xref: /illumos-gate/usr/src/uts/common/krtld/kobj.c (revision b531f6d16eb39863e7bbc34773fb7ef7a282a0a2)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 /*
26  * Copyright 2011 Bayard G. Bell <buffer.g.overflow@gmail.com>.
27  * All rights reserved. Use is subject to license terms.
28  * Copyright 2020 Joyent, Inc.
29  */
30 
31 /*
32  * Kernel's linker/loader
33  */
34 
35 #include <sys/types.h>
36 #include <sys/param.h>
37 #include <sys/sysmacros.h>
38 #include <sys/systm.h>
39 #include <sys/user.h>
40 #include <sys/kmem.h>
41 #include <sys/reboot.h>
42 #include <sys/bootconf.h>
43 #include <sys/debug.h>
44 #include <sys/uio.h>
45 #include <sys/file.h>
46 #include <sys/vnode.h>
47 #include <sys/user.h>
48 #include <sys/mman.h>
49 #include <vm/as.h>
50 #include <vm/seg_kp.h>
51 #include <vm/seg_kmem.h>
52 #include <sys/elf.h>
53 #include <sys/elf_notes.h>
54 #include <sys/vmsystm.h>
55 #include <sys/kdi.h>
56 #include <sys/atomic.h>
57 #include <sys/kmdb.h>
58 
59 #include <sys/link.h>
60 #include <sys/kobj.h>
61 #include <sys/ksyms.h>
62 #include <sys/disp.h>
63 #include <sys/modctl.h>
64 #include <sys/varargs.h>
65 #include <sys/kstat.h>
66 #include <sys/kobj_impl.h>
67 #include <sys/fs/decomp.h>
68 #include <sys/callb.h>
69 #include <sys/cmn_err.h>
70 #include <sys/tnf_probe.h>
71 #include <sys/zmod.h>
72 
73 #include <krtld/reloc.h>
74 #include <krtld/kobj_kdi.h>
75 #include <sys/sha1.h>
76 #include <sys/crypto/elfsign.h>
77 
78 #if !defined(_OBP)
79 #include <sys/bootvfs.h>
80 #endif
81 
82 /*
83  * do_symbols() error codes
84  */
85 #define	DOSYM_UNDEF		-1	/* undefined symbol */
86 #define	DOSYM_UNSAFE		-2	/* MT-unsafe driver symbol */
87 
88 #if !defined(_OBP)
89 static void synthetic_bootaux(char *, val_t *);
90 #endif
91 
92 static struct module *load_exec(val_t *, char *);
93 static void load_linker(val_t *);
94 static struct modctl *add_primary(const char *filename, int);
95 static int bind_primary(val_t *, int);
96 static int load_primary(struct module *, int);
97 static int load_kmdb(val_t *);
98 static int get_progbits(struct module *, struct _buf *);
99 static int get_syms(struct module *, struct _buf *);
100 static int get_ctf(struct module *, struct _buf *);
101 static void get_signature(struct module *, struct _buf *);
102 static int do_common(struct module *);
103 static void add_dependent(struct module *, struct module *);
104 static int do_dependents(struct modctl *, char *, size_t);
105 static int do_symbols(struct module *, Elf64_Addr);
106 static void module_assign(struct modctl *, struct module *);
107 static void free_module_data(struct module *);
108 static char *depends_on(struct module *);
109 static char *getmodpath(const char *);
110 static char *basename(char *);
111 static void attr_val(val_t *);
112 static char *find_libmacro(char *);
113 static char *expand_libmacro(char *, char *, char *);
114 static int read_bootflags(void);
115 static int kobj_comp_setup(struct _buf *, struct compinfo *);
116 static int kobj_uncomp_blk(struct _buf *, caddr_t, uint_t);
117 static int kobj_read_blks(struct _buf *, caddr_t, uint_t, uint_t);
118 static int kobj_boot_open(char *, int);
119 static int kobj_boot_close(int);
120 static int kobj_boot_seek(int, off_t, off_t);
121 static int kobj_boot_read(int, caddr_t, size_t);
122 static int kobj_boot_fstat(int, struct bootstat *);
123 static int kobj_boot_compinfo(int, struct compinfo *);
124 
125 static Sym *lookup_one(struct module *, const char *);
126 static void sym_insert(struct module *, char *, symid_t);
127 static Sym *sym_lookup(struct module *, Sym *);
128 
129 static struct kobjopen_tctl *kobjopen_alloc(char *filename);
130 static void kobjopen_free(struct kobjopen_tctl *ltp);
131 static void kobjopen_thread(struct kobjopen_tctl *ltp);
132 static int kobj_is_compressed(intptr_t);
133 
134 extern int kcopy(const void *, void *, size_t);
135 extern int elf_mach_ok(Ehdr *);
136 extern int alloc_gottable(struct module *, caddr_t *, caddr_t *);
137 
138 #if !defined(_OBP)
139 extern int kobj_boot_mountroot(void);
140 #endif
141 
142 static void tnf_unsplice_probes(uint_t, struct modctl *);
143 extern tnf_probe_control_t *__tnf_probe_list_head;
144 extern tnf_tag_data_t *__tnf_tag_list_head;
145 
146 extern int modrootloaded;
147 extern int swaploaded;
148 extern int bop_io_quiesced;
149 extern int last_module_id;
150 
151 extern char stubs_base[];
152 extern char stubs_end[];
153 
154 #ifdef KOBJ_DEBUG
155 /*
156  * Values that can be or'd in to kobj_debug and their effects:
157  *
158  *	D_DEBUG		- misc. debugging information.
159  *	D_SYMBOLS	- list symbols and their values as they are entered
160  *			  into the hash table
161  *	D_RELOCATIONS	- display relocation processing information
162  *	D_LOADING	- display information about each module as it
163  *			  is loaded.
164  */
165 int kobj_debug = 0;
166 
167 #define	KOBJ_MARK(s)	if (kobj_debug & D_DEBUG)	\
168 	(_kobj_printf(ops, "%d", __LINE__), _kobj_printf(ops, ": %s\n", s))
169 #else
170 #define	KOBJ_MARK(s)	/* discard */
171 #endif
172 
173 #define	MODPATH_PROPNAME	"module-path"
174 
175 #ifdef MODDIR_SUFFIX
176 static char slash_moddir_suffix_slash[] = MODDIR_SUFFIX "/";
177 #else
178 #define	slash_moddir_suffix_slash	""
179 #endif
180 
181 #define	_moddebug	get_weakish_int(&moddebug)
182 #define	_modrootloaded	get_weakish_int(&modrootloaded)
183 #define	_swaploaded	get_weakish_int(&swaploaded)
184 #define	_ioquiesced	get_weakish_int(&bop_io_quiesced)
185 
186 #define	mod(X)		(struct module *)((X)->modl_modp->mod_mp)
187 
188 void	*romp;		/* rom vector (opaque to us) */
189 struct bootops *ops;	/* bootops vector */
190 void *dbvec;		/* debug vector */
191 
192 /*
193  * kobjopen thread control structure
194  */
195 struct kobjopen_tctl {
196 	ksema_t		sema;
197 	char		*name;		/* name of file */
198 	struct vnode	*vp;		/* vnode return from vn_open() */
199 	int		Errno;		/* error return from vnopen    */
200 };
201 
202 /*
203  * Structure for defining dynamically expandable library macros
204  */
205 
206 struct lib_macro_info {
207 	char	*lmi_list;		/* ptr to list of possible choices */
208 	char	*lmi_macroname;		/* pointer to macro name */
209 	ushort_t lmi_ba_index;		/* index into bootaux vector */
210 	ushort_t lmi_macrolen;		/* macro length */
211 } libmacros[] = {
212 	{ NULL, "CPU", BA_CPU, 0 },
213 	{ NULL, "MMU", BA_MMU, 0 }
214 };
215 
216 #define	NLIBMACROS	sizeof (libmacros) / sizeof (struct lib_macro_info)
217 
218 char *boot_cpu_compatible_list;			/* make $CPU available */
219 
220 char *kobj_module_path;				/* module search path */
221 vmem_t	*text_arena;				/* module text arena */
222 static vmem_t *data_arena;			/* module data & bss arena */
223 static vmem_t *ctf_arena;			/* CTF debug data arena */
224 static struct modctl *kobj_modules = NULL;	/* modules loaded */
225 int kobj_mmu_pagesize;				/* system pagesize */
226 static int lg_pagesize;				/* "large" pagesize */
227 static int kobj_last_module_id = 0;		/* id assignment */
228 static kmutex_t kobj_lock;			/* protects mach memory list */
229 
230 /*
231  * The following functions have been implemented by the kernel.
232  * However, many 3rd party drivers provide their own implementations
233  * of these functions.  When such drivers are loaded, messages
234  * indicating that these symbols have been multiply defined will be
235  * emitted to the console.  To avoid alarming customers for no good
236  * reason, we simply suppress such warnings for the following set of
237  * functions.
238  */
239 static char *suppress_sym_list[] =
240 {
241 	"strstr",
242 	"strncat",
243 	"strlcat",
244 	"strlcpy",
245 	"strspn",
246 	"memcpy",
247 	"memset",
248 	"memmove",
249 	"memcmp",
250 	"memchr",
251 	"__udivdi3",
252 	"__divdi3",
253 	"__umoddi3",
254 	"__moddi3",
255 	NULL		/* This entry must exist */
256 };
257 
258 /* indexed by KOBJ_NOTIFY_* */
259 static kobj_notify_list_t *kobj_notifiers[KOBJ_NOTIFY_MAX + 1];
260 
261 /*
262  * TNF probe management globals
263  */
264 tnf_probe_control_t	*__tnf_probe_list_head = NULL;
265 tnf_tag_data_t		*__tnf_tag_list_head = NULL;
266 int			tnf_changed_probe_list = 0;
267 
268 /*
269  * Prefix for statically defined tracing (SDT) DTrace probes.
270  */
271 const char		*sdt_prefix = "__dtrace_probe_";
272 
273 /*
274  * Beginning and end of the kernel's dynamic text/data segments.
275  */
276 static caddr_t _text;
277 static caddr_t _etext;
278 static caddr_t _data;
279 
280 /*
281  * The sparc linker doesn't create a memory location
282  * for a variable named _edata, so _edata can only be
283  * referred to, not modified.  krtld needs a static
284  * variable to modify it - within krtld, of course -
285  * outside of krtld, e_data is used in all kernels.
286  */
287 #if defined(__sparc)
288 static caddr_t _edata;
289 #else
290 extern caddr_t _edata;
291 #endif
292 
293 Addr dynseg = 0;	/* load address of "dynamic" segment */
294 size_t dynsize;		/* "dynamic" segment size */
295 
296 
297 int standalone = 1;			/* an unwholey kernel? */
298 int use_iflush;				/* iflush after relocations */
299 
300 /*
301  * _kobj_printf() and _vkobj_printf()
302  *
303  * Common printf function pointer. Can handle only one conversion
304  * specification in the format string. Some of the functions invoked
305  * through this function pointer cannot handle more that one conversion
306  * specification in the format string.
307  */
308 void (*_kobj_printf)(void *, const char *, ...) __KPRINTFLIKE(2);
309 void (*_vkobj_printf)(void *, const char *, va_list) __KVPRINTFLIKE(2);
310 
311 /*
312  * Standalone function pointers for use within krtld.
313  * Many platforms implement optimized platmod versions of
314  * utilities such as bcopy and any such are not yet available
315  * until the kernel is more completely stitched together.
316  * See kobj_impl.h
317  */
318 void (*kobj_bcopy)(const void *, void *, size_t);
319 void (*kobj_bzero)(void *, size_t);
320 size_t (*kobj_strlcat)(char *, const char *, size_t);
321 
322 static kobj_stat_t kobj_stat;
323 
324 #define	MINALIGN	8	/* at least a double-word */
325 
326 int
327 get_weakish_int(int *ip)
328 {
329 	if (standalone)
330 		return (0);
331 	return (ip == NULL ? 0 : *ip);
332 }
333 
334 static void *
335 get_weakish_pointer(void **ptrp)
336 {
337 	if (standalone)
338 		return (0);
339 	return (ptrp == NULL ? 0 : *ptrp);
340 }
341 
342 /*
343  * XXX fix dependencies on "kernel"; this should work
344  * for other standalone binaries as well.
345  *
346  * XXX Fix hashing code to use one pointer to
347  * hash entries.
348  *	|----------|
349  *	| nbuckets |
350  *	|----------|
351  *	| nchains  |
352  *	|----------|
353  *	| bucket[] |
354  *	|----------|
355  *	| chain[]  |
356  *	|----------|
357  */
358 
359 /*
360  * Load, bind and relocate all modules that
361  * form the primary kernel. At this point, our
362  * externals have not been relocated.
363  */
364 void
365 kobj_init(
366 	void *romvec,
367 	void *dvec,
368 	struct bootops *bootvec,
369 	val_t *bootaux)
370 {
371 	struct module *mp;
372 	struct modctl *modp;
373 	Addr entry;
374 	char filename[MAXPATHLEN];
375 
376 	/*
377 	 * Save these to pass on to
378 	 * the booted standalone.
379 	 */
380 	romp = romvec;
381 	dbvec = dvec;
382 
383 	ops = bootvec;
384 	kobj_setup_standalone_vectors();
385 
386 	KOBJ_MARK("Entered kobj_init()");
387 
388 	(void) BOP_GETPROP(ops, "whoami", filename);
389 
390 	/*
391 	 * We don't support standalone debuggers anymore.  The use of kadb
392 	 * will interfere with the later use of kmdb.  Let the user mend
393 	 * their ways now.  Users will reach this message if they still
394 	 * have the kadb binary on their system (perhaps they used an old
395 	 * bfu, or maybe they intentionally copied it there) and have
396 	 * specified its use in a way that eluded our checking in the boot
397 	 * program.
398 	 */
399 	if (dvec != NULL) {
400 		_kobj_printf(ops, "\nWARNING: Standalone debuggers such as "
401 		    "kadb are no longer supported\n\n");
402 		goto fail;
403 	}
404 
405 #if defined(_OBP)
406 	/*
407 	 * OBP allows us to read both the ramdisk and
408 	 * the underlying root fs when root is a disk.
409 	 * This can lower incidences of unbootable systems
410 	 * when the archive is out-of-date with the /etc
411 	 * state files.
412 	 */
413 	if (BOP_MOUNTROOT() != BOOT_SVC_OK) {
414 		_kobj_printf(ops, "can't mount boot fs\n");
415 		goto fail;
416 	}
417 #else
418 	{
419 		/* on x86, we always boot with a ramdisk */
420 		(void) kobj_boot_mountroot();
421 
422 		/*
423 		 * Now that the ramdisk is mounted, finish boot property
424 		 * initialization.
425 		 */
426 		read_bootenvrc();
427 	}
428 
429 #if !defined(_UNIX_KRTLD)
430 	/*
431 	 * 'unix' is linked together with 'krtld' into one executable and
432 	 * the early boot code does -not- hand us any of the dynamic metadata
433 	 * about the executable. In particular, it does not read in, map or
434 	 * otherwise look at the program headers. We fake all that up now.
435 	 *
436 	 * We do this early as DTrace static probes and tnf probes both call
437 	 * undefined references.  We have to process those relocations before
438 	 * calling any of them.
439 	 *
440 	 * OBP tells kobj_start() where the ELF image is in memory, so it
441 	 * synthesized bootaux before kobj_init() was called
442 	 */
443 	if (bootaux[BA_PHDR].ba_ptr == NULL)
444 		synthetic_bootaux(filename, bootaux);
445 
446 #endif	/* !_UNIX_KRTLD */
447 #endif	/* _OBP */
448 
449 	/*
450 	 * Save the interesting attribute-values
451 	 * (scanned by kobj_boot).
452 	 */
453 	attr_val(bootaux);
454 
455 	/*
456 	 * Set the module search path.
457 	 */
458 	kobj_module_path = getmodpath(filename);
459 
460 	boot_cpu_compatible_list = find_libmacro("CPU");
461 
462 	/*
463 	 * These two modules have actually been
464 	 * loaded by boot, but we finish the job
465 	 * by introducing them into the world of
466 	 * loadable modules.
467 	 */
468 
469 	mp = load_exec(bootaux, filename);
470 	load_linker(bootaux);
471 
472 	/*
473 	 * Load all the primary dependent modules.
474 	 */
475 	if (load_primary(mp, KOBJ_LM_PRIMARY) == -1)
476 		goto fail;
477 
478 	/*
479 	 * Glue it together.
480 	 */
481 	if (bind_primary(bootaux, KOBJ_LM_PRIMARY) == -1)
482 		goto fail;
483 
484 	entry = bootaux[BA_ENTRY].ba_val;
485 
486 	/*
487 	 * Get the boot flags
488 	 */
489 	bootflags(ops);
490 
491 	if (boothowto & RB_VERBOSE)
492 		kobj_lm_dump(KOBJ_LM_PRIMARY);
493 
494 	kobj_kdi_init();
495 
496 	if (boothowto & RB_KMDB) {
497 		if (load_kmdb(bootaux) < 0)
498 			goto fail;
499 	}
500 
501 	/*
502 	 * Post setup.
503 	 */
504 	s_text = _text;
505 	e_text = _etext;
506 	s_data = _data;
507 	e_data = _edata;
508 
509 	kobj_sync_instruction_memory(s_text, e_text - s_text);
510 
511 #ifdef	KOBJ_DEBUG
512 	if (kobj_debug & D_DEBUG)
513 		_kobj_printf(ops,
514 		    "krtld: transferring control to: 0x%lx\n", entry);
515 #endif
516 
517 	/*
518 	 * Make sure the mod system knows about the modules already loaded.
519 	 */
520 	last_module_id = kobj_last_module_id;
521 	bcopy(kobj_modules, &modules, sizeof (modules));
522 	modp = &modules;
523 	do {
524 		if (modp->mod_next == kobj_modules)
525 			modp->mod_next = &modules;
526 		if (modp->mod_prev == kobj_modules)
527 			modp->mod_prev = &modules;
528 	} while ((modp = modp->mod_next) != &modules);
529 
530 	standalone = 0;
531 
532 #ifdef	KOBJ_DEBUG
533 	if (kobj_debug & D_DEBUG)
534 		_kobj_printf(ops,
535 		    "krtld: really transferring control to: 0x%lx\n", entry);
536 #endif
537 
538 	/* restore printf/bcopy/bzero vectors before returning */
539 	kobj_restore_vectors();
540 
541 #if defined(_DBOOT)
542 	/*
543 	 * krtld was called from a dboot ELF section, the embedded
544 	 * dboot code contains the real entry via bootaux
545 	 */
546 	exitto((caddr_t)entry);
547 #else
548 	/*
549 	 * krtld was directly called from startup
550 	 */
551 	return;
552 #endif
553 
554 fail:
555 
556 	_kobj_printf(ops, "krtld: error during initial load/link phase\n");
557 
558 #if !defined(_UNIX_KRTLD)
559 	_kobj_printf(ops, "\n");
560 	_kobj_printf(ops, "krtld could neither locate nor resolve symbols"
561 	    " for:\n");
562 	_kobj_printf(ops, "    %s\n", filename);
563 	_kobj_printf(ops, "in the boot archive. Please verify that this"
564 	    " file\n");
565 	_kobj_printf(ops, "matches what is found in the boot archive.\n");
566 	_kobj_printf(ops, "You may need to boot using the Solaris failsafe to"
567 	    " fix this.\n");
568 	bop_panic("Unable to boot");
569 #endif
570 }
571 
572 #if !defined(_UNIX_KRTLD) && !defined(_OBP)
573 /*
574  * Synthesize additional metadata that describes the executable if
575  * krtld's caller didn't do it.
576  *
577  * (When the dynamic executable has an interpreter, the boot program
578  * does all this for us.  Where we don't have an interpreter, (or a
579  * even a boot program, perhaps) we have to do this for ourselves.)
580  */
581 static void
582 synthetic_bootaux(char *filename, val_t *bootaux)
583 {
584 	Ehdr ehdr;
585 	caddr_t phdrbase;
586 	struct _buf *file;
587 	int i, n;
588 
589 	/*
590 	 * Elf header
591 	 */
592 	KOBJ_MARK("synthetic_bootaux()");
593 	KOBJ_MARK(filename);
594 	file = kobj_open_file(filename);
595 	if (file == (struct _buf *)-1) {
596 		_kobj_printf(ops, "krtld: failed to open '%s'\n", filename);
597 		return;
598 	}
599 	KOBJ_MARK("reading program headers");
600 	if (kobj_read_file(file, (char *)&ehdr, sizeof (ehdr), 0) < 0) {
601 		_kobj_printf(ops, "krtld: %s: failed to read ehder\n",
602 		    filename);
603 		return;
604 	}
605 
606 	/*
607 	 * Program headers
608 	 */
609 	bootaux[BA_PHNUM].ba_val = ehdr.e_phnum;
610 	bootaux[BA_PHENT].ba_val = ehdr.e_phentsize;
611 	n = ehdr.e_phentsize * ehdr.e_phnum;
612 
613 	phdrbase = kobj_alloc(n, KM_WAIT | KM_TMP);
614 
615 	if (kobj_read_file(file, phdrbase, n, ehdr.e_phoff) < 0) {
616 		_kobj_printf(ops, "krtld: %s: failed to read phdrs\n",
617 		    filename);
618 		return;
619 	}
620 	bootaux[BA_PHDR].ba_ptr = phdrbase;
621 	kobj_close_file(file);
622 	KOBJ_MARK("closed file");
623 
624 	/*
625 	 * Find the dynamic section address
626 	 */
627 	for (i = 0; i < ehdr.e_phnum; i++) {
628 		Phdr *phdr = (Phdr *)(phdrbase + ehdr.e_phentsize * i);
629 
630 		if (phdr->p_type == PT_DYNAMIC) {
631 			bootaux[BA_DYNAMIC].ba_ptr = (void *)phdr->p_vaddr;
632 			break;
633 		}
634 	}
635 	KOBJ_MARK("synthetic_bootaux() done");
636 }
637 #endif	/* !_UNIX_KRTLD && !_OBP */
638 
639 /*
640  * Set up any global information derived
641  * from attribute/values in the boot or
642  * aux vector.
643  */
644 static void
645 attr_val(val_t *bootaux)
646 {
647 	Phdr *phdr;
648 	int phnum, phsize;
649 	int i;
650 
651 	KOBJ_MARK("attr_val()");
652 	kobj_mmu_pagesize = bootaux[BA_PAGESZ].ba_val;
653 	lg_pagesize = bootaux[BA_LPAGESZ].ba_val;
654 	use_iflush = bootaux[BA_IFLUSH].ba_val;
655 
656 	phdr = (Phdr *)bootaux[BA_PHDR].ba_ptr;
657 	phnum = bootaux[BA_PHNUM].ba_val;
658 	phsize = bootaux[BA_PHENT].ba_val;
659 	for (i = 0; i < phnum; i++) {
660 		phdr = (Phdr *)(bootaux[BA_PHDR].ba_val + i * phsize);
661 
662 		if (phdr->p_type != PT_LOAD) {
663 			continue;
664 		}
665 		/*
666 		 * Bounds of the various segments.
667 		 */
668 		if (!(phdr->p_flags & PF_X)) {
669 #if defined(_RELSEG)
670 			/*
671 			 * sparc kernel puts the dynamic info
672 			 * into a separate segment, which is
673 			 * free'd in bop_fini()
674 			 */
675 			ASSERT(phdr->p_vaddr != 0);
676 			dynseg = phdr->p_vaddr;
677 			dynsize = phdr->p_memsz;
678 #else
679 			ASSERT(phdr->p_vaddr == 0);
680 #endif
681 		} else {
682 			if (phdr->p_flags & PF_W) {
683 				_data = (caddr_t)phdr->p_vaddr;
684 				_edata = _data + phdr->p_memsz;
685 			} else {
686 				_text = (caddr_t)phdr->p_vaddr;
687 				_etext = _text + phdr->p_memsz;
688 			}
689 		}
690 	}
691 
692 	/* To do the kobj_alloc, _edata needs to be set. */
693 	for (i = 0; i < NLIBMACROS; i++) {
694 		if (bootaux[libmacros[i].lmi_ba_index].ba_ptr != NULL) {
695 			libmacros[i].lmi_list = kobj_alloc(
696 			    strlen(bootaux[libmacros[i].lmi_ba_index].ba_ptr) +
697 			    1, KM_WAIT);
698 			(void) strcpy(libmacros[i].lmi_list,
699 			    bootaux[libmacros[i].lmi_ba_index].ba_ptr);
700 		}
701 		libmacros[i].lmi_macrolen = strlen(libmacros[i].lmi_macroname);
702 	}
703 }
704 
705 /*
706  * Set up the booted executable.
707  */
708 static struct module *
709 load_exec(val_t *bootaux, char *filename)
710 {
711 	struct modctl *cp;
712 	struct module *mp;
713 	Dyn *dyn;
714 	Sym *sp;
715 	int i, lsize, osize, nsize, allocsize;
716 	char *libname, *tmp;
717 	char path[MAXPATHLEN];
718 
719 #ifdef KOBJ_DEBUG
720 	if (kobj_debug & D_DEBUG)
721 		_kobj_printf(ops, "module path '%s'\n", kobj_module_path);
722 #endif
723 
724 	KOBJ_MARK("add_primary");
725 	cp = add_primary(filename, KOBJ_LM_PRIMARY);
726 
727 	KOBJ_MARK("struct module");
728 	mp = kobj_zalloc(sizeof (struct module), KM_WAIT);
729 	cp->mod_mp = mp;
730 
731 	/*
732 	 * We don't have the following information
733 	 * since this module is an executable and not
734 	 * a relocatable .o.
735 	 */
736 	mp->symtbl_section = 0;
737 	mp->shdrs = NULL;
738 	mp->strhdr = NULL;
739 
740 	/*
741 	 * Since this module is the only exception,
742 	 * we cons up some section headers.
743 	 */
744 	KOBJ_MARK("symhdr");
745 	mp->symhdr = kobj_zalloc(sizeof (Shdr), KM_WAIT);
746 
747 	KOBJ_MARK("strhdr");
748 	mp->strhdr = kobj_zalloc(sizeof (Shdr), KM_WAIT);
749 
750 	mp->symhdr->sh_type = SHT_SYMTAB;
751 	mp->strhdr->sh_type = SHT_STRTAB;
752 	/*
753 	 * Scan the dynamic structure.
754 	 */
755 	for (dyn = (Dyn *) bootaux[BA_DYNAMIC].ba_ptr;
756 	    dyn->d_tag != DT_NULL; dyn++) {
757 		switch (dyn->d_tag) {
758 		case DT_SYMTAB:
759 			mp->symspace = mp->symtbl = (char *)dyn->d_un.d_ptr;
760 			mp->symhdr->sh_addr = dyn->d_un.d_ptr;
761 			break;
762 		case DT_HASH:
763 			mp->nsyms = *((uint_t *)dyn->d_un.d_ptr + 1);
764 			mp->hashsize = *(uint_t *)dyn->d_un.d_ptr;
765 			break;
766 		case DT_STRTAB:
767 			mp->strings = (char *)dyn->d_un.d_ptr;
768 			mp->strhdr->sh_addr = dyn->d_un.d_ptr;
769 			break;
770 		case DT_STRSZ:
771 			mp->strhdr->sh_size = dyn->d_un.d_val;
772 			break;
773 		case DT_SYMENT:
774 			mp->symhdr->sh_entsize = dyn->d_un.d_val;
775 			break;
776 		}
777 	}
778 
779 	/*
780 	 * Collapse any DT_NEEDED entries into one string.
781 	 */
782 	nsize = osize = 0;
783 	allocsize = MAXPATHLEN;
784 
785 	KOBJ_MARK("depends_on");
786 	mp->depends_on = kobj_alloc(allocsize, KM_WAIT);
787 
788 	for (dyn = (Dyn *) bootaux[BA_DYNAMIC].ba_ptr;
789 	    dyn->d_tag != DT_NULL; dyn++)
790 		if (dyn->d_tag == DT_NEEDED) {
791 			char *_lib;
792 
793 			libname = mp->strings + dyn->d_un.d_val;
794 			if (strchr(libname, '$') != NULL) {
795 				if ((_lib = expand_libmacro(libname,
796 				    path, path)) != NULL)
797 					libname = _lib;
798 				else
799 					_kobj_printf(ops, "krtld: "
800 					    "load_exec: fail to "
801 					    "expand %s\n", libname);
802 			}
803 			lsize = strlen(libname);
804 			nsize += lsize;
805 			if (nsize + 1 > allocsize) {
806 				KOBJ_MARK("grow depends_on");
807 				tmp = kobj_alloc(allocsize + MAXPATHLEN,
808 				    KM_WAIT);
809 				bcopy(mp->depends_on, tmp, osize);
810 				kobj_free(mp->depends_on, allocsize);
811 				mp->depends_on = tmp;
812 				allocsize += MAXPATHLEN;
813 			}
814 			bcopy(libname, mp->depends_on + osize, lsize);
815 			*(mp->depends_on + nsize) = ' '; /* separate */
816 			nsize++;
817 			osize = nsize;
818 		}
819 	if (nsize) {
820 		mp->depends_on[nsize - 1] = '\0'; /* terminate the string */
821 		/*
822 		 * alloc with exact size and copy whatever it got over
823 		 */
824 		KOBJ_MARK("realloc depends_on");
825 		tmp = kobj_alloc(nsize, KM_WAIT);
826 		bcopy(mp->depends_on, tmp, nsize);
827 		kobj_free(mp->depends_on, allocsize);
828 		mp->depends_on = tmp;
829 	} else {
830 		kobj_free(mp->depends_on, allocsize);
831 		mp->depends_on = NULL;
832 	}
833 
834 	mp->flags = KOBJ_EXEC|KOBJ_PRIM;	/* NOT a relocatable .o */
835 	mp->symhdr->sh_size = mp->nsyms * mp->symhdr->sh_entsize;
836 	/*
837 	 * We allocate our own table since we don't
838 	 * hash undefined references.
839 	 */
840 	KOBJ_MARK("chains");
841 	mp->chains = kobj_zalloc(mp->nsyms * sizeof (symid_t), KM_WAIT);
842 	KOBJ_MARK("buckets");
843 	mp->buckets = kobj_zalloc(mp->hashsize * sizeof (symid_t), KM_WAIT);
844 
845 	mp->text = _text;
846 	mp->data = _data;
847 
848 	mp->text_size = _etext - _text;
849 	mp->data_size = _edata - _data;
850 
851 	cp->mod_text = mp->text;
852 	cp->mod_text_size = mp->text_size;
853 
854 	mp->filename = cp->mod_filename;
855 
856 #ifdef	KOBJ_DEBUG
857 	if (kobj_debug & D_LOADING) {
858 		_kobj_printf(ops, "krtld: file=%s\n", mp->filename);
859 		_kobj_printf(ops, "\ttext: 0x%p", mp->text);
860 		_kobj_printf(ops, " size: 0x%lx\n", mp->text_size);
861 		_kobj_printf(ops, "\tdata: 0x%p", mp->data);
862 		_kobj_printf(ops, " dsize: 0x%lx\n", mp->data_size);
863 	}
864 #endif /* KOBJ_DEBUG */
865 
866 	/*
867 	 * Insert symbols into the hash table.
868 	 */
869 	for (i = 0; i < mp->nsyms; i++) {
870 		sp = (Sym *)(mp->symtbl + i * mp->symhdr->sh_entsize);
871 
872 		if (sp->st_name == 0 || sp->st_shndx == SHN_UNDEF)
873 			continue;
874 #if defined(__sparc)
875 		/*
876 		 * Register symbols are ignored in the kernel
877 		 */
878 		if (ELF_ST_TYPE(sp->st_info) == STT_SPARC_REGISTER)
879 			continue;
880 #endif	/* __sparc */
881 
882 		sym_insert(mp, mp->strings + sp->st_name, i);
883 	}
884 
885 	KOBJ_MARK("load_exec done");
886 	return (mp);
887 }
888 
889 /*
890  * Set up the linker module (if it's compiled in, LDNAME is NULL)
891  */
892 static void
893 load_linker(val_t *bootaux)
894 {
895 	struct module *kmp = (struct module *)kobj_modules->mod_mp;
896 	struct module *mp;
897 	struct modctl *cp;
898 	int i;
899 	Shdr *shp;
900 	Sym *sp;
901 	int shsize;
902 	char *dlname = (char *)bootaux[BA_LDNAME].ba_ptr;
903 
904 	/*
905 	 * On some architectures, krtld is compiled into the kernel.
906 	 */
907 	if (dlname == NULL)
908 		return;
909 
910 	cp = add_primary(dlname, KOBJ_LM_PRIMARY);
911 
912 	mp = kobj_zalloc(sizeof (struct module), KM_WAIT);
913 
914 	cp->mod_mp = mp;
915 	mp->hdr = *(Ehdr *)bootaux[BA_LDELF].ba_ptr;
916 	shsize = mp->hdr.e_shentsize * mp->hdr.e_shnum;
917 	mp->shdrs = kobj_alloc(shsize, KM_WAIT);
918 	bcopy(bootaux[BA_LDSHDR].ba_ptr, mp->shdrs, shsize);
919 
920 	for (i = 1; i < (int)mp->hdr.e_shnum; i++) {
921 		shp = (Shdr *)(mp->shdrs + (i * mp->hdr.e_shentsize));
922 
923 		if (shp->sh_flags & SHF_ALLOC) {
924 			if (shp->sh_flags & SHF_WRITE) {
925 				if (mp->data == NULL)
926 					mp->data = (char *)shp->sh_addr;
927 			} else if (mp->text == NULL) {
928 				mp->text = (char *)shp->sh_addr;
929 			}
930 		}
931 		if (shp->sh_type == SHT_SYMTAB) {
932 			mp->symtbl_section = i;
933 			mp->symhdr = shp;
934 			mp->symspace = mp->symtbl = (char *)shp->sh_addr;
935 		}
936 	}
937 	mp->nsyms = mp->symhdr->sh_size / mp->symhdr->sh_entsize;
938 	mp->flags = KOBJ_INTERP|KOBJ_PRIM;
939 	mp->strhdr = (Shdr *)
940 	    (mp->shdrs + mp->symhdr->sh_link * mp->hdr.e_shentsize);
941 	mp->strings = (char *)mp->strhdr->sh_addr;
942 	mp->hashsize = kobj_gethashsize(mp->nsyms);
943 
944 	mp->symsize = mp->symhdr->sh_size + mp->strhdr->sh_size + sizeof (int) +
945 	    (mp->hashsize + mp->nsyms) * sizeof (symid_t);
946 
947 	mp->chains = kobj_zalloc(mp->nsyms * sizeof (symid_t), KM_WAIT);
948 	mp->buckets = kobj_zalloc(mp->hashsize * sizeof (symid_t), KM_WAIT);
949 
950 	mp->bss = bootaux[BA_BSS].ba_val;
951 	mp->bss_align = 0;	/* pre-aligned during allocation */
952 	mp->bss_size = (uintptr_t)_edata - mp->bss;
953 	mp->text_size = _etext - mp->text;
954 	mp->data_size = _edata - mp->data;
955 	mp->filename = cp->mod_filename;
956 	cp->mod_text = mp->text;
957 	cp->mod_text_size = mp->text_size;
958 
959 	/*
960 	 * Now that we've figured out where the linker is,
961 	 * set the limits for the booted object.
962 	 */
963 	kmp->text_size = (size_t)(mp->text - kmp->text);
964 	kmp->data_size = (size_t)(mp->data - kmp->data);
965 	kobj_modules->mod_text_size = kmp->text_size;
966 
967 #ifdef	KOBJ_DEBUG
968 	if (kobj_debug & D_LOADING) {
969 		_kobj_printf(ops, "krtld: file=%s\n", mp->filename);
970 		_kobj_printf(ops, "\ttext:0x%p", mp->text);
971 		_kobj_printf(ops, " size: 0x%lx\n", mp->text_size);
972 		_kobj_printf(ops, "\tdata:0x%p", mp->data);
973 		_kobj_printf(ops, " dsize: 0x%lx\n", mp->data_size);
974 	}
975 #endif /* KOBJ_DEBUG */
976 
977 	/*
978 	 * Insert the symbols into the hash table.
979 	 */
980 	for (i = 0; i < mp->nsyms; i++) {
981 		sp = (Sym *)(mp->symtbl + i * mp->symhdr->sh_entsize);
982 
983 		if (sp->st_name == 0 || sp->st_shndx == SHN_UNDEF)
984 			continue;
985 		if (ELF_ST_BIND(sp->st_info) == STB_GLOBAL) {
986 			if (sp->st_shndx == SHN_COMMON)
987 				sp->st_shndx = SHN_ABS;
988 		}
989 		sym_insert(mp, mp->strings + sp->st_name, i);
990 	}
991 
992 }
993 
994 static kobj_notify_list_t **
995 kobj_notify_lookup(uint_t type)
996 {
997 	ASSERT(type != 0 && type < sizeof (kobj_notifiers) /
998 	    sizeof (kobj_notify_list_t *));
999 
1000 	return (&kobj_notifiers[type]);
1001 }
1002 
1003 int
1004 kobj_notify_add(kobj_notify_list_t *knp)
1005 {
1006 	kobj_notify_list_t **knl;
1007 
1008 	knl = kobj_notify_lookup(knp->kn_type);
1009 
1010 	knp->kn_next = NULL;
1011 	knp->kn_prev = NULL;
1012 
1013 	mutex_enter(&kobj_lock);
1014 
1015 	if (*knl != NULL) {
1016 		(*knl)->kn_prev = knp;
1017 		knp->kn_next = *knl;
1018 	}
1019 	(*knl) = knp;
1020 
1021 	mutex_exit(&kobj_lock);
1022 	return (0);
1023 }
1024 
1025 int
1026 kobj_notify_remove(kobj_notify_list_t *knp)
1027 {
1028 	kobj_notify_list_t **knl = kobj_notify_lookup(knp->kn_type);
1029 	kobj_notify_list_t *tknp;
1030 
1031 	mutex_enter(&kobj_lock);
1032 
1033 	/* LINTED */
1034 	if (tknp = knp->kn_next)
1035 		tknp->kn_prev = knp->kn_prev;
1036 
1037 	/* LINTED */
1038 	if (tknp = knp->kn_prev)
1039 		tknp->kn_next = knp->kn_next;
1040 	else
1041 		*knl = knp->kn_next;
1042 
1043 	mutex_exit(&kobj_lock);
1044 
1045 	return (0);
1046 }
1047 
1048 /*
1049  * Notify all interested callbacks of a specified change in module state.
1050  */
1051 static void
1052 kobj_notify(int type, struct modctl *modp)
1053 {
1054 	kobj_notify_list_t *knp;
1055 
1056 	if (modp->mod_loadflags & MOD_NONOTIFY || standalone)
1057 		return;
1058 
1059 	mutex_enter(&kobj_lock);
1060 
1061 	for (knp = *(kobj_notify_lookup(type)); knp != NULL; knp = knp->kn_next)
1062 		knp->kn_func(type, modp);
1063 
1064 	/*
1065 	 * KDI notification must be last (it has to allow for work done by the
1066 	 * other notification callbacks), so we call it manually.
1067 	 */
1068 	kobj_kdi_mod_notify(type, modp);
1069 
1070 	mutex_exit(&kobj_lock);
1071 }
1072 
1073 /*
1074  * Create the module path.
1075  */
1076 static char *
1077 getmodpath(const char *filename)
1078 {
1079 	char *path = kobj_zalloc(MAXPATHLEN, KM_WAIT);
1080 
1081 	/*
1082 	 * Platform code gets first crack, then add
1083 	 * the default components
1084 	 */
1085 	mach_modpath(path, filename);
1086 	if (*path != '\0')
1087 		(void) strcat(path, " ");
1088 	return (strcat(path, MOD_DEFPATH));
1089 }
1090 
1091 static struct modctl *
1092 add_primary(const char *filename, int lmid)
1093 {
1094 	struct modctl *cp;
1095 
1096 	cp = kobj_zalloc(sizeof (struct modctl), KM_WAIT);
1097 
1098 	cp->mod_filename = kobj_alloc(strlen(filename) + 1, KM_WAIT);
1099 
1100 	/*
1101 	 * For symbol lookup, we assemble our own
1102 	 * modctl list of the primary modules.
1103 	 */
1104 
1105 	(void) strcpy(cp->mod_filename, filename);
1106 	cp->mod_modname = basename(cp->mod_filename);
1107 
1108 	/* set values for modinfo assuming that the load will work */
1109 	cp->mod_prim = 1;
1110 	cp->mod_loaded = 1;
1111 	cp->mod_installed = 1;
1112 	cp->mod_loadcnt = 1;
1113 	cp->mod_loadflags = MOD_NOAUTOUNLOAD;
1114 
1115 	cp->mod_id = kobj_last_module_id++;
1116 
1117 	/*
1118 	 * Link the module in. We'll pass this info on
1119 	 * to the mod squad later.
1120 	 */
1121 	if (kobj_modules == NULL) {
1122 		kobj_modules = cp;
1123 		cp->mod_prev = cp->mod_next = cp;
1124 	} else {
1125 		cp->mod_prev = kobj_modules->mod_prev;
1126 		cp->mod_next = kobj_modules;
1127 		kobj_modules->mod_prev->mod_next = cp;
1128 		kobj_modules->mod_prev = cp;
1129 	}
1130 
1131 	kobj_lm_append(lmid, cp);
1132 
1133 	return (cp);
1134 }
1135 
1136 static int
1137 bind_primary(val_t *bootaux, int lmid)
1138 {
1139 	struct modctl_list *linkmap = kobj_lm_lookup(lmid);
1140 	struct modctl_list *lp;
1141 	struct module *mp;
1142 
1143 	/*
1144 	 * Do common symbols.
1145 	 */
1146 	for (lp = linkmap; lp; lp = lp->modl_next) {
1147 		mp = mod(lp);
1148 
1149 		/*
1150 		 * Don't do common section relocations for modules that
1151 		 * don't need it.
1152 		 */
1153 		if (mp->flags & (KOBJ_EXEC|KOBJ_INTERP))
1154 			continue;
1155 
1156 		if (do_common(mp) < 0)
1157 			return (-1);
1158 	}
1159 
1160 	/*
1161 	 * Resolve symbols.
1162 	 */
1163 	for (lp = linkmap; lp; lp = lp->modl_next) {
1164 		mp = mod(lp);
1165 
1166 		if (do_symbols(mp, 0) < 0)
1167 			return (-1);
1168 	}
1169 
1170 	/*
1171 	 * Do relocations.
1172 	 */
1173 	for (lp = linkmap; lp; lp = lp->modl_next) {
1174 		mp = mod(lp);
1175 
1176 		if (mp->flags & KOBJ_EXEC) {
1177 			Dyn *dyn;
1178 			Word relasz = 0, relaent = 0;
1179 			char *rela = NULL;
1180 
1181 			for (dyn = (Dyn *)bootaux[BA_DYNAMIC].ba_ptr;
1182 			    dyn->d_tag != DT_NULL; dyn++) {
1183 				switch (dyn->d_tag) {
1184 				case DT_RELASZ:
1185 				case DT_RELSZ:
1186 					relasz = dyn->d_un.d_val;
1187 					break;
1188 				case DT_RELAENT:
1189 				case DT_RELENT:
1190 					relaent = dyn->d_un.d_val;
1191 					break;
1192 				case DT_RELA:
1193 					rela = (char *)dyn->d_un.d_ptr;
1194 					break;
1195 				case DT_REL:
1196 					rela = (char *)dyn->d_un.d_ptr;
1197 					break;
1198 				}
1199 			}
1200 			if (relasz == 0 ||
1201 			    relaent == 0 || rela == NULL) {
1202 				_kobj_printf(ops, "krtld: bind_primary(): "
1203 				    "no relocation information found for "
1204 				    "module %s\n", mp->filename);
1205 				return (-1);
1206 			}
1207 #ifdef	KOBJ_DEBUG
1208 			if (kobj_debug & D_RELOCATIONS)
1209 				_kobj_printf(ops, "krtld: relocating: file=%s "
1210 				    "KOBJ_EXEC\n", mp->filename);
1211 #endif
1212 			if (do_relocate(mp, rela, relasz/relaent, relaent,
1213 			    (Addr)mp->text) < 0)
1214 				return (-1);
1215 		} else {
1216 			if (do_relocations(mp) < 0)
1217 				return (-1);
1218 		}
1219 
1220 		kobj_sync_instruction_memory(mp->text, mp->text_size);
1221 	}
1222 
1223 	for (lp = linkmap; lp; lp = lp->modl_next) {
1224 		mp = mod(lp);
1225 
1226 		/*
1227 		 * We need to re-read the full symbol table for the boot file,
1228 		 * since we couldn't use the full one before.  We also need to
1229 		 * load the CTF sections of both the boot file and the
1230 		 * interpreter (us).
1231 		 */
1232 		if (mp->flags & KOBJ_EXEC) {
1233 			struct _buf *file;
1234 			int n;
1235 
1236 			file = kobj_open_file(mp->filename);
1237 			if (file == (struct _buf *)-1)
1238 				return (-1);
1239 			if (kobj_read_file(file, (char *)&mp->hdr,
1240 			    sizeof (mp->hdr), 0) < 0)
1241 				return (-1);
1242 			n = mp->hdr.e_shentsize * mp->hdr.e_shnum;
1243 			mp->shdrs = kobj_alloc(n, KM_WAIT);
1244 			if (kobj_read_file(file, mp->shdrs, n,
1245 			    mp->hdr.e_shoff) < 0)
1246 				return (-1);
1247 			if (get_syms(mp, file) < 0)
1248 				return (-1);
1249 			if (get_ctf(mp, file) < 0)
1250 				return (-1);
1251 			kobj_close_file(file);
1252 			mp->flags |= KOBJ_RELOCATED;
1253 
1254 		} else if (mp->flags & KOBJ_INTERP) {
1255 			struct _buf *file;
1256 
1257 			/*
1258 			 * The interpreter path fragment in mp->filename
1259 			 * will already have the module directory suffix
1260 			 * in it (if appropriate).
1261 			 */
1262 			file = kobj_open_path(mp->filename, 1, 0);
1263 			if (file == (struct _buf *)-1)
1264 				return (-1);
1265 			if (get_ctf(mp, file) < 0)
1266 				return (-1);
1267 			kobj_close_file(file);
1268 			mp->flags |= KOBJ_RELOCATED;
1269 		}
1270 	}
1271 
1272 	return (0);
1273 }
1274 
1275 static struct modctl *
1276 mod_already_loaded(char *modname)
1277 {
1278 	struct modctl *mctl = kobj_modules;
1279 
1280 	do {
1281 		if (strcmp(modname, mctl->mod_filename) == 0)
1282 			return (mctl);
1283 		mctl = mctl->mod_next;
1284 
1285 	} while (mctl != kobj_modules);
1286 
1287 	return (NULL);
1288 }
1289 
1290 /*
1291  * Load all the primary dependent modules.
1292  */
1293 static int
1294 load_primary(struct module *mp, int lmid)
1295 {
1296 	struct modctl *cp;
1297 	struct module *dmp;
1298 	char *p, *q;
1299 	char modname[MODMAXNAMELEN];
1300 
1301 	if ((p = mp->depends_on) == NULL)
1302 		return (0);
1303 
1304 	/* CONSTANTCONDITION */
1305 	while (1) {
1306 		/*
1307 		 * Skip space.
1308 		 */
1309 		while (*p && (*p == ' ' || *p == '\t'))
1310 			p++;
1311 		/*
1312 		 * Get module name.
1313 		 */
1314 		q = modname;
1315 		while (*p && *p != ' ' && *p != '\t')
1316 			*q++ = *p++;
1317 
1318 		if (q == modname)
1319 			break;
1320 
1321 		*q = '\0';
1322 		/*
1323 		 * Check for dup dependencies.
1324 		 */
1325 		if (strcmp(modname, "dtracestubs") == 0 ||
1326 		    mod_already_loaded(modname) != NULL)
1327 			continue;
1328 
1329 		cp = add_primary(modname, lmid);
1330 		cp->mod_busy = 1;
1331 		/*
1332 		 * Load it.
1333 		 */
1334 		(void) kobj_load_module(cp, 1);
1335 		cp->mod_busy = 0;
1336 
1337 		if ((dmp = cp->mod_mp) == NULL) {
1338 			cp->mod_loaded = 0;
1339 			cp->mod_installed = 0;
1340 			cp->mod_loadcnt = 0;
1341 			return (-1);
1342 		}
1343 
1344 		add_dependent(mp, dmp);
1345 		dmp->flags |= KOBJ_PRIM;
1346 
1347 		/*
1348 		 * Recurse.
1349 		 */
1350 		if (load_primary(dmp, lmid) == -1) {
1351 			cp->mod_loaded = 0;
1352 			cp->mod_installed = 0;
1353 			cp->mod_loadcnt = 0;
1354 			return (-1);
1355 		}
1356 	}
1357 	return (0);
1358 }
1359 
1360 static int
1361 console_is_usb_serial(void)
1362 {
1363 	char *console;
1364 	int len, ret;
1365 
1366 	if ((len = BOP_GETPROPLEN(ops, "console")) == -1)
1367 		return (0);
1368 
1369 	console = kobj_zalloc(len, KM_WAIT|KM_TMP);
1370 	(void) BOP_GETPROP(ops, "console", console);
1371 	ret = (strcmp(console, "usb-serial") == 0);
1372 	kobj_free(console, len);
1373 
1374 	return (ret);
1375 }
1376 
1377 static int
1378 load_kmdb(val_t *bootaux)
1379 {
1380 	struct modctl *mctl;
1381 	struct module *mp;
1382 	Sym *sym;
1383 
1384 	if (console_is_usb_serial()) {
1385 		_kobj_printf(ops, "kmdb not loaded "
1386 		    "(unsupported on usb serial console)\n");
1387 		return (0);
1388 	}
1389 
1390 	_kobj_printf(ops, "Loading kmdb...\n");
1391 
1392 	if ((mctl = add_primary("misc/kmdbmod", KOBJ_LM_DEBUGGER)) == NULL)
1393 		return (-1);
1394 
1395 	mctl->mod_busy = 1;
1396 	(void) kobj_load_module(mctl, 1);
1397 	mctl->mod_busy = 0;
1398 
1399 	if ((mp = mctl->mod_mp) == NULL)
1400 		return (-1);
1401 
1402 	mp->flags |= KOBJ_PRIM;
1403 
1404 	if (load_primary(mp, KOBJ_LM_DEBUGGER) < 0)
1405 		return (-1);
1406 
1407 	if (boothowto & RB_VERBOSE)
1408 		kobj_lm_dump(KOBJ_LM_DEBUGGER);
1409 
1410 	if (bind_primary(bootaux, KOBJ_LM_DEBUGGER) < 0)
1411 		return (-1);
1412 
1413 	if ((sym = lookup_one(mctl->mod_mp, "kctl_boot_activate")) == NULL)
1414 		return (-1);
1415 
1416 #ifdef	KOBJ_DEBUG
1417 	if (kobj_debug & D_DEBUG) {
1418 		_kobj_printf(ops, "calling kctl_boot_activate() @ 0x%lx\n",
1419 		    sym->st_value);
1420 		_kobj_printf(ops, "\tops 0x%p\n", ops);
1421 		_kobj_printf(ops, "\tromp 0x%p\n", romp);
1422 	}
1423 #endif
1424 
1425 	if (((kctl_boot_activate_f *)sym->st_value)(ops, romp, 0,
1426 	    (const char **)kobj_kmdb_argv) < 0)
1427 		return (-1);
1428 
1429 	return (0);
1430 }
1431 
1432 /*
1433  * Return a string listing module dependencies.
1434  */
1435 static char *
1436 depends_on(struct module *mp)
1437 {
1438 	Sym *sp;
1439 	char *depstr, *q;
1440 
1441 	/*
1442 	 * The module doesn't have a depends_on value, so let's try it the
1443 	 * old-fashioned way - via "_depends_on"
1444 	 */
1445 	if ((sp = lookup_one(mp, "_depends_on")) == NULL)
1446 		return (NULL);
1447 
1448 	q = (char *)sp->st_value;
1449 
1450 #ifdef KOBJ_DEBUG
1451 	/*
1452 	 * _depends_on is a deprecated interface, so we warn about its use
1453 	 * irrespective of subsequent processing errors. How else are we going
1454 	 * to be able to deco this interface completely?
1455 	 * Changes initially limited to DEBUG because third-party modules
1456 	 * should be flagged to developers before general use base.
1457 	 */
1458 	_kobj_printf(ops,
1459 	    "Warning: %s uses deprecated _depends_on interface.\n",
1460 	    mp->filename);
1461 	_kobj_printf(ops, "Please notify module developer or vendor.\n");
1462 #endif
1463 
1464 	/*
1465 	 * Idiot checks. Make sure it's
1466 	 * in-bounds and NULL terminated.
1467 	 */
1468 	if (kobj_addrcheck(mp, q) || q[sp->st_size - 1] != '\0') {
1469 		_kobj_printf(ops, "Error processing dependency for %s\n",
1470 		    mp->filename);
1471 		return (NULL);
1472 	}
1473 
1474 	depstr = (char *)kobj_alloc(strlen(q) + 1, KM_WAIT);
1475 	(void) strcpy(depstr, q);
1476 
1477 	return (depstr);
1478 }
1479 
1480 void
1481 kobj_getmodinfo(void *xmp, struct modinfo *modinfo)
1482 {
1483 	struct module *mp;
1484 	mp = (struct module *)xmp;
1485 
1486 	modinfo->mi_base = mp->text;
1487 	modinfo->mi_size = mp->text_size + mp->data_size;
1488 }
1489 
1490 /*
1491  * kobj_export_ksyms() performs the following services:
1492  *
1493  * (1) Migrates the symbol table from boot/kobj memory to the ksyms arena.
1494  * (2) Removes unneeded symbols to save space.
1495  * (3) Reduces memory footprint by using VM_BESTFIT allocations.
1496  * (4) Makes the symbol table visible to /dev/ksyms.
1497  */
1498 static void
1499 kobj_export_ksyms(struct module *mp)
1500 {
1501 	Sym *esp = (Sym *)(mp->symtbl + mp->symhdr->sh_size);
1502 	Sym *sp, *osp;
1503 	char *name;
1504 	size_t namelen;
1505 	struct module *omp;
1506 	uint_t nsyms;
1507 	size_t symsize = mp->symhdr->sh_entsize;
1508 	size_t locals = 1;
1509 	size_t strsize;
1510 
1511 	/*
1512 	 * Make a copy of the original module structure.
1513 	 */
1514 	omp = kobj_alloc(sizeof (struct module), KM_WAIT);
1515 	bcopy(mp, omp, sizeof (struct module));
1516 
1517 	/*
1518 	 * Compute the sizes of the new symbol table sections.
1519 	 */
1520 	for (nsyms = strsize = 1, osp = (Sym *)omp->symtbl; osp < esp; osp++) {
1521 		if (osp->st_value == 0)
1522 			continue;
1523 		if (sym_lookup(omp, osp) == NULL)
1524 			continue;
1525 		name = omp->strings + osp->st_name;
1526 		namelen = strlen(name);
1527 		if (ELF_ST_BIND(osp->st_info) == STB_LOCAL)
1528 			locals++;
1529 		nsyms++;
1530 		strsize += namelen + 1;
1531 	}
1532 
1533 	mp->nsyms = nsyms;
1534 	mp->hashsize = kobj_gethashsize(mp->nsyms);
1535 
1536 	/*
1537 	 * ksyms_lock must be held as writer during any operation that
1538 	 * modifies ksyms_arena, including allocation from same, and
1539 	 * must not be dropped until the arena is vmem_walk()able.
1540 	 */
1541 	rw_enter(&ksyms_lock, RW_WRITER);
1542 
1543 	/*
1544 	 * Allocate space for the new section headers (symtab and strtab),
1545 	 * symbol table, buckets, chains, and strings.
1546 	 */
1547 	mp->symsize = (2 * sizeof (Shdr)) + (nsyms * symsize) +
1548 	    (mp->hashsize + mp->nsyms) * sizeof (symid_t) + strsize;
1549 
1550 	if (mp->flags & KOBJ_NOKSYMS) {
1551 		mp->symspace = kobj_alloc(mp->symsize, KM_WAIT);
1552 	} else {
1553 		mp->symspace = vmem_alloc(ksyms_arena, mp->symsize,
1554 		    VM_BESTFIT | VM_SLEEP);
1555 	}
1556 	bzero(mp->symspace, mp->symsize);
1557 
1558 	/*
1559 	 * Divvy up symspace.
1560 	 */
1561 	mp->shdrs = mp->symspace;
1562 	mp->symhdr = (Shdr *)mp->shdrs;
1563 	mp->strhdr = (Shdr *)(mp->symhdr + 1);
1564 	mp->symtbl = (char *)(mp->strhdr + 1);
1565 	mp->buckets = (symid_t *)(mp->symtbl + (nsyms * symsize));
1566 	mp->chains = (symid_t *)(mp->buckets + mp->hashsize);
1567 	mp->strings = (char *)(mp->chains + nsyms);
1568 
1569 	/*
1570 	 * Fill in the new section headers (symtab and strtab).
1571 	 */
1572 	mp->hdr.e_shnum = 2;
1573 	mp->symtbl_section = 0;
1574 
1575 	mp->symhdr->sh_type = SHT_SYMTAB;
1576 	mp->symhdr->sh_addr = (Addr)mp->symtbl;
1577 	mp->symhdr->sh_size = nsyms * symsize;
1578 	mp->symhdr->sh_link = 1;
1579 	mp->symhdr->sh_info = locals;
1580 	mp->symhdr->sh_addralign = sizeof (Addr);
1581 	mp->symhdr->sh_entsize = symsize;
1582 
1583 	mp->strhdr->sh_type = SHT_STRTAB;
1584 	mp->strhdr->sh_addr = (Addr)mp->strings;
1585 	mp->strhdr->sh_size = strsize;
1586 	mp->strhdr->sh_addralign = 1;
1587 
1588 	/*
1589 	 * Construct the new symbol table.
1590 	 */
1591 	for (nsyms = strsize = 1, osp = (Sym *)omp->symtbl; osp < esp; osp++) {
1592 		if (osp->st_value == 0)
1593 			continue;
1594 		if (sym_lookup(omp, osp) == NULL)
1595 			continue;
1596 		name = omp->strings + osp->st_name;
1597 		namelen = strlen(name);
1598 		sp = (Sym *)(mp->symtbl + symsize * nsyms);
1599 		bcopy(osp, sp, symsize);
1600 		bcopy(name, mp->strings + strsize, namelen);
1601 		sp->st_name = strsize;
1602 		sym_insert(mp, name, nsyms);
1603 		nsyms++;
1604 		strsize += namelen + 1;
1605 	}
1606 
1607 	rw_exit(&ksyms_lock);
1608 
1609 	/*
1610 	 * Free the old section headers -- we'll never need them again.
1611 	 */
1612 	if (!(mp->flags & KOBJ_PRIM)) {
1613 		uint_t	shn;
1614 		Shdr	*shp;
1615 
1616 		for (shn = 1; shn < omp->hdr.e_shnum; shn++) {
1617 			shp = (Shdr *)(omp->shdrs + shn * omp->hdr.e_shentsize);
1618 			switch (shp->sh_type) {
1619 			case SHT_RELA:
1620 			case SHT_REL:
1621 				if (shp->sh_addr != 0) {
1622 					kobj_free((void *)shp->sh_addr,
1623 					    shp->sh_size);
1624 				}
1625 				break;
1626 			}
1627 		}
1628 		kobj_free(omp->shdrs, omp->hdr.e_shentsize * omp->hdr.e_shnum);
1629 	}
1630 	/*
1631 	 * Discard the old symbol table and our copy of the module strucure.
1632 	 */
1633 	if (!(mp->flags & KOBJ_PRIM))
1634 		kobj_free(omp->symspace, omp->symsize);
1635 	kobj_free(omp, sizeof (struct module));
1636 }
1637 
1638 static void
1639 kobj_export_ctf(struct module *mp)
1640 {
1641 	char *data = mp->ctfdata;
1642 	size_t size = mp->ctfsize;
1643 
1644 	if (data != NULL) {
1645 		if (_moddebug & MODDEBUG_NOCTF) {
1646 			mp->ctfdata = NULL;
1647 			mp->ctfsize = 0;
1648 		} else {
1649 			mp->ctfdata = vmem_alloc(ctf_arena, size,
1650 			    VM_BESTFIT | VM_SLEEP);
1651 			bcopy(data, mp->ctfdata, size);
1652 		}
1653 
1654 		if (!(mp->flags & KOBJ_PRIM))
1655 			kobj_free(data, size);
1656 	}
1657 }
1658 
1659 void
1660 kobj_export_module(struct module *mp)
1661 {
1662 	kobj_export_ksyms(mp);
1663 	kobj_export_ctf(mp);
1664 
1665 	mp->flags |= KOBJ_EXPORTED;
1666 }
1667 
1668 static int
1669 process_dynamic(struct module *mp, char *dyndata, char *strdata)
1670 {
1671 	char *path = NULL, *depstr = NULL;
1672 	int allocsize = 0, osize = 0, nsize = 0;
1673 	char *libname, *tmp;
1674 	int lsize;
1675 	Dyn *dynp;
1676 
1677 	for (dynp = (Dyn *)dyndata; dynp && dynp->d_tag != DT_NULL; dynp++) {
1678 		switch (dynp->d_tag) {
1679 		case DT_NEEDED:
1680 			/*
1681 			 * Read the DT_NEEDED entries, expanding the macros they
1682 			 * contain (if any), and concatenating them into a
1683 			 * single space-separated dependency list.
1684 			 */
1685 			libname = (ulong_t)dynp->d_un.d_ptr + strdata;
1686 
1687 			if (strchr(libname, '$') != NULL) {
1688 				char *_lib;
1689 
1690 				if (path == NULL)
1691 					path = kobj_alloc(MAXPATHLEN, KM_WAIT);
1692 				if ((_lib = expand_libmacro(libname, path,
1693 				    path)) != NULL)
1694 					libname = _lib;
1695 				else {
1696 					_kobj_printf(ops, "krtld: "
1697 					    "process_dynamic: failed to expand "
1698 					    "%s\n", libname);
1699 				}
1700 			}
1701 
1702 			lsize = strlen(libname);
1703 			nsize += lsize;
1704 			if (nsize + 1 > allocsize) {
1705 				tmp = kobj_alloc(allocsize + MAXPATHLEN,
1706 				    KM_WAIT);
1707 				if (depstr != NULL) {
1708 					bcopy(depstr, tmp, osize);
1709 					kobj_free(depstr, allocsize);
1710 				}
1711 				depstr = tmp;
1712 				allocsize += MAXPATHLEN;
1713 			}
1714 			bcopy(libname, depstr + osize, lsize);
1715 			*(depstr + nsize) = ' '; /* separator */
1716 			nsize++;
1717 			osize = nsize;
1718 			break;
1719 
1720 		case DT_FLAGS_1:
1721 			if (dynp->d_un.d_val & DF_1_IGNMULDEF)
1722 				mp->flags |= KOBJ_IGNMULDEF;
1723 			if (dynp->d_un.d_val & DF_1_NOKSYMS)
1724 				mp->flags |= KOBJ_NOKSYMS;
1725 
1726 			break;
1727 		}
1728 	}
1729 
1730 	/*
1731 	 * finish up the depends string (if any)
1732 	 */
1733 	if (depstr != NULL) {
1734 		*(depstr + nsize - 1) = '\0'; /* overwrite separator w/term */
1735 		if (path != NULL)
1736 			kobj_free(path, MAXPATHLEN);
1737 
1738 		tmp = kobj_alloc(nsize, KM_WAIT);
1739 		bcopy(depstr, tmp, nsize);
1740 		kobj_free(depstr, allocsize);
1741 		depstr = tmp;
1742 
1743 		mp->depends_on = depstr;
1744 	}
1745 
1746 	return (0);
1747 }
1748 
1749 static int
1750 do_dynamic(struct module *mp, struct _buf *file)
1751 {
1752 	Shdr *dshp, *dstrp, *shp;
1753 	char *dyndata, *dstrdata;
1754 	int dshn, shn, rc;
1755 
1756 	/* find and validate the dynamic section (if any) */
1757 
1758 	for (dshp = NULL, shn = 1; shn < mp->hdr.e_shnum; shn++) {
1759 		shp = (Shdr *)(mp->shdrs + shn * mp->hdr.e_shentsize);
1760 		switch (shp->sh_type) {
1761 		case SHT_DYNAMIC:
1762 			if (dshp != NULL) {
1763 				_kobj_printf(ops, "krtld: get_dynamic: %s, ",
1764 				    mp->filename);
1765 				_kobj_printf(ops,
1766 				    "multiple dynamic sections\n");
1767 				return (-1);
1768 			} else {
1769 				dshp = shp;
1770 				dshn = shn;
1771 			}
1772 			break;
1773 		}
1774 	}
1775 
1776 	if (dshp == NULL)
1777 		return (0);
1778 
1779 	if (dshp->sh_link > mp->hdr.e_shnum) {
1780 		_kobj_printf(ops, "krtld: get_dynamic: %s, ", mp->filename);
1781 		_kobj_printf(ops, "no section for sh_link %d\n", dshp->sh_link);
1782 		return (-1);
1783 	}
1784 	dstrp = (Shdr *)(mp->shdrs + dshp->sh_link * mp->hdr.e_shentsize);
1785 
1786 	if (dstrp->sh_type != SHT_STRTAB) {
1787 		_kobj_printf(ops, "krtld: get_dynamic: %s, ", mp->filename);
1788 		_kobj_printf(ops, "sh_link not a string table for section %d\n",
1789 		    dshn);
1790 		return (-1);
1791 	}
1792 
1793 	/* read it from disk */
1794 
1795 	dyndata = kobj_alloc(dshp->sh_size, KM_WAIT|KM_TMP);
1796 	if (kobj_read_file(file, dyndata, dshp->sh_size, dshp->sh_offset) < 0) {
1797 		_kobj_printf(ops, "krtld: get_dynamic: %s, ", mp->filename);
1798 		_kobj_printf(ops, "error reading section %d\n", dshn);
1799 
1800 		kobj_free(dyndata, dshp->sh_size);
1801 		return (-1);
1802 	}
1803 
1804 	dstrdata = kobj_alloc(dstrp->sh_size, KM_WAIT|KM_TMP);
1805 	if (kobj_read_file(file, dstrdata, dstrp->sh_size,
1806 	    dstrp->sh_offset) < 0) {
1807 		_kobj_printf(ops, "krtld: get_dynamic: %s, ", mp->filename);
1808 		_kobj_printf(ops, "error reading section %d\n", dshp->sh_link);
1809 
1810 		kobj_free(dyndata, dshp->sh_size);
1811 		kobj_free(dstrdata, dstrp->sh_size);
1812 		return (-1);
1813 	}
1814 
1815 	/* pull the interesting pieces out */
1816 
1817 	rc = process_dynamic(mp, dyndata, dstrdata);
1818 
1819 	kobj_free(dyndata, dshp->sh_size);
1820 	kobj_free(dstrdata, dstrp->sh_size);
1821 
1822 	return (rc);
1823 }
1824 
1825 void
1826 kobj_set_ctf(struct module *mp, caddr_t data, size_t size)
1827 {
1828 	if (!standalone) {
1829 		if (mp->ctfdata != NULL) {
1830 			if (vmem_contains(ctf_arena, mp->ctfdata,
1831 			    mp->ctfsize)) {
1832 				vmem_free(ctf_arena, mp->ctfdata, mp->ctfsize);
1833 			} else {
1834 				kobj_free(mp->ctfdata, mp->ctfsize);
1835 			}
1836 		}
1837 	}
1838 
1839 	/*
1840 	 * The order is very important here.  We need to make sure that
1841 	 * consumers, at any given instant, see a consistent state.  We'd
1842 	 * rather they see no CTF data than the address of one buffer and the
1843 	 * size of another.
1844 	 */
1845 	mp->ctfdata = NULL;
1846 	membar_producer();
1847 	mp->ctfsize = size;
1848 	mp->ctfdata = data;
1849 	membar_producer();
1850 }
1851 
1852 int
1853 kobj_load_module(struct modctl *modp, int use_path)
1854 {
1855 	char *filename = modp->mod_filename;
1856 	char *modname = modp->mod_modname;
1857 	int i;
1858 	int n;
1859 	struct _buf *file;
1860 	struct module *mp = NULL;
1861 #ifdef MODDIR_SUFFIX
1862 	int no_suffixdir_drv = 0;
1863 #endif
1864 
1865 	mp = kobj_zalloc(sizeof (struct module), KM_WAIT);
1866 
1867 	/*
1868 	 * We need to prevent kmdb's symbols from leaking into /dev/ksyms.
1869 	 * kmdb contains a bunch of symbols with well-known names, symbols
1870 	 * which will mask the real versions, thus causing no end of trouble
1871 	 * for mdb.
1872 	 */
1873 	if (strcmp(modp->mod_modname, "kmdbmod") == 0)
1874 		mp->flags |= KOBJ_NOKSYMS;
1875 
1876 	file = kobj_open_path(filename, use_path, 1);
1877 	if (file == (struct _buf *)-1) {
1878 #ifdef MODDIR_SUFFIX
1879 		file = kobj_open_path(filename, use_path, 0);
1880 #endif
1881 		if (file == (struct _buf *)-1) {
1882 			kobj_free(mp, sizeof (*mp));
1883 			goto bad;
1884 		}
1885 #ifdef MODDIR_SUFFIX
1886 		/*
1887 		 * There is no driver module in the ISA specific (suffix)
1888 		 * subdirectory but there is a module in the parent directory.
1889 		 */
1890 		if (strncmp(filename, "drv/", 4) == 0) {
1891 			no_suffixdir_drv = 1;
1892 		}
1893 #endif
1894 	}
1895 
1896 	mp->filename = kobj_alloc(strlen(file->_name) + 1, KM_WAIT);
1897 	(void) strcpy(mp->filename, file->_name);
1898 
1899 	if (kobj_read_file(file, (char *)&mp->hdr, sizeof (mp->hdr), 0) < 0) {
1900 		_kobj_printf(ops, "kobj_load_module: %s read header failed\n",
1901 		    modname);
1902 		kobj_free(mp->filename, strlen(file->_name) + 1);
1903 		kobj_free(mp, sizeof (*mp));
1904 		goto bad;
1905 	}
1906 	for (i = 0; i < SELFMAG; i++) {
1907 		if (mp->hdr.e_ident[i] != ELFMAG[i]) {
1908 			if (_moddebug & MODDEBUG_ERRMSG)
1909 				_kobj_printf(ops, "%s not an elf module\n",
1910 				    modname);
1911 			kobj_free(mp->filename, strlen(file->_name) + 1);
1912 			kobj_free(mp, sizeof (*mp));
1913 			goto bad;
1914 		}
1915 	}
1916 	/*
1917 	 * It's ELF, but is it our ISA?  Interpreting the header
1918 	 * from a file for a byte-swapped ISA could cause a huge
1919 	 * and unsatisfiable value to be passed to kobj_alloc below
1920 	 * and therefore hang booting.
1921 	 */
1922 	if (!elf_mach_ok(&mp->hdr)) {
1923 		if (_moddebug & MODDEBUG_ERRMSG)
1924 			_kobj_printf(ops, "%s not an elf module for this ISA\n",
1925 			    modname);
1926 		kobj_free(mp->filename, strlen(file->_name) + 1);
1927 		kobj_free(mp, sizeof (*mp));
1928 #ifdef MODDIR_SUFFIX
1929 		/*
1930 		 * The driver mod is not in the ISA specific subdirectory
1931 		 * and the module in the parent directory is not our ISA.
1932 		 * If it is our ISA, for now we will silently succeed.
1933 		 */
1934 		if (no_suffixdir_drv == 1) {
1935 			cmn_err(CE_CONT, "?NOTICE: %s: 64-bit driver module"
1936 			    " not found\n", modname);
1937 		}
1938 #endif
1939 		goto bad;
1940 	}
1941 
1942 	/*
1943 	 * All modules, save for unix, should be relocatable (as opposed to
1944 	 * dynamic).  Dynamic modules come with PLTs and GOTs, which can't
1945 	 * currently be processed by krtld.
1946 	 */
1947 	if (mp->hdr.e_type != ET_REL) {
1948 		if (_moddebug & MODDEBUG_ERRMSG)
1949 			_kobj_printf(ops, "%s isn't a relocatable (ET_REL) "
1950 			    "module\n", modname);
1951 		kobj_free(mp->filename, strlen(file->_name) + 1);
1952 		kobj_free(mp, sizeof (*mp));
1953 		goto bad;
1954 	}
1955 
1956 	n = mp->hdr.e_shentsize * mp->hdr.e_shnum;
1957 	mp->shdrs = kobj_alloc(n, KM_WAIT);
1958 
1959 	if (kobj_read_file(file, mp->shdrs, n, mp->hdr.e_shoff) < 0) {
1960 		_kobj_printf(ops, "kobj_load_module: %s error reading "
1961 		    "section headers\n", modname);
1962 		kobj_free(mp->shdrs, n);
1963 		kobj_free(mp->filename, strlen(file->_name) + 1);
1964 		kobj_free(mp, sizeof (*mp));
1965 		goto bad;
1966 	}
1967 
1968 	kobj_notify(KOBJ_NOTIFY_MODLOADING, modp);
1969 	module_assign(modp, mp);
1970 
1971 	/* read in sections */
1972 	if (get_progbits(mp, file) < 0) {
1973 		_kobj_printf(ops, "%s error reading sections\n", modname);
1974 		goto bad;
1975 	}
1976 
1977 	if (do_dynamic(mp, file) < 0) {
1978 		_kobj_printf(ops, "%s error reading dynamic section\n",
1979 		    modname);
1980 		goto bad;
1981 	}
1982 
1983 	modp->mod_text = mp->text;
1984 	modp->mod_text_size = mp->text_size;
1985 
1986 	/* read in symbols; adjust values for each section's real address */
1987 	if (get_syms(mp, file) < 0) {
1988 		_kobj_printf(ops, "%s error reading symbols\n",
1989 		    modname);
1990 		goto bad;
1991 	}
1992 
1993 	/*
1994 	 * If we didn't dependency information from the dynamic section, look
1995 	 * for it the old-fashioned way.
1996 	 */
1997 	if (mp->depends_on == NULL)
1998 		mp->depends_on = depends_on(mp);
1999 
2000 	if (get_ctf(mp, file) < 0) {
2001 		_kobj_printf(ops, "%s debug information will not "
2002 		    "be available\n", modname);
2003 	}
2004 
2005 	/* primary kernel modules do not have a signature section */
2006 	if (!(mp->flags & KOBJ_PRIM))
2007 		get_signature(mp, file);
2008 
2009 #ifdef	KOBJ_DEBUG
2010 	if (kobj_debug & D_LOADING) {
2011 		_kobj_printf(ops, "krtld: file=%s\n", mp->filename);
2012 		_kobj_printf(ops, "\ttext:0x%p", mp->text);
2013 		_kobj_printf(ops, " size: 0x%lx\n", mp->text_size);
2014 		_kobj_printf(ops, "\tdata:0x%p", mp->data);
2015 		_kobj_printf(ops, " dsize: 0x%lx\n", mp->data_size);
2016 	}
2017 #endif /* KOBJ_DEBUG */
2018 
2019 	/*
2020 	 * For primary kernel modules, we defer
2021 	 * symbol resolution and relocation until
2022 	 * all primary objects have been loaded.
2023 	 */
2024 	if (!standalone) {
2025 		int ddrval, dcrval;
2026 		char *dependent_modname;
2027 		/* load all dependents */
2028 		dependent_modname = kobj_zalloc(MODMAXNAMELEN, KM_WAIT);
2029 		ddrval = do_dependents(modp, dependent_modname, MODMAXNAMELEN);
2030 
2031 		/*
2032 		 * resolve undefined and common symbols,
2033 		 * also allocates common space
2034 		 */
2035 		if ((dcrval = do_common(mp)) < 0) {
2036 			switch (dcrval) {
2037 			case DOSYM_UNSAFE:
2038 				_kobj_printf(ops, "WARNING: mod_load: "
2039 				    "MT-unsafe module '%s' rejected\n",
2040 				    modname);
2041 				break;
2042 			case DOSYM_UNDEF:
2043 				_kobj_printf(ops, "WARNING: mod_load: "
2044 				    "cannot load module '%s'\n",
2045 				    modname);
2046 				if (ddrval == -1) {
2047 					_kobj_printf(ops, "WARNING: %s: ",
2048 					    modname);
2049 					_kobj_printf(ops,
2050 					    "unable to resolve dependency, "
2051 					    "module '%s' not found\n",
2052 					    dependent_modname);
2053 				}
2054 				break;
2055 			}
2056 		}
2057 		kobj_free(dependent_modname, MODMAXNAMELEN);
2058 		if (dcrval < 0)
2059 			goto bad;
2060 
2061 		/* process relocation tables */
2062 		if (do_relocations(mp) < 0) {
2063 			_kobj_printf(ops, "%s error doing relocations\n",
2064 			    modname);
2065 			goto bad;
2066 		}
2067 
2068 		if (mp->destination) {
2069 			off_t	off = (uintptr_t)mp->destination & PAGEOFFSET;
2070 			caddr_t	base = (caddr_t)mp->destination - off;
2071 			size_t	size = P2ROUNDUP(mp->text_size + off, PAGESIZE);
2072 
2073 			hat_unload(kas.a_hat, base, size, HAT_UNLOAD_UNLOCK);
2074 			vmem_free(heap_arena, base, size);
2075 		}
2076 
2077 		/* sync_instruction_memory */
2078 		kobj_sync_instruction_memory(mp->text, mp->text_size);
2079 		kobj_export_module(mp);
2080 		kobj_notify(KOBJ_NOTIFY_MODLOADED, modp);
2081 	}
2082 	kobj_close_file(file);
2083 	return (0);
2084 bad:
2085 	if (file != (struct _buf *)-1)
2086 		kobj_close_file(file);
2087 	if (modp->mod_mp != NULL)
2088 		free_module_data(modp->mod_mp);
2089 
2090 	module_assign(modp, NULL);
2091 	return ((file == (struct _buf *)-1) ? ENOENT : EINVAL);
2092 }
2093 
2094 int
2095 kobj_load_primary_module(struct modctl *modp)
2096 {
2097 	struct modctl *dep;
2098 	struct module *mp;
2099 
2100 	if (kobj_load_module(modp, 0) != 0)
2101 		return (-1);
2102 
2103 	dep = NULL;
2104 	mp = modp->mod_mp;
2105 	mp->flags |= KOBJ_PRIM;
2106 
2107 	/* Bind new module to its dependents */
2108 	if (mp->depends_on != NULL && (dep =
2109 	    mod_already_loaded(mp->depends_on)) == NULL) {
2110 #ifdef	KOBJ_DEBUG
2111 		if (kobj_debug & D_DEBUG) {
2112 			_kobj_printf(ops, "krtld: failed to resolve deps "
2113 			    "for primary %s\n", modp->mod_modname);
2114 		}
2115 #endif
2116 		return (-1);
2117 	}
2118 
2119 	if (dep != NULL)
2120 		add_dependent(mp, dep->mod_mp);
2121 
2122 	/*
2123 	 * Relocate it.  This module may not be part of a link map, so we
2124 	 * can't use bind_primary.
2125 	 */
2126 	if (do_common(mp) < 0 || do_symbols(mp, 0) < 0 ||
2127 	    do_relocations(mp) < 0) {
2128 #ifdef	KOBJ_DEBUG
2129 		if (kobj_debug & D_DEBUG) {
2130 			_kobj_printf(ops, "krtld: failed to relocate "
2131 			    "primary %s\n", modp->mod_modname);
2132 		}
2133 #endif
2134 		return (-1);
2135 	}
2136 
2137 	return (0);
2138 }
2139 
2140 static void
2141 module_assign(struct modctl *cp, struct module *mp)
2142 {
2143 	if (standalone) {
2144 		cp->mod_mp = mp;
2145 		return;
2146 	}
2147 	mutex_enter(&mod_lock);
2148 	cp->mod_mp = mp;
2149 	cp->mod_gencount++;
2150 	mutex_exit(&mod_lock);
2151 }
2152 
2153 void
2154 kobj_unload_module(struct modctl *modp)
2155 {
2156 	struct module *mp = modp->mod_mp;
2157 
2158 	if ((_moddebug & MODDEBUG_KEEPTEXT) && mp) {
2159 		_kobj_printf(ops, "text for %s ", mp->filename);
2160 		_kobj_printf(ops, "was at %p\n", mp->text);
2161 		mp->text = NULL;	/* don't actually free it */
2162 	}
2163 
2164 	kobj_notify(KOBJ_NOTIFY_MODUNLOADING, modp);
2165 
2166 	/*
2167 	 * Null out mod_mp first, so consumers (debuggers) know not to look
2168 	 * at the module structure any more.
2169 	 */
2170 	mutex_enter(&mod_lock);
2171 	modp->mod_mp = NULL;
2172 	mutex_exit(&mod_lock);
2173 
2174 	kobj_notify(KOBJ_NOTIFY_MODUNLOADED, modp);
2175 	free_module_data(mp);
2176 }
2177 
2178 static void
2179 free_module_data(struct module *mp)
2180 {
2181 	struct module_list *lp, *tmp;
2182 	hotinline_desc_t *hid, *next;
2183 	int ksyms_exported = 0;
2184 
2185 	lp = mp->head;
2186 	while (lp) {
2187 		tmp = lp;
2188 		lp = lp->next;
2189 		kobj_free((char *)tmp, sizeof (*tmp));
2190 	}
2191 
2192 	/* release hotinlines */
2193 	hid = mp->hi_calls;
2194 	while (hid != NULL) {
2195 		next = hid->hid_next;
2196 		kobj_free(hid->hid_symname, strlen(hid->hid_symname) + 1);
2197 		kobj_free(hid, sizeof (hotinline_desc_t));
2198 		hid = next;
2199 	}
2200 
2201 	rw_enter(&ksyms_lock, RW_WRITER);
2202 	if (mp->symspace) {
2203 		if (vmem_contains(ksyms_arena, mp->symspace, mp->symsize)) {
2204 			vmem_free(ksyms_arena, mp->symspace, mp->symsize);
2205 			ksyms_exported = 1;
2206 		} else {
2207 			if (mp->flags & KOBJ_NOKSYMS)
2208 				ksyms_exported = 1;
2209 			kobj_free(mp->symspace, mp->symsize);
2210 		}
2211 	}
2212 	rw_exit(&ksyms_lock);
2213 
2214 	if (mp->ctfdata) {
2215 		if (vmem_contains(ctf_arena, mp->ctfdata, mp->ctfsize))
2216 			vmem_free(ctf_arena, mp->ctfdata, mp->ctfsize);
2217 		else
2218 			kobj_free(mp->ctfdata, mp->ctfsize);
2219 	}
2220 
2221 	if (mp->sigdata)
2222 		kobj_free(mp->sigdata, mp->sigsize);
2223 
2224 	/*
2225 	 * We did not get far enough into kobj_export_ksyms() to free allocated
2226 	 * buffers because we encounted error conditions. Free the buffers.
2227 	 */
2228 	if ((ksyms_exported == 0) && (mp->shdrs != NULL)) {
2229 		uint_t shn;
2230 		Shdr *shp;
2231 
2232 		for (shn = 1; shn < mp->hdr.e_shnum; shn++) {
2233 			shp = (Shdr *)(mp->shdrs + shn * mp->hdr.e_shentsize);
2234 			switch (shp->sh_type) {
2235 			case SHT_RELA:
2236 			case SHT_REL:
2237 				if (shp->sh_addr != 0)
2238 					kobj_free((void *)shp->sh_addr,
2239 					    shp->sh_size);
2240 				break;
2241 			}
2242 		}
2243 err_free_done:
2244 		if (!(mp->flags & KOBJ_PRIM)) {
2245 			kobj_free(mp->shdrs,
2246 			    mp->hdr.e_shentsize * mp->hdr.e_shnum);
2247 		}
2248 	}
2249 
2250 	if (mp->bss)
2251 		vmem_free(data_arena, (void *)mp->bss, mp->bss_size);
2252 
2253 	if (mp->fbt_tab)
2254 		kobj_texthole_free(mp->fbt_tab, mp->fbt_size);
2255 
2256 	if (mp->textwin_base)
2257 		kobj_textwin_free(mp);
2258 
2259 	if (mp->sdt_probes != NULL) {
2260 		sdt_probedesc_t *sdp = mp->sdt_probes, *next;
2261 
2262 		while (sdp != NULL) {
2263 			next = sdp->sdpd_next;
2264 			kobj_free(sdp->sdpd_name, strlen(sdp->sdpd_name) + 1);
2265 			kobj_free(sdp, sizeof (sdt_probedesc_t));
2266 			sdp = next;
2267 		}
2268 	}
2269 
2270 	if (mp->sdt_tab)
2271 		kobj_texthole_free(mp->sdt_tab, mp->sdt_size);
2272 	if (mp->text)
2273 		vmem_free(text_arena, mp->text, mp->text_size);
2274 	if (mp->data)
2275 		vmem_free(data_arena, mp->data, mp->data_size);
2276 	if (mp->depends_on)
2277 		kobj_free(mp->depends_on, strlen(mp->depends_on)+1);
2278 	if (mp->filename)
2279 		kobj_free(mp->filename, strlen(mp->filename)+1);
2280 
2281 	kobj_free((char *)mp, sizeof (*mp));
2282 }
2283 
2284 static int
2285 get_progbits(struct module *mp, struct _buf *file)
2286 {
2287 	struct proginfo *tp, *dp, *sdp;
2288 	Shdr *shp;
2289 	reloc_dest_t dest = NULL;
2290 	uintptr_t bits_ptr;
2291 	uintptr_t text = 0, data, textptr;
2292 	uint_t shn;
2293 	int err = -1;
2294 
2295 	tp = kobj_zalloc(sizeof (struct proginfo), KM_WAIT|KM_TMP);
2296 	dp = kobj_zalloc(sizeof (struct proginfo), KM_WAIT|KM_TMP);
2297 	sdp = kobj_zalloc(sizeof (struct proginfo), KM_WAIT|KM_TMP);
2298 	/*
2299 	 * loop through sections to find out how much space we need
2300 	 * for text, data, (also bss that is already assigned)
2301 	 */
2302 	if (get_progbits_size(mp, tp, dp, sdp) < 0)
2303 		goto done;
2304 
2305 	mp->text_size = tp->size;
2306 	mp->data_size = dp->size;
2307 
2308 	if (standalone) {
2309 		caddr_t limit = _data;
2310 
2311 		if (lg_pagesize && _text + lg_pagesize < limit)
2312 			limit = _text + lg_pagesize;
2313 
2314 		mp->text = kobj_segbrk(&_etext, mp->text_size,
2315 		    tp->align, limit);
2316 		/*
2317 		 * If we can't grow the text segment, try the
2318 		 * data segment before failing.
2319 		 */
2320 		if (mp->text == NULL) {
2321 			mp->text = kobj_segbrk(&_edata, mp->text_size,
2322 			    tp->align, 0);
2323 		}
2324 
2325 		mp->data = kobj_segbrk(&_edata, mp->data_size, dp->align, 0);
2326 
2327 		if (mp->text == NULL || mp->data == NULL)
2328 			goto done;
2329 
2330 	} else {
2331 		if (text_arena == NULL)
2332 			kobj_vmem_init(&text_arena, &data_arena);
2333 
2334 		/*
2335 		 * some architectures may want to load the module on a
2336 		 * page that is currently read only. It may not be
2337 		 * possible for those architectures to remap their page
2338 		 * on the fly. So we provide a facility for them to hang
2339 		 * a private hook where the memory they assign the module
2340 		 * is not the actual place where the module loads.
2341 		 *
2342 		 * In this case there are two addresses that deal with the
2343 		 * modload.
2344 		 * 1) the final destination of the module
2345 		 * 2) the address that is used to view the newly
2346 		 * loaded module until all the relocations relative to 1
2347 		 * above are completed.
2348 		 *
2349 		 * That is what dest is used for below.
2350 		 */
2351 		mp->text_size += tp->align;
2352 		mp->data_size += dp->align;
2353 
2354 		mp->text = kobj_text_alloc(text_arena, mp->text_size);
2355 
2356 		/*
2357 		 * a remap is taking place. Align the text ptr relative
2358 		 * to the secondary mapping. That is where the bits will
2359 		 * be read in.
2360 		 */
2361 		if (kvseg.s_base != NULL && !vmem_contains(heaptext_arena,
2362 		    mp->text, mp->text_size)) {
2363 			off_t	off = (uintptr_t)mp->text & PAGEOFFSET;
2364 			size_t	size = P2ROUNDUP(mp->text_size + off, PAGESIZE);
2365 			caddr_t	map = vmem_alloc(heap_arena, size, VM_SLEEP);
2366 			caddr_t orig = mp->text - off;
2367 			pgcnt_t pages = size / PAGESIZE;
2368 
2369 			dest = (reloc_dest_t)(map + off);
2370 			text = ALIGN((uintptr_t)dest, tp->align);
2371 
2372 			while (pages--) {
2373 				hat_devload(kas.a_hat, map, PAGESIZE,
2374 				    hat_getpfnum(kas.a_hat, orig),
2375 				    PROT_READ | PROT_WRITE | PROT_EXEC,
2376 				    HAT_LOAD_NOCONSIST | HAT_LOAD_LOCK);
2377 				map += PAGESIZE;
2378 				orig += PAGESIZE;
2379 			}
2380 			/*
2381 			 * Since we set up a non-cacheable mapping, we need
2382 			 * to flush any old entries in the cache that might
2383 			 * be left around from the read-only mapping.
2384 			 */
2385 			dcache_flushall();
2386 		}
2387 		if (mp->data_size)
2388 			mp->data = vmem_alloc(data_arena, mp->data_size,
2389 			    VM_SLEEP | VM_BESTFIT);
2390 	}
2391 	textptr = (uintptr_t)mp->text;
2392 	textptr = ALIGN(textptr, tp->align);
2393 	mp->destination = dest;
2394 
2395 	/*
2396 	 * This is the case where a remap is not being done.
2397 	 */
2398 	if (text == 0)
2399 		text = ALIGN((uintptr_t)mp->text, tp->align);
2400 	data = ALIGN((uintptr_t)mp->data, dp->align);
2401 
2402 	/* now loop though sections assigning addresses and loading the data */
2403 	for (shn = 1; shn < mp->hdr.e_shnum; shn++) {
2404 		shp = (Shdr *)(mp->shdrs + shn * mp->hdr.e_shentsize);
2405 		if (!(shp->sh_flags & SHF_ALLOC))
2406 			continue;
2407 
2408 		if ((shp->sh_flags & SHF_WRITE) == 0)
2409 			bits_ptr = text;
2410 		else
2411 			bits_ptr = data;
2412 
2413 		bits_ptr = ALIGN(bits_ptr, shp->sh_addralign);
2414 
2415 		if (shp->sh_type == SHT_NOBITS) {
2416 			/*
2417 			 * Zero bss.
2418 			 */
2419 			bzero((caddr_t)bits_ptr, shp->sh_size);
2420 			shp->sh_type = SHT_PROGBITS;
2421 		} else {
2422 			if (kobj_read_file(file, (char *)bits_ptr,
2423 			    shp->sh_size, shp->sh_offset) < 0)
2424 				goto done;
2425 		}
2426 
2427 		if (shp->sh_flags & SHF_WRITE) {
2428 			shp->sh_addr = bits_ptr;
2429 		} else {
2430 			textptr = ALIGN(textptr, shp->sh_addralign);
2431 			shp->sh_addr = textptr;
2432 			textptr += shp->sh_size;
2433 		}
2434 
2435 		bits_ptr += shp->sh_size;
2436 		if ((shp->sh_flags & SHF_WRITE) == 0)
2437 			text = bits_ptr;
2438 		else
2439 			data = bits_ptr;
2440 	}
2441 
2442 	err = 0;
2443 done:
2444 	/*
2445 	 * Free and mark as freed the section headers here so that
2446 	 * free_module_data() does not have to worry about this buffer.
2447 	 *
2448 	 * This buffer is freed here because one of the possible reasons
2449 	 * for error is a section with non-zero sh_addr and in that case
2450 	 * free_module_data() would have no way of recognizing that this
2451 	 * buffer was unallocated.
2452 	 */
2453 	if (err != 0) {
2454 		kobj_free(mp->shdrs, mp->hdr.e_shentsize * mp->hdr.e_shnum);
2455 		mp->shdrs = NULL;
2456 	}
2457 
2458 	(void) kobj_free(tp, sizeof (struct proginfo));
2459 	(void) kobj_free(dp, sizeof (struct proginfo));
2460 	(void) kobj_free(sdp, sizeof (struct proginfo));
2461 
2462 	return (err);
2463 }
2464 
2465 /*
2466  * Go through suppress_sym_list to see if "multiply defined"
2467  * warning of this symbol should be suppressed.  Return 1 if
2468  * warning should be suppressed, 0 otherwise.
2469  */
2470 static int
2471 kobj_suppress_warning(char *symname)
2472 {
2473 	int	i;
2474 
2475 	for (i = 0; suppress_sym_list[i] != NULL; i++) {
2476 		if (strcmp(suppress_sym_list[i], symname) == 0)
2477 			return (1);
2478 	}
2479 
2480 	return (0);
2481 }
2482 
2483 static int
2484 get_syms(struct module *mp, struct _buf *file)
2485 {
2486 	uint_t		shn;
2487 	Shdr	*shp;
2488 	uint_t		i;
2489 	Sym	*sp, *ksp;
2490 	char		*symname;
2491 	int		dosymtab = 0;
2492 
2493 	/*
2494 	 * Find the interesting sections.
2495 	 */
2496 	for (shn = 1; shn < mp->hdr.e_shnum; shn++) {
2497 		shp = (Shdr *)(mp->shdrs + shn * mp->hdr.e_shentsize);
2498 		switch (shp->sh_type) {
2499 		case SHT_SYMTAB:
2500 			mp->symtbl_section = shn;
2501 			mp->symhdr = shp;
2502 			dosymtab++;
2503 			break;
2504 
2505 		case SHT_RELA:
2506 		case SHT_REL:
2507 			/*
2508 			 * Already loaded.
2509 			 */
2510 			if (shp->sh_addr)
2511 				continue;
2512 
2513 			/* KM_TMP since kobj_free'd in do_relocations */
2514 			shp->sh_addr = (Addr)
2515 			    kobj_alloc(shp->sh_size, KM_WAIT|KM_TMP);
2516 
2517 			if (kobj_read_file(file, (char *)shp->sh_addr,
2518 			    shp->sh_size, shp->sh_offset) < 0) {
2519 				_kobj_printf(ops, "krtld: get_syms: %s, ",
2520 				    mp->filename);
2521 				_kobj_printf(ops, "error reading section %d\n",
2522 				    shn);
2523 				return (-1);
2524 			}
2525 			break;
2526 		}
2527 	}
2528 
2529 	/*
2530 	 * This is true for a stripped executable.  In the case of
2531 	 * 'unix' it can be stripped but it still contains the SHT_DYNSYM,
2532 	 * and since that symbol information is still present everything
2533 	 * is just fine.
2534 	 */
2535 	if (!dosymtab) {
2536 		if (mp->flags & KOBJ_EXEC)
2537 			return (0);
2538 		_kobj_printf(ops, "krtld: get_syms: %s ",
2539 		    mp->filename);
2540 		_kobj_printf(ops, "no SHT_SYMTAB symbol table found\n");
2541 		return (-1);
2542 	}
2543 
2544 	/*
2545 	 * get the associated string table header
2546 	 */
2547 	if ((mp->symhdr == 0) || (mp->symhdr->sh_link >= mp->hdr.e_shnum))
2548 		return (-1);
2549 	mp->strhdr = (Shdr *)
2550 	    (mp->shdrs + mp->symhdr->sh_link * mp->hdr.e_shentsize);
2551 
2552 	mp->nsyms = mp->symhdr->sh_size / mp->symhdr->sh_entsize;
2553 	mp->hashsize = kobj_gethashsize(mp->nsyms);
2554 
2555 	/*
2556 	 * Allocate space for the symbol table, buckets, chains, and strings.
2557 	 */
2558 	mp->symsize = mp->symhdr->sh_size +
2559 	    (mp->hashsize + mp->nsyms) * sizeof (symid_t) + mp->strhdr->sh_size;
2560 	mp->symspace = kobj_zalloc(mp->symsize, KM_WAIT|KM_SCRATCH);
2561 
2562 	mp->symtbl = mp->symspace;
2563 	mp->buckets = (symid_t *)(mp->symtbl + mp->symhdr->sh_size);
2564 	mp->chains = mp->buckets + mp->hashsize;
2565 	mp->strings = (char *)(mp->chains + mp->nsyms);
2566 
2567 	if (kobj_read_file(file, mp->symtbl,
2568 	    mp->symhdr->sh_size, mp->symhdr->sh_offset) < 0 ||
2569 	    kobj_read_file(file, mp->strings,
2570 	    mp->strhdr->sh_size, mp->strhdr->sh_offset) < 0)
2571 		return (-1);
2572 
2573 	/*
2574 	 * loop through the symbol table adjusting values to account
2575 	 * for where each section got loaded into memory.  Also
2576 	 * fill in the hash table.
2577 	 */
2578 	for (i = 1; i < mp->nsyms; i++) {
2579 		sp = (Sym *)(mp->symtbl + i * mp->symhdr->sh_entsize);
2580 		if (sp->st_shndx < SHN_LORESERVE) {
2581 			if (sp->st_shndx >= mp->hdr.e_shnum) {
2582 				_kobj_printf(ops, "%s bad shndx ",
2583 				    file->_name);
2584 				_kobj_printf(ops, "in symbol %d\n", i);
2585 				return (-1);
2586 			}
2587 			shp = (Shdr *)
2588 			    (mp->shdrs +
2589 			    sp->st_shndx * mp->hdr.e_shentsize);
2590 			if (!(mp->flags & KOBJ_EXEC))
2591 				sp->st_value += shp->sh_addr;
2592 		}
2593 
2594 		if (sp->st_name == 0 || sp->st_shndx == SHN_UNDEF)
2595 			continue;
2596 		if (sp->st_name >= mp->strhdr->sh_size)
2597 			return (-1);
2598 
2599 		symname = mp->strings + sp->st_name;
2600 
2601 		if (!(mp->flags & KOBJ_EXEC) &&
2602 		    ELF_ST_BIND(sp->st_info) == STB_GLOBAL) {
2603 			ksp = kobj_lookup_all(mp, symname, 0);
2604 
2605 			if (ksp && ELF_ST_BIND(ksp->st_info) == STB_GLOBAL &&
2606 			    !kobj_suppress_warning(symname) &&
2607 			    sp->st_shndx != SHN_UNDEF &&
2608 			    sp->st_shndx != SHN_COMMON &&
2609 			    ksp->st_shndx != SHN_UNDEF &&
2610 			    ksp->st_shndx != SHN_COMMON) {
2611 				/*
2612 				 * Unless this symbol is a stub, it's multiply
2613 				 * defined.  Multiply-defined symbols are
2614 				 * usually bad, but some objects (kmdb) have
2615 				 * a legitimate need to have their own
2616 				 * copies of common functions.
2617 				 */
2618 				if ((standalone ||
2619 				    ksp->st_value < (uintptr_t)stubs_base ||
2620 				    ksp->st_value >= (uintptr_t)stubs_end) &&
2621 				    !(mp->flags & KOBJ_IGNMULDEF)) {
2622 					_kobj_printf(ops,
2623 					    "%s symbol ", file->_name);
2624 					_kobj_printf(ops,
2625 					    "%s multiply defined\n", symname);
2626 				}
2627 			}
2628 		}
2629 
2630 		sym_insert(mp, symname, i);
2631 	}
2632 
2633 	return (0);
2634 }
2635 
2636 static int
2637 get_ctf(struct module *mp, struct _buf *file)
2638 {
2639 	char *shstrtab, *ctfdata;
2640 	size_t shstrlen;
2641 	Shdr *shp;
2642 	uint_t i;
2643 
2644 	if (_moddebug & MODDEBUG_NOCTF)
2645 		return (0); /* do not attempt to even load CTF data */
2646 
2647 	if (mp->hdr.e_shstrndx >= mp->hdr.e_shnum) {
2648 		_kobj_printf(ops, "krtld: get_ctf: %s, ",
2649 		    mp->filename);
2650 		_kobj_printf(ops, "corrupt e_shstrndx %u\n",
2651 		    mp->hdr.e_shstrndx);
2652 		return (-1);
2653 	}
2654 
2655 	shp = (Shdr *)(mp->shdrs + mp->hdr.e_shstrndx * mp->hdr.e_shentsize);
2656 	shstrlen = shp->sh_size;
2657 	shstrtab = kobj_alloc(shstrlen, KM_WAIT|KM_TMP);
2658 
2659 	if (kobj_read_file(file, shstrtab, shstrlen, shp->sh_offset) < 0) {
2660 		_kobj_printf(ops, "krtld: get_ctf: %s, ",
2661 		    mp->filename);
2662 		_kobj_printf(ops, "error reading section %u\n",
2663 		    mp->hdr.e_shstrndx);
2664 		kobj_free(shstrtab, shstrlen);
2665 		return (-1);
2666 	}
2667 
2668 	for (i = 0; i < mp->hdr.e_shnum; i++) {
2669 		shp = (Shdr *)(mp->shdrs + i * mp->hdr.e_shentsize);
2670 
2671 		if (shp->sh_size != 0 && shp->sh_name < shstrlen &&
2672 		    strcmp(shstrtab + shp->sh_name, ".SUNW_ctf") == 0) {
2673 			ctfdata = kobj_alloc(shp->sh_size, KM_WAIT|KM_SCRATCH);
2674 
2675 			if (kobj_read_file(file, ctfdata, shp->sh_size,
2676 			    shp->sh_offset) < 0) {
2677 				_kobj_printf(ops, "krtld: get_ctf: %s, error "
2678 				    "reading .SUNW_ctf data\n", mp->filename);
2679 				kobj_free(ctfdata, shp->sh_size);
2680 				kobj_free(shstrtab, shstrlen);
2681 				return (-1);
2682 			}
2683 
2684 			mp->ctfdata = ctfdata;
2685 			mp->ctfsize = shp->sh_size;
2686 			break;
2687 		}
2688 	}
2689 
2690 	kobj_free(shstrtab, shstrlen);
2691 	return (0);
2692 }
2693 
2694 #define	SHA1_DIGEST_LENGTH	20	/* SHA1 digest length in bytes */
2695 
2696 /*
2697  * Return the hash of the ELF sections that are memory resident.
2698  * i.e. text and data.  We skip a SHT_NOBITS section since it occupies
2699  * no space in the file. We use SHA1 here since libelfsign uses
2700  * it and both places need to use the same algorithm.
2701  */
2702 static void
2703 crypto_es_hash(struct module *mp, char *hash, char *shstrtab)
2704 {
2705 	uint_t shn;
2706 	Shdr *shp;
2707 	SHA1_CTX ctx;
2708 
2709 	SHA1Init(&ctx);
2710 
2711 	for (shn = 1; shn < mp->hdr.e_shnum; shn++) {
2712 		shp = (Shdr *)(mp->shdrs + shn * mp->hdr.e_shentsize);
2713 		if (!(shp->sh_flags & SHF_ALLOC) || shp->sh_size == 0)
2714 			continue;
2715 
2716 		/*
2717 		 * The check should ideally be shp->sh_type == SHT_NOBITS.
2718 		 * However, we can't do that check here as get_progbits()
2719 		 * resets the type.
2720 		 */
2721 		if (strcmp(shstrtab + shp->sh_name, ".bss") == 0)
2722 			continue;
2723 #ifdef	KOBJ_DEBUG
2724 		if (kobj_debug & D_DEBUG)
2725 			_kobj_printf(ops,
2726 			    "krtld: crypto_es_hash: updating hash with"
2727 			    " %s data size=%lx\n", shstrtab + shp->sh_name,
2728 			    (size_t)shp->sh_size);
2729 #endif
2730 		ASSERT(shp->sh_addr != 0);
2731 		SHA1Update(&ctx, (const uint8_t *)shp->sh_addr, shp->sh_size);
2732 	}
2733 
2734 	SHA1Final((uchar_t *)hash, &ctx);
2735 }
2736 
2737 /*
2738  * Get the .SUNW_signature section for the module, it it exists.
2739  *
2740  * This section exists only for crypto modules. None of the
2741  * primary modules have this section currently.
2742  */
2743 static void
2744 get_signature(struct module *mp, struct _buf *file)
2745 {
2746 	char *shstrtab, *sigdata = NULL;
2747 	size_t shstrlen;
2748 	Shdr *shp;
2749 	uint_t i;
2750 
2751 	if (mp->hdr.e_shstrndx >= mp->hdr.e_shnum) {
2752 		_kobj_printf(ops, "krtld: get_signature: %s, ",
2753 		    mp->filename);
2754 		_kobj_printf(ops, "corrupt e_shstrndx %u\n",
2755 		    mp->hdr.e_shstrndx);
2756 		return;
2757 	}
2758 
2759 	shp = (Shdr *)(mp->shdrs + mp->hdr.e_shstrndx * mp->hdr.e_shentsize);
2760 	shstrlen = shp->sh_size;
2761 	shstrtab = kobj_alloc(shstrlen, KM_WAIT|KM_TMP);
2762 
2763 	if (kobj_read_file(file, shstrtab, shstrlen, shp->sh_offset) < 0) {
2764 		_kobj_printf(ops, "krtld: get_signature: %s, ",
2765 		    mp->filename);
2766 		_kobj_printf(ops, "error reading section %u\n",
2767 		    mp->hdr.e_shstrndx);
2768 		kobj_free(shstrtab, shstrlen);
2769 		return;
2770 	}
2771 
2772 	for (i = 0; i < mp->hdr.e_shnum; i++) {
2773 		shp = (Shdr *)(mp->shdrs + i * mp->hdr.e_shentsize);
2774 		if (shp->sh_size != 0 && shp->sh_name < shstrlen &&
2775 		    strcmp(shstrtab + shp->sh_name,
2776 		    ELF_SIGNATURE_SECTION) == 0) {
2777 			filesig_vers_t filesig_version;
2778 			size_t sigsize = shp->sh_size + SHA1_DIGEST_LENGTH;
2779 			sigdata = kobj_alloc(sigsize, KM_WAIT|KM_SCRATCH);
2780 
2781 			if (kobj_read_file(file, sigdata, shp->sh_size,
2782 			    shp->sh_offset) < 0) {
2783 				_kobj_printf(ops, "krtld: get_signature: %s,"
2784 				    " error reading .SUNW_signature data\n",
2785 				    mp->filename);
2786 				kobj_free(sigdata, sigsize);
2787 				kobj_free(shstrtab, shstrlen);
2788 				return;
2789 			}
2790 			filesig_version = ((struct filesignatures *)sigdata)->
2791 			    filesig_sig.filesig_version;
2792 			if (!(filesig_version == FILESIG_VERSION1 ||
2793 			    filesig_version == FILESIG_VERSION3)) {
2794 				/* skip versions we don't understand */
2795 				kobj_free(sigdata, sigsize);
2796 				kobj_free(shstrtab, shstrlen);
2797 				return;
2798 			}
2799 
2800 			mp->sigdata = sigdata;
2801 			mp->sigsize = sigsize;
2802 			break;
2803 		}
2804 	}
2805 
2806 	if (sigdata != NULL) {
2807 		crypto_es_hash(mp, sigdata + shp->sh_size, shstrtab);
2808 	}
2809 
2810 	kobj_free(shstrtab, shstrlen);
2811 }
2812 
2813 static void
2814 add_dependent(struct module *mp, struct module *dep)
2815 {
2816 	struct module_list *lp;
2817 
2818 	for (lp = mp->head; lp; lp = lp->next) {
2819 		if (lp->mp == dep)
2820 			return;	/* already on the list */
2821 	}
2822 
2823 	if (lp == NULL) {
2824 		lp = kobj_zalloc(sizeof (*lp), KM_WAIT);
2825 
2826 		lp->mp = dep;
2827 		lp->next = NULL;
2828 		if (mp->tail)
2829 			mp->tail->next = lp;
2830 		else
2831 			mp->head = lp;
2832 		mp->tail = lp;
2833 	}
2834 }
2835 
2836 static int
2837 do_dependents(struct modctl *modp, char *modname, size_t modnamelen)
2838 {
2839 	struct module *mp;
2840 	struct modctl *req;
2841 	char *d, *p, *q;
2842 	int c;
2843 	char *err_modname = NULL;
2844 
2845 	mp = modp->mod_mp;
2846 
2847 	if ((p = mp->depends_on) == NULL)
2848 		return (0);
2849 
2850 	for (;;) {
2851 		/*
2852 		 * Skip space.
2853 		 */
2854 		while (*p && (*p == ' ' || *p == '\t'))
2855 			p++;
2856 		/*
2857 		 * Get module name.
2858 		 */
2859 		d = p;
2860 		q = modname;
2861 		c = 0;
2862 		while (*p && *p != ' ' && *p != '\t') {
2863 			if (c < modnamelen - 1) {
2864 				*q++ = *p;
2865 				c++;
2866 			}
2867 			p++;
2868 		}
2869 
2870 		if (q == modname)
2871 			break;
2872 
2873 		if (c == modnamelen - 1) {
2874 			char *dep = kobj_alloc(p - d + 1, KM_WAIT|KM_TMP);
2875 
2876 			(void) strncpy(dep, d,  p - d + 1);
2877 			dep[p - d] = '\0';
2878 
2879 			_kobj_printf(ops, "%s: dependency ", modp->mod_modname);
2880 			_kobj_printf(ops, "'%s' too long ", dep);
2881 			_kobj_printf(ops, "(max %d chars)\n", (int)modnamelen);
2882 
2883 			kobj_free(dep, p - d + 1);
2884 
2885 			return (-1);
2886 		}
2887 
2888 		*q = '\0';
2889 		if ((req = mod_load_requisite(modp, modname)) == NULL) {
2890 #ifndef	KOBJ_DEBUG
2891 			if (_moddebug & MODDEBUG_LOADMSG) {
2892 #endif	/* KOBJ_DEBUG */
2893 				_kobj_printf(ops,
2894 				    "%s: unable to resolve dependency, ",
2895 				    modp->mod_modname);
2896 				_kobj_printf(ops, "cannot load module '%s'\n",
2897 				    modname);
2898 #ifndef	KOBJ_DEBUG
2899 			}
2900 #endif	/* KOBJ_DEBUG */
2901 			if (err_modname == NULL) {
2902 				/*
2903 				 * This must be the same size as the modname
2904 				 * one.
2905 				 */
2906 				err_modname = kobj_zalloc(MODMAXNAMELEN,
2907 				    KM_WAIT);
2908 
2909 				/*
2910 				 * We can use strcpy() here without fearing
2911 				 * the NULL terminator because the size of
2912 				 * err_modname is the same as one of modname,
2913 				 * and it's filled with zeros.
2914 				 */
2915 				(void) strcpy(err_modname, modname);
2916 			}
2917 			continue;
2918 		}
2919 
2920 		add_dependent(mp, req->mod_mp);
2921 		mod_release_mod(req);
2922 
2923 	}
2924 
2925 	if (err_modname != NULL) {
2926 		/*
2927 		 * Copy the first module name where you detect an error to keep
2928 		 * its behavior the same as before.
2929 		 * This way keeps minimizing the memory use for error
2930 		 * modules, and this might be important at boot time because
2931 		 * the memory usage is a crucial factor for booting in most
2932 		 * cases. You can expect more verbose messages when using
2933 		 * a debug kernel or setting a bit in moddebug.
2934 		 */
2935 		bzero(modname, MODMAXNAMELEN);
2936 		(void) strcpy(modname, err_modname);
2937 		kobj_free(err_modname, MODMAXNAMELEN);
2938 		return (-1);
2939 	}
2940 
2941 	return (0);
2942 }
2943 
2944 static int
2945 do_common(struct module *mp)
2946 {
2947 	int err;
2948 
2949 	/*
2950 	 * first time through, assign all symbols defined in other
2951 	 * modules, and count up how much common space will be needed
2952 	 * (bss_size and bss_align)
2953 	 */
2954 	if ((err = do_symbols(mp, 0)) < 0)
2955 		return (err);
2956 	/*
2957 	 * increase bss_size by the maximum delta that could be
2958 	 * computed by the ALIGN below
2959 	 */
2960 	mp->bss_size += mp->bss_align;
2961 	if (mp->bss_size) {
2962 		if (standalone)
2963 			mp->bss = (uintptr_t)kobj_segbrk(&_edata, mp->bss_size,
2964 			    MINALIGN, 0);
2965 		else
2966 			mp->bss = (uintptr_t)vmem_alloc(data_arena,
2967 			    mp->bss_size, VM_SLEEP | VM_BESTFIT);
2968 		bzero((void *)mp->bss, mp->bss_size);
2969 		/* now assign addresses to all common symbols */
2970 		if ((err = do_symbols(mp, ALIGN(mp->bss, mp->bss_align))) < 0)
2971 			return (err);
2972 	}
2973 	return (0);
2974 }
2975 
2976 static int
2977 do_symbols(struct module *mp, Elf64_Addr bss_base)
2978 {
2979 	int bss_align;
2980 	uintptr_t bss_ptr;
2981 	int err;
2982 	int i;
2983 	Sym *sp, *sp1;
2984 	char *name;
2985 	int assign;
2986 	int resolved = 1;
2987 
2988 	/*
2989 	 * Nothing left to do (optimization).
2990 	 */
2991 	if (mp->flags & KOBJ_RESOLVED)
2992 		return (0);
2993 
2994 	assign = (bss_base) ? 1 : 0;
2995 	bss_ptr = bss_base;
2996 	bss_align = 0;
2997 	err = 0;
2998 
2999 	for (i = 1; i < mp->nsyms; i++) {
3000 		sp = (Sym *)(mp->symtbl + mp->symhdr->sh_entsize * i);
3001 		/*
3002 		 * we know that st_name is in bounds, since get_sections
3003 		 * has already checked all of the symbols
3004 		 */
3005 		name = mp->strings + sp->st_name;
3006 		if (sp->st_shndx != SHN_UNDEF && sp->st_shndx != SHN_COMMON)
3007 			continue;
3008 #if defined(__sparc)
3009 		/*
3010 		 * Register symbols are ignored in the kernel
3011 		 */
3012 		if (ELF_ST_TYPE(sp->st_info) == STT_SPARC_REGISTER) {
3013 			if (*name != '\0') {
3014 				_kobj_printf(ops, "%s: named REGISTER symbol ",
3015 				    mp->filename);
3016 				_kobj_printf(ops, "not supported '%s'\n",
3017 				    name);
3018 				err = DOSYM_UNDEF;
3019 			}
3020 			continue;
3021 		}
3022 #endif	/* __sparc */
3023 		/*
3024 		 * TLS symbols are ignored in the kernel
3025 		 */
3026 		if (ELF_ST_TYPE(sp->st_info) == STT_TLS) {
3027 			_kobj_printf(ops, "%s: TLS symbol ",
3028 			    mp->filename);
3029 			_kobj_printf(ops, "not supported '%s'\n",
3030 			    name);
3031 			err = DOSYM_UNDEF;
3032 			continue;
3033 		}
3034 
3035 		if (ELF_ST_BIND(sp->st_info) != STB_LOCAL) {
3036 			if ((sp1 = kobj_lookup_all(mp, name, 0)) != NULL) {
3037 				sp->st_shndx = SHN_ABS;
3038 				sp->st_value = sp1->st_value;
3039 				continue;
3040 			}
3041 		}
3042 
3043 		if (sp->st_shndx == SHN_UNDEF) {
3044 			resolved = 0;
3045 
3046 			/*
3047 			 * Skip over sdt probes and smap calls,
3048 			 * they're relocated later.
3049 			 */
3050 			if (strncmp(name, sdt_prefix, strlen(sdt_prefix)) == 0)
3051 				continue;
3052 #if defined(__x86)
3053 			if (strcmp(name, "smap_enable") == 0 ||
3054 			    strcmp(name, "smap_disable") == 0)
3055 				continue;
3056 #endif /* defined(__x86) */
3057 
3058 
3059 			/*
3060 			 * If it's not a weak reference and it's
3061 			 * not a primary object, it's an error.
3062 			 * (Primary objects may take more than
3063 			 * one pass to resolve)
3064 			 */
3065 			if (!(mp->flags & KOBJ_PRIM) &&
3066 			    ELF_ST_BIND(sp->st_info) != STB_WEAK) {
3067 				_kobj_printf(ops, "%s: undefined symbol",
3068 				    mp->filename);
3069 				_kobj_printf(ops, " '%s'\n", name);
3070 				/*
3071 				 * Try to determine whether this symbol
3072 				 * represents a dependency on obsolete
3073 				 * unsafe driver support.  This is just
3074 				 * to make the warning more informative.
3075 				 */
3076 				if (strcmp(name, "sleep") == 0 ||
3077 				    strcmp(name, "unsleep") == 0 ||
3078 				    strcmp(name, "wakeup") == 0 ||
3079 				    strcmp(name, "bsd_compat_ioctl") == 0 ||
3080 				    strcmp(name, "unsafe_driver") == 0 ||
3081 				    strncmp(name, "spl", 3) == 0 ||
3082 				    strncmp(name, "i_ddi_spl", 9) == 0)
3083 					err = DOSYM_UNSAFE;
3084 				if (err == 0)
3085 					err = DOSYM_UNDEF;
3086 			}
3087 			continue;
3088 		}
3089 		/*
3090 		 * It's a common symbol - st_value is the
3091 		 * required alignment.
3092 		 */
3093 		if (sp->st_value > bss_align)
3094 			bss_align = sp->st_value;
3095 		bss_ptr = ALIGN(bss_ptr, sp->st_value);
3096 		if (assign) {
3097 			sp->st_shndx = SHN_ABS;
3098 			sp->st_value = bss_ptr;
3099 		}
3100 		bss_ptr += sp->st_size;
3101 	}
3102 	if (err)
3103 		return (err);
3104 	if (assign == 0 && mp->bss == 0) {
3105 		mp->bss_align = bss_align;
3106 		mp->bss_size = bss_ptr;
3107 	} else if (resolved) {
3108 		mp->flags |= KOBJ_RESOLVED;
3109 	}
3110 
3111 	return (0);
3112 }
3113 
3114 uint_t
3115 kobj_hash_name(const char *p)
3116 {
3117 	uint_t g;
3118 	uint_t hval;
3119 
3120 	hval = 0;
3121 	while (*p) {
3122 		hval = (hval << 4) + *p++;
3123 		if ((g = (hval & 0xf0000000)) != 0)
3124 			hval ^= g >> 24;
3125 		hval &= ~g;
3126 	}
3127 	return (hval);
3128 }
3129 
3130 /* look for name in all modules */
3131 uintptr_t
3132 kobj_getsymvalue(char *name, int kernelonly)
3133 {
3134 	Sym		*sp;
3135 	struct modctl	*modp;
3136 	struct module	*mp;
3137 	uintptr_t	value = 0;
3138 
3139 	if ((sp = kobj_lookup_kernel(name)) != NULL)
3140 		return ((uintptr_t)sp->st_value);
3141 
3142 	if (kernelonly)
3143 		return (0);	/* didn't find it in the kernel so give up */
3144 
3145 	mutex_enter(&mod_lock);
3146 	modp = &modules;
3147 	do {
3148 		mp = (struct module *)modp->mod_mp;
3149 		if (mp && !(mp->flags & KOBJ_PRIM) && modp->mod_loaded &&
3150 		    (sp = lookup_one(mp, name))) {
3151 			value = (uintptr_t)sp->st_value;
3152 			break;
3153 		}
3154 	} while ((modp = modp->mod_next) != &modules);
3155 	mutex_exit(&mod_lock);
3156 	return (value);
3157 }
3158 
3159 /* look for a symbol near value. */
3160 char *
3161 kobj_getsymname(uintptr_t value, ulong_t *offset)
3162 {
3163 	char *name = NULL;
3164 	struct modctl *modp;
3165 
3166 	struct modctl_list *lp;
3167 	struct module *mp;
3168 
3169 	/*
3170 	 * Loop through the primary kernel modules.
3171 	 */
3172 	for (lp = kobj_lm_lookup(KOBJ_LM_PRIMARY); lp; lp = lp->modl_next) {
3173 		mp = mod(lp);
3174 
3175 		if ((name = kobj_searchsym(mp, value, offset)) != NULL)
3176 			return (name);
3177 	}
3178 
3179 	mutex_enter(&mod_lock);
3180 	modp = &modules;
3181 	do {
3182 		mp = (struct module *)modp->mod_mp;
3183 		if (mp && !(mp->flags & KOBJ_PRIM) && modp->mod_loaded &&
3184 		    (name = kobj_searchsym(mp, value, offset)))
3185 			break;
3186 	} while ((modp = modp->mod_next) != &modules);
3187 	mutex_exit(&mod_lock);
3188 	return (name);
3189 }
3190 
3191 /* return address of symbol and size */
3192 
3193 uintptr_t
3194 kobj_getelfsym(char *name, void *mp, int *size)
3195 {
3196 	Sym *sp;
3197 
3198 	if (mp == NULL)
3199 		sp = kobj_lookup_kernel(name);
3200 	else
3201 		sp = lookup_one(mp, name);
3202 
3203 	if (sp == NULL)
3204 		return (0);
3205 
3206 	*size = (int)sp->st_size;
3207 	return ((uintptr_t)sp->st_value);
3208 }
3209 
3210 uintptr_t
3211 kobj_lookup(struct module *mod, const char *name)
3212 {
3213 	Sym *sp;
3214 
3215 	sp = lookup_one(mod, name);
3216 
3217 	if (sp == NULL)
3218 		return (0);
3219 
3220 	return ((uintptr_t)sp->st_value);
3221 }
3222 
3223 char *
3224 kobj_searchsym(struct module *mp, uintptr_t value, ulong_t *offset)
3225 {
3226 	Sym *symtabptr;
3227 	char *strtabptr;
3228 	int symnum;
3229 	Sym *sym;
3230 	Sym *cursym;
3231 	uintptr_t curval;
3232 
3233 	*offset = (ulong_t)-1l;		/* assume not found */
3234 	cursym  = NULL;
3235 
3236 	if (kobj_addrcheck(mp, (void *)value) != 0)
3237 		return (NULL);		/* not in this module */
3238 
3239 	strtabptr  = mp->strings;
3240 	symtabptr  = (Sym *)mp->symtbl;
3241 
3242 	/*
3243 	 * Scan the module's symbol table for a symbol <= value
3244 	 */
3245 	for (symnum = 1, sym = symtabptr + 1;
3246 	    symnum < mp->nsyms; symnum++, sym = (Sym *)
3247 	    ((uintptr_t)sym + mp->symhdr->sh_entsize)) {
3248 		if (ELF_ST_BIND(sym->st_info) != STB_GLOBAL) {
3249 			if (ELF_ST_BIND(sym->st_info) != STB_LOCAL)
3250 				continue;
3251 			if (ELF_ST_TYPE(sym->st_info) != STT_OBJECT &&
3252 			    ELF_ST_TYPE(sym->st_info) != STT_FUNC)
3253 				continue;
3254 		}
3255 
3256 		curval = (uintptr_t)sym->st_value;
3257 
3258 		if (curval > value)
3259 			continue;
3260 
3261 		/*
3262 		 * If one or both are functions...
3263 		 */
3264 		if (ELF_ST_TYPE(sym->st_info) == STT_FUNC || (cursym != NULL &&
3265 		    ELF_ST_TYPE(cursym->st_info) == STT_FUNC)) {
3266 			/* Ignore if the address is out of the bounds */
3267 			if (value - sym->st_value >= sym->st_size)
3268 				continue;
3269 
3270 			if (cursym != NULL &&
3271 			    ELF_ST_TYPE(cursym->st_info) == STT_FUNC) {
3272 				/* Prefer the function to the non-function */
3273 				if (ELF_ST_TYPE(sym->st_info) != STT_FUNC)
3274 					continue;
3275 
3276 				/* Prefer the larger of the two functions */
3277 				if (sym->st_size <= cursym->st_size)
3278 					continue;
3279 			}
3280 		} else if (value - curval >= *offset) {
3281 			continue;
3282 		}
3283 
3284 		*offset = (ulong_t)(value - curval);
3285 		cursym = sym;
3286 	}
3287 	if (cursym == NULL)
3288 		return (NULL);
3289 
3290 	return (strtabptr + cursym->st_name);
3291 }
3292 
3293 Sym *
3294 kobj_lookup_all(struct module *mp, char *name, int include_self)
3295 {
3296 	Sym *sp;
3297 	struct module_list *mlp;
3298 	struct modctl_list *clp;
3299 	struct module *mmp;
3300 
3301 	if (include_self && (sp = lookup_one(mp, name)) != NULL)
3302 		return (sp);
3303 
3304 	for (mlp = mp->head; mlp; mlp = mlp->next) {
3305 		if ((sp = lookup_one(mlp->mp, name)) != NULL &&
3306 		    ELF_ST_BIND(sp->st_info) != STB_LOCAL)
3307 			return (sp);
3308 	}
3309 
3310 	/*
3311 	 * Loop through the primary kernel modules.
3312 	 */
3313 	for (clp = kobj_lm_lookup(KOBJ_LM_PRIMARY); clp; clp = clp->modl_next) {
3314 		mmp = mod(clp);
3315 
3316 		if (mmp == NULL || mp == mmp)
3317 			continue;
3318 
3319 		if ((sp = lookup_one(mmp, name)) != NULL &&
3320 		    ELF_ST_BIND(sp->st_info) != STB_LOCAL)
3321 			return (sp);
3322 	}
3323 	return (NULL);
3324 }
3325 
3326 Sym *
3327 kobj_lookup_kernel(const char *name)
3328 {
3329 	struct modctl_list *lp;
3330 	struct module *mp;
3331 	Sym *sp;
3332 
3333 	/*
3334 	 * Loop through the primary kernel modules.
3335 	 */
3336 	for (lp = kobj_lm_lookup(KOBJ_LM_PRIMARY); lp; lp = lp->modl_next) {
3337 		mp = mod(lp);
3338 
3339 		if (mp == NULL)
3340 			continue;
3341 
3342 		if ((sp = lookup_one(mp, name)) != NULL)
3343 			return (sp);
3344 	}
3345 	return (NULL);
3346 }
3347 
3348 static Sym *
3349 lookup_one(struct module *mp, const char *name)
3350 {
3351 	symid_t *ip;
3352 	char *name1;
3353 	Sym *sp;
3354 
3355 	for (ip = &mp->buckets[kobj_hash_name(name) % mp->hashsize]; *ip;
3356 	    ip = &mp->chains[*ip]) {
3357 		sp = (Sym *)(mp->symtbl +
3358 		    mp->symhdr->sh_entsize * *ip);
3359 		name1 = mp->strings + sp->st_name;
3360 		if (strcmp(name, name1) == 0 &&
3361 		    ELF_ST_TYPE(sp->st_info) != STT_FILE &&
3362 		    sp->st_shndx != SHN_UNDEF &&
3363 		    sp->st_shndx != SHN_COMMON)
3364 			return (sp);
3365 	}
3366 	return (NULL);
3367 }
3368 
3369 /*
3370  * Lookup a given symbol pointer in the module's symbol hash.  If the symbol
3371  * is hashed, return the symbol pointer; otherwise return NULL.
3372  */
3373 static Sym *
3374 sym_lookup(struct module *mp, Sym *ksp)
3375 {
3376 	char *name = mp->strings + ksp->st_name;
3377 	symid_t *ip;
3378 	Sym *sp;
3379 
3380 	for (ip = &mp->buckets[kobj_hash_name(name) % mp->hashsize]; *ip;
3381 	    ip = &mp->chains[*ip]) {
3382 		sp = (Sym *)(mp->symtbl + mp->symhdr->sh_entsize * *ip);
3383 		if (sp == ksp)
3384 			return (ksp);
3385 	}
3386 	return (NULL);
3387 }
3388 
3389 static void
3390 sym_insert(struct module *mp, char *name, symid_t index)
3391 {
3392 	symid_t *ip;
3393 
3394 #ifdef KOBJ_DEBUG
3395 	if (kobj_debug & D_SYMBOLS) {
3396 		static struct module *lastmp = NULL;
3397 		Sym *sp;
3398 		if (lastmp != mp) {
3399 			_kobj_printf(ops,
3400 			    "krtld: symbol entry: file=%s\n",
3401 			    mp->filename);
3402 			_kobj_printf(ops,
3403 			    "krtld:\tsymndx\tvalue\t\t"
3404 			    "symbol name\n");
3405 			lastmp = mp;
3406 		}
3407 		sp = (Sym *)(mp->symtbl +
3408 		    index * mp->symhdr->sh_entsize);
3409 		_kobj_printf(ops, "krtld:\t[%3d]", index);
3410 		_kobj_printf(ops, "\t0x%lx", sp->st_value);
3411 		_kobj_printf(ops, "\t%s\n", name);
3412 	}
3413 #endif
3414 
3415 	for (ip = &mp->buckets[kobj_hash_name(name) % mp->hashsize]; *ip;
3416 	    ip = &mp->chains[*ip]) {
3417 		;
3418 	}
3419 	*ip = index;
3420 }
3421 
3422 struct modctl *
3423 kobj_boot_mod_lookup(const char *modname)
3424 {
3425 	struct modctl *mctl = kobj_modules;
3426 
3427 	do {
3428 		if (strcmp(modname, mctl->mod_modname) == 0)
3429 			return (mctl);
3430 	} while ((mctl = mctl->mod_next) != kobj_modules);
3431 
3432 	return (NULL);
3433 }
3434 
3435 /*
3436  * Determine if the module exists.
3437  */
3438 int
3439 kobj_path_exists(char *name, int use_path)
3440 {
3441 	struct _buf *file;
3442 
3443 	file = kobj_open_path(name, use_path, 1);
3444 #ifdef	MODDIR_SUFFIX
3445 	if (file == (struct _buf *)-1)
3446 		file = kobj_open_path(name, use_path, 0);
3447 #endif	/* MODDIR_SUFFIX */
3448 	if (file == (struct _buf *)-1)
3449 		return (0);
3450 	kobj_close_file(file);
3451 	return (1);
3452 }
3453 
3454 /*
3455  * fullname is dynamically allocated to be able to hold the
3456  * maximum size string that can be constructed from name.
3457  * path is exactly like the shell PATH variable.
3458  */
3459 struct _buf *
3460 kobj_open_path(char *name, int use_path, int use_moddir_suffix)
3461 {
3462 	char *p, *q;
3463 	char *pathp;
3464 	char *pathpsave;
3465 	char *fullname;
3466 	int maxpathlen;
3467 	struct _buf *file;
3468 
3469 #if !defined(MODDIR_SUFFIX)
3470 	use_moddir_suffix = B_FALSE;
3471 #endif
3472 
3473 	if (!use_path)
3474 		pathp = "";		/* use name as specified */
3475 	else
3476 		pathp = kobj_module_path;
3477 					/* use configured default path */
3478 
3479 	pathpsave = pathp;		/* keep this for error reporting */
3480 
3481 	/*
3482 	 * Allocate enough space for the largest possible fullname.
3483 	 * since path is of the form <directory> : <directory> : ...
3484 	 * we're potentially allocating a little more than we need to
3485 	 * but we'll allocate the exact amount when we find the right directory.
3486 	 * (The + 3 below is one for NULL terminator and one for the '/'
3487 	 * we might have to add at the beginning of path and one for
3488 	 * the '/' between path and name.)
3489 	 */
3490 	maxpathlen = strlen(pathp) + strlen(name) + 3;
3491 	/* sizeof includes null */
3492 	maxpathlen += sizeof (slash_moddir_suffix_slash) - 1;
3493 	fullname = kobj_zalloc(maxpathlen, KM_WAIT);
3494 
3495 	for (;;) {
3496 		p = fullname;
3497 		if (*pathp != '\0' && *pathp != '/')
3498 			*p++ = '/';	/* path must start with '/' */
3499 		while (*pathp && *pathp != ':' && *pathp != ' ')
3500 			*p++ = *pathp++;
3501 		if (p != fullname && p[-1] != '/')
3502 			*p++ = '/';
3503 		if (use_moddir_suffix) {
3504 			char *b = basename(name);
3505 			char *s;
3506 
3507 			/* copy everything up to the base name */
3508 			q = name;
3509 			while (q != b && *q)
3510 				*p++ = *q++;
3511 			s = slash_moddir_suffix_slash;
3512 			while (*s)
3513 				*p++ = *s++;
3514 			/* copy the rest */
3515 			while (*b)
3516 				*p++ = *b++;
3517 		} else {
3518 			q = name;
3519 			while (*q)
3520 				*p++ = *q++;
3521 		}
3522 		*p = 0;
3523 		if ((file = kobj_open_file(fullname)) != (struct _buf *)-1) {
3524 			kobj_free(fullname, maxpathlen);
3525 			return (file);
3526 		}
3527 		while (*pathp == ' ' || *pathp == ':')
3528 			pathp++;
3529 		if (*pathp == 0)
3530 			break;
3531 
3532 	}
3533 	kobj_free(fullname, maxpathlen);
3534 	if (_moddebug & MODDEBUG_ERRMSG) {
3535 		_kobj_printf(ops, "can't open %s,", name);
3536 		_kobj_printf(ops, " path is %s\n", pathpsave);
3537 	}
3538 	return ((struct _buf *)-1);
3539 }
3540 
3541 intptr_t
3542 kobj_open(char *filename)
3543 {
3544 	struct vnode *vp;
3545 	int fd;
3546 
3547 	if (_modrootloaded) {
3548 		struct kobjopen_tctl *ltp = kobjopen_alloc(filename);
3549 		int Errno;
3550 
3551 		/*
3552 		 * Hand off the open to a thread who has a
3553 		 * stack size capable handling the request.
3554 		 */
3555 		if (curthread != &t0) {
3556 			(void) thread_create(NULL, DEFAULTSTKSZ * 2,
3557 			    kobjopen_thread, ltp, 0, &p0, TS_RUN, maxclsyspri);
3558 			sema_p(&ltp->sema);
3559 			Errno = ltp->Errno;
3560 			vp = ltp->vp;
3561 		} else {
3562 			/*
3563 			 * 1098067: module creds should not be those of the
3564 			 * caller
3565 			 */
3566 			cred_t *saved_cred = curthread->t_cred;
3567 			curthread->t_cred = kcred;
3568 			Errno = vn_openat(filename, UIO_SYSSPACE, FREAD, 0, &vp,
3569 			    0, 0, rootdir, -1);
3570 			curthread->t_cred = saved_cred;
3571 		}
3572 		kobjopen_free(ltp);
3573 
3574 		if (Errno) {
3575 			if (_moddebug & MODDEBUG_ERRMSG) {
3576 				_kobj_printf(ops,
3577 				    "kobj_open: vn_open of %s fails, ",
3578 				    filename);
3579 				_kobj_printf(ops, "Errno = %d\n", Errno);
3580 			}
3581 			return (-1);
3582 		} else {
3583 			if (_moddebug & MODDEBUG_ERRMSG) {
3584 				_kobj_printf(ops, "kobj_open: '%s'", filename);
3585 				_kobj_printf(ops, " vp = %p\n", vp);
3586 			}
3587 			return ((intptr_t)vp);
3588 		}
3589 	} else {
3590 		fd = kobj_boot_open(filename, 0);
3591 
3592 		if (_moddebug & MODDEBUG_ERRMSG) {
3593 			if (fd < 0)
3594 				_kobj_printf(ops,
3595 				    "kobj_open: can't open %s\n", filename);
3596 			else {
3597 				_kobj_printf(ops, "kobj_open: '%s'", filename);
3598 				_kobj_printf(ops, " descr = 0x%x\n", fd);
3599 			}
3600 		}
3601 		return ((intptr_t)fd);
3602 	}
3603 }
3604 
3605 /*
3606  * Calls to kobj_open() are handled off to this routine as a separate thread.
3607  */
3608 static void
3609 kobjopen_thread(struct kobjopen_tctl *ltp)
3610 {
3611 	kmutex_t	cpr_lk;
3612 	callb_cpr_t	cpr_i;
3613 
3614 	mutex_init(&cpr_lk, NULL, MUTEX_DEFAULT, NULL);
3615 	CALLB_CPR_INIT(&cpr_i, &cpr_lk, callb_generic_cpr, "kobjopen");
3616 	ltp->Errno = vn_open(ltp->name, UIO_SYSSPACE, FREAD, 0, &(ltp->vp),
3617 	    0, 0);
3618 	sema_v(&ltp->sema);
3619 	mutex_enter(&cpr_lk);
3620 	CALLB_CPR_EXIT(&cpr_i);
3621 	mutex_destroy(&cpr_lk);
3622 	thread_exit();
3623 }
3624 
3625 /*
3626  * allocate and initialize a kobjopen thread structure
3627  */
3628 static struct kobjopen_tctl *
3629 kobjopen_alloc(char *filename)
3630 {
3631 	struct kobjopen_tctl *ltp = kmem_zalloc(sizeof (*ltp), KM_SLEEP);
3632 
3633 	ASSERT(filename != NULL);
3634 
3635 	ltp->name = kmem_alloc(strlen(filename) + 1, KM_SLEEP);
3636 	bcopy(filename, ltp->name, strlen(filename) + 1);
3637 	sema_init(&ltp->sema, 0, NULL, SEMA_DEFAULT, NULL);
3638 	return (ltp);
3639 }
3640 
3641 /*
3642  * free a kobjopen thread control structure
3643  */
3644 static void
3645 kobjopen_free(struct kobjopen_tctl *ltp)
3646 {
3647 	sema_destroy(&ltp->sema);
3648 	kmem_free(ltp->name, strlen(ltp->name) + 1);
3649 	kmem_free(ltp, sizeof (*ltp));
3650 }
3651 
3652 int
3653 kobj_read(intptr_t descr, char *buf, uint_t size, uint_t offset)
3654 {
3655 	int stat;
3656 	ssize_t resid;
3657 
3658 	if (_modrootloaded) {
3659 		if ((stat = vn_rdwr(UIO_READ, (struct vnode *)descr, buf, size,
3660 		    (offset_t)offset, UIO_SYSSPACE, 0, (rlim64_t)0, CRED(),
3661 		    &resid)) != 0) {
3662 			_kobj_printf(ops,
3663 			    "vn_rdwr failed with error 0x%x\n", stat);
3664 			return (-1);
3665 		}
3666 		return (size - resid);
3667 	} else {
3668 		int count = 0;
3669 
3670 		if (kobj_boot_seek((int)descr, (off_t)0, offset) != 0) {
3671 			_kobj_printf(ops,
3672 			    "kobj_read: seek 0x%x failed\n", offset);
3673 			return (-1);
3674 		}
3675 
3676 		count = kobj_boot_read((int)descr, buf, size);
3677 		if (count < size) {
3678 			if (_moddebug & MODDEBUG_ERRMSG) {
3679 				_kobj_printf(ops,
3680 				    "kobj_read: req %d bytes, ", size);
3681 				_kobj_printf(ops, "got %d\n", count);
3682 			}
3683 		}
3684 		return (count);
3685 	}
3686 }
3687 
3688 void
3689 kobj_close(intptr_t descr)
3690 {
3691 	if (_moddebug & MODDEBUG_ERRMSG)
3692 		_kobj_printf(ops, "kobj_close: 0x%lx\n", descr);
3693 
3694 	if (_modrootloaded) {
3695 		struct vnode *vp = (struct vnode *)descr;
3696 		(void) VOP_CLOSE(vp, FREAD, 1, (offset_t)0, CRED(), NULL);
3697 		VN_RELE(vp);
3698 	} else
3699 		(void) kobj_boot_close((int)descr);
3700 }
3701 
3702 int
3703 kobj_fstat(intptr_t descr, struct bootstat *buf)
3704 {
3705 	if (buf == NULL)
3706 		return (-1);
3707 
3708 	if (_modrootloaded) {
3709 		vattr_t vattr;
3710 		struct vnode *vp = (struct vnode *)descr;
3711 		if (VOP_GETATTR(vp, &vattr, 0, kcred, NULL) != 0)
3712 			return (-1);
3713 
3714 		/*
3715 		 * The vattr and bootstat structures are similar, but not
3716 		 * identical.  We do our best to fill in the bootstat structure
3717 		 * from the contents of vattr (transfering only the ones that
3718 		 * are obvious.
3719 		 */
3720 
3721 		buf->st_mode = (uint32_t)vattr.va_mode;
3722 		buf->st_nlink = (uint32_t)vattr.va_nlink;
3723 		buf->st_uid = (int32_t)vattr.va_uid;
3724 		buf->st_gid = (int32_t)vattr.va_gid;
3725 		buf->st_rdev = (uint64_t)vattr.va_rdev;
3726 		buf->st_size = (uint64_t)vattr.va_size;
3727 		buf->st_atim.tv_sec = (int64_t)vattr.va_atime.tv_sec;
3728 		buf->st_atim.tv_nsec = (int64_t)vattr.va_atime.tv_nsec;
3729 		buf->st_mtim.tv_sec = (int64_t)vattr.va_mtime.tv_sec;
3730 		buf->st_mtim.tv_nsec = (int64_t)vattr.va_mtime.tv_nsec;
3731 		buf->st_ctim.tv_sec = (int64_t)vattr.va_ctime.tv_sec;
3732 		buf->st_ctim.tv_nsec = (int64_t)vattr.va_ctime.tv_nsec;
3733 		buf->st_blksize = (int32_t)vattr.va_blksize;
3734 		buf->st_blocks = (int64_t)vattr.va_nblocks;
3735 
3736 		return (0);
3737 	}
3738 
3739 	return (kobj_boot_fstat((int)descr, buf));
3740 }
3741 
3742 
3743 struct _buf *
3744 kobj_open_file(char *name)
3745 {
3746 	struct _buf *file;
3747 	struct compinfo cbuf;
3748 	intptr_t fd;
3749 
3750 	if ((fd = kobj_open(name)) == -1) {
3751 		return ((struct _buf *)-1);
3752 	}
3753 
3754 	file = kobj_zalloc(sizeof (struct _buf), KM_WAIT|KM_TMP);
3755 	file->_fd = fd;
3756 	file->_name = kobj_alloc(strlen(name)+1, KM_WAIT|KM_TMP);
3757 	file->_cnt = file->_size = file->_off = 0;
3758 	file->_ln = 1;
3759 	file->_ptr = file->_base;
3760 	(void) strcpy(file->_name, name);
3761 
3762 	/*
3763 	 * Before root is mounted, we must check
3764 	 * for a compressed file and do our own
3765 	 * buffering.
3766 	 */
3767 	if (_modrootloaded) {
3768 		file->_base = kobj_zalloc(MAXBSIZE, KM_WAIT);
3769 		file->_bsize = MAXBSIZE;
3770 
3771 		/* Check if the file is compressed */
3772 		file->_iscmp = kobj_is_compressed(fd);
3773 	} else {
3774 		if (kobj_boot_compinfo(fd, &cbuf) != 0) {
3775 			kobj_close_file(file);
3776 			return ((struct _buf *)-1);
3777 		}
3778 		file->_iscmp = cbuf.iscmp;
3779 		if (file->_iscmp) {
3780 			if (kobj_comp_setup(file, &cbuf) != 0) {
3781 				kobj_close_file(file);
3782 				return ((struct _buf *)-1);
3783 			}
3784 		} else {
3785 			file->_base = kobj_zalloc(cbuf.blksize, KM_WAIT|KM_TMP);
3786 			file->_bsize = cbuf.blksize;
3787 		}
3788 	}
3789 	return (file);
3790 }
3791 
3792 static int
3793 kobj_comp_setup(struct _buf *file, struct compinfo *cip)
3794 {
3795 	struct comphdr *hdr;
3796 
3797 	/*
3798 	 * read the compressed image into memory,
3799 	 * so we can deompress from there
3800 	 */
3801 	file->_dsize = cip->fsize;
3802 	file->_dbuf = kobj_alloc(cip->fsize, KM_WAIT|KM_TMP);
3803 	if (kobj_read(file->_fd, file->_dbuf, cip->fsize, 0) != cip->fsize) {
3804 		kobj_free(file->_dbuf, cip->fsize);
3805 		return (-1);
3806 	}
3807 
3808 	hdr = kobj_comphdr(file);
3809 	if (hdr->ch_magic != CH_MAGIC_ZLIB || hdr->ch_version != CH_VERSION ||
3810 	    hdr->ch_algorithm != CH_ALG_ZLIB || hdr->ch_fsize == 0 ||
3811 	    !ISP2(hdr->ch_blksize)) {
3812 		kobj_free(file->_dbuf, cip->fsize);
3813 		return (-1);
3814 	}
3815 	file->_base = kobj_alloc(hdr->ch_blksize, KM_WAIT|KM_TMP);
3816 	file->_bsize = hdr->ch_blksize;
3817 	return (0);
3818 }
3819 
3820 void
3821 kobj_close_file(struct _buf *file)
3822 {
3823 	kobj_close(file->_fd);
3824 	if (file->_base != NULL)
3825 		kobj_free(file->_base, file->_bsize);
3826 	if (file->_dbuf != NULL)
3827 		kobj_free(file->_dbuf, file->_dsize);
3828 	kobj_free(file->_name, strlen(file->_name)+1);
3829 	kobj_free(file, sizeof (struct _buf));
3830 }
3831 
3832 int
3833 kobj_read_file(struct _buf *file, char *buf, uint_t size, uint_t off)
3834 {
3835 	int b_size, c_size;
3836 	int b_off;	/* Offset into buffer for start of bcopy */
3837 	int count = 0;
3838 	int page_addr;
3839 
3840 	if (_moddebug & MODDEBUG_ERRMSG) {
3841 		_kobj_printf(ops, "kobj_read_file: size=%x,", size);
3842 		_kobj_printf(ops, " offset=%x at", off);
3843 		_kobj_printf(ops, " buf=%lx\n", (uintptr_t)buf);
3844 	}
3845 
3846 	/*
3847 	 * Handle compressed (gzip for now) file here. First get the
3848 	 * compressed size, then read the image into memory and finally
3849 	 * call zlib to decompress the image at the supplied memory buffer.
3850 	 */
3851 	if (file->_iscmp == CH_MAGIC_GZIP) {
3852 		ulong_t dlen;
3853 		vattr_t vattr;
3854 		struct vnode *vp = (struct vnode *)file->_fd;
3855 		ssize_t resid;
3856 		int err = 0;
3857 
3858 		if (VOP_GETATTR(vp, &vattr, 0, kcred, NULL) != 0)
3859 			return (-1);
3860 
3861 		file->_dbuf = kobj_alloc(vattr.va_size, KM_WAIT|KM_TMP);
3862 		file->_dsize = vattr.va_size;
3863 
3864 		/* Read the compressed file into memory */
3865 		if ((err = vn_rdwr(UIO_READ, vp, file->_dbuf, vattr.va_size,
3866 		    (offset_t)(0), UIO_SYSSPACE, 0, (rlim64_t)0, CRED(),
3867 		    &resid)) != 0) {
3868 
3869 			_kobj_printf(ops, "kobj_read_file :vn_rdwr() failed, "
3870 			    "error code 0x%x\n", err);
3871 			return (-1);
3872 		}
3873 
3874 		dlen = size;
3875 
3876 		/* Decompress the image at the supplied memory buffer */
3877 		if ((err = z_uncompress(buf, &dlen, file->_dbuf,
3878 		    vattr.va_size)) != Z_OK) {
3879 			_kobj_printf(ops, "kobj_read_file: z_uncompress "
3880 			    "failed, error code : 0x%x\n", err);
3881 			return (-1);
3882 		}
3883 
3884 		if (dlen != size) {
3885 			_kobj_printf(ops, "kobj_read_file: z_uncompress "
3886 			    "failed to uncompress (size returned 0x%lx , "
3887 			    "expected size: 0x%x)\n", dlen, size);
3888 			return (-1);
3889 		}
3890 
3891 		return (0);
3892 	}
3893 
3894 	while (size) {
3895 		page_addr = F_PAGE(file, off);
3896 		b_size = file->_size;
3897 		/*
3898 		 * If we have the filesystem page the caller's referring to
3899 		 * and we have something in the buffer,
3900 		 * satisfy as much of the request from the buffer as we can.
3901 		 */
3902 		if (page_addr == file->_off && b_size > 0) {
3903 			b_off = B_OFFSET(file, off);
3904 			c_size = b_size - b_off;
3905 			/*
3906 			 * If there's nothing to copy, we're at EOF.
3907 			 */
3908 			if (c_size <= 0)
3909 				break;
3910 			if (c_size > size)
3911 				c_size = size;
3912 			if (buf) {
3913 				if (_moddebug & MODDEBUG_ERRMSG)
3914 					_kobj_printf(ops, "copying %x bytes\n",
3915 					    c_size);
3916 				bcopy(file->_base+b_off, buf, c_size);
3917 				size -= c_size;
3918 				off += c_size;
3919 				buf += c_size;
3920 				count += c_size;
3921 			} else {
3922 				_kobj_printf(ops, "kobj_read: system error");
3923 				count = -1;
3924 				break;
3925 			}
3926 		} else {
3927 			/*
3928 			 * If the caller's offset is page aligned and
3929 			 * the caller want's at least a filesystem page and
3930 			 * the caller provided a buffer,
3931 			 * read directly into the caller's buffer.
3932 			 */
3933 			if (page_addr == off &&
3934 			    (c_size = F_BLKS(file, size)) && buf) {
3935 				c_size = kobj_read_blks(file, buf, c_size,
3936 				    page_addr);
3937 				if (c_size < 0) {
3938 					count = -1;
3939 					break;
3940 				}
3941 				count += c_size;
3942 				if (c_size != F_BLKS(file, size))
3943 					break;
3944 				size -= c_size;
3945 				off += c_size;
3946 				buf += c_size;
3947 			/*
3948 			 * Otherwise, read into our buffer and copy next time
3949 			 * around the loop.
3950 			 */
3951 			} else {
3952 				file->_off = page_addr;
3953 				c_size = kobj_read_blks(file, file->_base,
3954 				    file->_bsize, page_addr);
3955 				file->_ptr = file->_base;
3956 				file->_cnt = c_size;
3957 				file->_size = c_size;
3958 				/*
3959 				 * If a _filbuf call or nothing read, break.
3960 				 */
3961 				if (buf == NULL || c_size <= 0) {
3962 					count = c_size;
3963 					break;
3964 				}
3965 			}
3966 			if (_moddebug & MODDEBUG_ERRMSG)
3967 				_kobj_printf(ops, "read %x bytes\n", c_size);
3968 		}
3969 	}
3970 	if (_moddebug & MODDEBUG_ERRMSG)
3971 		_kobj_printf(ops, "count = %x\n", count);
3972 
3973 	return (count);
3974 }
3975 
3976 static int
3977 kobj_read_blks(struct _buf *file, char *buf, uint_t size, uint_t off)
3978 {
3979 	int ret;
3980 
3981 	ASSERT(B_OFFSET(file, size) == 0 && B_OFFSET(file, off) == 0);
3982 	if (file->_iscmp) {
3983 		uint_t blks;
3984 		int nret;
3985 
3986 		ret = 0;
3987 		for (blks = size / file->_bsize; blks != 0; blks--) {
3988 			nret = kobj_uncomp_blk(file, buf, off);
3989 			if (nret == -1)
3990 				return (-1);
3991 			buf += nret;
3992 			off += nret;
3993 			ret += nret;
3994 			if (nret < file->_bsize)
3995 				break;
3996 		}
3997 	} else
3998 		ret = kobj_read(file->_fd, buf, size, off);
3999 	return (ret);
4000 }
4001 
4002 static int
4003 kobj_uncomp_blk(struct _buf *file, char *buf, uint_t off)
4004 {
4005 	struct comphdr *hdr = kobj_comphdr(file);
4006 	ulong_t dlen, slen;
4007 	caddr_t src;
4008 	int i;
4009 
4010 	dlen = file->_bsize;
4011 	i = off / file->_bsize;
4012 	src = file->_dbuf + hdr->ch_blkmap[i];
4013 	if (i == hdr->ch_fsize / file->_bsize)
4014 		slen = file->_dsize - hdr->ch_blkmap[i];
4015 	else
4016 		slen = hdr->ch_blkmap[i + 1] - hdr->ch_blkmap[i];
4017 	if (z_uncompress(buf, &dlen, src, slen) != Z_OK)
4018 		return (-1);
4019 	return (dlen);
4020 }
4021 
4022 int
4023 kobj_filbuf(struct _buf *f)
4024 {
4025 	if (kobj_read_file(f, NULL, f->_bsize, f->_off + f->_size) > 0)
4026 		return (kobj_getc(f));
4027 	return (-1);
4028 }
4029 
4030 void
4031 kobj_free(void *address, size_t size)
4032 {
4033 	if (standalone)
4034 		return;
4035 
4036 	kmem_free(address, size);
4037 	kobj_stat.nfree_calls++;
4038 	kobj_stat.nfree += size;
4039 }
4040 
4041 void *
4042 kobj_zalloc(size_t size, int flag)
4043 {
4044 	void *v;
4045 
4046 	if ((v = kobj_alloc(size, flag)) != 0) {
4047 		bzero(v, size);
4048 	}
4049 
4050 	return (v);
4051 }
4052 
4053 void *
4054 kobj_alloc(size_t size, int flag)
4055 {
4056 	/*
4057 	 * If we are running standalone in the
4058 	 * linker, we ask boot for memory.
4059 	 * Either it's temporary memory that we lose
4060 	 * once boot is mapped out or we allocate it
4061 	 * permanently using the dynamic data segment.
4062 	 */
4063 	if (standalone) {
4064 #if defined(_OBP)
4065 		if (flag & (KM_TMP | KM_SCRATCH))
4066 			return (bop_temp_alloc(size, MINALIGN));
4067 #else
4068 		if (flag & (KM_TMP | KM_SCRATCH))
4069 			return (BOP_ALLOC(ops, 0, size, MINALIGN));
4070 #endif
4071 		return (kobj_segbrk(&_edata, size, MINALIGN, 0));
4072 	}
4073 
4074 	kobj_stat.nalloc_calls++;
4075 	kobj_stat.nalloc += size;
4076 
4077 	return (kmem_alloc(size, (flag & KM_NOWAIT) ? KM_NOSLEEP : KM_SLEEP));
4078 }
4079 
4080 /*
4081  * Allow the "mod" system to sync up with the work
4082  * already done by kobj during the initial loading
4083  * of the kernel.  This also gives us a chance
4084  * to reallocate memory that belongs to boot.
4085  */
4086 void
4087 kobj_sync(void)
4088 {
4089 	struct modctl_list *lp, **lpp;
4090 
4091 	/*
4092 	 * The module path can be set in /etc/system via 'moddir' commands
4093 	 */
4094 	if (default_path != NULL)
4095 		kobj_module_path = default_path;
4096 	else
4097 		default_path = kobj_module_path;
4098 
4099 	ksyms_arena = vmem_create("ksyms", NULL, 0, sizeof (uint64_t),
4100 	    segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP);
4101 
4102 	ctf_arena = vmem_create("ctf", NULL, 0, sizeof (uint_t),
4103 	    segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP);
4104 
4105 	/*
4106 	 * Move symbol tables from boot memory to ksyms_arena.
4107 	 */
4108 	for (lpp = kobj_linkmaps; *lpp != NULL; lpp++) {
4109 		for (lp = *lpp; lp != NULL; lp = lp->modl_next)
4110 			kobj_export_module(mod(lp));
4111 	}
4112 }
4113 
4114 caddr_t
4115 kobj_segbrk(caddr_t *spp, size_t size, size_t align, caddr_t limit)
4116 {
4117 	uintptr_t va, pva;
4118 	size_t alloc_pgsz = kobj_mmu_pagesize;
4119 	size_t alloc_align = BO_NO_ALIGN;
4120 	size_t alloc_size;
4121 
4122 	/*
4123 	 * If we are using "large" mappings for the kernel,
4124 	 * request aligned memory from boot using the
4125 	 * "large" pagesize.
4126 	 */
4127 	if (lg_pagesize) {
4128 		alloc_align = lg_pagesize;
4129 		alloc_pgsz = lg_pagesize;
4130 	}
4131 
4132 #if defined(__sparc)
4133 	/* account for redzone */
4134 	if (limit)
4135 		limit -= alloc_pgsz;
4136 #endif	/* __sparc */
4137 
4138 	va = ALIGN((uintptr_t)*spp, align);
4139 	pva = P2ROUNDUP((uintptr_t)*spp, alloc_pgsz);
4140 	/*
4141 	 * Need more pages?
4142 	 */
4143 	if (va + size > pva) {
4144 		uintptr_t npva;
4145 
4146 		alloc_size = P2ROUNDUP(size - (pva - va), alloc_pgsz);
4147 		/*
4148 		 * Check for overlapping segments.
4149 		 */
4150 		if (limit && limit <= *spp + alloc_size) {
4151 			return ((caddr_t)0);
4152 		}
4153 
4154 		npva = (uintptr_t)BOP_ALLOC(ops, (caddr_t)pva,
4155 		    alloc_size, alloc_align);
4156 
4157 		if (npva == 0) {
4158 			_kobj_printf(ops, "BOP_ALLOC failed, 0x%lx bytes",
4159 			    alloc_size);
4160 			_kobj_printf(ops, " aligned %lx", alloc_align);
4161 			_kobj_printf(ops, " at 0x%lx\n", pva);
4162 			return (NULL);
4163 		}
4164 	}
4165 	*spp = (caddr_t)(va + size);
4166 
4167 	return ((caddr_t)va);
4168 }
4169 
4170 /*
4171  * Calculate the number of output hash buckets.
4172  * We use the next prime larger than n / 4,
4173  * so the average hash chain is about 4 entries.
4174  * More buckets would just be a waste of memory.
4175  */
4176 uint_t
4177 kobj_gethashsize(uint_t n)
4178 {
4179 	int f;
4180 	int hsize = MAX(n / 4, 2);
4181 
4182 	for (f = 2; f * f <= hsize; f++)
4183 		if (hsize % f == 0)
4184 			hsize += f = 1;
4185 
4186 	return (hsize);
4187 }
4188 
4189 /*
4190  * Get the file size.
4191  *
4192  * Before root is mounted, files are compressed in the boot_archive ramdisk
4193  * (in the memory). kobj_fstat would return the compressed file size.
4194  * In order to get the uncompressed file size, read the file to the end and
4195  * count its size.
4196  */
4197 int
4198 kobj_get_filesize(struct _buf *file, uint64_t *size)
4199 {
4200 	int err = 0;
4201 	ssize_t resid;
4202 	uint32_t buf;
4203 
4204 	if (_modrootloaded) {
4205 		struct bootstat bst;
4206 
4207 		if (kobj_fstat(file->_fd, &bst) != 0)
4208 			return (EIO);
4209 		*size = bst.st_size;
4210 
4211 		if (file->_iscmp == CH_MAGIC_GZIP) {
4212 			/*
4213 			 * Read the last 4 bytes of the compressed (gzip)
4214 			 * image to get the size of its uncompressed
4215 			 * version.
4216 			 */
4217 			if ((err = vn_rdwr(UIO_READ, (struct vnode *)file->_fd,
4218 			    (char *)(&buf), 4, (offset_t)(*size - 4),
4219 			    UIO_SYSSPACE, 0, (rlim64_t)0, CRED(), &resid))
4220 			    != 0) {
4221 				_kobj_printf(ops, "kobj_get_filesize: "
4222 				    "vn_rdwr() failed with error 0x%x\n", err);
4223 				return (-1);
4224 			}
4225 
4226 			*size =  (uint64_t)buf;
4227 		}
4228 	} else {
4229 
4230 #if defined(_OBP)
4231 		struct bootstat bsb;
4232 
4233 		if (file->_iscmp) {
4234 			struct comphdr *hdr = kobj_comphdr(file);
4235 
4236 			*size = hdr->ch_fsize;
4237 		} else if (kobj_boot_fstat(file->_fd, &bsb) != 0)
4238 			return (EIO);
4239 		else
4240 			*size = bsb.st_size;
4241 #else
4242 		char *buf;
4243 		int count;
4244 		uint64_t offset = 0;
4245 
4246 		buf = kmem_alloc(MAXBSIZE, KM_SLEEP);
4247 		do {
4248 			count = kobj_read_file(file, buf, MAXBSIZE, offset);
4249 			if (count < 0) {
4250 				kmem_free(buf, MAXBSIZE);
4251 				return (EIO);
4252 			}
4253 			offset += count;
4254 		} while (count == MAXBSIZE);
4255 		kmem_free(buf, MAXBSIZE);
4256 
4257 		*size = offset;
4258 #endif
4259 	}
4260 
4261 	return (0);
4262 }
4263 
4264 static char *
4265 basename(char *s)
4266 {
4267 	char *p, *q;
4268 
4269 	q = NULL;
4270 	p = s;
4271 	do {
4272 		if (*p == '/')
4273 			q = p;
4274 	} while (*p++);
4275 	return (q ? q + 1 : s);
4276 }
4277 
4278 void
4279 kobj_stat_get(kobj_stat_t *kp)
4280 {
4281 	*kp = kobj_stat;
4282 }
4283 
4284 int
4285 kobj_getpagesize()
4286 {
4287 	return (lg_pagesize);
4288 }
4289 
4290 void
4291 kobj_textwin_alloc(struct module *mp)
4292 {
4293 	ASSERT(MUTEX_HELD(&mod_lock));
4294 
4295 	if (mp->textwin != NULL)
4296 		return;
4297 
4298 	/*
4299 	 * If the text is not contained in the heap, then it is not contained
4300 	 * by a writable mapping.  (Specifically, it's on the nucleus page.)
4301 	 * We allocate a read/write mapping for this module's text to allow
4302 	 * the text to be patched without calling hot_patch_kernel_text()
4303 	 * (which is quite slow).
4304 	 */
4305 	if (!vmem_contains(heaptext_arena, mp->text, mp->text_size)) {
4306 		uintptr_t text = (uintptr_t)mp->text;
4307 		uintptr_t size = (uintptr_t)mp->text_size;
4308 		uintptr_t i;
4309 		caddr_t va;
4310 		size_t sz = ((text + size + PAGESIZE - 1) & PAGEMASK) -
4311 		    (text & PAGEMASK);
4312 
4313 		va = mp->textwin_base = vmem_alloc(heap_arena, sz, VM_SLEEP);
4314 
4315 		for (i = text & PAGEMASK; i < text + size; i += PAGESIZE) {
4316 			hat_devload(kas.a_hat, va, PAGESIZE,
4317 			    hat_getpfnum(kas.a_hat, (caddr_t)i),
4318 			    PROT_READ | PROT_WRITE,
4319 			    HAT_LOAD_LOCK | HAT_LOAD_NOCONSIST);
4320 			va += PAGESIZE;
4321 		}
4322 
4323 		mp->textwin = mp->textwin_base + (text & PAGEOFFSET);
4324 	} else {
4325 		mp->textwin = mp->text;
4326 	}
4327 }
4328 
4329 void
4330 kobj_textwin_free(struct module *mp)
4331 {
4332 	uintptr_t text = (uintptr_t)mp->text;
4333 	uintptr_t tsize = (uintptr_t)mp->text_size;
4334 	size_t size = (((text + tsize + PAGESIZE - 1) & PAGEMASK) -
4335 	    (text & PAGEMASK));
4336 
4337 	mp->textwin = NULL;
4338 
4339 	if (mp->textwin_base == NULL)
4340 		return;
4341 
4342 	hat_unload(kas.a_hat, mp->textwin_base, size, HAT_UNLOAD_UNLOCK);
4343 	vmem_free(heap_arena, mp->textwin_base, size);
4344 	mp->textwin_base = NULL;
4345 }
4346 
4347 static char *
4348 find_libmacro(char *name)
4349 {
4350 	int lmi;
4351 
4352 	for (lmi = 0; lmi < NLIBMACROS; lmi++) {
4353 		if (strcmp(name, libmacros[lmi].lmi_macroname) == 0)
4354 			return (libmacros[lmi].lmi_list);
4355 	}
4356 	return (NULL);
4357 }
4358 
4359 /*
4360  * Check for $MACRO in tail (string to expand) and expand it in path at pathend
4361  * returns path if successful, else NULL
4362  * Support multiple $MACROs expansion and the first valid path will be returned
4363  * Caller's responsibility to provide enough space in path to expand
4364  */
4365 char *
4366 expand_libmacro(char *tail, char *path, char *pathend)
4367 {
4368 	char c, *p, *p1, *p2, *path2, *endp;
4369 	int diff, lmi, macrolen, valid_macro, more_macro;
4370 	struct _buf *file;
4371 
4372 	/*
4373 	 * check for $MACROS between nulls or slashes
4374 	 */
4375 	p = strchr(tail, '$');
4376 	if (p == NULL)
4377 		return (NULL);
4378 	for (lmi = 0; lmi < NLIBMACROS; lmi++) {
4379 		macrolen = libmacros[lmi].lmi_macrolen;
4380 		if (strncmp(p + 1, libmacros[lmi].lmi_macroname, macrolen) == 0)
4381 			break;
4382 	}
4383 
4384 	valid_macro = 0;
4385 	if (lmi < NLIBMACROS) {
4386 		/*
4387 		 * The following checks are used to restrict expansion of
4388 		 * macros to those that form a full directory/file name
4389 		 * and to keep the behavior same as before.  If this
4390 		 * restriction is removed or no longer valid in the future,
4391 		 * the checks below can be deleted.
4392 		 */
4393 		if ((p == tail) || (*(p - 1) == '/')) {
4394 			c = *(p + macrolen + 1);
4395 			if (c == '/' || c == '\0')
4396 				valid_macro = 1;
4397 		}
4398 	}
4399 
4400 	if (!valid_macro) {
4401 		p2 = strchr(p, '/');
4402 		/*
4403 		 * if no more macro to expand, then just copy whatever left
4404 		 * and check whether it exists
4405 		 */
4406 		if (p2 == NULL || strchr(p2, '$') == NULL) {
4407 			(void) strcpy(pathend, tail);
4408 			if ((file = kobj_open_path(path, 1, 1)) !=
4409 			    (struct _buf *)-1) {
4410 				kobj_close_file(file);
4411 				return (path);
4412 			} else
4413 				return (NULL);
4414 		} else {
4415 			/*
4416 			 * copy all chars before '/' and call expand_libmacro()
4417 			 * again
4418 			 */
4419 			diff = p2 - tail;
4420 			bcopy(tail, pathend, diff);
4421 			pathend += diff;
4422 			*(pathend) = '\0';
4423 			return (expand_libmacro(p2, path, pathend));
4424 		}
4425 	}
4426 
4427 	more_macro = 0;
4428 	if (c != '\0') {
4429 		endp = p + macrolen + 1;
4430 		if (strchr(endp, '$') != NULL)
4431 			more_macro = 1;
4432 	} else
4433 		endp = NULL;
4434 
4435 	/*
4436 	 * copy lmi_list and split it into components.
4437 	 * then put the part of tail before $MACRO into path
4438 	 * at pathend
4439 	 */
4440 	diff = p - tail;
4441 	if (diff > 0)
4442 		bcopy(tail, pathend, diff);
4443 	path2 = pathend + diff;
4444 	p1 = libmacros[lmi].lmi_list;
4445 	while (p1 && (*p1 != '\0')) {
4446 		p2 = strchr(p1, ':');
4447 		if (p2) {
4448 			diff = p2 - p1;
4449 			bcopy(p1, path2, diff);
4450 			*(path2 + diff) = '\0';
4451 		} else {
4452 			diff = strlen(p1);
4453 			bcopy(p1, path2, diff + 1);
4454 		}
4455 		/* copy endp only if there isn't any more macro to expand */
4456 		if (!more_macro && (endp != NULL))
4457 			(void) strcat(path2, endp);
4458 		file = kobj_open_path(path, 1, 1);
4459 		if (file != (struct _buf *)-1) {
4460 			kobj_close_file(file);
4461 			/*
4462 			 * if more macros to expand then call expand_libmacro(),
4463 			 * else return path which has the whole path
4464 			 */
4465 			if (!more_macro || (expand_libmacro(endp, path,
4466 			    path2 + diff) != NULL)) {
4467 				return (path);
4468 			}
4469 		}
4470 		if (p2)
4471 			p1 = ++p2;
4472 		else
4473 			return (NULL);
4474 	}
4475 	return (NULL);
4476 }
4477 
4478 static void
4479 tnf_add_notifyunload(kobj_notify_f *fp)
4480 {
4481 	kobj_notify_list_t *entry;
4482 
4483 	entry = kobj_alloc(sizeof (kobj_notify_list_t), KM_WAIT);
4484 	entry->kn_type = KOBJ_NOTIFY_MODUNLOADING;
4485 	entry->kn_func = fp;
4486 	(void) kobj_notify_add(entry);
4487 }
4488 
4489 /* ARGSUSED */
4490 static void
4491 tnf_unsplice_probes(uint_t what, struct modctl *mod)
4492 {
4493 	tnf_probe_control_t **p;
4494 	tnf_tag_data_t **q;
4495 	struct module *mp = mod->mod_mp;
4496 
4497 	if (!(mp->flags & KOBJ_TNF_PROBE))
4498 		return;
4499 
4500 	for (p = &__tnf_probe_list_head; *p; )
4501 		if (kobj_addrcheck(mp, (char *)*p) == 0)
4502 			*p = (*p)->next;
4503 		else
4504 			p = &(*p)->next;
4505 
4506 	for (q = &__tnf_tag_list_head; *q; )
4507 		if (kobj_addrcheck(mp, (char *)*q) == 0)
4508 			*q = (tnf_tag_data_t *)(*q)->tag_version;
4509 		else
4510 			q = (tnf_tag_data_t **)&(*q)->tag_version;
4511 
4512 	tnf_changed_probe_list = 1;
4513 }
4514 
4515 int
4516 tnf_splice_probes(int boot_load, tnf_probe_control_t *plist,
4517     tnf_tag_data_t *tlist)
4518 {
4519 	int result = 0;
4520 	static int add_notify = 1;
4521 
4522 	if (plist) {
4523 		tnf_probe_control_t *pl;
4524 
4525 		for (pl = plist; pl->next; )
4526 			pl = pl->next;
4527 
4528 		if (!boot_load)
4529 			mutex_enter(&mod_lock);
4530 		tnf_changed_probe_list = 1;
4531 		pl->next = __tnf_probe_list_head;
4532 		__tnf_probe_list_head = plist;
4533 		if (!boot_load)
4534 			mutex_exit(&mod_lock);
4535 		result = 1;
4536 	}
4537 
4538 	if (tlist) {
4539 		tnf_tag_data_t *tl;
4540 
4541 		for (tl = tlist; tl->tag_version; )
4542 			tl = (tnf_tag_data_t *)tl->tag_version;
4543 
4544 		if (!boot_load)
4545 			mutex_enter(&mod_lock);
4546 		tl->tag_version = (tnf_tag_version_t *)__tnf_tag_list_head;
4547 		__tnf_tag_list_head = tlist;
4548 		if (!boot_load)
4549 			mutex_exit(&mod_lock);
4550 		result = 1;
4551 	}
4552 	if (!boot_load && result && add_notify) {
4553 		tnf_add_notifyunload(tnf_unsplice_probes);
4554 		add_notify = 0;
4555 	}
4556 	return (result);
4557 }
4558 
4559 char *kobj_file_buf;
4560 int kobj_file_bufsize;
4561 
4562 /*
4563  * This code is for the purpose of manually recording which files
4564  * needs to go into the boot archive on any given system.
4565  *
4566  * To enable the code, set kobj_file_bufsize in /etc/system
4567  * and reboot the system, then use mdb to look at kobj_file_buf.
4568  */
4569 static void
4570 kobj_record_file(char *filename)
4571 {
4572 	static char *buf;
4573 	static int size = 0;
4574 	int n;
4575 
4576 	if (kobj_file_bufsize == 0)	/* don't bother */
4577 		return;
4578 
4579 	if (kobj_file_buf == NULL) {	/* allocate buffer */
4580 		size = kobj_file_bufsize;
4581 		buf = kobj_file_buf = kobj_alloc(size, KM_WAIT|KM_TMP);
4582 	}
4583 
4584 	n = snprintf(buf, size, "%s\n", filename);
4585 	if (n > size)
4586 		n = size;
4587 	size -= n;
4588 	buf += n;
4589 }
4590 
4591 static int
4592 kobj_boot_fstat(int fd, struct bootstat *stp)
4593 {
4594 #if defined(_OBP)
4595 	if (!standalone && _ioquiesced)
4596 		return (-1);
4597 	return (BOP_FSTAT(ops, fd, stp));
4598 #else
4599 	return (BRD_FSTAT(bfs_ops, fd, stp));
4600 #endif
4601 }
4602 
4603 static int
4604 kobj_boot_open(char *filename, int flags)
4605 {
4606 #if defined(_OBP)
4607 
4608 	/*
4609 	 * If io via bootops is quiesced, it means boot is no longer
4610 	 * available to us.  We make it look as if we can't open the
4611 	 * named file - which is reasonably accurate.
4612 	 */
4613 	if (!standalone && _ioquiesced)
4614 		return (-1);
4615 
4616 	kobj_record_file(filename);
4617 	return (BOP_OPEN(filename, flags));
4618 #else /* x86 */
4619 	kobj_record_file(filename);
4620 	return (BRD_OPEN(bfs_ops, filename, flags));
4621 #endif
4622 }
4623 
4624 static int
4625 kobj_boot_close(int fd)
4626 {
4627 #if defined(_OBP)
4628 	if (!standalone && _ioquiesced)
4629 		return (-1);
4630 
4631 	return (BOP_CLOSE(fd));
4632 #else /* x86 */
4633 	return (BRD_CLOSE(bfs_ops, fd));
4634 #endif
4635 }
4636 
4637 /*ARGSUSED*/
4638 static int
4639 kobj_boot_seek(int fd, off_t hi, off_t lo)
4640 {
4641 #if defined(_OBP)
4642 	return (BOP_SEEK(fd, lo) == -1 ? -1 : 0);
4643 #else
4644 	return (BRD_SEEK(bfs_ops, fd, lo, SEEK_SET));
4645 #endif
4646 }
4647 
4648 static int
4649 kobj_boot_read(int fd, caddr_t buf, size_t size)
4650 {
4651 #if defined(_OBP)
4652 	return (BOP_READ(fd, buf, size));
4653 #else
4654 	return (BRD_READ(bfs_ops, fd, buf, size));
4655 #endif
4656 }
4657 
4658 static int
4659 kobj_boot_compinfo(int fd, struct compinfo *cb)
4660 {
4661 	return (boot_compinfo(fd, cb));
4662 }
4663 
4664 /*
4665  * Check if the file is compressed (for now we handle only gzip).
4666  * It returns CH_MAGIC_GZIP if the file is compressed and 0 otherwise.
4667  */
4668 static int
4669 kobj_is_compressed(intptr_t fd)
4670 {
4671 	struct vnode *vp = (struct vnode *)fd;
4672 	ssize_t resid;
4673 	uint16_t magic_buf;
4674 	int err = 0;
4675 
4676 	if ((err = vn_rdwr(UIO_READ, vp, (caddr_t)((intptr_t)&magic_buf),
4677 	    sizeof (magic_buf), (offset_t)(0),
4678 	    UIO_SYSSPACE, 0, (rlim64_t)0, CRED(), &resid)) != 0) {
4679 
4680 		_kobj_printf(ops, "kobj_is_compressed: vn_rdwr() failed, "
4681 		    "error code 0x%x\n", err);
4682 		return (0);
4683 	}
4684 
4685 	if (magic_buf == CH_MAGIC_GZIP)
4686 		return (CH_MAGIC_GZIP);
4687 
4688 	return (0);
4689 }
4690