1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 22 /* All Rights Reserved */ 23 24 25 /* 26 * Copyright (c) 1988, 2010, Oracle and/or its affiliates. All rights reserved. 27 * Copyright 2017 Joyent, Inc. 28 * Copyright 2018 OmniOS Community Edition (OmniOSce) Association. 29 */ 30 31 #include <sys/types.h> 32 #include <sys/sysmacros.h> 33 #include <sys/param.h> 34 #include <sys/errno.h> 35 #include <sys/signal.h> 36 #include <sys/stat.h> 37 #include <sys/proc.h> 38 #include <sys/cred.h> 39 #include <sys/user.h> 40 #include <sys/vnode.h> 41 #include <sys/file.h> 42 #include <sys/stream.h> 43 #include <sys/strsubr.h> 44 #include <sys/stropts.h> 45 #include <sys/tihdr.h> 46 #include <sys/var.h> 47 #include <sys/poll.h> 48 #include <sys/termio.h> 49 #include <sys/ttold.h> 50 #include <sys/systm.h> 51 #include <sys/uio.h> 52 #include <sys/cmn_err.h> 53 #include <sys/sad.h> 54 #include <sys/netstack.h> 55 #include <sys/priocntl.h> 56 #include <sys/jioctl.h> 57 #include <sys/procset.h> 58 #include <sys/session.h> 59 #include <sys/kmem.h> 60 #include <sys/filio.h> 61 #include <sys/vtrace.h> 62 #include <sys/debug.h> 63 #include <sys/strredir.h> 64 #include <sys/fs/fifonode.h> 65 #include <sys/fs/snode.h> 66 #include <sys/strlog.h> 67 #include <sys/strsun.h> 68 #include <sys/project.h> 69 #include <sys/kbio.h> 70 #include <sys/msio.h> 71 #include <sys/tty.h> 72 #include <sys/ptyvar.h> 73 #include <sys/vuid_event.h> 74 #include <sys/modctl.h> 75 #include <sys/sunddi.h> 76 #include <sys/sunldi_impl.h> 77 #include <sys/autoconf.h> 78 #include <sys/policy.h> 79 #include <sys/dld.h> 80 #include <sys/zone.h> 81 #include <c2/audit.h> 82 83 /* 84 * This define helps improve the readability of streams code while 85 * still maintaining a very old streams performance enhancement. The 86 * performance enhancement basically involved having all callers 87 * of straccess() perform the first check that straccess() will do 88 * locally before actually calling straccess(). (There by reducing 89 * the number of unnecessary calls to straccess().) 90 */ 91 #define i_straccess(x, y) ((stp->sd_sidp == NULL) ? 0 : \ 92 (stp->sd_vnode->v_type == VFIFO) ? 0 : \ 93 straccess((x), (y))) 94 95 /* 96 * what is mblk_pull_len? 97 * 98 * If a streams message consists of many short messages, 99 * a performance degradation occurs from copyout overhead. 100 * To decrease the per mblk overhead, messages that are 101 * likely to consist of many small mblks are pulled up into 102 * one continuous chunk of memory. 103 * 104 * To avoid the processing overhead of examining every 105 * mblk, a quick heuristic is used. If the first mblk in 106 * the message is shorter than mblk_pull_len, it is likely 107 * that the rest of the mblk will be short. 108 * 109 * This heuristic was decided upon after performance tests 110 * indicated that anything more complex slowed down the main 111 * code path. 112 */ 113 #define MBLK_PULL_LEN 64 114 uint32_t mblk_pull_len = MBLK_PULL_LEN; 115 116 /* 117 * The sgttyb_handling flag controls the handling of the old BSD 118 * TIOCGETP, TIOCSETP, and TIOCSETN ioctls as follows: 119 * 120 * 0 - Emit no warnings at all and retain old, broken behavior. 121 * 1 - Emit no warnings and silently handle new semantics. 122 * 2 - Send cmn_err(CE_NOTE) when either TIOCSETP or TIOCSETN is used 123 * (once per system invocation). Handle with new semantics. 124 * 3 - Send SIGSYS when any TIOCGETP, TIOCSETP, or TIOCSETN call is 125 * made (so that offenders drop core and are easy to debug). 126 * 127 * The "new semantics" are that TIOCGETP returns B38400 for 128 * sg_[io]speed if the corresponding value is over B38400, and that 129 * TIOCSET[PN] accept B38400 in these cases to mean "retain current 130 * bit rate." 131 */ 132 int sgttyb_handling = 1; 133 static boolean_t sgttyb_complaint; 134 135 /* don't push drcompat module by default on Style-2 streams */ 136 static int push_drcompat = 0; 137 138 /* 139 * id value used to distinguish between different ioctl messages 140 */ 141 static uint32_t ioc_id; 142 143 static void putback(struct stdata *, queue_t *, mblk_t *, int); 144 static void strcleanall(struct vnode *); 145 static int strwsrv(queue_t *); 146 static int strdocmd(struct stdata *, struct strcmd *, cred_t *); 147 148 /* 149 * qinit and module_info structures for stream head read and write queues 150 */ 151 struct module_info strm_info = { 0, "strrhead", 0, INFPSZ, STRHIGH, STRLOW }; 152 struct module_info stwm_info = { 0, "strwhead", 0, 0, 0, 0 }; 153 struct qinit strdata = { strrput, NULL, NULL, NULL, NULL, &strm_info }; 154 struct qinit stwdata = { NULL, strwsrv, NULL, NULL, NULL, &stwm_info }; 155 struct module_info fiform_info = { 0, "fifostrrhead", 0, PIPE_BUF, FIFOHIWAT, 156 FIFOLOWAT }; 157 struct module_info fifowm_info = { 0, "fifostrwhead", 0, 0, 0, 0 }; 158 struct qinit fifo_strdata = { strrput, NULL, NULL, NULL, NULL, &fiform_info }; 159 struct qinit fifo_stwdata = { NULL, strwsrv, NULL, NULL, NULL, &fifowm_info }; 160 161 extern kmutex_t strresources; /* protects global resources */ 162 extern kmutex_t muxifier; /* single-threads multiplexor creation */ 163 164 static boolean_t msghasdata(mblk_t *bp); 165 #define msgnodata(bp) (!msghasdata(bp)) 166 167 /* 168 * Stream head locking notes: 169 * There are four monitors associated with the stream head: 170 * 1. v_stream monitor: in stropen() and strclose() v_lock 171 * is held while the association of vnode and stream 172 * head is established or tested for. 173 * 2. open/close/push/pop monitor: sd_lock is held while each 174 * thread bids for exclusive access to this monitor 175 * for opening or closing a stream. In addition, this 176 * monitor is entered during pushes and pops. This 177 * guarantees that during plumbing operations there 178 * is only one thread trying to change the plumbing. 179 * Any other threads present in the stream are only 180 * using the plumbing. 181 * 3. read/write monitor: in the case of read, a thread holds 182 * sd_lock while trying to get data from the stream 183 * head queue. if there is none to fulfill a read 184 * request, it sets RSLEEP and calls cv_wait_sig() down 185 * in strwaitq() to await the arrival of new data. 186 * when new data arrives in strrput(), sd_lock is acquired 187 * before testing for RSLEEP and calling cv_broadcast(). 188 * the behavior of strwrite(), strwsrv(), and WSLEEP 189 * mirror this. 190 * 4. ioctl monitor: sd_lock is gotten to ensure that only one 191 * thread is doing an ioctl at a time. 192 */ 193 194 static int 195 push_mod(queue_t *qp, dev_t *devp, struct stdata *stp, const char *name, 196 int anchor, cred_t *crp, uint_t anchor_zoneid) 197 { 198 int error; 199 fmodsw_impl_t *fp; 200 201 if (stp->sd_flag & (STRHUP|STRDERR|STWRERR)) { 202 error = (stp->sd_flag & STRHUP) ? ENXIO : EIO; 203 return (error); 204 } 205 if (stp->sd_pushcnt >= nstrpush) { 206 return (EINVAL); 207 } 208 209 if ((fp = fmodsw_find(name, FMODSW_HOLD | FMODSW_LOAD)) == NULL) { 210 stp->sd_flag |= STREOPENFAIL; 211 return (EINVAL); 212 } 213 214 /* 215 * push new module and call its open routine via qattach 216 */ 217 if ((error = qattach(qp, devp, 0, crp, fp, B_FALSE)) != 0) 218 return (error); 219 220 /* 221 * Check to see if caller wants a STREAMS anchor 222 * put at this place in the stream, and add if so. 223 */ 224 mutex_enter(&stp->sd_lock); 225 if (anchor == stp->sd_pushcnt) { 226 stp->sd_anchor = stp->sd_pushcnt; 227 stp->sd_anchorzone = anchor_zoneid; 228 } 229 mutex_exit(&stp->sd_lock); 230 231 return (0); 232 } 233 234 /* 235 * Open a stream device. 236 */ 237 int 238 stropen(vnode_t *vp, dev_t *devp, int flag, cred_t *crp) 239 { 240 struct stdata *stp; 241 queue_t *qp; 242 int s; 243 dev_t dummydev, savedev; 244 struct autopush *ap; 245 struct dlautopush dlap; 246 int error = 0; 247 ssize_t rmin, rmax; 248 int cloneopen; 249 queue_t *brq; 250 major_t major; 251 str_stack_t *ss; 252 zoneid_t zoneid; 253 uint_t anchor; 254 255 /* 256 * If the stream already exists, wait for any open in progress 257 * to complete, then call the open function of each module and 258 * driver in the stream. Otherwise create the stream. 259 */ 260 TRACE_1(TR_FAC_STREAMS_FR, TR_STROPEN, "stropen:%p", vp); 261 retry: 262 mutex_enter(&vp->v_lock); 263 if ((stp = vp->v_stream) != NULL) { 264 265 /* 266 * Waiting for stream to be created to device 267 * due to another open. 268 */ 269 mutex_exit(&vp->v_lock); 270 271 if (STRMATED(stp)) { 272 struct stdata *strmatep = stp->sd_mate; 273 274 STRLOCKMATES(stp); 275 if (strmatep->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) { 276 if (flag & (FNDELAY|FNONBLOCK)) { 277 error = EAGAIN; 278 mutex_exit(&strmatep->sd_lock); 279 goto ckreturn; 280 } 281 mutex_exit(&stp->sd_lock); 282 if (!cv_wait_sig(&strmatep->sd_monitor, 283 &strmatep->sd_lock)) { 284 error = EINTR; 285 mutex_exit(&strmatep->sd_lock); 286 mutex_enter(&stp->sd_lock); 287 goto ckreturn; 288 } 289 mutex_exit(&strmatep->sd_lock); 290 goto retry; 291 } 292 if (stp->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) { 293 if (flag & (FNDELAY|FNONBLOCK)) { 294 error = EAGAIN; 295 mutex_exit(&strmatep->sd_lock); 296 goto ckreturn; 297 } 298 mutex_exit(&strmatep->sd_lock); 299 if (!cv_wait_sig(&stp->sd_monitor, 300 &stp->sd_lock)) { 301 error = EINTR; 302 goto ckreturn; 303 } 304 mutex_exit(&stp->sd_lock); 305 goto retry; 306 } 307 308 if (stp->sd_flag & (STRDERR|STWRERR)) { 309 error = EIO; 310 mutex_exit(&strmatep->sd_lock); 311 goto ckreturn; 312 } 313 314 stp->sd_flag |= STWOPEN; 315 STRUNLOCKMATES(stp); 316 } else { 317 mutex_enter(&stp->sd_lock); 318 if (stp->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) { 319 if (flag & (FNDELAY|FNONBLOCK)) { 320 error = EAGAIN; 321 goto ckreturn; 322 } 323 if (!cv_wait_sig(&stp->sd_monitor, 324 &stp->sd_lock)) { 325 error = EINTR; 326 goto ckreturn; 327 } 328 mutex_exit(&stp->sd_lock); 329 goto retry; /* could be clone! */ 330 } 331 332 if (stp->sd_flag & (STRDERR|STWRERR)) { 333 error = EIO; 334 goto ckreturn; 335 } 336 337 stp->sd_flag |= STWOPEN; 338 mutex_exit(&stp->sd_lock); 339 } 340 341 /* 342 * Open all modules and devices down stream to notify 343 * that another user is streaming. For modules, set the 344 * last argument to MODOPEN and do not pass any open flags. 345 * Ignore dummydev since this is not the first open. 346 */ 347 claimstr(stp->sd_wrq); 348 qp = stp->sd_wrq; 349 while (_SAMESTR(qp)) { 350 qp = qp->q_next; 351 if ((error = qreopen(_RD(qp), devp, flag, crp)) != 0) 352 break; 353 } 354 releasestr(stp->sd_wrq); 355 mutex_enter(&stp->sd_lock); 356 stp->sd_flag &= ~(STRHUP|STWOPEN|STRDERR|STWRERR); 357 stp->sd_rerror = 0; 358 stp->sd_werror = 0; 359 ckreturn: 360 cv_broadcast(&stp->sd_monitor); 361 mutex_exit(&stp->sd_lock); 362 return (error); 363 } 364 365 /* 366 * This vnode isn't streaming. SPECFS already 367 * checked for multiple vnodes pointing to the 368 * same stream, so create a stream to the driver. 369 */ 370 qp = allocq(); 371 stp = shalloc(qp); 372 373 /* 374 * Initialize stream head. shalloc() has given us 375 * exclusive access, and we have the vnode locked; 376 * we can do whatever we want with stp. 377 */ 378 stp->sd_flag = STWOPEN; 379 stp->sd_siglist = NULL; 380 stp->sd_pollist.ph_list = NULL; 381 stp->sd_sigflags = 0; 382 stp->sd_mark = NULL; 383 stp->sd_closetime = STRTIMOUT; 384 stp->sd_sidp = NULL; 385 stp->sd_pgidp = NULL; 386 stp->sd_vnode = vp; 387 stp->sd_rerror = 0; 388 stp->sd_werror = 0; 389 stp->sd_wroff = 0; 390 stp->sd_tail = 0; 391 stp->sd_iocblk = NULL; 392 stp->sd_cmdblk = NULL; 393 stp->sd_pushcnt = 0; 394 stp->sd_qn_minpsz = 0; 395 stp->sd_qn_maxpsz = INFPSZ - 1; /* used to check for initialization */ 396 stp->sd_maxblk = INFPSZ; 397 qp->q_ptr = _WR(qp)->q_ptr = stp; 398 STREAM(qp) = STREAM(_WR(qp)) = stp; 399 vp->v_stream = stp; 400 mutex_exit(&vp->v_lock); 401 if (vp->v_type == VFIFO) { 402 stp->sd_flag |= OLDNDELAY; 403 /* 404 * This means, both for pipes and fifos 405 * strwrite will send SIGPIPE if the other 406 * end is closed. For putmsg it depends 407 * on whether it is a XPG4_2 application 408 * or not 409 */ 410 stp->sd_wput_opt = SW_SIGPIPE; 411 412 /* setq might sleep in kmem_alloc - avoid holding locks. */ 413 setq(qp, &fifo_strdata, &fifo_stwdata, NULL, QMTSAFE, 414 SQ_CI|SQ_CO, B_FALSE); 415 416 set_qend(qp); 417 stp->sd_strtab = fifo_getinfo(); 418 _WR(qp)->q_nfsrv = _WR(qp); 419 qp->q_nfsrv = qp; 420 /* 421 * Wake up others that are waiting for stream to be created. 422 */ 423 mutex_enter(&stp->sd_lock); 424 /* 425 * nothing is be pushed on stream yet, so 426 * optimized stream head packetsizes are just that 427 * of the read queue 428 */ 429 stp->sd_qn_minpsz = qp->q_minpsz; 430 stp->sd_qn_maxpsz = qp->q_maxpsz; 431 stp->sd_flag &= ~STWOPEN; 432 goto fifo_opendone; 433 } 434 /* setq might sleep in kmem_alloc - avoid holding locks. */ 435 setq(qp, &strdata, &stwdata, NULL, QMTSAFE, SQ_CI|SQ_CO, B_FALSE); 436 437 set_qend(qp); 438 439 /* 440 * Open driver and create stream to it (via qattach). 441 */ 442 savedev = *devp; 443 cloneopen = (getmajor(*devp) == clone_major); 444 if ((error = qattach(qp, devp, flag, crp, NULL, B_FALSE)) != 0) { 445 mutex_enter(&vp->v_lock); 446 vp->v_stream = NULL; 447 mutex_exit(&vp->v_lock); 448 mutex_enter(&stp->sd_lock); 449 cv_broadcast(&stp->sd_monitor); 450 mutex_exit(&stp->sd_lock); 451 freeq(_RD(qp)); 452 shfree(stp); 453 return (error); 454 } 455 /* 456 * Set sd_strtab after open in order to handle clonable drivers 457 */ 458 stp->sd_strtab = STREAMSTAB(getmajor(*devp)); 459 460 /* 461 * Historical note: dummydev used to be be prior to the initial 462 * open (via qattach above), which made the value seen 463 * inconsistent between an I_PUSH and an autopush of a module. 464 */ 465 dummydev = *devp; 466 467 /* 468 * For clone open of old style (Q not associated) network driver, 469 * push DRMODNAME module to handle DL_ATTACH/DL_DETACH 470 */ 471 brq = _RD(_WR(qp)->q_next); 472 major = getmajor(*devp); 473 if (push_drcompat && cloneopen && NETWORK_DRV(major) && 474 ((brq->q_flag & _QASSOCIATED) == 0)) { 475 if (push_mod(qp, &dummydev, stp, DRMODNAME, 0, crp, 0) != 0) 476 cmn_err(CE_WARN, "cannot push " DRMODNAME 477 " streams module"); 478 } 479 480 if (!NETWORK_DRV(major)) { 481 savedev = *devp; 482 } else { 483 /* 484 * For network devices, process differently based on the 485 * return value from dld_autopush(): 486 * 487 * 0: the passed-in device points to a GLDv3 datalink with 488 * per-link autopush configuration; use that configuration 489 * and ignore any per-driver autopush configuration. 490 * 491 * 1: the passed-in device points to a physical GLDv3 492 * datalink without per-link autopush configuration. The 493 * passed in device was changed to refer to the actual 494 * physical device (if it's not already); we use that new 495 * device to look up any per-driver autopush configuration. 496 * 497 * -1: neither of the above cases applied; use the initial 498 * device to look up any per-driver autopush configuration. 499 */ 500 switch (dld_autopush(&savedev, &dlap)) { 501 case 0: 502 zoneid = crgetzoneid(crp); 503 for (s = 0; s < dlap.dap_npush; s++) { 504 error = push_mod(qp, &dummydev, stp, 505 dlap.dap_aplist[s], dlap.dap_anchor, crp, 506 zoneid); 507 if (error != 0) 508 break; 509 } 510 goto opendone; 511 case 1: 512 break; 513 case -1: 514 savedev = *devp; 515 break; 516 } 517 } 518 /* 519 * Find the autopush configuration based on "savedev". Start with the 520 * global zone. If not found check in the local zone. 521 */ 522 zoneid = GLOBAL_ZONEID; 523 retryap: 524 ss = netstack_find_by_stackid(zoneid_to_netstackid(zoneid))-> 525 netstack_str; 526 if ((ap = sad_ap_find_by_dev(savedev, ss)) == NULL) { 527 netstack_rele(ss->ss_netstack); 528 if (zoneid == GLOBAL_ZONEID) { 529 /* 530 * None found. Also look in the zone's autopush table. 531 */ 532 zoneid = crgetzoneid(crp); 533 if (zoneid != GLOBAL_ZONEID) 534 goto retryap; 535 } 536 goto opendone; 537 } 538 anchor = ap->ap_anchor; 539 zoneid = crgetzoneid(crp); 540 for (s = 0; s < ap->ap_npush; s++) { 541 error = push_mod(qp, &dummydev, stp, ap->ap_list[s], 542 anchor, crp, zoneid); 543 if (error != 0) 544 break; 545 } 546 sad_ap_rele(ap, ss); 547 netstack_rele(ss->ss_netstack); 548 549 opendone: 550 551 /* 552 * let specfs know that open failed part way through 553 */ 554 if (error) { 555 mutex_enter(&stp->sd_lock); 556 stp->sd_flag |= STREOPENFAIL; 557 mutex_exit(&stp->sd_lock); 558 } 559 560 /* 561 * Wake up others that are waiting for stream to be created. 562 */ 563 mutex_enter(&stp->sd_lock); 564 stp->sd_flag &= ~STWOPEN; 565 566 /* 567 * As a performance concern we are caching the values of 568 * q_minpsz and q_maxpsz of the module below the stream 569 * head in the stream head. 570 */ 571 mutex_enter(QLOCK(stp->sd_wrq->q_next)); 572 rmin = stp->sd_wrq->q_next->q_minpsz; 573 rmax = stp->sd_wrq->q_next->q_maxpsz; 574 mutex_exit(QLOCK(stp->sd_wrq->q_next)); 575 576 /* do this processing here as a performance concern */ 577 if (strmsgsz != 0) { 578 if (rmax == INFPSZ) 579 rmax = strmsgsz; 580 else 581 rmax = MIN(strmsgsz, rmax); 582 } 583 584 mutex_enter(QLOCK(stp->sd_wrq)); 585 stp->sd_qn_minpsz = rmin; 586 stp->sd_qn_maxpsz = rmax; 587 mutex_exit(QLOCK(stp->sd_wrq)); 588 589 fifo_opendone: 590 cv_broadcast(&stp->sd_monitor); 591 mutex_exit(&stp->sd_lock); 592 return (error); 593 } 594 595 static int strsink(queue_t *, mblk_t *); 596 static struct qinit deadrend = { 597 strsink, NULL, NULL, NULL, NULL, &strm_info, NULL 598 }; 599 static struct qinit deadwend = { 600 NULL, NULL, NULL, NULL, NULL, &stwm_info, NULL 601 }; 602 603 /* 604 * Close a stream. 605 * This is called from closef() on the last close of an open stream. 606 * Strclean() will already have removed the siglist and pollist 607 * information, so all that remains is to remove all multiplexor links 608 * for the stream, pop all the modules (and the driver), and free the 609 * stream structure. 610 */ 611 612 int 613 strclose(struct vnode *vp, int flag, cred_t *crp) 614 { 615 struct stdata *stp; 616 queue_t *qp; 617 int rval; 618 int freestp = 1; 619 queue_t *rmq; 620 621 TRACE_1(TR_FAC_STREAMS_FR, 622 TR_STRCLOSE, "strclose:%p", vp); 623 ASSERT(vp->v_stream); 624 625 stp = vp->v_stream; 626 ASSERT(!(stp->sd_flag & STPLEX)); 627 qp = stp->sd_wrq; 628 629 /* 630 * Needed so that strpoll will return non-zero for this fd. 631 * Note that with POLLNOERR STRHUP does still cause POLLHUP. 632 */ 633 mutex_enter(&stp->sd_lock); 634 stp->sd_flag |= STRHUP; 635 mutex_exit(&stp->sd_lock); 636 637 /* 638 * If the registered process or process group did not have an 639 * open instance of this stream then strclean would not be 640 * called. Thus at the time of closing all remaining siglist entries 641 * are removed. 642 */ 643 if (stp->sd_siglist != NULL) 644 strcleanall(vp); 645 646 ASSERT(stp->sd_siglist == NULL); 647 ASSERT(stp->sd_sigflags == 0); 648 649 if (STRMATED(stp)) { 650 struct stdata *strmatep = stp->sd_mate; 651 int waited = 1; 652 653 STRLOCKMATES(stp); 654 while (waited) { 655 waited = 0; 656 while (stp->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) { 657 mutex_exit(&strmatep->sd_lock); 658 cv_wait(&stp->sd_monitor, &stp->sd_lock); 659 mutex_exit(&stp->sd_lock); 660 STRLOCKMATES(stp); 661 waited = 1; 662 } 663 while (strmatep->sd_flag & 664 (STWOPEN|STRCLOSE|STRPLUMB)) { 665 mutex_exit(&stp->sd_lock); 666 cv_wait(&strmatep->sd_monitor, 667 &strmatep->sd_lock); 668 mutex_exit(&strmatep->sd_lock); 669 STRLOCKMATES(stp); 670 waited = 1; 671 } 672 } 673 stp->sd_flag |= STRCLOSE; 674 STRUNLOCKMATES(stp); 675 } else { 676 mutex_enter(&stp->sd_lock); 677 stp->sd_flag |= STRCLOSE; 678 mutex_exit(&stp->sd_lock); 679 } 680 681 ASSERT(qp->q_first == NULL); /* No more delayed write */ 682 683 /* Check if an I_LINK was ever done on this stream */ 684 if (stp->sd_flag & STRHASLINKS) { 685 netstack_t *ns; 686 str_stack_t *ss; 687 688 ns = netstack_find_by_cred(crp); 689 ASSERT(ns != NULL); 690 ss = ns->netstack_str; 691 ASSERT(ss != NULL); 692 693 (void) munlinkall(stp, LINKCLOSE|LINKNORMAL, crp, &rval, ss); 694 netstack_rele(ss->ss_netstack); 695 } 696 697 while (_SAMESTR(qp)) { 698 /* 699 * Holding sd_lock prevents q_next from changing in 700 * this stream. 701 */ 702 mutex_enter(&stp->sd_lock); 703 if (!(flag & (FNDELAY|FNONBLOCK)) && (stp->sd_closetime > 0)) { 704 705 /* 706 * sleep until awakened by strwsrv() or timeout 707 */ 708 for (;;) { 709 mutex_enter(QLOCK(qp->q_next)); 710 if (!(qp->q_next->q_mblkcnt)) { 711 mutex_exit(QLOCK(qp->q_next)); 712 break; 713 } 714 stp->sd_flag |= WSLEEP; 715 716 /* ensure strwsrv gets enabled */ 717 qp->q_next->q_flag |= QWANTW; 718 mutex_exit(QLOCK(qp->q_next)); 719 /* get out if we timed out or recv'd a signal */ 720 if (str_cv_wait(&qp->q_wait, &stp->sd_lock, 721 stp->sd_closetime, 0) <= 0) { 722 break; 723 } 724 } 725 stp->sd_flag &= ~WSLEEP; 726 } 727 mutex_exit(&stp->sd_lock); 728 729 rmq = qp->q_next; 730 if (rmq->q_flag & QISDRV) { 731 ASSERT(!_SAMESTR(rmq)); 732 wait_sq_svc(_RD(qp)->q_syncq); 733 } 734 735 qdetach(_RD(rmq), 1, flag, crp, B_FALSE); 736 } 737 738 /* 739 * Since we call pollwakeup in close() now, the poll list should 740 * be empty in most cases. The only exception is the layered devices 741 * (e.g. the console drivers with redirection modules pushed on top 742 * of it). We have to do this after calling qdetach() because 743 * the redirection module won't have torn down the console 744 * redirection until after qdetach() has been invoked. 745 */ 746 if (stp->sd_pollist.ph_list != NULL) { 747 pollwakeup(&stp->sd_pollist, POLLERR); 748 pollhead_clean(&stp->sd_pollist); 749 } 750 ASSERT(stp->sd_pollist.ph_list == NULL); 751 ASSERT(stp->sd_sidp == NULL); 752 ASSERT(stp->sd_pgidp == NULL); 753 754 /* Prevent qenable from re-enabling the stream head queue */ 755 disable_svc(_RD(qp)); 756 757 /* 758 * Wait until service procedure of each queue is 759 * run, if QINSERVICE is set. 760 */ 761 wait_svc(_RD(qp)); 762 763 /* 764 * Now, flush both queues. 765 */ 766 flushq(_RD(qp), FLUSHALL); 767 flushq(qp, FLUSHALL); 768 769 /* 770 * If the write queue of the stream head is pointing to a 771 * read queue, we have a twisted stream. If the read queue 772 * is alive, convert the stream head queues into a dead end. 773 * If the read queue is dead, free the dead pair. 774 */ 775 if (qp->q_next && !_SAMESTR(qp)) { 776 if (qp->q_next->q_qinfo == &deadrend) { /* half-closed pipe */ 777 flushq(qp->q_next, FLUSHALL); /* ensure no message */ 778 shfree(qp->q_next->q_stream); 779 freeq(qp->q_next); 780 freeq(_RD(qp)); 781 } else if (qp->q_next == _RD(qp)) { /* fifo */ 782 freeq(_RD(qp)); 783 } else { /* pipe */ 784 freestp = 0; 785 /* 786 * The q_info pointers are never accessed when 787 * SQLOCK is held. 788 */ 789 ASSERT(qp->q_syncq == _RD(qp)->q_syncq); 790 mutex_enter(SQLOCK(qp->q_syncq)); 791 qp->q_qinfo = &deadwend; 792 _RD(qp)->q_qinfo = &deadrend; 793 mutex_exit(SQLOCK(qp->q_syncq)); 794 } 795 } else { 796 freeq(_RD(qp)); /* free stream head queue pair */ 797 } 798 799 mutex_enter(&vp->v_lock); 800 if (stp->sd_iocblk) { 801 if (stp->sd_iocblk != (mblk_t *)-1) { 802 freemsg(stp->sd_iocblk); 803 } 804 stp->sd_iocblk = NULL; 805 } 806 stp->sd_vnode = NULL; 807 vp->v_stream = NULL; 808 mutex_exit(&vp->v_lock); 809 mutex_enter(&stp->sd_lock); 810 freemsg(stp->sd_cmdblk); 811 stp->sd_cmdblk = NULL; 812 stp->sd_flag &= ~STRCLOSE; 813 cv_broadcast(&stp->sd_monitor); 814 mutex_exit(&stp->sd_lock); 815 816 if (freestp) 817 shfree(stp); 818 return (0); 819 } 820 821 static int 822 strsink(queue_t *q, mblk_t *bp) 823 { 824 struct copyresp *resp; 825 826 switch (bp->b_datap->db_type) { 827 case M_FLUSH: 828 if ((*bp->b_rptr & FLUSHW) && !(bp->b_flag & MSGNOLOOP)) { 829 *bp->b_rptr &= ~FLUSHR; 830 bp->b_flag |= MSGNOLOOP; 831 /* 832 * Protect against the driver passing up 833 * messages after it has done a qprocsoff. 834 */ 835 if (_OTHERQ(q)->q_next == NULL) 836 freemsg(bp); 837 else 838 qreply(q, bp); 839 } else { 840 freemsg(bp); 841 } 842 break; 843 844 case M_COPYIN: 845 case M_COPYOUT: 846 if (bp->b_cont) { 847 freemsg(bp->b_cont); 848 bp->b_cont = NULL; 849 } 850 bp->b_datap->db_type = M_IOCDATA; 851 bp->b_wptr = bp->b_rptr + sizeof (struct copyresp); 852 resp = (struct copyresp *)bp->b_rptr; 853 resp->cp_rval = (caddr_t)1; /* failure */ 854 /* 855 * Protect against the driver passing up 856 * messages after it has done a qprocsoff. 857 */ 858 if (_OTHERQ(q)->q_next == NULL) 859 freemsg(bp); 860 else 861 qreply(q, bp); 862 break; 863 864 case M_IOCTL: 865 if (bp->b_cont) { 866 freemsg(bp->b_cont); 867 bp->b_cont = NULL; 868 } 869 bp->b_datap->db_type = M_IOCNAK; 870 /* 871 * Protect against the driver passing up 872 * messages after it has done a qprocsoff. 873 */ 874 if (_OTHERQ(q)->q_next == NULL) 875 freemsg(bp); 876 else 877 qreply(q, bp); 878 break; 879 880 default: 881 freemsg(bp); 882 break; 883 } 884 885 return (0); 886 } 887 888 /* 889 * Clean up after a process when it closes a stream. This is called 890 * from closef for all closes, whereas strclose is called only for the 891 * last close on a stream. The siglist is scanned for entries for the 892 * current process, and these are removed. 893 */ 894 void 895 strclean(struct vnode *vp) 896 { 897 strsig_t *ssp, *pssp, *tssp; 898 stdata_t *stp; 899 int update = 0; 900 901 TRACE_1(TR_FAC_STREAMS_FR, 902 TR_STRCLEAN, "strclean:%p", vp); 903 stp = vp->v_stream; 904 pssp = NULL; 905 mutex_enter(&stp->sd_lock); 906 ssp = stp->sd_siglist; 907 while (ssp) { 908 if (ssp->ss_pidp == curproc->p_pidp) { 909 tssp = ssp->ss_next; 910 if (pssp) 911 pssp->ss_next = tssp; 912 else 913 stp->sd_siglist = tssp; 914 mutex_enter(&pidlock); 915 PID_RELE(ssp->ss_pidp); 916 mutex_exit(&pidlock); 917 kmem_free(ssp, sizeof (strsig_t)); 918 update = 1; 919 ssp = tssp; 920 } else { 921 pssp = ssp; 922 ssp = ssp->ss_next; 923 } 924 } 925 if (update) { 926 stp->sd_sigflags = 0; 927 for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next) 928 stp->sd_sigflags |= ssp->ss_events; 929 } 930 mutex_exit(&stp->sd_lock); 931 } 932 933 /* 934 * Used on the last close to remove any remaining items on the siglist. 935 * These could be present on the siglist due to I_ESETSIG calls that 936 * use process groups or processed that do not have an open file descriptor 937 * for this stream (Such entries would not be removed by strclean). 938 */ 939 static void 940 strcleanall(struct vnode *vp) 941 { 942 strsig_t *ssp, *nssp; 943 stdata_t *stp; 944 945 stp = vp->v_stream; 946 mutex_enter(&stp->sd_lock); 947 ssp = stp->sd_siglist; 948 stp->sd_siglist = NULL; 949 while (ssp) { 950 nssp = ssp->ss_next; 951 mutex_enter(&pidlock); 952 PID_RELE(ssp->ss_pidp); 953 mutex_exit(&pidlock); 954 kmem_free(ssp, sizeof (strsig_t)); 955 ssp = nssp; 956 } 957 stp->sd_sigflags = 0; 958 mutex_exit(&stp->sd_lock); 959 } 960 961 /* 962 * Retrieve the next message from the logical stream head read queue 963 * using either rwnext (if sync stream) or getq_noenab. 964 * It is the callers responsibility to call qbackenable after 965 * it is finished with the message. The caller should not call 966 * qbackenable until after any putback calls to avoid spurious backenabling. 967 */ 968 mblk_t * 969 strget(struct stdata *stp, queue_t *q, struct uio *uiop, int first, 970 int *errorp) 971 { 972 mblk_t *bp; 973 int error; 974 ssize_t rbytes = 0; 975 976 /* Holding sd_lock prevents the read queue from changing */ 977 ASSERT(MUTEX_HELD(&stp->sd_lock)); 978 979 if (uiop != NULL && stp->sd_struiordq != NULL && 980 q->q_first == NULL && 981 (!first || (stp->sd_wakeq & RSLEEP))) { 982 /* 983 * Stream supports rwnext() for the read side. 984 * If this is the first time we're called by e.g. strread 985 * only do the downcall if there is a deferred wakeup 986 * (registered in sd_wakeq). 987 */ 988 struiod_t uiod; 989 990 if (first) 991 stp->sd_wakeq &= ~RSLEEP; 992 993 (void) uiodup(uiop, &uiod.d_uio, uiod.d_iov, 994 sizeof (uiod.d_iov) / sizeof (*uiod.d_iov)); 995 uiod.d_mp = 0; 996 /* 997 * Mark that a thread is in rwnext on the read side 998 * to prevent strrput from nacking ioctls immediately. 999 * When the last concurrent rwnext returns 1000 * the ioctls are nack'ed. 1001 */ 1002 ASSERT(MUTEX_HELD(&stp->sd_lock)); 1003 stp->sd_struiodnak++; 1004 /* 1005 * Note: rwnext will drop sd_lock. 1006 */ 1007 error = rwnext(q, &uiod); 1008 ASSERT(MUTEX_NOT_HELD(&stp->sd_lock)); 1009 mutex_enter(&stp->sd_lock); 1010 stp->sd_struiodnak--; 1011 while (stp->sd_struiodnak == 0 && 1012 ((bp = stp->sd_struionak) != NULL)) { 1013 stp->sd_struionak = bp->b_next; 1014 bp->b_next = NULL; 1015 bp->b_datap->db_type = M_IOCNAK; 1016 /* 1017 * Protect against the driver passing up 1018 * messages after it has done a qprocsoff. 1019 */ 1020 if (_OTHERQ(q)->q_next == NULL) 1021 freemsg(bp); 1022 else { 1023 mutex_exit(&stp->sd_lock); 1024 qreply(q, bp); 1025 mutex_enter(&stp->sd_lock); 1026 } 1027 } 1028 ASSERT(MUTEX_HELD(&stp->sd_lock)); 1029 if (error == 0 || error == EWOULDBLOCK) { 1030 if ((bp = uiod.d_mp) != NULL) { 1031 *errorp = 0; 1032 ASSERT(MUTEX_HELD(&stp->sd_lock)); 1033 return (bp); 1034 } 1035 error = 0; 1036 } else if (error == EINVAL) { 1037 /* 1038 * The stream plumbing must have 1039 * changed while we were away, so 1040 * just turn off rwnext()s. 1041 */ 1042 error = 0; 1043 } else if (error == EBUSY) { 1044 /* 1045 * The module might have data in transit using putnext 1046 * Fall back on waiting + getq. 1047 */ 1048 error = 0; 1049 } else { 1050 *errorp = error; 1051 ASSERT(MUTEX_HELD(&stp->sd_lock)); 1052 return (NULL); 1053 } 1054 /* 1055 * Try a getq in case a rwnext() generated mblk 1056 * has bubbled up via strrput(). 1057 */ 1058 } 1059 *errorp = 0; 1060 ASSERT(MUTEX_HELD(&stp->sd_lock)); 1061 1062 /* 1063 * If we have a valid uio, try and use this as a guide for how 1064 * many bytes to retrieve from the queue via getq_noenab(). 1065 * Doing this can avoid unneccesary counting of overlong 1066 * messages in putback(). We currently only do this for sockets 1067 * and only if there is no sd_rputdatafunc hook. 1068 * 1069 * The sd_rputdatafunc hook transforms the entire message 1070 * before any bytes in it can be given to a client. So, rbytes 1071 * must be 0 if there is a hook. 1072 */ 1073 if ((uiop != NULL) && (stp->sd_vnode->v_type == VSOCK) && 1074 (stp->sd_rputdatafunc == NULL)) 1075 rbytes = uiop->uio_resid; 1076 1077 return (getq_noenab(q, rbytes)); 1078 } 1079 1080 /* 1081 * Copy out the message pointed to by `bp' into the uio pointed to by `uiop'. 1082 * If the message does not fit in the uio the remainder of it is returned; 1083 * otherwise NULL is returned. Any embedded zero-length mblk_t's are 1084 * consumed, even if uio_resid reaches zero. On error, `*errorp' is set to 1085 * the error code, the message is consumed, and NULL is returned. 1086 */ 1087 static mblk_t * 1088 struiocopyout(mblk_t *bp, struct uio *uiop, int *errorp) 1089 { 1090 int error; 1091 ptrdiff_t n; 1092 mblk_t *nbp; 1093 1094 ASSERT(bp->b_wptr >= bp->b_rptr); 1095 1096 do { 1097 if ((n = MIN(uiop->uio_resid, MBLKL(bp))) != 0) { 1098 ASSERT(n > 0); 1099 1100 error = uiomove(bp->b_rptr, n, UIO_READ, uiop); 1101 if (error != 0) { 1102 freemsg(bp); 1103 *errorp = error; 1104 return (NULL); 1105 } 1106 } 1107 1108 bp->b_rptr += n; 1109 while (bp != NULL && (bp->b_rptr >= bp->b_wptr)) { 1110 nbp = bp; 1111 bp = bp->b_cont; 1112 freeb(nbp); 1113 } 1114 } while (bp != NULL && uiop->uio_resid > 0); 1115 1116 *errorp = 0; 1117 return (bp); 1118 } 1119 1120 /* 1121 * Read a stream according to the mode flags in sd_flag: 1122 * 1123 * (default mode) - Byte stream, msg boundaries are ignored 1124 * RD_MSGDIS (msg discard) - Read on msg boundaries and throw away 1125 * any data remaining in msg 1126 * RD_MSGNODIS (msg non-discard) - Read on msg boundaries and put back 1127 * any remaining data on head of read queue 1128 * 1129 * Consume readable messages on the front of the queue until 1130 * ttolwp(curthread)->lwp_count 1131 * is satisfied, the readable messages are exhausted, or a message 1132 * boundary is reached in a message mode. If no data was read and 1133 * the stream was not opened with the NDELAY flag, block until data arrives. 1134 * Otherwise return the data read and update the count. 1135 * 1136 * In default mode a 0 length message signifies end-of-file and terminates 1137 * a read in progress. The 0 length message is removed from the queue 1138 * only if it is the only message read (no data is read). 1139 * 1140 * An attempt to read an M_PROTO or M_PCPROTO message results in an 1141 * EBADMSG error return, unless either RD_PROTDAT or RD_PROTDIS are set. 1142 * If RD_PROTDAT is set, M_PROTO and M_PCPROTO messages are read as data. 1143 * If RD_PROTDIS is set, the M_PROTO and M_PCPROTO parts of the message 1144 * are unlinked from and M_DATA blocks in the message, the protos are 1145 * thrown away, and the data is read. 1146 */ 1147 /* ARGSUSED */ 1148 int 1149 strread(struct vnode *vp, struct uio *uiop, cred_t *crp) 1150 { 1151 struct stdata *stp; 1152 mblk_t *bp, *nbp; 1153 queue_t *q; 1154 int error = 0; 1155 uint_t old_sd_flag; 1156 int first; 1157 char rflg; 1158 uint_t mark; /* Contains MSG*MARK and _LASTMARK */ 1159 #define _LASTMARK 0x8000 /* Distinct from MSG*MARK */ 1160 short delim; 1161 unsigned char pri = 0; 1162 char waitflag; 1163 unsigned char type; 1164 1165 TRACE_1(TR_FAC_STREAMS_FR, 1166 TR_STRREAD_ENTER, "strread:%p", vp); 1167 ASSERT(vp->v_stream); 1168 stp = vp->v_stream; 1169 1170 mutex_enter(&stp->sd_lock); 1171 1172 if ((error = i_straccess(stp, JCREAD)) != 0) { 1173 mutex_exit(&stp->sd_lock); 1174 return (error); 1175 } 1176 1177 if (stp->sd_flag & (STRDERR|STPLEX)) { 1178 error = strgeterr(stp, STRDERR|STPLEX, 0); 1179 if (error != 0) { 1180 mutex_exit(&stp->sd_lock); 1181 return (error); 1182 } 1183 } 1184 1185 /* 1186 * Loop terminates when uiop->uio_resid == 0. 1187 */ 1188 rflg = 0; 1189 waitflag = READWAIT; 1190 q = _RD(stp->sd_wrq); 1191 for (;;) { 1192 ASSERT(MUTEX_HELD(&stp->sd_lock)); 1193 old_sd_flag = stp->sd_flag; 1194 mark = 0; 1195 delim = 0; 1196 first = 1; 1197 while ((bp = strget(stp, q, uiop, first, &error)) == NULL) { 1198 int done = 0; 1199 1200 ASSERT(MUTEX_HELD(&stp->sd_lock)); 1201 1202 if (error != 0) 1203 goto oops; 1204 1205 if (stp->sd_flag & (STRHUP|STREOF)) { 1206 goto oops; 1207 } 1208 if (rflg && !(stp->sd_flag & STRDELIM)) { 1209 goto oops; 1210 } 1211 /* 1212 * If a read(fd,buf,0) has been done, there is no 1213 * need to sleep. We always have zero bytes to 1214 * return. 1215 */ 1216 if (uiop->uio_resid == 0) { 1217 goto oops; 1218 } 1219 1220 qbackenable(q, 0); 1221 1222 TRACE_3(TR_FAC_STREAMS_FR, TR_STRREAD_WAIT, 1223 "strread calls strwaitq:%p, %p, %p", 1224 vp, uiop, crp); 1225 if ((error = strwaitq(stp, waitflag, uiop->uio_resid, 1226 uiop->uio_fmode, -1, &done)) != 0 || done) { 1227 TRACE_3(TR_FAC_STREAMS_FR, TR_STRREAD_DONE, 1228 "strread error or done:%p, %p, %p", 1229 vp, uiop, crp); 1230 if ((uiop->uio_fmode & FNDELAY) && 1231 (stp->sd_flag & OLDNDELAY) && 1232 (error == EAGAIN)) 1233 error = 0; 1234 goto oops; 1235 } 1236 TRACE_3(TR_FAC_STREAMS_FR, TR_STRREAD_AWAKE, 1237 "strread awakes:%p, %p, %p", vp, uiop, crp); 1238 if ((error = i_straccess(stp, JCREAD)) != 0) { 1239 goto oops; 1240 } 1241 first = 0; 1242 } 1243 1244 ASSERT(MUTEX_HELD(&stp->sd_lock)); 1245 ASSERT(bp); 1246 pri = bp->b_band; 1247 /* 1248 * Extract any mark information. If the message is not 1249 * completely consumed this information will be put in the mblk 1250 * that is putback. 1251 * If MSGMARKNEXT is set and the message is completely consumed 1252 * the STRATMARK flag will be set below. Likewise, if 1253 * MSGNOTMARKNEXT is set and the message is 1254 * completely consumed STRNOTATMARK will be set. 1255 * 1256 * For some unknown reason strread only breaks the read at the 1257 * last mark. 1258 */ 1259 mark = bp->b_flag & (MSGMARK | MSGMARKNEXT | MSGNOTMARKNEXT); 1260 ASSERT((mark & (MSGMARKNEXT|MSGNOTMARKNEXT)) != 1261 (MSGMARKNEXT|MSGNOTMARKNEXT)); 1262 if (mark != 0 && bp == stp->sd_mark) { 1263 if (rflg) { 1264 putback(stp, q, bp, pri); 1265 goto oops; 1266 } 1267 mark |= _LASTMARK; 1268 stp->sd_mark = NULL; 1269 } 1270 if ((stp->sd_flag & STRDELIM) && (bp->b_flag & MSGDELIM)) 1271 delim = 1; 1272 mutex_exit(&stp->sd_lock); 1273 1274 if (STREAM_NEEDSERVICE(stp)) 1275 stream_runservice(stp); 1276 1277 type = bp->b_datap->db_type; 1278 1279 switch (type) { 1280 1281 case M_DATA: 1282 ismdata: 1283 if (msgnodata(bp)) { 1284 if (mark || delim) { 1285 freemsg(bp); 1286 } else if (rflg) { 1287 1288 /* 1289 * If already read data put zero 1290 * length message back on queue else 1291 * free msg and return 0. 1292 */ 1293 bp->b_band = pri; 1294 mutex_enter(&stp->sd_lock); 1295 putback(stp, q, bp, pri); 1296 mutex_exit(&stp->sd_lock); 1297 } else { 1298 freemsg(bp); 1299 } 1300 error = 0; 1301 goto oops1; 1302 } 1303 1304 rflg = 1; 1305 waitflag |= NOINTR; 1306 bp = struiocopyout(bp, uiop, &error); 1307 if (error != 0) 1308 goto oops1; 1309 1310 mutex_enter(&stp->sd_lock); 1311 if (bp) { 1312 /* 1313 * Have remaining data in message. 1314 * Free msg if in discard mode. 1315 */ 1316 if (stp->sd_read_opt & RD_MSGDIS) { 1317 freemsg(bp); 1318 } else { 1319 bp->b_band = pri; 1320 if ((mark & _LASTMARK) && 1321 (stp->sd_mark == NULL)) 1322 stp->sd_mark = bp; 1323 bp->b_flag |= mark & ~_LASTMARK; 1324 if (delim) 1325 bp->b_flag |= MSGDELIM; 1326 if (msgnodata(bp)) 1327 freemsg(bp); 1328 else 1329 putback(stp, q, bp, pri); 1330 } 1331 } else { 1332 /* 1333 * Consumed the complete message. 1334 * Move the MSG*MARKNEXT information 1335 * to the stream head just in case 1336 * the read queue becomes empty. 1337 * 1338 * If the stream head was at the mark 1339 * (STRATMARK) before we dropped sd_lock above 1340 * and some data was consumed then we have 1341 * moved past the mark thus STRATMARK is 1342 * cleared. However, if a message arrived in 1343 * strrput during the copyout above causing 1344 * STRATMARK to be set we can not clear that 1345 * flag. 1346 */ 1347 if (mark & 1348 (MSGMARKNEXT|MSGNOTMARKNEXT|MSGMARK)) { 1349 if (mark & MSGMARKNEXT) { 1350 stp->sd_flag &= ~STRNOTATMARK; 1351 stp->sd_flag |= STRATMARK; 1352 } else if (mark & MSGNOTMARKNEXT) { 1353 stp->sd_flag &= ~STRATMARK; 1354 stp->sd_flag |= STRNOTATMARK; 1355 } else { 1356 stp->sd_flag &= 1357 ~(STRATMARK|STRNOTATMARK); 1358 } 1359 } else if (rflg && (old_sd_flag & STRATMARK)) { 1360 stp->sd_flag &= ~STRATMARK; 1361 } 1362 } 1363 1364 /* 1365 * Check for signal messages at the front of the read 1366 * queue and generate the signal(s) if appropriate. 1367 * The only signal that can be on queue is M_SIG at 1368 * this point. 1369 */ 1370 while ((((bp = q->q_first)) != NULL) && 1371 (bp->b_datap->db_type == M_SIG)) { 1372 bp = getq_noenab(q, 0); 1373 /* 1374 * sd_lock is held so the content of the 1375 * read queue can not change. 1376 */ 1377 ASSERT(bp != NULL && DB_TYPE(bp) == M_SIG); 1378 strsignal_nolock(stp, *bp->b_rptr, bp->b_band); 1379 mutex_exit(&stp->sd_lock); 1380 freemsg(bp); 1381 if (STREAM_NEEDSERVICE(stp)) 1382 stream_runservice(stp); 1383 mutex_enter(&stp->sd_lock); 1384 } 1385 1386 if ((uiop->uio_resid == 0) || (mark & _LASTMARK) || 1387 delim || 1388 (stp->sd_read_opt & (RD_MSGDIS|RD_MSGNODIS))) { 1389 goto oops; 1390 } 1391 continue; 1392 1393 case M_SIG: 1394 strsignal(stp, *bp->b_rptr, (int32_t)bp->b_band); 1395 freemsg(bp); 1396 mutex_enter(&stp->sd_lock); 1397 continue; 1398 1399 case M_PROTO: 1400 case M_PCPROTO: 1401 /* 1402 * Only data messages are readable. 1403 * Any others generate an error, unless 1404 * RD_PROTDIS or RD_PROTDAT is set. 1405 */ 1406 if (stp->sd_read_opt & RD_PROTDAT) { 1407 for (nbp = bp; nbp; nbp = nbp->b_next) { 1408 if ((nbp->b_datap->db_type == 1409 M_PROTO) || 1410 (nbp->b_datap->db_type == 1411 M_PCPROTO)) { 1412 nbp->b_datap->db_type = M_DATA; 1413 } else { 1414 break; 1415 } 1416 } 1417 /* 1418 * clear stream head hi pri flag based on 1419 * first message 1420 */ 1421 if (type == M_PCPROTO) { 1422 mutex_enter(&stp->sd_lock); 1423 stp->sd_flag &= ~STRPRI; 1424 mutex_exit(&stp->sd_lock); 1425 } 1426 goto ismdata; 1427 } else if (stp->sd_read_opt & RD_PROTDIS) { 1428 /* 1429 * discard non-data messages 1430 */ 1431 while (bp && 1432 ((bp->b_datap->db_type == M_PROTO) || 1433 (bp->b_datap->db_type == M_PCPROTO))) { 1434 nbp = unlinkb(bp); 1435 freeb(bp); 1436 bp = nbp; 1437 } 1438 /* 1439 * clear stream head hi pri flag based on 1440 * first message 1441 */ 1442 if (type == M_PCPROTO) { 1443 mutex_enter(&stp->sd_lock); 1444 stp->sd_flag &= ~STRPRI; 1445 mutex_exit(&stp->sd_lock); 1446 } 1447 if (bp) { 1448 bp->b_band = pri; 1449 goto ismdata; 1450 } else { 1451 break; 1452 } 1453 } 1454 /* FALLTHRU */ 1455 case M_PASSFP: 1456 if ((bp->b_datap->db_type == M_PASSFP) && 1457 (stp->sd_read_opt & RD_PROTDIS)) { 1458 freemsg(bp); 1459 break; 1460 } 1461 mutex_enter(&stp->sd_lock); 1462 putback(stp, q, bp, pri); 1463 mutex_exit(&stp->sd_lock); 1464 if (rflg == 0) 1465 error = EBADMSG; 1466 goto oops1; 1467 1468 default: 1469 /* 1470 * Garbage on stream head read queue. 1471 */ 1472 cmn_err(CE_WARN, "bad %x found at stream head\n", 1473 bp->b_datap->db_type); 1474 freemsg(bp); 1475 goto oops1; 1476 } 1477 mutex_enter(&stp->sd_lock); 1478 } 1479 oops: 1480 mutex_exit(&stp->sd_lock); 1481 oops1: 1482 qbackenable(q, pri); 1483 return (error); 1484 #undef _LASTMARK 1485 } 1486 1487 /* 1488 * Default processing of M_PROTO/M_PCPROTO messages. 1489 * Determine which wakeups and signals are needed. 1490 * This can be replaced by a user-specified procedure for kernel users 1491 * of STREAMS. 1492 */ 1493 /* ARGSUSED */ 1494 mblk_t * 1495 strrput_proto(vnode_t *vp, mblk_t *mp, 1496 strwakeup_t *wakeups, strsigset_t *firstmsgsigs, 1497 strsigset_t *allmsgsigs, strpollset_t *pollwakeups) 1498 { 1499 *wakeups = RSLEEP; 1500 *allmsgsigs = 0; 1501 1502 switch (mp->b_datap->db_type) { 1503 case M_PROTO: 1504 if (mp->b_band == 0) { 1505 *firstmsgsigs = S_INPUT | S_RDNORM; 1506 *pollwakeups = POLLIN | POLLRDNORM; 1507 } else { 1508 *firstmsgsigs = S_INPUT | S_RDBAND; 1509 *pollwakeups = POLLIN | POLLRDBAND; 1510 } 1511 break; 1512 case M_PCPROTO: 1513 *firstmsgsigs = S_HIPRI; 1514 *pollwakeups = POLLPRI; 1515 break; 1516 } 1517 return (mp); 1518 } 1519 1520 /* 1521 * Default processing of everything but M_DATA, M_PROTO, M_PCPROTO and 1522 * M_PASSFP messages. 1523 * Determine which wakeups and signals are needed. 1524 * This can be replaced by a user-specified procedure for kernel users 1525 * of STREAMS. 1526 */ 1527 /* ARGSUSED */ 1528 mblk_t * 1529 strrput_misc(vnode_t *vp, mblk_t *mp, 1530 strwakeup_t *wakeups, strsigset_t *firstmsgsigs, 1531 strsigset_t *allmsgsigs, strpollset_t *pollwakeups) 1532 { 1533 *wakeups = 0; 1534 *firstmsgsigs = 0; 1535 *allmsgsigs = 0; 1536 *pollwakeups = 0; 1537 return (mp); 1538 } 1539 1540 /* 1541 * Stream read put procedure. Called from downstream driver/module 1542 * with messages for the stream head. Data, protocol, and in-stream 1543 * signal messages are placed on the queue, others are handled directly. 1544 */ 1545 int 1546 strrput(queue_t *q, mblk_t *bp) 1547 { 1548 struct stdata *stp; 1549 ulong_t rput_opt; 1550 strwakeup_t wakeups; 1551 strsigset_t firstmsgsigs; /* Signals if first message on queue */ 1552 strsigset_t allmsgsigs; /* Signals for all messages */ 1553 strsigset_t signals; /* Signals events to generate */ 1554 strpollset_t pollwakeups; 1555 mblk_t *nextbp; 1556 uchar_t band = 0; 1557 int hipri_sig; 1558 1559 stp = (struct stdata *)q->q_ptr; 1560 /* 1561 * Use rput_opt for optimized access to the SR_ flags except 1562 * SR_POLLIN. That flag has to be checked under sd_lock since it 1563 * is modified by strpoll(). 1564 */ 1565 rput_opt = stp->sd_rput_opt; 1566 1567 ASSERT(qclaimed(q)); 1568 TRACE_2(TR_FAC_STREAMS_FR, TR_STRRPUT_ENTER, 1569 "strrput called with message type:q %p bp %p", q, bp); 1570 1571 /* 1572 * Perform initial processing and pass to the parameterized functions. 1573 */ 1574 ASSERT(bp->b_next == NULL); 1575 1576 switch (bp->b_datap->db_type) { 1577 case M_DATA: 1578 /* 1579 * sockfs is the only consumer of STREOF and when it is set, 1580 * it implies that the receiver is not interested in receiving 1581 * any more data, hence the mblk is freed to prevent unnecessary 1582 * message queueing at the stream head. 1583 */ 1584 if (stp->sd_flag == STREOF) { 1585 freemsg(bp); 1586 return (0); 1587 } 1588 if ((rput_opt & SR_IGN_ZEROLEN) && 1589 bp->b_rptr == bp->b_wptr && msgnodata(bp)) { 1590 /* 1591 * Ignore zero-length M_DATA messages. These might be 1592 * generated by some transports. 1593 * The zero-length M_DATA messages, even if they 1594 * are ignored, should effect the atmark tracking and 1595 * should wake up a thread sleeping in strwaitmark. 1596 */ 1597 mutex_enter(&stp->sd_lock); 1598 if (bp->b_flag & MSGMARKNEXT) { 1599 /* 1600 * Record the position of the mark either 1601 * in q_last or in STRATMARK. 1602 */ 1603 if (q->q_last != NULL) { 1604 q->q_last->b_flag &= ~MSGNOTMARKNEXT; 1605 q->q_last->b_flag |= MSGMARKNEXT; 1606 } else { 1607 stp->sd_flag &= ~STRNOTATMARK; 1608 stp->sd_flag |= STRATMARK; 1609 } 1610 } else if (bp->b_flag & MSGNOTMARKNEXT) { 1611 /* 1612 * Record that this is not the position of 1613 * the mark either in q_last or in 1614 * STRNOTATMARK. 1615 */ 1616 if (q->q_last != NULL) { 1617 q->q_last->b_flag &= ~MSGMARKNEXT; 1618 q->q_last->b_flag |= MSGNOTMARKNEXT; 1619 } else { 1620 stp->sd_flag &= ~STRATMARK; 1621 stp->sd_flag |= STRNOTATMARK; 1622 } 1623 } 1624 if (stp->sd_flag & RSLEEP) { 1625 stp->sd_flag &= ~RSLEEP; 1626 cv_broadcast(&q->q_wait); 1627 } 1628 mutex_exit(&stp->sd_lock); 1629 freemsg(bp); 1630 return (0); 1631 } 1632 wakeups = RSLEEP; 1633 if (bp->b_band == 0) { 1634 firstmsgsigs = S_INPUT | S_RDNORM; 1635 pollwakeups = POLLIN | POLLRDNORM; 1636 } else { 1637 firstmsgsigs = S_INPUT | S_RDBAND; 1638 pollwakeups = POLLIN | POLLRDBAND; 1639 } 1640 if (rput_opt & SR_SIGALLDATA) 1641 allmsgsigs = firstmsgsigs; 1642 else 1643 allmsgsigs = 0; 1644 1645 mutex_enter(&stp->sd_lock); 1646 if ((rput_opt & SR_CONSOL_DATA) && 1647 (q->q_last != NULL) && 1648 (bp->b_flag & (MSGMARK|MSGDELIM)) == 0) { 1649 /* 1650 * Consolidate an M_DATA message onto an M_DATA, 1651 * M_PROTO, or M_PCPROTO by merging it with q_last. 1652 * The consolidation does not take place if 1653 * the old message is marked with either of the 1654 * marks or the delim flag or if the new 1655 * message is marked with MSGMARK. The MSGMARK 1656 * check is needed to handle the odd semantics of 1657 * MSGMARK where essentially the whole message 1658 * is to be treated as marked. 1659 * Carry any MSGMARKNEXT and MSGNOTMARKNEXT from the 1660 * new message to the front of the b_cont chain. 1661 */ 1662 mblk_t *lbp = q->q_last; 1663 unsigned char db_type = lbp->b_datap->db_type; 1664 1665 if ((db_type == M_DATA || db_type == M_PROTO || 1666 db_type == M_PCPROTO) && 1667 !(lbp->b_flag & (MSGDELIM|MSGMARK|MSGMARKNEXT))) { 1668 rmvq_noenab(q, lbp); 1669 /* 1670 * The first message in the b_cont list 1671 * tracks MSGMARKNEXT and MSGNOTMARKNEXT. 1672 * We need to handle the case where we 1673 * are appending: 1674 * 1675 * 1) a MSGMARKNEXT to a MSGNOTMARKNEXT. 1676 * 2) a MSGMARKNEXT to a plain message. 1677 * 3) a MSGNOTMARKNEXT to a plain message 1678 * 4) a MSGNOTMARKNEXT to a MSGNOTMARKNEXT 1679 * message. 1680 * 1681 * Thus we never append a MSGMARKNEXT or 1682 * MSGNOTMARKNEXT to a MSGMARKNEXT message. 1683 */ 1684 if (bp->b_flag & MSGMARKNEXT) { 1685 lbp->b_flag |= MSGMARKNEXT; 1686 lbp->b_flag &= ~MSGNOTMARKNEXT; 1687 bp->b_flag &= ~MSGMARKNEXT; 1688 } else if (bp->b_flag & MSGNOTMARKNEXT) { 1689 lbp->b_flag |= MSGNOTMARKNEXT; 1690 bp->b_flag &= ~MSGNOTMARKNEXT; 1691 } 1692 1693 linkb(lbp, bp); 1694 bp = lbp; 1695 /* 1696 * The new message logically isn't the first 1697 * even though the q_first check below thinks 1698 * it is. Clear the firstmsgsigs to make it 1699 * not appear to be first. 1700 */ 1701 firstmsgsigs = 0; 1702 } 1703 } 1704 break; 1705 1706 case M_PASSFP: 1707 wakeups = RSLEEP; 1708 allmsgsigs = 0; 1709 if (bp->b_band == 0) { 1710 firstmsgsigs = S_INPUT | S_RDNORM; 1711 pollwakeups = POLLIN | POLLRDNORM; 1712 } else { 1713 firstmsgsigs = S_INPUT | S_RDBAND; 1714 pollwakeups = POLLIN | POLLRDBAND; 1715 } 1716 mutex_enter(&stp->sd_lock); 1717 break; 1718 1719 case M_PROTO: 1720 case M_PCPROTO: 1721 ASSERT(stp->sd_rprotofunc != NULL); 1722 bp = (stp->sd_rprotofunc)(stp->sd_vnode, bp, 1723 &wakeups, &firstmsgsigs, &allmsgsigs, &pollwakeups); 1724 #define ALLSIG (S_INPUT|S_HIPRI|S_OUTPUT|S_MSG|S_ERROR|S_HANGUP|S_RDNORM|\ 1725 S_WRNORM|S_RDBAND|S_WRBAND|S_BANDURG) 1726 #define ALLPOLL (POLLIN|POLLPRI|POLLOUT|POLLRDNORM|POLLWRNORM|POLLRDBAND|\ 1727 POLLWRBAND) 1728 1729 ASSERT((wakeups & ~(RSLEEP|WSLEEP)) == 0); 1730 ASSERT((firstmsgsigs & ~ALLSIG) == 0); 1731 ASSERT((allmsgsigs & ~ALLSIG) == 0); 1732 ASSERT((pollwakeups & ~ALLPOLL) == 0); 1733 1734 mutex_enter(&stp->sd_lock); 1735 break; 1736 1737 default: 1738 ASSERT(stp->sd_rmiscfunc != NULL); 1739 bp = (stp->sd_rmiscfunc)(stp->sd_vnode, bp, 1740 &wakeups, &firstmsgsigs, &allmsgsigs, &pollwakeups); 1741 ASSERT((wakeups & ~(RSLEEP|WSLEEP)) == 0); 1742 ASSERT((firstmsgsigs & ~ALLSIG) == 0); 1743 ASSERT((allmsgsigs & ~ALLSIG) == 0); 1744 ASSERT((pollwakeups & ~ALLPOLL) == 0); 1745 #undef ALLSIG 1746 #undef ALLPOLL 1747 mutex_enter(&stp->sd_lock); 1748 break; 1749 } 1750 ASSERT(MUTEX_HELD(&stp->sd_lock)); 1751 1752 /* By default generate superset of signals */ 1753 signals = (firstmsgsigs | allmsgsigs); 1754 1755 /* 1756 * The proto and misc functions can return multiple messages 1757 * as a b_next chain. Such messages are processed separately. 1758 */ 1759 one_more: 1760 hipri_sig = 0; 1761 if (bp == NULL) { 1762 nextbp = NULL; 1763 } else { 1764 nextbp = bp->b_next; 1765 bp->b_next = NULL; 1766 1767 switch (bp->b_datap->db_type) { 1768 case M_PCPROTO: 1769 /* 1770 * Only one priority protocol message is allowed at the 1771 * stream head at a time. 1772 */ 1773 if (stp->sd_flag & STRPRI) { 1774 TRACE_0(TR_FAC_STREAMS_FR, TR_STRRPUT_PROTERR, 1775 "M_PCPROTO already at head"); 1776 freemsg(bp); 1777 mutex_exit(&stp->sd_lock); 1778 goto done; 1779 } 1780 stp->sd_flag |= STRPRI; 1781 hipri_sig = 1; 1782 /* FALLTHRU */ 1783 case M_DATA: 1784 case M_PROTO: 1785 case M_PASSFP: 1786 band = bp->b_band; 1787 /* 1788 * Marking doesn't work well when messages 1789 * are marked in more than one band. We only 1790 * remember the last message received, even if 1791 * it is placed on the queue ahead of other 1792 * marked messages. 1793 */ 1794 if (bp->b_flag & MSGMARK) 1795 stp->sd_mark = bp; 1796 (void) putq(q, bp); 1797 1798 /* 1799 * If message is a PCPROTO message, always use 1800 * firstmsgsigs to determine if a signal should be 1801 * sent as strrput is the only place to send 1802 * signals for PCPROTO. Other messages are based on 1803 * the STRGETINPROG flag. The flag determines if 1804 * strrput or (k)strgetmsg will be responsible for 1805 * sending the signals, in the firstmsgsigs case. 1806 */ 1807 if ((hipri_sig == 1) || 1808 (((stp->sd_flag & STRGETINPROG) == 0) && 1809 (q->q_first == bp))) 1810 signals = (firstmsgsigs | allmsgsigs); 1811 else 1812 signals = allmsgsigs; 1813 break; 1814 1815 default: 1816 mutex_exit(&stp->sd_lock); 1817 (void) strrput_nondata(q, bp); 1818 mutex_enter(&stp->sd_lock); 1819 break; 1820 } 1821 } 1822 ASSERT(MUTEX_HELD(&stp->sd_lock)); 1823 /* 1824 * Wake sleeping read/getmsg and cancel deferred wakeup 1825 */ 1826 if (wakeups & RSLEEP) 1827 stp->sd_wakeq &= ~RSLEEP; 1828 1829 wakeups &= stp->sd_flag; 1830 if (wakeups & RSLEEP) { 1831 stp->sd_flag &= ~RSLEEP; 1832 cv_broadcast(&q->q_wait); 1833 } 1834 if (wakeups & WSLEEP) { 1835 stp->sd_flag &= ~WSLEEP; 1836 cv_broadcast(&_WR(q)->q_wait); 1837 } 1838 1839 if (pollwakeups != 0) { 1840 if (pollwakeups == (POLLIN | POLLRDNORM)) { 1841 /* 1842 * Can't use rput_opt since it was not 1843 * read when sd_lock was held and SR_POLLIN is changed 1844 * by strpoll() under sd_lock. 1845 */ 1846 if (!(stp->sd_rput_opt & SR_POLLIN)) 1847 goto no_pollwake; 1848 stp->sd_rput_opt &= ~SR_POLLIN; 1849 } 1850 mutex_exit(&stp->sd_lock); 1851 pollwakeup(&stp->sd_pollist, pollwakeups); 1852 mutex_enter(&stp->sd_lock); 1853 } 1854 no_pollwake: 1855 1856 /* 1857 * strsendsig can handle multiple signals with a 1858 * single call. 1859 */ 1860 if (stp->sd_sigflags & signals) 1861 strsendsig(stp->sd_siglist, signals, band, 0); 1862 mutex_exit(&stp->sd_lock); 1863 1864 1865 done: 1866 if (nextbp == NULL) 1867 return (0); 1868 1869 /* 1870 * Any signals were handled the first time. 1871 * Wakeups and pollwakeups are redone to avoid any race 1872 * conditions - all the messages are not queued until the 1873 * last message has been processed by strrput. 1874 */ 1875 bp = nextbp; 1876 signals = firstmsgsigs = allmsgsigs = 0; 1877 mutex_enter(&stp->sd_lock); 1878 goto one_more; 1879 } 1880 1881 static void 1882 log_dupioc(queue_t *rq, mblk_t *bp) 1883 { 1884 queue_t *wq, *qp; 1885 char *modnames, *mnp, *dname; 1886 size_t maxmodstr; 1887 boolean_t islast; 1888 1889 /* 1890 * Allocate a buffer large enough to hold the names of nstrpush modules 1891 * and one driver, with spaces between and NUL terminator. If we can't 1892 * get memory, then we'll just log the driver name. 1893 */ 1894 maxmodstr = nstrpush * (FMNAMESZ + 1); 1895 mnp = modnames = kmem_alloc(maxmodstr, KM_NOSLEEP); 1896 1897 /* march down write side to print log message down to the driver */ 1898 wq = WR(rq); 1899 1900 /* make sure q_next doesn't shift around while we're grabbing data */ 1901 claimstr(wq); 1902 qp = wq->q_next; 1903 do { 1904 dname = Q2NAME(qp); 1905 islast = !SAMESTR(qp) || qp->q_next == NULL; 1906 if (modnames == NULL) { 1907 /* 1908 * If we don't have memory, then get the driver name in 1909 * the log where we can see it. Note that memory 1910 * pressure is a possible cause of these sorts of bugs. 1911 */ 1912 if (islast) { 1913 modnames = dname; 1914 maxmodstr = 0; 1915 } 1916 } else { 1917 mnp += snprintf(mnp, FMNAMESZ + 1, "%s", dname); 1918 if (!islast) 1919 *mnp++ = ' '; 1920 } 1921 qp = qp->q_next; 1922 } while (!islast); 1923 releasestr(wq); 1924 /* Cannot happen unless stream head is corrupt. */ 1925 ASSERT(modnames != NULL); 1926 (void) strlog(rq->q_qinfo->qi_minfo->mi_idnum, 0, 1, 1927 SL_CONSOLE|SL_TRACE|SL_ERROR, 1928 "Warning: stream %p received duplicate %X M_IOC%s; module list: %s", 1929 rq->q_ptr, ((struct iocblk *)bp->b_rptr)->ioc_cmd, 1930 (DB_TYPE(bp) == M_IOCACK ? "ACK" : "NAK"), modnames); 1931 if (maxmodstr != 0) 1932 kmem_free(modnames, maxmodstr); 1933 } 1934 1935 int 1936 strrput_nondata(queue_t *q, mblk_t *bp) 1937 { 1938 struct stdata *stp; 1939 struct iocblk *iocbp; 1940 struct stroptions *sop; 1941 struct copyreq *reqp; 1942 struct copyresp *resp; 1943 unsigned char bpri; 1944 unsigned char flushed_already = 0; 1945 1946 stp = (struct stdata *)q->q_ptr; 1947 1948 ASSERT(!(stp->sd_flag & STPLEX)); 1949 ASSERT(qclaimed(q)); 1950 1951 switch (bp->b_datap->db_type) { 1952 case M_ERROR: 1953 /* 1954 * An error has occurred downstream, the errno is in the first 1955 * bytes of the message. 1956 */ 1957 if ((bp->b_wptr - bp->b_rptr) == 2) { /* New flavor */ 1958 unsigned char rw = 0; 1959 1960 mutex_enter(&stp->sd_lock); 1961 if (*bp->b_rptr != NOERROR) { /* read error */ 1962 if (*bp->b_rptr != 0) { 1963 if (stp->sd_flag & STRDERR) 1964 flushed_already |= FLUSHR; 1965 stp->sd_flag |= STRDERR; 1966 rw |= FLUSHR; 1967 } else { 1968 stp->sd_flag &= ~STRDERR; 1969 } 1970 stp->sd_rerror = *bp->b_rptr; 1971 } 1972 bp->b_rptr++; 1973 if (*bp->b_rptr != NOERROR) { /* write error */ 1974 if (*bp->b_rptr != 0) { 1975 if (stp->sd_flag & STWRERR) 1976 flushed_already |= FLUSHW; 1977 stp->sd_flag |= STWRERR; 1978 rw |= FLUSHW; 1979 } else { 1980 stp->sd_flag &= ~STWRERR; 1981 } 1982 stp->sd_werror = *bp->b_rptr; 1983 } 1984 if (rw) { 1985 TRACE_2(TR_FAC_STREAMS_FR, TR_STRRPUT_WAKE, 1986 "strrput cv_broadcast:q %p, bp %p", 1987 q, bp); 1988 cv_broadcast(&q->q_wait); /* readers */ 1989 cv_broadcast(&_WR(q)->q_wait); /* writers */ 1990 cv_broadcast(&stp->sd_monitor); /* ioctllers */ 1991 1992 mutex_exit(&stp->sd_lock); 1993 pollwakeup(&stp->sd_pollist, POLLERR); 1994 mutex_enter(&stp->sd_lock); 1995 1996 if (stp->sd_sigflags & S_ERROR) 1997 strsendsig(stp->sd_siglist, S_ERROR, 0, 1998 ((rw & FLUSHR) ? stp->sd_rerror : 1999 stp->sd_werror)); 2000 mutex_exit(&stp->sd_lock); 2001 /* 2002 * Send the M_FLUSH only 2003 * for the first M_ERROR 2004 * message on the stream 2005 */ 2006 if (flushed_already == rw) { 2007 freemsg(bp); 2008 return (0); 2009 } 2010 2011 bp->b_datap->db_type = M_FLUSH; 2012 *bp->b_rptr = rw; 2013 bp->b_wptr = bp->b_rptr + 1; 2014 /* 2015 * Protect against the driver 2016 * passing up messages after 2017 * it has done a qprocsoff 2018 */ 2019 if (_OTHERQ(q)->q_next == NULL) 2020 freemsg(bp); 2021 else 2022 qreply(q, bp); 2023 return (0); 2024 } else 2025 mutex_exit(&stp->sd_lock); 2026 } else if (*bp->b_rptr != 0) { /* Old flavor */ 2027 if (stp->sd_flag & (STRDERR|STWRERR)) 2028 flushed_already = FLUSHRW; 2029 mutex_enter(&stp->sd_lock); 2030 stp->sd_flag |= (STRDERR|STWRERR); 2031 stp->sd_rerror = *bp->b_rptr; 2032 stp->sd_werror = *bp->b_rptr; 2033 TRACE_2(TR_FAC_STREAMS_FR, 2034 TR_STRRPUT_WAKE2, 2035 "strrput wakeup #2:q %p, bp %p", q, bp); 2036 cv_broadcast(&q->q_wait); /* the readers */ 2037 cv_broadcast(&_WR(q)->q_wait); /* the writers */ 2038 cv_broadcast(&stp->sd_monitor); /* ioctllers */ 2039 2040 mutex_exit(&stp->sd_lock); 2041 pollwakeup(&stp->sd_pollist, POLLERR); 2042 mutex_enter(&stp->sd_lock); 2043 2044 if (stp->sd_sigflags & S_ERROR) 2045 strsendsig(stp->sd_siglist, S_ERROR, 0, 2046 (stp->sd_werror ? stp->sd_werror : 2047 stp->sd_rerror)); 2048 mutex_exit(&stp->sd_lock); 2049 2050 /* 2051 * Send the M_FLUSH only 2052 * for the first M_ERROR 2053 * message on the stream 2054 */ 2055 if (flushed_already != FLUSHRW) { 2056 bp->b_datap->db_type = M_FLUSH; 2057 *bp->b_rptr = FLUSHRW; 2058 /* 2059 * Protect against the driver passing up 2060 * messages after it has done a 2061 * qprocsoff. 2062 */ 2063 if (_OTHERQ(q)->q_next == NULL) 2064 freemsg(bp); 2065 else 2066 qreply(q, bp); 2067 return (0); 2068 } 2069 } 2070 freemsg(bp); 2071 return (0); 2072 2073 case M_HANGUP: 2074 2075 freemsg(bp); 2076 mutex_enter(&stp->sd_lock); 2077 stp->sd_werror = ENXIO; 2078 stp->sd_flag |= STRHUP; 2079 stp->sd_flag &= ~(WSLEEP|RSLEEP); 2080 2081 /* 2082 * send signal if controlling tty 2083 */ 2084 2085 if (stp->sd_sidp) { 2086 prsignal(stp->sd_sidp, SIGHUP); 2087 if (stp->sd_sidp != stp->sd_pgidp) 2088 pgsignal(stp->sd_pgidp, SIGTSTP); 2089 } 2090 2091 /* 2092 * wake up read, write, and exception pollers and 2093 * reset wakeup mechanism. 2094 */ 2095 cv_broadcast(&q->q_wait); /* the readers */ 2096 cv_broadcast(&_WR(q)->q_wait); /* the writers */ 2097 cv_broadcast(&stp->sd_monitor); /* the ioctllers */ 2098 strhup(stp); 2099 mutex_exit(&stp->sd_lock); 2100 return (0); 2101 2102 case M_UNHANGUP: 2103 freemsg(bp); 2104 mutex_enter(&stp->sd_lock); 2105 stp->sd_werror = 0; 2106 stp->sd_flag &= ~STRHUP; 2107 mutex_exit(&stp->sd_lock); 2108 return (0); 2109 2110 case M_SIG: 2111 /* 2112 * Someone downstream wants to post a signal. The 2113 * signal to post is contained in the first byte of the 2114 * message. If the message would go on the front of 2115 * the queue, send a signal to the process group 2116 * (if not SIGPOLL) or to the siglist processes 2117 * (SIGPOLL). If something is already on the queue, 2118 * OR if we are delivering a delayed suspend (*sigh* 2119 * another "tty" hack) and there's no one sleeping already, 2120 * just enqueue the message. 2121 */ 2122 mutex_enter(&stp->sd_lock); 2123 if (q->q_first || (*bp->b_rptr == SIGTSTP && 2124 !(stp->sd_flag & RSLEEP))) { 2125 (void) putq(q, bp); 2126 mutex_exit(&stp->sd_lock); 2127 return (0); 2128 } 2129 mutex_exit(&stp->sd_lock); 2130 /* FALLTHRU */ 2131 2132 case M_PCSIG: 2133 /* 2134 * Don't enqueue, just post the signal. 2135 */ 2136 strsignal(stp, *bp->b_rptr, 0L); 2137 freemsg(bp); 2138 return (0); 2139 2140 case M_CMD: 2141 if (MBLKL(bp) != sizeof (cmdblk_t)) { 2142 freemsg(bp); 2143 return (0); 2144 } 2145 2146 mutex_enter(&stp->sd_lock); 2147 if (stp->sd_flag & STRCMDWAIT) { 2148 ASSERT(stp->sd_cmdblk == NULL); 2149 stp->sd_cmdblk = bp; 2150 cv_broadcast(&stp->sd_monitor); 2151 mutex_exit(&stp->sd_lock); 2152 } else { 2153 mutex_exit(&stp->sd_lock); 2154 freemsg(bp); 2155 } 2156 return (0); 2157 2158 case M_FLUSH: 2159 /* 2160 * Flush queues. The indication of which queues to flush 2161 * is in the first byte of the message. If the read queue 2162 * is specified, then flush it. If FLUSHBAND is set, just 2163 * flush the band specified by the second byte of the message. 2164 * 2165 * If a module has issued a M_SETOPT to not flush hi 2166 * priority messages off of the stream head, then pass this 2167 * flag into the flushq code to preserve such messages. 2168 */ 2169 2170 if (*bp->b_rptr & FLUSHR) { 2171 mutex_enter(&stp->sd_lock); 2172 if (*bp->b_rptr & FLUSHBAND) { 2173 ASSERT((bp->b_wptr - bp->b_rptr) >= 2); 2174 flushband(q, *(bp->b_rptr + 1), FLUSHALL); 2175 } else 2176 flushq_common(q, FLUSHALL, 2177 stp->sd_read_opt & RFLUSHPCPROT); 2178 if ((q->q_first == NULL) || 2179 (q->q_first->b_datap->db_type < QPCTL)) 2180 stp->sd_flag &= ~STRPRI; 2181 else { 2182 ASSERT(stp->sd_flag & STRPRI); 2183 } 2184 mutex_exit(&stp->sd_lock); 2185 } 2186 if ((*bp->b_rptr & FLUSHW) && !(bp->b_flag & MSGNOLOOP)) { 2187 *bp->b_rptr &= ~FLUSHR; 2188 bp->b_flag |= MSGNOLOOP; 2189 /* 2190 * Protect against the driver passing up 2191 * messages after it has done a qprocsoff. 2192 */ 2193 if (_OTHERQ(q)->q_next == NULL) 2194 freemsg(bp); 2195 else 2196 qreply(q, bp); 2197 return (0); 2198 } 2199 freemsg(bp); 2200 return (0); 2201 2202 case M_IOCACK: 2203 case M_IOCNAK: 2204 iocbp = (struct iocblk *)bp->b_rptr; 2205 /* 2206 * If not waiting for ACK or NAK then just free msg. 2207 * If incorrect id sequence number then just free msg. 2208 * If already have ACK or NAK for user then this is a 2209 * duplicate, display a warning and free the msg. 2210 */ 2211 mutex_enter(&stp->sd_lock); 2212 if ((stp->sd_flag & IOCWAIT) == 0 || stp->sd_iocblk || 2213 (stp->sd_iocid != iocbp->ioc_id)) { 2214 /* 2215 * If the ACK/NAK is a dup, display a message 2216 * Dup is when sd_iocid == ioc_id, and 2217 * sd_iocblk == <valid ptr> or -1 (the former 2218 * is when an ioctl has been put on the stream 2219 * head, but has not yet been consumed, the 2220 * later is when it has been consumed). 2221 */ 2222 if ((stp->sd_iocid == iocbp->ioc_id) && 2223 (stp->sd_iocblk != NULL)) { 2224 log_dupioc(q, bp); 2225 } 2226 freemsg(bp); 2227 mutex_exit(&stp->sd_lock); 2228 return (0); 2229 } 2230 2231 /* 2232 * Assign ACK or NAK to user and wake up. 2233 */ 2234 stp->sd_iocblk = bp; 2235 cv_broadcast(&stp->sd_monitor); 2236 mutex_exit(&stp->sd_lock); 2237 return (0); 2238 2239 case M_COPYIN: 2240 case M_COPYOUT: 2241 reqp = (struct copyreq *)bp->b_rptr; 2242 2243 /* 2244 * If not waiting for ACK or NAK then just fail request. 2245 * If already have ACK, NAK, or copy request, then just 2246 * fail request. 2247 * If incorrect id sequence number then just fail request. 2248 */ 2249 mutex_enter(&stp->sd_lock); 2250 if ((stp->sd_flag & IOCWAIT) == 0 || stp->sd_iocblk || 2251 (stp->sd_iocid != reqp->cq_id)) { 2252 if (bp->b_cont) { 2253 freemsg(bp->b_cont); 2254 bp->b_cont = NULL; 2255 } 2256 bp->b_datap->db_type = M_IOCDATA; 2257 bp->b_wptr = bp->b_rptr + sizeof (struct copyresp); 2258 resp = (struct copyresp *)bp->b_rptr; 2259 resp->cp_rval = (caddr_t)1; /* failure */ 2260 mutex_exit(&stp->sd_lock); 2261 putnext(stp->sd_wrq, bp); 2262 return (0); 2263 } 2264 2265 /* 2266 * Assign copy request to user and wake up. 2267 */ 2268 stp->sd_iocblk = bp; 2269 cv_broadcast(&stp->sd_monitor); 2270 mutex_exit(&stp->sd_lock); 2271 return (0); 2272 2273 case M_SETOPTS: 2274 /* 2275 * Set stream head options (read option, write offset, 2276 * min/max packet size, and/or high/low water marks for 2277 * the read side only). 2278 */ 2279 2280 bpri = 0; 2281 sop = (struct stroptions *)bp->b_rptr; 2282 mutex_enter(&stp->sd_lock); 2283 if (sop->so_flags & SO_READOPT) { 2284 switch (sop->so_readopt & RMODEMASK) { 2285 case RNORM: 2286 stp->sd_read_opt &= ~(RD_MSGDIS | RD_MSGNODIS); 2287 break; 2288 2289 case RMSGD: 2290 stp->sd_read_opt = 2291 ((stp->sd_read_opt & ~RD_MSGNODIS) | 2292 RD_MSGDIS); 2293 break; 2294 2295 case RMSGN: 2296 stp->sd_read_opt = 2297 ((stp->sd_read_opt & ~RD_MSGDIS) | 2298 RD_MSGNODIS); 2299 break; 2300 } 2301 switch (sop->so_readopt & RPROTMASK) { 2302 case RPROTNORM: 2303 stp->sd_read_opt &= ~(RD_PROTDAT | RD_PROTDIS); 2304 break; 2305 2306 case RPROTDAT: 2307 stp->sd_read_opt = 2308 ((stp->sd_read_opt & ~RD_PROTDIS) | 2309 RD_PROTDAT); 2310 break; 2311 2312 case RPROTDIS: 2313 stp->sd_read_opt = 2314 ((stp->sd_read_opt & ~RD_PROTDAT) | 2315 RD_PROTDIS); 2316 break; 2317 } 2318 switch (sop->so_readopt & RFLUSHMASK) { 2319 case RFLUSHPCPROT: 2320 /* 2321 * This sets the stream head to NOT flush 2322 * M_PCPROTO messages. 2323 */ 2324 stp->sd_read_opt |= RFLUSHPCPROT; 2325 break; 2326 } 2327 } 2328 if (sop->so_flags & SO_ERROPT) { 2329 switch (sop->so_erropt & RERRMASK) { 2330 case RERRNORM: 2331 stp->sd_flag &= ~STRDERRNONPERSIST; 2332 break; 2333 case RERRNONPERSIST: 2334 stp->sd_flag |= STRDERRNONPERSIST; 2335 break; 2336 } 2337 switch (sop->so_erropt & WERRMASK) { 2338 case WERRNORM: 2339 stp->sd_flag &= ~STWRERRNONPERSIST; 2340 break; 2341 case WERRNONPERSIST: 2342 stp->sd_flag |= STWRERRNONPERSIST; 2343 break; 2344 } 2345 } 2346 if (sop->so_flags & SO_COPYOPT) { 2347 if (sop->so_copyopt & ZCVMSAFE) { 2348 stp->sd_copyflag |= STZCVMSAFE; 2349 stp->sd_copyflag &= ~STZCVMUNSAFE; 2350 } else if (sop->so_copyopt & ZCVMUNSAFE) { 2351 stp->sd_copyflag |= STZCVMUNSAFE; 2352 stp->sd_copyflag &= ~STZCVMSAFE; 2353 } 2354 2355 if (sop->so_copyopt & COPYCACHED) { 2356 stp->sd_copyflag |= STRCOPYCACHED; 2357 } 2358 } 2359 if (sop->so_flags & SO_WROFF) 2360 stp->sd_wroff = sop->so_wroff; 2361 if (sop->so_flags & SO_TAIL) 2362 stp->sd_tail = sop->so_tail; 2363 if (sop->so_flags & SO_MINPSZ) 2364 q->q_minpsz = sop->so_minpsz; 2365 if (sop->so_flags & SO_MAXPSZ) 2366 q->q_maxpsz = sop->so_maxpsz; 2367 if (sop->so_flags & SO_MAXBLK) 2368 stp->sd_maxblk = sop->so_maxblk; 2369 if (sop->so_flags & SO_HIWAT) { 2370 if (sop->so_flags & SO_BAND) { 2371 if (strqset(q, QHIWAT, 2372 sop->so_band, sop->so_hiwat)) { 2373 cmn_err(CE_WARN, "strrput: could not " 2374 "allocate qband\n"); 2375 } else { 2376 bpri = sop->so_band; 2377 } 2378 } else { 2379 q->q_hiwat = sop->so_hiwat; 2380 } 2381 } 2382 if (sop->so_flags & SO_LOWAT) { 2383 if (sop->so_flags & SO_BAND) { 2384 if (strqset(q, QLOWAT, 2385 sop->so_band, sop->so_lowat)) { 2386 cmn_err(CE_WARN, "strrput: could not " 2387 "allocate qband\n"); 2388 } else { 2389 bpri = sop->so_band; 2390 } 2391 } else { 2392 q->q_lowat = sop->so_lowat; 2393 } 2394 } 2395 if (sop->so_flags & SO_MREADON) 2396 stp->sd_flag |= SNDMREAD; 2397 if (sop->so_flags & SO_MREADOFF) 2398 stp->sd_flag &= ~SNDMREAD; 2399 if (sop->so_flags & SO_NDELON) 2400 stp->sd_flag |= OLDNDELAY; 2401 if (sop->so_flags & SO_NDELOFF) 2402 stp->sd_flag &= ~OLDNDELAY; 2403 if (sop->so_flags & SO_ISTTY) 2404 stp->sd_flag |= STRISTTY; 2405 if (sop->so_flags & SO_ISNTTY) 2406 stp->sd_flag &= ~STRISTTY; 2407 if (sop->so_flags & SO_TOSTOP) 2408 stp->sd_flag |= STRTOSTOP; 2409 if (sop->so_flags & SO_TONSTOP) 2410 stp->sd_flag &= ~STRTOSTOP; 2411 if (sop->so_flags & SO_DELIM) 2412 stp->sd_flag |= STRDELIM; 2413 if (sop->so_flags & SO_NODELIM) 2414 stp->sd_flag &= ~STRDELIM; 2415 2416 mutex_exit(&stp->sd_lock); 2417 freemsg(bp); 2418 2419 /* Check backenable in case the water marks changed */ 2420 qbackenable(q, bpri); 2421 return (0); 2422 2423 /* 2424 * The following set of cases deal with situations where two stream 2425 * heads are connected to each other (twisted streams). These messages 2426 * have no meaning at the stream head. 2427 */ 2428 case M_BREAK: 2429 case M_CTL: 2430 case M_DELAY: 2431 case M_START: 2432 case M_STOP: 2433 case M_IOCDATA: 2434 case M_STARTI: 2435 case M_STOPI: 2436 freemsg(bp); 2437 return (0); 2438 2439 case M_IOCTL: 2440 /* 2441 * Always NAK this condition 2442 * (makes no sense) 2443 * If there is one or more threads in the read side 2444 * rwnext we have to defer the nacking until that thread 2445 * returns (in strget). 2446 */ 2447 mutex_enter(&stp->sd_lock); 2448 if (stp->sd_struiodnak != 0) { 2449 /* 2450 * Defer NAK to the streamhead. Queue at the end 2451 * the list. 2452 */ 2453 mblk_t *mp = stp->sd_struionak; 2454 2455 while (mp && mp->b_next) 2456 mp = mp->b_next; 2457 if (mp) 2458 mp->b_next = bp; 2459 else 2460 stp->sd_struionak = bp; 2461 bp->b_next = NULL; 2462 mutex_exit(&stp->sd_lock); 2463 return (0); 2464 } 2465 mutex_exit(&stp->sd_lock); 2466 2467 bp->b_datap->db_type = M_IOCNAK; 2468 /* 2469 * Protect against the driver passing up 2470 * messages after it has done a qprocsoff. 2471 */ 2472 if (_OTHERQ(q)->q_next == NULL) 2473 freemsg(bp); 2474 else 2475 qreply(q, bp); 2476 return (0); 2477 2478 default: 2479 #ifdef DEBUG 2480 cmn_err(CE_WARN, 2481 "bad message type %x received at stream head\n", 2482 bp->b_datap->db_type); 2483 #endif 2484 freemsg(bp); 2485 return (0); 2486 } 2487 2488 /* NOTREACHED */ 2489 } 2490 2491 /* 2492 * Check if the stream pointed to by `stp' can be written to, and return an 2493 * error code if not. If `eiohup' is set, then return EIO if STRHUP is set. 2494 * If `sigpipeok' is set and the SW_SIGPIPE option is enabled on the stream, 2495 * then always return EPIPE and send a SIGPIPE to the invoking thread. 2496 */ 2497 static int 2498 strwriteable(struct stdata *stp, boolean_t eiohup, boolean_t sigpipeok) 2499 { 2500 int error; 2501 2502 ASSERT(MUTEX_HELD(&stp->sd_lock)); 2503 2504 /* 2505 * For modem support, POSIX states that on writes, EIO should 2506 * be returned if the stream has been hung up. 2507 */ 2508 if (eiohup && (stp->sd_flag & (STPLEX|STRHUP)) == STRHUP) 2509 error = EIO; 2510 else 2511 error = strgeterr(stp, STRHUP|STPLEX|STWRERR, 0); 2512 2513 if (error != 0) { 2514 if (!(stp->sd_flag & STPLEX) && 2515 (stp->sd_wput_opt & SW_SIGPIPE) && sigpipeok) { 2516 tsignal(curthread, SIGPIPE); 2517 error = EPIPE; 2518 } 2519 } 2520 2521 return (error); 2522 } 2523 2524 /* 2525 * Copyin and send data down a stream. 2526 * The caller will allocate and copyin any control part that precedes the 2527 * message and pass that in as mctl. 2528 * 2529 * Caller should *not* hold sd_lock. 2530 * When EWOULDBLOCK is returned the caller has to redo the canputnext 2531 * under sd_lock in order to avoid missing a backenabling wakeup. 2532 * 2533 * Use iosize = -1 to not send any M_DATA. iosize = 0 sends zero-length M_DATA. 2534 * 2535 * Set MSG_IGNFLOW in flags to ignore flow control for hipri messages. 2536 * For sync streams we can only ignore flow control by reverting to using 2537 * putnext. 2538 * 2539 * If sd_maxblk is less than *iosize this routine might return without 2540 * transferring all of *iosize. In all cases, on return *iosize will contain 2541 * the amount of data that was transferred. 2542 */ 2543 static int 2544 strput(struct stdata *stp, mblk_t *mctl, struct uio *uiop, ssize_t *iosize, 2545 int b_flag, int pri, int flags) 2546 { 2547 struiod_t uiod; 2548 mblk_t *mp; 2549 queue_t *wqp = stp->sd_wrq; 2550 int error = 0; 2551 ssize_t count = *iosize; 2552 2553 ASSERT(MUTEX_NOT_HELD(&stp->sd_lock)); 2554 2555 if (uiop != NULL && count >= 0) 2556 flags |= stp->sd_struiowrq ? STRUIO_POSTPONE : 0; 2557 2558 if (!(flags & STRUIO_POSTPONE)) { 2559 /* 2560 * Use regular canputnext, strmakedata, putnext sequence. 2561 */ 2562 if (pri == 0) { 2563 if (!canputnext(wqp) && !(flags & MSG_IGNFLOW)) { 2564 freemsg(mctl); 2565 return (EWOULDBLOCK); 2566 } 2567 } else { 2568 if (!(flags & MSG_IGNFLOW) && !bcanputnext(wqp, pri)) { 2569 freemsg(mctl); 2570 return (EWOULDBLOCK); 2571 } 2572 } 2573 2574 if ((error = strmakedata(iosize, uiop, stp, flags, 2575 &mp)) != 0) { 2576 freemsg(mctl); 2577 /* 2578 * need to change return code to ENOMEM 2579 * so that this is not confused with 2580 * flow control, EAGAIN. 2581 */ 2582 2583 if (error == EAGAIN) 2584 return (ENOMEM); 2585 else 2586 return (error); 2587 } 2588 if (mctl != NULL) { 2589 if (mctl->b_cont == NULL) 2590 mctl->b_cont = mp; 2591 else if (mp != NULL) 2592 linkb(mctl, mp); 2593 mp = mctl; 2594 } else if (mp == NULL) 2595 return (0); 2596 2597 mp->b_flag |= b_flag; 2598 mp->b_band = (uchar_t)pri; 2599 2600 if (flags & MSG_IGNFLOW) { 2601 /* 2602 * XXX Hack: Don't get stuck running service 2603 * procedures. This is needed for sockfs when 2604 * sending the unbind message out of the rput 2605 * procedure - we don't want a put procedure 2606 * to run service procedures. 2607 */ 2608 putnext(wqp, mp); 2609 } else { 2610 stream_willservice(stp); 2611 putnext(wqp, mp); 2612 stream_runservice(stp); 2613 } 2614 return (0); 2615 } 2616 /* 2617 * Stream supports rwnext() for the write side. 2618 */ 2619 if ((error = strmakedata(iosize, uiop, stp, flags, &mp)) != 0) { 2620 freemsg(mctl); 2621 /* 2622 * map EAGAIN to ENOMEM since EAGAIN means "flow controlled". 2623 */ 2624 return (error == EAGAIN ? ENOMEM : error); 2625 } 2626 if (mctl != NULL) { 2627 if (mctl->b_cont == NULL) 2628 mctl->b_cont = mp; 2629 else if (mp != NULL) 2630 linkb(mctl, mp); 2631 mp = mctl; 2632 } else if (mp == NULL) { 2633 return (0); 2634 } 2635 2636 mp->b_flag |= b_flag; 2637 mp->b_band = (uchar_t)pri; 2638 2639 (void) uiodup(uiop, &uiod.d_uio, uiod.d_iov, 2640 sizeof (uiod.d_iov) / sizeof (*uiod.d_iov)); 2641 uiod.d_uio.uio_offset = 0; 2642 uiod.d_mp = mp; 2643 error = rwnext(wqp, &uiod); 2644 if (! uiod.d_mp) { 2645 uioskip(uiop, *iosize); 2646 return (error); 2647 } 2648 ASSERT(mp == uiod.d_mp); 2649 if (error == EINVAL) { 2650 /* 2651 * The stream plumbing must have changed while 2652 * we were away, so just turn off rwnext()s. 2653 */ 2654 error = 0; 2655 } else if (error == EBUSY || error == EWOULDBLOCK) { 2656 /* 2657 * Couldn't enter a perimeter or took a page fault, 2658 * so fall-back to putnext(). 2659 */ 2660 error = 0; 2661 } else { 2662 freemsg(mp); 2663 return (error); 2664 } 2665 /* Have to check canput before consuming data from the uio */ 2666 if (pri == 0) { 2667 if (!canputnext(wqp) && !(flags & MSG_IGNFLOW)) { 2668 freemsg(mp); 2669 return (EWOULDBLOCK); 2670 } 2671 } else { 2672 if (!bcanputnext(wqp, pri) && !(flags & MSG_IGNFLOW)) { 2673 freemsg(mp); 2674 return (EWOULDBLOCK); 2675 } 2676 } 2677 ASSERT(mp == uiod.d_mp); 2678 /* Copyin data from the uio */ 2679 if ((error = struioget(wqp, mp, &uiod, 0)) != 0) { 2680 freemsg(mp); 2681 return (error); 2682 } 2683 uioskip(uiop, *iosize); 2684 if (flags & MSG_IGNFLOW) { 2685 /* 2686 * XXX Hack: Don't get stuck running service procedures. 2687 * This is needed for sockfs when sending the unbind message 2688 * out of the rput procedure - we don't want a put procedure 2689 * to run service procedures. 2690 */ 2691 putnext(wqp, mp); 2692 } else { 2693 stream_willservice(stp); 2694 putnext(wqp, mp); 2695 stream_runservice(stp); 2696 } 2697 return (0); 2698 } 2699 2700 /* 2701 * Write attempts to break the write request into messages conforming 2702 * with the minimum and maximum packet sizes set downstream. 2703 * 2704 * Write will not block if downstream queue is full and 2705 * O_NDELAY is set, otherwise it will block waiting for the queue to get room. 2706 * 2707 * A write of zero bytes gets packaged into a zero length message and sent 2708 * downstream like any other message. 2709 * 2710 * If buffers of the requested sizes are not available, the write will 2711 * sleep until the buffers become available. 2712 * 2713 * Write (if specified) will supply a write offset in a message if it 2714 * makes sense. This can be specified by downstream modules as part of 2715 * a M_SETOPTS message. Write will not supply the write offset if it 2716 * cannot supply any data in a buffer. In other words, write will never 2717 * send down an empty packet due to a write offset. 2718 */ 2719 /* ARGSUSED2 */ 2720 int 2721 strwrite(struct vnode *vp, struct uio *uiop, cred_t *crp) 2722 { 2723 return (strwrite_common(vp, uiop, crp, 0)); 2724 } 2725 2726 /* ARGSUSED2 */ 2727 int 2728 strwrite_common(struct vnode *vp, struct uio *uiop, cred_t *crp, int wflag) 2729 { 2730 struct stdata *stp; 2731 struct queue *wqp; 2732 ssize_t rmin, rmax; 2733 ssize_t iosize; 2734 int waitflag; 2735 int tempmode; 2736 int error = 0; 2737 int b_flag; 2738 2739 ASSERT(vp->v_stream); 2740 stp = vp->v_stream; 2741 2742 mutex_enter(&stp->sd_lock); 2743 2744 if ((error = i_straccess(stp, JCWRITE)) != 0) { 2745 mutex_exit(&stp->sd_lock); 2746 return (error); 2747 } 2748 2749 if (stp->sd_flag & (STWRERR|STRHUP|STPLEX)) { 2750 error = strwriteable(stp, B_TRUE, B_TRUE); 2751 if (error != 0) { 2752 mutex_exit(&stp->sd_lock); 2753 return (error); 2754 } 2755 } 2756 2757 mutex_exit(&stp->sd_lock); 2758 2759 wqp = stp->sd_wrq; 2760 2761 /* get these values from them cached in the stream head */ 2762 rmin = stp->sd_qn_minpsz; 2763 rmax = stp->sd_qn_maxpsz; 2764 2765 /* 2766 * Check the min/max packet size constraints. If min packet size 2767 * is non-zero, the write cannot be split into multiple messages 2768 * and still guarantee the size constraints. 2769 */ 2770 TRACE_1(TR_FAC_STREAMS_FR, TR_STRWRITE_IN, "strwrite in:q %p", wqp); 2771 2772 ASSERT((rmax >= 0) || (rmax == INFPSZ)); 2773 if (rmax == 0) { 2774 return (0); 2775 } 2776 if (rmin > 0) { 2777 if (uiop->uio_resid < rmin) { 2778 TRACE_3(TR_FAC_STREAMS_FR, TR_STRWRITE_OUT, 2779 "strwrite out:q %p out %d error %d", 2780 wqp, 0, ERANGE); 2781 return (ERANGE); 2782 } 2783 if ((rmax != INFPSZ) && (uiop->uio_resid > rmax)) { 2784 TRACE_3(TR_FAC_STREAMS_FR, TR_STRWRITE_OUT, 2785 "strwrite out:q %p out %d error %d", 2786 wqp, 1, ERANGE); 2787 return (ERANGE); 2788 } 2789 } 2790 2791 /* 2792 * Do until count satisfied or error. 2793 */ 2794 waitflag = WRITEWAIT | wflag; 2795 if (stp->sd_flag & OLDNDELAY) 2796 tempmode = uiop->uio_fmode & ~FNDELAY; 2797 else 2798 tempmode = uiop->uio_fmode; 2799 2800 if (rmax == INFPSZ) 2801 rmax = uiop->uio_resid; 2802 2803 /* 2804 * Note that tempmode does not get used in strput/strmakedata 2805 * but only in strwaitq. The other routines use uio_fmode 2806 * unmodified. 2807 */ 2808 2809 /* LINTED: constant in conditional context */ 2810 while (1) { /* breaks when uio_resid reaches zero */ 2811 /* 2812 * Determine the size of the next message to be 2813 * packaged. May have to break write into several 2814 * messages based on max packet size. 2815 */ 2816 iosize = MIN(uiop->uio_resid, rmax); 2817 2818 /* 2819 * Put block downstream when flow control allows it. 2820 */ 2821 if ((stp->sd_flag & STRDELIM) && (uiop->uio_resid == iosize)) 2822 b_flag = MSGDELIM; 2823 else 2824 b_flag = 0; 2825 2826 for (;;) { 2827 int done = 0; 2828 2829 error = strput(stp, NULL, uiop, &iosize, b_flag, 0, 0); 2830 if (error == 0) 2831 break; 2832 if (error != EWOULDBLOCK) 2833 goto out; 2834 2835 mutex_enter(&stp->sd_lock); 2836 /* 2837 * Check for a missed wakeup. 2838 * Needed since strput did not hold sd_lock across 2839 * the canputnext. 2840 */ 2841 if (canputnext(wqp)) { 2842 /* Try again */ 2843 mutex_exit(&stp->sd_lock); 2844 continue; 2845 } 2846 TRACE_1(TR_FAC_STREAMS_FR, TR_STRWRITE_WAIT, 2847 "strwrite wait:q %p wait", wqp); 2848 if ((error = strwaitq(stp, waitflag, (ssize_t)0, 2849 tempmode, -1, &done)) != 0 || done) { 2850 mutex_exit(&stp->sd_lock); 2851 if ((vp->v_type == VFIFO) && 2852 (uiop->uio_fmode & FNDELAY) && 2853 (error == EAGAIN)) 2854 error = 0; 2855 goto out; 2856 } 2857 TRACE_1(TR_FAC_STREAMS_FR, TR_STRWRITE_WAKE, 2858 "strwrite wake:q %p awakes", wqp); 2859 if ((error = i_straccess(stp, JCWRITE)) != 0) { 2860 mutex_exit(&stp->sd_lock); 2861 goto out; 2862 } 2863 mutex_exit(&stp->sd_lock); 2864 } 2865 waitflag |= NOINTR; 2866 TRACE_2(TR_FAC_STREAMS_FR, TR_STRWRITE_RESID, 2867 "strwrite resid:q %p uiop %p", wqp, uiop); 2868 if (uiop->uio_resid) { 2869 /* Recheck for errors - needed for sockets */ 2870 if ((stp->sd_wput_opt & SW_RECHECK_ERR) && 2871 (stp->sd_flag & (STWRERR|STRHUP|STPLEX))) { 2872 mutex_enter(&stp->sd_lock); 2873 error = strwriteable(stp, B_FALSE, B_TRUE); 2874 mutex_exit(&stp->sd_lock); 2875 if (error != 0) 2876 return (error); 2877 } 2878 continue; 2879 } 2880 break; 2881 } 2882 out: 2883 /* 2884 * For historical reasons, applications expect EAGAIN when a data 2885 * mblk_t cannot be allocated, so change ENOMEM back to EAGAIN. 2886 */ 2887 if (error == ENOMEM) 2888 error = EAGAIN; 2889 TRACE_3(TR_FAC_STREAMS_FR, TR_STRWRITE_OUT, 2890 "strwrite out:q %p out %d error %d", wqp, 2, error); 2891 return (error); 2892 } 2893 2894 /* 2895 * Stream head write service routine. 2896 * Its job is to wake up any sleeping writers when a queue 2897 * downstream needs data (part of the flow control in putq and getq). 2898 * It also must wake anyone sleeping on a poll(). 2899 * For stream head right below mux module, it must also invoke put procedure 2900 * of next downstream module. 2901 */ 2902 int 2903 strwsrv(queue_t *q) 2904 { 2905 struct stdata *stp; 2906 queue_t *tq; 2907 qband_t *qbp; 2908 int i; 2909 qband_t *myqbp; 2910 int isevent; 2911 unsigned char qbf[NBAND]; /* band flushing backenable flags */ 2912 2913 TRACE_1(TR_FAC_STREAMS_FR, 2914 TR_STRWSRV, "strwsrv:q %p", q); 2915 stp = (struct stdata *)q->q_ptr; 2916 ASSERT(qclaimed(q)); 2917 mutex_enter(&stp->sd_lock); 2918 ASSERT(!(stp->sd_flag & STPLEX)); 2919 2920 if (stp->sd_flag & WSLEEP) { 2921 stp->sd_flag &= ~WSLEEP; 2922 cv_broadcast(&q->q_wait); 2923 } 2924 mutex_exit(&stp->sd_lock); 2925 2926 /* The other end of a stream pipe went away. */ 2927 if ((tq = q->q_next) == NULL) { 2928 return (0); 2929 } 2930 2931 /* Find the next module forward that has a service procedure */ 2932 claimstr(q); 2933 tq = q->q_nfsrv; 2934 ASSERT(tq != NULL); 2935 2936 if ((q->q_flag & QBACK)) { 2937 if ((tq->q_flag & QFULL)) { 2938 mutex_enter(QLOCK(tq)); 2939 if (!(tq->q_flag & QFULL)) { 2940 mutex_exit(QLOCK(tq)); 2941 goto wakeup; 2942 } 2943 /* 2944 * The queue must have become full again. Set QWANTW 2945 * again so strwsrv will be back enabled when 2946 * the queue becomes non-full next time. 2947 */ 2948 tq->q_flag |= QWANTW; 2949 mutex_exit(QLOCK(tq)); 2950 } else { 2951 wakeup: 2952 pollwakeup(&stp->sd_pollist, POLLWRNORM); 2953 mutex_enter(&stp->sd_lock); 2954 if (stp->sd_sigflags & S_WRNORM) 2955 strsendsig(stp->sd_siglist, S_WRNORM, 0, 0); 2956 mutex_exit(&stp->sd_lock); 2957 } 2958 } 2959 2960 isevent = 0; 2961 i = 1; 2962 bzero((caddr_t)qbf, NBAND); 2963 mutex_enter(QLOCK(tq)); 2964 if ((myqbp = q->q_bandp) != NULL) 2965 for (qbp = tq->q_bandp; qbp && myqbp; qbp = qbp->qb_next) { 2966 ASSERT(myqbp); 2967 if ((myqbp->qb_flag & QB_BACK)) { 2968 if (qbp->qb_flag & QB_FULL) { 2969 /* 2970 * The band must have become full again. 2971 * Set QB_WANTW again so strwsrv will 2972 * be back enabled when the band becomes 2973 * non-full next time. 2974 */ 2975 qbp->qb_flag |= QB_WANTW; 2976 } else { 2977 isevent = 1; 2978 qbf[i] = 1; 2979 } 2980 } 2981 myqbp = myqbp->qb_next; 2982 i++; 2983 } 2984 mutex_exit(QLOCK(tq)); 2985 2986 if (isevent) { 2987 for (i = tq->q_nband; i; i--) { 2988 if (qbf[i]) { 2989 pollwakeup(&stp->sd_pollist, POLLWRBAND); 2990 mutex_enter(&stp->sd_lock); 2991 if (stp->sd_sigflags & S_WRBAND) 2992 strsendsig(stp->sd_siglist, S_WRBAND, 2993 (uchar_t)i, 0); 2994 mutex_exit(&stp->sd_lock); 2995 } 2996 } 2997 } 2998 2999 releasestr(q); 3000 return (0); 3001 } 3002 3003 /* 3004 * Special case of strcopyin/strcopyout for copying 3005 * struct strioctl that can deal with both data 3006 * models. 3007 */ 3008 3009 #ifdef _LP64 3010 3011 static int 3012 strcopyin_strioctl(void *from, void *to, int flag, int copyflag) 3013 { 3014 struct strioctl32 strioc32; 3015 struct strioctl *striocp; 3016 3017 if (copyflag & U_TO_K) { 3018 ASSERT((copyflag & K_TO_K) == 0); 3019 3020 if ((flag & FMODELS) == DATAMODEL_ILP32) { 3021 if (copyin(from, &strioc32, sizeof (strioc32))) 3022 return (EFAULT); 3023 3024 striocp = (struct strioctl *)to; 3025 striocp->ic_cmd = strioc32.ic_cmd; 3026 striocp->ic_timout = strioc32.ic_timout; 3027 striocp->ic_len = strioc32.ic_len; 3028 striocp->ic_dp = (char *)(uintptr_t)strioc32.ic_dp; 3029 3030 } else { /* NATIVE data model */ 3031 if (copyin(from, to, sizeof (struct strioctl))) { 3032 return (EFAULT); 3033 } else { 3034 return (0); 3035 } 3036 } 3037 } else { 3038 ASSERT(copyflag & K_TO_K); 3039 bcopy(from, to, sizeof (struct strioctl)); 3040 } 3041 return (0); 3042 } 3043 3044 static int 3045 strcopyout_strioctl(void *from, void *to, int flag, int copyflag) 3046 { 3047 struct strioctl32 strioc32; 3048 struct strioctl *striocp; 3049 3050 if (copyflag & U_TO_K) { 3051 ASSERT((copyflag & K_TO_K) == 0); 3052 3053 if ((flag & FMODELS) == DATAMODEL_ILP32) { 3054 striocp = (struct strioctl *)from; 3055 strioc32.ic_cmd = striocp->ic_cmd; 3056 strioc32.ic_timout = striocp->ic_timout; 3057 strioc32.ic_len = striocp->ic_len; 3058 strioc32.ic_dp = (caddr32_t)(uintptr_t)striocp->ic_dp; 3059 ASSERT((char *)(uintptr_t)strioc32.ic_dp == 3060 striocp->ic_dp); 3061 3062 if (copyout(&strioc32, to, sizeof (strioc32))) 3063 return (EFAULT); 3064 3065 } else { /* NATIVE data model */ 3066 if (copyout(from, to, sizeof (struct strioctl))) { 3067 return (EFAULT); 3068 } else { 3069 return (0); 3070 } 3071 } 3072 } else { 3073 ASSERT(copyflag & K_TO_K); 3074 bcopy(from, to, sizeof (struct strioctl)); 3075 } 3076 return (0); 3077 } 3078 3079 #else /* ! _LP64 */ 3080 3081 /* ARGSUSED2 */ 3082 static int 3083 strcopyin_strioctl(void *from, void *to, int flag, int copyflag) 3084 { 3085 return (strcopyin(from, to, sizeof (struct strioctl), copyflag)); 3086 } 3087 3088 /* ARGSUSED2 */ 3089 static int 3090 strcopyout_strioctl(void *from, void *to, int flag, int copyflag) 3091 { 3092 return (strcopyout(from, to, sizeof (struct strioctl), copyflag)); 3093 } 3094 3095 #endif /* _LP64 */ 3096 3097 /* 3098 * Determine type of job control semantics expected by user. The 3099 * possibilities are: 3100 * JCREAD - Behaves like read() on fd; send SIGTTIN 3101 * JCWRITE - Behaves like write() on fd; send SIGTTOU if TOSTOP set 3102 * JCSETP - Sets a value in the stream; send SIGTTOU, ignore TOSTOP 3103 * JCGETP - Gets a value in the stream; no signals. 3104 * See straccess in strsubr.c for usage of these values. 3105 * 3106 * This routine also returns -1 for I_STR as a special case; the 3107 * caller must call again with the real ioctl number for 3108 * classification. 3109 */ 3110 static int 3111 job_control_type(int cmd) 3112 { 3113 switch (cmd) { 3114 case I_STR: 3115 return (-1); 3116 3117 case I_RECVFD: 3118 case I_E_RECVFD: 3119 return (JCREAD); 3120 3121 case I_FDINSERT: 3122 case I_SENDFD: 3123 return (JCWRITE); 3124 3125 case TCSETA: 3126 case TCSETAW: 3127 case TCSETAF: 3128 case TCSBRK: 3129 case TCXONC: 3130 case TCFLSH: 3131 case TCDSET: /* Obsolete */ 3132 case TIOCSWINSZ: 3133 case TCSETS: 3134 case TCSETSW: 3135 case TCSETSF: 3136 case TIOCSETD: 3137 case TIOCHPCL: 3138 case TIOCSETP: 3139 case TIOCSETN: 3140 case TIOCEXCL: 3141 case TIOCNXCL: 3142 case TIOCFLUSH: 3143 case TIOCSETC: 3144 case TIOCLBIS: 3145 case TIOCLBIC: 3146 case TIOCLSET: 3147 case TIOCSBRK: 3148 case TIOCCBRK: 3149 case TIOCSDTR: 3150 case TIOCCDTR: 3151 case TIOCSLTC: 3152 case TIOCSTOP: 3153 case TIOCSTART: 3154 case TIOCSTI: 3155 case TIOCSPGRP: 3156 case TIOCMSET: 3157 case TIOCMBIS: 3158 case TIOCMBIC: 3159 case TIOCREMOTE: 3160 case TIOCSIGNAL: 3161 case LDSETT: 3162 case LDSMAP: /* Obsolete */ 3163 case DIOCSETP: 3164 case I_FLUSH: 3165 case I_SRDOPT: 3166 case I_SETSIG: 3167 case I_SWROPT: 3168 case I_FLUSHBAND: 3169 case I_SETCLTIME: 3170 case I_SERROPT: 3171 case I_ESETSIG: 3172 case FIONBIO: 3173 case FIOASYNC: 3174 case FIOSETOWN: 3175 case JBOOT: /* Obsolete */ 3176 case JTERM: /* Obsolete */ 3177 case JTIMOM: /* Obsolete */ 3178 case JZOMBOOT: /* Obsolete */ 3179 case JAGENT: /* Obsolete */ 3180 case JTRUN: /* Obsolete */ 3181 case JXTPROTO: /* Obsolete */ 3182 return (JCSETP); 3183 } 3184 3185 return (JCGETP); 3186 } 3187 3188 /* 3189 * ioctl for streams 3190 */ 3191 int 3192 strioctl(struct vnode *vp, int cmd, intptr_t arg, int flag, int copyflag, 3193 cred_t *crp, int *rvalp) 3194 { 3195 struct stdata *stp; 3196 struct strcmd *scp; 3197 struct strioctl strioc; 3198 struct uio uio; 3199 struct iovec iov; 3200 int access; 3201 mblk_t *mp; 3202 int error = 0; 3203 int done = 0; 3204 ssize_t rmin, rmax; 3205 queue_t *wrq; 3206 queue_t *rdq; 3207 boolean_t kioctl = B_FALSE; 3208 uint32_t auditing = AU_AUDITING(); 3209 3210 if (flag & FKIOCTL) { 3211 copyflag = K_TO_K; 3212 kioctl = B_TRUE; 3213 } 3214 ASSERT(vp->v_stream); 3215 ASSERT(copyflag == U_TO_K || copyflag == K_TO_K); 3216 stp = vp->v_stream; 3217 3218 TRACE_3(TR_FAC_STREAMS_FR, TR_IOCTL_ENTER, 3219 "strioctl:stp %p cmd %X arg %lX", stp, cmd, arg); 3220 3221 /* 3222 * If the copy is kernel to kernel, make sure that the FNATIVE 3223 * flag is set. After this it would be a serious error to have 3224 * no model flag. 3225 */ 3226 if (copyflag == K_TO_K) 3227 flag = (flag & ~FMODELS) | FNATIVE; 3228 3229 ASSERT((flag & FMODELS) != 0); 3230 3231 wrq = stp->sd_wrq; 3232 rdq = _RD(wrq); 3233 3234 access = job_control_type(cmd); 3235 3236 /* We should never see these here, should be handled by iwscn */ 3237 if (cmd == SRIOCSREDIR || cmd == SRIOCISREDIR) 3238 return (EINVAL); 3239 3240 mutex_enter(&stp->sd_lock); 3241 if ((access != -1) && ((error = i_straccess(stp, access)) != 0)) { 3242 mutex_exit(&stp->sd_lock); 3243 return (error); 3244 } 3245 mutex_exit(&stp->sd_lock); 3246 3247 /* 3248 * Check for sgttyb-related ioctls first, and complain as 3249 * necessary. 3250 */ 3251 switch (cmd) { 3252 case TIOCGETP: 3253 case TIOCSETP: 3254 case TIOCSETN: 3255 if (sgttyb_handling >= 2 && !sgttyb_complaint) { 3256 sgttyb_complaint = B_TRUE; 3257 cmn_err(CE_NOTE, 3258 "application used obsolete TIOC[GS]ET"); 3259 } 3260 if (sgttyb_handling >= 3) { 3261 tsignal(curthread, SIGSYS); 3262 return (EIO); 3263 } 3264 break; 3265 } 3266 3267 mutex_enter(&stp->sd_lock); 3268 3269 switch (cmd) { 3270 case I_RECVFD: 3271 case I_E_RECVFD: 3272 case I_PEEK: 3273 case I_NREAD: 3274 case FIONREAD: 3275 case FIORDCHK: 3276 case I_ATMARK: 3277 case FIONBIO: 3278 case FIOASYNC: 3279 if (stp->sd_flag & (STRDERR|STPLEX)) { 3280 error = strgeterr(stp, STRDERR|STPLEX, 0); 3281 if (error != 0) { 3282 mutex_exit(&stp->sd_lock); 3283 return (error); 3284 } 3285 } 3286 break; 3287 3288 default: 3289 if (stp->sd_flag & (STRDERR|STWRERR|STPLEX)) { 3290 error = strgeterr(stp, STRDERR|STWRERR|STPLEX, 0); 3291 if (error != 0) { 3292 mutex_exit(&stp->sd_lock); 3293 return (error); 3294 } 3295 } 3296 } 3297 3298 mutex_exit(&stp->sd_lock); 3299 3300 switch (cmd) { 3301 default: 3302 /* 3303 * The stream head has hardcoded knowledge of a 3304 * miscellaneous collection of terminal-, keyboard- and 3305 * mouse-related ioctls, enumerated below. This hardcoded 3306 * knowledge allows the stream head to automatically 3307 * convert transparent ioctl requests made by userland 3308 * programs into I_STR ioctls which many old STREAMS 3309 * modules and drivers require. 3310 * 3311 * No new ioctls should ever be added to this list. 3312 * Instead, the STREAMS module or driver should be written 3313 * to either handle transparent ioctls or require any 3314 * userland programs to use I_STR ioctls (by returning 3315 * EINVAL to any transparent ioctl requests). 3316 * 3317 * More importantly, removing ioctls from this list should 3318 * be done with the utmost care, since our STREAMS modules 3319 * and drivers *count* on the stream head performing this 3320 * conversion, and thus may panic while processing 3321 * transparent ioctl request for one of these ioctls (keep 3322 * in mind that third party modules and drivers may have 3323 * similar problems). 3324 */ 3325 if (((cmd & IOCTYPE) == LDIOC) || 3326 ((cmd & IOCTYPE) == tIOC) || 3327 ((cmd & IOCTYPE) == TIOC) || 3328 ((cmd & IOCTYPE) == KIOC) || 3329 ((cmd & IOCTYPE) == MSIOC) || 3330 ((cmd & IOCTYPE) == VUIOC)) { 3331 /* 3332 * The ioctl is a tty ioctl - set up strioc buffer 3333 * and call strdoioctl() to do the work. 3334 */ 3335 if (stp->sd_flag & STRHUP) 3336 return (ENXIO); 3337 strioc.ic_cmd = cmd; 3338 strioc.ic_timout = INFTIM; 3339 3340 switch (cmd) { 3341 3342 case TCXONC: 3343 case TCSBRK: 3344 case TCFLSH: 3345 case TCDSET: 3346 { 3347 int native_arg = (int)arg; 3348 strioc.ic_len = sizeof (int); 3349 strioc.ic_dp = (char *)&native_arg; 3350 return (strdoioctl(stp, &strioc, flag, 3351 K_TO_K, crp, rvalp)); 3352 } 3353 3354 case TCSETA: 3355 case TCSETAW: 3356 case TCSETAF: 3357 strioc.ic_len = sizeof (struct termio); 3358 strioc.ic_dp = (char *)arg; 3359 return (strdoioctl(stp, &strioc, flag, 3360 copyflag, crp, rvalp)); 3361 3362 case TCSETS: 3363 case TCSETSW: 3364 case TCSETSF: 3365 strioc.ic_len = sizeof (struct termios); 3366 strioc.ic_dp = (char *)arg; 3367 return (strdoioctl(stp, &strioc, flag, 3368 copyflag, crp, rvalp)); 3369 3370 case LDSETT: 3371 strioc.ic_len = sizeof (struct termcb); 3372 strioc.ic_dp = (char *)arg; 3373 return (strdoioctl(stp, &strioc, flag, 3374 copyflag, crp, rvalp)); 3375 3376 case TIOCSETP: 3377 strioc.ic_len = sizeof (struct sgttyb); 3378 strioc.ic_dp = (char *)arg; 3379 return (strdoioctl(stp, &strioc, flag, 3380 copyflag, crp, rvalp)); 3381 3382 case TIOCSTI: 3383 if ((flag & FREAD) == 0 && 3384 secpolicy_sti(crp) != 0) { 3385 return (EPERM); 3386 } 3387 mutex_enter(&stp->sd_lock); 3388 mutex_enter(&curproc->p_splock); 3389 if (stp->sd_sidp != curproc->p_sessp->s_sidp && 3390 secpolicy_sti(crp) != 0) { 3391 mutex_exit(&curproc->p_splock); 3392 mutex_exit(&stp->sd_lock); 3393 return (EACCES); 3394 } 3395 mutex_exit(&curproc->p_splock); 3396 mutex_exit(&stp->sd_lock); 3397 3398 strioc.ic_len = sizeof (char); 3399 strioc.ic_dp = (char *)arg; 3400 return (strdoioctl(stp, &strioc, flag, 3401 copyflag, crp, rvalp)); 3402 3403 case TIOCSWINSZ: 3404 strioc.ic_len = sizeof (struct winsize); 3405 strioc.ic_dp = (char *)arg; 3406 return (strdoioctl(stp, &strioc, flag, 3407 copyflag, crp, rvalp)); 3408 3409 case TIOCSSIZE: 3410 strioc.ic_len = sizeof (struct ttysize); 3411 strioc.ic_dp = (char *)arg; 3412 return (strdoioctl(stp, &strioc, flag, 3413 copyflag, crp, rvalp)); 3414 3415 case TIOCSSOFTCAR: 3416 case KIOCTRANS: 3417 case KIOCTRANSABLE: 3418 case KIOCCMD: 3419 case KIOCSDIRECT: 3420 case KIOCSCOMPAT: 3421 case KIOCSKABORTEN: 3422 case KIOCSRPTCOUNT: 3423 case KIOCSRPTDELAY: 3424 case KIOCSRPTRATE: 3425 case VUIDSFORMAT: 3426 case TIOCSPPS: 3427 strioc.ic_len = sizeof (int); 3428 strioc.ic_dp = (char *)arg; 3429 return (strdoioctl(stp, &strioc, flag, 3430 copyflag, crp, rvalp)); 3431 3432 case KIOCSETKEY: 3433 case KIOCGETKEY: 3434 strioc.ic_len = sizeof (struct kiockey); 3435 strioc.ic_dp = (char *)arg; 3436 return (strdoioctl(stp, &strioc, flag, 3437 copyflag, crp, rvalp)); 3438 3439 case KIOCSKEY: 3440 case KIOCGKEY: 3441 strioc.ic_len = sizeof (struct kiockeymap); 3442 strioc.ic_dp = (char *)arg; 3443 return (strdoioctl(stp, &strioc, flag, 3444 copyflag, crp, rvalp)); 3445 3446 case KIOCSLED: 3447 /* arg is a pointer to char */ 3448 strioc.ic_len = sizeof (char); 3449 strioc.ic_dp = (char *)arg; 3450 return (strdoioctl(stp, &strioc, flag, 3451 copyflag, crp, rvalp)); 3452 3453 case MSIOSETPARMS: 3454 strioc.ic_len = sizeof (Ms_parms); 3455 strioc.ic_dp = (char *)arg; 3456 return (strdoioctl(stp, &strioc, flag, 3457 copyflag, crp, rvalp)); 3458 3459 case VUIDSADDR: 3460 case VUIDGADDR: 3461 strioc.ic_len = sizeof (struct vuid_addr_probe); 3462 strioc.ic_dp = (char *)arg; 3463 return (strdoioctl(stp, &strioc, flag, 3464 copyflag, crp, rvalp)); 3465 3466 /* 3467 * These M_IOCTL's don't require any data to be sent 3468 * downstream, and the driver will allocate and link 3469 * on its own mblk_t upon M_IOCACK -- thus we set 3470 * ic_len to zero and set ic_dp to arg so we know 3471 * where to copyout to later. 3472 */ 3473 case TIOCGSOFTCAR: 3474 case TIOCGWINSZ: 3475 case TIOCGSIZE: 3476 case KIOCGTRANS: 3477 case KIOCGTRANSABLE: 3478 case KIOCTYPE: 3479 case KIOCGDIRECT: 3480 case KIOCGCOMPAT: 3481 case KIOCLAYOUT: 3482 case KIOCGLED: 3483 case MSIOGETPARMS: 3484 case MSIOBUTTONS: 3485 case VUIDGFORMAT: 3486 case TIOCGPPS: 3487 case TIOCGPPSEV: 3488 case TCGETA: 3489 case TCGETS: 3490 case LDGETT: 3491 case TIOCGETP: 3492 case KIOCGRPTCOUNT: 3493 case KIOCGRPTDELAY: 3494 case KIOCGRPTRATE: 3495 strioc.ic_len = 0; 3496 strioc.ic_dp = (char *)arg; 3497 return (strdoioctl(stp, &strioc, flag, 3498 copyflag, crp, rvalp)); 3499 } 3500 } 3501 3502 /* 3503 * Unknown cmd - send it down as a transparent ioctl. 3504 */ 3505 strioc.ic_cmd = cmd; 3506 strioc.ic_timout = INFTIM; 3507 strioc.ic_len = TRANSPARENT; 3508 strioc.ic_dp = (char *)&arg; 3509 3510 return (strdoioctl(stp, &strioc, flag, copyflag, crp, rvalp)); 3511 3512 case I_STR: 3513 /* 3514 * Stream ioctl. Read in an strioctl buffer from the user 3515 * along with any data specified and send it downstream. 3516 * Strdoioctl will wait allow only one ioctl message at 3517 * a time, and waits for the acknowledgement. 3518 */ 3519 3520 if (stp->sd_flag & STRHUP) 3521 return (ENXIO); 3522 3523 error = strcopyin_strioctl((void *)arg, &strioc, flag, 3524 copyflag); 3525 if (error != 0) 3526 return (error); 3527 3528 if ((strioc.ic_len < 0) || (strioc.ic_timout < -1)) 3529 return (EINVAL); 3530 3531 access = job_control_type(strioc.ic_cmd); 3532 mutex_enter(&stp->sd_lock); 3533 if ((access != -1) && 3534 ((error = i_straccess(stp, access)) != 0)) { 3535 mutex_exit(&stp->sd_lock); 3536 return (error); 3537 } 3538 mutex_exit(&stp->sd_lock); 3539 3540 /* 3541 * The I_STR facility provides a trap door for malicious 3542 * code to send down bogus streamio(7I) ioctl commands to 3543 * unsuspecting STREAMS modules and drivers which expect to 3544 * only get these messages from the stream head. 3545 * Explicitly prohibit any streamio ioctls which can be 3546 * passed downstream by the stream head. Note that we do 3547 * not block all streamio ioctls because the ioctl 3548 * numberspace is not well managed and thus it's possible 3549 * that a module or driver's ioctl numbers may accidentally 3550 * collide with them. 3551 */ 3552 switch (strioc.ic_cmd) { 3553 case I_LINK: 3554 case I_PLINK: 3555 case I_UNLINK: 3556 case I_PUNLINK: 3557 case _I_GETPEERCRED: 3558 case _I_PLINK_LH: 3559 return (EINVAL); 3560 } 3561 3562 error = strdoioctl(stp, &strioc, flag, copyflag, crp, rvalp); 3563 if (error == 0) { 3564 error = strcopyout_strioctl(&strioc, (void *)arg, 3565 flag, copyflag); 3566 } 3567 return (error); 3568 3569 case _I_CMD: 3570 /* 3571 * Like I_STR, but without using M_IOC* messages and without 3572 * copyins/copyouts beyond the passed-in argument. 3573 */ 3574 if (stp->sd_flag & STRHUP) 3575 return (ENXIO); 3576 3577 if ((scp = kmem_alloc(sizeof (strcmd_t), KM_NOSLEEP)) == NULL) 3578 return (ENOMEM); 3579 3580 if (copyin((void *)arg, scp, sizeof (strcmd_t))) { 3581 kmem_free(scp, sizeof (strcmd_t)); 3582 return (EFAULT); 3583 } 3584 3585 access = job_control_type(scp->sc_cmd); 3586 mutex_enter(&stp->sd_lock); 3587 if (access != -1 && (error = i_straccess(stp, access)) != 0) { 3588 mutex_exit(&stp->sd_lock); 3589 kmem_free(scp, sizeof (strcmd_t)); 3590 return (error); 3591 } 3592 mutex_exit(&stp->sd_lock); 3593 3594 *rvalp = 0; 3595 if ((error = strdocmd(stp, scp, crp)) == 0) { 3596 if (copyout(scp, (void *)arg, sizeof (strcmd_t))) 3597 error = EFAULT; 3598 } 3599 kmem_free(scp, sizeof (strcmd_t)); 3600 return (error); 3601 3602 case I_NREAD: 3603 /* 3604 * Return number of bytes of data in first message 3605 * in queue in "arg" and return the number of messages 3606 * in queue in return value. 3607 */ 3608 { 3609 size_t size; 3610 int retval; 3611 int count = 0; 3612 3613 mutex_enter(QLOCK(rdq)); 3614 3615 size = msgdsize(rdq->q_first); 3616 for (mp = rdq->q_first; mp != NULL; mp = mp->b_next) 3617 count++; 3618 3619 mutex_exit(QLOCK(rdq)); 3620 if (stp->sd_struiordq) { 3621 infod_t infod; 3622 3623 infod.d_cmd = INFOD_COUNT; 3624 infod.d_count = 0; 3625 if (count == 0) { 3626 infod.d_cmd |= INFOD_FIRSTBYTES; 3627 infod.d_bytes = 0; 3628 } 3629 infod.d_res = 0; 3630 (void) infonext(rdq, &infod); 3631 count += infod.d_count; 3632 if (infod.d_res & INFOD_FIRSTBYTES) 3633 size = infod.d_bytes; 3634 } 3635 3636 /* 3637 * Drop down from size_t to the "int" required by the 3638 * interface. Cap at INT_MAX. 3639 */ 3640 retval = MIN(size, INT_MAX); 3641 error = strcopyout(&retval, (void *)arg, sizeof (retval), 3642 copyflag); 3643 if (!error) 3644 *rvalp = count; 3645 return (error); 3646 } 3647 3648 case FIONREAD: 3649 /* 3650 * Return number of bytes of data in all data messages 3651 * in queue in "arg". 3652 */ 3653 { 3654 size_t size = 0; 3655 int retval; 3656 3657 mutex_enter(QLOCK(rdq)); 3658 for (mp = rdq->q_first; mp != NULL; mp = mp->b_next) 3659 size += msgdsize(mp); 3660 mutex_exit(QLOCK(rdq)); 3661 3662 if (stp->sd_struiordq) { 3663 infod_t infod; 3664 3665 infod.d_cmd = INFOD_BYTES; 3666 infod.d_res = 0; 3667 infod.d_bytes = 0; 3668 (void) infonext(rdq, &infod); 3669 size += infod.d_bytes; 3670 } 3671 3672 /* 3673 * Drop down from size_t to the "int" required by the 3674 * interface. Cap at INT_MAX. 3675 */ 3676 retval = MIN(size, INT_MAX); 3677 error = strcopyout(&retval, (void *)arg, sizeof (retval), 3678 copyflag); 3679 3680 *rvalp = 0; 3681 return (error); 3682 } 3683 case FIORDCHK: 3684 /* 3685 * FIORDCHK does not use arg value (like FIONREAD), 3686 * instead a count is returned. I_NREAD value may 3687 * not be accurate but safe. The real thing to do is 3688 * to add the msgdsizes of all data messages until 3689 * a non-data message. 3690 */ 3691 { 3692 size_t size = 0; 3693 3694 mutex_enter(QLOCK(rdq)); 3695 for (mp = rdq->q_first; mp != NULL; mp = mp->b_next) 3696 size += msgdsize(mp); 3697 mutex_exit(QLOCK(rdq)); 3698 3699 if (stp->sd_struiordq) { 3700 infod_t infod; 3701 3702 infod.d_cmd = INFOD_BYTES; 3703 infod.d_res = 0; 3704 infod.d_bytes = 0; 3705 (void) infonext(rdq, &infod); 3706 size += infod.d_bytes; 3707 } 3708 3709 /* 3710 * Since ioctl returns an int, and memory sizes under 3711 * LP64 may not fit, we return INT_MAX if the count was 3712 * actually greater. 3713 */ 3714 *rvalp = MIN(size, INT_MAX); 3715 return (0); 3716 } 3717 3718 case I_FIND: 3719 /* 3720 * Get module name. 3721 */ 3722 { 3723 char mname[FMNAMESZ + 1]; 3724 queue_t *q; 3725 3726 error = (copyflag & U_TO_K ? copyinstr : copystr)((void *)arg, 3727 mname, FMNAMESZ + 1, NULL); 3728 if (error) 3729 return ((error == ENAMETOOLONG) ? EINVAL : EFAULT); 3730 3731 /* 3732 * Return EINVAL if we're handed a bogus module name. 3733 */ 3734 if (fmodsw_find(mname, FMODSW_LOAD) == NULL) { 3735 TRACE_0(TR_FAC_STREAMS_FR, 3736 TR_I_CANT_FIND, "couldn't I_FIND"); 3737 return (EINVAL); 3738 } 3739 3740 *rvalp = 0; 3741 3742 /* Look downstream to see if module is there. */ 3743 claimstr(stp->sd_wrq); 3744 for (q = stp->sd_wrq->q_next; q; q = q->q_next) { 3745 if (q->q_flag & QREADR) { 3746 q = NULL; 3747 break; 3748 } 3749 if (strcmp(mname, Q2NAME(q)) == 0) 3750 break; 3751 } 3752 releasestr(stp->sd_wrq); 3753 3754 *rvalp = (q ? 1 : 0); 3755 return (error); 3756 } 3757 3758 case I_PUSH: 3759 case __I_PUSH_NOCTTY: 3760 /* 3761 * Push a module. 3762 * For the case __I_PUSH_NOCTTY push a module but 3763 * do not allocate controlling tty. See bugid 4025044 3764 */ 3765 3766 { 3767 char mname[FMNAMESZ + 1]; 3768 fmodsw_impl_t *fp; 3769 dev_t dummydev; 3770 3771 if (stp->sd_flag & STRHUP) 3772 return (ENXIO); 3773 3774 /* 3775 * Get module name and look up in fmodsw. 3776 */ 3777 error = (copyflag & U_TO_K ? copyinstr : copystr)((void *)arg, 3778 mname, FMNAMESZ + 1, NULL); 3779 if (error) 3780 return ((error == ENAMETOOLONG) ? EINVAL : EFAULT); 3781 3782 if ((fp = fmodsw_find(mname, FMODSW_HOLD | FMODSW_LOAD)) == 3783 NULL) 3784 return (EINVAL); 3785 3786 TRACE_2(TR_FAC_STREAMS_FR, TR_I_PUSH, 3787 "I_PUSH:fp %p stp %p", fp, stp); 3788 3789 /* 3790 * If the module is flagged as single-instance, then check 3791 * to see if the module is already pushed. If it is, return 3792 * as if the push was successful. 3793 */ 3794 if (fp->f_qflag & _QSINGLE_INSTANCE) { 3795 queue_t *q; 3796 3797 claimstr(stp->sd_wrq); 3798 for (q = stp->sd_wrq->q_next; q; q = q->q_next) { 3799 if (q->q_flag & QREADR) { 3800 q = NULL; 3801 break; 3802 } 3803 if (strcmp(mname, Q2NAME(q)) == 0) 3804 break; 3805 } 3806 releasestr(stp->sd_wrq); 3807 if (q != NULL) { 3808 fmodsw_rele(fp); 3809 return (0); 3810 } 3811 } 3812 3813 if (error = strstartplumb(stp, flag, cmd)) { 3814 fmodsw_rele(fp); 3815 return (error); 3816 } 3817 3818 /* 3819 * See if any more modules can be pushed on this stream. 3820 * Note that this check must be done after strstartplumb() 3821 * since otherwise multiple threads issuing I_PUSHes on 3822 * the same stream will be able to exceed nstrpush. 3823 */ 3824 mutex_enter(&stp->sd_lock); 3825 if (stp->sd_pushcnt >= nstrpush) { 3826 fmodsw_rele(fp); 3827 strendplumb(stp); 3828 mutex_exit(&stp->sd_lock); 3829 return (EINVAL); 3830 } 3831 mutex_exit(&stp->sd_lock); 3832 3833 /* 3834 * Push new module and call its open routine 3835 * via qattach(). Modules don't change device 3836 * numbers, so just ignore dummydev here. 3837 */ 3838 dummydev = vp->v_rdev; 3839 if ((error = qattach(rdq, &dummydev, 0, crp, fp, 3840 B_FALSE)) == 0) { 3841 if (vp->v_type == VCHR && /* sorry, no pipes allowed */ 3842 (cmd == I_PUSH) && (stp->sd_flag & STRISTTY)) { 3843 /* 3844 * try to allocate it as a controlling terminal 3845 */ 3846 (void) strctty(stp); 3847 } 3848 } 3849 3850 mutex_enter(&stp->sd_lock); 3851 3852 /* 3853 * As a performance concern we are caching the values of 3854 * q_minpsz and q_maxpsz of the module below the stream 3855 * head in the stream head. 3856 */ 3857 mutex_enter(QLOCK(stp->sd_wrq->q_next)); 3858 rmin = stp->sd_wrq->q_next->q_minpsz; 3859 rmax = stp->sd_wrq->q_next->q_maxpsz; 3860 mutex_exit(QLOCK(stp->sd_wrq->q_next)); 3861 3862 /* Do this processing here as a performance concern */ 3863 if (strmsgsz != 0) { 3864 if (rmax == INFPSZ) 3865 rmax = strmsgsz; 3866 else { 3867 if (vp->v_type == VFIFO) 3868 rmax = MIN(PIPE_BUF, rmax); 3869 else rmax = MIN(strmsgsz, rmax); 3870 } 3871 } 3872 3873 mutex_enter(QLOCK(wrq)); 3874 stp->sd_qn_minpsz = rmin; 3875 stp->sd_qn_maxpsz = rmax; 3876 mutex_exit(QLOCK(wrq)); 3877 3878 strendplumb(stp); 3879 mutex_exit(&stp->sd_lock); 3880 return (error); 3881 } 3882 3883 case I_POP: 3884 { 3885 queue_t *q; 3886 3887 if (stp->sd_flag & STRHUP) 3888 return (ENXIO); 3889 if (!wrq->q_next) /* for broken pipes */ 3890 return (EINVAL); 3891 3892 if (error = strstartplumb(stp, flag, cmd)) 3893 return (error); 3894 3895 /* 3896 * If there is an anchor on this stream and popping 3897 * the current module would attempt to pop through the 3898 * anchor, then disallow the pop unless we have sufficient 3899 * privileges; take the cheapest (non-locking) check 3900 * first. 3901 */ 3902 if (secpolicy_ip_config(crp, B_TRUE) != 0 || 3903 (stp->sd_anchorzone != crgetzoneid(crp))) { 3904 mutex_enter(&stp->sd_lock); 3905 /* 3906 * Anchors only apply if there's at least one 3907 * module on the stream (sd_pushcnt > 0). 3908 */ 3909 if (stp->sd_pushcnt > 0 && 3910 stp->sd_pushcnt == stp->sd_anchor && 3911 stp->sd_vnode->v_type != VFIFO) { 3912 strendplumb(stp); 3913 mutex_exit(&stp->sd_lock); 3914 if (stp->sd_anchorzone != crgetzoneid(crp)) 3915 return (EINVAL); 3916 /* Audit and report error */ 3917 return (secpolicy_ip_config(crp, B_FALSE)); 3918 } 3919 mutex_exit(&stp->sd_lock); 3920 } 3921 3922 q = wrq->q_next; 3923 TRACE_2(TR_FAC_STREAMS_FR, TR_I_POP, 3924 "I_POP:%p from %p", q, stp); 3925 if (q->q_next == NULL || (q->q_flag & (QREADR|QISDRV))) { 3926 error = EINVAL; 3927 } else { 3928 qdetach(_RD(q), 1, flag, crp, B_FALSE); 3929 error = 0; 3930 } 3931 mutex_enter(&stp->sd_lock); 3932 3933 /* 3934 * As a performance concern we are caching the values of 3935 * q_minpsz and q_maxpsz of the module below the stream 3936 * head in the stream head. 3937 */ 3938 mutex_enter(QLOCK(wrq->q_next)); 3939 rmin = wrq->q_next->q_minpsz; 3940 rmax = wrq->q_next->q_maxpsz; 3941 mutex_exit(QLOCK(wrq->q_next)); 3942 3943 /* Do this processing here as a performance concern */ 3944 if (strmsgsz != 0) { 3945 if (rmax == INFPSZ) 3946 rmax = strmsgsz; 3947 else { 3948 if (vp->v_type == VFIFO) 3949 rmax = MIN(PIPE_BUF, rmax); 3950 else rmax = MIN(strmsgsz, rmax); 3951 } 3952 } 3953 3954 mutex_enter(QLOCK(wrq)); 3955 stp->sd_qn_minpsz = rmin; 3956 stp->sd_qn_maxpsz = rmax; 3957 mutex_exit(QLOCK(wrq)); 3958 3959 /* If we popped through the anchor, then reset the anchor. */ 3960 if (stp->sd_pushcnt < stp->sd_anchor) { 3961 stp->sd_anchor = 0; 3962 stp->sd_anchorzone = 0; 3963 } 3964 strendplumb(stp); 3965 mutex_exit(&stp->sd_lock); 3966 return (error); 3967 } 3968 3969 case _I_MUXID2FD: 3970 { 3971 /* 3972 * Create a fd for a I_PLINK'ed lower stream with a given 3973 * muxid. With the fd, application can send down ioctls, 3974 * like I_LIST, to the previously I_PLINK'ed stream. Note 3975 * that after getting the fd, the application has to do an 3976 * I_PUNLINK on the muxid before it can do any operation 3977 * on the lower stream. This is required by spec1170. 3978 * 3979 * The fd used to do this ioctl should point to the same 3980 * controlling device used to do the I_PLINK. If it uses 3981 * a different stream or an invalid muxid, I_MUXID2FD will 3982 * fail. The error code is set to EINVAL. 3983 * 3984 * The intended use of this interface is the following. 3985 * An application I_PLINK'ed a stream and exits. The fd 3986 * to the lower stream is gone. Another application 3987 * wants to get a fd to the lower stream, it uses I_MUXID2FD. 3988 */ 3989 int muxid = (int)arg; 3990 int fd; 3991 linkinfo_t *linkp; 3992 struct file *fp; 3993 netstack_t *ns; 3994 str_stack_t *ss; 3995 3996 /* 3997 * Do not allow the wildcard muxid. This ioctl is not 3998 * intended to find arbitrary link. 3999 */ 4000 if (muxid == 0) { 4001 return (EINVAL); 4002 } 4003 4004 ns = netstack_find_by_cred(crp); 4005 ASSERT(ns != NULL); 4006 ss = ns->netstack_str; 4007 ASSERT(ss != NULL); 4008 4009 mutex_enter(&muxifier); 4010 linkp = findlinks(vp->v_stream, muxid, LINKPERSIST, ss); 4011 if (linkp == NULL) { 4012 mutex_exit(&muxifier); 4013 netstack_rele(ss->ss_netstack); 4014 return (EINVAL); 4015 } 4016 4017 if ((fd = ufalloc(0)) == -1) { 4018 mutex_exit(&muxifier); 4019 netstack_rele(ss->ss_netstack); 4020 return (EMFILE); 4021 } 4022 fp = linkp->li_fpdown; 4023 mutex_enter(&fp->f_tlock); 4024 fp->f_count++; 4025 mutex_exit(&fp->f_tlock); 4026 mutex_exit(&muxifier); 4027 setf(fd, fp); 4028 *rvalp = fd; 4029 netstack_rele(ss->ss_netstack); 4030 return (0); 4031 } 4032 4033 case _I_INSERT: 4034 { 4035 /* 4036 * To insert a module to a given position in a stream. 4037 * In the first release, only allow privileged user 4038 * to use this ioctl. Furthermore, the insert is only allowed 4039 * below an anchor if the zoneid is the same as the zoneid 4040 * which created the anchor. 4041 * 4042 * Note that we do not plan to support this ioctl 4043 * on pipes in the first release. We want to learn more 4044 * about the implications of these ioctls before extending 4045 * their support. And we do not think these features are 4046 * valuable for pipes. 4047 */ 4048 STRUCT_DECL(strmodconf, strmodinsert); 4049 char mod_name[FMNAMESZ + 1]; 4050 fmodsw_impl_t *fp; 4051 dev_t dummydev; 4052 queue_t *tmp_wrq; 4053 int pos; 4054 boolean_t is_insert; 4055 4056 STRUCT_INIT(strmodinsert, flag); 4057 if (stp->sd_flag & STRHUP) 4058 return (ENXIO); 4059 if (STRMATED(stp)) 4060 return (EINVAL); 4061 if ((error = secpolicy_net_config(crp, B_FALSE)) != 0) 4062 return (error); 4063 if (stp->sd_anchor != 0 && 4064 stp->sd_anchorzone != crgetzoneid(crp)) 4065 return (EINVAL); 4066 4067 error = strcopyin((void *)arg, STRUCT_BUF(strmodinsert), 4068 STRUCT_SIZE(strmodinsert), copyflag); 4069 if (error) 4070 return (error); 4071 4072 /* 4073 * Get module name and look up in fmodsw. 4074 */ 4075 error = (copyflag & U_TO_K ? copyinstr : 4076 copystr)(STRUCT_FGETP(strmodinsert, mod_name), 4077 mod_name, FMNAMESZ + 1, NULL); 4078 if (error) 4079 return ((error == ENAMETOOLONG) ? EINVAL : EFAULT); 4080 4081 if ((fp = fmodsw_find(mod_name, FMODSW_HOLD | FMODSW_LOAD)) == 4082 NULL) 4083 return (EINVAL); 4084 4085 if (error = strstartplumb(stp, flag, cmd)) { 4086 fmodsw_rele(fp); 4087 return (error); 4088 } 4089 4090 /* 4091 * Is this _I_INSERT just like an I_PUSH? We need to know 4092 * this because we do some optimizations if this is a 4093 * module being pushed. 4094 */ 4095 pos = STRUCT_FGET(strmodinsert, pos); 4096 is_insert = (pos != 0); 4097 4098 /* 4099 * Make sure pos is valid. Even though it is not an I_PUSH, 4100 * we impose the same limit on the number of modules in a 4101 * stream. 4102 */ 4103 mutex_enter(&stp->sd_lock); 4104 if (stp->sd_pushcnt >= nstrpush || pos < 0 || 4105 pos > stp->sd_pushcnt) { 4106 fmodsw_rele(fp); 4107 strendplumb(stp); 4108 mutex_exit(&stp->sd_lock); 4109 return (EINVAL); 4110 } 4111 if (stp->sd_anchor != 0) { 4112 /* 4113 * Is this insert below the anchor? 4114 * Pushcnt hasn't been increased yet hence 4115 * we test for greater than here, and greater or 4116 * equal after qattach. 4117 */ 4118 if (pos > (stp->sd_pushcnt - stp->sd_anchor) && 4119 stp->sd_anchorzone != crgetzoneid(crp)) { 4120 fmodsw_rele(fp); 4121 strendplumb(stp); 4122 mutex_exit(&stp->sd_lock); 4123 return (EPERM); 4124 } 4125 } 4126 4127 mutex_exit(&stp->sd_lock); 4128 4129 /* 4130 * First find the correct position this module to 4131 * be inserted. We don't need to call claimstr() 4132 * as the stream should not be changing at this point. 4133 * 4134 * Insert new module and call its open routine 4135 * via qattach(). Modules don't change device 4136 * numbers, so just ignore dummydev here. 4137 */ 4138 for (tmp_wrq = stp->sd_wrq; pos > 0; 4139 tmp_wrq = tmp_wrq->q_next, pos--) { 4140 ASSERT(SAMESTR(tmp_wrq)); 4141 } 4142 dummydev = vp->v_rdev; 4143 if ((error = qattach(_RD(tmp_wrq), &dummydev, 0, crp, 4144 fp, is_insert)) != 0) { 4145 mutex_enter(&stp->sd_lock); 4146 strendplumb(stp); 4147 mutex_exit(&stp->sd_lock); 4148 return (error); 4149 } 4150 4151 mutex_enter(&stp->sd_lock); 4152 4153 /* 4154 * As a performance concern we are caching the values of 4155 * q_minpsz and q_maxpsz of the module below the stream 4156 * head in the stream head. 4157 */ 4158 if (!is_insert) { 4159 mutex_enter(QLOCK(stp->sd_wrq->q_next)); 4160 rmin = stp->sd_wrq->q_next->q_minpsz; 4161 rmax = stp->sd_wrq->q_next->q_maxpsz; 4162 mutex_exit(QLOCK(stp->sd_wrq->q_next)); 4163 4164 /* Do this processing here as a performance concern */ 4165 if (strmsgsz != 0) { 4166 if (rmax == INFPSZ) { 4167 rmax = strmsgsz; 4168 } else { 4169 rmax = MIN(strmsgsz, rmax); 4170 } 4171 } 4172 4173 mutex_enter(QLOCK(wrq)); 4174 stp->sd_qn_minpsz = rmin; 4175 stp->sd_qn_maxpsz = rmax; 4176 mutex_exit(QLOCK(wrq)); 4177 } 4178 4179 /* 4180 * Need to update the anchor value if this module is 4181 * inserted below the anchor point. 4182 */ 4183 if (stp->sd_anchor != 0) { 4184 pos = STRUCT_FGET(strmodinsert, pos); 4185 if (pos >= (stp->sd_pushcnt - stp->sd_anchor)) 4186 stp->sd_anchor++; 4187 } 4188 4189 strendplumb(stp); 4190 mutex_exit(&stp->sd_lock); 4191 return (0); 4192 } 4193 4194 case _I_REMOVE: 4195 { 4196 /* 4197 * To remove a module with a given name in a stream. The 4198 * caller of this ioctl needs to provide both the name and 4199 * the position of the module to be removed. This eliminates 4200 * the ambiguity of removal if a module is inserted/pushed 4201 * multiple times in a stream. In the first release, only 4202 * allow privileged user to use this ioctl. 4203 * Furthermore, the remove is only allowed 4204 * below an anchor if the zoneid is the same as the zoneid 4205 * which created the anchor. 4206 * 4207 * Note that we do not plan to support this ioctl 4208 * on pipes in the first release. We want to learn more 4209 * about the implications of these ioctls before extending 4210 * their support. And we do not think these features are 4211 * valuable for pipes. 4212 * 4213 * Also note that _I_REMOVE cannot be used to remove a 4214 * driver or the stream head. 4215 */ 4216 STRUCT_DECL(strmodconf, strmodremove); 4217 queue_t *q; 4218 int pos; 4219 char mod_name[FMNAMESZ + 1]; 4220 boolean_t is_remove; 4221 4222 STRUCT_INIT(strmodremove, flag); 4223 if (stp->sd_flag & STRHUP) 4224 return (ENXIO); 4225 if (STRMATED(stp)) 4226 return (EINVAL); 4227 if ((error = secpolicy_net_config(crp, B_FALSE)) != 0) 4228 return (error); 4229 if (stp->sd_anchor != 0 && 4230 stp->sd_anchorzone != crgetzoneid(crp)) 4231 return (EINVAL); 4232 4233 error = strcopyin((void *)arg, STRUCT_BUF(strmodremove), 4234 STRUCT_SIZE(strmodremove), copyflag); 4235 if (error) 4236 return (error); 4237 4238 error = (copyflag & U_TO_K ? copyinstr : 4239 copystr)(STRUCT_FGETP(strmodremove, mod_name), 4240 mod_name, FMNAMESZ + 1, NULL); 4241 if (error) 4242 return ((error == ENAMETOOLONG) ? EINVAL : EFAULT); 4243 4244 if ((error = strstartplumb(stp, flag, cmd)) != 0) 4245 return (error); 4246 4247 /* 4248 * Match the name of given module to the name of module at 4249 * the given position. 4250 */ 4251 pos = STRUCT_FGET(strmodremove, pos); 4252 4253 is_remove = (pos != 0); 4254 for (q = stp->sd_wrq->q_next; SAMESTR(q) && pos > 0; 4255 q = q->q_next, pos--) 4256 ; 4257 if (pos > 0 || !SAMESTR(q) || 4258 strcmp(Q2NAME(q), mod_name) != 0) { 4259 mutex_enter(&stp->sd_lock); 4260 strendplumb(stp); 4261 mutex_exit(&stp->sd_lock); 4262 return (EINVAL); 4263 } 4264 4265 /* 4266 * If the position is at or below an anchor, then the zoneid 4267 * must match the zoneid that created the anchor. 4268 */ 4269 if (stp->sd_anchor != 0) { 4270 pos = STRUCT_FGET(strmodremove, pos); 4271 if (pos >= (stp->sd_pushcnt - stp->sd_anchor) && 4272 stp->sd_anchorzone != crgetzoneid(crp)) { 4273 mutex_enter(&stp->sd_lock); 4274 strendplumb(stp); 4275 mutex_exit(&stp->sd_lock); 4276 return (EPERM); 4277 } 4278 } 4279 4280 4281 ASSERT(!(q->q_flag & QREADR)); 4282 qdetach(_RD(q), 1, flag, crp, is_remove); 4283 4284 mutex_enter(&stp->sd_lock); 4285 4286 /* 4287 * As a performance concern we are caching the values of 4288 * q_minpsz and q_maxpsz of the module below the stream 4289 * head in the stream head. 4290 */ 4291 if (!is_remove) { 4292 mutex_enter(QLOCK(wrq->q_next)); 4293 rmin = wrq->q_next->q_minpsz; 4294 rmax = wrq->q_next->q_maxpsz; 4295 mutex_exit(QLOCK(wrq->q_next)); 4296 4297 /* Do this processing here as a performance concern */ 4298 if (strmsgsz != 0) { 4299 if (rmax == INFPSZ) 4300 rmax = strmsgsz; 4301 else { 4302 if (vp->v_type == VFIFO) 4303 rmax = MIN(PIPE_BUF, rmax); 4304 else rmax = MIN(strmsgsz, rmax); 4305 } 4306 } 4307 4308 mutex_enter(QLOCK(wrq)); 4309 stp->sd_qn_minpsz = rmin; 4310 stp->sd_qn_maxpsz = rmax; 4311 mutex_exit(QLOCK(wrq)); 4312 } 4313 4314 /* 4315 * Need to update the anchor value if this module is removed 4316 * at or below the anchor point. If the removed module is at 4317 * the anchor point, remove the anchor for this stream if 4318 * there is no module above the anchor point. Otherwise, if 4319 * the removed module is below the anchor point, decrement the 4320 * anchor point by 1. 4321 */ 4322 if (stp->sd_anchor != 0) { 4323 pos = STRUCT_FGET(strmodremove, pos); 4324 if (pos == stp->sd_pushcnt - stp->sd_anchor + 1) 4325 stp->sd_anchor = 0; 4326 else if (pos > (stp->sd_pushcnt - stp->sd_anchor + 1)) 4327 stp->sd_anchor--; 4328 } 4329 4330 strendplumb(stp); 4331 mutex_exit(&stp->sd_lock); 4332 return (0); 4333 } 4334 4335 case I_ANCHOR: 4336 /* 4337 * Set the anchor position on the stream to reside at 4338 * the top module (in other words, the top module 4339 * cannot be popped). Anchors with a FIFO make no 4340 * obvious sense, so they're not allowed. 4341 */ 4342 mutex_enter(&stp->sd_lock); 4343 4344 if (stp->sd_vnode->v_type == VFIFO) { 4345 mutex_exit(&stp->sd_lock); 4346 return (EINVAL); 4347 } 4348 /* Only allow the same zoneid to update the anchor */ 4349 if (stp->sd_anchor != 0 && 4350 stp->sd_anchorzone != crgetzoneid(crp)) { 4351 mutex_exit(&stp->sd_lock); 4352 return (EINVAL); 4353 } 4354 stp->sd_anchor = stp->sd_pushcnt; 4355 stp->sd_anchorzone = crgetzoneid(crp); 4356 mutex_exit(&stp->sd_lock); 4357 return (0); 4358 4359 case I_LOOK: 4360 /* 4361 * Get name of first module downstream. 4362 * If no module, return an error. 4363 */ 4364 claimstr(wrq); 4365 if (_SAMESTR(wrq) && wrq->q_next->q_next != NULL) { 4366 char *name = Q2NAME(wrq->q_next); 4367 4368 error = strcopyout(name, (void *)arg, strlen(name) + 1, 4369 copyflag); 4370 releasestr(wrq); 4371 return (error); 4372 } 4373 releasestr(wrq); 4374 return (EINVAL); 4375 4376 case I_LINK: 4377 case I_PLINK: 4378 /* 4379 * Link a multiplexor. 4380 */ 4381 return (mlink(vp, cmd, (int)arg, crp, rvalp, 0)); 4382 4383 case _I_PLINK_LH: 4384 /* 4385 * Link a multiplexor: Call must originate from kernel. 4386 */ 4387 if (kioctl) 4388 return (ldi_mlink_lh(vp, cmd, arg, crp, rvalp)); 4389 4390 return (EINVAL); 4391 case I_UNLINK: 4392 case I_PUNLINK: 4393 /* 4394 * Unlink a multiplexor. 4395 * If arg is -1, unlink all links for which this is the 4396 * controlling stream. Otherwise, arg is an index number 4397 * for a link to be removed. 4398 */ 4399 { 4400 struct linkinfo *linkp; 4401 int native_arg = (int)arg; 4402 int type; 4403 netstack_t *ns; 4404 str_stack_t *ss; 4405 4406 TRACE_1(TR_FAC_STREAMS_FR, 4407 TR_I_UNLINK, "I_UNLINK/I_PUNLINK:%p", stp); 4408 if (vp->v_type == VFIFO) { 4409 return (EINVAL); 4410 } 4411 if (cmd == I_UNLINK) 4412 type = LINKNORMAL; 4413 else /* I_PUNLINK */ 4414 type = LINKPERSIST; 4415 if (native_arg == 0) { 4416 return (EINVAL); 4417 } 4418 ns = netstack_find_by_cred(crp); 4419 ASSERT(ns != NULL); 4420 ss = ns->netstack_str; 4421 ASSERT(ss != NULL); 4422 4423 if (native_arg == MUXID_ALL) 4424 error = munlinkall(stp, type, crp, rvalp, ss); 4425 else { 4426 mutex_enter(&muxifier); 4427 if (!(linkp = findlinks(stp, (int)arg, type, ss))) { 4428 /* invalid user supplied index number */ 4429 mutex_exit(&muxifier); 4430 netstack_rele(ss->ss_netstack); 4431 return (EINVAL); 4432 } 4433 /* munlink drops the muxifier lock */ 4434 error = munlink(stp, linkp, type, crp, rvalp, ss); 4435 } 4436 netstack_rele(ss->ss_netstack); 4437 return (error); 4438 } 4439 4440 case I_FLUSH: 4441 /* 4442 * send a flush message downstream 4443 * flush message can indicate 4444 * FLUSHR - flush read queue 4445 * FLUSHW - flush write queue 4446 * FLUSHRW - flush read/write queue 4447 */ 4448 if (stp->sd_flag & STRHUP) 4449 return (ENXIO); 4450 if (arg & ~FLUSHRW) 4451 return (EINVAL); 4452 4453 for (;;) { 4454 if (putnextctl1(stp->sd_wrq, M_FLUSH, (int)arg)) { 4455 break; 4456 } 4457 if (error = strwaitbuf(1, BPRI_HI)) { 4458 return (error); 4459 } 4460 } 4461 4462 /* 4463 * Send down an unsupported ioctl and wait for the nack 4464 * in order to allow the M_FLUSH to propagate back 4465 * up to the stream head. 4466 * Replaces if (qready()) runqueues(); 4467 */ 4468 strioc.ic_cmd = -1; /* The unsupported ioctl */ 4469 strioc.ic_timout = 0; 4470 strioc.ic_len = 0; 4471 strioc.ic_dp = NULL; 4472 (void) strdoioctl(stp, &strioc, flag, K_TO_K, crp, rvalp); 4473 *rvalp = 0; 4474 return (0); 4475 4476 case I_FLUSHBAND: 4477 { 4478 struct bandinfo binfo; 4479 4480 error = strcopyin((void *)arg, &binfo, sizeof (binfo), 4481 copyflag); 4482 if (error) 4483 return (error); 4484 if (stp->sd_flag & STRHUP) 4485 return (ENXIO); 4486 if (binfo.bi_flag & ~FLUSHRW) 4487 return (EINVAL); 4488 while (!(mp = allocb(2, BPRI_HI))) { 4489 if (error = strwaitbuf(2, BPRI_HI)) 4490 return (error); 4491 } 4492 mp->b_datap->db_type = M_FLUSH; 4493 *mp->b_wptr++ = binfo.bi_flag | FLUSHBAND; 4494 *mp->b_wptr++ = binfo.bi_pri; 4495 putnext(stp->sd_wrq, mp); 4496 /* 4497 * Send down an unsupported ioctl and wait for the nack 4498 * in order to allow the M_FLUSH to propagate back 4499 * up to the stream head. 4500 * Replaces if (qready()) runqueues(); 4501 */ 4502 strioc.ic_cmd = -1; /* The unsupported ioctl */ 4503 strioc.ic_timout = 0; 4504 strioc.ic_len = 0; 4505 strioc.ic_dp = NULL; 4506 (void) strdoioctl(stp, &strioc, flag, K_TO_K, crp, rvalp); 4507 *rvalp = 0; 4508 return (0); 4509 } 4510 4511 case I_SRDOPT: 4512 /* 4513 * Set read options 4514 * 4515 * RNORM - default stream mode 4516 * RMSGN - message no discard 4517 * RMSGD - message discard 4518 * RPROTNORM - fail read with EBADMSG for M_[PC]PROTOs 4519 * RPROTDAT - convert M_[PC]PROTOs to M_DATAs 4520 * RPROTDIS - discard M_[PC]PROTOs and retain M_DATAs 4521 */ 4522 if (arg & ~(RMODEMASK | RPROTMASK)) 4523 return (EINVAL); 4524 4525 if ((arg & (RMSGD|RMSGN)) == (RMSGD|RMSGN)) 4526 return (EINVAL); 4527 4528 mutex_enter(&stp->sd_lock); 4529 switch (arg & RMODEMASK) { 4530 case RNORM: 4531 stp->sd_read_opt &= ~(RD_MSGDIS | RD_MSGNODIS); 4532 break; 4533 case RMSGD: 4534 stp->sd_read_opt = (stp->sd_read_opt & ~RD_MSGNODIS) | 4535 RD_MSGDIS; 4536 break; 4537 case RMSGN: 4538 stp->sd_read_opt = (stp->sd_read_opt & ~RD_MSGDIS) | 4539 RD_MSGNODIS; 4540 break; 4541 } 4542 4543 switch (arg & RPROTMASK) { 4544 case RPROTNORM: 4545 stp->sd_read_opt &= ~(RD_PROTDAT | RD_PROTDIS); 4546 break; 4547 4548 case RPROTDAT: 4549 stp->sd_read_opt = ((stp->sd_read_opt & ~RD_PROTDIS) | 4550 RD_PROTDAT); 4551 break; 4552 4553 case RPROTDIS: 4554 stp->sd_read_opt = ((stp->sd_read_opt & ~RD_PROTDAT) | 4555 RD_PROTDIS); 4556 break; 4557 } 4558 mutex_exit(&stp->sd_lock); 4559 return (0); 4560 4561 case I_GRDOPT: 4562 /* 4563 * Get read option and return the value 4564 * to spot pointed to by arg 4565 */ 4566 { 4567 int rdopt; 4568 4569 rdopt = ((stp->sd_read_opt & RD_MSGDIS) ? RMSGD : 4570 ((stp->sd_read_opt & RD_MSGNODIS) ? RMSGN : RNORM)); 4571 rdopt |= ((stp->sd_read_opt & RD_PROTDAT) ? RPROTDAT : 4572 ((stp->sd_read_opt & RD_PROTDIS) ? RPROTDIS : RPROTNORM)); 4573 4574 return (strcopyout(&rdopt, (void *)arg, sizeof (int), 4575 copyflag)); 4576 } 4577 4578 case I_SERROPT: 4579 /* 4580 * Set error options 4581 * 4582 * RERRNORM - persistent read errors 4583 * RERRNONPERSIST - non-persistent read errors 4584 * WERRNORM - persistent write errors 4585 * WERRNONPERSIST - non-persistent write errors 4586 */ 4587 if (arg & ~(RERRMASK | WERRMASK)) 4588 return (EINVAL); 4589 4590 mutex_enter(&stp->sd_lock); 4591 switch (arg & RERRMASK) { 4592 case RERRNORM: 4593 stp->sd_flag &= ~STRDERRNONPERSIST; 4594 break; 4595 case RERRNONPERSIST: 4596 stp->sd_flag |= STRDERRNONPERSIST; 4597 break; 4598 } 4599 switch (arg & WERRMASK) { 4600 case WERRNORM: 4601 stp->sd_flag &= ~STWRERRNONPERSIST; 4602 break; 4603 case WERRNONPERSIST: 4604 stp->sd_flag |= STWRERRNONPERSIST; 4605 break; 4606 } 4607 mutex_exit(&stp->sd_lock); 4608 return (0); 4609 4610 case I_GERROPT: 4611 /* 4612 * Get error option and return the value 4613 * to spot pointed to by arg 4614 */ 4615 { 4616 int erropt = 0; 4617 4618 erropt |= (stp->sd_flag & STRDERRNONPERSIST) ? RERRNONPERSIST : 4619 RERRNORM; 4620 erropt |= (stp->sd_flag & STWRERRNONPERSIST) ? WERRNONPERSIST : 4621 WERRNORM; 4622 return (strcopyout(&erropt, (void *)arg, sizeof (int), 4623 copyflag)); 4624 } 4625 4626 case I_SETSIG: 4627 /* 4628 * Register the calling proc to receive the SIGPOLL 4629 * signal based on the events given in arg. If 4630 * arg is zero, remove the proc from register list. 4631 */ 4632 { 4633 strsig_t *ssp, *pssp; 4634 struct pid *pidp; 4635 4636 pssp = NULL; 4637 pidp = curproc->p_pidp; 4638 /* 4639 * Hold sd_lock to prevent traversal of sd_siglist while 4640 * it is modified. 4641 */ 4642 mutex_enter(&stp->sd_lock); 4643 for (ssp = stp->sd_siglist; ssp && (ssp->ss_pidp != pidp); 4644 pssp = ssp, ssp = ssp->ss_next) 4645 ; 4646 4647 if (arg) { 4648 if (arg & ~(S_INPUT|S_HIPRI|S_MSG|S_HANGUP|S_ERROR| 4649 S_RDNORM|S_WRNORM|S_RDBAND|S_WRBAND|S_BANDURG)) { 4650 mutex_exit(&stp->sd_lock); 4651 return (EINVAL); 4652 } 4653 if ((arg & S_BANDURG) && !(arg & S_RDBAND)) { 4654 mutex_exit(&stp->sd_lock); 4655 return (EINVAL); 4656 } 4657 4658 /* 4659 * If proc not already registered, add it 4660 * to list. 4661 */ 4662 if (!ssp) { 4663 ssp = kmem_alloc(sizeof (strsig_t), KM_SLEEP); 4664 ssp->ss_pidp = pidp; 4665 ssp->ss_pid = pidp->pid_id; 4666 ssp->ss_next = NULL; 4667 if (pssp) 4668 pssp->ss_next = ssp; 4669 else 4670 stp->sd_siglist = ssp; 4671 mutex_enter(&pidlock); 4672 PID_HOLD(pidp); 4673 mutex_exit(&pidlock); 4674 } 4675 4676 /* 4677 * Set events. 4678 */ 4679 ssp->ss_events = (int)arg; 4680 } else { 4681 /* 4682 * Remove proc from register list. 4683 */ 4684 if (ssp) { 4685 mutex_enter(&pidlock); 4686 PID_RELE(pidp); 4687 mutex_exit(&pidlock); 4688 if (pssp) 4689 pssp->ss_next = ssp->ss_next; 4690 else 4691 stp->sd_siglist = ssp->ss_next; 4692 kmem_free(ssp, sizeof (strsig_t)); 4693 } else { 4694 mutex_exit(&stp->sd_lock); 4695 return (EINVAL); 4696 } 4697 } 4698 4699 /* 4700 * Recalculate OR of sig events. 4701 */ 4702 stp->sd_sigflags = 0; 4703 for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next) 4704 stp->sd_sigflags |= ssp->ss_events; 4705 mutex_exit(&stp->sd_lock); 4706 return (0); 4707 } 4708 4709 case I_GETSIG: 4710 /* 4711 * Return (in arg) the current registration of events 4712 * for which the calling proc is to be signaled. 4713 */ 4714 { 4715 struct strsig *ssp; 4716 struct pid *pidp; 4717 4718 pidp = curproc->p_pidp; 4719 mutex_enter(&stp->sd_lock); 4720 for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next) 4721 if (ssp->ss_pidp == pidp) { 4722 error = strcopyout(&ssp->ss_events, (void *)arg, 4723 sizeof (int), copyflag); 4724 mutex_exit(&stp->sd_lock); 4725 return (error); 4726 } 4727 mutex_exit(&stp->sd_lock); 4728 return (EINVAL); 4729 } 4730 4731 case I_ESETSIG: 4732 /* 4733 * Register the ss_pid to receive the SIGPOLL 4734 * signal based on the events is ss_events arg. If 4735 * ss_events is zero, remove the proc from register list. 4736 */ 4737 { 4738 struct strsig *ssp, *pssp; 4739 struct proc *proc; 4740 struct pid *pidp; 4741 pid_t pid; 4742 struct strsigset ss; 4743 4744 error = strcopyin((void *)arg, &ss, sizeof (ss), copyflag); 4745 if (error) 4746 return (error); 4747 4748 pid = ss.ss_pid; 4749 4750 if (ss.ss_events != 0) { 4751 /* 4752 * Permissions check by sending signal 0. 4753 * Note that when kill fails it does a set_errno 4754 * causing the system call to fail. 4755 */ 4756 error = kill(pid, 0); 4757 if (error) { 4758 return (error); 4759 } 4760 } 4761 mutex_enter(&pidlock); 4762 if (pid == 0) 4763 proc = curproc; 4764 else if (pid < 0) 4765 proc = pgfind(-pid); 4766 else 4767 proc = prfind(pid); 4768 if (proc == NULL) { 4769 mutex_exit(&pidlock); 4770 return (ESRCH); 4771 } 4772 if (pid < 0) 4773 pidp = proc->p_pgidp; 4774 else 4775 pidp = proc->p_pidp; 4776 ASSERT(pidp); 4777 /* 4778 * Get a hold on the pid structure while referencing it. 4779 * There is a separate PID_HOLD should it be inserted 4780 * in the list below. 4781 */ 4782 PID_HOLD(pidp); 4783 mutex_exit(&pidlock); 4784 4785 pssp = NULL; 4786 /* 4787 * Hold sd_lock to prevent traversal of sd_siglist while 4788 * it is modified. 4789 */ 4790 mutex_enter(&stp->sd_lock); 4791 for (ssp = stp->sd_siglist; ssp && (ssp->ss_pid != pid); 4792 pssp = ssp, ssp = ssp->ss_next) 4793 ; 4794 4795 if (ss.ss_events) { 4796 if (ss.ss_events & 4797 ~(S_INPUT|S_HIPRI|S_MSG|S_HANGUP|S_ERROR| 4798 S_RDNORM|S_WRNORM|S_RDBAND|S_WRBAND|S_BANDURG)) { 4799 mutex_exit(&stp->sd_lock); 4800 mutex_enter(&pidlock); 4801 PID_RELE(pidp); 4802 mutex_exit(&pidlock); 4803 return (EINVAL); 4804 } 4805 if ((ss.ss_events & S_BANDURG) && 4806 !(ss.ss_events & S_RDBAND)) { 4807 mutex_exit(&stp->sd_lock); 4808 mutex_enter(&pidlock); 4809 PID_RELE(pidp); 4810 mutex_exit(&pidlock); 4811 return (EINVAL); 4812 } 4813 4814 /* 4815 * If proc not already registered, add it 4816 * to list. 4817 */ 4818 if (!ssp) { 4819 ssp = kmem_alloc(sizeof (strsig_t), KM_SLEEP); 4820 ssp->ss_pidp = pidp; 4821 ssp->ss_pid = pid; 4822 ssp->ss_next = NULL; 4823 if (pssp) 4824 pssp->ss_next = ssp; 4825 else 4826 stp->sd_siglist = ssp; 4827 mutex_enter(&pidlock); 4828 PID_HOLD(pidp); 4829 mutex_exit(&pidlock); 4830 } 4831 4832 /* 4833 * Set events. 4834 */ 4835 ssp->ss_events = ss.ss_events; 4836 } else { 4837 /* 4838 * Remove proc from register list. 4839 */ 4840 if (ssp) { 4841 mutex_enter(&pidlock); 4842 PID_RELE(pidp); 4843 mutex_exit(&pidlock); 4844 if (pssp) 4845 pssp->ss_next = ssp->ss_next; 4846 else 4847 stp->sd_siglist = ssp->ss_next; 4848 kmem_free(ssp, sizeof (strsig_t)); 4849 } else { 4850 mutex_exit(&stp->sd_lock); 4851 mutex_enter(&pidlock); 4852 PID_RELE(pidp); 4853 mutex_exit(&pidlock); 4854 return (EINVAL); 4855 } 4856 } 4857 4858 /* 4859 * Recalculate OR of sig events. 4860 */ 4861 stp->sd_sigflags = 0; 4862 for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next) 4863 stp->sd_sigflags |= ssp->ss_events; 4864 mutex_exit(&stp->sd_lock); 4865 mutex_enter(&pidlock); 4866 PID_RELE(pidp); 4867 mutex_exit(&pidlock); 4868 return (0); 4869 } 4870 4871 case I_EGETSIG: 4872 /* 4873 * Return (in arg) the current registration of events 4874 * for which the calling proc is to be signaled. 4875 */ 4876 { 4877 struct strsig *ssp; 4878 struct proc *proc; 4879 pid_t pid; 4880 struct pid *pidp; 4881 struct strsigset ss; 4882 4883 error = strcopyin((void *)arg, &ss, sizeof (ss), copyflag); 4884 if (error) 4885 return (error); 4886 4887 pid = ss.ss_pid; 4888 mutex_enter(&pidlock); 4889 if (pid == 0) 4890 proc = curproc; 4891 else if (pid < 0) 4892 proc = pgfind(-pid); 4893 else 4894 proc = prfind(pid); 4895 if (proc == NULL) { 4896 mutex_exit(&pidlock); 4897 return (ESRCH); 4898 } 4899 if (pid < 0) 4900 pidp = proc->p_pgidp; 4901 else 4902 pidp = proc->p_pidp; 4903 4904 /* Prevent the pidp from being reassigned */ 4905 PID_HOLD(pidp); 4906 mutex_exit(&pidlock); 4907 4908 mutex_enter(&stp->sd_lock); 4909 for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next) 4910 if (ssp->ss_pid == pid) { 4911 ss.ss_pid = ssp->ss_pid; 4912 ss.ss_events = ssp->ss_events; 4913 error = strcopyout(&ss, (void *)arg, 4914 sizeof (struct strsigset), copyflag); 4915 mutex_exit(&stp->sd_lock); 4916 mutex_enter(&pidlock); 4917 PID_RELE(pidp); 4918 mutex_exit(&pidlock); 4919 return (error); 4920 } 4921 mutex_exit(&stp->sd_lock); 4922 mutex_enter(&pidlock); 4923 PID_RELE(pidp); 4924 mutex_exit(&pidlock); 4925 return (EINVAL); 4926 } 4927 4928 case I_PEEK: 4929 { 4930 STRUCT_DECL(strpeek, strpeek); 4931 size_t n; 4932 mblk_t *fmp, *tmp_mp = NULL; 4933 4934 STRUCT_INIT(strpeek, flag); 4935 4936 error = strcopyin((void *)arg, STRUCT_BUF(strpeek), 4937 STRUCT_SIZE(strpeek), copyflag); 4938 if (error) 4939 return (error); 4940 4941 mutex_enter(QLOCK(rdq)); 4942 /* 4943 * Skip the invalid messages 4944 */ 4945 for (mp = rdq->q_first; mp != NULL; mp = mp->b_next) 4946 if (mp->b_datap->db_type != M_SIG) 4947 break; 4948 4949 /* 4950 * If user has requested to peek at a high priority message 4951 * and first message is not, return 0 4952 */ 4953 if (mp != NULL) { 4954 if ((STRUCT_FGET(strpeek, flags) & RS_HIPRI) && 4955 queclass(mp) == QNORM) { 4956 *rvalp = 0; 4957 mutex_exit(QLOCK(rdq)); 4958 return (0); 4959 } 4960 } else if (stp->sd_struiordq == NULL || 4961 (STRUCT_FGET(strpeek, flags) & RS_HIPRI)) { 4962 /* 4963 * No mblks to look at at the streamhead and 4964 * 1). This isn't a synch stream or 4965 * 2). This is a synch stream but caller wants high 4966 * priority messages which is not supported by 4967 * the synch stream. (it only supports QNORM) 4968 */ 4969 *rvalp = 0; 4970 mutex_exit(QLOCK(rdq)); 4971 return (0); 4972 } 4973 4974 fmp = mp; 4975 4976 if (mp && mp->b_datap->db_type == M_PASSFP) { 4977 mutex_exit(QLOCK(rdq)); 4978 return (EBADMSG); 4979 } 4980 4981 ASSERT(mp == NULL || mp->b_datap->db_type == M_PCPROTO || 4982 mp->b_datap->db_type == M_PROTO || 4983 mp->b_datap->db_type == M_DATA); 4984 4985 if (mp && mp->b_datap->db_type == M_PCPROTO) { 4986 STRUCT_FSET(strpeek, flags, RS_HIPRI); 4987 } else { 4988 STRUCT_FSET(strpeek, flags, 0); 4989 } 4990 4991 4992 if (mp && ((tmp_mp = dupmsg(mp)) == NULL)) { 4993 mutex_exit(QLOCK(rdq)); 4994 return (ENOSR); 4995 } 4996 mutex_exit(QLOCK(rdq)); 4997 4998 /* 4999 * set mp = tmp_mp, so that I_PEEK processing can continue. 5000 * tmp_mp is used to free the dup'd message. 5001 */ 5002 mp = tmp_mp; 5003 5004 uio.uio_fmode = 0; 5005 uio.uio_extflg = UIO_COPY_CACHED; 5006 uio.uio_segflg = (copyflag == U_TO_K) ? UIO_USERSPACE : 5007 UIO_SYSSPACE; 5008 uio.uio_limit = 0; 5009 /* 5010 * First process PROTO blocks, if any. 5011 * If user doesn't want to get ctl info by setting maxlen <= 0, 5012 * then set len to -1/0 and skip control blocks part. 5013 */ 5014 if (STRUCT_FGET(strpeek, ctlbuf.maxlen) < 0) 5015 STRUCT_FSET(strpeek, ctlbuf.len, -1); 5016 else if (STRUCT_FGET(strpeek, ctlbuf.maxlen) == 0) 5017 STRUCT_FSET(strpeek, ctlbuf.len, 0); 5018 else { 5019 int ctl_part = 0; 5020 5021 iov.iov_base = STRUCT_FGETP(strpeek, ctlbuf.buf); 5022 iov.iov_len = STRUCT_FGET(strpeek, ctlbuf.maxlen); 5023 uio.uio_iov = &iov; 5024 uio.uio_resid = iov.iov_len; 5025 uio.uio_loffset = 0; 5026 uio.uio_iovcnt = 1; 5027 while (mp && mp->b_datap->db_type != M_DATA && 5028 uio.uio_resid >= 0) { 5029 ASSERT(STRUCT_FGET(strpeek, flags) == 0 ? 5030 mp->b_datap->db_type == M_PROTO : 5031 mp->b_datap->db_type == M_PCPROTO); 5032 5033 if ((n = MIN(uio.uio_resid, 5034 mp->b_wptr - mp->b_rptr)) != 0 && 5035 (error = uiomove((char *)mp->b_rptr, n, 5036 UIO_READ, &uio)) != 0) { 5037 freemsg(tmp_mp); 5038 return (error); 5039 } 5040 ctl_part = 1; 5041 mp = mp->b_cont; 5042 } 5043 /* No ctl message */ 5044 if (ctl_part == 0) 5045 STRUCT_FSET(strpeek, ctlbuf.len, -1); 5046 else 5047 STRUCT_FSET(strpeek, ctlbuf.len, 5048 STRUCT_FGET(strpeek, ctlbuf.maxlen) - 5049 uio.uio_resid); 5050 } 5051 5052 /* 5053 * Now process DATA blocks, if any. 5054 * If user doesn't want to get data info by setting maxlen <= 0, 5055 * then set len to -1/0 and skip data blocks part. 5056 */ 5057 if (STRUCT_FGET(strpeek, databuf.maxlen) < 0) 5058 STRUCT_FSET(strpeek, databuf.len, -1); 5059 else if (STRUCT_FGET(strpeek, databuf.maxlen) == 0) 5060 STRUCT_FSET(strpeek, databuf.len, 0); 5061 else { 5062 int data_part = 0; 5063 5064 iov.iov_base = STRUCT_FGETP(strpeek, databuf.buf); 5065 iov.iov_len = STRUCT_FGET(strpeek, databuf.maxlen); 5066 uio.uio_iov = &iov; 5067 uio.uio_resid = iov.iov_len; 5068 uio.uio_loffset = 0; 5069 uio.uio_iovcnt = 1; 5070 while (mp && uio.uio_resid) { 5071 if (mp->b_datap->db_type == M_DATA) { 5072 if ((n = MIN(uio.uio_resid, 5073 mp->b_wptr - mp->b_rptr)) != 0 && 5074 (error = uiomove((char *)mp->b_rptr, 5075 n, UIO_READ, &uio)) != 0) { 5076 freemsg(tmp_mp); 5077 return (error); 5078 } 5079 data_part = 1; 5080 } 5081 ASSERT(data_part == 0 || 5082 mp->b_datap->db_type == M_DATA); 5083 mp = mp->b_cont; 5084 } 5085 /* No data message */ 5086 if (data_part == 0) 5087 STRUCT_FSET(strpeek, databuf.len, -1); 5088 else 5089 STRUCT_FSET(strpeek, databuf.len, 5090 STRUCT_FGET(strpeek, databuf.maxlen) - 5091 uio.uio_resid); 5092 } 5093 freemsg(tmp_mp); 5094 5095 /* 5096 * It is a synch stream and user wants to get 5097 * data (maxlen > 0). 5098 * uio setup is done by the codes that process DATA 5099 * blocks above. 5100 */ 5101 if ((fmp == NULL) && STRUCT_FGET(strpeek, databuf.maxlen) > 0) { 5102 infod_t infod; 5103 5104 infod.d_cmd = INFOD_COPYOUT; 5105 infod.d_res = 0; 5106 infod.d_uiop = &uio; 5107 error = infonext(rdq, &infod); 5108 if (error == EINVAL || error == EBUSY) 5109 error = 0; 5110 if (error) 5111 return (error); 5112 STRUCT_FSET(strpeek, databuf.len, STRUCT_FGET(strpeek, 5113 databuf.maxlen) - uio.uio_resid); 5114 if (STRUCT_FGET(strpeek, databuf.len) == 0) { 5115 /* 5116 * No data found by the infonext(). 5117 */ 5118 STRUCT_FSET(strpeek, databuf.len, -1); 5119 } 5120 } 5121 error = strcopyout(STRUCT_BUF(strpeek), (void *)arg, 5122 STRUCT_SIZE(strpeek), copyflag); 5123 if (error) { 5124 return (error); 5125 } 5126 /* 5127 * If there is no message retrieved, set return code to 0 5128 * otherwise, set it to 1. 5129 */ 5130 if (STRUCT_FGET(strpeek, ctlbuf.len) == -1 && 5131 STRUCT_FGET(strpeek, databuf.len) == -1) 5132 *rvalp = 0; 5133 else 5134 *rvalp = 1; 5135 return (0); 5136 } 5137 5138 case I_FDINSERT: 5139 { 5140 STRUCT_DECL(strfdinsert, strfdinsert); 5141 struct file *resftp; 5142 struct stdata *resstp; 5143 t_uscalar_t ival; 5144 ssize_t msgsize; 5145 struct strbuf mctl; 5146 5147 STRUCT_INIT(strfdinsert, flag); 5148 if (stp->sd_flag & STRHUP) 5149 return (ENXIO); 5150 /* 5151 * STRDERR, STWRERR and STPLEX tested above. 5152 */ 5153 error = strcopyin((void *)arg, STRUCT_BUF(strfdinsert), 5154 STRUCT_SIZE(strfdinsert), copyflag); 5155 if (error) 5156 return (error); 5157 5158 if (STRUCT_FGET(strfdinsert, offset) < 0 || 5159 (STRUCT_FGET(strfdinsert, offset) % 5160 sizeof (t_uscalar_t)) != 0) 5161 return (EINVAL); 5162 if ((resftp = getf(STRUCT_FGET(strfdinsert, fildes))) != NULL) { 5163 if ((resstp = resftp->f_vnode->v_stream) == NULL) { 5164 releasef(STRUCT_FGET(strfdinsert, fildes)); 5165 return (EINVAL); 5166 } 5167 } else 5168 return (EINVAL); 5169 5170 mutex_enter(&resstp->sd_lock); 5171 if (resstp->sd_flag & (STRDERR|STWRERR|STRHUP|STPLEX)) { 5172 error = strgeterr(resstp, 5173 STRDERR|STWRERR|STRHUP|STPLEX, 0); 5174 if (error != 0) { 5175 mutex_exit(&resstp->sd_lock); 5176 releasef(STRUCT_FGET(strfdinsert, fildes)); 5177 return (error); 5178 } 5179 } 5180 mutex_exit(&resstp->sd_lock); 5181 5182 #ifdef _ILP32 5183 { 5184 queue_t *q; 5185 queue_t *mate = NULL; 5186 5187 /* get read queue of stream terminus */ 5188 claimstr(resstp->sd_wrq); 5189 for (q = resstp->sd_wrq->q_next; q->q_next != NULL; 5190 q = q->q_next) 5191 if (!STRMATED(resstp) && STREAM(q) != resstp && 5192 mate == NULL) { 5193 ASSERT(q->q_qinfo->qi_srvp); 5194 ASSERT(_OTHERQ(q)->q_qinfo->qi_srvp); 5195 claimstr(q); 5196 mate = q; 5197 } 5198 q = _RD(q); 5199 if (mate) 5200 releasestr(mate); 5201 releasestr(resstp->sd_wrq); 5202 ival = (t_uscalar_t)q; 5203 } 5204 #else 5205 ival = (t_uscalar_t)getminor(resftp->f_vnode->v_rdev); 5206 #endif /* _ILP32 */ 5207 5208 if (STRUCT_FGET(strfdinsert, ctlbuf.len) < 5209 STRUCT_FGET(strfdinsert, offset) + sizeof (t_uscalar_t)) { 5210 releasef(STRUCT_FGET(strfdinsert, fildes)); 5211 return (EINVAL); 5212 } 5213 5214 /* 5215 * Check for legal flag value. 5216 */ 5217 if (STRUCT_FGET(strfdinsert, flags) & ~RS_HIPRI) { 5218 releasef(STRUCT_FGET(strfdinsert, fildes)); 5219 return (EINVAL); 5220 } 5221 5222 /* get these values from those cached in the stream head */ 5223 mutex_enter(QLOCK(stp->sd_wrq)); 5224 rmin = stp->sd_qn_minpsz; 5225 rmax = stp->sd_qn_maxpsz; 5226 mutex_exit(QLOCK(stp->sd_wrq)); 5227 5228 /* 5229 * Make sure ctl and data sizes together fall within 5230 * the limits of the max and min receive packet sizes 5231 * and do not exceed system limit. A negative data 5232 * length means that no data part is to be sent. 5233 */ 5234 ASSERT((rmax >= 0) || (rmax == INFPSZ)); 5235 if (rmax == 0) { 5236 releasef(STRUCT_FGET(strfdinsert, fildes)); 5237 return (ERANGE); 5238 } 5239 if ((msgsize = STRUCT_FGET(strfdinsert, databuf.len)) < 0) 5240 msgsize = 0; 5241 if ((msgsize < rmin) || 5242 ((msgsize > rmax) && (rmax != INFPSZ)) || 5243 (STRUCT_FGET(strfdinsert, ctlbuf.len) > strctlsz)) { 5244 releasef(STRUCT_FGET(strfdinsert, fildes)); 5245 return (ERANGE); 5246 } 5247 5248 mutex_enter(&stp->sd_lock); 5249 while (!(STRUCT_FGET(strfdinsert, flags) & RS_HIPRI) && 5250 !canputnext(stp->sd_wrq)) { 5251 if ((error = strwaitq(stp, WRITEWAIT, (ssize_t)0, 5252 flag, -1, &done)) != 0 || done) { 5253 mutex_exit(&stp->sd_lock); 5254 releasef(STRUCT_FGET(strfdinsert, fildes)); 5255 return (error); 5256 } 5257 if ((error = i_straccess(stp, access)) != 0) { 5258 mutex_exit(&stp->sd_lock); 5259 releasef( 5260 STRUCT_FGET(strfdinsert, fildes)); 5261 return (error); 5262 } 5263 } 5264 mutex_exit(&stp->sd_lock); 5265 5266 /* 5267 * Copy strfdinsert.ctlbuf into native form of 5268 * ctlbuf to pass down into strmakemsg(). 5269 */ 5270 mctl.maxlen = STRUCT_FGET(strfdinsert, ctlbuf.maxlen); 5271 mctl.len = STRUCT_FGET(strfdinsert, ctlbuf.len); 5272 mctl.buf = STRUCT_FGETP(strfdinsert, ctlbuf.buf); 5273 5274 iov.iov_base = STRUCT_FGETP(strfdinsert, databuf.buf); 5275 iov.iov_len = STRUCT_FGET(strfdinsert, databuf.len); 5276 uio.uio_iov = &iov; 5277 uio.uio_iovcnt = 1; 5278 uio.uio_loffset = 0; 5279 uio.uio_segflg = (copyflag == U_TO_K) ? UIO_USERSPACE : 5280 UIO_SYSSPACE; 5281 uio.uio_fmode = 0; 5282 uio.uio_extflg = UIO_COPY_CACHED; 5283 uio.uio_resid = iov.iov_len; 5284 if ((error = strmakemsg(&mctl, 5285 &msgsize, &uio, stp, 5286 STRUCT_FGET(strfdinsert, flags), &mp)) != 0 || !mp) { 5287 STRUCT_FSET(strfdinsert, databuf.len, msgsize); 5288 releasef(STRUCT_FGET(strfdinsert, fildes)); 5289 return (error); 5290 } 5291 5292 STRUCT_FSET(strfdinsert, databuf.len, msgsize); 5293 5294 /* 5295 * Place the possibly reencoded queue pointer 'offset' bytes 5296 * from the start of the control portion of the message. 5297 */ 5298 *((t_uscalar_t *)(mp->b_rptr + 5299 STRUCT_FGET(strfdinsert, offset))) = ival; 5300 5301 /* 5302 * Put message downstream. 5303 */ 5304 stream_willservice(stp); 5305 putnext(stp->sd_wrq, mp); 5306 stream_runservice(stp); 5307 releasef(STRUCT_FGET(strfdinsert, fildes)); 5308 return (error); 5309 } 5310 5311 case I_SENDFD: 5312 { 5313 struct file *fp; 5314 5315 if ((fp = getf((int)arg)) == NULL) 5316 return (EBADF); 5317 error = do_sendfp(stp, fp, crp); 5318 if (auditing) { 5319 audit_fdsend((int)arg, fp, error); 5320 } 5321 releasef((int)arg); 5322 return (error); 5323 } 5324 5325 case I_RECVFD: 5326 case I_E_RECVFD: 5327 { 5328 struct k_strrecvfd *srf; 5329 int i, fd; 5330 5331 mutex_enter(&stp->sd_lock); 5332 while (!(mp = getq(rdq))) { 5333 if (stp->sd_flag & (STRHUP|STREOF)) { 5334 mutex_exit(&stp->sd_lock); 5335 return (ENXIO); 5336 } 5337 if ((error = strwaitq(stp, GETWAIT, (ssize_t)0, 5338 flag, -1, &done)) != 0 || done) { 5339 mutex_exit(&stp->sd_lock); 5340 return (error); 5341 } 5342 if ((error = i_straccess(stp, access)) != 0) { 5343 mutex_exit(&stp->sd_lock); 5344 return (error); 5345 } 5346 } 5347 if (mp->b_datap->db_type != M_PASSFP) { 5348 putback(stp, rdq, mp, mp->b_band); 5349 mutex_exit(&stp->sd_lock); 5350 return (EBADMSG); 5351 } 5352 mutex_exit(&stp->sd_lock); 5353 5354 srf = (struct k_strrecvfd *)mp->b_rptr; 5355 if ((fd = ufalloc(0)) == -1) { 5356 mutex_enter(&stp->sd_lock); 5357 putback(stp, rdq, mp, mp->b_band); 5358 mutex_exit(&stp->sd_lock); 5359 return (EMFILE); 5360 } 5361 if (cmd == I_RECVFD) { 5362 struct o_strrecvfd ostrfd; 5363 5364 /* check to see if uid/gid values are too large. */ 5365 5366 if (srf->uid > (o_uid_t)USHRT_MAX || 5367 srf->gid > (o_gid_t)USHRT_MAX) { 5368 mutex_enter(&stp->sd_lock); 5369 putback(stp, rdq, mp, mp->b_band); 5370 mutex_exit(&stp->sd_lock); 5371 setf(fd, NULL); /* release fd entry */ 5372 return (EOVERFLOW); 5373 } 5374 5375 ostrfd.fd = fd; 5376 ostrfd.uid = (o_uid_t)srf->uid; 5377 ostrfd.gid = (o_gid_t)srf->gid; 5378 5379 /* Null the filler bits */ 5380 for (i = 0; i < 8; i++) 5381 ostrfd.fill[i] = 0; 5382 5383 error = strcopyout(&ostrfd, (void *)arg, 5384 sizeof (struct o_strrecvfd), copyflag); 5385 } else { /* I_E_RECVFD */ 5386 struct strrecvfd strfd; 5387 5388 strfd.fd = fd; 5389 strfd.uid = srf->uid; 5390 strfd.gid = srf->gid; 5391 5392 /* null the filler bits */ 5393 for (i = 0; i < 8; i++) 5394 strfd.fill[i] = 0; 5395 5396 error = strcopyout(&strfd, (void *)arg, 5397 sizeof (struct strrecvfd), copyflag); 5398 } 5399 5400 if (error) { 5401 setf(fd, NULL); /* release fd entry */ 5402 mutex_enter(&stp->sd_lock); 5403 putback(stp, rdq, mp, mp->b_band); 5404 mutex_exit(&stp->sd_lock); 5405 return (error); 5406 } 5407 if (auditing) { 5408 audit_fdrecv(fd, srf->fp); 5409 } 5410 5411 /* 5412 * Always increment f_count since the freemsg() below will 5413 * always call free_passfp() which performs a closef(). 5414 */ 5415 mutex_enter(&srf->fp->f_tlock); 5416 srf->fp->f_count++; 5417 mutex_exit(&srf->fp->f_tlock); 5418 setf(fd, srf->fp); 5419 freemsg(mp); 5420 return (0); 5421 } 5422 5423 case I_SWROPT: 5424 /* 5425 * Set/clear the write options. arg is a bit 5426 * mask with any of the following bits set... 5427 * SNDZERO - send zero length message 5428 * SNDPIPE - send sigpipe to process if 5429 * sd_werror is set and process is 5430 * doing a write or putmsg. 5431 * The new stream head write options should reflect 5432 * what is in arg. 5433 */ 5434 if (arg & ~(SNDZERO|SNDPIPE)) 5435 return (EINVAL); 5436 5437 mutex_enter(&stp->sd_lock); 5438 stp->sd_wput_opt &= ~(SW_SIGPIPE|SW_SNDZERO); 5439 if (arg & SNDZERO) 5440 stp->sd_wput_opt |= SW_SNDZERO; 5441 if (arg & SNDPIPE) 5442 stp->sd_wput_opt |= SW_SIGPIPE; 5443 mutex_exit(&stp->sd_lock); 5444 return (0); 5445 5446 case I_GWROPT: 5447 { 5448 int wropt = 0; 5449 5450 if (stp->sd_wput_opt & SW_SNDZERO) 5451 wropt |= SNDZERO; 5452 if (stp->sd_wput_opt & SW_SIGPIPE) 5453 wropt |= SNDPIPE; 5454 return (strcopyout(&wropt, (void *)arg, sizeof (wropt), 5455 copyflag)); 5456 } 5457 5458 case I_LIST: 5459 /* 5460 * Returns all the modules found on this stream, 5461 * upto the driver. If argument is NULL, return the 5462 * number of modules (including driver). If argument 5463 * is not NULL, copy the names into the structure 5464 * provided. 5465 */ 5466 5467 { 5468 queue_t *q; 5469 char *qname; 5470 int i, nmods; 5471 struct str_mlist *mlist; 5472 STRUCT_DECL(str_list, strlist); 5473 5474 if (arg == 0) { /* Return number of modules plus driver */ 5475 if (stp->sd_vnode->v_type == VFIFO) 5476 *rvalp = stp->sd_pushcnt; 5477 else 5478 *rvalp = stp->sd_pushcnt + 1; 5479 return (0); 5480 } 5481 5482 STRUCT_INIT(strlist, flag); 5483 5484 error = strcopyin((void *)arg, STRUCT_BUF(strlist), 5485 STRUCT_SIZE(strlist), copyflag); 5486 if (error != 0) 5487 return (error); 5488 5489 mlist = STRUCT_FGETP(strlist, sl_modlist); 5490 nmods = STRUCT_FGET(strlist, sl_nmods); 5491 if (nmods <= 0) 5492 return (EINVAL); 5493 5494 claimstr(stp->sd_wrq); 5495 q = stp->sd_wrq; 5496 for (i = 0; i < nmods && _SAMESTR(q); i++, q = q->q_next) { 5497 qname = Q2NAME(q->q_next); 5498 error = strcopyout(qname, &mlist[i], strlen(qname) + 1, 5499 copyflag); 5500 if (error != 0) { 5501 releasestr(stp->sd_wrq); 5502 return (error); 5503 } 5504 } 5505 releasestr(stp->sd_wrq); 5506 return (strcopyout(&i, (void *)arg, sizeof (int), copyflag)); 5507 } 5508 5509 case I_CKBAND: 5510 { 5511 queue_t *q; 5512 qband_t *qbp; 5513 5514 if ((arg < 0) || (arg >= NBAND)) 5515 return (EINVAL); 5516 q = _RD(stp->sd_wrq); 5517 mutex_enter(QLOCK(q)); 5518 if (arg > (int)q->q_nband) { 5519 *rvalp = 0; 5520 } else { 5521 if (arg == 0) { 5522 if (q->q_first) 5523 *rvalp = 1; 5524 else 5525 *rvalp = 0; 5526 } else { 5527 qbp = q->q_bandp; 5528 while (--arg > 0) 5529 qbp = qbp->qb_next; 5530 if (qbp->qb_first) 5531 *rvalp = 1; 5532 else 5533 *rvalp = 0; 5534 } 5535 } 5536 mutex_exit(QLOCK(q)); 5537 return (0); 5538 } 5539 5540 case I_GETBAND: 5541 { 5542 int intpri; 5543 queue_t *q; 5544 5545 q = _RD(stp->sd_wrq); 5546 mutex_enter(QLOCK(q)); 5547 mp = q->q_first; 5548 if (!mp) { 5549 mutex_exit(QLOCK(q)); 5550 return (ENODATA); 5551 } 5552 intpri = (int)mp->b_band; 5553 error = strcopyout(&intpri, (void *)arg, sizeof (int), 5554 copyflag); 5555 mutex_exit(QLOCK(q)); 5556 return (error); 5557 } 5558 5559 case I_ATMARK: 5560 { 5561 queue_t *q; 5562 5563 if (arg & ~(ANYMARK|LASTMARK)) 5564 return (EINVAL); 5565 q = _RD(stp->sd_wrq); 5566 mutex_enter(&stp->sd_lock); 5567 if ((stp->sd_flag & STRATMARK) && (arg == ANYMARK)) { 5568 *rvalp = 1; 5569 } else { 5570 mutex_enter(QLOCK(q)); 5571 mp = q->q_first; 5572 5573 if (mp == NULL) 5574 *rvalp = 0; 5575 else if ((arg == ANYMARK) && (mp->b_flag & MSGMARK)) 5576 *rvalp = 1; 5577 else if ((arg == LASTMARK) && (mp == stp->sd_mark)) 5578 *rvalp = 1; 5579 else 5580 *rvalp = 0; 5581 mutex_exit(QLOCK(q)); 5582 } 5583 mutex_exit(&stp->sd_lock); 5584 return (0); 5585 } 5586 5587 case I_CANPUT: 5588 { 5589 char band; 5590 5591 if ((arg < 0) || (arg >= NBAND)) 5592 return (EINVAL); 5593 band = (char)arg; 5594 *rvalp = bcanputnext(stp->sd_wrq, band); 5595 return (0); 5596 } 5597 5598 case I_SETCLTIME: 5599 { 5600 int closetime; 5601 5602 error = strcopyin((void *)arg, &closetime, sizeof (int), 5603 copyflag); 5604 if (error) 5605 return (error); 5606 if (closetime < 0) 5607 return (EINVAL); 5608 5609 stp->sd_closetime = closetime; 5610 return (0); 5611 } 5612 5613 case I_GETCLTIME: 5614 { 5615 int closetime; 5616 5617 closetime = stp->sd_closetime; 5618 return (strcopyout(&closetime, (void *)arg, sizeof (int), 5619 copyflag)); 5620 } 5621 5622 case TIOCGSID: 5623 { 5624 pid_t sid; 5625 5626 mutex_enter(&stp->sd_lock); 5627 if (stp->sd_sidp == NULL) { 5628 mutex_exit(&stp->sd_lock); 5629 return (ENOTTY); 5630 } 5631 sid = stp->sd_sidp->pid_id; 5632 mutex_exit(&stp->sd_lock); 5633 return (strcopyout(&sid, (void *)arg, sizeof (pid_t), 5634 copyflag)); 5635 } 5636 5637 case TIOCSPGRP: 5638 { 5639 pid_t pgrp; 5640 proc_t *q; 5641 pid_t sid, fg_pgid, bg_pgid; 5642 5643 if (error = strcopyin((void *)arg, &pgrp, sizeof (pid_t), 5644 copyflag)) 5645 return (error); 5646 mutex_enter(&stp->sd_lock); 5647 mutex_enter(&pidlock); 5648 if (stp->sd_sidp != ttoproc(curthread)->p_sessp->s_sidp) { 5649 mutex_exit(&pidlock); 5650 mutex_exit(&stp->sd_lock); 5651 return (ENOTTY); 5652 } 5653 if (pgrp == stp->sd_pgidp->pid_id) { 5654 mutex_exit(&pidlock); 5655 mutex_exit(&stp->sd_lock); 5656 return (0); 5657 } 5658 if (pgrp <= 0 || pgrp >= maxpid) { 5659 mutex_exit(&pidlock); 5660 mutex_exit(&stp->sd_lock); 5661 return (EINVAL); 5662 } 5663 if ((q = pgfind(pgrp)) == NULL || 5664 q->p_sessp != ttoproc(curthread)->p_sessp) { 5665 mutex_exit(&pidlock); 5666 mutex_exit(&stp->sd_lock); 5667 return (EPERM); 5668 } 5669 sid = stp->sd_sidp->pid_id; 5670 fg_pgid = q->p_pgrp; 5671 bg_pgid = stp->sd_pgidp->pid_id; 5672 CL_SET_PROCESS_GROUP(curthread, sid, bg_pgid, fg_pgid); 5673 PID_RELE(stp->sd_pgidp); 5674 ctty_clear_sighuped(); 5675 stp->sd_pgidp = q->p_pgidp; 5676 PID_HOLD(stp->sd_pgidp); 5677 mutex_exit(&pidlock); 5678 mutex_exit(&stp->sd_lock); 5679 return (0); 5680 } 5681 5682 case TIOCGPGRP: 5683 { 5684 pid_t pgrp; 5685 5686 mutex_enter(&stp->sd_lock); 5687 if (stp->sd_sidp == NULL) { 5688 mutex_exit(&stp->sd_lock); 5689 return (ENOTTY); 5690 } 5691 pgrp = stp->sd_pgidp->pid_id; 5692 mutex_exit(&stp->sd_lock); 5693 return (strcopyout(&pgrp, (void *)arg, sizeof (pid_t), 5694 copyflag)); 5695 } 5696 5697 case TIOCSCTTY: 5698 { 5699 return (strctty(stp)); 5700 } 5701 5702 case TIOCNOTTY: 5703 { 5704 /* freectty() always assumes curproc. */ 5705 if (freectty(B_FALSE) != 0) 5706 return (0); 5707 return (ENOTTY); 5708 } 5709 5710 case FIONBIO: 5711 case FIOASYNC: 5712 return (0); /* handled by the upper layer */ 5713 } 5714 } 5715 5716 /* 5717 * Custom free routine used for M_PASSFP messages. 5718 */ 5719 static void 5720 free_passfp(struct k_strrecvfd *srf) 5721 { 5722 (void) closef(srf->fp); 5723 kmem_free(srf, sizeof (struct k_strrecvfd) + sizeof (frtn_t)); 5724 } 5725 5726 /* ARGSUSED */ 5727 int 5728 do_sendfp(struct stdata *stp, struct file *fp, struct cred *cr) 5729 { 5730 queue_t *qp, *nextqp; 5731 struct k_strrecvfd *srf; 5732 mblk_t *mp; 5733 frtn_t *frtnp; 5734 size_t bufsize; 5735 queue_t *mate = NULL; 5736 syncq_t *sq = NULL; 5737 int retval = 0; 5738 5739 if (stp->sd_flag & STRHUP) 5740 return (ENXIO); 5741 5742 claimstr(stp->sd_wrq); 5743 5744 /* Fastpath, we have a pipe, and we are already mated, use it. */ 5745 if (STRMATED(stp)) { 5746 qp = _RD(stp->sd_mate->sd_wrq); 5747 claimstr(qp); 5748 mate = qp; 5749 } else { /* Not already mated. */ 5750 5751 /* 5752 * Walk the stream to the end of this one. 5753 * assumes that the claimstr() will prevent 5754 * plumbing between the stream head and the 5755 * driver from changing 5756 */ 5757 qp = stp->sd_wrq; 5758 5759 /* 5760 * Loop until we reach the end of this stream. 5761 * On completion, qp points to the write queue 5762 * at the end of the stream, or the read queue 5763 * at the stream head if this is a fifo. 5764 */ 5765 while (((qp = qp->q_next) != NULL) && _SAMESTR(qp)) 5766 ; 5767 5768 /* 5769 * Just in case we get a q_next which is NULL, but 5770 * not at the end of the stream. This is actually 5771 * broken, so we set an assert to catch it in 5772 * debug, and set an error and return if not debug. 5773 */ 5774 ASSERT(qp); 5775 if (qp == NULL) { 5776 releasestr(stp->sd_wrq); 5777 return (EINVAL); 5778 } 5779 5780 /* 5781 * Enter the syncq for the driver, so (hopefully) 5782 * the queue values will not change on us. 5783 * XXXX - This will only prevent the race IFF only 5784 * the write side modifies the q_next member, and 5785 * the put procedure is protected by at least 5786 * MT_PERQ. 5787 */ 5788 if ((sq = qp->q_syncq) != NULL) 5789 entersq(sq, SQ_PUT); 5790 5791 /* Now get the q_next value from this qp. */ 5792 nextqp = qp->q_next; 5793 5794 /* 5795 * If nextqp exists and the other stream is different 5796 * from this one claim the stream, set the mate, and 5797 * get the read queue at the stream head of the other 5798 * stream. Assumes that nextqp was at least valid when 5799 * we got it. Hopefully the entersq of the driver 5800 * will prevent it from changing on us. 5801 */ 5802 if ((nextqp != NULL) && (STREAM(nextqp) != stp)) { 5803 ASSERT(qp->q_qinfo->qi_srvp); 5804 ASSERT(_OTHERQ(qp)->q_qinfo->qi_srvp); 5805 ASSERT(_OTHERQ(qp->q_next)->q_qinfo->qi_srvp); 5806 claimstr(nextqp); 5807 5808 /* Make sure we still have a q_next */ 5809 if (nextqp != qp->q_next) { 5810 releasestr(stp->sd_wrq); 5811 releasestr(nextqp); 5812 return (EINVAL); 5813 } 5814 5815 qp = _RD(STREAM(nextqp)->sd_wrq); 5816 mate = qp; 5817 } 5818 /* If we entered the synq above, leave it. */ 5819 if (sq != NULL) 5820 leavesq(sq, SQ_PUT); 5821 } /* STRMATED(STP) */ 5822 5823 /* XXX prevents substitution of the ops vector */ 5824 if (qp->q_qinfo != &strdata && qp->q_qinfo != &fifo_strdata) { 5825 retval = EINVAL; 5826 goto out; 5827 } 5828 5829 if (qp->q_flag & QFULL) { 5830 retval = EAGAIN; 5831 goto out; 5832 } 5833 5834 /* 5835 * Since M_PASSFP messages include a file descriptor, we use 5836 * esballoc() and specify a custom free routine (free_passfp()) that 5837 * will close the descriptor as part of freeing the message. For 5838 * convenience, we stash the frtn_t right after the data block. 5839 */ 5840 bufsize = sizeof (struct k_strrecvfd) + sizeof (frtn_t); 5841 srf = kmem_alloc(bufsize, KM_NOSLEEP); 5842 if (srf == NULL) { 5843 retval = EAGAIN; 5844 goto out; 5845 } 5846 5847 frtnp = (frtn_t *)(srf + 1); 5848 frtnp->free_arg = (caddr_t)srf; 5849 frtnp->free_func = free_passfp; 5850 5851 mp = esballoc((uchar_t *)srf, bufsize, BPRI_MED, frtnp); 5852 if (mp == NULL) { 5853 kmem_free(srf, bufsize); 5854 retval = EAGAIN; 5855 goto out; 5856 } 5857 mp->b_wptr += sizeof (struct k_strrecvfd); 5858 mp->b_datap->db_type = M_PASSFP; 5859 5860 srf->fp = fp; 5861 srf->uid = crgetuid(curthread->t_cred); 5862 srf->gid = crgetgid(curthread->t_cred); 5863 mutex_enter(&fp->f_tlock); 5864 fp->f_count++; 5865 mutex_exit(&fp->f_tlock); 5866 5867 put(qp, mp); 5868 out: 5869 releasestr(stp->sd_wrq); 5870 if (mate) 5871 releasestr(mate); 5872 return (retval); 5873 } 5874 5875 /* 5876 * Send an ioctl message downstream and wait for acknowledgement. 5877 * flags may be set to either U_TO_K or K_TO_K and a combination 5878 * of STR_NOERROR or STR_NOSIG 5879 * STR_NOSIG: Signals are essentially ignored or held and have 5880 * no effect for the duration of the call. 5881 * STR_NOERROR: Ignores stream head read, write and hup errors. 5882 * Additionally, if an existing ioctl times out, it is assumed 5883 * lost and and this ioctl will continue as if the previous ioctl had 5884 * finished. ETIME may be returned if this ioctl times out (i.e. 5885 * ic_timout is not INFTIM). Non-stream head errors may be returned if 5886 * the ioc_error indicates that the driver/module had problems, 5887 * an EFAULT was found when accessing user data, a lack of 5888 * resources, etc. 5889 */ 5890 int 5891 strdoioctl( 5892 struct stdata *stp, 5893 struct strioctl *strioc, 5894 int fflags, /* file flags with model info */ 5895 int flag, 5896 cred_t *crp, 5897 int *rvalp) 5898 { 5899 mblk_t *bp; 5900 struct iocblk *iocbp; 5901 struct copyreq *reqp; 5902 struct copyresp *resp; 5903 int id; 5904 int transparent = 0; 5905 int error = 0; 5906 int len = 0; 5907 caddr_t taddr; 5908 int copyflag = (flag & (U_TO_K | K_TO_K)); 5909 int sigflag = (flag & STR_NOSIG); 5910 int errs; 5911 uint_t waitflags; 5912 boolean_t set_iocwaitne = B_FALSE; 5913 5914 ASSERT(copyflag == U_TO_K || copyflag == K_TO_K); 5915 ASSERT((fflags & FMODELS) != 0); 5916 5917 TRACE_2(TR_FAC_STREAMS_FR, 5918 TR_STRDOIOCTL, 5919 "strdoioctl:stp %p strioc %p", stp, strioc); 5920 if (strioc->ic_len == TRANSPARENT) { /* send arg in M_DATA block */ 5921 transparent = 1; 5922 strioc->ic_len = sizeof (intptr_t); 5923 } 5924 5925 if (strioc->ic_len < 0 || (strmsgsz > 0 && strioc->ic_len > strmsgsz)) 5926 return (EINVAL); 5927 5928 if ((bp = allocb_cred_wait(sizeof (union ioctypes), sigflag, &error, 5929 crp, curproc->p_pid)) == NULL) 5930 return (error); 5931 5932 bzero(bp->b_wptr, sizeof (union ioctypes)); 5933 5934 iocbp = (struct iocblk *)bp->b_wptr; 5935 iocbp->ioc_count = strioc->ic_len; 5936 iocbp->ioc_cmd = strioc->ic_cmd; 5937 iocbp->ioc_flag = (fflags & FMODELS); 5938 5939 crhold(crp); 5940 iocbp->ioc_cr = crp; 5941 DB_TYPE(bp) = M_IOCTL; 5942 bp->b_wptr += sizeof (struct iocblk); 5943 5944 if (flag & STR_NOERROR) 5945 errs = STPLEX; 5946 else 5947 errs = STRHUP|STRDERR|STWRERR|STPLEX; 5948 5949 /* 5950 * If there is data to copy into ioctl block, do so. 5951 */ 5952 if (iocbp->ioc_count > 0) { 5953 if (transparent) 5954 /* 5955 * Note: STR_NOERROR does not have an effect 5956 * in putiocd() 5957 */ 5958 id = K_TO_K | sigflag; 5959 else 5960 id = flag; 5961 if ((error = putiocd(bp, strioc->ic_dp, id, crp)) != 0) { 5962 freemsg(bp); 5963 crfree(crp); 5964 return (error); 5965 } 5966 5967 /* 5968 * We could have slept copying in user pages. 5969 * Recheck the stream head state (the other end 5970 * of a pipe could have gone away). 5971 */ 5972 if (stp->sd_flag & errs) { 5973 mutex_enter(&stp->sd_lock); 5974 error = strgeterr(stp, errs, 0); 5975 mutex_exit(&stp->sd_lock); 5976 if (error != 0) { 5977 freemsg(bp); 5978 crfree(crp); 5979 return (error); 5980 } 5981 } 5982 } 5983 if (transparent) 5984 iocbp->ioc_count = TRANSPARENT; 5985 5986 /* 5987 * Block for up to STRTIMOUT milliseconds if there is an outstanding 5988 * ioctl for this stream already running. All processes 5989 * sleeping here will be awakened as a result of an ACK 5990 * or NAK being received for the outstanding ioctl, or 5991 * as a result of the timer expiring on the outstanding 5992 * ioctl (a failure), or as a result of any waiting 5993 * process's timer expiring (also a failure). 5994 */ 5995 5996 error = 0; 5997 mutex_enter(&stp->sd_lock); 5998 while ((stp->sd_flag & IOCWAIT) || 5999 (!set_iocwaitne && (stp->sd_flag & IOCWAITNE))) { 6000 clock_t cv_rval; 6001 6002 TRACE_0(TR_FAC_STREAMS_FR, 6003 TR_STRDOIOCTL_WAIT, 6004 "strdoioctl sleeps - IOCWAIT"); 6005 cv_rval = str_cv_wait(&stp->sd_iocmonitor, &stp->sd_lock, 6006 STRTIMOUT, sigflag); 6007 if (cv_rval <= 0) { 6008 if (cv_rval == 0) { 6009 error = EINTR; 6010 } else { 6011 if (flag & STR_NOERROR) { 6012 /* 6013 * Terminating current ioctl in 6014 * progress -- assume it got lost and 6015 * wake up the other thread so that the 6016 * operation completes. 6017 */ 6018 if (!(stp->sd_flag & IOCWAITNE)) { 6019 set_iocwaitne = B_TRUE; 6020 stp->sd_flag |= IOCWAITNE; 6021 cv_broadcast(&stp->sd_monitor); 6022 } 6023 /* 6024 * Otherwise, there's a running 6025 * STR_NOERROR -- we have no choice 6026 * here but to wait forever (or until 6027 * interrupted). 6028 */ 6029 } else { 6030 /* 6031 * pending ioctl has caused 6032 * us to time out 6033 */ 6034 error = ETIME; 6035 } 6036 } 6037 } else if ((stp->sd_flag & errs)) { 6038 error = strgeterr(stp, errs, 0); 6039 } 6040 if (error) { 6041 mutex_exit(&stp->sd_lock); 6042 freemsg(bp); 6043 crfree(crp); 6044 return (error); 6045 } 6046 } 6047 6048 /* 6049 * Have control of ioctl mechanism. 6050 * Send down ioctl packet and wait for response. 6051 */ 6052 if (stp->sd_iocblk != (mblk_t *)-1) { 6053 freemsg(stp->sd_iocblk); 6054 } 6055 stp->sd_iocblk = NULL; 6056 6057 /* 6058 * If this is marked with 'noerror' (internal; mostly 6059 * I_{P,}{UN,}LINK), then make sure nobody else is able to get 6060 * in here by setting IOCWAITNE. 6061 */ 6062 waitflags = IOCWAIT; 6063 if (flag & STR_NOERROR) 6064 waitflags |= IOCWAITNE; 6065 6066 stp->sd_flag |= waitflags; 6067 6068 /* 6069 * Assign sequence number. 6070 */ 6071 iocbp->ioc_id = stp->sd_iocid = getiocseqno(); 6072 6073 mutex_exit(&stp->sd_lock); 6074 6075 TRACE_1(TR_FAC_STREAMS_FR, 6076 TR_STRDOIOCTL_PUT, "strdoioctl put: stp %p", stp); 6077 stream_willservice(stp); 6078 putnext(stp->sd_wrq, bp); 6079 stream_runservice(stp); 6080 6081 /* 6082 * Timed wait for acknowledgment. The wait time is limited by the 6083 * timeout value, which must be a positive integer (number of 6084 * milliseconds) to wait, or 0 (use default value of STRTIMOUT 6085 * milliseconds), or -1 (wait forever). This will be awakened 6086 * either by an ACK/NAK message arriving, the timer expiring, or 6087 * the timer expiring on another ioctl waiting for control of the 6088 * mechanism. 6089 */ 6090 waitioc: 6091 mutex_enter(&stp->sd_lock); 6092 6093 6094 /* 6095 * If the reply has already arrived, don't sleep. If awakened from 6096 * the sleep, fail only if the reply has not arrived by then. 6097 * Otherwise, process the reply. 6098 */ 6099 while (!stp->sd_iocblk) { 6100 clock_t cv_rval; 6101 6102 if (stp->sd_flag & errs) { 6103 error = strgeterr(stp, errs, 0); 6104 if (error != 0) { 6105 stp->sd_flag &= ~waitflags; 6106 cv_broadcast(&stp->sd_iocmonitor); 6107 mutex_exit(&stp->sd_lock); 6108 crfree(crp); 6109 return (error); 6110 } 6111 } 6112 6113 TRACE_0(TR_FAC_STREAMS_FR, 6114 TR_STRDOIOCTL_WAIT2, 6115 "strdoioctl sleeps awaiting reply"); 6116 ASSERT(error == 0); 6117 6118 cv_rval = str_cv_wait(&stp->sd_monitor, &stp->sd_lock, 6119 (strioc->ic_timout ? 6120 strioc->ic_timout * 1000 : STRTIMOUT), sigflag); 6121 6122 /* 6123 * There are four possible cases here: interrupt, timeout, 6124 * wakeup by IOCWAITNE (above), or wakeup by strrput_nondata (a 6125 * valid M_IOCTL reply). 6126 * 6127 * If we've been awakened by a STR_NOERROR ioctl on some other 6128 * thread, then sd_iocblk will still be NULL, and IOCWAITNE 6129 * will be set. Pretend as if we just timed out. Note that 6130 * this other thread waited at least STRTIMOUT before trying to 6131 * awaken our thread, so this is indistinguishable (even for 6132 * INFTIM) from the case where we failed with ETIME waiting on 6133 * IOCWAIT in the prior loop. 6134 */ 6135 if (cv_rval > 0 && !(flag & STR_NOERROR) && 6136 stp->sd_iocblk == NULL && (stp->sd_flag & IOCWAITNE)) { 6137 cv_rval = -1; 6138 } 6139 6140 /* 6141 * note: STR_NOERROR does not protect 6142 * us here.. use ic_timout < 0 6143 */ 6144 if (cv_rval <= 0) { 6145 if (cv_rval == 0) { 6146 error = EINTR; 6147 } else { 6148 error = ETIME; 6149 } 6150 /* 6151 * A message could have come in after we were scheduled 6152 * but before we were actually run. 6153 */ 6154 bp = stp->sd_iocblk; 6155 stp->sd_iocblk = NULL; 6156 if (bp != NULL) { 6157 if ((bp->b_datap->db_type == M_COPYIN) || 6158 (bp->b_datap->db_type == M_COPYOUT)) { 6159 mutex_exit(&stp->sd_lock); 6160 if (bp->b_cont) { 6161 freemsg(bp->b_cont); 6162 bp->b_cont = NULL; 6163 } 6164 bp->b_datap->db_type = M_IOCDATA; 6165 bp->b_wptr = bp->b_rptr + 6166 sizeof (struct copyresp); 6167 resp = (struct copyresp *)bp->b_rptr; 6168 resp->cp_rval = 6169 (caddr_t)1; /* failure */ 6170 stream_willservice(stp); 6171 putnext(stp->sd_wrq, bp); 6172 stream_runservice(stp); 6173 mutex_enter(&stp->sd_lock); 6174 } else { 6175 freemsg(bp); 6176 } 6177 } 6178 stp->sd_flag &= ~waitflags; 6179 cv_broadcast(&stp->sd_iocmonitor); 6180 mutex_exit(&stp->sd_lock); 6181 crfree(crp); 6182 return (error); 6183 } 6184 } 6185 bp = stp->sd_iocblk; 6186 /* 6187 * Note: it is strictly impossible to get here with sd_iocblk set to 6188 * -1. This is because the initial loop above doesn't allow any new 6189 * ioctls into the fray until all others have passed this point. 6190 */ 6191 ASSERT(bp != NULL && bp != (mblk_t *)-1); 6192 TRACE_1(TR_FAC_STREAMS_FR, 6193 TR_STRDOIOCTL_ACK, "strdoioctl got reply: bp %p", bp); 6194 if ((bp->b_datap->db_type == M_IOCACK) || 6195 (bp->b_datap->db_type == M_IOCNAK)) { 6196 /* for detection of duplicate ioctl replies */ 6197 stp->sd_iocblk = (mblk_t *)-1; 6198 stp->sd_flag &= ~waitflags; 6199 cv_broadcast(&stp->sd_iocmonitor); 6200 mutex_exit(&stp->sd_lock); 6201 } else { 6202 /* 6203 * flags not cleared here because we're still doing 6204 * copy in/out for ioctl. 6205 */ 6206 stp->sd_iocblk = NULL; 6207 mutex_exit(&stp->sd_lock); 6208 } 6209 6210 6211 /* 6212 * Have received acknowledgment. 6213 */ 6214 6215 switch (bp->b_datap->db_type) { 6216 case M_IOCACK: 6217 /* 6218 * Positive ack. 6219 */ 6220 iocbp = (struct iocblk *)bp->b_rptr; 6221 6222 /* 6223 * Set error if indicated. 6224 */ 6225 if (iocbp->ioc_error) { 6226 error = iocbp->ioc_error; 6227 break; 6228 } 6229 6230 /* 6231 * Set return value. 6232 */ 6233 *rvalp = iocbp->ioc_rval; 6234 6235 /* 6236 * Data may have been returned in ACK message (ioc_count > 0). 6237 * If so, copy it out to the user's buffer. 6238 */ 6239 if (iocbp->ioc_count && !transparent) { 6240 if (error = getiocd(bp, strioc->ic_dp, copyflag)) 6241 break; 6242 } 6243 if (!transparent) { 6244 if (len) /* an M_COPYOUT was used with I_STR */ 6245 strioc->ic_len = len; 6246 else 6247 strioc->ic_len = (int)iocbp->ioc_count; 6248 } 6249 break; 6250 6251 case M_IOCNAK: 6252 /* 6253 * Negative ack. 6254 * 6255 * The only thing to do is set error as specified 6256 * in neg ack packet. 6257 */ 6258 iocbp = (struct iocblk *)bp->b_rptr; 6259 6260 error = (iocbp->ioc_error ? iocbp->ioc_error : EINVAL); 6261 break; 6262 6263 case M_COPYIN: 6264 /* 6265 * Driver or module has requested user ioctl data. 6266 */ 6267 reqp = (struct copyreq *)bp->b_rptr; 6268 6269 /* 6270 * M_COPYIN should *never* have a message attached, though 6271 * it's harmless if it does -- thus, panic on a DEBUG 6272 * kernel and just free it on a non-DEBUG build. 6273 */ 6274 ASSERT(bp->b_cont == NULL); 6275 if (bp->b_cont != NULL) { 6276 freemsg(bp->b_cont); 6277 bp->b_cont = NULL; 6278 } 6279 6280 error = putiocd(bp, reqp->cq_addr, flag, crp); 6281 if (error && bp->b_cont) { 6282 freemsg(bp->b_cont); 6283 bp->b_cont = NULL; 6284 } 6285 6286 bp->b_wptr = bp->b_rptr + sizeof (struct copyresp); 6287 bp->b_datap->db_type = M_IOCDATA; 6288 6289 mblk_setcred(bp, crp, curproc->p_pid); 6290 resp = (struct copyresp *)bp->b_rptr; 6291 resp->cp_rval = (caddr_t)(uintptr_t)error; 6292 resp->cp_flag = (fflags & FMODELS); 6293 6294 stream_willservice(stp); 6295 putnext(stp->sd_wrq, bp); 6296 stream_runservice(stp); 6297 6298 if (error) { 6299 mutex_enter(&stp->sd_lock); 6300 stp->sd_flag &= ~waitflags; 6301 cv_broadcast(&stp->sd_iocmonitor); 6302 mutex_exit(&stp->sd_lock); 6303 crfree(crp); 6304 return (error); 6305 } 6306 6307 goto waitioc; 6308 6309 case M_COPYOUT: 6310 /* 6311 * Driver or module has ioctl data for a user. 6312 */ 6313 reqp = (struct copyreq *)bp->b_rptr; 6314 ASSERT(bp->b_cont != NULL); 6315 6316 /* 6317 * Always (transparent or non-transparent ) 6318 * use the address specified in the request 6319 */ 6320 taddr = reqp->cq_addr; 6321 if (!transparent) 6322 len = (int)reqp->cq_size; 6323 6324 /* copyout data to the provided address */ 6325 error = getiocd(bp, taddr, copyflag); 6326 6327 freemsg(bp->b_cont); 6328 bp->b_cont = NULL; 6329 6330 bp->b_wptr = bp->b_rptr + sizeof (struct copyresp); 6331 bp->b_datap->db_type = M_IOCDATA; 6332 6333 mblk_setcred(bp, crp, curproc->p_pid); 6334 resp = (struct copyresp *)bp->b_rptr; 6335 resp->cp_rval = (caddr_t)(uintptr_t)error; 6336 resp->cp_flag = (fflags & FMODELS); 6337 6338 stream_willservice(stp); 6339 putnext(stp->sd_wrq, bp); 6340 stream_runservice(stp); 6341 6342 if (error) { 6343 mutex_enter(&stp->sd_lock); 6344 stp->sd_flag &= ~waitflags; 6345 cv_broadcast(&stp->sd_iocmonitor); 6346 mutex_exit(&stp->sd_lock); 6347 crfree(crp); 6348 return (error); 6349 } 6350 goto waitioc; 6351 6352 default: 6353 ASSERT(0); 6354 mutex_enter(&stp->sd_lock); 6355 stp->sd_flag &= ~waitflags; 6356 cv_broadcast(&stp->sd_iocmonitor); 6357 mutex_exit(&stp->sd_lock); 6358 break; 6359 } 6360 6361 freemsg(bp); 6362 crfree(crp); 6363 return (error); 6364 } 6365 6366 /* 6367 * Send an M_CMD message downstream and wait for a reply. This is a ptools 6368 * special used to retrieve information from modules/drivers a stream without 6369 * being subjected to flow control or interfering with pending messages on the 6370 * stream (e.g. an ioctl in flight). 6371 */ 6372 int 6373 strdocmd(struct stdata *stp, struct strcmd *scp, cred_t *crp) 6374 { 6375 mblk_t *mp; 6376 struct cmdblk *cmdp; 6377 int error = 0; 6378 int errs = STRHUP|STRDERR|STWRERR|STPLEX; 6379 clock_t rval, timeout = STRTIMOUT; 6380 6381 if (scp->sc_len < 0 || scp->sc_len > sizeof (scp->sc_buf) || 6382 scp->sc_timeout < -1) 6383 return (EINVAL); 6384 6385 if (scp->sc_timeout > 0) 6386 timeout = scp->sc_timeout * MILLISEC; 6387 6388 if ((mp = allocb_cred(sizeof (struct cmdblk), crp, 6389 curproc->p_pid)) == NULL) 6390 return (ENOMEM); 6391 6392 crhold(crp); 6393 6394 cmdp = (struct cmdblk *)mp->b_wptr; 6395 cmdp->cb_cr = crp; 6396 cmdp->cb_cmd = scp->sc_cmd; 6397 cmdp->cb_len = scp->sc_len; 6398 cmdp->cb_error = 0; 6399 mp->b_wptr += sizeof (struct cmdblk); 6400 6401 DB_TYPE(mp) = M_CMD; 6402 DB_CPID(mp) = curproc->p_pid; 6403 6404 /* 6405 * Copy in the payload. 6406 */ 6407 if (cmdp->cb_len > 0) { 6408 mp->b_cont = allocb_cred(sizeof (scp->sc_buf), crp, 6409 curproc->p_pid); 6410 if (mp->b_cont == NULL) { 6411 error = ENOMEM; 6412 goto out; 6413 } 6414 6415 /* cb_len comes from sc_len, which has already been checked */ 6416 ASSERT(cmdp->cb_len <= sizeof (scp->sc_buf)); 6417 (void) bcopy(scp->sc_buf, mp->b_cont->b_wptr, cmdp->cb_len); 6418 mp->b_cont->b_wptr += cmdp->cb_len; 6419 DB_CPID(mp->b_cont) = curproc->p_pid; 6420 } 6421 6422 /* 6423 * Since this mechanism is strictly for ptools, and since only one 6424 * process can be grabbed at a time, we simply fail if there's 6425 * currently an operation pending. 6426 */ 6427 mutex_enter(&stp->sd_lock); 6428 if (stp->sd_flag & STRCMDWAIT) { 6429 mutex_exit(&stp->sd_lock); 6430 error = EBUSY; 6431 goto out; 6432 } 6433 stp->sd_flag |= STRCMDWAIT; 6434 ASSERT(stp->sd_cmdblk == NULL); 6435 mutex_exit(&stp->sd_lock); 6436 6437 putnext(stp->sd_wrq, mp); 6438 mp = NULL; 6439 6440 /* 6441 * Timed wait for acknowledgment. If the reply has already arrived, 6442 * don't sleep. If awakened from the sleep, fail only if the reply 6443 * has not arrived by then. Otherwise, process the reply. 6444 */ 6445 mutex_enter(&stp->sd_lock); 6446 while (stp->sd_cmdblk == NULL) { 6447 if (stp->sd_flag & errs) { 6448 if ((error = strgeterr(stp, errs, 0)) != 0) 6449 goto waitout; 6450 } 6451 6452 rval = str_cv_wait(&stp->sd_monitor, &stp->sd_lock, timeout, 0); 6453 if (stp->sd_cmdblk != NULL) 6454 break; 6455 6456 if (rval <= 0) { 6457 error = (rval == 0) ? EINTR : ETIME; 6458 goto waitout; 6459 } 6460 } 6461 6462 /* 6463 * We received a reply. 6464 */ 6465 mp = stp->sd_cmdblk; 6466 stp->sd_cmdblk = NULL; 6467 ASSERT(mp != NULL && DB_TYPE(mp) == M_CMD); 6468 ASSERT(stp->sd_flag & STRCMDWAIT); 6469 stp->sd_flag &= ~STRCMDWAIT; 6470 mutex_exit(&stp->sd_lock); 6471 6472 cmdp = (struct cmdblk *)mp->b_rptr; 6473 if ((error = cmdp->cb_error) != 0) 6474 goto out; 6475 6476 /* 6477 * Data may have been returned in the reply (cb_len > 0). 6478 * If so, copy it out to the user's buffer. 6479 */ 6480 if (cmdp->cb_len > 0) { 6481 if (mp->b_cont == NULL || MBLKL(mp->b_cont) < cmdp->cb_len) { 6482 error = EPROTO; 6483 goto out; 6484 } 6485 6486 cmdp->cb_len = MIN(cmdp->cb_len, sizeof (scp->sc_buf)); 6487 (void) bcopy(mp->b_cont->b_rptr, scp->sc_buf, cmdp->cb_len); 6488 } 6489 scp->sc_len = cmdp->cb_len; 6490 out: 6491 freemsg(mp); 6492 crfree(crp); 6493 return (error); 6494 waitout: 6495 ASSERT(stp->sd_cmdblk == NULL); 6496 stp->sd_flag &= ~STRCMDWAIT; 6497 mutex_exit(&stp->sd_lock); 6498 crfree(crp); 6499 return (error); 6500 } 6501 6502 /* 6503 * For the SunOS keyboard driver. 6504 * Return the next available "ioctl" sequence number. 6505 * Exported, so that streams modules can send "ioctl" messages 6506 * downstream from their open routine. 6507 */ 6508 int 6509 getiocseqno(void) 6510 { 6511 int i; 6512 6513 mutex_enter(&strresources); 6514 i = ++ioc_id; 6515 mutex_exit(&strresources); 6516 return (i); 6517 } 6518 6519 /* 6520 * Get the next message from the read queue. If the message is 6521 * priority, STRPRI will have been set by strrput(). This flag 6522 * should be reset only when the entire message at the front of the 6523 * queue as been consumed. 6524 * 6525 * NOTE: strgetmsg and kstrgetmsg have much of the logic in common. 6526 */ 6527 int 6528 strgetmsg( 6529 struct vnode *vp, 6530 struct strbuf *mctl, 6531 struct strbuf *mdata, 6532 unsigned char *prip, 6533 int *flagsp, 6534 int fmode, 6535 rval_t *rvp) 6536 { 6537 struct stdata *stp; 6538 mblk_t *bp, *nbp; 6539 mblk_t *savemp = NULL; 6540 mblk_t *savemptail = NULL; 6541 uint_t old_sd_flag; 6542 int flg; 6543 int more = 0; 6544 int error = 0; 6545 char first = 1; 6546 uint_t mark; /* Contains MSG*MARK and _LASTMARK */ 6547 #define _LASTMARK 0x8000 /* Distinct from MSG*MARK */ 6548 unsigned char pri = 0; 6549 queue_t *q; 6550 int pr = 0; /* Partial read successful */ 6551 struct uio uios; 6552 struct uio *uiop = &uios; 6553 struct iovec iovs; 6554 unsigned char type; 6555 6556 TRACE_1(TR_FAC_STREAMS_FR, TR_STRGETMSG_ENTER, 6557 "strgetmsg:%p", vp); 6558 6559 ASSERT(vp->v_stream); 6560 stp = vp->v_stream; 6561 rvp->r_val1 = 0; 6562 6563 mutex_enter(&stp->sd_lock); 6564 6565 if ((error = i_straccess(stp, JCREAD)) != 0) { 6566 mutex_exit(&stp->sd_lock); 6567 return (error); 6568 } 6569 6570 if (stp->sd_flag & (STRDERR|STPLEX)) { 6571 error = strgeterr(stp, STRDERR|STPLEX, 0); 6572 if (error != 0) { 6573 mutex_exit(&stp->sd_lock); 6574 return (error); 6575 } 6576 } 6577 mutex_exit(&stp->sd_lock); 6578 6579 switch (*flagsp) { 6580 case MSG_HIPRI: 6581 if (*prip != 0) 6582 return (EINVAL); 6583 break; 6584 6585 case MSG_ANY: 6586 case MSG_BAND: 6587 break; 6588 6589 default: 6590 return (EINVAL); 6591 } 6592 /* 6593 * Setup uio and iov for data part 6594 */ 6595 iovs.iov_base = mdata->buf; 6596 iovs.iov_len = mdata->maxlen; 6597 uios.uio_iov = &iovs; 6598 uios.uio_iovcnt = 1; 6599 uios.uio_loffset = 0; 6600 uios.uio_segflg = UIO_USERSPACE; 6601 uios.uio_fmode = 0; 6602 uios.uio_extflg = UIO_COPY_CACHED; 6603 uios.uio_resid = mdata->maxlen; 6604 uios.uio_offset = 0; 6605 6606 q = _RD(stp->sd_wrq); 6607 mutex_enter(&stp->sd_lock); 6608 old_sd_flag = stp->sd_flag; 6609 mark = 0; 6610 for (;;) { 6611 int done = 0; 6612 mblk_t *q_first = q->q_first; 6613 6614 /* 6615 * Get the next message of appropriate priority 6616 * from the stream head. If the caller is interested 6617 * in band or hipri messages, then they should already 6618 * be enqueued at the stream head. On the other hand 6619 * if the caller wants normal (band 0) messages, they 6620 * might be deferred in a synchronous stream and they 6621 * will need to be pulled up. 6622 * 6623 * After we have dequeued a message, we might find that 6624 * it was a deferred M_SIG that was enqueued at the 6625 * stream head. It must now be posted as part of the 6626 * read by calling strsignal_nolock(). 6627 * 6628 * Also note that strrput does not enqueue an M_PCSIG, 6629 * and there cannot be more than one hipri message, 6630 * so there was no need to have the M_PCSIG case. 6631 * 6632 * At some time it might be nice to try and wrap the 6633 * functionality of kstrgetmsg() and strgetmsg() into 6634 * a common routine so to reduce the amount of replicated 6635 * code (since they are extremely similar). 6636 */ 6637 if (!(*flagsp & (MSG_HIPRI|MSG_BAND))) { 6638 /* Asking for normal, band0 data */ 6639 bp = strget(stp, q, uiop, first, &error); 6640 ASSERT(MUTEX_HELD(&stp->sd_lock)); 6641 if (bp != NULL) { 6642 if (DB_TYPE(bp) == M_SIG) { 6643 strsignal_nolock(stp, *bp->b_rptr, 6644 bp->b_band); 6645 freemsg(bp); 6646 continue; 6647 } else { 6648 break; 6649 } 6650 } 6651 if (error != 0) 6652 goto getmout; 6653 6654 /* 6655 * We can't depend on the value of STRPRI here because 6656 * the stream head may be in transit. Therefore, we 6657 * must look at the type of the first message to 6658 * determine if a high priority messages is waiting 6659 */ 6660 } else if ((*flagsp & MSG_HIPRI) && q_first != NULL && 6661 DB_TYPE(q_first) >= QPCTL && 6662 (bp = getq_noenab(q, 0)) != NULL) { 6663 /* Asked for HIPRI and got one */ 6664 ASSERT(DB_TYPE(bp) >= QPCTL); 6665 break; 6666 } else if ((*flagsp & MSG_BAND) && q_first != NULL && 6667 ((q_first->b_band >= *prip) || DB_TYPE(q_first) >= QPCTL) && 6668 (bp = getq_noenab(q, 0)) != NULL) { 6669 /* 6670 * Asked for at least band "prip" and got either at 6671 * least that band or a hipri message. 6672 */ 6673 ASSERT(bp->b_band >= *prip || DB_TYPE(bp) >= QPCTL); 6674 if (DB_TYPE(bp) == M_SIG) { 6675 strsignal_nolock(stp, *bp->b_rptr, bp->b_band); 6676 freemsg(bp); 6677 continue; 6678 } else { 6679 break; 6680 } 6681 } 6682 6683 /* No data. Time to sleep? */ 6684 qbackenable(q, 0); 6685 6686 /* 6687 * If STRHUP or STREOF, return 0 length control and data. 6688 * If resid is 0, then a read(fd,buf,0) was done. Do not 6689 * sleep to satisfy this request because by default we have 6690 * zero bytes to return. 6691 */ 6692 if ((stp->sd_flag & (STRHUP|STREOF)) || (mctl->maxlen == 0 && 6693 mdata->maxlen == 0)) { 6694 mctl->len = mdata->len = 0; 6695 *flagsp = 0; 6696 mutex_exit(&stp->sd_lock); 6697 return (0); 6698 } 6699 TRACE_2(TR_FAC_STREAMS_FR, TR_STRGETMSG_WAIT, 6700 "strgetmsg calls strwaitq:%p, %p", 6701 vp, uiop); 6702 if (((error = strwaitq(stp, GETWAIT, (ssize_t)0, fmode, -1, 6703 &done)) != 0) || done) { 6704 TRACE_2(TR_FAC_STREAMS_FR, TR_STRGETMSG_DONE, 6705 "strgetmsg error or done:%p, %p", 6706 vp, uiop); 6707 mutex_exit(&stp->sd_lock); 6708 return (error); 6709 } 6710 TRACE_2(TR_FAC_STREAMS_FR, TR_STRGETMSG_AWAKE, 6711 "strgetmsg awakes:%p, %p", vp, uiop); 6712 if ((error = i_straccess(stp, JCREAD)) != 0) { 6713 mutex_exit(&stp->sd_lock); 6714 return (error); 6715 } 6716 first = 0; 6717 } 6718 ASSERT(bp != NULL); 6719 /* 6720 * Extract any mark information. If the message is not completely 6721 * consumed this information will be put in the mblk 6722 * that is putback. 6723 * If MSGMARKNEXT is set and the message is completely consumed 6724 * the STRATMARK flag will be set below. Likewise, if 6725 * MSGNOTMARKNEXT is set and the message is 6726 * completely consumed STRNOTATMARK will be set. 6727 */ 6728 mark = bp->b_flag & (MSGMARK | MSGMARKNEXT | MSGNOTMARKNEXT); 6729 ASSERT((mark & (MSGMARKNEXT|MSGNOTMARKNEXT)) != 6730 (MSGMARKNEXT|MSGNOTMARKNEXT)); 6731 if (mark != 0 && bp == stp->sd_mark) { 6732 mark |= _LASTMARK; 6733 stp->sd_mark = NULL; 6734 } 6735 /* 6736 * keep track of the original message type and priority 6737 */ 6738 pri = bp->b_band; 6739 type = bp->b_datap->db_type; 6740 if (type == M_PASSFP) { 6741 if ((mark & _LASTMARK) && (stp->sd_mark == NULL)) 6742 stp->sd_mark = bp; 6743 bp->b_flag |= mark & ~_LASTMARK; 6744 putback(stp, q, bp, pri); 6745 qbackenable(q, pri); 6746 mutex_exit(&stp->sd_lock); 6747 return (EBADMSG); 6748 } 6749 ASSERT(type != M_SIG); 6750 6751 /* 6752 * Set this flag so strrput will not generate signals. Need to 6753 * make sure this flag is cleared before leaving this routine 6754 * else signals will stop being sent. 6755 */ 6756 stp->sd_flag |= STRGETINPROG; 6757 mutex_exit(&stp->sd_lock); 6758 6759 if (STREAM_NEEDSERVICE(stp)) 6760 stream_runservice(stp); 6761 6762 /* 6763 * Set HIPRI flag if message is priority. 6764 */ 6765 if (type >= QPCTL) 6766 flg = MSG_HIPRI; 6767 else 6768 flg = MSG_BAND; 6769 6770 /* 6771 * First process PROTO or PCPROTO blocks, if any. 6772 */ 6773 if (mctl->maxlen >= 0 && type != M_DATA) { 6774 size_t n, bcnt; 6775 char *ubuf; 6776 6777 bcnt = mctl->maxlen; 6778 ubuf = mctl->buf; 6779 while (bp != NULL && bp->b_datap->db_type != M_DATA) { 6780 if ((n = MIN(bcnt, bp->b_wptr - bp->b_rptr)) != 0 && 6781 copyout(bp->b_rptr, ubuf, n)) { 6782 error = EFAULT; 6783 mutex_enter(&stp->sd_lock); 6784 /* 6785 * clear stream head pri flag based on 6786 * first message type 6787 */ 6788 if (type >= QPCTL) { 6789 ASSERT(type == M_PCPROTO); 6790 stp->sd_flag &= ~STRPRI; 6791 } 6792 more = 0; 6793 freemsg(bp); 6794 goto getmout; 6795 } 6796 ubuf += n; 6797 bp->b_rptr += n; 6798 if (bp->b_rptr >= bp->b_wptr) { 6799 nbp = bp; 6800 bp = bp->b_cont; 6801 freeb(nbp); 6802 } 6803 ASSERT(n <= bcnt); 6804 bcnt -= n; 6805 if (bcnt == 0) 6806 break; 6807 } 6808 mctl->len = mctl->maxlen - bcnt; 6809 } else 6810 mctl->len = -1; 6811 6812 if (bp && bp->b_datap->db_type != M_DATA) { 6813 /* 6814 * More PROTO blocks in msg. 6815 */ 6816 more |= MORECTL; 6817 savemp = bp; 6818 while (bp && bp->b_datap->db_type != M_DATA) { 6819 savemptail = bp; 6820 bp = bp->b_cont; 6821 } 6822 savemptail->b_cont = NULL; 6823 } 6824 6825 /* 6826 * Now process DATA blocks, if any. 6827 */ 6828 if (mdata->maxlen >= 0 && bp) { 6829 /* 6830 * struiocopyout will consume a potential zero-length 6831 * M_DATA even if uio_resid is zero. 6832 */ 6833 size_t oldresid = uiop->uio_resid; 6834 6835 bp = struiocopyout(bp, uiop, &error); 6836 if (error != 0) { 6837 mutex_enter(&stp->sd_lock); 6838 /* 6839 * clear stream head hi pri flag based on 6840 * first message 6841 */ 6842 if (type >= QPCTL) { 6843 ASSERT(type == M_PCPROTO); 6844 stp->sd_flag &= ~STRPRI; 6845 } 6846 more = 0; 6847 freemsg(savemp); 6848 goto getmout; 6849 } 6850 /* 6851 * (pr == 1) indicates a partial read. 6852 */ 6853 if (oldresid > uiop->uio_resid) 6854 pr = 1; 6855 mdata->len = mdata->maxlen - uiop->uio_resid; 6856 } else 6857 mdata->len = -1; 6858 6859 if (bp) { /* more data blocks in msg */ 6860 more |= MOREDATA; 6861 if (savemp) 6862 savemptail->b_cont = bp; 6863 else 6864 savemp = bp; 6865 } 6866 6867 mutex_enter(&stp->sd_lock); 6868 if (savemp) { 6869 if (pr && (savemp->b_datap->db_type == M_DATA) && 6870 msgnodata(savemp)) { 6871 /* 6872 * Avoid queuing a zero-length tail part of 6873 * a message. pr=1 indicates that we read some of 6874 * the message. 6875 */ 6876 freemsg(savemp); 6877 more &= ~MOREDATA; 6878 /* 6879 * clear stream head hi pri flag based on 6880 * first message 6881 */ 6882 if (type >= QPCTL) { 6883 ASSERT(type == M_PCPROTO); 6884 stp->sd_flag &= ~STRPRI; 6885 } 6886 } else { 6887 savemp->b_band = pri; 6888 /* 6889 * If the first message was HIPRI and the one we're 6890 * putting back isn't, then clear STRPRI, otherwise 6891 * set STRPRI again. Note that we must set STRPRI 6892 * again since the flush logic in strrput_nondata() 6893 * may have cleared it while we had sd_lock dropped. 6894 */ 6895 if (type >= QPCTL) { 6896 ASSERT(type == M_PCPROTO); 6897 if (queclass(savemp) < QPCTL) 6898 stp->sd_flag &= ~STRPRI; 6899 else 6900 stp->sd_flag |= STRPRI; 6901 } else if (queclass(savemp) >= QPCTL) { 6902 /* 6903 * The first message was not a HIPRI message, 6904 * but the one we are about to putback is. 6905 * For simplicitly, we do not allow for HIPRI 6906 * messages to be embedded in the message 6907 * body, so just force it to same type as 6908 * first message. 6909 */ 6910 ASSERT(type == M_DATA || type == M_PROTO); 6911 ASSERT(savemp->b_datap->db_type == M_PCPROTO); 6912 savemp->b_datap->db_type = type; 6913 } 6914 if (mark != 0) { 6915 savemp->b_flag |= mark & ~_LASTMARK; 6916 if ((mark & _LASTMARK) && 6917 (stp->sd_mark == NULL)) { 6918 /* 6919 * If another marked message arrived 6920 * while sd_lock was not held sd_mark 6921 * would be non-NULL. 6922 */ 6923 stp->sd_mark = savemp; 6924 } 6925 } 6926 putback(stp, q, savemp, pri); 6927 } 6928 } else { 6929 /* 6930 * The complete message was consumed. 6931 * 6932 * If another M_PCPROTO arrived while sd_lock was not held 6933 * it would have been discarded since STRPRI was still set. 6934 * 6935 * Move the MSG*MARKNEXT information 6936 * to the stream head just in case 6937 * the read queue becomes empty. 6938 * clear stream head hi pri flag based on 6939 * first message 6940 * 6941 * If the stream head was at the mark 6942 * (STRATMARK) before we dropped sd_lock above 6943 * and some data was consumed then we have 6944 * moved past the mark thus STRATMARK is 6945 * cleared. However, if a message arrived in 6946 * strrput during the copyout above causing 6947 * STRATMARK to be set we can not clear that 6948 * flag. 6949 */ 6950 if (type >= QPCTL) { 6951 ASSERT(type == M_PCPROTO); 6952 stp->sd_flag &= ~STRPRI; 6953 } 6954 if (mark & (MSGMARKNEXT|MSGNOTMARKNEXT|MSGMARK)) { 6955 if (mark & MSGMARKNEXT) { 6956 stp->sd_flag &= ~STRNOTATMARK; 6957 stp->sd_flag |= STRATMARK; 6958 } else if (mark & MSGNOTMARKNEXT) { 6959 stp->sd_flag &= ~STRATMARK; 6960 stp->sd_flag |= STRNOTATMARK; 6961 } else { 6962 stp->sd_flag &= ~(STRATMARK|STRNOTATMARK); 6963 } 6964 } else if (pr && (old_sd_flag & STRATMARK)) { 6965 stp->sd_flag &= ~STRATMARK; 6966 } 6967 } 6968 6969 *flagsp = flg; 6970 *prip = pri; 6971 6972 /* 6973 * Getmsg cleanup processing - if the state of the queue has changed 6974 * some signals may need to be sent and/or poll awakened. 6975 */ 6976 getmout: 6977 qbackenable(q, pri); 6978 6979 /* 6980 * We dropped the stream head lock above. Send all M_SIG messages 6981 * before processing stream head for SIGPOLL messages. 6982 */ 6983 ASSERT(MUTEX_HELD(&stp->sd_lock)); 6984 while ((bp = q->q_first) != NULL && 6985 (bp->b_datap->db_type == M_SIG)) { 6986 /* 6987 * sd_lock is held so the content of the read queue can not 6988 * change. 6989 */ 6990 bp = getq(q); 6991 ASSERT(bp != NULL && bp->b_datap->db_type == M_SIG); 6992 6993 strsignal_nolock(stp, *bp->b_rptr, bp->b_band); 6994 mutex_exit(&stp->sd_lock); 6995 freemsg(bp); 6996 if (STREAM_NEEDSERVICE(stp)) 6997 stream_runservice(stp); 6998 mutex_enter(&stp->sd_lock); 6999 } 7000 7001 /* 7002 * stream head cannot change while we make the determination 7003 * whether or not to send a signal. Drop the flag to allow strrput 7004 * to send firstmsgsigs again. 7005 */ 7006 stp->sd_flag &= ~STRGETINPROG; 7007 7008 /* 7009 * If the type of message at the front of the queue changed 7010 * due to the receive the appropriate signals and pollwakeup events 7011 * are generated. The type of changes are: 7012 * Processed a hipri message, q_first is not hipri. 7013 * Processed a band X message, and q_first is band Y. 7014 * The generated signals and pollwakeups are identical to what 7015 * strrput() generates should the message that is now on q_first 7016 * arrive to an empty read queue. 7017 * 7018 * Note: only strrput will send a signal for a hipri message. 7019 */ 7020 if ((bp = q->q_first) != NULL && !(stp->sd_flag & STRPRI)) { 7021 strsigset_t signals = 0; 7022 strpollset_t pollwakeups = 0; 7023 7024 if (flg & MSG_HIPRI) { 7025 /* 7026 * Removed a hipri message. Regular data at 7027 * the front of the queue. 7028 */ 7029 if (bp->b_band == 0) { 7030 signals = S_INPUT | S_RDNORM; 7031 pollwakeups = POLLIN | POLLRDNORM; 7032 } else { 7033 signals = S_INPUT | S_RDBAND; 7034 pollwakeups = POLLIN | POLLRDBAND; 7035 } 7036 } else if (pri != bp->b_band) { 7037 /* 7038 * The band is different for the new q_first. 7039 */ 7040 if (bp->b_band == 0) { 7041 signals = S_RDNORM; 7042 pollwakeups = POLLIN | POLLRDNORM; 7043 } else { 7044 signals = S_RDBAND; 7045 pollwakeups = POLLIN | POLLRDBAND; 7046 } 7047 } 7048 7049 if (pollwakeups != 0) { 7050 if (pollwakeups == (POLLIN | POLLRDNORM)) { 7051 if (!(stp->sd_rput_opt & SR_POLLIN)) 7052 goto no_pollwake; 7053 stp->sd_rput_opt &= ~SR_POLLIN; 7054 } 7055 mutex_exit(&stp->sd_lock); 7056 pollwakeup(&stp->sd_pollist, pollwakeups); 7057 mutex_enter(&stp->sd_lock); 7058 } 7059 no_pollwake: 7060 7061 if (stp->sd_sigflags & signals) 7062 strsendsig(stp->sd_siglist, signals, bp->b_band, 0); 7063 } 7064 mutex_exit(&stp->sd_lock); 7065 7066 rvp->r_val1 = more; 7067 return (error); 7068 #undef _LASTMARK 7069 } 7070 7071 /* 7072 * Get the next message from the read queue. If the message is 7073 * priority, STRPRI will have been set by strrput(). This flag 7074 * should be reset only when the entire message at the front of the 7075 * queue as been consumed. 7076 * 7077 * If uiop is NULL all data is returned in mctlp. 7078 * Note that a NULL uiop implies that FNDELAY and FNONBLOCK are assumed 7079 * not enabled. 7080 * The timeout parameter is in milliseconds; -1 for infinity. 7081 * This routine handles the consolidation private flags: 7082 * MSG_IGNERROR Ignore any stream head error except STPLEX. 7083 * MSG_DELAYERROR Defer the error check until the queue is empty. 7084 * MSG_HOLDSIG Hold signals while waiting for data. 7085 * MSG_IPEEK Only peek at messages. 7086 * MSG_DISCARDTAIL Discard the tail M_DATA part of the message 7087 * that doesn't fit. 7088 * MSG_NOMARK If the message is marked leave it on the queue. 7089 * 7090 * NOTE: strgetmsg and kstrgetmsg have much of the logic in common. 7091 */ 7092 int 7093 kstrgetmsg( 7094 struct vnode *vp, 7095 mblk_t **mctlp, 7096 struct uio *uiop, 7097 unsigned char *prip, 7098 int *flagsp, 7099 clock_t timout, 7100 rval_t *rvp) 7101 { 7102 struct stdata *stp; 7103 mblk_t *bp, *nbp; 7104 mblk_t *savemp = NULL; 7105 mblk_t *savemptail = NULL; 7106 int flags; 7107 uint_t old_sd_flag; 7108 int flg; 7109 int more = 0; 7110 int error = 0; 7111 char first = 1; 7112 uint_t mark; /* Contains MSG*MARK and _LASTMARK */ 7113 #define _LASTMARK 0x8000 /* Distinct from MSG*MARK */ 7114 unsigned char pri = 0; 7115 queue_t *q; 7116 int pr = 0; /* Partial read successful */ 7117 unsigned char type; 7118 7119 TRACE_1(TR_FAC_STREAMS_FR, TR_KSTRGETMSG_ENTER, 7120 "kstrgetmsg:%p", vp); 7121 7122 ASSERT(vp->v_stream); 7123 stp = vp->v_stream; 7124 rvp->r_val1 = 0; 7125 7126 mutex_enter(&stp->sd_lock); 7127 7128 if ((error = i_straccess(stp, JCREAD)) != 0) { 7129 mutex_exit(&stp->sd_lock); 7130 return (error); 7131 } 7132 7133 flags = *flagsp; 7134 if (stp->sd_flag & (STRDERR|STPLEX)) { 7135 if ((stp->sd_flag & STPLEX) || 7136 (flags & (MSG_IGNERROR|MSG_DELAYERROR)) == 0) { 7137 error = strgeterr(stp, STRDERR|STPLEX, 7138 (flags & MSG_IPEEK)); 7139 if (error != 0) { 7140 mutex_exit(&stp->sd_lock); 7141 return (error); 7142 } 7143 } 7144 } 7145 mutex_exit(&stp->sd_lock); 7146 7147 switch (flags & (MSG_HIPRI|MSG_ANY|MSG_BAND)) { 7148 case MSG_HIPRI: 7149 if (*prip != 0) 7150 return (EINVAL); 7151 break; 7152 7153 case MSG_ANY: 7154 case MSG_BAND: 7155 break; 7156 7157 default: 7158 return (EINVAL); 7159 } 7160 7161 retry: 7162 q = _RD(stp->sd_wrq); 7163 mutex_enter(&stp->sd_lock); 7164 old_sd_flag = stp->sd_flag; 7165 mark = 0; 7166 for (;;) { 7167 int done = 0; 7168 int waitflag; 7169 int fmode; 7170 mblk_t *q_first = q->q_first; 7171 7172 /* 7173 * This section of the code operates just like the code 7174 * in strgetmsg(). There is a comment there about what 7175 * is going on here. 7176 */ 7177 if (!(flags & (MSG_HIPRI|MSG_BAND))) { 7178 /* Asking for normal, band0 data */ 7179 bp = strget(stp, q, uiop, first, &error); 7180 ASSERT(MUTEX_HELD(&stp->sd_lock)); 7181 if (bp != NULL) { 7182 if (DB_TYPE(bp) == M_SIG) { 7183 strsignal_nolock(stp, *bp->b_rptr, 7184 bp->b_band); 7185 freemsg(bp); 7186 continue; 7187 } else { 7188 break; 7189 } 7190 } 7191 if (error != 0) { 7192 goto getmout; 7193 } 7194 /* 7195 * We can't depend on the value of STRPRI here because 7196 * the stream head may be in transit. Therefore, we 7197 * must look at the type of the first message to 7198 * determine if a high priority messages is waiting 7199 */ 7200 } else if ((flags & MSG_HIPRI) && q_first != NULL && 7201 DB_TYPE(q_first) >= QPCTL && 7202 (bp = getq_noenab(q, 0)) != NULL) { 7203 ASSERT(DB_TYPE(bp) >= QPCTL); 7204 break; 7205 } else if ((flags & MSG_BAND) && q_first != NULL && 7206 ((q_first->b_band >= *prip) || DB_TYPE(q_first) >= QPCTL) && 7207 (bp = getq_noenab(q, 0)) != NULL) { 7208 /* 7209 * Asked for at least band "prip" and got either at 7210 * least that band or a hipri message. 7211 */ 7212 ASSERT(bp->b_band >= *prip || DB_TYPE(bp) >= QPCTL); 7213 if (DB_TYPE(bp) == M_SIG) { 7214 strsignal_nolock(stp, *bp->b_rptr, bp->b_band); 7215 freemsg(bp); 7216 continue; 7217 } else { 7218 break; 7219 } 7220 } 7221 7222 /* No data. Time to sleep? */ 7223 qbackenable(q, 0); 7224 7225 /* 7226 * Delayed error notification? 7227 */ 7228 if ((stp->sd_flag & (STRDERR|STPLEX)) && 7229 (flags & (MSG_IGNERROR|MSG_DELAYERROR)) == MSG_DELAYERROR) { 7230 error = strgeterr(stp, STRDERR|STPLEX, 7231 (flags & MSG_IPEEK)); 7232 if (error != 0) { 7233 mutex_exit(&stp->sd_lock); 7234 return (error); 7235 } 7236 } 7237 7238 /* 7239 * If STRHUP or STREOF, return 0 length control and data. 7240 * If a read(fd,buf,0) has been done, do not sleep, just 7241 * return. 7242 * 7243 * If mctlp == NULL and uiop == NULL, then the code will 7244 * do the strwaitq. This is an understood way of saying 7245 * sleep "polling" until a message is received. 7246 */ 7247 if ((stp->sd_flag & (STRHUP|STREOF)) || 7248 (uiop != NULL && uiop->uio_resid == 0)) { 7249 if (mctlp != NULL) 7250 *mctlp = NULL; 7251 *flagsp = 0; 7252 mutex_exit(&stp->sd_lock); 7253 return (0); 7254 } 7255 7256 waitflag = GETWAIT; 7257 if (flags & 7258 (MSG_HOLDSIG|MSG_IGNERROR|MSG_IPEEK|MSG_DELAYERROR)) { 7259 if (flags & MSG_HOLDSIG) 7260 waitflag |= STR_NOSIG; 7261 if (flags & MSG_IGNERROR) 7262 waitflag |= STR_NOERROR; 7263 if (flags & MSG_IPEEK) 7264 waitflag |= STR_PEEK; 7265 if (flags & MSG_DELAYERROR) 7266 waitflag |= STR_DELAYERR; 7267 } 7268 if (uiop != NULL) 7269 fmode = uiop->uio_fmode; 7270 else 7271 fmode = 0; 7272 7273 TRACE_2(TR_FAC_STREAMS_FR, TR_KSTRGETMSG_WAIT, 7274 "kstrgetmsg calls strwaitq:%p, %p", 7275 vp, uiop); 7276 if (((error = strwaitq(stp, waitflag, (ssize_t)0, 7277 fmode, timout, &done))) != 0 || done) { 7278 TRACE_2(TR_FAC_STREAMS_FR, TR_KSTRGETMSG_DONE, 7279 "kstrgetmsg error or done:%p, %p", 7280 vp, uiop); 7281 mutex_exit(&stp->sd_lock); 7282 return (error); 7283 } 7284 TRACE_2(TR_FAC_STREAMS_FR, TR_KSTRGETMSG_AWAKE, 7285 "kstrgetmsg awakes:%p, %p", vp, uiop); 7286 if ((error = i_straccess(stp, JCREAD)) != 0) { 7287 mutex_exit(&stp->sd_lock); 7288 return (error); 7289 } 7290 first = 0; 7291 } 7292 ASSERT(bp != NULL); 7293 /* 7294 * Extract any mark information. If the message is not completely 7295 * consumed this information will be put in the mblk 7296 * that is putback. 7297 * If MSGMARKNEXT is set and the message is completely consumed 7298 * the STRATMARK flag will be set below. Likewise, if 7299 * MSGNOTMARKNEXT is set and the message is 7300 * completely consumed STRNOTATMARK will be set. 7301 */ 7302 mark = bp->b_flag & (MSGMARK | MSGMARKNEXT | MSGNOTMARKNEXT); 7303 ASSERT((mark & (MSGMARKNEXT|MSGNOTMARKNEXT)) != 7304 (MSGMARKNEXT|MSGNOTMARKNEXT)); 7305 pri = bp->b_band; 7306 if (mark != 0) { 7307 /* 7308 * If the caller doesn't want the mark return. 7309 * Used to implement MSG_WAITALL in sockets. 7310 */ 7311 if (flags & MSG_NOMARK) { 7312 putback(stp, q, bp, pri); 7313 qbackenable(q, pri); 7314 mutex_exit(&stp->sd_lock); 7315 return (EWOULDBLOCK); 7316 } 7317 if (bp == stp->sd_mark) { 7318 mark |= _LASTMARK; 7319 stp->sd_mark = NULL; 7320 } 7321 } 7322 7323 /* 7324 * keep track of the first message type 7325 */ 7326 type = bp->b_datap->db_type; 7327 7328 if (bp->b_datap->db_type == M_PASSFP) { 7329 if ((mark & _LASTMARK) && (stp->sd_mark == NULL)) 7330 stp->sd_mark = bp; 7331 bp->b_flag |= mark & ~_LASTMARK; 7332 putback(stp, q, bp, pri); 7333 qbackenable(q, pri); 7334 mutex_exit(&stp->sd_lock); 7335 return (EBADMSG); 7336 } 7337 ASSERT(type != M_SIG); 7338 7339 if (flags & MSG_IPEEK) { 7340 /* 7341 * Clear any struioflag - we do the uiomove over again 7342 * when peeking since it simplifies the code. 7343 * 7344 * Dup the message and put the original back on the queue. 7345 * If dupmsg() fails, try again with copymsg() to see if 7346 * there is indeed a shortage of memory. dupmsg() may fail 7347 * if db_ref in any of the messages reaches its limit. 7348 */ 7349 7350 if ((nbp = dupmsg(bp)) == NULL && (nbp = copymsg(bp)) == NULL) { 7351 /* 7352 * Restore the state of the stream head since we 7353 * need to drop sd_lock (strwaitbuf is sleeping). 7354 */ 7355 size_t size = msgdsize(bp); 7356 7357 if ((mark & _LASTMARK) && (stp->sd_mark == NULL)) 7358 stp->sd_mark = bp; 7359 bp->b_flag |= mark & ~_LASTMARK; 7360 putback(stp, q, bp, pri); 7361 mutex_exit(&stp->sd_lock); 7362 error = strwaitbuf(size, BPRI_HI); 7363 if (error) { 7364 /* 7365 * There is no net change to the queue thus 7366 * no need to qbackenable. 7367 */ 7368 return (error); 7369 } 7370 goto retry; 7371 } 7372 7373 if ((mark & _LASTMARK) && (stp->sd_mark == NULL)) 7374 stp->sd_mark = bp; 7375 bp->b_flag |= mark & ~_LASTMARK; 7376 putback(stp, q, bp, pri); 7377 bp = nbp; 7378 } 7379 7380 /* 7381 * Set this flag so strrput will not generate signals. Need to 7382 * make sure this flag is cleared before leaving this routine 7383 * else signals will stop being sent. 7384 */ 7385 stp->sd_flag |= STRGETINPROG; 7386 mutex_exit(&stp->sd_lock); 7387 7388 if ((stp->sd_rputdatafunc != NULL) && (DB_TYPE(bp) == M_DATA)) { 7389 mblk_t *tmp, *prevmp; 7390 7391 /* 7392 * Put first non-data mblk back to stream head and 7393 * cut the mblk chain so sd_rputdatafunc only sees 7394 * M_DATA mblks. We can skip the first mblk since it 7395 * is M_DATA according to the condition above. 7396 */ 7397 for (prevmp = bp, tmp = bp->b_cont; tmp != NULL; 7398 prevmp = tmp, tmp = tmp->b_cont) { 7399 if (DB_TYPE(tmp) != M_DATA) { 7400 prevmp->b_cont = NULL; 7401 mutex_enter(&stp->sd_lock); 7402 putback(stp, q, tmp, tmp->b_band); 7403 mutex_exit(&stp->sd_lock); 7404 break; 7405 } 7406 } 7407 7408 bp = (stp->sd_rputdatafunc)(stp->sd_vnode, bp, 7409 NULL, NULL, NULL, NULL); 7410 7411 if (bp == NULL) 7412 goto retry; 7413 } 7414 7415 if (STREAM_NEEDSERVICE(stp)) 7416 stream_runservice(stp); 7417 7418 /* 7419 * Set HIPRI flag if message is priority. 7420 */ 7421 if (type >= QPCTL) 7422 flg = MSG_HIPRI; 7423 else 7424 flg = MSG_BAND; 7425 7426 /* 7427 * First process PROTO or PCPROTO blocks, if any. 7428 */ 7429 if (mctlp != NULL && type != M_DATA) { 7430 mblk_t *nbp; 7431 7432 *mctlp = bp; 7433 while (bp->b_cont && bp->b_cont->b_datap->db_type != M_DATA) 7434 bp = bp->b_cont; 7435 nbp = bp->b_cont; 7436 bp->b_cont = NULL; 7437 bp = nbp; 7438 } 7439 7440 if (bp && bp->b_datap->db_type != M_DATA) { 7441 /* 7442 * More PROTO blocks in msg. Will only happen if mctlp is NULL. 7443 */ 7444 more |= MORECTL; 7445 savemp = bp; 7446 while (bp && bp->b_datap->db_type != M_DATA) { 7447 savemptail = bp; 7448 bp = bp->b_cont; 7449 } 7450 savemptail->b_cont = NULL; 7451 } 7452 7453 /* 7454 * Now process DATA blocks, if any. 7455 */ 7456 if (uiop == NULL) { 7457 /* Append data to tail of mctlp */ 7458 7459 if (mctlp != NULL) { 7460 mblk_t **mpp = mctlp; 7461 7462 while (*mpp != NULL) 7463 mpp = &((*mpp)->b_cont); 7464 *mpp = bp; 7465 bp = NULL; 7466 } 7467 } else if (uiop->uio_resid >= 0 && bp) { 7468 size_t oldresid = uiop->uio_resid; 7469 7470 /* 7471 * If a streams message is likely to consist 7472 * of many small mblks, it is pulled up into 7473 * one continuous chunk of memory. 7474 * The size of the first mblk may be bogus because 7475 * successive read() calls on the socket reduce 7476 * the size of this mblk until it is exhausted 7477 * and then the code walks on to the next. Thus 7478 * the size of the mblk may not be the original size 7479 * that was passed up, it's simply a remainder 7480 * and hence can be very small without any 7481 * implication that the packet is badly fragmented. 7482 * So the size of the possible second mblk is 7483 * used to spot a badly fragmented packet. 7484 * see longer comment at top of page 7485 * by mblk_pull_len declaration. 7486 */ 7487 7488 if (bp->b_cont != NULL && MBLKL(bp->b_cont) < mblk_pull_len) { 7489 (void) pullupmsg(bp, -1); 7490 } 7491 7492 bp = struiocopyout(bp, uiop, &error); 7493 if (error != 0) { 7494 if (mctlp != NULL) { 7495 freemsg(*mctlp); 7496 *mctlp = NULL; 7497 } else 7498 freemsg(savemp); 7499 mutex_enter(&stp->sd_lock); 7500 /* 7501 * clear stream head hi pri flag based on 7502 * first message 7503 */ 7504 if (!(flags & MSG_IPEEK) && (type >= QPCTL)) { 7505 ASSERT(type == M_PCPROTO); 7506 stp->sd_flag &= ~STRPRI; 7507 } 7508 more = 0; 7509 goto getmout; 7510 } 7511 /* 7512 * (pr == 1) indicates a partial read. 7513 */ 7514 if (oldresid > uiop->uio_resid) 7515 pr = 1; 7516 } 7517 7518 if (bp) { /* more data blocks in msg */ 7519 more |= MOREDATA; 7520 if (savemp) 7521 savemptail->b_cont = bp; 7522 else 7523 savemp = bp; 7524 } 7525 7526 mutex_enter(&stp->sd_lock); 7527 if (savemp) { 7528 if (flags & (MSG_IPEEK|MSG_DISCARDTAIL)) { 7529 /* 7530 * When MSG_DISCARDTAIL is set or 7531 * when peeking discard any tail. When peeking this 7532 * is the tail of the dup that was copied out - the 7533 * message has already been putback on the queue. 7534 * Return MOREDATA to the caller even though the data 7535 * is discarded. This is used by sockets (to 7536 * set MSG_TRUNC). 7537 */ 7538 freemsg(savemp); 7539 if (!(flags & MSG_IPEEK) && (type >= QPCTL)) { 7540 ASSERT(type == M_PCPROTO); 7541 stp->sd_flag &= ~STRPRI; 7542 } 7543 } else if (pr && (savemp->b_datap->db_type == M_DATA) && 7544 msgnodata(savemp)) { 7545 /* 7546 * Avoid queuing a zero-length tail part of 7547 * a message. pr=1 indicates that we read some of 7548 * the message. 7549 */ 7550 freemsg(savemp); 7551 more &= ~MOREDATA; 7552 if (type >= QPCTL) { 7553 ASSERT(type == M_PCPROTO); 7554 stp->sd_flag &= ~STRPRI; 7555 } 7556 } else { 7557 savemp->b_band = pri; 7558 /* 7559 * If the first message was HIPRI and the one we're 7560 * putting back isn't, then clear STRPRI, otherwise 7561 * set STRPRI again. Note that we must set STRPRI 7562 * again since the flush logic in strrput_nondata() 7563 * may have cleared it while we had sd_lock dropped. 7564 */ 7565 7566 if (type >= QPCTL) { 7567 ASSERT(type == M_PCPROTO); 7568 if (queclass(savemp) < QPCTL) 7569 stp->sd_flag &= ~STRPRI; 7570 else 7571 stp->sd_flag |= STRPRI; 7572 } else if (queclass(savemp) >= QPCTL) { 7573 /* 7574 * The first message was not a HIPRI message, 7575 * but the one we are about to putback is. 7576 * For simplicitly, we do not allow for HIPRI 7577 * messages to be embedded in the message 7578 * body, so just force it to same type as 7579 * first message. 7580 */ 7581 ASSERT(type == M_DATA || type == M_PROTO); 7582 ASSERT(savemp->b_datap->db_type == M_PCPROTO); 7583 savemp->b_datap->db_type = type; 7584 } 7585 if (mark != 0) { 7586 if ((mark & _LASTMARK) && 7587 (stp->sd_mark == NULL)) { 7588 /* 7589 * If another marked message arrived 7590 * while sd_lock was not held sd_mark 7591 * would be non-NULL. 7592 */ 7593 stp->sd_mark = savemp; 7594 } 7595 savemp->b_flag |= mark & ~_LASTMARK; 7596 } 7597 putback(stp, q, savemp, pri); 7598 } 7599 } else if (!(flags & MSG_IPEEK)) { 7600 /* 7601 * The complete message was consumed. 7602 * 7603 * If another M_PCPROTO arrived while sd_lock was not held 7604 * it would have been discarded since STRPRI was still set. 7605 * 7606 * Move the MSG*MARKNEXT information 7607 * to the stream head just in case 7608 * the read queue becomes empty. 7609 * clear stream head hi pri flag based on 7610 * first message 7611 * 7612 * If the stream head was at the mark 7613 * (STRATMARK) before we dropped sd_lock above 7614 * and some data was consumed then we have 7615 * moved past the mark thus STRATMARK is 7616 * cleared. However, if a message arrived in 7617 * strrput during the copyout above causing 7618 * STRATMARK to be set we can not clear that 7619 * flag. 7620 * XXX A "perimeter" would help by single-threading strrput, 7621 * strread, strgetmsg and kstrgetmsg. 7622 */ 7623 if (type >= QPCTL) { 7624 ASSERT(type == M_PCPROTO); 7625 stp->sd_flag &= ~STRPRI; 7626 } 7627 if (mark & (MSGMARKNEXT|MSGNOTMARKNEXT|MSGMARK)) { 7628 if (mark & MSGMARKNEXT) { 7629 stp->sd_flag &= ~STRNOTATMARK; 7630 stp->sd_flag |= STRATMARK; 7631 } else if (mark & MSGNOTMARKNEXT) { 7632 stp->sd_flag &= ~STRATMARK; 7633 stp->sd_flag |= STRNOTATMARK; 7634 } else { 7635 stp->sd_flag &= ~(STRATMARK|STRNOTATMARK); 7636 } 7637 } else if (pr && (old_sd_flag & STRATMARK)) { 7638 stp->sd_flag &= ~STRATMARK; 7639 } 7640 } 7641 7642 *flagsp = flg; 7643 *prip = pri; 7644 7645 /* 7646 * Getmsg cleanup processing - if the state of the queue has changed 7647 * some signals may need to be sent and/or poll awakened. 7648 */ 7649 getmout: 7650 qbackenable(q, pri); 7651 7652 /* 7653 * We dropped the stream head lock above. Send all M_SIG messages 7654 * before processing stream head for SIGPOLL messages. 7655 */ 7656 ASSERT(MUTEX_HELD(&stp->sd_lock)); 7657 while ((bp = q->q_first) != NULL && 7658 (bp->b_datap->db_type == M_SIG)) { 7659 /* 7660 * sd_lock is held so the content of the read queue can not 7661 * change. 7662 */ 7663 bp = getq(q); 7664 ASSERT(bp != NULL && bp->b_datap->db_type == M_SIG); 7665 7666 strsignal_nolock(stp, *bp->b_rptr, bp->b_band); 7667 mutex_exit(&stp->sd_lock); 7668 freemsg(bp); 7669 if (STREAM_NEEDSERVICE(stp)) 7670 stream_runservice(stp); 7671 mutex_enter(&stp->sd_lock); 7672 } 7673 7674 /* 7675 * stream head cannot change while we make the determination 7676 * whether or not to send a signal. Drop the flag to allow strrput 7677 * to send firstmsgsigs again. 7678 */ 7679 stp->sd_flag &= ~STRGETINPROG; 7680 7681 /* 7682 * If the type of message at the front of the queue changed 7683 * due to the receive the appropriate signals and pollwakeup events 7684 * are generated. The type of changes are: 7685 * Processed a hipri message, q_first is not hipri. 7686 * Processed a band X message, and q_first is band Y. 7687 * The generated signals and pollwakeups are identical to what 7688 * strrput() generates should the message that is now on q_first 7689 * arrive to an empty read queue. 7690 * 7691 * Note: only strrput will send a signal for a hipri message. 7692 */ 7693 if ((bp = q->q_first) != NULL && !(stp->sd_flag & STRPRI)) { 7694 strsigset_t signals = 0; 7695 strpollset_t pollwakeups = 0; 7696 7697 if (flg & MSG_HIPRI) { 7698 /* 7699 * Removed a hipri message. Regular data at 7700 * the front of the queue. 7701 */ 7702 if (bp->b_band == 0) { 7703 signals = S_INPUT | S_RDNORM; 7704 pollwakeups = POLLIN | POLLRDNORM; 7705 } else { 7706 signals = S_INPUT | S_RDBAND; 7707 pollwakeups = POLLIN | POLLRDBAND; 7708 } 7709 } else if (pri != bp->b_band) { 7710 /* 7711 * The band is different for the new q_first. 7712 */ 7713 if (bp->b_band == 0) { 7714 signals = S_RDNORM; 7715 pollwakeups = POLLIN | POLLRDNORM; 7716 } else { 7717 signals = S_RDBAND; 7718 pollwakeups = POLLIN | POLLRDBAND; 7719 } 7720 } 7721 7722 if (pollwakeups != 0) { 7723 if (pollwakeups == (POLLIN | POLLRDNORM)) { 7724 if (!(stp->sd_rput_opt & SR_POLLIN)) 7725 goto no_pollwake; 7726 stp->sd_rput_opt &= ~SR_POLLIN; 7727 } 7728 mutex_exit(&stp->sd_lock); 7729 pollwakeup(&stp->sd_pollist, pollwakeups); 7730 mutex_enter(&stp->sd_lock); 7731 } 7732 no_pollwake: 7733 7734 if (stp->sd_sigflags & signals) 7735 strsendsig(stp->sd_siglist, signals, bp->b_band, 0); 7736 } 7737 mutex_exit(&stp->sd_lock); 7738 7739 rvp->r_val1 = more; 7740 return (error); 7741 #undef _LASTMARK 7742 } 7743 7744 /* 7745 * Put a message downstream. 7746 * 7747 * NOTE: strputmsg and kstrputmsg have much of the logic in common. 7748 */ 7749 int 7750 strputmsg( 7751 struct vnode *vp, 7752 struct strbuf *mctl, 7753 struct strbuf *mdata, 7754 unsigned char pri, 7755 int flag, 7756 int fmode) 7757 { 7758 struct stdata *stp; 7759 queue_t *wqp; 7760 mblk_t *mp; 7761 ssize_t msgsize; 7762 ssize_t rmin, rmax; 7763 int error; 7764 struct uio uios; 7765 struct uio *uiop = &uios; 7766 struct iovec iovs; 7767 int xpg4 = 0; 7768 7769 ASSERT(vp->v_stream); 7770 stp = vp->v_stream; 7771 wqp = stp->sd_wrq; 7772 7773 /* 7774 * If it is an XPG4 application, we need to send 7775 * SIGPIPE below 7776 */ 7777 7778 xpg4 = (flag & MSG_XPG4) ? 1 : 0; 7779 flag &= ~MSG_XPG4; 7780 7781 if (AU_AUDITING()) 7782 audit_strputmsg(vp, mctl, mdata, pri, flag, fmode); 7783 7784 mutex_enter(&stp->sd_lock); 7785 7786 if ((error = i_straccess(stp, JCWRITE)) != 0) { 7787 mutex_exit(&stp->sd_lock); 7788 return (error); 7789 } 7790 7791 if (stp->sd_flag & (STWRERR|STRHUP|STPLEX)) { 7792 error = strwriteable(stp, B_FALSE, xpg4); 7793 if (error != 0) { 7794 mutex_exit(&stp->sd_lock); 7795 return (error); 7796 } 7797 } 7798 7799 mutex_exit(&stp->sd_lock); 7800 7801 /* 7802 * Check for legal flag value. 7803 */ 7804 switch (flag) { 7805 case MSG_HIPRI: 7806 if ((mctl->len < 0) || (pri != 0)) 7807 return (EINVAL); 7808 break; 7809 case MSG_BAND: 7810 break; 7811 7812 default: 7813 return (EINVAL); 7814 } 7815 7816 TRACE_1(TR_FAC_STREAMS_FR, TR_STRPUTMSG_IN, 7817 "strputmsg in:stp %p", stp); 7818 7819 /* get these values from those cached in the stream head */ 7820 rmin = stp->sd_qn_minpsz; 7821 rmax = stp->sd_qn_maxpsz; 7822 7823 /* 7824 * Make sure ctl and data sizes together fall within the 7825 * limits of the max and min receive packet sizes and do 7826 * not exceed system limit. 7827 */ 7828 ASSERT((rmax >= 0) || (rmax == INFPSZ)); 7829 if (rmax == 0) { 7830 return (ERANGE); 7831 } 7832 /* 7833 * Use the MAXIMUM of sd_maxblk and q_maxpsz. 7834 * Needed to prevent partial failures in the strmakedata loop. 7835 */ 7836 if (stp->sd_maxblk != INFPSZ && rmax != INFPSZ && rmax < stp->sd_maxblk) 7837 rmax = stp->sd_maxblk; 7838 7839 if ((msgsize = mdata->len) < 0) { 7840 msgsize = 0; 7841 rmin = 0; /* no range check for NULL data part */ 7842 } 7843 if ((msgsize < rmin) || 7844 ((msgsize > rmax) && (rmax != INFPSZ)) || 7845 (mctl->len > strctlsz)) { 7846 return (ERANGE); 7847 } 7848 7849 /* 7850 * Setup uio and iov for data part 7851 */ 7852 iovs.iov_base = mdata->buf; 7853 iovs.iov_len = msgsize; 7854 uios.uio_iov = &iovs; 7855 uios.uio_iovcnt = 1; 7856 uios.uio_loffset = 0; 7857 uios.uio_segflg = UIO_USERSPACE; 7858 uios.uio_fmode = fmode; 7859 uios.uio_extflg = UIO_COPY_DEFAULT; 7860 uios.uio_resid = msgsize; 7861 uios.uio_offset = 0; 7862 7863 /* Ignore flow control in strput for HIPRI */ 7864 if (flag & MSG_HIPRI) 7865 flag |= MSG_IGNFLOW; 7866 7867 for (;;) { 7868 int done = 0; 7869 7870 /* 7871 * strput will always free the ctl mblk - even when strput 7872 * fails. 7873 */ 7874 if ((error = strmakectl(mctl, flag, fmode, &mp)) != 0) { 7875 TRACE_3(TR_FAC_STREAMS_FR, TR_STRPUTMSG_OUT, 7876 "strputmsg out:stp %p out %d error %d", 7877 stp, 1, error); 7878 return (error); 7879 } 7880 /* 7881 * Verify that the whole message can be transferred by 7882 * strput. 7883 */ 7884 ASSERT(stp->sd_maxblk == INFPSZ || 7885 stp->sd_maxblk >= mdata->len); 7886 7887 msgsize = mdata->len; 7888 error = strput(stp, mp, uiop, &msgsize, 0, pri, flag); 7889 mdata->len = msgsize; 7890 7891 if (error == 0) 7892 break; 7893 7894 if (error != EWOULDBLOCK) 7895 goto out; 7896 7897 mutex_enter(&stp->sd_lock); 7898 /* 7899 * Check for a missed wakeup. 7900 * Needed since strput did not hold sd_lock across 7901 * the canputnext. 7902 */ 7903 if (bcanputnext(wqp, pri)) { 7904 /* Try again */ 7905 mutex_exit(&stp->sd_lock); 7906 continue; 7907 } 7908 TRACE_2(TR_FAC_STREAMS_FR, TR_STRPUTMSG_WAIT, 7909 "strputmsg wait:stp %p waits pri %d", stp, pri); 7910 if (((error = strwaitq(stp, WRITEWAIT, (ssize_t)0, fmode, -1, 7911 &done)) != 0) || done) { 7912 mutex_exit(&stp->sd_lock); 7913 TRACE_3(TR_FAC_STREAMS_FR, TR_STRPUTMSG_OUT, 7914 "strputmsg out:q %p out %d error %d", 7915 stp, 0, error); 7916 return (error); 7917 } 7918 TRACE_1(TR_FAC_STREAMS_FR, TR_STRPUTMSG_WAKE, 7919 "strputmsg wake:stp %p wakes", stp); 7920 if ((error = i_straccess(stp, JCWRITE)) != 0) { 7921 mutex_exit(&stp->sd_lock); 7922 return (error); 7923 } 7924 mutex_exit(&stp->sd_lock); 7925 } 7926 out: 7927 /* 7928 * For historic reasons, applications expect EAGAIN 7929 * when data mblk could not be allocated. so change 7930 * ENOMEM back to EAGAIN 7931 */ 7932 if (error == ENOMEM) 7933 error = EAGAIN; 7934 TRACE_3(TR_FAC_STREAMS_FR, TR_STRPUTMSG_OUT, 7935 "strputmsg out:stp %p out %d error %d", stp, 2, error); 7936 return (error); 7937 } 7938 7939 /* 7940 * Put a message downstream. 7941 * Can send only an M_PROTO/M_PCPROTO by passing in a NULL uiop. 7942 * The fmode flag (NDELAY, NONBLOCK) is the or of the flags in the uio 7943 * and the fmode parameter. 7944 * 7945 * This routine handles the consolidation private flags: 7946 * MSG_IGNERROR Ignore any stream head error except STPLEX. 7947 * MSG_HOLDSIG Hold signals while waiting for data. 7948 * MSG_IGNFLOW Don't check streams flow control. 7949 * 7950 * NOTE: strputmsg and kstrputmsg have much of the logic in common. 7951 */ 7952 int 7953 kstrputmsg( 7954 struct vnode *vp, 7955 mblk_t *mctl, 7956 struct uio *uiop, 7957 ssize_t msgsize, 7958 unsigned char pri, 7959 int flag, 7960 int fmode) 7961 { 7962 struct stdata *stp; 7963 queue_t *wqp; 7964 ssize_t rmin, rmax; 7965 int error; 7966 7967 ASSERT(vp->v_stream); 7968 stp = vp->v_stream; 7969 wqp = stp->sd_wrq; 7970 if (AU_AUDITING()) 7971 audit_strputmsg(vp, NULL, NULL, pri, flag, fmode); 7972 if (mctl == NULL) 7973 return (EINVAL); 7974 7975 mutex_enter(&stp->sd_lock); 7976 7977 if ((error = i_straccess(stp, JCWRITE)) != 0) { 7978 mutex_exit(&stp->sd_lock); 7979 freemsg(mctl); 7980 return (error); 7981 } 7982 7983 if ((stp->sd_flag & STPLEX) || !(flag & MSG_IGNERROR)) { 7984 if (stp->sd_flag & (STWRERR|STRHUP|STPLEX)) { 7985 error = strwriteable(stp, B_FALSE, B_TRUE); 7986 if (error != 0) { 7987 mutex_exit(&stp->sd_lock); 7988 freemsg(mctl); 7989 return (error); 7990 } 7991 } 7992 } 7993 7994 mutex_exit(&stp->sd_lock); 7995 7996 /* 7997 * Check for legal flag value. 7998 */ 7999 switch (flag & (MSG_HIPRI|MSG_BAND|MSG_ANY)) { 8000 case MSG_HIPRI: 8001 if (pri != 0) { 8002 freemsg(mctl); 8003 return (EINVAL); 8004 } 8005 break; 8006 case MSG_BAND: 8007 break; 8008 default: 8009 freemsg(mctl); 8010 return (EINVAL); 8011 } 8012 8013 TRACE_1(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_IN, 8014 "kstrputmsg in:stp %p", stp); 8015 8016 /* get these values from those cached in the stream head */ 8017 rmin = stp->sd_qn_minpsz; 8018 rmax = stp->sd_qn_maxpsz; 8019 8020 /* 8021 * Make sure ctl and data sizes together fall within the 8022 * limits of the max and min receive packet sizes and do 8023 * not exceed system limit. 8024 */ 8025 ASSERT((rmax >= 0) || (rmax == INFPSZ)); 8026 if (rmax == 0) { 8027 freemsg(mctl); 8028 return (ERANGE); 8029 } 8030 /* 8031 * Use the MAXIMUM of sd_maxblk and q_maxpsz. 8032 * Needed to prevent partial failures in the strmakedata loop. 8033 */ 8034 if (stp->sd_maxblk != INFPSZ && rmax != INFPSZ && rmax < stp->sd_maxblk) 8035 rmax = stp->sd_maxblk; 8036 8037 if (uiop == NULL) { 8038 msgsize = -1; 8039 rmin = -1; /* no range check for NULL data part */ 8040 } else { 8041 /* Use uio flags as well as the fmode parameter flags */ 8042 fmode |= uiop->uio_fmode; 8043 8044 if ((msgsize < rmin) || 8045 ((msgsize > rmax) && (rmax != INFPSZ))) { 8046 freemsg(mctl); 8047 return (ERANGE); 8048 } 8049 } 8050 8051 /* Ignore flow control in strput for HIPRI */ 8052 if (flag & MSG_HIPRI) 8053 flag |= MSG_IGNFLOW; 8054 8055 for (;;) { 8056 int done = 0; 8057 int waitflag; 8058 mblk_t *mp; 8059 8060 /* 8061 * strput will always free the ctl mblk - even when strput 8062 * fails. If MSG_IGNFLOW is set then any error returned 8063 * will cause us to break the loop, so we don't need a copy 8064 * of the message. If MSG_IGNFLOW is not set, then we can 8065 * get hit by flow control and be forced to try again. In 8066 * this case we need to have a copy of the message. We 8067 * do this using copymsg since the message may get modified 8068 * by something below us. 8069 * 8070 * We've observed that many TPI providers do not check db_ref 8071 * on the control messages but blindly reuse them for the 8072 * T_OK_ACK/T_ERROR_ACK. Thus using copymsg is more 8073 * friendly to such providers than using dupmsg. Also, note 8074 * that sockfs uses MSG_IGNFLOW for all TPI control messages. 8075 * Only data messages are subject to flow control, hence 8076 * subject to this copymsg. 8077 */ 8078 if (flag & MSG_IGNFLOW) { 8079 mp = mctl; 8080 mctl = NULL; 8081 } else { 8082 do { 8083 /* 8084 * If a message has a free pointer, the message 8085 * must be dupmsg to maintain this pointer. 8086 * Code using this facility must be sure 8087 * that modules below will not change the 8088 * contents of the dblk without checking db_ref 8089 * first. If db_ref is > 1, then the module 8090 * needs to do a copymsg first. Otherwise, 8091 * the contents of the dblk may become 8092 * inconsistent because the freesmg/freeb below 8093 * may end up calling atomic_add_32_nv. 8094 * The atomic_add_32_nv in freeb (accessing 8095 * all of db_ref, db_type, db_flags, and 8096 * db_struioflag) does not prevent other threads 8097 * from concurrently trying to modify e.g. 8098 * db_type. 8099 */ 8100 if (mctl->b_datap->db_frtnp != NULL) 8101 mp = dupmsg(mctl); 8102 else 8103 mp = copymsg(mctl); 8104 8105 if (mp != NULL) 8106 break; 8107 8108 error = strwaitbuf(msgdsize(mctl), BPRI_MED); 8109 if (error) { 8110 freemsg(mctl); 8111 return (error); 8112 } 8113 } while (mp == NULL); 8114 } 8115 /* 8116 * Verify that all of msgsize can be transferred by 8117 * strput. 8118 */ 8119 ASSERT(stp->sd_maxblk == INFPSZ || stp->sd_maxblk >= msgsize); 8120 error = strput(stp, mp, uiop, &msgsize, 0, pri, flag); 8121 if (error == 0) 8122 break; 8123 8124 if (error != EWOULDBLOCK) 8125 goto out; 8126 8127 /* 8128 * IF MSG_IGNFLOW is set we should have broken out of loop 8129 * above. 8130 */ 8131 ASSERT(!(flag & MSG_IGNFLOW)); 8132 mutex_enter(&stp->sd_lock); 8133 /* 8134 * Check for a missed wakeup. 8135 * Needed since strput did not hold sd_lock across 8136 * the canputnext. 8137 */ 8138 if (bcanputnext(wqp, pri)) { 8139 /* Try again */ 8140 mutex_exit(&stp->sd_lock); 8141 continue; 8142 } 8143 TRACE_2(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_WAIT, 8144 "kstrputmsg wait:stp %p waits pri %d", stp, pri); 8145 8146 waitflag = WRITEWAIT; 8147 if (flag & (MSG_HOLDSIG|MSG_IGNERROR)) { 8148 if (flag & MSG_HOLDSIG) 8149 waitflag |= STR_NOSIG; 8150 if (flag & MSG_IGNERROR) 8151 waitflag |= STR_NOERROR; 8152 } 8153 if (((error = strwaitq(stp, waitflag, 8154 (ssize_t)0, fmode, -1, &done)) != 0) || done) { 8155 mutex_exit(&stp->sd_lock); 8156 TRACE_3(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_OUT, 8157 "kstrputmsg out:stp %p out %d error %d", 8158 stp, 0, error); 8159 freemsg(mctl); 8160 return (error); 8161 } 8162 TRACE_1(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_WAKE, 8163 "kstrputmsg wake:stp %p wakes", stp); 8164 if ((error = i_straccess(stp, JCWRITE)) != 0) { 8165 mutex_exit(&stp->sd_lock); 8166 freemsg(mctl); 8167 return (error); 8168 } 8169 mutex_exit(&stp->sd_lock); 8170 } 8171 out: 8172 freemsg(mctl); 8173 /* 8174 * For historic reasons, applications expect EAGAIN 8175 * when data mblk could not be allocated. so change 8176 * ENOMEM back to EAGAIN 8177 */ 8178 if (error == ENOMEM) 8179 error = EAGAIN; 8180 TRACE_3(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_OUT, 8181 "kstrputmsg out:stp %p out %d error %d", stp, 2, error); 8182 return (error); 8183 } 8184 8185 /* 8186 * Determines whether the necessary conditions are set on a stream 8187 * for it to be readable, writeable, or have exceptions. 8188 * 8189 * strpoll handles the consolidation private events: 8190 * POLLNOERR Do not return POLLERR even if there are stream 8191 * head errors. 8192 * Used by sockfs. 8193 * POLLRDDATA Do not return POLLIN unless at least one message on 8194 * the queue contains one or more M_DATA mblks. Thus 8195 * when this flag is set a queue with only 8196 * M_PROTO/M_PCPROTO mblks does not return POLLIN. 8197 * Used by sockfs to ignore T_EXDATA_IND messages. 8198 * 8199 * Note: POLLRDDATA assumes that synch streams only return messages with 8200 * an M_DATA attached (i.e. not messages consisting of only 8201 * an M_PROTO/M_PCPROTO part). 8202 */ 8203 int 8204 strpoll(struct stdata *stp, short events_arg, int anyyet, short *reventsp, 8205 struct pollhead **phpp) 8206 { 8207 int events = (ushort_t)events_arg; 8208 int retevents = 0; 8209 mblk_t *mp; 8210 qband_t *qbp; 8211 long sd_flags = stp->sd_flag; 8212 int headlocked = 0; 8213 8214 /* 8215 * For performance, a single 'if' tests for most possible edge 8216 * conditions in one shot 8217 */ 8218 if (sd_flags & (STPLEX | STRDERR | STWRERR)) { 8219 if (sd_flags & STPLEX) { 8220 *reventsp = POLLNVAL; 8221 return (EINVAL); 8222 } 8223 if (((events & (POLLIN | POLLRDNORM | POLLRDBAND | POLLPRI)) && 8224 (sd_flags & STRDERR)) || 8225 ((events & (POLLOUT | POLLWRNORM | POLLWRBAND)) && 8226 (sd_flags & STWRERR))) { 8227 if (!(events & POLLNOERR)) { 8228 *reventsp = POLLERR; 8229 return (0); 8230 } 8231 } 8232 } 8233 if (sd_flags & STRHUP) { 8234 retevents |= POLLHUP; 8235 } else if (events & (POLLWRNORM | POLLWRBAND)) { 8236 queue_t *tq; 8237 queue_t *qp = stp->sd_wrq; 8238 8239 claimstr(qp); 8240 /* Find next module forward that has a service procedure */ 8241 tq = qp->q_next->q_nfsrv; 8242 ASSERT(tq != NULL); 8243 8244 if (polllock(&stp->sd_pollist, QLOCK(tq)) != 0) { 8245 releasestr(qp); 8246 *reventsp = POLLNVAL; 8247 return (0); 8248 } 8249 if (events & POLLWRNORM) { 8250 queue_t *sqp; 8251 8252 if (tq->q_flag & QFULL) 8253 /* ensure backq svc procedure runs */ 8254 tq->q_flag |= QWANTW; 8255 else if ((sqp = stp->sd_struiowrq) != NULL) { 8256 /* Check sync stream barrier write q */ 8257 mutex_exit(QLOCK(tq)); 8258 if (polllock(&stp->sd_pollist, 8259 QLOCK(sqp)) != 0) { 8260 releasestr(qp); 8261 *reventsp = POLLNVAL; 8262 return (0); 8263 } 8264 if (sqp->q_flag & QFULL) 8265 /* ensure pollwakeup() is done */ 8266 sqp->q_flag |= QWANTWSYNC; 8267 else 8268 retevents |= POLLOUT; 8269 /* More write events to process ??? */ 8270 if (! (events & POLLWRBAND)) { 8271 mutex_exit(QLOCK(sqp)); 8272 releasestr(qp); 8273 goto chkrd; 8274 } 8275 mutex_exit(QLOCK(sqp)); 8276 if (polllock(&stp->sd_pollist, 8277 QLOCK(tq)) != 0) { 8278 releasestr(qp); 8279 *reventsp = POLLNVAL; 8280 return (0); 8281 } 8282 } else 8283 retevents |= POLLOUT; 8284 } 8285 if (events & POLLWRBAND) { 8286 qbp = tq->q_bandp; 8287 if (qbp) { 8288 while (qbp) { 8289 if (qbp->qb_flag & QB_FULL) 8290 qbp->qb_flag |= QB_WANTW; 8291 else 8292 retevents |= POLLWRBAND; 8293 qbp = qbp->qb_next; 8294 } 8295 } else { 8296 retevents |= POLLWRBAND; 8297 } 8298 } 8299 mutex_exit(QLOCK(tq)); 8300 releasestr(qp); 8301 } 8302 chkrd: 8303 if (sd_flags & STRPRI) { 8304 retevents |= (events & POLLPRI); 8305 } else if (events & (POLLRDNORM | POLLRDBAND | POLLIN)) { 8306 queue_t *qp = _RD(stp->sd_wrq); 8307 int normevents = (events & (POLLIN | POLLRDNORM)); 8308 8309 /* 8310 * Note: Need to do polllock() here since ps_lock may be 8311 * held. See bug 4191544. 8312 */ 8313 if (polllock(&stp->sd_pollist, &stp->sd_lock) != 0) { 8314 *reventsp = POLLNVAL; 8315 return (0); 8316 } 8317 headlocked = 1; 8318 mp = qp->q_first; 8319 while (mp) { 8320 /* 8321 * For POLLRDDATA we scan b_cont and b_next until we 8322 * find an M_DATA. 8323 */ 8324 if ((events & POLLRDDATA) && 8325 mp->b_datap->db_type != M_DATA) { 8326 mblk_t *nmp = mp->b_cont; 8327 8328 while (nmp != NULL && 8329 nmp->b_datap->db_type != M_DATA) 8330 nmp = nmp->b_cont; 8331 if (nmp == NULL) { 8332 mp = mp->b_next; 8333 continue; 8334 } 8335 } 8336 if (mp->b_band == 0) 8337 retevents |= normevents; 8338 else 8339 retevents |= (events & (POLLIN | POLLRDBAND)); 8340 break; 8341 } 8342 if (!(retevents & normevents) && (stp->sd_wakeq & RSLEEP)) { 8343 /* 8344 * Sync stream barrier read queue has data. 8345 */ 8346 retevents |= normevents; 8347 } 8348 /* Treat eof as normal data */ 8349 if (sd_flags & STREOF) 8350 retevents |= normevents; 8351 } 8352 8353 /* 8354 * Pass back a pollhead if no events are pending or if edge-triggering 8355 * has been configured on this resource. 8356 */ 8357 if ((retevents == 0 && !anyyet) || (events & POLLET)) { 8358 *phpp = &stp->sd_pollist; 8359 if (headlocked == 0) { 8360 if (polllock(&stp->sd_pollist, &stp->sd_lock) != 0) { 8361 *reventsp = POLLNVAL; 8362 return (0); 8363 } 8364 headlocked = 1; 8365 } 8366 stp->sd_rput_opt |= SR_POLLIN; 8367 } 8368 8369 *reventsp = (short)retevents; 8370 if (headlocked) 8371 mutex_exit(&stp->sd_lock); 8372 return (0); 8373 } 8374 8375 /* 8376 * The purpose of putback() is to assure sleeping polls/reads 8377 * are awakened when there are no new messages arriving at the, 8378 * stream head, and a message is placed back on the read queue. 8379 * 8380 * sd_lock must be held when messages are placed back on stream 8381 * head. (getq() holds sd_lock when it removes messages from 8382 * the queue) 8383 */ 8384 8385 static void 8386 putback(struct stdata *stp, queue_t *q, mblk_t *bp, int band) 8387 { 8388 mblk_t *qfirst; 8389 ASSERT(MUTEX_HELD(&stp->sd_lock)); 8390 8391 /* 8392 * As a result of lock-step ordering around q_lock and sd_lock, 8393 * it's possible for function calls like putnext() and 8394 * canputnext() to get an inaccurate picture of how much 8395 * data is really being processed at the stream head. 8396 * We only consolidate with existing messages on the queue 8397 * if the length of the message we want to put back is smaller 8398 * than the queue hiwater mark. 8399 */ 8400 if ((stp->sd_rput_opt & SR_CONSOL_DATA) && 8401 (DB_TYPE(bp) == M_DATA) && ((qfirst = q->q_first) != NULL) && 8402 (DB_TYPE(qfirst) == M_DATA) && 8403 ((qfirst->b_flag & (MSGMARK|MSGDELIM)) == 0) && 8404 ((bp->b_flag & (MSGMARK|MSGDELIM|MSGMARKNEXT)) == 0) && 8405 (mp_cont_len(bp, NULL) < q->q_hiwat)) { 8406 /* 8407 * We use the same logic as defined in strrput() 8408 * but in reverse as we are putting back onto the 8409 * queue and want to retain byte ordering. 8410 * Consolidate M_DATA messages with M_DATA ONLY. 8411 * strrput() allows the consolidation of M_DATA onto 8412 * M_PROTO | M_PCPROTO but not the other way round. 8413 * 8414 * The consolidation does not take place if the message 8415 * we are returning to the queue is marked with either 8416 * of the marks or the delim flag or if q_first 8417 * is marked with MSGMARK. The MSGMARK check is needed to 8418 * handle the odd semantics of MSGMARK where essentially 8419 * the whole message is to be treated as marked. 8420 * Carry any MSGMARKNEXT and MSGNOTMARKNEXT from q_first 8421 * to the front of the b_cont chain. 8422 */ 8423 rmvq_noenab(q, qfirst); 8424 8425 /* 8426 * The first message in the b_cont list 8427 * tracks MSGMARKNEXT and MSGNOTMARKNEXT. 8428 * We need to handle the case where we 8429 * are appending: 8430 * 8431 * 1) a MSGMARKNEXT to a MSGNOTMARKNEXT. 8432 * 2) a MSGMARKNEXT to a plain message. 8433 * 3) a MSGNOTMARKNEXT to a plain message 8434 * 4) a MSGNOTMARKNEXT to a MSGNOTMARKNEXT 8435 * message. 8436 * 8437 * Thus we never append a MSGMARKNEXT or 8438 * MSGNOTMARKNEXT to a MSGMARKNEXT message. 8439 */ 8440 if (qfirst->b_flag & MSGMARKNEXT) { 8441 bp->b_flag |= MSGMARKNEXT; 8442 bp->b_flag &= ~MSGNOTMARKNEXT; 8443 qfirst->b_flag &= ~MSGMARKNEXT; 8444 } else if (qfirst->b_flag & MSGNOTMARKNEXT) { 8445 bp->b_flag |= MSGNOTMARKNEXT; 8446 qfirst->b_flag &= ~MSGNOTMARKNEXT; 8447 } 8448 8449 linkb(bp, qfirst); 8450 } 8451 (void) putbq(q, bp); 8452 8453 /* 8454 * A message may have come in when the sd_lock was dropped in the 8455 * calling routine. If this is the case and STR*ATMARK info was 8456 * received, need to move that from the stream head to the q_last 8457 * so that SIOCATMARK can return the proper value. 8458 */ 8459 if (stp->sd_flag & (STRATMARK | STRNOTATMARK)) { 8460 unsigned short *flagp = &q->q_last->b_flag; 8461 uint_t b_flag = (uint_t)*flagp; 8462 8463 if (stp->sd_flag & STRATMARK) { 8464 b_flag &= ~MSGNOTMARKNEXT; 8465 b_flag |= MSGMARKNEXT; 8466 stp->sd_flag &= ~STRATMARK; 8467 } else { 8468 b_flag &= ~MSGMARKNEXT; 8469 b_flag |= MSGNOTMARKNEXT; 8470 stp->sd_flag &= ~STRNOTATMARK; 8471 } 8472 *flagp = (unsigned short) b_flag; 8473 } 8474 8475 #ifdef DEBUG 8476 /* 8477 * Make sure that the flags are not messed up. 8478 */ 8479 { 8480 mblk_t *mp; 8481 mp = q->q_last; 8482 while (mp != NULL) { 8483 ASSERT((mp->b_flag & (MSGMARKNEXT|MSGNOTMARKNEXT)) != 8484 (MSGMARKNEXT|MSGNOTMARKNEXT)); 8485 mp = mp->b_cont; 8486 } 8487 } 8488 #endif 8489 if (q->q_first == bp) { 8490 short pollevents; 8491 8492 if (stp->sd_flag & RSLEEP) { 8493 stp->sd_flag &= ~RSLEEP; 8494 cv_broadcast(&q->q_wait); 8495 } 8496 if (stp->sd_flag & STRPRI) { 8497 pollevents = POLLPRI; 8498 } else { 8499 if (band == 0) { 8500 if (!(stp->sd_rput_opt & SR_POLLIN)) 8501 return; 8502 stp->sd_rput_opt &= ~SR_POLLIN; 8503 pollevents = POLLIN | POLLRDNORM; 8504 } else { 8505 pollevents = POLLIN | POLLRDBAND; 8506 } 8507 } 8508 mutex_exit(&stp->sd_lock); 8509 pollwakeup(&stp->sd_pollist, pollevents); 8510 mutex_enter(&stp->sd_lock); 8511 } 8512 } 8513 8514 /* 8515 * Return the held vnode attached to the stream head of a 8516 * given queue 8517 * It is the responsibility of the calling routine to ensure 8518 * that the queue does not go away (e.g. pop). 8519 */ 8520 vnode_t * 8521 strq2vp(queue_t *qp) 8522 { 8523 vnode_t *vp; 8524 vp = STREAM(qp)->sd_vnode; 8525 ASSERT(vp != NULL); 8526 VN_HOLD(vp); 8527 return (vp); 8528 } 8529 8530 /* 8531 * return the stream head write queue for the given vp 8532 * It is the responsibility of the calling routine to ensure 8533 * that the stream or vnode do not close. 8534 */ 8535 queue_t * 8536 strvp2wq(vnode_t *vp) 8537 { 8538 ASSERT(vp->v_stream != NULL); 8539 return (vp->v_stream->sd_wrq); 8540 } 8541 8542 /* 8543 * pollwakeup stream head 8544 * It is the responsibility of the calling routine to ensure 8545 * that the stream or vnode do not close. 8546 */ 8547 void 8548 strpollwakeup(vnode_t *vp, short event) 8549 { 8550 ASSERT(vp->v_stream); 8551 pollwakeup(&vp->v_stream->sd_pollist, event); 8552 } 8553 8554 /* 8555 * Mate the stream heads of two vnodes together. If the two vnodes are the 8556 * same, we just make the write-side point at the read-side -- otherwise, 8557 * we do a full mate. Only works on vnodes associated with streams that are 8558 * still being built and thus have only a stream head. 8559 */ 8560 void 8561 strmate(vnode_t *vp1, vnode_t *vp2) 8562 { 8563 queue_t *wrq1 = strvp2wq(vp1); 8564 queue_t *wrq2 = strvp2wq(vp2); 8565 8566 /* 8567 * Verify that there are no modules on the stream yet. We also 8568 * rely on the stream head always having a service procedure to 8569 * avoid tweaking q_nfsrv. 8570 */ 8571 ASSERT(wrq1->q_next == NULL && wrq2->q_next == NULL); 8572 ASSERT(wrq1->q_qinfo->qi_srvp != NULL); 8573 ASSERT(wrq2->q_qinfo->qi_srvp != NULL); 8574 8575 /* 8576 * If the queues are the same, just twist; otherwise do a full mate. 8577 */ 8578 if (wrq1 == wrq2) { 8579 wrq1->q_next = _RD(wrq1); 8580 } else { 8581 wrq1->q_next = _RD(wrq2); 8582 wrq2->q_next = _RD(wrq1); 8583 STREAM(wrq1)->sd_mate = STREAM(wrq2); 8584 STREAM(wrq1)->sd_flag |= STRMATE; 8585 STREAM(wrq2)->sd_mate = STREAM(wrq1); 8586 STREAM(wrq2)->sd_flag |= STRMATE; 8587 } 8588 } 8589 8590 /* 8591 * XXX will go away when console is correctly fixed. 8592 * Clean up the console PIDS, from previous I_SETSIG, 8593 * called only for cnopen which never calls strclean(). 8594 */ 8595 void 8596 str_cn_clean(struct vnode *vp) 8597 { 8598 strsig_t *ssp, *pssp, *tssp; 8599 struct stdata *stp; 8600 struct pid *pidp; 8601 int update = 0; 8602 8603 ASSERT(vp->v_stream); 8604 stp = vp->v_stream; 8605 pssp = NULL; 8606 mutex_enter(&stp->sd_lock); 8607 ssp = stp->sd_siglist; 8608 while (ssp) { 8609 mutex_enter(&pidlock); 8610 pidp = ssp->ss_pidp; 8611 /* 8612 * Get rid of PID if the proc is gone. 8613 */ 8614 if (pidp->pid_prinactive) { 8615 tssp = ssp->ss_next; 8616 if (pssp) 8617 pssp->ss_next = tssp; 8618 else 8619 stp->sd_siglist = tssp; 8620 ASSERT(pidp->pid_ref <= 1); 8621 PID_RELE(ssp->ss_pidp); 8622 mutex_exit(&pidlock); 8623 kmem_free(ssp, sizeof (strsig_t)); 8624 update = 1; 8625 ssp = tssp; 8626 continue; 8627 } else 8628 mutex_exit(&pidlock); 8629 pssp = ssp; 8630 ssp = ssp->ss_next; 8631 } 8632 if (update) { 8633 stp->sd_sigflags = 0; 8634 for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next) 8635 stp->sd_sigflags |= ssp->ss_events; 8636 } 8637 mutex_exit(&stp->sd_lock); 8638 } 8639 8640 /* 8641 * Return B_TRUE if there is data in the message, B_FALSE otherwise. 8642 */ 8643 static boolean_t 8644 msghasdata(mblk_t *bp) 8645 { 8646 for (; bp; bp = bp->b_cont) 8647 if (bp->b_datap->db_type == M_DATA) { 8648 ASSERT(bp->b_wptr >= bp->b_rptr); 8649 if (bp->b_wptr > bp->b_rptr) 8650 return (B_TRUE); 8651 } 8652 return (B_FALSE); 8653 } 8654