq_lock); 2227 tq->tq_nomem++; 2228 tq->tq_tcreates--; 2229 mutex_exit(&tq->tq_lock); 2230 return; 2231 } 2232 2233 ASSERT(tqe->tqent_thread == NULL); 2234 2235 tqe->tqent_un.tqent_bucket = b; 2236 2237 /* 2238 * Create a thread in a TS_STOPPED state first. If it is successfully 2239 * created, place the entry on the free list and start the thread. 2240 */ 2241 tqe->tqent_thread = thread_create(NULL, 0, taskq_d_thread, tqe, 2242 0, tq->tq_proc, TS_STOPPED, tq->tq_pri); 2243 2244 /* 2245 * Once the entry is ready, link it to the the bucket free list. 2246 */ 2247 mutex_enter(&b->tqbucket_lock); 2248 tqe->tqent_func = NULL; 2249 TQ_APPEND(b->tqbucket_freelist, tqe); 2250 b->tqbucket_nfree++; 2251 TQ_STAT(b, tqs_tcreates); 2252 2253 #if TASKQ_STATISTIC 2254 nthreads = b->tqbucket_stat.tqs_tcreates - 2255 b->tqbucket_stat.tqs_tdeaths; 2256 b->tqbucket_stat.tqs_maxthreads = MAX(nthreads, 2257 b->tqbucket_stat.tqs_maxthreads); 2258 #endif 2259 2260 mutex_exit(&b->tqbucket_lock); 2261 /* 2262 * Start the stopped thread. 2263 */ 2264 thread_lock(tqe->tqent_thread); 2265 tqe->tqent_thread->t_taskq = tq; 2266 tqe->tqent_thread->t_schedflag |= TS_ALLSTART; 2267 setrun_locked(tqe->tqent_thread); 2268 thread_unlock(tqe->tqent_thread); 2269 } 2270 2271 static int 2272 taskq_kstat_update(kstat_t *ksp, int rw) 2273 { 2274 struct taskq_kstat *tqsp = &taskq_kstat; 2275 taskq_t *tq = ksp->ks_private; 2276 2277 if (rw == KSTAT_WRITE) 2278 return (EACCES); 2279 2280 tqsp->tq_pid.value.ui64 = tq->tq_proc->p_pid; 2281 tqsp->tq_tasks.value.ui64 = tq->tq_tasks; 2282 tqsp->tq_executed.value.ui64 = tq->tq_executed; 2283 tqsp->tq_maxtasks.value.ui64 = tq->tq_maxtasks; 2284 tqsp->tq_totaltime.value.ui64 = tq->tq_totaltime; 2285 tqsp->tq_nactive.value.ui64 = tq->tq_active; 2286 tqsp->tq_nalloc.value.ui64 = tq->tq_nalloc; 2287 tqsp->tq_pri.value.ui64 = tq->tq_pri; 2288 tqsp->tq_nthreads.value.ui64 = tq->tq_nthreads; 2289 tqsp->tq_nomem.value.ui64 = tq->tq_nomem; 2290 return (0); 2291 } 2292 2293 static int 2294 taskq_d_kstat_update(kstat_t *ksp, int rw) 2295 { 2296 struct taskq_d_kstat *tqsp = &taskq_d_kstat; 2297 taskq_t *tq = ksp->ks_private; 2298 taskq_bucket_t *b = tq->tq_buckets; 2299 int bid = 0; 2300 2301 if (rw == KSTAT_WRITE) 2302 return (EACCES); 2303 2304 ASSERT(tq->tq_flags & TASKQ_DYNAMIC); 2305 2306 tqsp->tqd_btasks.value.ui64 = tq->tq_tasks; 2307 tqsp->tqd_bexecuted.value.ui64 = tq->tq_executed; 2308 tqsp->tqd_bmaxtasks.value.ui64 = tq->tq_maxtasks; 2309 tqsp->tqd_bnalloc.value.ui64 = tq->tq_nalloc; 2310 tqsp->tqd_bnactive.value.ui64 = tq->tq_active; 2311 tqsp->tqd_btotaltime.value.ui64 = tq->tq_totaltime; 2312 tqsp->tqd_pri.value.ui64 = tq->tq_pri; 2313 tqsp->tqd_nomem.value.ui64 = tq->tq_nomem; 2314 2315 tqsp->tqd_hits.value.ui64 = 0; 2316 tqsp->tqd_misses.value.ui64 = 0; 2317 tqsp->tqd_overflows.value.ui64 = 0; 2318 tqsp->tqd_tcreates.value.ui64 = 0; 2319 tqsp->tqd_tdeaths.value.ui64 = 0; 2320 tqsp->tqd_maxthreads.value.ui64 = 0; 2321 tqsp->tqd_nomem.value.ui64 = 0; 2322 tqsp->tqd_disptcreates.value.ui64 = 0; 2323 tqsp->tqd_totaltime.value.ui64 = 0; 2324 tqsp->tqd_nalloc.value.ui64 = 0; 2325 tqsp->tqd_nfree.value.ui64 = 0; 2326 2327 for (; (b != NULL) && (bid < tq->tq_nbuckets); b++, bid++) { 2328 tqsp->tqd_hits.value.ui64 += b->tqbucket_stat.tqs_hits; 2329 tqsp->tqd_misses.value.ui64 += b->tqbucket_stat.tqs_misses; 2330 tqsp->tqd_overflows.value.ui64 += b->tqbucket_stat.tqs_overflow; 2331 tqsp->tqd_tcreates.value.ui64 += b->tqbucket_stat.tqs_tcreates; 2332 tqsp->tqd_tdeaths.value.ui64 += b->tqbucket_stat.tqs_tdeaths; 2333 tqsp->tqd_maxthreads.value.ui64 += 2334 b->tqbucket_stat.tqs_maxthreads; 2335 tqsp->tqd_disptcreates.value.ui64 += 2336 b->tqbucket_stat.tqs_disptcreates; 2337 tqsp->tqd_totaltime.value.ui64 += b->tqbucket_totaltime; 2338 tqsp->tqd_nalloc.value.ui64 += b->tqbucket_nalloc; 2339 tqsp->tqd_nfree.value.ui64 += b->tqbucket_nfree; 2340 } 2341 return (0); 2342 } 2343