xref: /illumos-gate/usr/src/uts/common/os/modctl.c (revision 80f1b0f5d7bc2c2f91ce68ea6379c779a03c595e)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*
28  * modctl system call for loadable module support.
29  */
30 
31 #include <sys/param.h>
32 #include <sys/user.h>
33 #include <sys/systm.h>
34 #include <sys/exec.h>
35 #include <sys/file.h>
36 #include <sys/stat.h>
37 #include <sys/conf.h>
38 #include <sys/time.h>
39 #include <sys/reboot.h>
40 #include <sys/fs/ufs_fsdir.h>
41 #include <sys/kmem.h>
42 #include <sys/sysconf.h>
43 #include <sys/cmn_err.h>
44 #include <sys/ddi.h>
45 #include <sys/sunddi.h>
46 #include <sys/sunndi.h>
47 #include <sys/ndi_impldefs.h>
48 #include <sys/ddi_impldefs.h>
49 #include <sys/ddi_implfuncs.h>
50 #include <sys/bootconf.h>
51 #include <sys/dc_ki.h>
52 #include <sys/cladm.h>
53 #include <sys/dtrace.h>
54 #include <sys/kdi.h>
55 
56 #include <sys/devpolicy.h>
57 #include <sys/modctl.h>
58 #include <sys/kobj.h>
59 #include <sys/devops.h>
60 #include <sys/autoconf.h>
61 #include <sys/hwconf.h>
62 #include <sys/callb.h>
63 #include <sys/debug.h>
64 #include <sys/cpuvar.h>
65 #include <sys/sysmacros.h>
66 #include <sys/sysevent.h>
67 #include <sys/sysevent_impl.h>
68 #include <sys/instance.h>
69 #include <sys/modhash.h>
70 #include <sys/modhash_impl.h>
71 #include <sys/dacf_impl.h>
72 #include <sys/vfs.h>
73 #include <sys/pathname.h>
74 #include <sys/console.h>
75 #include <sys/policy.h>
76 #include <ipp/ipp_impl.h>
77 #include <sys/fs/dv_node.h>
78 #include <sys/strsubr.h>
79 #include <sys/fs/sdev_node.h>
80 
81 static int		mod_circdep(struct modctl *);
82 static int		modinfo(modid_t, struct modinfo *);
83 
84 static void		mod_uninstall_all(void);
85 static int		mod_getinfo(struct modctl *, struct modinfo *);
86 static struct modctl	*allocate_modp(const char *, const char *);
87 
88 static int		mod_load(struct modctl *, int);
89 static void		mod_unload(struct modctl *);
90 static int		modinstall(struct modctl *);
91 static int		moduninstall(struct modctl *);
92 
93 static struct modctl	*mod_hold_by_name_common(struct modctl *, const char *);
94 static struct modctl	*mod_hold_next_by_id(modid_t);
95 static struct modctl	*mod_hold_loaded_mod(struct modctl *, char *, int *);
96 static struct modctl	*mod_hold_installed_mod(char *, int, int, int *);
97 
98 static void		mod_release(struct modctl *);
99 static void		mod_make_requisite(struct modctl *, struct modctl *);
100 static int		mod_install_requisites(struct modctl *);
101 static void		check_esc_sequences(char *, char *);
102 static struct modctl	*mod_hold_by_name_requisite(struct modctl *, char *);
103 
104 /*
105  * module loading thread control structure. Calls to kobj_load_module()() are
106  * handled off to a separate thead using this structure.
107  */
108 struct loadmt {
109 	ksema_t		sema;
110 	struct modctl	*mp;
111 	int		usepath;
112 	kthread_t	*owner;
113 	int		retval;
114 };
115 
116 static void	modload_thread(struct loadmt *);
117 
118 kcondvar_t	mod_cv;
119 kcondvar_t	mod_uninstall_cv;	/* Communication between swapper */
120 					/* and the uninstall daemon. */
121 kmutex_t	mod_lock;		/* protects &modules insert linkage, */
122 					/* mod_busy, mod_want, and mod_ref. */
123 					/* blocking operations while holding */
124 					/* mod_lock should be avoided */
125 kmutex_t	mod_uninstall_lock;	/* protects mod_uninstall_cv */
126 kthread_id_t	mod_aul_thread;
127 
128 int		modunload_wait;
129 kmutex_t	modunload_wait_mutex;
130 kcondvar_t	modunload_wait_cv;
131 int		modunload_active_count;
132 int		modunload_disable_count;
133 
134 int	isminiroot;		/* set if running as miniroot */
135 int	modrootloaded;		/* set after root driver and fs are loaded */
136 int	moddebug = 0x0;		/* debug flags for module writers */
137 int	swaploaded;		/* set after swap driver and fs are loaded */
138 int	bop_io_quiesced = 0;	/* set when BOP I/O can no longer be used */
139 int	last_module_id;
140 clock_t	mod_uninstall_interval = 0;
141 int	ddi_modclose_unload = 1;	/* 0 -> just decrement reference */
142 
143 struct devnames *devnamesp;
144 struct devnames orphanlist;
145 
146 krwlock_t	devinfo_tree_lock;	/* obsolete, to be removed */
147 
148 #define	MAJBINDFILE "/etc/name_to_major"
149 #define	SYSBINDFILE "/etc/name_to_sysnum"
150 
151 static char	majbind[] = MAJBINDFILE;
152 static char	sysbind[] = SYSBINDFILE;
153 static uint_t	mod_autounload_key;	/* for module autounload detection */
154 
155 extern int obpdebug;
156 
157 #define	DEBUGGER_PRESENT	((boothowto & RB_DEBUG) || (obpdebug != 0))
158 
159 static int minorperm_loaded = 0;
160 
161 void
162 mod_setup(void)
163 {
164 	struct sysent *callp;
165 	int callnum, exectype;
166 	int	num_devs;
167 	int	i;
168 
169 	/*
170 	 * Initialize the list of loaded driver dev_ops.
171 	 * XXX - This must be done before reading the system file so that
172 	 * forceloads of drivers will work.
173 	 */
174 	num_devs = read_binding_file(majbind, mb_hashtab, make_mbind);
175 	/*
176 	 * Since read_binding_file is common code, it doesn't enforce that all
177 	 * of the binding file entries have major numbers <= MAXMAJ32.  Thus,
178 	 * ensure that we don't allocate some massive amount of space due to a
179 	 * bad entry.  We can't have major numbers bigger than MAXMAJ32
180 	 * until file system support for larger major numbers exists.
181 	 */
182 
183 	/*
184 	 * Leave space for expansion, but not more than L_MAXMAJ32
185 	 */
186 	devcnt = MIN(num_devs + 30, L_MAXMAJ32);
187 	devopsp = kmem_alloc(devcnt * sizeof (struct dev_ops *), KM_SLEEP);
188 	for (i = 0; i < devcnt; i++)
189 		devopsp[i] = &mod_nodev_ops;
190 
191 	init_devnamesp(devcnt);
192 
193 	/*
194 	 * Sync up with the work that the stand-alone linker has already done.
195 	 */
196 	(void) kobj_sync();
197 
198 	if (boothowto & RB_DEBUG)
199 		kdi_dvec_modavail();
200 
201 	make_aliases(mb_hashtab);
202 
203 	/*
204 	 * Initialize streams device implementation structures.
205 	 */
206 	devimpl = kmem_zalloc(devcnt * sizeof (cdevsw_impl_t), KM_SLEEP);
207 
208 	/*
209 	 * If the cl_bootstrap module is present,
210 	 * we should be configured as a cluster. Loading this module
211 	 * will set "cluster_bootflags" to non-zero.
212 	 */
213 	(void) modload("misc", "cl_bootstrap");
214 
215 	(void) read_binding_file(sysbind, sb_hashtab, make_mbind);
216 	init_syscallnames(NSYSCALL);
217 
218 	/*
219 	 * Start up dynamic autoconfiguration framework (dacf).
220 	 */
221 	mod_hash_init();
222 	dacf_init();
223 
224 	/*
225 	 * Start up IP policy framework (ipp).
226 	 */
227 	ipp_init();
228 
229 	/*
230 	 * Allocate loadable native system call locks.
231 	 */
232 	for (callnum = 0, callp = sysent; callnum < NSYSCALL;
233 	    callnum++, callp++) {
234 		if (LOADABLE_SYSCALL(callp)) {
235 			if (mod_getsysname(callnum) != NULL) {
236 				callp->sy_lock =
237 				    kobj_zalloc(sizeof (krwlock_t), KM_SLEEP);
238 				rw_init(callp->sy_lock, NULL, RW_DEFAULT, NULL);
239 			} else {
240 				callp->sy_flags &= ~SE_LOADABLE;
241 				callp->sy_callc = nosys;
242 			}
243 #ifdef DEBUG
244 		} else {
245 			/*
246 			 * Do some sanity checks on the sysent table
247 			 */
248 			switch (callp->sy_flags & SE_RVAL_MASK) {
249 			case SE_32RVAL1:
250 				/* only r_val1 returned */
251 			case SE_32RVAL1 | SE_32RVAL2:
252 				/* r_val1 and r_val2 returned */
253 			case SE_64RVAL:
254 				/* 64-bit rval returned */
255 				break;
256 			default:
257 				cmn_err(CE_WARN, "sysent[%d]: bad flags %x",
258 				    callnum, callp->sy_flags);
259 			}
260 #endif
261 		}
262 	}
263 
264 #ifdef _SYSCALL32_IMPL
265 	/*
266 	 * Allocate loadable system call locks for 32-bit compat syscalls
267 	 */
268 	for (callnum = 0, callp = sysent32; callnum < NSYSCALL;
269 	    callnum++, callp++) {
270 		if (LOADABLE_SYSCALL(callp)) {
271 			if (mod_getsysname(callnum) != NULL) {
272 				callp->sy_lock =
273 				    kobj_zalloc(sizeof (krwlock_t), KM_SLEEP);
274 				rw_init(callp->sy_lock, NULL, RW_DEFAULT, NULL);
275 			} else {
276 				callp->sy_flags &= ~SE_LOADABLE;
277 				callp->sy_callc = nosys;
278 			}
279 #ifdef DEBUG
280 		} else {
281 			/*
282 			 * Do some sanity checks on the sysent table
283 			 */
284 			switch (callp->sy_flags & SE_RVAL_MASK) {
285 			case SE_32RVAL1:
286 				/* only r_val1 returned */
287 			case SE_32RVAL1 | SE_32RVAL2:
288 				/* r_val1 and r_val2 returned */
289 			case SE_64RVAL:
290 				/* 64-bit rval returned */
291 				break;
292 			default:
293 				cmn_err(CE_WARN, "sysent32[%d]: bad flags %x",
294 				    callnum, callp->sy_flags);
295 				goto skip;
296 			}
297 
298 			/*
299 			 * Cross-check the native and compatibility tables.
300 			 */
301 			if (callp->sy_callc == nosys ||
302 			    sysent[callnum].sy_callc == nosys)
303 				continue;
304 			/*
305 			 * If only one or the other slot is loadable, then
306 			 * there's an error -- they should match!
307 			 */
308 			if ((callp->sy_callc == loadable_syscall) ^
309 			    (sysent[callnum].sy_callc == loadable_syscall)) {
310 				cmn_err(CE_WARN, "sysent[%d] loadable?",
311 				    callnum);
312 			}
313 			/*
314 			 * This is more of a heuristic test -- if the
315 			 * system call returns two values in the 32-bit
316 			 * world, it should probably return two 32-bit
317 			 * values in the 64-bit world too.
318 			 */
319 			if (((callp->sy_flags & SE_32RVAL2) == 0) ^
320 			    ((sysent[callnum].sy_flags & SE_32RVAL2) == 0)) {
321 				cmn_err(CE_WARN, "sysent[%d] rval2 mismatch!",
322 				    callnum);
323 			}
324 skip:;
325 #endif	/* DEBUG */
326 		}
327 	}
328 #endif	/* _SYSCALL32_IMPL */
329 
330 	/*
331 	 * Allocate loadable exec locks.  (Assumes all execs are loadable)
332 	 */
333 	for (exectype = 0; exectype < nexectype; exectype++) {
334 		execsw[exectype].exec_lock =
335 		    kobj_zalloc(sizeof (krwlock_t), KM_SLEEP);
336 		rw_init(execsw[exectype].exec_lock, NULL, RW_DEFAULT, NULL);
337 	}
338 
339 	read_class_file();
340 
341 	/* init thread specific structure for mod_uninstall_all */
342 	tsd_create(&mod_autounload_key, NULL);
343 }
344 
345 static int
346 modctl_modload(int use_path, char *filename, int *rvp)
347 {
348 	struct modctl *modp;
349 	int retval = 0;
350 	char *filenamep;
351 	int modid;
352 
353 	filenamep = kmem_zalloc(MOD_MAXPATH, KM_SLEEP);
354 
355 	if (copyinstr(filename, filenamep, MOD_MAXPATH, 0)) {
356 		retval = EFAULT;
357 		goto out;
358 	}
359 
360 	filenamep[MOD_MAXPATH - 1] = 0;
361 	modp = mod_hold_installed_mod(filenamep, use_path, 0, &retval);
362 
363 	if (modp == NULL)
364 		goto out;
365 
366 	modp->mod_loadflags |= MOD_NOAUTOUNLOAD;
367 	modid = modp->mod_id;
368 	mod_release_mod(modp);
369 	CPU_STATS_ADDQ(CPU, sys, modload, 1);
370 	if (rvp != NULL && copyout(&modid, rvp, sizeof (modid)) != 0)
371 		retval = EFAULT;
372 out:
373 	kmem_free(filenamep, MOD_MAXPATH);
374 
375 	return (retval);
376 }
377 
378 static int
379 modctl_modunload(modid_t id)
380 {
381 	int rval = 0;
382 
383 	if (id == 0) {
384 #ifdef DEBUG
385 		/*
386 		 * Turn on mod_uninstall_daemon
387 		 */
388 		if (mod_uninstall_interval == 0) {
389 			mod_uninstall_interval = 60;
390 			modreap();
391 			return (rval);
392 		}
393 #endif
394 		mod_uninstall_all();
395 	} else {
396 		rval = modunload(id);
397 	}
398 	return (rval);
399 }
400 
401 static int
402 modctl_modinfo(modid_t id, struct modinfo *umodi)
403 {
404 	int retval;
405 	struct modinfo modi;
406 #if defined(_SYSCALL32_IMPL)
407 	int nobase;
408 	struct modinfo32 modi32;
409 #endif
410 
411 	if (get_udatamodel() == DATAMODEL_NATIVE) {
412 		if (copyin(umodi, &modi, sizeof (struct modinfo)) != 0)
413 			return (EFAULT);
414 	}
415 #ifdef _SYSCALL32_IMPL
416 	else {
417 		bzero(&modi, sizeof (modi));
418 		if (copyin(umodi, &modi32, sizeof (struct modinfo32)) != 0)
419 			return (EFAULT);
420 		modi.mi_info = modi32.mi_info;
421 		modi.mi_id = modi32.mi_id;
422 		modi.mi_nextid = modi32.mi_nextid;
423 		nobase = modi.mi_info & MI_INFO_NOBASE;
424 	}
425 #endif
426 	/*
427 	 * This flag is -only- for the kernels use.
428 	 */
429 	modi.mi_info &= ~MI_INFO_LINKAGE;
430 
431 	retval = modinfo(id, &modi);
432 	if (retval)
433 		return (retval);
434 
435 	if (get_udatamodel() == DATAMODEL_NATIVE) {
436 		if (copyout(&modi, umodi, sizeof (struct modinfo)) != 0)
437 			retval = EFAULT;
438 #ifdef _SYSCALL32_IMPL
439 	} else {
440 		int i;
441 
442 		if (!nobase && (uintptr_t)modi.mi_base > UINT32_MAX)
443 			return (EOVERFLOW);
444 
445 		modi32.mi_info = modi.mi_info;
446 		modi32.mi_state = modi.mi_state;
447 		modi32.mi_id = modi.mi_id;
448 		modi32.mi_nextid = modi.mi_nextid;
449 		modi32.mi_base = (caddr32_t)(uintptr_t)modi.mi_base;
450 		modi32.mi_size = modi.mi_size;
451 		modi32.mi_rev = modi.mi_rev;
452 		modi32.mi_loadcnt = modi.mi_loadcnt;
453 		bcopy(modi.mi_name, modi32.mi_name, sizeof (modi32.mi_name));
454 		for (i = 0; i < MODMAXLINK32; i++) {
455 			modi32.mi_msinfo[i].msi_p0 = modi.mi_msinfo[i].msi_p0;
456 			bcopy(modi.mi_msinfo[i].msi_linkinfo,
457 			    modi32.mi_msinfo[i].msi_linkinfo,
458 			    sizeof (modi32.mi_msinfo[0].msi_linkinfo));
459 		}
460 		if (copyout(&modi32, umodi, sizeof (struct modinfo32)) != 0)
461 			retval = EFAULT;
462 #endif
463 	}
464 
465 	return (retval);
466 }
467 
468 /*
469  * Return the last major number in the range of permissible major numbers.
470  */
471 /*ARGSUSED*/
472 static int
473 modctl_modreserve(modid_t id, int *data)
474 {
475 	if (copyout(&devcnt, data, sizeof (devcnt)) != 0)
476 		return (EFAULT);
477 	return (0);
478 }
479 
480 /* to be removed when Ed introduces these */
481 static char *
482 ddi_strdup(const char *str, int flag)
483 {
484 	char	*rv;
485 	int	n = strlen(str) + 1;
486 	rv = kmem_alloc(n, flag);
487 	bcopy(str, rv, n);
488 	return (rv);
489 }
490 static void
491 strfree(char *str)
492 {
493 	kmem_free(str, strlen(str)+1);
494 }
495 
496 /* Add/Remove driver and binding aliases */
497 static int
498 modctl_update_driver_aliases(int add, int *data)
499 {
500 	struct modconfig	mc;
501 	int			i, n, rv = 0;
502 	struct aliases		alias;
503 	struct aliases		*ap;
504 	char			name[MAXMODCONFNAME];
505 	char			cname[MAXMODCONFNAME];
506 	char			*drvname;
507 	int			resid;
508 	struct alias_info {
509 		char	*alias_name;
510 		int	alias_resid;
511 	} *aliases, *aip;
512 
513 	bzero(&mc, sizeof (struct modconfig));
514 	if (get_udatamodel() == DATAMODEL_NATIVE) {
515 		if (copyin(data, &mc, sizeof (struct modconfig)) != 0)
516 			return (EFAULT);
517 	}
518 #ifdef _SYSCALL32_IMPL
519 	else {
520 		struct modconfig32 modc32;
521 		if (copyin(data, &modc32, sizeof (struct modconfig32)) != 0)
522 			return (EFAULT);
523 		else {
524 			bcopy(modc32.drvname, mc.drvname,
525 			    sizeof (modc32.drvname));
526 			bcopy(modc32.drvclass, mc.drvclass,
527 			    sizeof (modc32.drvclass));
528 			mc.major = modc32.major;
529 			mc.flags = modc32.flags;
530 			mc.num_aliases = modc32.num_aliases;
531 			mc.ap = (struct aliases *)(uintptr_t)modc32.ap;
532 		}
533 	}
534 #endif
535 
536 	/*
537 	 * If the driver is already in the mb_hashtab, and the name given
538 	 * doesn't match that driver's name, fail.  Otherwise, pass, since
539 	 * we may be adding aliases.
540 	 */
541 	drvname = mod_major_to_name(mc.major);
542 	if ((drvname != NULL) && strcmp(drvname, mc.drvname) != 0)
543 		return (EINVAL);
544 
545 	/*
546 	 * Precede alias removal by unbinding as many devices as possible.
547 	 */
548 	if (add == 0) {
549 		(void) i_ddi_unload_drvconf(mc.major);
550 		i_ddi_unbind_devs(mc.major);
551 	}
552 
553 	/*
554 	 * Add/remove each supplied driver alias to/from mb_hashtab
555 	 */
556 	ap = mc.ap;
557 	if (mc.num_aliases > 0)
558 		aliases = kmem_zalloc(
559 		    mc.num_aliases * sizeof (struct alias_info), KM_SLEEP);
560 	aip = aliases;
561 	for (i = 0; i < mc.num_aliases; i++) {
562 		bzero(&alias, sizeof (struct aliases));
563 		if (get_udatamodel() == DATAMODEL_NATIVE) {
564 			if (copyin(ap, &alias, sizeof (struct aliases)) != 0) {
565 				rv = EFAULT;
566 				goto error;
567 			}
568 			if (alias.a_len > MAXMODCONFNAME) {
569 				rv = EINVAL;
570 				goto error;
571 			}
572 			if (copyin(alias.a_name, name, alias.a_len) != 0) {
573 				rv = EFAULT;
574 				goto error;
575 			}
576 			if (name[alias.a_len - 1] != '\0') {
577 				rv = EINVAL;
578 				goto error;
579 			}
580 		}
581 #ifdef _SYSCALL32_IMPL
582 		else {
583 			struct aliases32 al32;
584 			bzero(&al32, sizeof (struct aliases32));
585 			if (copyin(ap, &al32, sizeof (struct aliases32)) != 0) {
586 				rv = EFAULT;
587 				goto error;
588 			}
589 			if (al32.a_len > MAXMODCONFNAME) {
590 				rv = EINVAL;
591 				goto error;
592 			}
593 			if (copyin((void *)(uintptr_t)al32.a_name,
594 			    name, al32.a_len) != 0) {
595 				rv = EFAULT;
596 				goto error;
597 			}
598 			if (name[al32.a_len - 1] != '\0') {
599 				rv = EINVAL;
600 				goto error;
601 			}
602 			alias.a_next = (void *)(uintptr_t)al32.a_next;
603 		}
604 #endif
605 		check_esc_sequences(name, cname);
606 		aip->alias_name = ddi_strdup(cname, KM_SLEEP);
607 		ap = alias.a_next;
608 		aip++;
609 	}
610 
611 	if (add == 0) {
612 		ap = mc.ap;
613 		resid = 0;
614 		aip = aliases;
615 		/* attempt to unbind all devices bound to each alias */
616 		for (i = 0; i < mc.num_aliases; i++) {
617 			n = i_ddi_unbind_devs_by_alias(
618 			    mc.major, aip->alias_name);
619 			resid += n;
620 			aip->alias_resid = n;
621 		}
622 
623 		/*
624 		 * If some device bound to an alias remains in use,
625 		 * and override wasn't specified, no change is made to
626 		 * the binding state and we fail the operation.
627 		 */
628 		if (resid > 0 && ((mc.flags & MOD_UNBIND_OVERRIDE) == 0)) {
629 			rv = EBUSY;
630 			goto error;
631 		}
632 
633 		/*
634 		 * No device remains bound of any of the aliases,
635 		 * or force was requested.  Mark each alias as
636 		 * inactive via delete_mbind so no future binds
637 		 * to this alias take place and that a new
638 		 * binding can be established.
639 		 */
640 		aip = aliases;
641 		for (i = 0; i < mc.num_aliases; i++) {
642 			if (moddebug & MODDEBUG_BINDING)
643 				cmn_err(CE_CONT, "Removing binding for %s "
644 				    "(%d active references)\n",
645 				    aip->alias_name, aip->alias_resid);
646 			delete_mbind(aip->alias_name, mb_hashtab);
647 			aip++;
648 		}
649 		rv = 0;
650 	} else {
651 		aip = aliases;
652 		for (i = 0; i < mc.num_aliases; i++) {
653 			if (moddebug & MODDEBUG_BINDING)
654 				cmn_err(CE_NOTE, "Adding binding for '%s'\n",
655 				    aip->alias_name);
656 			(void) make_mbind(aip->alias_name,
657 			    mc.major, NULL, mb_hashtab);
658 			aip++;
659 		}
660 		/*
661 		 * Try to establish an mbinding for mc.drvname, and add it to
662 		 * devnames. Add class if any after establishing the major
663 		 * number.
664 		 */
665 		(void) make_mbind(mc.drvname, mc.major, NULL, mb_hashtab);
666 		if ((rv = make_devname(mc.drvname, mc.major)) != 0)
667 			goto error;
668 
669 		if (mc.drvclass[0] != '\0')
670 			add_class(mc.drvname, mc.drvclass);
671 		(void) i_ddi_load_drvconf(mc.major);
672 	}
673 
674 	/*
675 	 * Ensure that all nodes are bound to the most appropriate driver
676 	 * possible, attempting demotion and rebind when a more appropriate
677 	 * driver now exists.
678 	 */
679 	i_ddi_bind_devs();
680 	i_ddi_di_cache_invalidate(KM_SLEEP);
681 
682 error:
683 	if (mc.num_aliases > 0) {
684 		aip = aliases;
685 		for (i = 0; i < mc.num_aliases; i++) {
686 			if (aip->alias_name != NULL)
687 				strfree(aip->alias_name);
688 			aip++;
689 		}
690 		kmem_free(aliases, mc.num_aliases * sizeof (struct alias_info));
691 	}
692 	return (rv);
693 }
694 
695 static int
696 modctl_add_driver_aliases(int *data)
697 {
698 	return (modctl_update_driver_aliases(1, data));
699 }
700 
701 static int
702 modctl_remove_driver_aliases(int *data)
703 {
704 	return (modctl_update_driver_aliases(0, data));
705 }
706 
707 static int
708 modctl_rem_major(major_t major)
709 {
710 	struct devnames *dnp;
711 
712 	if (major >= devcnt)
713 		return (EINVAL);
714 
715 	/* mark devnames as removed */
716 	dnp = &devnamesp[major];
717 	LOCK_DEV_OPS(&dnp->dn_lock);
718 	if (dnp->dn_name == NULL ||
719 	    (dnp->dn_flags & (DN_DRIVER_REMOVED | DN_TAKEN_GETUDEV))) {
720 		UNLOCK_DEV_OPS(&dnp->dn_lock);
721 		return (EINVAL);
722 	}
723 	dnp->dn_flags |= DN_DRIVER_REMOVED;
724 	pm_driver_removed(major);
725 	UNLOCK_DEV_OPS(&dnp->dn_lock);
726 
727 	(void) i_ddi_unload_drvconf(major);
728 	i_ddi_unbind_devs(major);
729 	i_ddi_bind_devs();
730 	i_ddi_di_cache_invalidate(KM_SLEEP);
731 
732 	/* purge all the bindings to this driver */
733 	purge_mbind(major, mb_hashtab);
734 	return (0);
735 }
736 
737 static struct vfs *
738 path_to_vfs(char *name)
739 {
740 	vnode_t *vp;
741 	struct vfs *vfsp;
742 
743 	if (lookupname(name, UIO_SYSSPACE, FOLLOW, NULLVPP, &vp))
744 		return (NULL);
745 
746 	vfsp = vp->v_vfsp;
747 	VN_RELE(vp);
748 	return (vfsp);
749 }
750 
751 static int
752 new_vfs_in_modpath()
753 {
754 	static int n_modpath = 0;
755 	static char *modpath_copy;
756 	static struct pathvfs {
757 		char *path;
758 		struct vfs *vfsp;
759 	} *pathvfs;
760 
761 	int i, new_vfs = 0;
762 	char *tmp, *tmp1;
763 	struct vfs *vfsp;
764 
765 	if (n_modpath != 0) {
766 		for (i = 0; i < n_modpath; i++) {
767 			vfsp = path_to_vfs(pathvfs[i].path);
768 			if (vfsp != pathvfs[i].vfsp) {
769 				pathvfs[i].vfsp = vfsp;
770 				if (vfsp)
771 					new_vfs = 1;
772 			}
773 		}
774 		return (new_vfs);
775 	}
776 
777 	/*
778 	 * First call, initialize the pathvfs structure
779 	 */
780 	modpath_copy = i_ddi_strdup(default_path, KM_SLEEP);
781 	tmp = modpath_copy;
782 	n_modpath = 1;
783 	tmp1 = strchr(tmp, ' ');
784 	while (tmp1) {
785 		*tmp1 = '\0';
786 		n_modpath++;
787 		tmp = tmp1 + 1;
788 		tmp1 = strchr(tmp, ' ');
789 	}
790 
791 	pathvfs = kmem_zalloc(n_modpath * sizeof (struct pathvfs), KM_SLEEP);
792 	tmp = modpath_copy;
793 	for (i = 0; i < n_modpath; i++) {
794 		pathvfs[i].path = tmp;
795 		vfsp = path_to_vfs(tmp);
796 		pathvfs[i].vfsp = vfsp;
797 		tmp += strlen(tmp) + 1;
798 	}
799 	return (1);	/* always reread driver.conf the first time */
800 }
801 
802 static int
803 modctl_load_drvconf(major_t major)
804 {
805 	int ret;
806 
807 	if (major != DDI_MAJOR_T_NONE) {
808 		ret = i_ddi_load_drvconf(major);
809 		if (ret == 0)
810 			i_ddi_bind_devs();
811 		return (ret);
812 	}
813 
814 	/*
815 	 * We are invoked to rescan new driver.conf files. It is
816 	 * only necessary if a new file system was mounted in the
817 	 * module_path. Because rescanning driver.conf files can
818 	 * take some time on older platforms (sun4m), the following
819 	 * code skips unnecessary driver.conf rescans to optimize
820 	 * boot performance.
821 	 */
822 	if (new_vfs_in_modpath()) {
823 		(void) i_ddi_load_drvconf(DDI_MAJOR_T_NONE);
824 		/*
825 		 * If we are still initializing io subsystem,
826 		 * load drivers with ddi-forceattach property
827 		 */
828 		if (!i_ddi_io_initialized())
829 			i_ddi_forceattach_drivers();
830 	}
831 	return (0);
832 }
833 
834 /*
835  * Unload driver.conf file and follow up by attempting
836  * to rebind devices to more appropriate driver.
837  */
838 static int
839 modctl_unload_drvconf(major_t major)
840 {
841 	int ret;
842 
843 	if (major >= devcnt)
844 		return (EINVAL);
845 
846 	ret = i_ddi_unload_drvconf(major);
847 	if (ret != 0)
848 		return (ret);
849 	(void) i_ddi_unbind_devs(major);
850 	i_ddi_bind_devs();
851 
852 	return (0);
853 }
854 
855 static void
856 check_esc_sequences(char *str, char *cstr)
857 {
858 	int i;
859 	size_t len;
860 	char *p;
861 
862 	len = strlen(str);
863 	for (i = 0; i < len; i++, str++, cstr++) {
864 		if (*str != '\\') {
865 			*cstr = *str;
866 		} else {
867 			p = str + 1;
868 			/*
869 			 * we only handle octal escape sequences for SPACE
870 			 */
871 			if (*p++ == '0' && *p++ == '4' && *p == '0') {
872 				*cstr = ' ';
873 				str += 3;
874 			} else {
875 				*cstr = *str;
876 			}
877 		}
878 	}
879 	*cstr = 0;
880 }
881 
882 static int
883 modctl_getmodpathlen(int *data)
884 {
885 	int len;
886 	len = strlen(default_path);
887 	if (copyout(&len, data, sizeof (len)) != 0)
888 		return (EFAULT);
889 	return (0);
890 }
891 
892 static int
893 modctl_getmodpath(char *data)
894 {
895 	if (copyout(default_path, data, strlen(default_path) + 1) != 0)
896 		return (EFAULT);
897 	return (0);
898 }
899 
900 static int
901 modctl_read_sysbinding_file(void)
902 {
903 	(void) read_binding_file(sysbind, sb_hashtab, make_mbind);
904 	return (0);
905 }
906 
907 static int
908 modctl_getmaj(char *uname, uint_t ulen, int *umajorp)
909 {
910 	char name[256];
911 	int retval;
912 	major_t major;
913 
914 	if (ulen == 0)
915 		return (EINVAL);
916 	if ((retval = copyinstr(uname, name,
917 	    (ulen < 256) ? ulen : 256, 0)) != 0)
918 		return (retval);
919 	if ((major = mod_name_to_major(name)) == DDI_MAJOR_T_NONE)
920 		return (ENODEV);
921 	if (copyout(&major, umajorp, sizeof (major_t)) != 0)
922 		return (EFAULT);
923 	return (0);
924 }
925 
926 static char **
927 convert_constraint_string(char *constraints, size_t len)
928 {
929 	int	i;
930 	int	n;
931 	char	*p;
932 	char	**array;
933 
934 	ASSERT(constraints != NULL);
935 	ASSERT(len > 0);
936 
937 	for (i = 0, p = constraints; strlen(p) > 0; i++, p += strlen(p) + 1)
938 		;
939 
940 	n = i;
941 
942 	if (n == 0) {
943 		kmem_free(constraints, len);
944 		return (NULL);
945 	}
946 
947 	array = kmem_alloc((n + 1) * sizeof (char *), KM_SLEEP);
948 
949 	for (i = 0, p = constraints; i < n; i++, p += strlen(p) + 1) {
950 		array[i] = i_ddi_strdup(p, KM_SLEEP);
951 	}
952 	array[n] = NULL;
953 
954 	kmem_free(constraints, len);
955 
956 	return (array);
957 }
958 /*ARGSUSED*/
959 static int
960 modctl_retire(char *path, char *uconstraints, size_t ulen)
961 {
962 	char	*pathbuf;
963 	char	*devpath;
964 	size_t	pathsz;
965 	int	retval;
966 	char	*constraints;
967 	char	**cons_array;
968 
969 	if (path == NULL)
970 		return (EINVAL);
971 
972 	if ((uconstraints == NULL) ^ (ulen == 0))
973 		return (EINVAL);
974 
975 	pathbuf = kmem_alloc(MAXPATHLEN, KM_SLEEP);
976 	retval = copyinstr(path, pathbuf, MAXPATHLEN, &pathsz);
977 	if (retval != 0) {
978 		kmem_free(pathbuf, MAXPATHLEN);
979 		return (retval);
980 	}
981 	devpath = i_ddi_strdup(pathbuf, KM_SLEEP);
982 	kmem_free(pathbuf, MAXPATHLEN);
983 
984 	/*
985 	 * First check if the device is already retired.
986 	 * If it is, this becomes a NOP
987 	 */
988 	if (e_ddi_device_retired(devpath)) {
989 		cmn_err(CE_NOTE, "Device: already retired: %s", devpath);
990 		kmem_free(devpath, strlen(devpath) + 1);
991 		return (0);
992 	}
993 
994 	cons_array = NULL;
995 	if (uconstraints) {
996 		constraints = kmem_alloc(ulen, KM_SLEEP);
997 		if (copyin(uconstraints, constraints, ulen)) {
998 			kmem_free(constraints, ulen);
999 			kmem_free(devpath, strlen(devpath) + 1);
1000 			return (EFAULT);
1001 		}
1002 		cons_array = convert_constraint_string(constraints, ulen);
1003 	}
1004 
1005 	/*
1006 	 * Try to retire the device first. The following
1007 	 * routine will return an error only if the device
1008 	 * is not retireable i.e. retire constraints forbid
1009 	 * a retire. A return of success from this routine
1010 	 * indicates that device is retireable.
1011 	 */
1012 	retval = e_ddi_retire_device(devpath, cons_array);
1013 	if (retval != DDI_SUCCESS) {
1014 		cmn_err(CE_WARN, "constraints forbid retire: %s", devpath);
1015 		kmem_free(devpath, strlen(devpath) + 1);
1016 		return (ENOTSUP);
1017 	}
1018 
1019 	/*
1020 	 * Ok, the retire succeeded. Persist the retire.
1021 	 * If retiring a nexus, we need to only persist the
1022 	 * nexus retire. Any children of a retired nexus
1023 	 * are automatically covered by the retire store
1024 	 * code.
1025 	 */
1026 	retval = e_ddi_retire_persist(devpath);
1027 	if (retval != 0) {
1028 		cmn_err(CE_WARN, "Failed to persist device retire: error %d: "
1029 		    "%s", retval, devpath);
1030 		kmem_free(devpath, strlen(devpath) + 1);
1031 		return (retval);
1032 	}
1033 	if (moddebug & MODDEBUG_RETIRE)
1034 		cmn_err(CE_NOTE, "Persisted retire of device: %s", devpath);
1035 
1036 	kmem_free(devpath, strlen(devpath) + 1);
1037 	return (0);
1038 }
1039 
1040 static int
1041 modctl_is_retired(char *path, int *statep)
1042 {
1043 	char	*pathbuf;
1044 	char	*devpath;
1045 	size_t	pathsz;
1046 	int	error;
1047 	int	status;
1048 
1049 	if (path == NULL || statep == NULL)
1050 		return (EINVAL);
1051 
1052 	pathbuf = kmem_alloc(MAXPATHLEN, KM_SLEEP);
1053 	error = copyinstr(path, pathbuf, MAXPATHLEN, &pathsz);
1054 	if (error != 0) {
1055 		kmem_free(pathbuf, MAXPATHLEN);
1056 		return (error);
1057 	}
1058 	devpath = i_ddi_strdup(pathbuf, KM_SLEEP);
1059 	kmem_free(pathbuf, MAXPATHLEN);
1060 
1061 	if (e_ddi_device_retired(devpath))
1062 		status = 1;
1063 	else
1064 		status = 0;
1065 	kmem_free(devpath, strlen(devpath) + 1);
1066 
1067 	return (copyout(&status, statep, sizeof (status)) ? EFAULT : 0);
1068 }
1069 
1070 static int
1071 modctl_unretire(char *path)
1072 {
1073 	char	*pathbuf;
1074 	char	*devpath;
1075 	size_t	pathsz;
1076 	int	retired;
1077 	int	retval;
1078 
1079 	if (path == NULL)
1080 		return (EINVAL);
1081 
1082 	pathbuf = kmem_alloc(MAXPATHLEN, KM_SLEEP);
1083 	retval = copyinstr(path, pathbuf, MAXPATHLEN, &pathsz);
1084 	if (retval != 0) {
1085 		kmem_free(pathbuf, MAXPATHLEN);
1086 		return (retval);
1087 	}
1088 	devpath = i_ddi_strdup(pathbuf, KM_SLEEP);
1089 	kmem_free(pathbuf, MAXPATHLEN);
1090 
1091 	/*
1092 	 * We check if a device is retired (first) before
1093 	 * unpersisting the retire, because we use the
1094 	 * retire store to determine if a device is retired.
1095 	 * If we unpersist first, the device will always appear
1096 	 * to be unretired. For the rationale behind unpersisting
1097 	 * a device that is not retired, see the next comment.
1098 	 */
1099 	retired = e_ddi_device_retired(devpath);
1100 
1101 	/*
1102 	 * We call unpersist unconditionally because the lookup
1103 	 * for retired devices (e_ddi_device_retired()), skips "bypassed"
1104 	 * devices. We still want to be able remove "bypassed" entries
1105 	 * from the persistent store, so we unpersist unconditionally
1106 	 * i.e. whether or not the entry is found on a lookup.
1107 	 *
1108 	 * e_ddi_retire_unpersist() returns 1 if it found and cleared
1109 	 * an entry from the retire store or 0 otherwise.
1110 	 */
1111 	if (e_ddi_retire_unpersist(devpath))
1112 		if (moddebug & MODDEBUG_RETIRE) {
1113 			cmn_err(CE_NOTE, "Unpersisted retire of device: %s",
1114 			    devpath);
1115 		}
1116 
1117 	/*
1118 	 * Check if the device is already unretired. If so,
1119 	 * the unretire becomes a NOP
1120 	 */
1121 	if (!retired) {
1122 		cmn_err(CE_NOTE, "Not retired: %s", devpath);
1123 		kmem_free(devpath, strlen(devpath) + 1);
1124 		return (0);
1125 	}
1126 
1127 	retval = e_ddi_unretire_device(devpath);
1128 	if (retval != 0) {
1129 		cmn_err(CE_WARN, "cannot unretire device: error %d, path %s\n",
1130 		    retval, devpath);
1131 	}
1132 
1133 	kmem_free(devpath, strlen(devpath) + 1);
1134 
1135 	return (retval);
1136 }
1137 
1138 static int
1139 modctl_getname(char *uname, uint_t ulen, int *umajorp)
1140 {
1141 	char *name;
1142 	major_t major;
1143 
1144 	if (copyin(umajorp, &major, sizeof (major)) != 0)
1145 		return (EFAULT);
1146 	if ((name = mod_major_to_name(major)) == NULL)
1147 		return (ENODEV);
1148 	if ((strlen(name) + 1) > ulen)
1149 		return (ENOSPC);
1150 	return (copyoutstr(name, uname, ulen, NULL));
1151 }
1152 
1153 static int
1154 modctl_devt2instance(dev_t dev, int *uinstancep)
1155 {
1156 	int	instance;
1157 
1158 	if ((instance = dev_to_instance(dev)) == -1)
1159 		return (EINVAL);
1160 
1161 	return (copyout(&instance, uinstancep, sizeof (int)));
1162 }
1163 
1164 /*
1165  * Return the sizeof of the device id.
1166  */
1167 static int
1168 modctl_sizeof_devid(dev_t dev, uint_t *len)
1169 {
1170 	uint_t		sz;
1171 	ddi_devid_t	devid;
1172 
1173 	/* get device id */
1174 	if (ddi_lyr_get_devid(dev, &devid) == DDI_FAILURE)
1175 		return (EINVAL);
1176 
1177 	sz = ddi_devid_sizeof(devid);
1178 	ddi_devid_free(devid);
1179 
1180 	/* copyout device id size */
1181 	if (copyout(&sz, len, sizeof (sz)) != 0)
1182 		return (EFAULT);
1183 
1184 	return (0);
1185 }
1186 
1187 /*
1188  * Return a copy of the device id.
1189  */
1190 static int
1191 modctl_get_devid(dev_t dev, uint_t len, ddi_devid_t udevid)
1192 {
1193 	uint_t		sz;
1194 	ddi_devid_t	devid;
1195 	int		err = 0;
1196 
1197 	/* get device id */
1198 	if (ddi_lyr_get_devid(dev, &devid) == DDI_FAILURE)
1199 		return (EINVAL);
1200 
1201 	sz = ddi_devid_sizeof(devid);
1202 
1203 	/* Error if device id is larger than space allocated */
1204 	if (sz > len) {
1205 		ddi_devid_free(devid);
1206 		return (ENOSPC);
1207 	}
1208 
1209 	/* copy out device id */
1210 	if (copyout(devid, udevid, sz) != 0)
1211 		err = EFAULT;
1212 	ddi_devid_free(devid);
1213 	return (err);
1214 }
1215 
1216 /*
1217  * return the /devices paths associated with the specified devid and
1218  * minor name.
1219  */
1220 /*ARGSUSED*/
1221 static int
1222 modctl_devid2paths(ddi_devid_t udevid, char *uminor_name, uint_t flag,
1223 	size_t *ulensp, char *upaths)
1224 {
1225 	ddi_devid_t	devid = NULL;
1226 	int		devid_len;
1227 	char		*minor_name = NULL;
1228 	dev_info_t	*dip = NULL;
1229 	int		circ;
1230 	struct ddi_minor_data   *dmdp;
1231 	char		*path = NULL;
1232 	int		ulens;
1233 	int		lens;
1234 	int		len;
1235 	dev_t		*devlist = NULL;
1236 	int		ndevs;
1237 	int		i;
1238 	int		ret = 0;
1239 
1240 	/*
1241 	 * If upaths is NULL then we are only computing the amount of space
1242 	 * needed to hold the paths and returning the value in *ulensp. If we
1243 	 * are copying out paths then we get the amount of space allocated by
1244 	 * the caller. If the actual space needed for paths is larger, or
1245 	 * things are changing out from under us, then we return EAGAIN.
1246 	 */
1247 	if (upaths) {
1248 		if (ulensp == NULL)
1249 			return (EINVAL);
1250 		if (copyin(ulensp, &ulens, sizeof (ulens)) != 0)
1251 			return (EFAULT);
1252 	}
1253 
1254 	/*
1255 	 * copyin enough of the devid to determine the length then
1256 	 * reallocate and copy in the entire devid.
1257 	 */
1258 	devid_len = ddi_devid_sizeof(NULL);
1259 	devid = kmem_alloc(devid_len, KM_SLEEP);
1260 	if (copyin(udevid, devid, devid_len)) {
1261 		ret = EFAULT;
1262 		goto out;
1263 	}
1264 	len = devid_len;
1265 	devid_len = ddi_devid_sizeof(devid);
1266 	kmem_free(devid, len);
1267 	devid = kmem_alloc(devid_len, KM_SLEEP);
1268 	if (copyin(udevid, devid, devid_len)) {
1269 		ret = EFAULT;
1270 		goto out;
1271 	}
1272 
1273 	/* copyin the minor name if specified. */
1274 	minor_name = uminor_name;
1275 	if ((minor_name != DEVID_MINOR_NAME_ALL) &&
1276 	    (minor_name != DEVID_MINOR_NAME_ALL_CHR) &&
1277 	    (minor_name != DEVID_MINOR_NAME_ALL_BLK)) {
1278 		minor_name = kmem_alloc(MAXPATHLEN, KM_SLEEP);
1279 		if (copyinstr(uminor_name, minor_name, MAXPATHLEN, 0)) {
1280 			ret = EFAULT;
1281 			goto out;
1282 		}
1283 	}
1284 
1285 	/*
1286 	 * Use existing function to resolve the devid into a devlist.
1287 	 *
1288 	 * NOTE: there is a loss of spectype information in the current
1289 	 * ddi_lyr_devid_to_devlist implementation. We work around this by not
1290 	 * passing down DEVID_MINOR_NAME_ALL here, but reproducing all minor
1291 	 * node forms in the loop processing the devlist below. It would be
1292 	 * best if at some point the use of this interface here was replaced
1293 	 * with a path oriented call.
1294 	 */
1295 	if (ddi_lyr_devid_to_devlist(devid,
1296 	    (minor_name == DEVID_MINOR_NAME_ALL) ?
1297 	    DEVID_MINOR_NAME_ALL_CHR : minor_name,
1298 	    &ndevs, &devlist) != DDI_SUCCESS) {
1299 		ret = EINVAL;
1300 		goto out;
1301 	}
1302 
1303 	/*
1304 	 * loop over the devlist, converting each devt to a path and doing
1305 	 * a copyout of the path and computation of the amount of space
1306 	 * needed to hold all the paths
1307 	 */
1308 	path = kmem_alloc(MAXPATHLEN, KM_SLEEP);
1309 	for (i = 0, lens = 0; i < ndevs; i++) {
1310 
1311 		/* find the dip associated with the dev_t */
1312 		if ((dip = e_ddi_hold_devi_by_dev(devlist[i], 0)) == NULL)
1313 			continue;
1314 
1315 		/* loop over all the minor nodes, skipping ones we don't want */
1316 		ndi_devi_enter(dip, &circ);
1317 		for (dmdp = DEVI(dip)->devi_minor; dmdp; dmdp = dmdp->next) {
1318 			if ((dmdp->ddm_dev != devlist[i]) ||
1319 			    (dmdp->type != DDM_MINOR))
1320 				continue;
1321 
1322 			if ((minor_name != DEVID_MINOR_NAME_ALL) &&
1323 			    (minor_name != DEVID_MINOR_NAME_ALL_CHR) &&
1324 			    (minor_name != DEVID_MINOR_NAME_ALL_BLK) &&
1325 			    strcmp(minor_name, dmdp->ddm_name))
1326 				continue;
1327 			else {
1328 				if ((minor_name == DEVID_MINOR_NAME_ALL_CHR) &&
1329 				    (dmdp->ddm_spec_type != S_IFCHR))
1330 					continue;
1331 				if ((minor_name == DEVID_MINOR_NAME_ALL_BLK) &&
1332 				    (dmdp->ddm_spec_type != S_IFBLK))
1333 					continue;
1334 			}
1335 
1336 			(void) ddi_pathname_minor(dmdp, path);
1337 			len = strlen(path) + 1;
1338 			*(path + len) = '\0';	/* set double termination */
1339 			lens += len;
1340 
1341 			/* copyout the path with double terminations */
1342 			if (upaths) {
1343 				if (lens > ulens) {
1344 					ret = EAGAIN;
1345 					goto out;
1346 				}
1347 				if (copyout(path, upaths, len + 1)) {
1348 					ret = EFAULT;
1349 					goto out;
1350 				}
1351 				upaths += len;
1352 			}
1353 		}
1354 		ndi_devi_exit(dip, circ);
1355 		ddi_release_devi(dip);
1356 		dip = NULL;
1357 	}
1358 	lens++;		/* add one for double termination */
1359 
1360 	/* copy out the amount of space needed to hold the paths */
1361 	if (ulensp && copyout(&lens, ulensp, sizeof (lens))) {
1362 		ret = EFAULT;
1363 		goto out;
1364 	}
1365 	ret = 0;
1366 
1367 out:	if (dip) {
1368 		ndi_devi_exit(dip, circ);
1369 		ddi_release_devi(dip);
1370 	}
1371 	if (path)
1372 		kmem_free(path, MAXPATHLEN);
1373 	if (devlist)
1374 		ddi_lyr_free_devlist(devlist, ndevs);
1375 	if (minor_name &&
1376 	    (minor_name != DEVID_MINOR_NAME_ALL) &&
1377 	    (minor_name != DEVID_MINOR_NAME_ALL_CHR) &&
1378 	    (minor_name != DEVID_MINOR_NAME_ALL_BLK))
1379 		kmem_free(minor_name, MAXPATHLEN);
1380 	if (devid)
1381 		kmem_free(devid, devid_len);
1382 	return (ret);
1383 }
1384 
1385 /*
1386  * Return the size of the minor name.
1387  */
1388 static int
1389 modctl_sizeof_minorname(dev_t dev, int spectype, uint_t *len)
1390 {
1391 	uint_t	sz;
1392 	char	*name;
1393 
1394 	/* get the minor name */
1395 	if (ddi_lyr_get_minor_name(dev, spectype, &name) == DDI_FAILURE)
1396 		return (EINVAL);
1397 
1398 	sz = strlen(name) + 1;
1399 	kmem_free(name, sz);
1400 
1401 	/* copy out the size of the minor name */
1402 	if (copyout(&sz, len, sizeof (sz)) != 0)
1403 		return (EFAULT);
1404 
1405 	return (0);
1406 }
1407 
1408 /*
1409  * Return the minor name.
1410  */
1411 static int
1412 modctl_get_minorname(dev_t dev, int spectype, uint_t len, char *uname)
1413 {
1414 	uint_t	sz;
1415 	char	*name;
1416 	int	err = 0;
1417 
1418 	/* get the minor name */
1419 	if (ddi_lyr_get_minor_name(dev, spectype, &name) == DDI_FAILURE)
1420 		return (EINVAL);
1421 
1422 	sz = strlen(name) + 1;
1423 
1424 	/* Error if the minor name is larger than the space allocated */
1425 	if (sz > len) {
1426 		kmem_free(name, sz);
1427 		return (ENOSPC);
1428 	}
1429 
1430 	/* copy out the minor name */
1431 	if (copyout(name, uname, sz) != 0)
1432 		err = EFAULT;
1433 	kmem_free(name, sz);
1434 	return (err);
1435 }
1436 
1437 /*
1438  * Return the size of the (dev_t,spectype) devfspath name.
1439  */
1440 static int
1441 modctl_devfspath_len(dev_t dev, int spectype, uint_t *len)
1442 {
1443 	uint_t	sz;
1444 	char	*name;
1445 
1446 	/* get the path name */
1447 	name = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
1448 	if (ddi_dev_pathname(dev, spectype, name) == DDI_FAILURE) {
1449 		kmem_free(name, MAXPATHLEN);
1450 		return (EINVAL);
1451 	}
1452 
1453 	sz = strlen(name) + 1;
1454 	kmem_free(name, MAXPATHLEN);
1455 
1456 	/* copy out the size of the path name */
1457 	if (copyout(&sz, len, sizeof (sz)) != 0)
1458 		return (EFAULT);
1459 
1460 	return (0);
1461 }
1462 
1463 /*
1464  * Return the (dev_t,spectype) devfspath name.
1465  */
1466 static int
1467 modctl_devfspath(dev_t dev, int spectype, uint_t len, char *uname)
1468 {
1469 	uint_t	sz;
1470 	char	*name;
1471 	int	err = 0;
1472 
1473 	/* get the path name */
1474 	name = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
1475 	if (ddi_dev_pathname(dev, spectype, name) == DDI_FAILURE) {
1476 		kmem_free(name, MAXPATHLEN);
1477 		return (EINVAL);
1478 	}
1479 
1480 	sz = strlen(name) + 1;
1481 
1482 	/* Error if the path name is larger than the space allocated */
1483 	if (sz > len) {
1484 		kmem_free(name, MAXPATHLEN);
1485 		return (ENOSPC);
1486 	}
1487 
1488 	/* copy out the path name */
1489 	if (copyout(name, uname, sz) != 0)
1490 		err = EFAULT;
1491 	kmem_free(name, MAXPATHLEN);
1492 	return (err);
1493 }
1494 
1495 /*
1496  * Return the size of the (major,instance) devfspath name.
1497  */
1498 static int
1499 modctl_devfspath_mi_len(major_t major, int instance, uint_t *len)
1500 {
1501 	uint_t	sz;
1502 	char	*name;
1503 
1504 	/* get the path name */
1505 	name = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
1506 	if (e_ddi_majorinstance_to_path(major, instance, name) != DDI_SUCCESS) {
1507 		kmem_free(name, MAXPATHLEN);
1508 		return (EINVAL);
1509 	}
1510 
1511 	sz = strlen(name) + 1;
1512 	kmem_free(name, MAXPATHLEN);
1513 
1514 	/* copy out the size of the path name */
1515 	if (copyout(&sz, len, sizeof (sz)) != 0)
1516 		return (EFAULT);
1517 
1518 	return (0);
1519 }
1520 
1521 /*
1522  * Return the (major_instance) devfspath name.
1523  * NOTE: e_ddi_majorinstance_to_path does not require the device to attach to
1524  * return a path - it uses the instance tree.
1525  */
1526 static int
1527 modctl_devfspath_mi(major_t major, int instance, uint_t len, char *uname)
1528 {
1529 	uint_t	sz;
1530 	char	*name;
1531 	int	err = 0;
1532 
1533 	/* get the path name */
1534 	name = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
1535 	if (e_ddi_majorinstance_to_path(major, instance, name) != DDI_SUCCESS) {
1536 		kmem_free(name, MAXPATHLEN);
1537 		return (EINVAL);
1538 	}
1539 
1540 	sz = strlen(name) + 1;
1541 
1542 	/* Error if the path name is larger than the space allocated */
1543 	if (sz > len) {
1544 		kmem_free(name, MAXPATHLEN);
1545 		return (ENOSPC);
1546 	}
1547 
1548 	/* copy out the path name */
1549 	if (copyout(name, uname, sz) != 0)
1550 		err = EFAULT;
1551 	kmem_free(name, MAXPATHLEN);
1552 	return (err);
1553 }
1554 
1555 static int
1556 modctl_get_fbname(char *path)
1557 {
1558 	extern dev_t fbdev;
1559 	char *pathname = NULL;
1560 	int rval = 0;
1561 
1562 	/* make sure fbdev is set before we plunge in */
1563 	if (fbdev == NODEV)
1564 		return (ENODEV);
1565 
1566 	pathname = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
1567 	if ((rval = ddi_dev_pathname(fbdev, S_IFCHR,
1568 	    pathname)) == DDI_SUCCESS) {
1569 		if (copyout(pathname, path, strlen(pathname)+1) != 0) {
1570 			rval = EFAULT;
1571 		}
1572 	}
1573 	kmem_free(pathname, MAXPATHLEN);
1574 	return (rval);
1575 }
1576 
1577 /*
1578  * modctl_reread_dacf()
1579  *	Reread the dacf rules database from the named binding file.
1580  *	If NULL is specified, pass along the NULL, it means 'use the default'.
1581  */
1582 static int
1583 modctl_reread_dacf(char *path)
1584 {
1585 	int rval = 0;
1586 	char *filename, *filenamep;
1587 
1588 	filename = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
1589 
1590 	if (path == NULL) {
1591 		filenamep = NULL;
1592 	} else {
1593 		if (copyinstr(path, filename, MAXPATHLEN, 0) != 0) {
1594 			rval = EFAULT;
1595 			goto out;
1596 		}
1597 		filenamep = filename;
1598 		filenamep[MAXPATHLEN - 1] = '\0';
1599 	}
1600 
1601 	rval = read_dacf_binding_file(filenamep);
1602 out:
1603 	kmem_free(filename, MAXPATHLEN);
1604 	return (rval);
1605 }
1606 
1607 /*ARGSUSED*/
1608 static int
1609 modctl_modevents(int subcmd, uintptr_t a2, uintptr_t a3, uintptr_t a4,
1610     uint_t flag)
1611 {
1612 	int error = 0;
1613 	char *filenamep;
1614 
1615 	switch (subcmd) {
1616 
1617 	case MODEVENTS_FLUSH:
1618 		/* flush all currently queued events */
1619 		log_sysevent_flushq(subcmd, flag);
1620 		break;
1621 
1622 	case MODEVENTS_SET_DOOR_UPCALL_FILENAME:
1623 		/*
1624 		 * bind door_upcall to filename
1625 		 * this should only be done once per invocation
1626 		 * of the event daemon.
1627 		 */
1628 
1629 		filenamep = kmem_zalloc(MOD_MAXPATH, KM_SLEEP);
1630 
1631 		if (copyinstr((char *)a2, filenamep, MOD_MAXPATH, 0)) {
1632 			error = EFAULT;
1633 		} else {
1634 			error = log_sysevent_filename(filenamep);
1635 		}
1636 		kmem_free(filenamep, MOD_MAXPATH);
1637 		break;
1638 
1639 	case MODEVENTS_GETDATA:
1640 		error = log_sysevent_copyout_data((sysevent_id_t *)a2,
1641 		    (size_t)a3, (caddr_t)a4);
1642 		break;
1643 
1644 	case MODEVENTS_FREEDATA:
1645 		error = log_sysevent_free_data((sysevent_id_t *)a2);
1646 		break;
1647 	case MODEVENTS_POST_EVENT:
1648 		error = log_usr_sysevent((sysevent_t *)a2, (uint32_t)a3,
1649 		    (sysevent_id_t *)a4);
1650 		break;
1651 	case MODEVENTS_REGISTER_EVENT:
1652 		error = log_sysevent_register((char *)a2, (char *)a3,
1653 		    (se_pubsub_t *)a4);
1654 		break;
1655 	default:
1656 		error = EINVAL;
1657 	}
1658 
1659 	return (error);
1660 }
1661 
1662 static void
1663 free_mperm(mperm_t *mp)
1664 {
1665 	int len;
1666 
1667 	if (mp->mp_minorname) {
1668 		len = strlen(mp->mp_minorname) + 1;
1669 		kmem_free(mp->mp_minorname, len);
1670 	}
1671 	kmem_free(mp, sizeof (mperm_t));
1672 }
1673 
1674 #define	MP_NO_DRV_ERR	\
1675 	"/etc/minor_perm: no driver for %s\n"
1676 
1677 #define	MP_EMPTY_MINOR	\
1678 	"/etc/minor_perm: empty minor name for driver %s\n"
1679 
1680 #define	MP_NO_MINOR	\
1681 	"/etc/minor_perm: no minor matching %s for driver %s\n"
1682 
1683 /*
1684  * Remove mperm entry with matching minorname
1685  */
1686 static void
1687 rem_minorperm(major_t major, char *drvname, mperm_t *mp, int is_clone)
1688 {
1689 	mperm_t **mp_head;
1690 	mperm_t *freemp = NULL;
1691 	struct devnames *dnp = &devnamesp[major];
1692 	mperm_t **wildmp;
1693 
1694 	ASSERT(mp->mp_minorname && strlen(mp->mp_minorname) > 0);
1695 
1696 	LOCK_DEV_OPS(&dnp->dn_lock);
1697 	if (strcmp(mp->mp_minorname, "*") == 0) {
1698 		wildmp = ((is_clone == 0) ?
1699 		    &dnp->dn_mperm_wild : &dnp->dn_mperm_clone);
1700 		if (*wildmp)
1701 			freemp = *wildmp;
1702 		*wildmp = NULL;
1703 	} else {
1704 		mp_head = &dnp->dn_mperm;
1705 		while (*mp_head) {
1706 			if (strcmp((*mp_head)->mp_minorname,
1707 			    mp->mp_minorname) != 0) {
1708 				mp_head = &(*mp_head)->mp_next;
1709 				continue;
1710 			}
1711 			/* remove the entry */
1712 			freemp = *mp_head;
1713 			*mp_head = freemp->mp_next;
1714 			break;
1715 		}
1716 	}
1717 	if (freemp) {
1718 		if (moddebug & MODDEBUG_MINORPERM) {
1719 			cmn_err(CE_CONT, "< %s %s 0%o %d %d\n",
1720 			    drvname, freemp->mp_minorname,
1721 			    freemp->mp_mode & 0777,
1722 			    freemp->mp_uid, freemp->mp_gid);
1723 		}
1724 		free_mperm(freemp);
1725 	} else {
1726 		if (moddebug & MODDEBUG_MINORPERM) {
1727 			cmn_err(CE_CONT, MP_NO_MINOR,
1728 			    drvname, mp->mp_minorname);
1729 		}
1730 	}
1731 
1732 	UNLOCK_DEV_OPS(&dnp->dn_lock);
1733 }
1734 
1735 /*
1736  * Add minor perm entry
1737  */
1738 static void
1739 add_minorperm(major_t major, char *drvname, mperm_t *mp, int is_clone)
1740 {
1741 	mperm_t **mp_head;
1742 	mperm_t *freemp = NULL;
1743 	struct devnames *dnp = &devnamesp[major];
1744 	mperm_t **wildmp;
1745 
1746 	ASSERT(mp->mp_minorname && strlen(mp->mp_minorname) > 0);
1747 
1748 	/*
1749 	 * Note that update_drv replace semantics require
1750 	 * replacing matching entries with the new permissions.
1751 	 */
1752 	LOCK_DEV_OPS(&dnp->dn_lock);
1753 	if (strcmp(mp->mp_minorname, "*") == 0) {
1754 		wildmp = ((is_clone == 0) ?
1755 		    &dnp->dn_mperm_wild : &dnp->dn_mperm_clone);
1756 		if (*wildmp)
1757 			freemp = *wildmp;
1758 		*wildmp = mp;
1759 	} else {
1760 		mperm_t *p, *v = NULL;
1761 		for (p = dnp->dn_mperm; p; v = p, p = p->mp_next) {
1762 			if (strcmp(p->mp_minorname, mp->mp_minorname) == 0) {
1763 				if (v == NULL)
1764 					dnp->dn_mperm = mp;
1765 				else
1766 					v->mp_next = mp;
1767 				mp->mp_next = p->mp_next;
1768 				freemp = p;
1769 				goto replaced;
1770 			}
1771 		}
1772 		if (p == NULL) {
1773 			mp_head = &dnp->dn_mperm;
1774 			if (*mp_head == NULL) {
1775 				*mp_head = mp;
1776 			} else {
1777 				mp->mp_next = *mp_head;
1778 				*mp_head = mp;
1779 			}
1780 		}
1781 	}
1782 replaced:
1783 	if (freemp) {
1784 		if (moddebug & MODDEBUG_MINORPERM) {
1785 			cmn_err(CE_CONT, "< %s %s 0%o %d %d\n",
1786 			    drvname, freemp->mp_minorname,
1787 			    freemp->mp_mode & 0777,
1788 			    freemp->mp_uid, freemp->mp_gid);
1789 		}
1790 		free_mperm(freemp);
1791 	}
1792 	if (moddebug & MODDEBUG_MINORPERM) {
1793 		cmn_err(CE_CONT, "> %s %s 0%o %d %d\n",
1794 		    drvname, mp->mp_minorname, mp->mp_mode & 0777,
1795 		    mp->mp_uid, mp->mp_gid);
1796 	}
1797 	UNLOCK_DEV_OPS(&dnp->dn_lock);
1798 }
1799 
1800 
1801 static int
1802 process_minorperm(int cmd, nvlist_t *nvl)
1803 {
1804 	char *minor;
1805 	major_t major;
1806 	mperm_t *mp;
1807 	nvpair_t *nvp;
1808 	char *name;
1809 	int is_clone;
1810 	major_t minmaj;
1811 
1812 	ASSERT(cmd == MODLOADMINORPERM ||
1813 	    cmd == MODADDMINORPERM || cmd == MODREMMINORPERM);
1814 
1815 	nvp = NULL;
1816 	while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
1817 		name = nvpair_name(nvp);
1818 
1819 		is_clone = 0;
1820 		(void) nvpair_value_string(nvp, &minor);
1821 		major = ddi_name_to_major(name);
1822 		if (major != DDI_MAJOR_T_NONE) {
1823 			mp = kmem_zalloc(sizeof (*mp), KM_SLEEP);
1824 			if (minor == NULL || strlen(minor) == 0) {
1825 				if (moddebug & MODDEBUG_MINORPERM) {
1826 					cmn_err(CE_CONT, MP_EMPTY_MINOR, name);
1827 				}
1828 				minor = "*";
1829 			}
1830 
1831 			/*
1832 			 * The minor name of a node using the clone
1833 			 * driver must be the driver name.  To avoid
1834 			 * multiple searches, we map entries in the form
1835 			 * clone:<driver> to <driver>:*.  This also allows us
1836 			 * to filter out some of the litter in /etc/minor_perm.
1837 			 * Minor perm alias entries where the name is not
1838 			 * the driver kept on the clone list itself.
1839 			 * This all seems very fragile as a driver could
1840 			 * be introduced with an existing alias name.
1841 			 */
1842 			if (strcmp(name, "clone") == 0) {
1843 				minmaj = ddi_name_to_major(minor);
1844 				if (minmaj != DDI_MAJOR_T_NONE) {
1845 					if (moddebug & MODDEBUG_MINORPERM) {
1846 						cmn_err(CE_CONT,
1847 						    "mapping %s:%s to %s:*\n",
1848 						    name, minor, minor);
1849 					}
1850 					major = minmaj;
1851 					name = minor;
1852 					minor = "*";
1853 					is_clone = 1;
1854 				}
1855 			}
1856 
1857 			if (mp) {
1858 				mp->mp_minorname =
1859 				    i_ddi_strdup(minor, KM_SLEEP);
1860 			}
1861 		} else {
1862 			mp = NULL;
1863 			if (moddebug & MODDEBUG_MINORPERM) {
1864 				cmn_err(CE_CONT, MP_NO_DRV_ERR, name);
1865 			}
1866 		}
1867 
1868 		/* mode */
1869 		nvp = nvlist_next_nvpair(nvl, nvp);
1870 		ASSERT(strcmp(nvpair_name(nvp), "mode") == 0);
1871 		if (mp)
1872 			(void) nvpair_value_int32(nvp, (int *)&mp->mp_mode);
1873 		/* uid */
1874 		nvp = nvlist_next_nvpair(nvl, nvp);
1875 		ASSERT(strcmp(nvpair_name(nvp), "uid") == 0);
1876 		if (mp)
1877 			(void) nvpair_value_uint32(nvp, &mp->mp_uid);
1878 		/* gid */
1879 		nvp = nvlist_next_nvpair(nvl, nvp);
1880 		ASSERT(strcmp(nvpair_name(nvp), "gid") == 0);
1881 		if (mp) {
1882 			(void) nvpair_value_uint32(nvp, &mp->mp_gid);
1883 
1884 			if (cmd == MODREMMINORPERM) {
1885 				rem_minorperm(major, name, mp, is_clone);
1886 				free_mperm(mp);
1887 			} else {
1888 				add_minorperm(major, name, mp, is_clone);
1889 			}
1890 		}
1891 	}
1892 
1893 	if (cmd == MODLOADMINORPERM)
1894 		minorperm_loaded = 1;
1895 
1896 	/*
1897 	 * Reset permissions of cached dv_nodes
1898 	 */
1899 	(void) devfs_reset_perm(DV_RESET_PERM);
1900 
1901 	return (0);
1902 }
1903 
1904 static int
1905 modctl_minorperm(int cmd, char *usrbuf, size_t buflen)
1906 {
1907 	int error;
1908 	nvlist_t *nvl;
1909 	char *buf = kmem_alloc(buflen, KM_SLEEP);
1910 
1911 	if ((error = ddi_copyin(usrbuf, buf, buflen, 0)) != 0) {
1912 		kmem_free(buf, buflen);
1913 		return (error);
1914 	}
1915 
1916 	error = nvlist_unpack(buf, buflen, &nvl, KM_SLEEP);
1917 	kmem_free(buf, buflen);
1918 	if (error)
1919 		return (error);
1920 
1921 	error = process_minorperm(cmd, nvl);
1922 	nvlist_free(nvl);
1923 	return (error);
1924 }
1925 
1926 struct walk_args {
1927 	char		*wa_drvname;
1928 	list_t		wa_pathlist;
1929 };
1930 
1931 struct path_elem {
1932 	char		*pe_dir;
1933 	char		*pe_nodename;
1934 	list_node_t	pe_node;
1935 	int		pe_dirlen;
1936 };
1937 
1938 /*ARGSUSED*/
1939 static int
1940 modctl_inst_walker(const char *path, in_node_t *np, in_drv_t *dp, void *arg)
1941 {
1942 	struct walk_args *wargs = (struct walk_args *)arg;
1943 	struct path_elem *pe;
1944 	char *nodename;
1945 
1946 	/*
1947 	 * Search may be restricted to a single driver in the case of rem_drv
1948 	 */
1949 	if (wargs->wa_drvname &&
1950 	    strcmp(dp->ind_driver_name, wargs->wa_drvname) != 0)
1951 		return (INST_WALK_CONTINUE);
1952 
1953 	pe = kmem_zalloc(sizeof (*pe), KM_SLEEP);
1954 	pe->pe_dir = i_ddi_strdup((char *)path, KM_SLEEP);
1955 	pe->pe_dirlen = strlen(pe->pe_dir) + 1;
1956 	ASSERT(strrchr(pe->pe_dir, '/') != NULL);
1957 	nodename = strrchr(pe->pe_dir, '/');
1958 	*nodename++ = 0;
1959 	pe->pe_nodename = nodename;
1960 	list_insert_tail(&wargs->wa_pathlist, pe);
1961 
1962 	return (INST_WALK_CONTINUE);
1963 }
1964 
1965 /*
1966  * /devices attribute nodes clean-up optionally performed
1967  * when removing a driver (rem_drv -C).
1968  *
1969  * Removing attribute nodes allows a machine to be reprovisioned
1970  * without the side-effect of inadvertently picking up stale
1971  * device node ownership or permissions.
1972  *
1973  * Preserving attributes (not performing cleanup) allows devices
1974  * attribute changes to be preserved across upgrades, as
1975  * upgrade rather heavy-handedly does a rem_drv/add_drv cycle.
1976  */
1977 static int
1978 modctl_remdrv_cleanup(const char *u_drvname)
1979 {
1980 	struct walk_args *wargs;
1981 	struct path_elem *pe;
1982 	char *drvname;
1983 	int err, rval = 0;
1984 
1985 	drvname = kmem_alloc(MAXMODCONFNAME, KM_SLEEP);
1986 	if ((err = copyinstr(u_drvname, drvname, MAXMODCONFNAME, 0))) {
1987 		kmem_free(drvname, MAXMODCONFNAME);
1988 		return (err);
1989 	}
1990 
1991 	/*
1992 	 * First go through the instance database.  For each
1993 	 * instance of a device bound to the driver being
1994 	 * removed, remove any underlying devfs attribute nodes.
1995 	 *
1996 	 * This is a two-step process.  First we go through
1997 	 * the instance data itself, constructing a list of
1998 	 * the nodes discovered.  The second step is then
1999 	 * to find and remove any devfs attribute nodes
2000 	 * for the instances discovered in the first step.
2001 	 * The two-step process avoids any difficulties
2002 	 * which could arise by holding the instance data
2003 	 * lock with simultaneous devfs operations.
2004 	 */
2005 	wargs = kmem_zalloc(sizeof (*wargs), KM_SLEEP);
2006 
2007 	wargs->wa_drvname = drvname;
2008 	list_create(&wargs->wa_pathlist,
2009 	    sizeof (struct path_elem), offsetof(struct path_elem, pe_node));
2010 
2011 	(void) e_ddi_walk_instances(modctl_inst_walker, (void *)wargs);
2012 
2013 	for (pe = list_head(&wargs->wa_pathlist); pe != NULL;
2014 	    pe = list_next(&wargs->wa_pathlist, pe)) {
2015 		err = devfs_remdrv_cleanup((const char *)pe->pe_dir,
2016 		    (const char *)pe->pe_nodename);
2017 		if (rval == 0)
2018 			rval = err;
2019 	}
2020 
2021 	while ((pe = list_head(&wargs->wa_pathlist)) != NULL) {
2022 		list_remove(&wargs->wa_pathlist, pe);
2023 		kmem_free(pe->pe_dir, pe->pe_dirlen);
2024 		kmem_free(pe, sizeof (*pe));
2025 	}
2026 	kmem_free(wargs, sizeof (*wargs));
2027 
2028 	/*
2029 	 * Pseudo nodes aren't recorded in the instance database
2030 	 * so any such nodes need to be handled separately.
2031 	 */
2032 	err = devfs_remdrv_cleanup("pseudo", (const char *)drvname);
2033 	if (rval == 0)
2034 		rval = err;
2035 
2036 	kmem_free(drvname, MAXMODCONFNAME);
2037 	return (rval);
2038 }
2039 
2040 /*
2041  * Perform a cleanup of non-existent /devices attribute nodes,
2042  * similar to rem_drv -C, but for all drivers/devices.
2043  * This is also optional, performed as part of devfsadm -C.
2044  */
2045 void
2046 dev_devices_cleanup()
2047 {
2048 	struct walk_args *wargs;
2049 	struct path_elem *pe;
2050 	dev_info_t *devi;
2051 	char *path;
2052 	int err;
2053 
2054 	/*
2055 	 * It's expected that all drivers have been loaded and
2056 	 * module unloading disabled while performing cleanup.
2057 	 */
2058 	ASSERT(modunload_disable_count > 0);
2059 
2060 	wargs = kmem_zalloc(sizeof (*wargs), KM_SLEEP);
2061 	wargs->wa_drvname = NULL;
2062 	list_create(&wargs->wa_pathlist,
2063 	    sizeof (struct path_elem), offsetof(struct path_elem, pe_node));
2064 
2065 	(void) e_ddi_walk_instances(modctl_inst_walker, (void *)wargs);
2066 
2067 	path = kmem_alloc(MAXPATHLEN, KM_SLEEP);
2068 
2069 	for (pe = list_head(&wargs->wa_pathlist); pe != NULL;
2070 	    pe = list_next(&wargs->wa_pathlist, pe)) {
2071 		(void) snprintf(path, MAXPATHLEN, "%s/%s",
2072 		    pe->pe_dir, pe->pe_nodename);
2073 		devi = e_ddi_hold_devi_by_path(path, 0);
2074 		if (devi != NULL) {
2075 			ddi_release_devi(devi);
2076 		} else {
2077 			err = devfs_remdrv_cleanup((const char *)pe->pe_dir,
2078 			    (const char *)pe->pe_nodename);
2079 			if (err) {
2080 				cmn_err(CE_CONT,
2081 				    "devfs: %s: clean-up error %d\n",
2082 				    path, err);
2083 			}
2084 		}
2085 	}
2086 
2087 	while ((pe = list_head(&wargs->wa_pathlist)) != NULL) {
2088 		list_remove(&wargs->wa_pathlist, pe);
2089 		kmem_free(pe->pe_dir, pe->pe_dirlen);
2090 		kmem_free(pe, sizeof (*pe));
2091 	}
2092 	kmem_free(wargs, sizeof (*wargs));
2093 	kmem_free(path, MAXPATHLEN);
2094 }
2095 
2096 static int
2097 modctl_allocpriv(const char *name)
2098 {
2099 	char *pstr = kmem_alloc(PRIVNAME_MAX, KM_SLEEP);
2100 	int error;
2101 
2102 	if ((error = copyinstr(name, pstr, PRIVNAME_MAX, 0))) {
2103 		kmem_free(pstr, PRIVNAME_MAX);
2104 		return (error);
2105 	}
2106 	error = priv_getbyname(pstr, PRIV_ALLOC);
2107 	if (error < 0)
2108 		error = -error;
2109 	else
2110 		error = 0;
2111 	kmem_free(pstr, PRIVNAME_MAX);
2112 	return (error);
2113 }
2114 
2115 static int
2116 modctl_devexists(const char *upath, int pathlen)
2117 {
2118 	char	*path;
2119 	int	ret;
2120 
2121 	/*
2122 	 * copy in the path, including the terminating null
2123 	 */
2124 	pathlen++;
2125 	if (pathlen <= 1 || pathlen > MAXPATHLEN)
2126 		return (EINVAL);
2127 	path = kmem_zalloc(pathlen + 1, KM_SLEEP);
2128 	if ((ret = copyinstr(upath, path, pathlen, NULL)) == 0) {
2129 		ret = sdev_modctl_devexists(path);
2130 	}
2131 
2132 	kmem_free(path, pathlen + 1);
2133 	return (ret);
2134 }
2135 
2136 static int
2137 modctl_devreaddir(const char *udir, int udirlen,
2138     char *upaths, int64_t *ulensp)
2139 {
2140 	char	*paths = NULL;
2141 	char	**dirlist = NULL;
2142 	char	*dir;
2143 	int64_t	ulens;
2144 	int64_t	lens;
2145 	int	i, n;
2146 	int	ret = 0;
2147 	char	*p;
2148 	int	npaths;
2149 	int	npaths_alloc;
2150 
2151 	/*
2152 	 * If upaths is NULL then we are only computing the amount of space
2153 	 * needed to return the paths, with the value returned in *ulensp. If we
2154 	 * are copying out paths then we get the amount of space allocated by
2155 	 * the caller. If the actual space needed for paths is larger, or
2156 	 * things are changing out from under us, then we return EAGAIN.
2157 	 */
2158 	if (upaths) {
2159 		if (ulensp == NULL)
2160 			return (EINVAL);
2161 		if (copyin(ulensp, &ulens, sizeof (ulens)) != 0)
2162 			return (EFAULT);
2163 	}
2164 
2165 	/*
2166 	 * copyin the /dev path including terminating null
2167 	 */
2168 	udirlen++;
2169 	if (udirlen <= 1 || udirlen > MAXPATHLEN)
2170 		return (EINVAL);
2171 	dir = kmem_zalloc(udirlen + 1, KM_SLEEP);
2172 	if ((ret = copyinstr(udir, dir, udirlen, NULL)) != 0)
2173 		goto err;
2174 
2175 	if ((ret = sdev_modctl_readdir(dir, &dirlist,
2176 	    &npaths, &npaths_alloc, 0)) != 0) {
2177 		ASSERT(dirlist == NULL);
2178 		goto err;
2179 	}
2180 
2181 	lens = 0;
2182 	for (i = 0; i < npaths; i++) {
2183 		lens += strlen(dirlist[i]) + 1;
2184 	}
2185 	lens++;		/* add one for double termination */
2186 
2187 	if (upaths) {
2188 		if (lens > ulens) {
2189 			ret = EAGAIN;
2190 			goto out;
2191 		}
2192 
2193 		paths = kmem_alloc(lens, KM_SLEEP);
2194 
2195 		p = paths;
2196 		for (i = 0; i < npaths; i++) {
2197 			n = strlen(dirlist[i]) + 1;
2198 			bcopy(dirlist[i], p, n);
2199 			p += n;
2200 		}
2201 		*p = 0;
2202 
2203 		if (copyout(paths, upaths, lens)) {
2204 			ret = EFAULT;
2205 			goto err;
2206 		}
2207 	}
2208 
2209 out:
2210 	/* copy out the amount of space needed to hold the paths */
2211 	if (copyout(&lens, ulensp, sizeof (lens)))
2212 		ret = EFAULT;
2213 
2214 err:
2215 	if (dirlist)
2216 		sdev_modctl_readdir_free(dirlist, npaths, npaths_alloc);
2217 	if (paths)
2218 		kmem_free(paths, lens);
2219 	kmem_free(dir, udirlen + 1);
2220 	return (ret);
2221 }
2222 
2223 static int
2224 modctl_devemptydir(const char *udir, int udirlen, int *uempty)
2225 {
2226 	char	*dir;
2227 	int	ret;
2228 	char	**dirlist = NULL;
2229 	int	npaths;
2230 	int	npaths_alloc;
2231 	int	empty;
2232 
2233 	/*
2234 	 * copyin the /dev path including terminating null
2235 	 */
2236 	udirlen++;
2237 	if (udirlen <= 1 || udirlen > MAXPATHLEN)
2238 		return (EINVAL);
2239 	dir = kmem_zalloc(udirlen + 1, KM_SLEEP);
2240 	if ((ret = copyinstr(udir, dir, udirlen, NULL)) != 0)
2241 		goto err;
2242 
2243 	if ((ret = sdev_modctl_readdir(dir, &dirlist,
2244 	    &npaths, &npaths_alloc, 1)) != 0) {
2245 		goto err;
2246 	}
2247 
2248 	empty = npaths ? 0 : 1;
2249 	if (copyout(&empty, uempty, sizeof (empty)))
2250 		ret = EFAULT;
2251 
2252 err:
2253 	if (dirlist)
2254 		sdev_modctl_readdir_free(dirlist, npaths, npaths_alloc);
2255 	kmem_free(dir, udirlen + 1);
2256 	return (ret);
2257 }
2258 
2259 int
2260 modctl_moddevname(int subcmd, uintptr_t a1, uintptr_t a2)
2261 {
2262 	int error = 0;
2263 
2264 	switch (subcmd) {
2265 	case MODDEVNAME_LOOKUPDOOR:
2266 	case MODDEVNAME_DEVFSADMNODE:
2267 		error = devname_filename_register(subcmd, (char *)a1);
2268 		break;
2269 	case MODDEVNAME_NSMAPS:
2270 		error = devname_nsmaps_register((char *)a1, (size_t)a2);
2271 		break;
2272 	case MODDEVNAME_PROFILE:
2273 		error = devname_profile_update((char *)a1, (size_t)a2);
2274 		break;
2275 	case MODDEVNAME_RECONFIG:
2276 		i_ddi_set_reconfig();
2277 		break;
2278 	case MODDEVNAME_SYSAVAIL:
2279 		i_ddi_set_sysavail();
2280 		break;
2281 	default:
2282 		error = EINVAL;
2283 		break;
2284 	}
2285 
2286 	return (error);
2287 }
2288 
2289 /*ARGSUSED5*/
2290 int
2291 modctl(int cmd, uintptr_t a1, uintptr_t a2, uintptr_t a3, uintptr_t a4,
2292     uintptr_t a5)
2293 {
2294 	int	error = EINVAL;
2295 	dev_t	dev;
2296 
2297 	if (secpolicy_modctl(CRED(), cmd) != 0)
2298 		return (set_errno(EPERM));
2299 
2300 	switch (cmd) {
2301 	case MODLOAD:		/* load a module */
2302 		error = modctl_modload((int)a1, (char *)a2, (int *)a3);
2303 		break;
2304 
2305 	case MODUNLOAD:		/* unload a module */
2306 		error = modctl_modunload((modid_t)a1);
2307 		break;
2308 
2309 	case MODINFO:		/* get module status */
2310 		error = modctl_modinfo((modid_t)a1, (struct modinfo *)a2);
2311 		break;
2312 
2313 	case MODRESERVED:	/* get last major number in range */
2314 		error = modctl_modreserve((modid_t)a1, (int *)a2);
2315 		break;
2316 
2317 	case MODSETMINIROOT:	/* we are running in miniroot */
2318 		isminiroot = 1;
2319 		error = 0;
2320 		break;
2321 
2322 	case MODADDMAJBIND:	/* add major / driver alias bindings */
2323 		error = modctl_add_driver_aliases((int *)a2);
2324 		break;
2325 
2326 	case MODGETPATHLEN:	/* get modpath length */
2327 		error = modctl_getmodpathlen((int *)a2);
2328 		break;
2329 
2330 	case MODGETPATH:	/* get modpath */
2331 		error = modctl_getmodpath((char *)a2);
2332 		break;
2333 
2334 	case MODREADSYSBIND:	/* read system call binding file */
2335 		error = modctl_read_sysbinding_file();
2336 		break;
2337 
2338 	case MODGETMAJBIND:	/* get major number for named device */
2339 		error = modctl_getmaj((char *)a1, (uint_t)a2, (int *)a3);
2340 		break;
2341 
2342 	case MODGETNAME:	/* get name of device given major number */
2343 		error = modctl_getname((char *)a1, (uint_t)a2, (int *)a3);
2344 		break;
2345 
2346 	case MODDEVT2INSTANCE:
2347 		if (get_udatamodel() == DATAMODEL_NATIVE) {
2348 			dev = (dev_t)a1;
2349 		}
2350 #ifdef _SYSCALL32_IMPL
2351 		else {
2352 			dev = expldev(a1);
2353 		}
2354 #endif
2355 		error = modctl_devt2instance(dev, (int *)a2);
2356 		break;
2357 
2358 	case MODSIZEOF_DEVID:	/* sizeof device id of device given dev_t */
2359 		if (get_udatamodel() == DATAMODEL_NATIVE) {
2360 			dev = (dev_t)a1;
2361 		}
2362 #ifdef _SYSCALL32_IMPL
2363 		else {
2364 			dev = expldev(a1);
2365 		}
2366 #endif
2367 		error = modctl_sizeof_devid(dev, (uint_t *)a2);
2368 		break;
2369 
2370 	case MODGETDEVID:	/* get device id of device given dev_t */
2371 		if (get_udatamodel() == DATAMODEL_NATIVE) {
2372 			dev = (dev_t)a1;
2373 		}
2374 #ifdef _SYSCALL32_IMPL
2375 		else {
2376 			dev = expldev(a1);
2377 		}
2378 #endif
2379 		error = modctl_get_devid(dev, (uint_t)a2, (ddi_devid_t)a3);
2380 		break;
2381 
2382 	case MODSIZEOF_MINORNAME:	/* sizeof minor nm (dev_t,spectype) */
2383 		if (get_udatamodel() == DATAMODEL_NATIVE) {
2384 			error = modctl_sizeof_minorname((dev_t)a1, (int)a2,
2385 			    (uint_t *)a3);
2386 		}
2387 #ifdef _SYSCALL32_IMPL
2388 		else {
2389 			error = modctl_sizeof_minorname(expldev(a1), (int)a2,
2390 			    (uint_t *)a3);
2391 		}
2392 
2393 #endif
2394 		break;
2395 
2396 	case MODGETMINORNAME:		/* get minor name of (dev_t,spectype) */
2397 		if (get_udatamodel() == DATAMODEL_NATIVE) {
2398 			error = modctl_get_minorname((dev_t)a1, (int)a2,
2399 			    (uint_t)a3, (char *)a4);
2400 		}
2401 #ifdef _SYSCALL32_IMPL
2402 		else {
2403 			error = modctl_get_minorname(expldev(a1), (int)a2,
2404 			    (uint_t)a3, (char *)a4);
2405 		}
2406 #endif
2407 		break;
2408 
2409 	case MODGETDEVFSPATH_LEN:	/* sizeof path nm of (dev_t,spectype) */
2410 		if (get_udatamodel() == DATAMODEL_NATIVE) {
2411 			error = modctl_devfspath_len((dev_t)a1, (int)a2,
2412 			    (uint_t *)a3);
2413 		}
2414 #ifdef _SYSCALL32_IMPL
2415 		else {
2416 			error = modctl_devfspath_len(expldev(a1), (int)a2,
2417 			    (uint_t *)a3);
2418 		}
2419 
2420 #endif
2421 		break;
2422 
2423 	case MODGETDEVFSPATH:   	/* get path name of (dev_t,spec) type */
2424 		if (get_udatamodel() == DATAMODEL_NATIVE) {
2425 			error = modctl_devfspath((dev_t)a1, (int)a2,
2426 			    (uint_t)a3, (char *)a4);
2427 		}
2428 #ifdef _SYSCALL32_IMPL
2429 		else {
2430 			error = modctl_devfspath(expldev(a1), (int)a2,
2431 			    (uint_t)a3, (char *)a4);
2432 		}
2433 #endif
2434 		break;
2435 
2436 	case MODGETDEVFSPATH_MI_LEN:	/* sizeof path nm of (major,instance) */
2437 		error = modctl_devfspath_mi_len((major_t)a1, (int)a2,
2438 		    (uint_t *)a3);
2439 		break;
2440 
2441 	case MODGETDEVFSPATH_MI:   	/* get path name of (major,instance) */
2442 		error = modctl_devfspath_mi((major_t)a1, (int)a2,
2443 		    (uint_t)a3, (char *)a4);
2444 		break;
2445 
2446 
2447 	case MODEVENTS:
2448 		error = modctl_modevents((int)a1, a2, a3, a4, (uint_t)a5);
2449 		break;
2450 
2451 	case MODGETFBNAME:	/* get the framebuffer name */
2452 		error = modctl_get_fbname((char *)a1);
2453 		break;
2454 
2455 	case MODREREADDACF:	/* reread dacf rule database from given file */
2456 		error = modctl_reread_dacf((char *)a1);
2457 		break;
2458 
2459 	case MODLOADDRVCONF:	/* load driver.conf file for major */
2460 		error = modctl_load_drvconf((major_t)a1);
2461 		break;
2462 
2463 	case MODUNLOADDRVCONF:	/* unload driver.conf file for major */
2464 		error = modctl_unload_drvconf((major_t)a1);
2465 		break;
2466 
2467 	case MODREMMAJBIND:	/* remove a major binding */
2468 		error = modctl_rem_major((major_t)a1);
2469 		break;
2470 
2471 	case MODREMDRVALIAS:	/* remove a major/alias binding */
2472 		error = modctl_remove_driver_aliases((int *)a2);
2473 		break;
2474 
2475 	case MODDEVID2PATHS:	/* get paths given devid */
2476 		error = modctl_devid2paths((ddi_devid_t)a1, (char *)a2,
2477 		    (uint_t)a3, (size_t *)a4, (char *)a5);
2478 		break;
2479 
2480 	case MODSETDEVPOLICY:	/* establish device policy */
2481 		error = devpolicy_load((int)a1, (size_t)a2, (devplcysys_t *)a3);
2482 		break;
2483 
2484 	case MODGETDEVPOLICY:	/* get device policy */
2485 		error = devpolicy_get((int *)a1, (size_t)a2,
2486 		    (devplcysys_t *)a3);
2487 		break;
2488 
2489 	case MODALLOCPRIV:
2490 		error = modctl_allocpriv((const char *)a1);
2491 		break;
2492 
2493 	case MODGETDEVPOLICYBYNAME:
2494 		error = devpolicy_getbyname((size_t)a1,
2495 		    (devplcysys_t *)a2, (char *)a3);
2496 		break;
2497 
2498 	case MODLOADMINORPERM:
2499 	case MODADDMINORPERM:
2500 	case MODREMMINORPERM:
2501 		error = modctl_minorperm(cmd, (char *)a1, (size_t)a2);
2502 		break;
2503 
2504 	case MODREMDRVCLEANUP:
2505 		error = modctl_remdrv_cleanup((const char *)a1);
2506 		break;
2507 
2508 	case MODDEVEXISTS:	/* non-reconfiguring /dev lookup */
2509 		error = modctl_devexists((const char *)a1, (size_t)a2);
2510 		break;
2511 
2512 	case MODDEVREADDIR:	/* non-reconfiguring /dev readdir */
2513 		error = modctl_devreaddir((const char *)a1, (size_t)a2,
2514 		    (char *)a3, (int64_t *)a4);
2515 		break;
2516 
2517 	case MODDEVEMPTYDIR:	/* non-reconfiguring /dev emptydir */
2518 		error = modctl_devemptydir((const char *)a1, (size_t)a2,
2519 		    (int *)a3);
2520 		break;
2521 
2522 	case MODDEVNAME:
2523 		error = modctl_moddevname((int)a1, a2, a3);
2524 		break;
2525 
2526 	case MODRETIRE:	/* retire device named by physpath a1 */
2527 		error = modctl_retire((char *)a1, (char *)a2, (size_t)a3);
2528 		break;
2529 
2530 	case MODISRETIRED:  /* check if a device is retired. */
2531 		error = modctl_is_retired((char *)a1, (int *)a2);
2532 		break;
2533 
2534 	case MODUNRETIRE:	/* unretire device named by physpath a1 */
2535 		error = modctl_unretire((char *)a1);
2536 		break;
2537 
2538 	default:
2539 		error = EINVAL;
2540 		break;
2541 	}
2542 
2543 	return (error ? set_errno(error) : 0);
2544 }
2545 
2546 /*
2547  * Calls to kobj_load_module()() are handled off to this routine in a
2548  * separate thread.
2549  */
2550 static void
2551 modload_thread(struct loadmt *ltp)
2552 {
2553 	/* load the module and signal the creator of this thread */
2554 	kmutex_t	cpr_lk;
2555 	callb_cpr_t	cpr_i;
2556 
2557 	mutex_init(&cpr_lk, NULL, MUTEX_DEFAULT, NULL);
2558 	CALLB_CPR_INIT(&cpr_i, &cpr_lk, callb_generic_cpr, "modload");
2559 	/* borrow the devi lock from thread which invoked us */
2560 	pm_borrow_lock(ltp->owner);
2561 	ltp->retval = kobj_load_module(ltp->mp, ltp->usepath);
2562 	pm_return_lock();
2563 	sema_v(&ltp->sema);
2564 	mutex_enter(&cpr_lk);
2565 	CALLB_CPR_EXIT(&cpr_i);
2566 	mutex_destroy(&cpr_lk);
2567 	thread_exit();
2568 }
2569 
2570 /*
2571  * load a module, adding a reference if caller specifies rmodp.  If rmodp
2572  * is specified then an errno is returned, otherwise a module index is
2573  * returned (-1 on error).
2574  */
2575 static int
2576 modrload(const char *subdir, const char *filename, struct modctl **rmodp)
2577 {
2578 	struct modctl *modp;
2579 	size_t size;
2580 	char *fullname;
2581 	int retval = EINVAL;
2582 	int id = -1;
2583 
2584 	if (rmodp)
2585 		*rmodp = NULL;			/* avoid garbage */
2586 
2587 	if (subdir != NULL) {
2588 		/*
2589 		 * refuse / in filename to prevent "../" escapes.
2590 		 */
2591 		if (strchr(filename, '/') != NULL)
2592 			return (rmodp ? retval : id);
2593 
2594 		/*
2595 		 * allocate enough space for <subdir>/<filename><NULL>
2596 		 */
2597 		size = strlen(subdir) + strlen(filename) + 2;
2598 		fullname = kmem_zalloc(size, KM_SLEEP);
2599 		(void) sprintf(fullname, "%s/%s", subdir, filename);
2600 	} else {
2601 		fullname = (char *)filename;
2602 	}
2603 
2604 	modp = mod_hold_installed_mod(fullname, 1, 0, &retval);
2605 	if (modp != NULL) {
2606 		id = modp->mod_id;
2607 		if (rmodp) {
2608 			/* add mod_ref and return *rmodp */
2609 			mutex_enter(&mod_lock);
2610 			modp->mod_ref++;
2611 			mutex_exit(&mod_lock);
2612 			*rmodp = modp;
2613 		}
2614 		mod_release_mod(modp);
2615 		CPU_STATS_ADDQ(CPU, sys, modload, 1);
2616 	}
2617 
2618 done:	if (subdir != NULL)
2619 		kmem_free(fullname, size);
2620 	return (rmodp ? retval : id);
2621 }
2622 
2623 /*
2624  * This is the primary kernel interface to load a module. It loads and
2625  * installs the named module.  It does not hold mod_ref of the module, so
2626  * a module unload attempt can occur at any time - it is up to the
2627  * _fini/mod_remove implementation to determine if unload will succeed.
2628  */
2629 int
2630 modload(const char *subdir, const char *filename)
2631 {
2632 	return (modrload(subdir, filename, NULL));
2633 }
2634 
2635 /*
2636  * Load a module using a series of qualified names from most specific to least
2637  * specific, e.g. for subdir "foo", p1 "bar", p2 "baz", we might try:
2638  *			Value returned in *chosen
2639  * foo/bar.baz.1.2.3	3
2640  * foo/bar.baz.1.2	2
2641  * foo/bar.baz.1	1
2642  * foo/bar.baz		0
2643  *
2644  * Return the module ID on success; -1 if no module was loaded.  On success
2645  * and if 'chosen' is not NULL we also return the number of suffices that
2646  * were in the module we chose to load.
2647  */
2648 int
2649 modload_qualified(const char *subdir, const char *p1,
2650     const char *p2, const char *delim, uint_t suffv[], int suffc, int *chosen)
2651 {
2652 	char path[MOD_MAXPATH];
2653 	size_t n, resid = sizeof (path);
2654 	char *p = path;
2655 
2656 	char **dotv;
2657 	int i, rc, id;
2658 	modctl_t *mp;
2659 
2660 	if (p2 != NULL)
2661 		n = snprintf(p, resid, "%s/%s%s%s", subdir, p1, delim, p2);
2662 	else
2663 		n = snprintf(p, resid, "%s/%s", subdir, p1);
2664 
2665 	if (n >= resid)
2666 		return (-1);
2667 
2668 	p += n;
2669 	resid -= n;
2670 	dotv = kmem_alloc(sizeof (char *) * (suffc + 1), KM_SLEEP);
2671 
2672 	for (i = 0; i < suffc; i++) {
2673 		dotv[i] = p;
2674 		n = snprintf(p, resid, "%s%u", delim, suffv[i]);
2675 
2676 		if (n >= resid) {
2677 			kmem_free(dotv, sizeof (char *) * (suffc + 1));
2678 			return (-1);
2679 		}
2680 
2681 		p += n;
2682 		resid -= n;
2683 	}
2684 
2685 	dotv[suffc] = p;
2686 
2687 	for (i = suffc; i >= 0; i--) {
2688 		dotv[i][0] = '\0';
2689 		mp = mod_hold_installed_mod(path, 1, 1, &rc);
2690 
2691 		if (mp != NULL) {
2692 			kmem_free(dotv, sizeof (char *) * (suffc + 1));
2693 			id = mp->mod_id;
2694 			mod_release_mod(mp);
2695 			if (chosen != NULL)
2696 				*chosen = i;
2697 			return (id);
2698 		}
2699 	}
2700 
2701 	kmem_free(dotv, sizeof (char *) * (suffc + 1));
2702 	return (-1);
2703 }
2704 
2705 /*
2706  * Load a module.
2707  */
2708 int
2709 modloadonly(const char *subdir, const char *filename)
2710 {
2711 	struct modctl *modp;
2712 	char *fullname;
2713 	size_t size;
2714 	int id, retval;
2715 
2716 	if (subdir != NULL) {
2717 		/*
2718 		 * allocate enough space for <subdir>/<filename><NULL>
2719 		 */
2720 		size = strlen(subdir) + strlen(filename) + 2;
2721 		fullname = kmem_zalloc(size, KM_SLEEP);
2722 		(void) sprintf(fullname, "%s/%s", subdir, filename);
2723 	} else {
2724 		fullname = (char *)filename;
2725 	}
2726 
2727 	modp = mod_hold_loaded_mod(NULL, fullname, &retval);
2728 	if (modp) {
2729 		id = modp->mod_id;
2730 		mod_release_mod(modp);
2731 	}
2732 
2733 	if (subdir != NULL)
2734 		kmem_free(fullname, size);
2735 
2736 	if (retval == 0)
2737 		return (id);
2738 	return (-1);
2739 }
2740 
2741 /*
2742  * Try to uninstall and unload a module, removing a reference if caller
2743  * specifies rmodp.
2744  */
2745 static int
2746 modunrload(modid_t id, struct modctl **rmodp, int unload)
2747 {
2748 	struct modctl	*modp;
2749 	int		retval;
2750 
2751 	if (rmodp)
2752 		*rmodp = NULL;			/* avoid garbage */
2753 
2754 	if ((modp = mod_hold_by_id((modid_t)id)) == NULL)
2755 		return (EINVAL);
2756 
2757 	if (rmodp) {
2758 		mutex_enter(&mod_lock);
2759 		modp->mod_ref--;
2760 		mutex_exit(&mod_lock);
2761 		*rmodp = modp;
2762 	}
2763 
2764 	if (unload) {
2765 		retval = moduninstall(modp);
2766 		if (retval == 0) {
2767 			mod_unload(modp);
2768 			CPU_STATS_ADDQ(CPU, sys, modunload, 1);
2769 		} else if (retval == EALREADY)
2770 			retval = 0;	/* already unloaded, not an error */
2771 	} else
2772 		retval = 0;
2773 
2774 	mod_release_mod(modp);
2775 	return (retval);
2776 }
2777 
2778 /*
2779  * Uninstall and unload a module.
2780  */
2781 int
2782 modunload(modid_t id)
2783 {
2784 	int		retval;
2785 
2786 	/* synchronize with any active modunload_disable() */
2787 	modunload_begin();
2788 	if (ddi_root_node())
2789 		(void) devfs_clean(ddi_root_node(), NULL, 0);
2790 	retval = modunrload(id, NULL, 1);
2791 	modunload_end();
2792 	return (retval);
2793 }
2794 
2795 /*
2796  * Return status of a loaded module.
2797  */
2798 static int
2799 modinfo(modid_t id, struct modinfo *modinfop)
2800 {
2801 	struct modctl	*modp;
2802 	modid_t		mid;
2803 	int		i;
2804 
2805 	mid = modinfop->mi_id;
2806 	if (modinfop->mi_info & MI_INFO_ALL) {
2807 		while ((modp = mod_hold_next_by_id(mid++)) != NULL) {
2808 			if ((modinfop->mi_info & MI_INFO_CNT) ||
2809 			    modp->mod_installed)
2810 				break;
2811 			mod_release_mod(modp);
2812 		}
2813 		if (modp == NULL)
2814 			return (EINVAL);
2815 	} else {
2816 		modp = mod_hold_by_id(id);
2817 		if (modp == NULL)
2818 			return (EINVAL);
2819 		if (!(modinfop->mi_info & MI_INFO_CNT) &&
2820 		    (modp->mod_installed == 0)) {
2821 			mod_release_mod(modp);
2822 			return (EINVAL);
2823 		}
2824 	}
2825 
2826 	modinfop->mi_rev = 0;
2827 	modinfop->mi_state = 0;
2828 	for (i = 0; i < MODMAXLINK; i++) {
2829 		modinfop->mi_msinfo[i].msi_p0 = -1;
2830 		modinfop->mi_msinfo[i].msi_linkinfo[0] = 0;
2831 	}
2832 	if (modp->mod_loaded) {
2833 		modinfop->mi_state = MI_LOADED;
2834 		kobj_getmodinfo(modp->mod_mp, modinfop);
2835 	}
2836 	if (modp->mod_installed) {
2837 		modinfop->mi_state |= MI_INSTALLED;
2838 
2839 		(void) mod_getinfo(modp, modinfop);
2840 	}
2841 
2842 	modinfop->mi_id = modp->mod_id;
2843 	modinfop->mi_loadcnt = modp->mod_loadcnt;
2844 	(void) strcpy(modinfop->mi_name, modp->mod_modname);
2845 
2846 	mod_release_mod(modp);
2847 	return (0);
2848 }
2849 
2850 static char mod_stub_err[] = "mod_hold_stub: Couldn't load stub module %s";
2851 static char no_err[] = "No error function for weak stub %s";
2852 
2853 /*
2854  * used by the stubs themselves to load and hold a module.
2855  * Returns  0 if the module is successfully held;
2856  *	    the stub needs to call mod_release_stub().
2857  *	    -1 if the stub should just call the err_fcn.
2858  * Note that this code is stretched out so that we avoid subroutine calls
2859  * and optimize for the most likely case.  That is, the case where the
2860  * module is loaded and installed and not held.  In that case we just inc
2861  * the mod_ref count and continue.
2862  */
2863 int
2864 mod_hold_stub(struct mod_stub_info *stub)
2865 {
2866 	struct modctl *mp;
2867 	struct mod_modinfo *mip;
2868 
2869 	mip = stub->mods_modinfo;
2870 
2871 	mutex_enter(&mod_lock);
2872 
2873 	/* we do mod_hold_by_modctl inline for speed */
2874 
2875 mod_check_again:
2876 	if ((mp = mip->mp) != NULL) {
2877 		if (mp->mod_busy == 0) {
2878 			if (mp->mod_installed) {
2879 				/* increment the reference count */
2880 				mp->mod_ref++;
2881 				ASSERT(mp->mod_ref && mp->mod_installed);
2882 				mutex_exit(&mod_lock);
2883 				return (0);
2884 			} else {
2885 				mp->mod_busy = 1;
2886 				mp->mod_inprogress_thread =
2887 				    (curthread == NULL ?
2888 				    (kthread_id_t)-1 : curthread);
2889 			}
2890 		} else {
2891 			/*
2892 			 * wait one time and then go see if someone
2893 			 * else has resolved the stub (set mip->mp).
2894 			 */
2895 			if (mod_hold_by_modctl(mp,
2896 			    MOD_WAIT_ONCE | MOD_LOCK_HELD))
2897 				goto mod_check_again;
2898 
2899 			/*
2900 			 * what we have now may have been unloaded!, in
2901 			 * that case, mip->mp will be NULL, we'll hit this
2902 			 * module and load again..
2903 			 */
2904 			cmn_err(CE_PANIC, "mod_hold_stub should have blocked");
2905 		}
2906 		mutex_exit(&mod_lock);
2907 	} else {
2908 		/* first time we've hit this module */
2909 		mutex_exit(&mod_lock);
2910 		mp = mod_hold_by_name(mip->modm_module_name);
2911 		mip->mp = mp;
2912 	}
2913 
2914 	/*
2915 	 * If we are here, it means that the following conditions
2916 	 * are satisfied.
2917 	 *
2918 	 * mip->mp != NULL
2919 	 * this thread has set the mp->mod_busy = 1
2920 	 * mp->mod_installed = 0
2921 	 *
2922 	 */
2923 	ASSERT(mp != NULL);
2924 	ASSERT(mp->mod_busy == 1);
2925 
2926 	if (mp->mod_installed == 0) {
2927 		/* Module not loaded, if weak stub don't load it */
2928 		if (stub->mods_flag & MODS_WEAK) {
2929 			if (stub->mods_errfcn == NULL) {
2930 				mod_release_mod(mp);
2931 				cmn_err(CE_PANIC, no_err,
2932 				    mip->modm_module_name);
2933 			}
2934 		} else {
2935 			/* Not a weak stub so load the module */
2936 
2937 			if (mod_load(mp, 1) != 0 || modinstall(mp) != 0) {
2938 				/*
2939 				 * If mod_load() was successful
2940 				 * and modinstall() failed, then
2941 				 * unload the module.
2942 				 */
2943 				if (mp->mod_loaded)
2944 					mod_unload(mp);
2945 
2946 				mod_release_mod(mp);
2947 				if (stub->mods_errfcn == NULL) {
2948 					cmn_err(CE_PANIC, mod_stub_err,
2949 					    mip->modm_module_name);
2950 				} else {
2951 					return (-1);
2952 				}
2953 			}
2954 		}
2955 	}
2956 
2957 	/*
2958 	 * At this point module is held and loaded. Release
2959 	 * the mod_busy and mod_inprogress_thread before
2960 	 * returning. We actually call mod_release() here so
2961 	 * that if another stub wants to access this module,
2962 	 * it can do so. mod_ref is incremented before mod_release()
2963 	 * is called to prevent someone else from snatching the
2964 	 * module from this thread.
2965 	 */
2966 	mutex_enter(&mod_lock);
2967 	mp->mod_ref++;
2968 	ASSERT(mp->mod_ref &&
2969 	    (mp->mod_loaded || (stub->mods_flag & MODS_WEAK)));
2970 	mod_release(mp);
2971 	mutex_exit(&mod_lock);
2972 	return (0);
2973 }
2974 
2975 void
2976 mod_release_stub(struct mod_stub_info *stub)
2977 {
2978 	struct modctl *mp = stub->mods_modinfo->mp;
2979 
2980 	/* inline mod_release_mod */
2981 	mutex_enter(&mod_lock);
2982 	ASSERT(mp->mod_ref &&
2983 	    (mp->mod_loaded || (stub->mods_flag & MODS_WEAK)));
2984 	mp->mod_ref--;
2985 	if (mp->mod_want) {
2986 		mp->mod_want = 0;
2987 		cv_broadcast(&mod_cv);
2988 	}
2989 	mutex_exit(&mod_lock);
2990 }
2991 
2992 static struct modctl *
2993 mod_hold_loaded_mod(struct modctl *dep, char *filename, int *status)
2994 {
2995 	struct modctl *modp;
2996 	int retval;
2997 
2998 	/*
2999 	 * Hold the module.
3000 	 */
3001 	modp = mod_hold_by_name_requisite(dep, filename);
3002 	if (modp) {
3003 		retval = mod_load(modp, 1);
3004 		if (retval != 0) {
3005 			mod_release_mod(modp);
3006 			modp = NULL;
3007 		}
3008 		*status = retval;
3009 	} else {
3010 		*status = ENOSPC;
3011 	}
3012 
3013 	/*
3014 	 * if dep is not NULL, clear the module dependency information.
3015 	 * This information is set in mod_hold_by_name_common().
3016 	 */
3017 	if (dep != NULL && dep->mod_requisite_loading != NULL) {
3018 		ASSERT(dep->mod_busy);
3019 		dep->mod_requisite_loading = NULL;
3020 	}
3021 
3022 	return (modp);
3023 }
3024 
3025 /*
3026  * hold, load, and install the named module
3027  */
3028 static struct modctl *
3029 mod_hold_installed_mod(char *name, int usepath, int forcecheck, int *r)
3030 {
3031 	struct modctl *modp;
3032 	int retval;
3033 
3034 	/*
3035 	 * Verify that that module in question actually exists on disk
3036 	 * before allocation of module structure by mod_hold_by_name.
3037 	 */
3038 	if (modrootloaded && swaploaded || forcecheck) {
3039 		if (!kobj_path_exists(name, usepath)) {
3040 			*r = ENOENT;
3041 			return (NULL);
3042 		}
3043 	}
3044 
3045 	/*
3046 	 * Hold the module.
3047 	 */
3048 	modp = mod_hold_by_name(name);
3049 	if (modp) {
3050 		retval = mod_load(modp, usepath);
3051 		if (retval != 0) {
3052 			mod_release_mod(modp);
3053 			modp = NULL;
3054 			*r = retval;
3055 		} else {
3056 			if ((*r = modinstall(modp)) != 0) {
3057 				/*
3058 				 * We loaded it, but failed to _init() it.
3059 				 * Be kind to developers -- force it
3060 				 * out of memory now so that the next
3061 				 * attempt to use the module will cause
3062 				 * a reload.  See 1093793.
3063 				 */
3064 				mod_unload(modp);
3065 				mod_release_mod(modp);
3066 				modp = NULL;
3067 			}
3068 		}
3069 	} else {
3070 		*r = ENOSPC;
3071 	}
3072 	return (modp);
3073 }
3074 
3075 static char mod_excl_msg[] =
3076 	"module %s(%s) is EXCLUDED and will not be loaded\n";
3077 static char mod_init_msg[] = "loadmodule:%s(%s): _init() error %d\n";
3078 
3079 /*
3080  * This routine is needed for dependencies.  Users specify dependencies
3081  * by declaring a character array initialized to filenames of dependents.
3082  * So the code that handles dependents deals with filenames (and not
3083  * module names) because that's all it has.  We load by filename and once
3084  * we've loaded a file we can get the module name.
3085  * Unfortunately there isn't a single unified filename/modulename namespace.
3086  * C'est la vie.
3087  *
3088  * We allow the name being looked up to be prepended by an optional
3089  * subdirectory e.g. we can lookup (NULL, "fs/ufs") or ("fs", "ufs")
3090  */
3091 struct modctl *
3092 mod_find_by_filename(char *subdir, char *filename)
3093 {
3094 	struct modctl	*mp;
3095 	size_t		sublen;
3096 
3097 	ASSERT(!MUTEX_HELD(&mod_lock));
3098 	if (subdir != NULL)
3099 		sublen = strlen(subdir);
3100 	else
3101 		sublen = 0;
3102 
3103 	mutex_enter(&mod_lock);
3104 	mp = &modules;
3105 	do {
3106 		if (sublen) {
3107 			char *mod_filename = mp->mod_filename;
3108 
3109 			if (strncmp(subdir, mod_filename, sublen) == 0 &&
3110 			    mod_filename[sublen] == '/' &&
3111 			    strcmp(filename, &mod_filename[sublen + 1]) == 0) {
3112 				mutex_exit(&mod_lock);
3113 				return (mp);
3114 			}
3115 		} else if (strcmp(filename, mp->mod_filename) == 0) {
3116 			mutex_exit(&mod_lock);
3117 			return (mp);
3118 		}
3119 	} while ((mp = mp->mod_next) != &modules);
3120 	mutex_exit(&mod_lock);
3121 	return (NULL);
3122 }
3123 
3124 /*
3125  * Check for circular dependencies.  This is called from do_dependents()
3126  * in kobj.c.  If we are the thread already loading this module, then
3127  * we're trying to load a dependent that we're already loading which
3128  * means the user specified circular dependencies.
3129  */
3130 static int
3131 mod_circdep(struct modctl *modp)
3132 {
3133 	struct modctl	*rmod;
3134 
3135 	ASSERT(MUTEX_HELD(&mod_lock));
3136 
3137 	/*
3138 	 * Check the mod_inprogress_thread first.
3139 	 * mod_inprogress_thread is used in mod_hold_stub()
3140 	 * directly to improve performance.
3141 	 */
3142 	if (modp->mod_inprogress_thread == curthread)
3143 		return (1);
3144 
3145 	/*
3146 	 * Check the module circular dependencies.
3147 	 */
3148 	for (rmod = modp; rmod != NULL; rmod = rmod->mod_requisite_loading) {
3149 		/*
3150 		 * Check if there is a module circular dependency.
3151 		 */
3152 		if (rmod->mod_requisite_loading == modp)
3153 			return (1);
3154 	}
3155 	return (0);
3156 }
3157 
3158 static int
3159 mod_getinfo(struct modctl *modp, struct modinfo *modinfop)
3160 {
3161 	int (*func)(struct modinfo *);
3162 	int retval;
3163 
3164 	ASSERT(modp->mod_busy);
3165 
3166 	/* primary modules don't do getinfo */
3167 	if (modp->mod_prim)
3168 		return (0);
3169 
3170 	func = (int (*)(struct modinfo *))kobj_lookup(modp->mod_mp, "_info");
3171 
3172 	if (kobj_addrcheck(modp->mod_mp, (caddr_t)func)) {
3173 		cmn_err(CE_WARN, "_info() not defined properly in %s",
3174 		    modp->mod_filename);
3175 		/*
3176 		 * The semantics of mod_info(9F) are that 0 is failure
3177 		 * and non-zero is success.
3178 		 */
3179 		retval = 0;
3180 	} else
3181 		retval = (*func)(modinfop);	/* call _info() function */
3182 
3183 	if (moddebug & MODDEBUG_USERDEBUG)
3184 		printf("Returned from _info, retval = %x\n", retval);
3185 
3186 	return (retval);
3187 }
3188 
3189 static void
3190 modadd(struct modctl *mp)
3191 {
3192 	ASSERT(MUTEX_HELD(&mod_lock));
3193 
3194 	mp->mod_id = last_module_id++;
3195 	mp->mod_next = &modules;
3196 	mp->mod_prev = modules.mod_prev;
3197 	modules.mod_prev->mod_next = mp;
3198 	modules.mod_prev = mp;
3199 }
3200 
3201 /*ARGSUSED*/
3202 static struct modctl *
3203 allocate_modp(const char *filename, const char *modname)
3204 {
3205 	struct modctl *mp;
3206 
3207 	mp = kobj_zalloc(sizeof (*mp), KM_SLEEP);
3208 	mp->mod_modname = kobj_zalloc(strlen(modname) + 1, KM_SLEEP);
3209 	(void) strcpy(mp->mod_modname, modname);
3210 	return (mp);
3211 }
3212 
3213 /*
3214  * Get the value of a symbol.  This is a wrapper routine that
3215  * calls kobj_getsymvalue().  kobj_getsymvalue() may go away but this
3216  * wrapper will prevent callers from noticing.
3217  */
3218 uintptr_t
3219 modgetsymvalue(char *name, int kernelonly)
3220 {
3221 	return (kobj_getsymvalue(name, kernelonly));
3222 }
3223 
3224 /*
3225  * Get the symbol nearest an address.  This is a wrapper routine that
3226  * calls kobj_getsymname().  kobj_getsymname() may go away but this
3227  * wrapper will prevent callers from noticing.
3228  */
3229 char *
3230 modgetsymname(uintptr_t value, ulong_t *offset)
3231 {
3232 	return (kobj_getsymname(value, offset));
3233 }
3234 
3235 /*
3236  * Lookup a symbol in a specified module.  These are wrapper routines that
3237  * call kobj_lookup().  kobj_lookup() may go away but these wrappers will
3238  * prevent callers from noticing.
3239  */
3240 uintptr_t
3241 modlookup(const char *modname, const char *symname)
3242 {
3243 	struct modctl *modp;
3244 	uintptr_t val;
3245 
3246 	if ((modp = mod_hold_by_name(modname)) == NULL)
3247 		return (0);
3248 	val = kobj_lookup(modp->mod_mp, symname);
3249 	mod_release_mod(modp);
3250 	return (val);
3251 }
3252 
3253 uintptr_t
3254 modlookup_by_modctl(modctl_t *modp, const char *symname)
3255 {
3256 	ASSERT(modp->mod_ref > 0 || modp->mod_busy);
3257 
3258 	return (kobj_lookup(modp->mod_mp, symname));
3259 }
3260 
3261 /*
3262  * Ask the user for the name of the system file and the default path
3263  * for modules.
3264  */
3265 void
3266 mod_askparams()
3267 {
3268 	static char s0[64];
3269 	intptr_t fd;
3270 
3271 	if ((fd = kobj_open(systemfile)) != -1L)
3272 		kobj_close(fd);
3273 	else
3274 		systemfile = NULL;
3275 
3276 	/*CONSTANTCONDITION*/
3277 	while (1) {
3278 		printf("Name of system file [%s]:  ",
3279 		    systemfile ? systemfile : "/dev/null");
3280 
3281 		console_gets(s0, sizeof (s0));
3282 
3283 		if (s0[0] == '\0')
3284 			break;
3285 		else if (strcmp(s0, "/dev/null") == 0) {
3286 			systemfile = NULL;
3287 			break;
3288 		} else {
3289 			if ((fd = kobj_open(s0)) != -1L) {
3290 				kobj_close(fd);
3291 				systemfile = s0;
3292 				break;
3293 			}
3294 		}
3295 		printf("can't find file %s\n", s0);
3296 	}
3297 }
3298 
3299 static char loading_msg[] = "loading '%s' id %d\n";
3300 static char load_msg[] = "load '%s' id %d loaded @ 0x%p/0x%p size %d/%d\n";
3301 
3302 /*
3303  * Common code for loading a module (but not installing it).
3304  * Handoff the task of module loading to a separate thread
3305  * with a large stack if possible, since this code may recurse a few times.
3306  * Return zero if there are no errors or an errno value.
3307  */
3308 static int
3309 mod_load(struct modctl *mp, int usepath)
3310 {
3311 	int		retval;
3312 	struct modinfo	*modinfop = NULL;
3313 	struct loadmt	lt;
3314 
3315 	ASSERT(MUTEX_NOT_HELD(&mod_lock));
3316 	ASSERT(mp->mod_busy);
3317 
3318 	if (mp->mod_loaded)
3319 		return (0);
3320 
3321 	if (mod_sysctl(SYS_CHECK_EXCLUDE, mp->mod_modname) != 0 ||
3322 	    mod_sysctl(SYS_CHECK_EXCLUDE, mp->mod_filename) != 0) {
3323 		if (moddebug & MODDEBUG_LOADMSG) {
3324 			printf(mod_excl_msg, mp->mod_filename,
3325 			    mp->mod_modname);
3326 		}
3327 		return (ENXIO);
3328 	}
3329 	if (moddebug & MODDEBUG_LOADMSG2)
3330 		printf(loading_msg, mp->mod_filename, mp->mod_id);
3331 
3332 	if (curthread != &t0) {
3333 		lt.mp = mp;
3334 		lt.usepath = usepath;
3335 		lt.owner = curthread;
3336 		sema_init(&lt.sema, 0, NULL, SEMA_DEFAULT, NULL);
3337 
3338 		/* create thread to hand of call to */
3339 		(void) thread_create(NULL, DEFAULTSTKSZ * 2,
3340 		    modload_thread, &lt, 0, &p0, TS_RUN, maxclsyspri);
3341 
3342 		/* wait for thread to complete kobj_load_module */
3343 		sema_p(&lt.sema);
3344 
3345 		sema_destroy(&lt.sema);
3346 		retval = lt.retval;
3347 	} else
3348 		retval = kobj_load_module(mp, usepath);
3349 
3350 	if (mp->mod_mp) {
3351 		ASSERT(retval == 0);
3352 		mp->mod_loaded = 1;
3353 		mp->mod_loadcnt++;
3354 		if (moddebug & MODDEBUG_LOADMSG) {
3355 			printf(load_msg, mp->mod_filename, mp->mod_id,
3356 			    (void *)((struct module *)mp->mod_mp)->text,
3357 			    (void *)((struct module *)mp->mod_mp)->data,
3358 			    ((struct module *)mp->mod_mp)->text_size,
3359 			    ((struct module *)mp->mod_mp)->data_size);
3360 		}
3361 
3362 		/*
3363 		 * XXX - There should be a better way to get this.
3364 		 */
3365 		modinfop = kmem_zalloc(sizeof (struct modinfo), KM_SLEEP);
3366 		modinfop->mi_info = MI_INFO_LINKAGE;
3367 		if (mod_getinfo(mp, modinfop) == 0)
3368 			mp->mod_linkage = NULL;
3369 		else {
3370 			mp->mod_linkage = (void *)modinfop->mi_base;
3371 			ASSERT(mp->mod_linkage->ml_rev == MODREV_1);
3372 		}
3373 
3374 		/*
3375 		 * DCS: bootstrapping code. If the driver is loaded
3376 		 * before root mount, it is assumed that the driver
3377 		 * may be used before mounting root. In order to
3378 		 * access mappings of global to local minor no.'s
3379 		 * during installation/open of the driver, we load
3380 		 * them into memory here while the BOP_interfaces
3381 		 * are still up.
3382 		 */
3383 		if ((cluster_bootflags & CLUSTER_BOOTED) && !modrootloaded) {
3384 			retval = clboot_modload(mp);
3385 		}
3386 
3387 		kmem_free(modinfop, sizeof (struct modinfo));
3388 		(void) mod_sysctl(SYS_SET_MVAR, (void *)mp);
3389 		retval = install_stubs_by_name(mp, mp->mod_modname);
3390 
3391 		/*
3392 		 * Now that the module is loaded, we need to give DTrace
3393 		 * a chance to notify its providers.  This is done via
3394 		 * the dtrace_modload function pointer.
3395 		 */
3396 		if (strcmp(mp->mod_modname, "dtrace") != 0) {
3397 			struct modctl *dmp = mod_hold_by_name("dtrace");
3398 
3399 			if (dmp != NULL && dtrace_modload != NULL)
3400 				(*dtrace_modload)(mp);
3401 
3402 			mod_release_mod(dmp);
3403 		}
3404 
3405 	} else {
3406 		/*
3407 		 * If load failed then we need to release any requisites
3408 		 * that we had established.
3409 		 */
3410 		ASSERT(retval);
3411 		mod_release_requisites(mp);
3412 
3413 		if (moddebug & MODDEBUG_ERRMSG)
3414 			printf("error loading '%s', error %d\n",
3415 			    mp->mod_filename, retval);
3416 	}
3417 	return (retval);
3418 }
3419 
3420 static char unload_msg[] = "unloading %s, module id %d, loadcnt %d.\n";
3421 
3422 static void
3423 mod_unload(struct modctl *mp)
3424 {
3425 	ASSERT(MUTEX_NOT_HELD(&mod_lock));
3426 	ASSERT(mp->mod_busy);
3427 	ASSERT((mp->mod_loaded && (mp->mod_installed == 0)) &&
3428 	    ((mp->mod_prim == 0) && (mp->mod_ref >= 0)));
3429 
3430 	if (moddebug & MODDEBUG_LOADMSG)
3431 		printf(unload_msg, mp->mod_modname,
3432 		    mp->mod_id, mp->mod_loadcnt);
3433 
3434 	/*
3435 	 * If mod_ref is not zero, it means some modules might still refer
3436 	 * to this module. Then you can't unload this module right now.
3437 	 * Instead, set 1 to mod_delay_unload to notify the system of
3438 	 * unloading this module later when it's not required any more.
3439 	 */
3440 	if (mp->mod_ref > 0) {
3441 		mp->mod_delay_unload = 1;
3442 		if (moddebug & MODDEBUG_LOADMSG2) {
3443 			printf("module %s not unloaded,"
3444 			    " non-zero reference count (%d)",
3445 			    mp->mod_modname, mp->mod_ref);
3446 		}
3447 		return;
3448 	}
3449 
3450 	if (((mp->mod_loaded == 0) || mp->mod_installed) ||
3451 	    (mp->mod_ref || mp->mod_prim)) {
3452 		/*
3453 		 * A DEBUG kernel would ASSERT panic above, the code is broken
3454 		 * if we get this warning.
3455 		 */
3456 		cmn_err(CE_WARN, "mod_unload: %s in incorrect state: %d %d %d",
3457 		    mp->mod_filename, mp->mod_installed, mp->mod_loaded,
3458 		    mp->mod_ref);
3459 		return;
3460 	}
3461 
3462 	/* reset stub functions to call the binder again */
3463 	reset_stubs(mp);
3464 
3465 	/*
3466 	 * mark module as unloaded before the modctl structure is freed.
3467 	 * This is required not to reuse the modctl structure before
3468 	 * the module is marked as unloaded.
3469 	 */
3470 	mp->mod_loaded = 0;
3471 	mp->mod_linkage = NULL;
3472 
3473 	/* free the memory */
3474 	kobj_unload_module(mp);
3475 
3476 	if (mp->mod_delay_unload) {
3477 		mp->mod_delay_unload = 0;
3478 		if (moddebug & MODDEBUG_LOADMSG2) {
3479 			printf("deferred unload of module %s"
3480 			    " (id %d) successful",
3481 			    mp->mod_modname, mp->mod_id);
3482 		}
3483 	}
3484 
3485 	/* release hold on requisites */
3486 	mod_release_requisites(mp);
3487 
3488 	/*
3489 	 * Now that the module is gone, we need to give DTrace a chance to
3490 	 * remove any probes that it may have had in the module.  This is
3491 	 * done via the dtrace_modunload function pointer.
3492 	 */
3493 	if (strcmp(mp->mod_modname, "dtrace") != 0) {
3494 		struct modctl *dmp = mod_hold_by_name("dtrace");
3495 
3496 		if (dmp != NULL && dtrace_modunload != NULL)
3497 			(*dtrace_modunload)(mp);
3498 
3499 		mod_release_mod(dmp);
3500 	}
3501 }
3502 
3503 static int
3504 modinstall(struct modctl *mp)
3505 {
3506 	int val;
3507 	int (*func)(void);
3508 
3509 	ASSERT(MUTEX_NOT_HELD(&mod_lock));
3510 	ASSERT(mp->mod_busy && mp->mod_loaded);
3511 
3512 	if (mp->mod_installed)
3513 		return (0);
3514 	/*
3515 	 * If mod_delay_unload is on, it means the system chose the deferred
3516 	 * unload for this module. Then you can't install this module until
3517 	 * it's unloaded from the system.
3518 	 */
3519 	if (mp->mod_delay_unload)
3520 		return (ENXIO);
3521 
3522 	if (moddebug & MODDEBUG_LOADMSG)
3523 		printf("installing %s, module id %d.\n",
3524 		    mp->mod_modname, mp->mod_id);
3525 
3526 	ASSERT(mp->mod_mp != NULL);
3527 	if (mod_install_requisites(mp) != 0) {
3528 		/*
3529 		 * Note that we can't call mod_unload(mp) here since
3530 		 * if modinstall() was called by mod_install_requisites(),
3531 		 * we won't be able to hold the dependent modules
3532 		 * (otherwise there would be a deadlock).
3533 		 */
3534 		return (ENXIO);
3535 	}
3536 
3537 	if (moddebug & MODDEBUG_ERRMSG) {
3538 		printf("init '%s' id %d loaded @ 0x%p/0x%p size %lu/%lu\n",
3539 		    mp->mod_filename, mp->mod_id,
3540 		    (void *)((struct module *)mp->mod_mp)->text,
3541 		    (void *)((struct module *)mp->mod_mp)->data,
3542 		    ((struct module *)mp->mod_mp)->text_size,
3543 		    ((struct module *)mp->mod_mp)->data_size);
3544 	}
3545 
3546 	func = (int (*)())kobj_lookup(mp->mod_mp, "_init");
3547 
3548 	if (kobj_addrcheck(mp->mod_mp, (caddr_t)func)) {
3549 		cmn_err(CE_WARN, "_init() not defined properly in %s",
3550 		    mp->mod_filename);
3551 		return (EFAULT);
3552 	}
3553 
3554 	if (moddebug & MODDEBUG_USERDEBUG) {
3555 		printf("breakpoint before calling %s:_init()\n",
3556 		    mp->mod_modname);
3557 		if (DEBUGGER_PRESENT)
3558 			debug_enter("_init");
3559 	}
3560 
3561 	ASSERT(MUTEX_NOT_HELD(&mod_lock));
3562 	ASSERT(mp->mod_busy && mp->mod_loaded);
3563 	val = (*func)();		/* call _init */
3564 
3565 	if (moddebug & MODDEBUG_USERDEBUG)
3566 		printf("Returned from _init, val = %x\n", val);
3567 
3568 	if (val == 0) {
3569 		/*
3570 		 * Set the MODS_INSTALLED flag to enable this module
3571 		 * being called now.
3572 		 */
3573 		install_stubs(mp);
3574 		mp->mod_installed = 1;
3575 	} else if (moddebug & MODDEBUG_ERRMSG)
3576 		printf(mod_init_msg, mp->mod_filename, mp->mod_modname, val);
3577 
3578 	return (val);
3579 }
3580 
3581 int	detach_driver_unconfig = 0;
3582 
3583 static int
3584 detach_driver(char *name)
3585 {
3586 	major_t major;
3587 	int error;
3588 
3589 	/*
3590 	 * If being called from mod_uninstall_all() then the appropriate
3591 	 * driver detaches (leaf only) have already been done.
3592 	 */
3593 	if (mod_in_autounload())
3594 		return (0);
3595 
3596 	major = ddi_name_to_major(name);
3597 	if (major == DDI_MAJOR_T_NONE)
3598 		return (0);
3599 
3600 	error = ndi_devi_unconfig_driver(ddi_root_node(),
3601 	    NDI_DETACH_DRIVER | detach_driver_unconfig, major);
3602 	return (error == NDI_SUCCESS ? 0 : -1);
3603 }
3604 
3605 static char finiret_msg[] = "Returned from _fini for %s, status = %x\n";
3606 
3607 static int
3608 moduninstall(struct modctl *mp)
3609 {
3610 	int status = 0;
3611 	int (*func)(void);
3612 
3613 	ASSERT(MUTEX_NOT_HELD(&mod_lock));
3614 	ASSERT(mp->mod_busy);
3615 
3616 	/*
3617 	 * Verify that we need to do something and can uninstall the module.
3618 	 *
3619 	 * If we should not uninstall the module or if the module is not in
3620 	 * the correct state to start an uninstall we return EBUSY to prevent
3621 	 * us from progressing to mod_unload.  If the module has already been
3622 	 * uninstalled and unloaded we return EALREADY.
3623 	 */
3624 	if (mp->mod_prim || mp->mod_ref || mp->mod_nenabled != 0)
3625 		return (EBUSY);
3626 	if ((mp->mod_installed == 0) || (mp->mod_loaded == 0))
3627 		return (EALREADY);
3628 
3629 	/*
3630 	 * To avoid devinfo / module deadlock we must release this module
3631 	 * prior to initiating the detach_driver, otherwise the detach_driver
3632 	 * might deadlock on a devinfo node held by another thread
3633 	 * coming top down and involving the module we have locked.
3634 	 *
3635 	 * When we regrab the module we must reverify that it is OK
3636 	 * to proceed with the uninstall operation.
3637 	 */
3638 	mod_release_mod(mp);
3639 	status = detach_driver(mp->mod_modname);
3640 	(void) mod_hold_by_modctl(mp, MOD_WAIT_FOREVER | MOD_LOCK_NOT_HELD);
3641 
3642 	/* check detach status and reverify state with lock */
3643 	mutex_enter(&mod_lock);
3644 	if ((status != 0) || mp->mod_prim || mp->mod_ref) {
3645 		mutex_exit(&mod_lock);
3646 		return (EBUSY);
3647 	}
3648 	if ((mp->mod_installed == 0) || (mp->mod_loaded == 0)) {
3649 		mutex_exit(&mod_lock);
3650 		return (EALREADY);
3651 	}
3652 	mutex_exit(&mod_lock);
3653 
3654 	if (moddebug & MODDEBUG_LOADMSG2)
3655 		printf("uninstalling %s\n", mp->mod_modname);
3656 
3657 	/*
3658 	 * lookup _fini, return EBUSY if not defined.
3659 	 *
3660 	 * The MODDEBUG_FINI_EBUSY is usefull in resolving leaks in
3661 	 * detach(9E) - it allows bufctl addresses to be resolved.
3662 	 */
3663 	func = (int (*)())kobj_lookup(mp->mod_mp, "_fini");
3664 	if ((func == NULL) || (mp->mod_loadflags & MOD_NOUNLOAD) ||
3665 	    (moddebug & MODDEBUG_FINI_EBUSY))
3666 		return (EBUSY);
3667 
3668 	/* verify that _fini is in this module */
3669 	if (kobj_addrcheck(mp->mod_mp, (caddr_t)func)) {
3670 		cmn_err(CE_WARN, "_fini() not defined properly in %s",
3671 		    mp->mod_filename);
3672 		return (EFAULT);
3673 	}
3674 
3675 	/* call _fini() */
3676 	ASSERT(MUTEX_NOT_HELD(&mod_lock));
3677 	ASSERT(mp->mod_busy && mp->mod_loaded && mp->mod_installed);
3678 
3679 	status = (*func)();
3680 
3681 	if (status == 0) {
3682 		/* _fini returned success, the module is no longer installed */
3683 		if (moddebug & MODDEBUG_LOADMSG)
3684 			printf("uninstalled %s\n", mp->mod_modname);
3685 
3686 		/*
3687 		 * Even though we only set mod_installed to zero here, a zero
3688 		 * return value means we are committed to a code path were
3689 		 * mod_loaded will also end up as zero - we have no other
3690 		 * way to get the module data and bss back to the pre _init
3691 		 * state except a reload. To ensure this, after return,
3692 		 * mod_busy must stay set until mod_loaded is cleared.
3693 		 */
3694 		mp->mod_installed = 0;
3695 
3696 		/*
3697 		 * Clear the MODS_INSTALLED flag not to call functions
3698 		 * in the module directly from now on.
3699 		 */
3700 		uninstall_stubs(mp);
3701 	} else {
3702 		if (moddebug & MODDEBUG_USERDEBUG)
3703 			printf(finiret_msg, mp->mod_filename, status);
3704 		/*
3705 		 * By definition _fini is only allowed to return EBUSY or the
3706 		 * result of mod_remove (EBUSY or EINVAL).  In the off chance
3707 		 * that a driver returns EALREADY we convert this to EINVAL
3708 		 * since to our caller EALREADY means module was already
3709 		 * removed.
3710 		 */
3711 		if (status == EALREADY)
3712 			status = EINVAL;
3713 	}
3714 
3715 	return (status);
3716 }
3717 
3718 /*
3719  * Uninstall all modules.
3720  */
3721 static void
3722 mod_uninstall_all(void)
3723 {
3724 	struct modctl	*mp;
3725 	modid_t		modid = 0;
3726 
3727 	/* synchronize with any active modunload_disable() */
3728 	modunload_begin();
3729 
3730 	/* mark this thread as doing autounloading */
3731 	(void) tsd_set(mod_autounload_key, (void *)1);
3732 
3733 	(void) devfs_clean(ddi_root_node(), NULL, 0);
3734 	(void) ndi_devi_unconfig(ddi_root_node(), NDI_AUTODETACH);
3735 
3736 	while ((mp = mod_hold_next_by_id(modid)) != NULL) {
3737 		modid = mp->mod_id;
3738 		/*
3739 		 * Skip modules with the MOD_NOAUTOUNLOAD flag set
3740 		 */
3741 		if (mp->mod_loadflags & MOD_NOAUTOUNLOAD) {
3742 			mod_release_mod(mp);
3743 			continue;
3744 		}
3745 
3746 		if (moduninstall(mp) == 0) {
3747 			mod_unload(mp);
3748 			CPU_STATS_ADDQ(CPU, sys, modunload, 1);
3749 		}
3750 		mod_release_mod(mp);
3751 	}
3752 
3753 	(void) tsd_set(mod_autounload_key, NULL);
3754 	modunload_end();
3755 }
3756 
3757 /* wait for unloads that have begun before registering disable */
3758 void
3759 modunload_disable(void)
3760 {
3761 	mutex_enter(&modunload_wait_mutex);
3762 	while (modunload_active_count) {
3763 		modunload_wait++;
3764 		cv_wait(&modunload_wait_cv, &modunload_wait_mutex);
3765 		modunload_wait--;
3766 	}
3767 	modunload_disable_count++;
3768 	mutex_exit(&modunload_wait_mutex);
3769 }
3770 
3771 /* mark end of disable and signal waiters */
3772 void
3773 modunload_enable(void)
3774 {
3775 	mutex_enter(&modunload_wait_mutex);
3776 	modunload_disable_count--;
3777 	if ((modunload_disable_count == 0) && modunload_wait)
3778 		cv_broadcast(&modunload_wait_cv);
3779 	mutex_exit(&modunload_wait_mutex);
3780 }
3781 
3782 /* wait for disables to complete before begining unload */
3783 void
3784 modunload_begin()
3785 {
3786 	mutex_enter(&modunload_wait_mutex);
3787 	while (modunload_disable_count) {
3788 		modunload_wait++;
3789 		cv_wait(&modunload_wait_cv, &modunload_wait_mutex);
3790 		modunload_wait--;
3791 	}
3792 	modunload_active_count++;
3793 	mutex_exit(&modunload_wait_mutex);
3794 }
3795 
3796 /* mark end of unload and signal waiters */
3797 void
3798 modunload_end()
3799 {
3800 	mutex_enter(&modunload_wait_mutex);
3801 	modunload_active_count--;
3802 	if ((modunload_active_count == 0) && modunload_wait)
3803 		cv_broadcast(&modunload_wait_cv);
3804 	mutex_exit(&modunload_wait_mutex);
3805 }
3806 
3807 void
3808 mod_uninstall_daemon(void)
3809 {
3810 	callb_cpr_t	cprinfo;
3811 	clock_t		ticks = 0;
3812 
3813 	mod_aul_thread = curthread;
3814 
3815 	CALLB_CPR_INIT(&cprinfo, &mod_uninstall_lock, callb_generic_cpr, "mud");
3816 	for (;;) {
3817 		mutex_enter(&mod_uninstall_lock);
3818 		CALLB_CPR_SAFE_BEGIN(&cprinfo);
3819 		/*
3820 		 * In DEBUG kernels, unheld drivers are uninstalled periodically
3821 		 * every mod_uninstall_interval seconds.  Periodic uninstall can
3822 		 * be disabled by setting mod_uninstall_interval to 0 which is
3823 		 * the default for a non-DEBUG kernel.
3824 		 */
3825 		if (mod_uninstall_interval) {
3826 			ticks = ddi_get_lbolt() +
3827 			    drv_usectohz(mod_uninstall_interval * 1000000);
3828 			(void) cv_timedwait(&mod_uninstall_cv,
3829 			    &mod_uninstall_lock, ticks);
3830 		} else {
3831 			cv_wait(&mod_uninstall_cv, &mod_uninstall_lock);
3832 		}
3833 		/*
3834 		 * The whole daemon is safe for CPR except we don't want
3835 		 * the daemon to run if FREEZE is issued and this daemon
3836 		 * wakes up from the cv_wait above. In this case, it'll be
3837 		 * blocked in CALLB_CPR_SAFE_END until THAW is issued.
3838 		 *
3839 		 * The reason of calling CALLB_CPR_SAFE_BEGIN twice is that
3840 		 * mod_uninstall_lock is used to protect cprinfo and
3841 		 * CALLB_CPR_SAFE_BEGIN assumes that this lock is held when
3842 		 * called.
3843 		 */
3844 		CALLB_CPR_SAFE_END(&cprinfo, &mod_uninstall_lock);
3845 		CALLB_CPR_SAFE_BEGIN(&cprinfo);
3846 		mutex_exit(&mod_uninstall_lock);
3847 		if ((modunload_disable_count == 0) &&
3848 		    ((moddebug & MODDEBUG_NOAUTOUNLOAD) == 0)) {
3849 			mod_uninstall_all();
3850 		}
3851 	}
3852 }
3853 
3854 /*
3855  * Unload all uninstalled modules.
3856  */
3857 void
3858 modreap(void)
3859 {
3860 	mutex_enter(&mod_uninstall_lock);
3861 	cv_broadcast(&mod_uninstall_cv);
3862 	mutex_exit(&mod_uninstall_lock);
3863 }
3864 
3865 /*
3866  * Hold the specified module. This is the module holding primitive.
3867  *
3868  * If MOD_LOCK_HELD then the caller already holds the mod_lock.
3869  *
3870  * Return values:
3871  *	 0 ==> the module is held
3872  *	 1 ==> the module is not held and the MOD_WAIT_ONCE caller needs
3873  *		to determine how to retry.
3874  */
3875 int
3876 mod_hold_by_modctl(struct modctl *mp, int f)
3877 {
3878 	ASSERT((f & (MOD_WAIT_ONCE | MOD_WAIT_FOREVER)) &&
3879 	    ((f & (MOD_WAIT_ONCE | MOD_WAIT_FOREVER)) !=
3880 	    (MOD_WAIT_ONCE | MOD_WAIT_FOREVER)));
3881 	ASSERT((f & (MOD_LOCK_HELD | MOD_LOCK_NOT_HELD)) &&
3882 	    ((f & (MOD_LOCK_HELD | MOD_LOCK_NOT_HELD)) !=
3883 	    (MOD_LOCK_HELD | MOD_LOCK_NOT_HELD)));
3884 	ASSERT((f & MOD_LOCK_NOT_HELD) || MUTEX_HELD(&mod_lock));
3885 
3886 	if (f & MOD_LOCK_NOT_HELD)
3887 		mutex_enter(&mod_lock);
3888 
3889 	while (mp->mod_busy) {
3890 		mp->mod_want = 1;
3891 		cv_wait(&mod_cv, &mod_lock);
3892 		/*
3893 		 * Module may be unloaded by daemon.
3894 		 * Nevertheless, modctl structure is still in linked list
3895 		 * (i.e., off &modules), not freed!
3896 		 * Caller is not supposed to assume "mp" is valid, but there
3897 		 * is no reasonable way to detect this but using
3898 		 * mp->mod_modinfo->mp == NULL check (follow the back pointer)
3899 		 *   (or similar check depending on calling context)
3900 		 * DON'T free modctl structure, it will be very very
3901 		 * problematic.
3902 		 */
3903 		if (f & MOD_WAIT_ONCE) {
3904 			if (f & MOD_LOCK_NOT_HELD)
3905 				mutex_exit(&mod_lock);
3906 			return (1);	/* caller decides how to retry */
3907 		}
3908 	}
3909 
3910 	mp->mod_busy = 1;
3911 	mp->mod_inprogress_thread =
3912 	    (curthread == NULL ? (kthread_id_t)-1 : curthread);
3913 
3914 	if (f & MOD_LOCK_NOT_HELD)
3915 		mutex_exit(&mod_lock);
3916 	return (0);
3917 }
3918 
3919 static struct modctl *
3920 mod_hold_by_name_common(struct modctl *dep, const char *filename)
3921 {
3922 	const char	*modname;
3923 	struct modctl	*mp;
3924 	char		*curname, *newname;
3925 	int		found = 0;
3926 
3927 	mutex_enter(&mod_lock);
3928 
3929 	if ((modname = strrchr(filename, '/')) == NULL)
3930 		modname = filename;
3931 	else
3932 		modname++;
3933 
3934 	mp = &modules;
3935 	do {
3936 		if (strcmp(modname, mp->mod_modname) == 0) {
3937 			found = 1;
3938 			break;
3939 		}
3940 	} while ((mp = mp->mod_next) != &modules);
3941 
3942 	if (found == 0) {
3943 		mp = allocate_modp(filename, modname);
3944 		modadd(mp);
3945 	}
3946 
3947 	/*
3948 	 * if dep is not NULL, set the mp in mod_requisite_loading for
3949 	 * the module circular dependency check. This field is used in
3950 	 * mod_circdep(), but it's cleard in mod_hold_loaded_mod().
3951 	 */
3952 	if (dep != NULL) {
3953 		ASSERT(dep->mod_busy && dep->mod_requisite_loading == NULL);
3954 		dep->mod_requisite_loading = mp;
3955 	}
3956 
3957 	/*
3958 	 * If the module was held, then it must be us who has it held.
3959 	 */
3960 	if (mod_circdep(mp))
3961 		mp = NULL;
3962 	else {
3963 		(void) mod_hold_by_modctl(mp, MOD_WAIT_FOREVER | MOD_LOCK_HELD);
3964 
3965 		/*
3966 		 * If the name hadn't been set or has changed, allocate
3967 		 * space and set it.  Free space used by previous name.
3968 		 *
3969 		 * Do not change the name of primary modules, for primary
3970 		 * modules the mod_filename was allocated in standalone mode:
3971 		 * it is illegal to kobj_alloc in standalone mode and kobj_free
3972 		 * in non-standalone mode.
3973 		 */
3974 		curname = mp->mod_filename;
3975 		if (curname == NULL ||
3976 		    ((mp->mod_prim == 0) &&
3977 		    (curname != filename) &&
3978 		    (modname != filename) &&
3979 		    (strcmp(curname, filename) != 0))) {
3980 			newname = kobj_zalloc(strlen(filename) + 1, KM_SLEEP);
3981 			(void) strcpy(newname, filename);
3982 			mp->mod_filename = newname;
3983 			if (curname != NULL)
3984 				kobj_free(curname, strlen(curname) + 1);
3985 		}
3986 	}
3987 
3988 	mutex_exit(&mod_lock);
3989 	if (mp && moddebug & MODDEBUG_LOADMSG2)
3990 		printf("Holding %s\n", mp->mod_filename);
3991 	if (mp == NULL && moddebug & MODDEBUG_LOADMSG2)
3992 		printf("circular dependency loading %s\n", filename);
3993 	return (mp);
3994 }
3995 
3996 static struct modctl *
3997 mod_hold_by_name_requisite(struct modctl *dep, char *filename)
3998 {
3999 	return (mod_hold_by_name_common(dep, filename));
4000 }
4001 
4002 struct modctl *
4003 mod_hold_by_name(const char *filename)
4004 {
4005 	return (mod_hold_by_name_common(NULL, filename));
4006 }
4007 
4008 struct modctl *
4009 mod_hold_by_id(modid_t modid)
4010 {
4011 	struct modctl	*mp;
4012 	int		found = 0;
4013 
4014 	mutex_enter(&mod_lock);
4015 	mp = &modules;
4016 	do {
4017 		if (mp->mod_id == modid) {
4018 			found = 1;
4019 			break;
4020 		}
4021 	} while ((mp = mp->mod_next) != &modules);
4022 
4023 	if ((found == 0) || mod_circdep(mp))
4024 		mp = NULL;
4025 	else
4026 		(void) mod_hold_by_modctl(mp, MOD_WAIT_FOREVER | MOD_LOCK_HELD);
4027 
4028 	mutex_exit(&mod_lock);
4029 	return (mp);
4030 }
4031 
4032 static struct modctl *
4033 mod_hold_next_by_id(modid_t modid)
4034 {
4035 	struct modctl	*mp;
4036 	int		found = 0;
4037 
4038 	if (modid < -1)
4039 		return (NULL);
4040 
4041 	mutex_enter(&mod_lock);
4042 
4043 	mp = &modules;
4044 	do {
4045 		if (mp->mod_id > modid) {
4046 			found = 1;
4047 			break;
4048 		}
4049 	} while ((mp = mp->mod_next) != &modules);
4050 
4051 	if ((found == 0) || mod_circdep(mp))
4052 		mp = NULL;
4053 	else
4054 		(void) mod_hold_by_modctl(mp, MOD_WAIT_FOREVER | MOD_LOCK_HELD);
4055 
4056 	mutex_exit(&mod_lock);
4057 	return (mp);
4058 }
4059 
4060 static void
4061 mod_release(struct modctl *mp)
4062 {
4063 	ASSERT(MUTEX_HELD(&mod_lock));
4064 	ASSERT(mp->mod_busy);
4065 
4066 	mp->mod_busy = 0;
4067 	mp->mod_inprogress_thread = NULL;
4068 	if (mp->mod_want) {
4069 		mp->mod_want = 0;
4070 		cv_broadcast(&mod_cv);
4071 	}
4072 }
4073 
4074 void
4075 mod_release_mod(struct modctl *mp)
4076 {
4077 	if (moddebug & MODDEBUG_LOADMSG2)
4078 		printf("Releasing %s\n", mp->mod_filename);
4079 	mutex_enter(&mod_lock);
4080 	mod_release(mp);
4081 	mutex_exit(&mod_lock);
4082 }
4083 
4084 modid_t
4085 mod_name_to_modid(char *filename)
4086 {
4087 	char		*modname;
4088 	struct modctl	*mp;
4089 
4090 	mutex_enter(&mod_lock);
4091 
4092 	if ((modname = strrchr(filename, '/')) == NULL)
4093 		modname = filename;
4094 	else
4095 		modname++;
4096 
4097 	mp = &modules;
4098 	do {
4099 		if (strcmp(modname, mp->mod_modname) == 0) {
4100 			mutex_exit(&mod_lock);
4101 			return (mp->mod_id);
4102 		}
4103 	} while ((mp = mp->mod_next) != &modules);
4104 
4105 	mutex_exit(&mod_lock);
4106 	return (-1);
4107 }
4108 
4109 
4110 int
4111 mod_remove_by_name(char *name)
4112 {
4113 	struct modctl *mp;
4114 	int retval;
4115 
4116 	mp = mod_hold_by_name(name);
4117 
4118 	if (mp == NULL)
4119 		return (EINVAL);
4120 
4121 	if (mp->mod_loadflags & MOD_NOAUTOUNLOAD) {
4122 		/*
4123 		 * Do not unload forceloaded modules
4124 		 */
4125 		mod_release_mod(mp);
4126 		return (0);
4127 	}
4128 
4129 	if ((retval = moduninstall(mp)) == 0) {
4130 		mod_unload(mp);
4131 		CPU_STATS_ADDQ(CPU, sys, modunload, 1);
4132 	} else if (retval == EALREADY)
4133 		retval = 0;		/* already unloaded, not an error */
4134 	mod_release_mod(mp);
4135 	return (retval);
4136 }
4137 
4138 /*
4139  * Record that module "dep" is dependent on module "on_mod."
4140  */
4141 static void
4142 mod_make_requisite(struct modctl *dependent, struct modctl *on_mod)
4143 {
4144 	struct modctl_list **pmlnp;	/* previous next pointer */
4145 	struct modctl_list *mlp;
4146 	struct modctl_list *new;
4147 
4148 	ASSERT(dependent->mod_busy && on_mod->mod_busy);
4149 	mutex_enter(&mod_lock);
4150 
4151 	/*
4152 	 * Search dependent's requisite list to see if on_mod is recorded.
4153 	 * List is ordered by id.
4154 	 */
4155 	for (pmlnp = &dependent->mod_requisites, mlp = *pmlnp;
4156 	    mlp; pmlnp = &mlp->modl_next, mlp = *pmlnp)
4157 		if (mlp->modl_modp->mod_id >= on_mod->mod_id)
4158 			break;
4159 
4160 	/* Create and insert if not already recorded */
4161 	if ((mlp == NULL) || (mlp->modl_modp->mod_id != on_mod->mod_id)) {
4162 		new = kobj_zalloc(sizeof (*new), KM_SLEEP);
4163 		new->modl_modp = on_mod;
4164 		new->modl_next = mlp;
4165 		*pmlnp = new;
4166 
4167 		/*
4168 		 * Increment the mod_ref count in our new requisite module.
4169 		 * This is what keeps a module that has other modules
4170 		 * which are dependent on it from being uninstalled and
4171 		 * unloaded. "on_mod"'s mod_ref count decremented in
4172 		 * mod_release_requisites when the "dependent" module
4173 		 * unload is complete.  "on_mod" must be loaded, but may not
4174 		 * yet be installed.
4175 		 */
4176 		on_mod->mod_ref++;
4177 		ASSERT(on_mod->mod_ref && on_mod->mod_loaded);
4178 	}
4179 
4180 	mutex_exit(&mod_lock);
4181 }
4182 
4183 /*
4184  * release the hold associated with mod_make_requisite mod_ref++
4185  * as part of unload.
4186  */
4187 void
4188 mod_release_requisites(struct modctl *modp)
4189 {
4190 	struct modctl_list *modl;
4191 	struct modctl_list *next;
4192 	struct modctl *req;
4193 	struct modctl_list *start = NULL, *mod_garbage;
4194 
4195 	ASSERT(modp->mod_busy);
4196 	ASSERT(!MUTEX_HELD(&mod_lock));
4197 
4198 	mutex_enter(&mod_lock);		/* needed for manipulation of req */
4199 	for (modl = modp->mod_requisites; modl; modl = next) {
4200 		next = modl->modl_next;
4201 		req = modl->modl_modp;
4202 		ASSERT(req->mod_ref >= 1 && req->mod_loaded);
4203 		req->mod_ref--;
4204 
4205 		/*
4206 		 * Check if the module has to be unloaded or not.
4207 		 */
4208 		if (req->mod_ref == 0 && req->mod_delay_unload) {
4209 			struct modctl_list *new;
4210 			/*
4211 			 * Allocate the modclt_list holding the garbage
4212 			 * module which should be unloaded later.
4213 			 */
4214 			new = kobj_zalloc(sizeof (struct modctl_list),
4215 			    KM_SLEEP);
4216 			new->modl_modp = req;
4217 
4218 			if (start == NULL)
4219 				mod_garbage = start = new;
4220 			else {
4221 				mod_garbage->modl_next = new;
4222 				mod_garbage = new;
4223 			}
4224 		}
4225 
4226 		/* free the list as we go */
4227 		kobj_free(modl, sizeof (*modl));
4228 	}
4229 	modp->mod_requisites = NULL;
4230 	mutex_exit(&mod_lock);
4231 
4232 	/*
4233 	 * Unload the garbage modules.
4234 	 */
4235 	for (mod_garbage = start; mod_garbage != NULL; /* nothing */) {
4236 		struct modctl_list *old = mod_garbage;
4237 		struct modctl *mp = mod_garbage->modl_modp;
4238 		ASSERT(mp != NULL);
4239 
4240 		/*
4241 		 * Hold this module until it's unloaded completely.
4242 		 */
4243 		(void) mod_hold_by_modctl(mp,
4244 		    MOD_WAIT_FOREVER | MOD_LOCK_NOT_HELD);
4245 		/*
4246 		 * Check if the module is not unloaded yet and nobody requires
4247 		 * the module. If it's unloaded already or somebody still
4248 		 * requires the module, don't unload it now.
4249 		 */
4250 		if (mp->mod_loaded && mp->mod_ref == 0)
4251 			mod_unload(mp);
4252 		ASSERT((mp->mod_loaded == 0 && mp->mod_delay_unload == 0) ||
4253 		    (mp->mod_ref > 0));
4254 		mod_release_mod(mp);
4255 
4256 		mod_garbage = mod_garbage->modl_next;
4257 		kobj_free(old, sizeof (struct modctl_list));
4258 	}
4259 }
4260 
4261 /*
4262  * Process dependency of the module represented by "dep" on the
4263  * module named by "on."
4264  *
4265  * Called from kobj_do_dependents() to load a module "on" on which
4266  * "dep" depends.
4267  */
4268 struct modctl *
4269 mod_load_requisite(struct modctl *dep, char *on)
4270 {
4271 	struct modctl *on_mod;
4272 	int retval;
4273 
4274 	if ((on_mod = mod_hold_loaded_mod(dep, on, &retval)) != NULL) {
4275 		mod_make_requisite(dep, on_mod);
4276 	} else if (moddebug & MODDEBUG_ERRMSG) {
4277 		printf("error processing %s on which module %s depends\n",
4278 		    on, dep->mod_modname);
4279 	}
4280 	return (on_mod);
4281 }
4282 
4283 static int
4284 mod_install_requisites(struct modctl *modp)
4285 {
4286 	struct modctl_list *modl;
4287 	struct modctl *req;
4288 	int status = 0;
4289 
4290 	ASSERT(MUTEX_NOT_HELD(&mod_lock));
4291 	ASSERT(modp->mod_busy);
4292 
4293 	for (modl = modp->mod_requisites; modl; modl = modl->modl_next) {
4294 		req = modl->modl_modp;
4295 		(void) mod_hold_by_modctl(req,
4296 		    MOD_WAIT_FOREVER | MOD_LOCK_NOT_HELD);
4297 		status = modinstall(req);
4298 		mod_release_mod(req);
4299 
4300 		if (status != 0)
4301 			break;
4302 	}
4303 	return (status);
4304 }
4305 
4306 /*
4307  * returns 1 if this thread is doing autounload, 0 otherwise.
4308  * see mod_uninstall_all.
4309  */
4310 int
4311 mod_in_autounload()
4312 {
4313 	return ((int)(uintptr_t)tsd_get(mod_autounload_key));
4314 }
4315 
4316 /*
4317  * gmatch adapted from libc, stripping the wchar stuff
4318  */
4319 #define	popchar(p, c)	{ \
4320 		c = *p++; \
4321 		if (c == 0) { \
4322 			return (0); \
4323 		} \
4324 	}
4325 
4326 int
4327 gmatch(const char *s, const char *p)
4328 {
4329 	int c, sc;
4330 	int ok, lc, notflag;
4331 
4332 	sc = *s++;
4333 	c = *p++;
4334 	if (c == 0)
4335 		return (sc == c);	/* nothing matches nothing */
4336 
4337 	switch (c) {
4338 	case '\\':
4339 		/* skip to quoted character */
4340 		popchar(p, c);
4341 		/*FALLTHRU*/
4342 
4343 	default:
4344 		/* straight comparison */
4345 		if (c != sc)
4346 			return (0);
4347 		/*FALLTHRU*/
4348 
4349 	case '?':
4350 		/* first char matches, move to remainder */
4351 		return (sc != '\0' ? gmatch(s, p) : 0);
4352 
4353 
4354 	case '*':
4355 		while (*p == '*')
4356 			p++;
4357 
4358 		/* * matches everything */
4359 		if (*p == 0)
4360 			return (1);
4361 
4362 		/* undo skip at the beginning & iterate over substrings */
4363 		--s;
4364 		while (*s) {
4365 			if (gmatch(s, p))
4366 				return (1);
4367 			s++;
4368 		}
4369 		return (0);
4370 
4371 	case '[':
4372 		/* match any char within [] */
4373 		if (sc == 0)
4374 			return (0);
4375 
4376 		ok = lc = notflag = 0;
4377 
4378 		if (*p == '!') {
4379 			notflag = 1;
4380 			p++;
4381 		}
4382 		popchar(p, c);
4383 
4384 		do {
4385 			if (c == '-' && lc && *p != ']') {
4386 				/* test sc against range [c1-c2] */
4387 				popchar(p, c);
4388 				if (c == '\\') {
4389 					popchar(p, c);
4390 				}
4391 
4392 				if (notflag) {
4393 					/* return 0 on mismatch */
4394 					if (lc <= sc && sc <= c)
4395 						return (0);
4396 					ok++;
4397 				} else if (lc <= sc && sc <= c) {
4398 					ok++;
4399 				}
4400 				/* keep going, may get a match next */
4401 			} else if (c == '\\') {
4402 				/* skip to quoted character */
4403 				popchar(p, c);
4404 			}
4405 			lc = c;
4406 			if (notflag) {
4407 				if (sc == lc)
4408 					return (0);
4409 				ok++;
4410 			} else if (sc == lc) {
4411 				ok++;
4412 			}
4413 			popchar(p, c);
4414 		} while (c != ']');
4415 
4416 		/* recurse on remainder of string */
4417 		return (ok ? gmatch(s, p) : 0);
4418 	}
4419 	/*NOTREACHED*/
4420 }
4421 
4422 
4423 /*
4424  * Get default perm for device from /etc/minor_perm. Return 0 if match found.
4425  *
4426  * Pure wild-carded patterns are handled separately so the ordering of
4427  * these patterns doesn't matter.  We're still dependent on ordering
4428  * however as the first matching entry is the one returned.
4429  * Not ideal but all existing examples and usage do imply this
4430  * ordering implicitly.
4431  *
4432  * Drivers using the clone driver are always good for some entertainment.
4433  * Clone nodes under pseudo have the form clone@0:<driver>.  Some minor
4434  * perm entries have the form clone:<driver>, others use <driver>:*
4435  * Examples are clone:llc1 vs. llc2:*, for example.
4436  *
4437  * Minor perms in the clone:<driver> form are mapped to the drivers's
4438  * mperm list, not the clone driver, as wildcard entries for clone
4439  * reference only.  In other words, a clone wildcard will match
4440  * references for clone@0:<driver> but never <driver>@<minor>.
4441  *
4442  * Additional minor perms in the standard form are also supported,
4443  * for mixed usage, ie a node with an entry clone:<driver> could
4444  * provide further entries <driver>:<minor>.
4445  *
4446  * Finally, some uses of clone use an alias as the minor name rather
4447  * than the driver name, with the alias as the minor perm entry.
4448  * This case is handled by attaching the driver to bring its
4449  * minor list into existence, then discover the alias via DDI_ALIAS.
4450  * The clone device's minor perm list can then be searched for
4451  * that alias.
4452  */
4453 
4454 static int
4455 dev_alias_minorperm(dev_info_t *dip, char *minor_name, mperm_t *rmp)
4456 {
4457 	major_t			major;
4458 	struct devnames		*dnp;
4459 	mperm_t			*mp;
4460 	char			*alias = NULL;
4461 	dev_info_t		*cdevi;
4462 	int			circ;
4463 	struct ddi_minor_data	*dmd;
4464 
4465 	major = ddi_name_to_major(minor_name);
4466 
4467 	ASSERT(dip == clone_dip);
4468 	ASSERT(major != DDI_MAJOR_T_NONE);
4469 
4470 	/*
4471 	 * Attach the driver named by the minor node, then
4472 	 * search its first instance's minor list for an
4473 	 * alias node.
4474 	 */
4475 	if (ddi_hold_installed_driver(major) == NULL)
4476 		return (1);
4477 
4478 	dnp = &devnamesp[major];
4479 	LOCK_DEV_OPS(&dnp->dn_lock);
4480 
4481 	if ((cdevi = dnp->dn_head) != NULL) {
4482 		ndi_devi_enter(cdevi, &circ);
4483 		for (dmd = DEVI(cdevi)->devi_minor; dmd; dmd = dmd->next) {
4484 			if (dmd->type == DDM_ALIAS) {
4485 				alias = i_ddi_strdup(dmd->ddm_name, KM_SLEEP);
4486 				break;
4487 			}
4488 		}
4489 		ndi_devi_exit(cdevi, circ);
4490 	}
4491 
4492 	UNLOCK_DEV_OPS(&dnp->dn_lock);
4493 	ddi_rele_driver(major);
4494 
4495 	if (alias == NULL) {
4496 		if (moddebug & MODDEBUG_MINORPERM)
4497 			cmn_err(CE_CONT, "dev_minorperm: "
4498 			    "no alias for %s\n", minor_name);
4499 		return (1);
4500 	}
4501 
4502 	major = ddi_driver_major(clone_dip);
4503 	dnp = &devnamesp[major];
4504 	LOCK_DEV_OPS(&dnp->dn_lock);
4505 
4506 	/*
4507 	 * Go through the clone driver's mperm list looking
4508 	 * for a match for the specified alias.
4509 	 */
4510 	for (mp = dnp->dn_mperm; mp; mp = mp->mp_next) {
4511 		if (strcmp(alias, mp->mp_minorname) == 0) {
4512 			break;
4513 		}
4514 	}
4515 
4516 	if (mp) {
4517 		if (moddebug & MODDEBUG_MP_MATCH) {
4518 			cmn_err(CE_CONT,
4519 			    "minor perm defaults: %s %s 0%o %d %d (aliased)\n",
4520 			    minor_name, alias, mp->mp_mode,
4521 			    mp->mp_uid, mp->mp_gid);
4522 		}
4523 		rmp->mp_uid = mp->mp_uid;
4524 		rmp->mp_gid = mp->mp_gid;
4525 		rmp->mp_mode = mp->mp_mode;
4526 	}
4527 	UNLOCK_DEV_OPS(&dnp->dn_lock);
4528 
4529 	kmem_free(alias, strlen(alias)+1);
4530 
4531 	return (mp == NULL);
4532 }
4533 
4534 int
4535 dev_minorperm(dev_info_t *dip, char *name, mperm_t *rmp)
4536 {
4537 	major_t major;
4538 	char *minor_name;
4539 	struct devnames *dnp;
4540 	mperm_t *mp;
4541 	int is_clone = 0;
4542 
4543 	if (!minorperm_loaded) {
4544 		if (moddebug & MODDEBUG_MINORPERM)
4545 			cmn_err(CE_CONT,
4546 			    "%s: minor perm not yet loaded\n", name);
4547 		return (1);
4548 	}
4549 
4550 	minor_name = strchr(name, ':');
4551 	if (minor_name == NULL)
4552 		return (1);
4553 	minor_name++;
4554 
4555 	/*
4556 	 * If it's the clone driver, search the driver as named
4557 	 * by the minor.  All clone minor perm entries other than
4558 	 * alias nodes are actually installed on the real driver's list.
4559 	 */
4560 	if (dip == clone_dip) {
4561 		major = ddi_name_to_major(minor_name);
4562 		if (major == DDI_MAJOR_T_NONE) {
4563 			if (moddebug & MODDEBUG_MINORPERM)
4564 				cmn_err(CE_CONT, "dev_minorperm: "
4565 				    "%s: no such driver\n", minor_name);
4566 			return (1);
4567 		}
4568 		is_clone = 1;
4569 	} else {
4570 		major = ddi_driver_major(dip);
4571 		ASSERT(major != DDI_MAJOR_T_NONE);
4572 	}
4573 
4574 	dnp = &devnamesp[major];
4575 	LOCK_DEV_OPS(&dnp->dn_lock);
4576 
4577 	/*
4578 	 * Go through the driver's mperm list looking for
4579 	 * a match for the specified minor.  If there's
4580 	 * no matching pattern, use the wild card.
4581 	 * Defer to the clone wild for clone if specified,
4582 	 * otherwise fall back to the normal form.
4583 	 */
4584 	for (mp = dnp->dn_mperm; mp; mp = mp->mp_next) {
4585 		if (gmatch(minor_name, mp->mp_minorname) != 0) {
4586 			break;
4587 		}
4588 	}
4589 	if (mp == NULL) {
4590 		if (is_clone)
4591 			mp = dnp->dn_mperm_clone;
4592 		if (mp == NULL)
4593 			mp = dnp->dn_mperm_wild;
4594 	}
4595 
4596 	if (mp) {
4597 		if (moddebug & MODDEBUG_MP_MATCH) {
4598 			cmn_err(CE_CONT,
4599 			    "minor perm defaults: %s %s 0%o %d %d\n",
4600 			    name, mp->mp_minorname, mp->mp_mode,
4601 			    mp->mp_uid, mp->mp_gid);
4602 		}
4603 		rmp->mp_uid = mp->mp_uid;
4604 		rmp->mp_gid = mp->mp_gid;
4605 		rmp->mp_mode = mp->mp_mode;
4606 	}
4607 	UNLOCK_DEV_OPS(&dnp->dn_lock);
4608 
4609 	/*
4610 	 * If no match can be found for a clone node,
4611 	 * search for a possible match for an alias.
4612 	 * One such example is /dev/ptmx -> /devices/pseudo/clone@0:ptm,
4613 	 * with minor perm entry clone:ptmx.
4614 	 */
4615 	if (mp == NULL && is_clone) {
4616 		return (dev_alias_minorperm(dip, minor_name, rmp));
4617 	}
4618 
4619 	return (mp == NULL);
4620 }
4621 
4622 /*
4623  * dynamicaly reference load a dl module/library, returning handle
4624  */
4625 /*ARGSUSED*/
4626 ddi_modhandle_t
4627 ddi_modopen(const char *modname, int mode, int *errnop)
4628 {
4629 	char		*subdir;
4630 	char		*mod;
4631 	int		subdirlen;
4632 	struct modctl	*hmodp = NULL;
4633 	int		retval = EINVAL;
4634 
4635 	ASSERT(modname && (mode == KRTLD_MODE_FIRST));
4636 	if ((modname == NULL) || (mode != KRTLD_MODE_FIRST))
4637 		goto out;
4638 
4639 	/* find last '/' in modname */
4640 	mod = strrchr(modname, '/');
4641 
4642 	if (mod) {
4643 		/* for subdir string without modification to argument */
4644 		mod++;
4645 		subdirlen = mod - modname;
4646 		subdir = kmem_alloc(subdirlen, KM_SLEEP);
4647 		(void) strlcpy(subdir, modname, subdirlen);
4648 	} else {
4649 		subdirlen = 0;
4650 		subdir = "misc";
4651 		mod = (char *)modname;
4652 	}
4653 
4654 	/* reference load with errno return value */
4655 	retval = modrload(subdir, mod, &hmodp);
4656 
4657 	if (subdirlen)
4658 		kmem_free(subdir, subdirlen);
4659 
4660 out:	if (errnop)
4661 		*errnop = retval;
4662 
4663 	if (moddebug & MODDEBUG_DDI_MOD)
4664 		printf("ddi_modopen %s mode %x: %s %p %d\n",
4665 		    modname ? modname : "<unknown>", mode,
4666 		    hmodp ? hmodp->mod_filename : "<unknown>",
4667 		    (void *)hmodp, retval);
4668 
4669 	return ((ddi_modhandle_t)hmodp);
4670 }
4671 
4672 /* lookup "name" in open dl module/library */
4673 void *
4674 ddi_modsym(ddi_modhandle_t h, const char *name, int *errnop)
4675 {
4676 	struct modctl	*hmodp = (struct modctl *)h;
4677 	void		*f;
4678 	int		retval;
4679 
4680 	ASSERT(hmodp && name && hmodp->mod_installed && (hmodp->mod_ref >= 1));
4681 	if ((hmodp == NULL) || (name == NULL) ||
4682 	    (hmodp->mod_installed == 0) || (hmodp->mod_ref < 1)) {
4683 		f = NULL;
4684 		retval = EINVAL;
4685 	} else {
4686 		f = (void *)kobj_lookup(hmodp->mod_mp, (char *)name);
4687 		if (f)
4688 			retval = 0;
4689 		else
4690 			retval = ENOTSUP;
4691 	}
4692 
4693 	if (moddebug & MODDEBUG_DDI_MOD)
4694 		printf("ddi_modsym in %s of %s: %d %p\n",
4695 		    hmodp ? hmodp->mod_modname : "<unknown>",
4696 		    name ? name : "<unknown>", retval, f);
4697 
4698 	if (errnop)
4699 		*errnop = retval;
4700 	return (f);
4701 }
4702 
4703 /* dynamic (un)reference unload of an open dl module/library */
4704 int
4705 ddi_modclose(ddi_modhandle_t h)
4706 {
4707 	struct modctl	*hmodp = (struct modctl *)h;
4708 	struct modctl	*modp = NULL;
4709 	int		retval;
4710 
4711 	ASSERT(hmodp && hmodp->mod_installed && (hmodp->mod_ref >= 1));
4712 	if ((hmodp == NULL) ||
4713 	    (hmodp->mod_installed == 0) || (hmodp->mod_ref < 1)) {
4714 		retval = EINVAL;
4715 		goto out;
4716 	}
4717 
4718 	retval = modunrload(hmodp->mod_id, &modp, ddi_modclose_unload);
4719 	if (retval == EBUSY)
4720 		retval = 0;	/* EBUSY is not an error */
4721 
4722 	if (retval == 0) {
4723 		ASSERT(hmodp == modp);
4724 		if (hmodp != modp)
4725 			retval = EINVAL;
4726 	}
4727 
4728 out:	if (moddebug & MODDEBUG_DDI_MOD)
4729 		printf("ddi_modclose %s: %d\n",
4730 		    hmodp ? hmodp->mod_modname : "<unknown>", retval);
4731 
4732 	return (retval);
4733 }
4734